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0 Introduction

Let C be a smooth connected projective curve over C or, from the viewpoint of
analytic geometry, a compact Riemann surface. Then if g is the genus of C, the
space H1,0(C) = H0(C,ΩC) of holomorphic differentials on C is contained in the
Betti cohomology H1

B(C,C) of C (that is, of the corresponding Riemann surface).
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Indeed, a holomorphic 1-form η which is exact has to be identically 0 since then∫
C ιη ∧ η = 0 while the form ιη ∧ η is positive on C away from the zeroes of η.

Furthermore, one has the following decomposition of the cohomology of C with
complex coefficients:

H1
B(C,C) = H1,0(C) ⊕H1,0(C),

and it follows that the image of H1
B(C,Z) in

H1
B(C,C)/H1,0(C) ∼= H0,1(C) := H1,0(C) = H1(C,OC)

is a lattice, called the lattice of periods. The quotient

J(C) = H0,1(C)/H1
B(C,Z) (1)

is a complex torus, the Jacobian of C, and it plays a fundamental role in the study
of curves and their moduli. Abel’s theorem allows to understand J(C) as the group
of 0-cycles of C modulo linear equivalence. Here a 0-cycle is a formal combination∑

i nixi, xi ∈ C, ni ∈ Z. The degree of z is the integer
∑
i ni. First of all, by Serre

duality, H1(C,OC) is dual to H0(C,ΩC) and by Poincaré duality, H1
B(C,Z) ∼=

H1,B(C,Z), which allows to rewrite (1) as J(C) = H0(C,ΩC)∗/H1,B(C,Z). One
has the Abel map

AJC : Z0(C)0 → J(C)

defined on the group of 0-cycles of degree 0, which to z associates the linear form∫
γ ∈ H0(C,ΩC)∗ modulo the lattice of periods, for any choice of path γ on C such

that ∂γ = z.

Theorem 0.1. (See [2, Chapter I, Section 3]) A 0-cycle z of degree 0 is the divisor
div φ of a nonzero rational function on C if and only if AJ(z) = 0 in J(C).

What makes this two centuries old result fascinating is the fact that it identifies
two objects of completely different nature: on the left hand side, we have the group
CH0(C)hom of 0-cycles of degree 0 modulo linear (or rational) equivalence, while
on the right hand side, we have a complex torus defined via uniformization, whose
tangent space is an algebraic datum, but whose integral homology H1(J(C),Z) =
H1,B(C,Z) is purely transcendental.

The subject of Hodge theory and algebraic cycles is the study of the higher di-
mensional/degree analogue of the interplay between Chow groups of a projective
complex manifold X (built from algebraic cycles on X) and the Hodge struc-
tures on the cohomology of X , that is, the data of the Betti cohomology of X
equipped with the Hodge filtration, the later coming in fact from algebraic ge-
ometry. In the 70’s, Mumford [20] and Griffiths [14] discovered several sorts of
pathologies showing that Chow groups are not in general good objects of alge-
braic geometry (eg extensions of finitely generated groups by abelian varieties).
Mumford discovered that the presence of higher degree holomorphic forms forces
the group CH0(X) to be enormous, while Griffiths discovered that there exist
in intermediate dimensions and codimensions cycles homologous to zero but not
algebraically equivalent to zero, and Clemens [9] even proved that the groups
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Griffk(X) = Zk(X)hom/Zk(X)alg, although countable by definition, can be in-
finitely generated, even modulo torsion. Here the subgroup Zk(X)alg of codi-
mension k cycles algebraically equivalent to 0 is generated by cycles of the form
Zb −Zb′ , where B is connected, Z ⊂ B ×X is a closed codimension k subvariety
flat over B, and b, b′ are two points of B. It turns out, as we will explain in
Section 2.4, that the nontriviality of the Griffiths group is the main obstacle to
the solution of a number of conjectures on Chow groups that we will survey here.
The subject of algebraic cycles grew up since these major advances to include and
understand these pathologies, and this has motivated on the complex geometry
side the Bloch-Beilinson conjectures predicting that Chow groups are governed by
Hodge structures (the converse is well-known by Bloch-Srinivas [7], see also [19],
[23], who gave a vast generalization of Mumford’s original theorem), via a certain
filtration whose graded piece are controlled by Hodge structures on X of adequate
degrees and niveau. It is important to note that in these developments, a beau-
tiful formula as in Theorem 0.1 does not exist anymore, although a replacement
has been proposed by Beilinson: His idea is that the first graded piece is given
by the cycle class, hence should identify to the group of Hodge classes (assum-
ing the Hodge conjecture). Hodge classes of degree 2k on a smooth projective
variety X can be seen as morphisms of Hodge structures from the trivial Hodge
structure to H2k

B (X,Q) (see Section 1.1.1). The next graded piece should be con-
troled by Abel-Jacobi invariants, so that it should be a subgroup of the Griffiths
intermediate Jacobian of the adequate degree. The intermediate Jacobian has an
interpretation as Ext1’s in the category of mixed Hodge structures between the
trivial Hodge structure and the adequate odd degree Hodge structure. The ex-
pected interpretation of the higher graded pieces is in terms of higher Ext’s in a
category which remains to be constructed. Indeed, there are no higher Ext’s in
the category of mixed Hodge structures (see [13]).

The purpose of this paper is to describe more precisely the objects mentioned
above (Chow groups, Hodge structures), and the main conjectures concerning
them (Bloch-Beilinson’s conjectures, generalized Bloch conjecture, Hodge and
Grothendieck-Hodge conjectures). We will also explain some recent progress made
in [31], [32] on the generalized Bloch conjecture in the case of very general com-
plete intersections in a variety with trivial Chow groups. Our results, whose proofs
are of an elementary nature, tell that for these varieties, the geometric coniveau
determines the vanishing of Chow groups of cycles of small dimension homologous
to 0 as predicted by the generalized Bloch conjecture:

Theorem 0.2. Let Y be a smooth projective variety over C with trivial Chow
groups. Let E → Y be a very ample vector bundle and let X ⊂ Y be the zero set of
a very general section of E. Then if X is strongly of geometric coniveau ≥ c, that
is, the cohomology class of the corrected diagonal of X is the cohomology class of
a cycle supported on W × X, with W ⊂ X closed algebraic of codimension ≥ c,
one has CHi(Y )hom = 0 for i < c.

Here, the corrected diagonal of X is the diagonal of X corrected by decompos-
able cycles coming from Y ×Y , and having the property that its cohomology class
is the projector onto the vanishing cohomology of X .
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1 Hodge structures

1.1 Hodge structures

Let X be a smooth projective variety. The cohomology groups Hk
B(X,C) are on

one hand isomorphic to Hk
B(X,Q) ⊗ C and on the other hand, can be written as

the direct sum (Hodge decomposition)

Hk
B(X,C) = ⊕p+q=kHp,q(X), (2)

where Hp,q(X) ⊂ Hp+q
B (X,C) is the space of classes representable by a closed

form of type (p, q). In particular, Hp,q(X) ⊂ Hk
B(X,C) is complex conjugate to

Hq,p(X) ⊂ Hk
B(X,C) (Hodge symmetry). These data provide us with a weight k

(effective) Hodge structure, that is, a Q-vector space L, with a decomposition

LC := L⊗ C = ⊕p+q=kLp,q

with Lp,q = Lq,p. Here “effective” means that Lp,q = 0 if p < 0 or q < 0, but this
condition is not part of the definition of a Hodge structure.

Hodge structures form a category, where the morphisms of Hodge structures
between L (of weight k) and L′ (of weight k′ = k+2r) are the morphisms φ : L→
L′ of Q-vector spaces such that

φC(Lp,q) ⊂ L′p+r,q+r

for any p, q. A Hodge substructure L′ ⊂ L is a Q-vector subspace having an
induced Hodge decomposition

L′
C = ⊕p+q=kL′p,q

where L′p,q = L′
C ∩ Lp,q. A Hodge structure is said to be trivial if it is of even

weight 2k and LC = Lk,k. If a Hodge structure (L,Lp,q) is nontrivial, most Q-
vector subspaces L′ ⊂ L are not a Hodge substructure, and a general Hodge
structure with the same Hodge numbers lp,q := dimLp,q will contain no nontrivial
Hodge substructures. The image of a morphism of Hodge structures φ : L→ L′ is a
Hodge substructure of L′, and its kernel is a Hodge substructure of L. One can put
a quotient Hodge structure on the cokernel Cokerφ. Thus, Hodge structures form
an abelian category. This category is not however semi-simple. It turns out that
Hodge structures coming from algebraic geometry admit polarizations, and that
the category of polarized Hodge structures is semi-simple. Note that the Hodge
structures should rather be said polarizable, since in general the polarization is
not canonical, and that the morphisms of polarized Hodge structures are simply
the morphisms of the corresponding Hodge structures.

In the case of H1
B(C,Q) which we mentioned in the introduction, the polariza-

tion is canonical. It is given by the intersection pairing ( , ) on H1
B(C,Q). This

pairing is skew-symmetric and satisfies the following Riemann relations:

(α, β) = 0 for α, β ∈ H1,0(C).
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ι(α, α) > 0 for 0 �= α ∈ H1,0(C).

The higher degree/dimension version of these relations is a bilinear pairing Q on
a Hodge structure of weight k which is symmetric if k is even and skew-symmetric
if k is odd and satisfies the so-called Hodge-Riemann bilinear relations. They say
the following:

1. (First Hodge-Riemann bilinear relations) Q(Hp,q, Hp′,q′) = 0 if (p, q) �=
(p′, q′).

2. (Second Hodge-Riemann bilinear relations) εk(−1)qιkQ(α, α) > 0 if 0 �= α ∈
Hp,q. Here εk = ±1 is a sign which depends only on k.

To construct such a pairing on Hk
B(X,Q) for any smooth projective variety X , we

need to choose the class l = c1(L) ∈ H2
B(X,Q) of an ample line bundle L on X .

Assuming k ≤ n = dimX , one has a pairing

(α, β)l =
∫
X

ln−k 
 α 
 β

on Hk
B(X,Q), which is not yet a polarization of the Hodge structure on Hk

B(X,Q).
What we need to do is to use the Lefschetz decomposition

Hk
B(X,Q) = ⊕2r≤klr 
 Hk−2r

B,prim(X,Q), (3)

which is orthogonal for ( , )l, and then define the pairing (α, β)l,pol as being the one
for which (3) is also an orthogonal decomposition, and which is equal to (−1)r( , )l
on the piece lr ∪ Hk−2r

B,prim of the Lefschetz decomposition (3). This complicated
construction makes subordinated to the Lefschetz standard conjecture a number of
conjectures on algebraic cycles. The importance of the existence of polarizations
lies in the following result:

Lemma 1.1. Let L be a polarized Hodge structure and L′ ⊂ L be a Hodge sub-
structure. Then there exists a Hodge substructure L′′ ⊂ L such that

L ∼= L′ ⊕ L′′.

Thus the category of polarized Hodge structures is semi-simple.

Proof. Indeed, choosing a polarization Q on L, we define L′′ as the orthogonal
complement of L′ with respect to Q. The first Hodge-Riemann relations guarantee
that L′′ is a Hodge substructure of L. The second Hodge-Riemann relations imply
that Q|L′ is non-degenerate, so that L′′ and L′ are in direct sum.

1.1.1 Hodge classes and morphisms of Hodge structures

The natural morphisms of Hodge structures we encounter in algebraic geometry
are the following:

Pull-back. Let φ : X → Y be a morphism of smooth complex projective
varieties. Then φ∗ : Hk

B(Y,Q) → Hk
B(X,Q) is a morphism of Hodge structures for

any k.
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Push-forward (or Gysin) morphisms. Let φ : X → Y be a morphism of
smooth complex projective varieties. Then φ∗ : Hk

B(X,Q) → Hk+2r
B (Y,Q), where

r := dim Y − dimX , is a morphism of Hodge structures for any k.

Cup-product. Let us start with the following definition.

Definition 1.2. A Hodge class in a Hodge structure L of weight 2k is an element
of L which is also in the middle piece Lk,k of the Hodge decomposition of L.

Let now X be a smooth projective variety. Recall that Hp,q(X) is defined as
the set of classes representable by a closed form of type (p, q). It immediately
follows that Hp,q(X) 
 Hp′,q′(X) ⊂ Hp+p′,q+q′ (X). Hence we get:

Lemma 1.3. The cup-product map α 
: Hk
B(X,Q) → Hk+2r

B (X,Q) by a Hodge
class α on X is a morphism of Hodge structures for any k.

Another very important relationship between Hodge classes and morphisms of
Hodge structures is the following: Recall that if X and Y are smooth projective
varieties, with dimX = m, we have by Künneth decomposition and Poincaré
duality

H2k
B (X × Y,Q) = ⊕r+s=2kH

r
B(X,Q) ⊗Hs

B(Y,Q)
∼= ⊕rHom (Hr(X,Q), Hr+2k−2m(Y,Q)).

These isomorphisms are isomorphisms of Hodge structures.

Lemma 1.4. A class α ∈ H2k
B (X × Y,Q) is a Hodge class if and only if each

morphism
αr : Hr

B(X,Q) → Hr+2k−2m
B (Y,Q)

is a morphism of Hodge structures.

1.2 Chow groups and cycle classes

Let X be an algebraic variety over a field K. One defines CHi(X) to be the
quotient of the free abelian group Zi(X) generated by the irreducible closed al-
gebraic subsets Z ⊂ X of dimension i (defined over K and irreducible over K)
by the subgroup Zi(X)rat generated by the cycles n∗(div φ), for any irreducible
subvariety W ⊂ X of dimension i + 1, where n : W̃ → X is the normalization
map of W followed by the inclusion of W in X , and any nonzero rational function
φ ∈ K(W )∗. Here n∗ is the morphism Zi(W̃ ) → Zi(X) which is defined more
generally for any proper morphism n : Y → X on generators Z of Zi(Y ) by the
following rule: n∗(Z) = deg (Z/n(Z))n(Z) if n : Z → n(Z) is generically finite
and n∗(Z) = 0 if dimn(Z) < i.

This definition is the higher dimensional generalization of the group

CH0(C) := Z0(C)/linear equivalence

appearing implicitly in the introduction. When X is of pure dimension n, one
writes CHi(X) := CHn−i(X). When C is a curve, the group CH0(C) is thus also
CH1(C). In any dimension, the group CH1(X) has the following interpretation:
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Lemma 1.5. If X is locally factorial of dimension n, one has CHn−1(X) =
CH1(X) = PicX.

The local factoriality guarantees that irreducible closed algebraic subsets D ⊂
X of dimension n− 1 are Cartier divisors (locally defined by one equation defined
up to multiplication by an invertible function), thus providing a locally free sheaf
OX(D) of rank 1, defined as the dual of the ideal sheaf ID. In the other direction,
one associates to L ∈ PicX the divisor of any nonzero rational section of L.

Coming back to the case where K = C and X is projective, the group CH1(X)
is very well understood in this case thanks to to the GAGA principle [29] which
says that

PicX = PicXan,

that is, holomorphic line bundles and algebraic line bundles are the same objects,
and to the exponential exact sequence of sheaves on Xan:

0 → Z
2ιπ→ OXan

exp→ O∗
Xan → 1. (4)

Using the identification PicXan = H1(Xan,O∗
Xan), one gets the long exact se-

quence

H1
B(X,Z) 2ιπ→ H1(Xan,OXan)

exp→ PicXan → H2
B(X,Z) 2ιπ→ H2(Xan,OXan). (5)

The third map c1 : CH1(X) = PicX = PicXan → H2
B(X,Z) in (5) is the Betti

cycle class for codimension 1 cycles. Using the fact that the group of integral Hodge
classes in H2

B(X,Z) is exactly the kernel of the fourth map H2
B(X,Z)→H2(Xan,

OXan), the exponential exact sequence not only describes CH1(X) but also proves
the Lefschetz (1, 1)-theorem saying that integral Hodge classes of degree 2 are
classes of codimension 1 cycles.

Despite the remarkable developments of algebraic K-theory, the theory of al-
gebraic cycles misses an analogue of the exponential exact sequence allowing to
understand higher codimensional cycles.

1.2.1 Cycle class

Let us describe various cycle classes in the setting of analytic geometry. We will
first construct cycle classes for smooth closed algebraic subvarieties Z ⊂ X , where
X is a smooth projective complex variety. In the Betti cohomology setting, such
a Z has a cohomology class [Z] ∈ H2i(X,Z), where i = codimZ, defined as
the Poincaré dual of the fundamental homology class [Z]hom := iZ∗([Z]fund) ∈
H2n−2i,B(X,Z), where iZ is the inclusion of Z in X and [Z]fund ∈ H2n−2i,B(Z,Z)
is the fundamental homology class of the compact oriented real manifold underly-
ing Z.

If Z is not smooth but X is projective, we can also define [Z] ∈ H2i
B (X,Z)

thanks to the resolution of singularities: indeed, we can introduce a resolution of
singularities Z̃ → Z and define similarly as above [Z] ∈ H2i

B (X,Z) as the Poincaré
dual of the homology class iZ∗([Z̃]fund) ∈ H2n−2i,B(X,Z). As two resolutions are
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dominated by a third which admits a degree 1 morphism to both of them, the
resulting class does not depend on the resolution.

In the quasi-projective case, if Z ⊂ X is any closed algebraic subset of codimen-
sion i, where X is smooth quasiprojective, we can choose a smooth projective com-
pletionX ofX and extend Z to a cycle Z. Then we define [Z] as [Z]|X ∈ H2i

B (X,Z)
and check this does not depend on the choice of the extensions. It is not hard to
check that the cycle class [Z] =

∑
j nj [Zj ] ∈ H2i

B (X,Z) of a cycle Z =
∑
j njZj

depends only of the class of Z in CHi(X). This provides the cycle class map

cl : CHi(X) → H2i
B (X,Z)

in Betti cohomology.
The above cycle class is purely topological. It does not use the fact that Z

and X are complex analytic spaces. We now turn to refined cycle classes which
contain an information depending on the complex structure. Here we assume X
to be smooth projective. Griffiths [14] defined the Abel-Jacobi map

ΦX : CHi(X)hom := Ker cl → J2i−1(X),

where the intermediate Jacobian J2i−1(X) is a complex torus defined as

J2i−1(X) := H2i−1
B (X,C)/F iH2i−1

B (X,C) ⊕H2i−1
B (X,Z),

where the Hodge filtration F · is deduced from the Hodge decomposition by

F kH l
B(X,C) = ⊕p≥kHp,l−p(X).

Using Poincaré duality, this intermediate Jacobian can also be seen as

J2i−1(X) = Fn−i+1H2n−2i+1
B (X,C)∗/H2n−2i+1,B(X,Z).

The Abel-Jacobi map is defined as follows: if z is a codimension i cycle homologous
to 0, let Γ be a real contour of dimension 2n − 2i + 1 such that ∂Γ = z. Then
there is a well-defined linear form∫

Γ

∈ Fn−i+1H2n−2i+1
B (X,C)∗

which to the class of a closed form η of type (2n−2i+1, 0)+. . .+(2n−2i+1, 2n−2i)
associates

∫
Γ η. The point is that if such an η is exact, then it can be written as

dη′ where η′ is a differential form of type (2n−2i, 0)+ . . .+(2n−2i+1, 2n−2i−1),
hence integrates to 0 against z. The Abel-Jacobi map ΦX maps z to

∫
Γ

modulo
the period lattice H2n−2i+1,B(X,Z) mod. torsion ⊂ Fn−i+1H2n−2i+1

B (X,C)∗.
Note that there is a global cycle class called the Deligne cycle class, which takes

value in the Deligne cohomology group

H2i
D (X,Z(i)) := H2i(X,ZD(i))

where the Deligne complex ZD(i) is the complex

0 → Z → OX
d→ . . .→ Ωi−1

X → 0
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of sheaves onXan, where Z is put in degree 0. The Deligne complex is an extension

0 → Ω·≤i−1
X [−1]ZD(i) → Z → 0,

from which one deduces by taking the associated long exact sequence sequence
that the Deligne cohomology group H2i

D (X,Z(i)) is an extension

0 → J2i−1(X) → H2i
D (X,Z(i)) → Hdg2i(X,Z) → 0.

All these statements use in a crucial way the fact that the complex analytic
space Xan is a compact Kähler manifold.

1.2.2 Functoriality and intersection

Chow groups have the following functoriality properties: If φ : X → Y is a proper
morphism, then the morphism φ∗ : Zi(X) → Zi(Y ) defined in the previous section
factors through rational equivalence and induces

φ∗ : CHi(X) → CHi(Y ).

If φ : X → Y is a flat morphism of relative dimension r, the group morphism
φ∗ : Zi(Y ) → Zi+r(X) is defined on generators by

φ∗(Z) = c(φ−1(Z)),

where c is the Hilbert-Chow map which to a subscheme Z ⊂ X of dimension
i + r associates the i + r-cycle Z of its irreducible components Zi counted with
multiplicity given by the length of OZ,Zi . It factors through rational equivalence
and induces

φ∗ : CHi(Y ) → CHi+r(X).

Flatness is a very restrictive assumption. Fortunately, one also has a pull-back
morphism φ∗ : CHi(Y ) → CHi(X) when φ is the inclusion of a lci subscheme. It
follows that if Y is smooth, one has a pull-back morphism φ∗ : CHi(Y ) → CHi(X),
defined as the composite of the flat pull-back morphism

pr∗2 : CHi(Y ) → CHi(X × Y )

and of the restriction map

i∗Γ : CHi(X × Y ) → CHi(X),

where iΓ is the inclusion (IdX , φ) of the graph of φ.
In particular, we get an intersection theory on CH∗(Y ) when Y is smooth,

given by
Z · Z ′ = i∗Δ(Z × Z ′),

where iΔ : Y → Y × Y is the diagonal inclusion.
There are various compatibility properties between the morphisms φ∗, ψ∗ and

the intersection product. The most important ones are the following:
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1. For smooth Y and X , φ∗ : CHi(Y ) → CHi(X) is compatible with the inter-
section product.

2. (Projection formula.) If X, Y are smooth and φ : X → Y is proper, φ∗(φ∗z ·
z′) = z · φ∗z′, for any z ∈ CH(Y ), z′ ∈ CH(X).

3. If φ : X → Y is flat and ψ : Y ′ → Y is proper, let

ψ′ : X ′ := X ×Y Y ′ → X, φ′ : X ′ → Y ′

be the natural morphisms appearing in the following Cartesian diagram

X ′ ψ′
��

φ′

��

X

φ

��
Y ′ ψ �� Y

.

Then ψ′ is proper, φ′ is flat, and one has

ψ′
∗ ◦ φ′∗ = φ∗ ◦ ψ∗ : CH(Y ′) → CH(X).

Definition 1.6. A correspondence between X and Y is a cycle Z ∈ CH(X × Y ).

Assuming X and Y are smooth and projective, such a correspondence induces
morphisms

Z∗ : CH(X) → CH(Y ),

Z∗ : CH(Y ) → CH(X),

defined by
Z∗(α) = pr2∗(pr∗1α · Z), Z∗(α) = pr1∗(pr∗2α · Z).

If one wants to keep track of the grading, one needs to introduce the dimensions
m, n of X , resp. Y , and the codimension k of Z. Then Z∗ maps CHl(X) to
CHk+l−m(Y ) and Z∗ maps CHl(Y ) to CHk+l−n(X).

Correspondences Z ∈ CH(X×Y ), Z ′ ∈ CH(Y ×W ) between smooth projective
varieties can be composed by the rule

Z ′ ◦ Z = prXW∗(pr∗XY Z · pr∗YWZ ′) ∈ CH(X ×W ),

where pr•• denotes the projection from X × Y × Z on the corresponding product
of two of its factors.

The three properties stated above are all that is needed formally to prove the
following result concerning the composition of correspondences.

Proposition 1.7. If X, Y, W are smooth and projective, and Z ∈ CH(X × Y ),
Z ′ ∈ CH(Y ×W ) are correspondences, one has

(Z ′ ◦ Z)∗ = Z ′
∗ ◦ Z∗ : CH(X) → CH(W ).
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1.3 Coniveau

Let X be a smooth complex projective variety.

Definition 1.8. A Betti cohomology class α ∈ H∗
B(X,Q) is said to be of geometric

coniveau c if there exists a closed algebraic subset Y ⊂ X of codimension c such
that α vanishes in H∗

B(X \ Y,Q).

The fundamental results of Deligne [10] concerning mixed Hodge structures
have in particular the following consequence:

Theorem 1.9. Let α ∈ H∗
B(X,Q) vanish in H∗

B(X \ Y,Q), where Y is of pure
codimension c. Let j : Ỹ → X be a desingularization of Y . Then there exists a
cohomology class β ∈ H∗−2c

B (Ỹ ,Q) such that

α = j∗β in H∗
B(X,Q).

Let us introduce the notion of Hodge coniveau of a weight k Hodge structure
(L,Lp,q). The Hodge structure is given by the Hodge decomposition

L = Lk,0 ⊕ . . .⊕ L0,k.

We will say that L has Hodge coniveau c if the Hodge decomposition takes the
form

L = Lk−c,c ⊕ . . .⊕ Lc,k−c

with Lk−c,c �= 0.

Corollary 1.10. The subgroup Hk
C(X,Q)c of cohomology classes of geometric

coniveau ≥ c is a Hodge substructure of Hk
B(X,Q), which is of Hodge coniveau

≥ c.

Proof. Indeed, it suffices to show that for any cohomology class α of geomet-
ric coniveau ≥ c, there exists a Hodge substructure Lα of Hk

B(X,Q), of Hodge
coniveau ≥ c, which contains α and is contained in Hk

B(X,Q)c. We apply The-
orem 1.9 and put Lα := Im (j∗ : Hk−2c

B (Ỹ ,Q) → Hk
B(X,Q)). This is a Hodge

substructure of Hk
B(X,Q) (see Section 1.1) and it is of Hodge coniveau ≥ c since

j∗ shifts the Hodge decomposition by a bidegree (c, c).

The generalized Hodge conjecture due to Grothendieck [15] states the following:

Conjecture 1.11. Let L ⊂ Hk
B(X,Q) be a Hodge substructure of Hodge coniveau

≥ c. Then L is contained in Hk
B(X,Q)c.

The Hodge conjecture itself is the particular case of Conjecture 1.11 where
k = 2k′ and c = k′. Then a Hodge substructure of Hodge coniveau c = k′ consists
of Hodge classes and the generalized Hodge conjecture then exactly predicts that it
is contained in the image of a Gysin morphism j∗ : H0

B(Ỹ ,Q) → H2k′
B (X,Q), that

is, in the Q-vector space generated by the classes of the irreducible components of
Y = j(Ỹ ).
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We will say that a variety X is of geometric coniveau ≥ c if the Betti cohomol-
ogy of X decomposes as

H∗
B(X,Q) = H∗

B(X,Q)alg +H∗
B(X,Q)c.

The generalized Hodge conjecture predicts that this is equivalent to the condition
Hp,q(X) = 0 for p > c (or q > c) and p �= q. We will use later on the following
notion whose importance will be explained in Section 2.2.

Definition 1.12. The variety X is strongly of geometric coniveau ≥ c if there
exists a decomposition of the cohomology class [ΔX ] ∈ H2n

B (X ×X,Q) which is as
follows:

[ΔX ] = [Z1] + [Z2] ∈ H2n
B (X ×X,Q), (6)

where Z1 is a decomposable cycle in X × X, that is a combination with rational
coefficients of product Wi ×Wj, and the cycle Z2 is supported in Y ×X for some
closed algebraic subset Y ⊂ X of codimension ≥ c.

Proposition 1.13. (i) If X is strongly of geometric coniveau ≥ c, it is of geo-
metric coniveau ≥ c.

(ii) Assuming the Hodge conjecture, if X is of geometric coniveau ≥ c, it is
strongly of geometric coniveau ≥ c.

Proof. (i) If X is strongly of geometric coniveau c, then letting both sides of (6)
act on H∗

B(X,Q), we get for any α ∈ H∗
B(X,Q)

α = [ΔX ]∗α = [Z1]∗α+ [Z2]∗α

where [Z1]∗α is a combination of cycles classes and [Z2]∗α vanishes away of Y
hence is of geometric coniveau ≥ c.

(ii) If we know that X has geometric coniveau ≥ c, and furthermore the Hodge
conjecture holds, then we have

H∗
B(X,Q) = H∗

B(X,Q)alg +H∗
B(X,Q)c = H∗

B(X,Q)alg ⊕H∗
B(X,Q)⊥algc ,

because the intersection pairing is nondegenerate on H∗
B(X,Q)alg by the second

Hodge-Riemann bilinear relations and the fact that H∗
B(X,Q)alg is stable under

the Lefschetz decomposition if the Hodge conjecture is true. It follows that we
can write the class [ΔX ] as the sum of two projectors, namely an element A1 in
H∗
B(X,Q)alg ⊗ H∗

B(X,Q)alg, which is the class of a decomposable cycle, and an
element A2 which is a Hodge class in H∗

B(X,Q)c ⊗H∗
B(X,Q) ⊂ H2n

B (X ×X,Q).
Now we write H∗

B(X,Q)c = Im (j∗ : H∗−2c
B (Ỹ ,Q) → H∗

B(X,Q)) and we use the
semi-simplicity Lemma 1.1 which together with Lemma 1.4 implies that there is
a Hodge class B on Ỹ ×X such that A2 = (j, IdX)∗B in H2n

B (X ×X,Q). Then
if the Hodge conjecture holds, the class B is algebraic on Ỹ ×X , that is B = [W ]
and thus we have A2 = [(j, IdX)∗W ], where the cycle (j, IdX)∗W is supported on
Y ×X , with Y = j(Ỹ ).

Notice that for surfaces, as was already observed by Bloch in [5], the Lefschetz
theorem on (1, 1)-classes implies that a smooth complex projective surface X has
pg = q = 0 if and only if it is strongly of coniveau ≥ 1 and then the cohomology
class of its diagonal is decomposable.
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2 Bloch-Beilinson conjectures

2.1 Mumford-Roitman’s theorem

The original result proved by Mumford concerned 0-cycles on surfaces:

Theorem 2.1. (Mumford [20]) Let X be a smooth complex projective surface.
Then if X has some nonzero holomorphic 2-form, the kernel of the Abel or rather
Albanese map (see Introduction or Section 1.2.1)

albX : CH0(X)hom → AlbX

is nontrivial, and even infinite dimensional.

Infinite dimensionality here can be made as precise as one wants. In fact, as
shows Mumford’s proof, under the same assumption the general 0-cycle z ∈ X(k) is
isolated in its orbit under rational equivalence. Hence “morally” the map X(k) →
CH0(X) has an image of dimension 2k = dimX(k) for any k. In particular,
this map is not surjective onto the set of 0-cycles of degree k modulo rational
equivalence for any k.

Subsequent work by Roitman [26] has proved that finite dimensionality is equiv-
alent to the fact that for some curve C ⊂ X , the map CH0(C) → CH0(X) is sur-
jective. Admitting this, Mumford’s theorem is then generalized in the following
form due to Roitman [26]:

Theorem 2.2. Let X be a smooth projective complex variety and let Y ⊂ X be a
closed algebraic subset of dimension ≤ r. Then if the map

CH0(Y ) → CH0(X)

is surjective, one has H0(X,ΩkX) = 0 for any k > r.

2.2 Bloch-Srinivas theorem and coniveau

In the paper [7], Bloch and Srinivas gave a completely new proof of Theorem 2.2,
which has been the starting point of further developments on Chow groups and
coniveau. The result of Bloch and Srinivas is the following “decomposition of the
diagonal” principle. We already encountered the decomposition of the diagonal in
its cohomological form in Section 1.3; we insist on the fact that the Bloch-Srinivas
decomposition holds in CH(X ×X)Q.

Theorem 2.3. Under the assumption of Theorem 2.2, there is a decomposition

ΔX = Z1 + Z2 in CH(X ×X)Q, (7)

where Z1 is a cycle with Q-coefficients supported in X×Y , and Z2 is a cycle with
Q-coefficients supported in D×X for some closed proper algebraic subset D ⊂ X.
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Note that, conversely, if such a decomposition exists, then CH0(X)Q is sup-
ported on Y , since letting both sides of (7) act on CH0(X)Q, one gets

z = Z1∗z in CH0(X)Q

for any z ∈ CH0(X)Q and of course Z1∗z is supported on Y . Theorem 2.3 implies
in the case where Y is just one point y the following corollary (which is called the
decomposition of the diagonal):

Corollary 2.4. If CH0(X) = Z (that is, all points of X are rationally equivalent),
then

ΔX = X × x+ Z in CH(X ×X)Q, (8)

where x is any point of X, and Z is a cycle with Q-coefficients supported in D×X
for some closed proper algebraic subset D ⊂ X.

Let us now show how Theorem 2.3 implies Theorem 2.2.

Proof of Theorem 2.2. Under the assumption of Theorem 2.2, we have the de-
composition of the diagonal (7), which by taking cohomology classes gives the
decomposition

[ΔX ] = [Z1] + [Z2] in H2n(X ×X,Q), (9)

where n = dimX , Z1 is a cycle with Q-coefficients supported in X × Y , and Z2 is
a cycle with Q-coefficients supported in D × X for some closed proper algebraic
subset D ⊂ X .

We now let both sides of (9) act on cohomology of X , and particularly on the
subspaces Hi,0(X) ⊂ Hi(X,C) and get for any α ∈ Hi,0(X) :

[ΔX ]∗α = α = [Z1]∗α+ [Z2]∗α in Hi,0(X). (10)

As Z2 is supported on D × X , [Z2]∗α is supported on D, and because [Z2]∗α is
a holomorphic, that is, belongs to Hi,0(X), this easily implies that [Z2]∗α = 0.
On the other hand, if i > r = dimY one has [Z1]∗α = 0 since α vanishes under
restriction to Y . Thus α = 0 by (10).

Theorem 2.3 or rather its corollary 2.4 has been generalized in [23] where the
following decomposition theorem up to codimension c is proved.

Theorem 2.5. Let X be smooth projective over C and assume that the cycle class
map

cl : CHi(X,Q) → H2n−2i(X,Q)

is injective for i < c. Then there is a decomposition

ΔX = Z1 + Z2 in CHn(X ×X)Q, (11)

where Z1 is a decomposable cycle and Z2 is a cycle with Q-coefficients supported
in D ×X for some closed proper algebraic subset D ⊂ X of codimension ≥ c.
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Bloch-Srinivas Corollary 2.4 is the case c = 1. Note that Theorem 2.5 is optimal
since conversely, if (11) holds, letting both sides act on z ∈ CHi(X)Q, we get

z = ΔX∗z = Z1∗z + Z2∗z in CH(X)Q.

We now observe that for the decomposable cycle Z1, we have Z1∗z = 0 if z is
cohomologous to 0 (indeed, for a product cycle T = T1 × T2, we have T∗z =
(deg T1 · z)T2 which vanishes if z is cohomologous to 0). On the other hand, since
codimD ≥ c and Z2 is supported on D×X , we have Z2∗z = 0 if i < c. So finally
we conclude that z = 0 if z ∈ CHi(X)Q,hom and i < c.

As before we get the following corollary which has been proved in one or another
form by Laterveer [18], Lewis [19], Schoen [28]:

Corollary 2.6. Under the assumptions of Theorem 2.5, X is of geometric coniveau
≥ c.

Proof. Indeed, by taking cycle classes in (11), we get that X is strongly of geo-
metric coniveau c so we only have to apply Proposition 1.13, (i).

2.3 Bloch and Bloch-Beilinson conjectures on Chow groups

In [5], Bloch conjectured the converse to Mumford’s theorem 2.1:

Conjecture 2.7. (Bloch’s conjecture on surfaces with pg = 0) Let X be a smooth
projective complex surface with H2,0(X) = 0. Then

albX : CH0(X)0 → Alb(X)

is injective.

This conjecture is known to be true for surfaces which are not of general type [6]
and for surfaces of general type, it has been proved for some surfaces ([16], [3], [6],
[24]) and some families of surfaces ([34], [33]). As we will see below, this conjecture,
although very challenging, is presumably less important than Conjecture 2.13,
since one can imagine proving it by particular methods for each class of surfaces
of general type with q = pg = 0. Indeed, if one considers only minimal models,
which is allowed since the CH0 group is birationally invariant, there are only
finitely many deformation types of surfaces of general type with pg = q = 0. The
next conjecture is a converse to Corollary 2.6.

Conjecture 2.8. Let X be a smooth projective complex of dimension n. Assume
X is of geometric coniveau ≥ c. Then the cycle class map

cl : CHi(X)Q → H2n−2i
B (X,Q)

is injective for i < c. Equivalently, CHi(X)hom,Q = 0 for i < c.

Let us state the following slightly weaker variant of this conjecture:

Conjecture 2.9. Let X be smooth projective complex of dimension n. Assume
X is of strongly of geometric coniveau ≥ c. Then CHi(X)hom,Q = 0 for i < c.



734 Claire Voisin

In this last formulation, we just replaced “of geometric coniveau ≥ c” by
“strongly of geometric coniveau ≥ c” (we refer to Proposition 1.13 for the com-
parison between the two notions). As already noticed, in the surface case, the two
notions are equivalent and both conjectures are equivalent to Bloch’s conjecture
2.7. We will explain in Section 3.2 the proof of the following theorem, which solves
2.9 for very general complete intersections in a variety with trivial Chow groups.
Let us first introduce the following definition:

Definition 2.10. We say that a smooth projective variety X has trivial Chow
groups if the cycle class map cl is injective on CHi(X)Q for all i.

Theorem 2.11. (Cf. [32]) Let Y be a smooth projective variety with trivial Chow
groups and L a very ample line bundle on Y . Then if X ∈ |L| is a very general
member, X satisfies Conjecture 2.9, assuming the vanishing cohomology of X is
nontrivial.

Remark 2.12. If we combine Conjecture 2.8 and Conjecture 1.11, we get the
most ambitious conjecture saying that if the Hodge coniveau of X is at least c in
the sense that H∗(X,Q) = H∗(X,Q)alg +L where L is a sum of Hodge structures
of Hodge coniveau at least c, then the cycle class map

cl : CHi(X) → H2n−2i
B (X,Q)

is injective for i < c.

In [5], Bloch made another conjecture concerning Chow groups of surfaces,
namely he observes that the group CH0(X), where X is a smooth connected
projective surface has a natural filtration given by

F 0CH0(X) = CH0(X), (12)
F 1CH0(X) = CH0(X)0, (the group of cycles of degree 0),

F 2CH0(X) = Ker (CH0(X)0
albX→ Alb(X)).

This filtration is respected by correspondences of surfaces, and Mumford’s theorem
can be phrased by saying that if H2,0(X) �= 0, then F 2CH0(X) �= 0. The general
Bloch conjecture on 0-cycles on surfaces is then

Conjecture 2.13. (Bloch [5]) Let Γ ∈ CH2(X × Y ) be a correspondence be-
tween two surfaces X and Y . Then if [Γ]∗ : H2,0(Y ) → H2,0(X) is 0, so is
Γ∗ : F 2CH0(X) → F 2CH0(Y ).

Remark 2.14. As we can easily see, there is no reason to impose in the above
conjecture the condition that X is a surface. In fact the conjecture in the surface
case easily implies the conjecture for any smooth projective variety X . However
it is crucial that Y is a surface.

We can now put this conjecture in the framework of the Bloch-Beilinson con-
jectures on filtrations on Chow groups. Indeed, we can observe that the filtration
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(12) has the property that it is respected by correspondences of codimension 2 and
that for i = 0, 1, the induced map on graded pieces

Γ∗ : Gr0FCH0(X) → Gr0FCH0(Y ), resp Γ∗ : Gr1FCH0(X) → Gr1FCH0(Y )

vanishes if and only if the maps [Γ]∗ : H0
B(Y,Q) → H0

B(X,Q), resp. [Γ]∗ :
H1
B(Y,Q) → H1

B(X,Q) vanish, while for i = 2, the Bloch conjecture 2.13 says that
Γ∗ : Gr2FCH0(X) → Gr2FCH0(Y ) vanishes if and only if [Γ]∗ : H2,0(Y ) → H2,0(X)
vanishes. The last condition is equivalent to saying that [Γ]∗ : H2

B(Y,Q)tr →
H2
B(X,Q)tr vanishes, where for any surface S, we denote H2

B(S,Q)tr := H2
B(S,

Q)⊥alg. Indeed, by the Lefschetz theorem on (1, 1)-classes, H2
B(S,Q)tr is the small-

est Hodge substructure of H2
B(S,Q) which contains H2,0(S) and thus a morphism

of Hodge structures H2
B(Y,Q)tr → H2

B(X,Q)tr vanishes if and only if it vanishes
on the (2, 0)-parts of the Hodge decomposition.

These observations in the case of surfaces have been generalized to the following
conjecture (Bloch-Beilinson conjectures on filtrations on Chow groups):

Conjecture 2.15. For any smooth complex projective variety X, thee exists a
descending filtration F • on CHi(X)Q, with the following properties:

1. F 0CH(X)Q = CH(X)Q, F
1CH(X)Q = CH(X)Q,hom.

2. The filtration is functorial with respect to correspondences: If Γ ∈ CH(X×Y )
is a correspondence,

Γ∗(F lCH(X)Q) ⊂ F lCH(Y )Q.

3. One has F iCH(X)Q · F jCH(X)Q ⊂ F i+jCH(X)Q.

4. One has F iCHl(X)Q = 0 for i > l.

Note that if Γ ∈ CH(X × Y ) is a correspondence homologous to 0, then Γ ∈
F 1CH(X × Y )Q and thus for any z ∈ F iCH(X)Q,

Γ∗z = pr2∗(pr∗1z · z) ∈ F i+1CH(Y )Q

by axioms 2 and 3. In other words, the morphisms Γ∗:GrFi CH(X)Q→GrFi CH(Y )Q

must be controled by the cohomology class [Γ].
We will explain in next section how Conjecture 2.15 implies Conjecture 2.9.

2.4 Nilpotence conjectures

Let X be a smooth projective variety. According to section 1.2.2, CH(X × X)Q

has a ring structure given by composition of correspondences. This ring structure
is compatible by Proposition 1.7 with the map

CH(X ×X)Q → End CH(X)Q.

The following nilpotence conjecture is a weak version of the smash nilpotence
conjecture of Voevodsky:
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Conjecture 2.16. Let X be a smooth projective variety. Then a correspondence
Z ∈ CH(X × X)Q,hom is nilpotent: There exists N ∈ N∗ such that Z◦N = 0 in
CH(X ×X)Q.

Let us explain the following chain of implications:

Conjecture 2.15 ⇒ Conjecture 2.16 ⇒ Conjecture 2.9.

Lemma 2.17. Let X be smooth projective over C. Conjecture 2.15 for the powers
of X and correspondences between them implies Conjecture 2.16 for X.

Proof. Indeed, let Z ∈ CH(X×X)Q,hom. Then according to Axiom 1 of Conjecture
2.15, one has Z ∈ F 1CH(X ×X)Q. According to Axioms 3 and 2 of Conjecture
2.15, one then has Z◦N ∈ FNCH(X ×X)Q for any integer N . Finally, Axiom 4
gives that FNCH(X ×X)Q = 0 for large N , so that Z◦N = 0 in CH(X ×X)Q for
large N .

Lemma 2.18. Let X be smooth projective over C. Conjecture 2.16 for X implies
Conjecture 2.9 for X.

Proof. Assume Conjecture 2.16 and let X be strongly of coniveau ≥ c. This means
that there is a cohomological decomposition of the diagonal of X which takes the
form:

[ΔX ] = [Z1] + [Z2] in H2n
B (X ×X,Q), (13)

where Z1 is a decomposable cycle and Z2 is a cycle in X ×X which is supported
on D ×X , D ⊂ X being closed algebraic of codimension at least c. We rewrite
(13) as

[Γ] = 0 in H2n
B (X ×X,Q),

where Γ := ΔX − Z1 − Z2. Conjecture 2.16 now tells us that Γ is nilpotent in
CH(X ×X)Q, and thus

Γ∗ ∈ End CH(X)Q

is nilpotent. On the other hand, we claim that Γ∗ acts as identity on CHi(X)Q,hom

for i < c. Indeed, ΔX acts as identity on CHi(X)Q for all i, Z1∗ acts as 0 on
CHi(X)Q,hom for all i because Z1 is decomposable, and Z2∗ acts as 0 on CHi(X)Q

for i < c because Z2 is supported on D × X and codimD ≥ c. This proves the
claim and we conclude that CHi(X)hom,Q = 0 for i < c.

To conclude this section, let us state two results concerning the nilpotence conjec-
ture:

Theorem 2.19. (Voevodsky [30], Voisin [35]) Let Z ∈ CH(X × X) be a corre-
spondence algebraically equivalent to 0. Then Z is nilpotent.
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This reduces the nilpotence conjecture to cycles in the Griffiths group of cycles
homologous to 0 modulo algebraic equivalence. Via Lemma 2.18, this also reduces
Conjecture 2.9 to the study of the Griffiths group of X ×X .

The next result is due to Kimura [17]. It proves the nilpotence conjecture for
varieties with finite dimensional motive (in Kimura sense). We refer to [17] or [1]
for this notion. Products of curves are finite-dimensional in Kimura sense, and so
are all varieties dominated by products of curves.

Theorem 2.20. (Kimura [17]) Let X be a variety which is finite dimensional,
for example a variety which is dominated by a product of curves. Then any self-
correspondence of X which is cohomologous to 0 is nilpotent.

Corollary 2.21. (Kimura [17]) Let X be a smooth projective surface which sat-
isfies q(X) = pg(X) = 0 and is rationally dominated by a product of curves. Then
CH0(X) = Z (X satisfies Bloch’s conjecture 2.7).

Proof. Indeed, the conditions q(X) = pg(X) = 0 imply by the Lefschetz theorem
on (1, 1)-classes that X is strongly of geometric coniveau ≥ 1. By Theorem 2.20,
X satisfies the nilpotence conjecture and by Lemma 2.18, we conclude that X
satisfies Conjecture 2.9, hence CH0(X)Q = Q. The fact that CH0(X) = Z is then
a consequence of Roitman’s theorem [25] saying that if H1

B(X,Z) = 0, CH0(X)
has no torsion.

3 Griffiths group, families and algebraic cycles

3.1 Griffiths and Nori’s theorems

Let X be a smooth hypersurface in Pn. Then if n ≥ 4, H2,B(X,Z) = Z by
Lefschetz theorem on hyperplane sections. Here the isomorphism is given by the
degree, that is, the intersection number with the hyperplane section. If X is a
Calabi-Yau hypersurface, X contains lines, which are of degree 1, hence all have
the same class in H2,B(X,Z). When n = 4, the general hypersurface X contains
finitely many lines. Griffiths proved in [14] the following result:

Theorem 3.1. Let X ⊂ P4 be a very general quintic threefold. Then the difference
l− l′ of two lines in X is a 1-cycle which is not algebraically equivalent to 0, even
modulo torsion.

The proof involves Griffiths’ Abel-Jacobi map, and the fact that the interme-
diate Jacobian

J3(X) :=H3
B(X,C)/F 2H3

B(X,C)⊕H3
B(X,Z), F 2H3

B(X,C) :=H3,0(X)⊕H2,1(X),

a complex torus which replaces the Jacobian of a curve, does not contain for very
general X any nontrivial subtorus whose tangent space is contained in H1,2(X)
(here we identify canonically the tangent space of J3(X) to H1,2(X)⊕H0,3(X)).
On the other hand, Griffiths proves that the Abel-Jacobi map

ΦX : CH2(X)hom → J(X)
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(see Section 1.2.1) maps cycles algebraically equivalent to 0 to the maximal subtorus
of J3(X) whose tangent space is contained in H1,2(X). This shows that for X
very general as above, the Abel-Jacobi map factors through the Griffiths group
CH2(X)hom/ ∼ alg. The end of the argument is contained in the following propo-
sition:

Proposition 3.2. [14] Let X be a general quintic threefold. Then for two different
lines l, l′ in X, ΦX(l − l′) is not a torsion point in J3(X).

Remark 3.3. It has been proved only recently (see [8], [27]) that the vanishing
locus of a normal function is algebraic. In our case, we have a normal function
defined on the space parameterizing the triples t = (X, l, l′) where X is a smooth
quintic threefold and l, l′ are two distinct lines in X . The normal function is the
section of the family of intermediate Jacobians J3(Xt) given by ν(t) = ΦX(l−l′) ∈
J3(X). In any case, Theorem 3.1 will only hold for very general X because the
previous step works only for very general X .

Griffiths’ theorem 3.1 proves the nontriviality of the Griffiths group using the
Abel-Jacobi invariant. In the case of cycles of codimension > 2, Nori proves
the existence of cycles annihilated by the Abel-Jacobi map and not algebraically
equivalent to 0 modulo torsion.

Theorem 3.4. (Nori [21]) Let X be the very general complete intersection of two
sufficiently large degree hypersurfaces in a smooth projective variety Y of dimen-
sion 2n ≥ 6. Let Z ∈ CHn(Y ) be a cycle such that [Z] �= 0 in H2n

B (Y,Q). Then
Z|X is not algebraically equivalent to 0 modulo torsion.

Consider the case where Y is an even dimensional quadric in P2n+1 and let Z
be the difference of two rullings in Y . Then the restriction Z|X is cohomologous
to 0 and Abel-Jacobi equivalent to 0, since by Lefschetz theorem on hyperplane
sections, the cohomology group H2n

B (X,Q) is isomorphic to Q and generated by
c1(OX(1))n, and the cohomology group H2n−1

B (X,Q) vanishes. This gives the
desired example. On the other hand, Nori made the following conjecture for
algebraic cycles of codimension 2:

Conjecture 3.5. Let Z be a codimension 2 cycle on a smooth projective complex
variety X. Then if Z is cohomologous to 0 and annihilated by the Abel-Jacobi
map, Z is algebraically equivalent to 0.

This conjecture is very important. In fact we have the following result saying
that it implies Bloch’s conjecture 2.7 on surfaces with pg = 0.

Lemma 3.6. Let S be a smooth complex projective surface with pg(S) = 0. Then
F 2CH0(S) = 0 if Nori’s conjecture is satisfied by S × S.

Proof. Let us assume for simplicity that q(S) = 0 and let X = S × S. Then by
our assumption, the cohomology of S is generated by classes of algebraic cycles,
and by Künneth decomposition, so is the cohomology of X . Thus we can write

[ΔS ] = [S × s] + [s× S] +
∑
i

αi[Ci × Cj ] in H4(X,Q).
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As the intermediate Jacobian J3(X) is 0, the cycle

Z := ΔS − S × s− s× S −
∑
i

αiCi × Cj

on X is annihilated by the Abel-Jacobi map hence is algebraically equivalent to 0
if Nori’s conjecture is satisfied by X . By the nilpotence theorem 2.19, Z is then
nilpotent in CH2(X)Q. But then Z∗ : CH0(S)Q → CH0(S)Q is also nilpotent. As
it acts as the identity on CH0(S)hom,Q, one concludes that CH0(S)hom,Q = 0.

We conclude this section by a remark on Chow groups of the universal family
which will have an important development in next section. Let X → B be the uni-
versal family of smooth degree 5 hypersurfaces in P4. Here B ⊂ P(H0(P4,OP4(5)))
is the Zariski open set parametrizing smooth hypersurfaces and

X ⊂ B × P4, X = {(f, x), f(x) = 0} (14)

is the universal hypersurface. The above mentioned results of Griffiths show that
for some generically finite cover B′ of B, the pulled-back family X ′ = B′ ×B X
acquires some interesting codimension 2 cycle. Note that it is essential here to
allow a generically finite base-change. Indeed, we have the following lemma:

Lemma 3.7. Let U ⊂ B be a dense Zariski open set. Then the natural map

p∗2 : CH∗(P4)Q → CH∗(XU )Q

is surjective.

Proof. Looking at the definition (14), we see that XU is Zariski open in

X := {(f, x), f(x) = 0} ⊂ P(H0(P4,OP4(5))) × P4}. (15)

The localization exact sequence (see [12, 1.8]) says that the restriction map CH(X )
→ CH(XU ) is surjective. On the other hand, it is clear from (15) that via the
second projection p2 : X → P4, X is a projective bundle P over P4, with line
bundle OP(1) given by

p∗1H, H := OP(H0(P4,O
P4(5)))(1).

Denoting h = c1(H), the computation of the Chow groups of a projective bundle
then shows that CH(X ) is generated over p∗2(CH∗(P4)) by the powers of p∗1h. Thus
the same property holds on XU . On the other hand, as B ⊂ P(H0(P4,OP4(5))) is
the complement of a hypersurface (the discriminant hypersurface) whose class is
a multiple of h, one has

hi|B = 0 in CHi(B)Q

for i > 0, and this vanishing holds a fortiori on U and thus (p∗1h)i vanishes in
CH(XU )Q for i > 0, which finishes the proof.
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3.2 The generalized Bloch conjecture for very general
complete intersections

Our aim in this section is to describe the proof of Theorem 2.11. Let Y be a
smooth projective variety with trivial Chow groups (see Definition 2.10). We
know by Lewis’ work [19] that the Betti cohomology of Y with Q-coefficients is

then algebraic (in particular it vanishes in odd degrees). Let now X
j
↪→ Y be an

ample hypersurface. By Lefschetz theorem on hyperplane sections, we have

H∗
B(X,Q) = H∗

B(Y,Q)|X ⊕Hn
B(X,Q)van,

where n = dimX and

Hn
B(X,Q)van := Ker (j∗ : Hn

B(X,Q) → Hn+2
B (Y,Q)).

This sum is an orthogonal sum with respect to the intersection pairing on X . It
follows that the cohomology class of the diagonal of X decomposes as

[ΔX ] = πalg + πvan

where πalg ∈ EndH∗
B(X,Q) is the orthogonal projector onto the first summand

H∗
B(Y,Q)|X and πvan ∈ EndH∗

B(X,Q) is the orthogonal projector onto the second
summand. We have πalg ∈ H∗

B(Y,Q)|X⊗H∗
B(Y,Q)|X and since the cohomology of

Y is algebraic, it follows that πalg is the class of an algebraic cycle ΔX,alg onX×X ,
which is the restriction of an algebraic cycle on Y × Y . This cycle is not uniquely
determined, but it can be constructed explicitly from the intersection matrix of the
intersection pairing ( , )X on H∗(Y,Q)|X . We will denote ΔX,van := ΔX −ΔX,alg.
This is an algebraic cycle on X × X . As ΔX,alg is the class of a decomposable
cycle and the cohomology class of ΔX,van is a projector on (part of) Hn(X,Q),
the condition that X is strongly of geometric coniveau ≥ c is equivalent to the
fact that [ΔX,van] = [Z] ∈ H2n

B (X ×X,Q) for some algebraic cycle Z on X ×X
supported on D×X , where D ⊂ X is of codimension ≥ c. Theorem 2.11 says the
following:

Theorem 3.8. Assume the line bundle L = OY (X) is very ample and that smooth
members of |L| have nontrivial vanishing cohomology. Then if a very general
member X of |L| is strongly of geometric coniveau ≥ c, one has

Ker (cl : CHi(X)Q → H2n−2i
B (X,Q)) = 0.

To start the proof, we first claim that it suffices to prove that the cycle ΔX,van−
Z ∈ CHn(X ×X)Q is the restriction of a cycle Γ on Y × Y . Indeed, if we have

ΔX,van − Z = Γ|X×X ∈ CHn(X ×X)Q (16)

for some cycle Γ on Y × Y , then as well

ΔX − Z = Γ′
|X×X ∈ CHn(X ×X)Q (17)
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for some cycle Γ′ on Y × Y since ΔX − ΔX,van is the restriction of a cycle on
Y × Y . Now we let both sides of (17) act on CHi(X)Q and we observe that Z∗
acts as 0 on CHi(X)Q for i < c, since Z is supported on D×X , with codimD ≥ c.
On the other hand, for any codimension n cycle Γ′ on Y × Y and for any cycle
z ∈ CHi(X)Q, one has

(Γ′
|X×X)∗z = (Γ′

∗(j∗z))|X in CHi(X)Q,

where j : X → Y is the inclusion map. Hence we conclude from (17) that for
i < c,

z = ΔX∗z = (Γ′
∗(j∗z))|X in CHi(X)Q. (18)

If now z is cohomologous to 0, j∗z is cohomologous to 0 on Y and since Y has
trivial Chow groups, it is rationally equivalent on Y . Hence the right hand side is
0, and we proved that CHi(X)Q,hom = 0 for i < c. The claim is proved.

The proof of Theorem 3.8 now rests on the following proposition 3.9: Let
X → B be the universal family of smooth hypersurfaces in |L|. Let X ×B X → B
be the fibered self-product. The relative diagonal ΔX/B ∈ CHn(X ×B X )Q splits
as

ΔX/B = Δvan/B + Δalg/B , (19)

where Δalg/B ∈ CHn(X ×B X )Q comes from a cycle on Y × Y and Δvan/B is
defined by formula (19).

Proposition 3.9. Assume that the very general fiber X = Xb is strongly of geo-
metric coniveau coniveau ≥ c. Then there exists a codimension c closed algebraic
subset W ⊂ X and a cycle Z of X ×B X supported on W ×B X such that for any
b ∈ B,

[ΔXb,van] = [Zb] in H2n
B (Xb ×Xb,Q).

We refer to [31] for the proof of this proposition. The crucial point here is
the fact that the cycle Z exists over the base B itself while most “spreading
statements” for algebraic cycles necessitate to work on a generically finite cover of
the base. The proof of Theorem 3.8 then concludes with the following proposition.

Proposition 3.10. Assume the line bundle L = OY (X) is very ample and that
smooth members of |L| have nontrivial vanishing cohomology. Then for any b ∈ B,
there is a cycle Γ ∈ CH(Y × Y ) such that

ΔXb,van −Zb = Γ|Xb×Xb
∈ CHn(Xb ×Xb)Q. (20)

According to the claim above, Proposition 3.10 suffices to conclude the proof
of Theorem 3.8.

The proof of Proposition 3.10 is similar to the proof of Lemma 3.7. Indeed it
plays on the description of the Chow groups of X ×B X using the natural map
X ×B X → Y × Y . Actually, in order to give this map a nice structure, we need
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to blow-up the diagonals on both sides. Then using the fact that the line bundle
L is very ample, we find that the morphism

˜X ×B XΔ → Ỹ × Y Δ

represents ˜X ×B XΔ a Zariski open set in a projective bundle over Ỹ × Y Δ.

3.3 Nilpotence results for surfaces

We conclude with a result proved in [33] concerning the nilpotence conjecture 2.16
for surfaces. Our assumptions are the following: Let S → B be a smooth family
of projective surfaces. We will assume that the fibered product S ×B S has a
rationally connected smooth projective completion S ×B S. In fact, the property
which is of interest for us is the much weaker property that cycles of codimension
2 on S ×B S which are cohomologous to 0 are algebraically equivalent to 0. That
the first property (or only the weaker property that CH0(S ×B S) = Z) implies
the second one is a result due to Bloch and Srinivas [7]. Our result is the following:

Theorem 3.11. (Voisin [33]) Let S → B be a family satisfying one of the con-
ditions discussed above. Assume the fibers Sb are regular, that is q(Sb) = 0. Let
Z ∈ CH2(S ×B S) and assume that Zb ∈ CH2(Sb × Sb) is cohomologous to 0 for
any b ∈ B. Then Zb is nilpotent for any b ∈ B.

This result is used in [33] to prove new cases of the Bloch conjecture 2.7:

Corollary 3.12. Let S → B be a family as in Theorem 3.11. Then if the fibers
Sb satisfy q = pg = 0, they have CH0(Sb)hom = 0.

Proof. Let L be a relatively ample line bundle on S. Then if d = deg c1(L|Sb
)2,

the codimension 2 cycle

ΔS/B − 1
d
pr∗2L2 − 1

d
pr∗1L2

has the property that its restriction to Sb has its cohomology class decomposable,
that is, a combination of classes of products of curves on Sb. One thus concludes
by Proposition 3.9 that there exist a divisor D ⊂ S and a cycle Z1 ∈ CH2(S×BS)Q

supported on D ×B S such that the cycle

Z := ΔS/B − 1
d
pr∗2L2 − 1

d
pr∗1L2 −Z1

has the property that the restriction Zb is cohomologous to 0 for any b ∈ B. We can
then apply Theorem 3.11 and conclude that Zb is nilpotent in CH2(Sb × Sb)Q for
any b ∈ B. As Zb differs from ΔSb

by a decomposable cycle, Zb acts as identity
on CH0(Sb)hom,Q, hence CH0(Sb)hom,Q = 0. One then concludes by Roitman’s
theorem [25].

Let us say a word about the proof of Theorem 3.11. Examining the spectral
sequence of the map π : S ×B S → B (or rather, the corresponding continuous
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map of analytic spaces), we first prove that under our assumptions, there are
codimension 2 cycles Z1, Z2 on S such that the corrected cycle

Z ′ = Z − pr∗1Z1 − pr∗2Z2

is cohomologous to 0 on S×BS. Note that the original cycle Z satisfied the weaker
property that its class [Z] ∈ H4

B(S ×B S,Q) vanishes in the first Leray quotient
H0(B,R4π∗Q). We then observe that it suffices to prove the nilpotence property
for Z ′ and we now use the following proposition.

Proposition 3.13. Let U ⊂ X be a Zariski open set in a smooth projective variety
and let Z ∈ CH2(U)Q be a codimension 2 cycle which is cohomologous to 0. Then
there exists a cycle Z ∈ CH2(X)Q which is cohomologous to 0 on X such that
Z|U = Z.

We apply this proposition to U = S ×B S, X = S ×B S and Z = Z ′. We
thus conclude that there is a codimension 2 cycle Z ′ ∈ CH2(S ×B S)Q which is
cohomologous to 0 and such that

Z ′|S×BS = Z ′ in CH2(S ×B S)Q.

We now use the fact that codimension 2 cycles cohomologous to 0 on S ×B S are
algebraically equivalent to 0. Thus Z ′ is algebraically equivalent to 0, and so is
its restriction Z ′

b = Z ′
|Sb×Sb

. By Theorem 2.19, Z ′
b is nilpotent.
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