
CORRECTION TO:
HYPER-KÄHLER FOURFOLDS AND GRASSMANN GEOMETRY

OLIVIER DEBARRE AND CLAIRE VOISIN

Here are a few comments on [DV, Theorem 2.2(1)] and its proof.

First of all, [DV, Lemma 2.3] is unnecessary: there is an exact sequence ([V, (6.3)])

H21(G(3, V10),Q)→ H21(U,Q)
Res−−→ H20(Fσ,Q)van → 0

from which one deduces immediately, since all odd-degree cohomology groups of G(3, V10)
vanish, that the residue map is an isomorphism.

Secondly, Laurent Manivel noticed that the claim

(1) H i(G(3, V10),Ω
j
G(3,V10)

(k)) = 0 for all k > 0, i > 0, j ≥ 0,

made on [DV, p. 68, l. 4] is wrong, since H12(G(3, V10),Ω
6
G(3,V10)

(3)) is non-zero. However,

to apply Griffiths’ theory, we only need that the vanishing (1) hold for i = n − j ≤ n − k,
where n = dim(G(3, V10)) = 21, and this vanishing does hold by Bott’s theorem.

Finally, Nicholas Addington suggested a way to compute directly (with a computer) the
Hodge numbers of Fσ: by the Lefschetz hyperplane theorem, we have hi,j(Fσ) = hi,j(G(3, V10))
for i+ j < 20, and hi,j(Fσ) = 0 when i+ j 6= 20 unless i = j. For k < 10, we obtain

χ(Fσ,Ω
k
Fσ

) = (−1)khk,k(Fσ) + (−1)khk,20−k(Fσ)

= (−1)khk,k(G(3, V10)) + (−1)khk,20−k(Fσ)

= χ(G(3, V10),Ω
k
G(3,V10)

) + (−1)khk,20−k(Fσ),

whereas χ(Fσ,Ω
10
Fσ

) = h10,10(Fσ) and χ(G(3, V10),Ω
10
G(3,V10)

) = h10,10(G(3, V10)). In particular,

hk,20−k(Fσ)van = (−1)k
(
χ(Fσ,Ω

k
Fσ

)− χ(G(3, V10),Ω
k
G(3,V10)

)
)

for all k ≤ 10. The computer program Macaulay2 computes these Euler characteristics and
finds

k 0 1 2 3 4 5 6 7 8 9 10

χ(Fσ,Ω
k
Fσ

) 1 −1 2 −3 4 −5 7 −8 9 −11 30

χ(G(3, V10),Ω
k
G(3,V10)

) 1 −1 2 −3 4 −5 7 −8 9 −10 10

hk,20−k(Fσ)van 0 0 0 0 0 0 0 0 0 1 20
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