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Hyper-Kähler compactification of the intermediate Jacobian
fibration of a cubic fourfold : the twisted case

Claire Voisin

Pour Lawrence, avec beaucoup d’estime et d’amitié

Abstract. The starting point of this note is our recent paper with Laza and

Saccà constructing deformations of O’Grady’s 10-dimensional hyper-Kähler
manifolds as compactifications of intermediate Jacobian fibrations associated

to cubic fourfolds. The note provides a complement to that paper consisting

in the analogous construction in the twisted case, leading to isogenous but
presumably not isomorphic or birational hyper-Kähler manifolds.

1. Introduction

Hyper-Kähler geometry is a geometry of a very restricted type which is part of
the more general setting of K-trivial compact Kähler geometry. The existence of
hyper-Kähler manifolds rests on Yau’s theorem [28]. Hyper-Kähler manifolds are
complex manifolds of even complex dimension 2n with a Ricci-flat Kähler metric
and parallel everywhere nondegenerate holomorphic 2-form. Forgetting about the
metric, the complex manifolds one obtains can always be deformed to projective
complex manifolds. Hodge theory plays a major role in the deformation theory
of these complex manifolds. In fact they are not only locally but also globally
determined determined by their period point (see [3], [25]), namely the de Rham
cohomology class of the closed holomorphic 2-form. It is also remarkable that
studying the period map for these manifolds led Beauville and Bogomolov to the
discovery of the so-called Beauville-Bogomolov quadratic form, whose existence is
their most striking topological property. The situation concerning the construction
and classification of deformation types of hyper-Kähler manifolds is very strange:
Two infinite series are known (see [3]), each one having one type for each even di-
mension, and furthermore two sporadic (families of) examples in dimension 6 and
10 were constructed by O’Grady ([22], [23]). Another strange feature of the theory
is the following: the simplest kyper-Kähler manifolds are K3 surfaces, with par-
ticular examples constructed as Kummer surfaces, hence associated with abelian
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surfaces or 2-dimensional complex tori. There are many different ways of associat-
ing to K3 surfaces or abelian surfaces higher dimensional hyper-Kähler manifolds
with b2 = 23 (and also 24 for the O’Grady examples) built as (desingularizations
of) moduli spaces of simple sheaves on them. Unfortunately algebraic K3 surfaces
have only 19 parameters, while these algebraic hyper-Kähler manifolds have their
deformation spaces (as polarized manifolds) of dimension b2−3 > 19, so the general
one does not come from an (algebraic) K3 surface. Very curiously, cubic hyper-
surfaces in P5, which have 20 parameters, have also been very much used for the
construction of various 20 parameters families of algebraic hyper-Kähler manifolds.
This is well-understood and even expected Hodge-theoretically, but rather unex-
pected geometrically. In fact the variation of Hodge structure on the cohomology
of degree 4 of a cubic fourfold exactly looks like the variation of Hodge structure
on the degree 2 cohomology of a polarized hyper-Kähler manifold with b2 = 23.
We will describe several instances of these constructions in Section 2.2. The most
recent such construction has been provided in [16] and we will achieve in Sections
3 and 4 a twisted variant of that construction. Let X ⊂ P5 be a smooth cubic
fourfold. Let U ⊂ B := (P5)∗ be the open set parametrizing smooth hyperplane
sections Y ⊂ X. The family of intermediate Jacobians J(Yt)t∈U is a smooth pro-
jective fibration πU : JU → U which according to [9] has a nondegenerate closed
holomorphic 2-form making the fibration Lagrangian. The following is the main
result of [16]:

Theorem 1.1. There exists a flat projective fibration π : J → B extending
πU , such that the total space J is smooth and hyper-Kähler. Furthermore, J is a
deformation of a 10-dimensional O’Grady hyper-Kähler manifold.

We can be slightly more precise, introducing the open set U1 ⊂ B parametrizing
at worst 1-nodal hyperplane sections of X. The motivation for introducing U1 is
the fact that codim (B \ U1 ⊂ B) ≥ 2, and this is a key point in the strategy of
[16]. The family of intermediate Jacobians has a standard extension JU1 → U1

over U1, first as a family of quasiabelian schemes J ◦U1
→ U1, and then by applying

the Mumford compactification: the fibers of πU1
: J ◦U1

→ U1 are C∗-bundles over

the four-dimensional intermediate Jacobians J(Ỹt) for t ∈ U1 \U , and the Mumford
compactification is obtained by compactifying the C∗-bundle to a P1-bundle with
the 0- and ∞-sections glued via a translation. The compactified hyper-Kähler
manifold J is in fact a compactification of JU1 .

The intermediate Jacobian fibration JU has a twisted version J T
U (which ap-

pears in [27] and plays an important role there, although it is not defined very
carefully). There are several ways of understanding it (see Section 3). The set of
points in the fiber of J T

U over a point t ∈ U identifies with the set of 1-cycles of de-
gree 1 in the fiber Yt modulo rational equivalence (see Section 3). We will construct
in Section 3 J T

U as an algebraic variety (a torsor over JU ) and a natural extension
J T
U1

of J T
U over U1 which is étale (or analytically) locally isomorphic to JU1

over

U1, thus getting a twisted version of JU1
. Note that J T

U1
carries a nondegenerate

closed holomorphic 2-form, for exactly the same reasons JU1 does. The goal of this
note is to prove the following twisted analogue of Theorem 1.1:

Theorem 1.2. Let X be general cubic fourfold. There exists a flat projective

fibration πT : J T → B extending πT
U1

: J T
U1
→ U1, such that the total space J T

is
smooth and hyper-Kähler.
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The conclusion above holds for generalX, that is, all cubic fourfolds parametrized
by a certain Zariski open set of the space of all smooth cubic fourfolds. When the
cubic carries a degree 4 integral Hodge class which restricts to the generator of
H4(Yt,Z) on its hyperplane sections, but is still general in the sense that it belongs
to this Zariski open set, which happens along a countable dense union of hyper-
surfaces in the moduli space, the two fibrations JU and J T

U are isomorphic over U

and the two varieties J T
and J are thus birational. It is not clear that they are

then isomorphic, but Huybrechts [13] shows that they are deformation equivalent.

In particular the varieties J T
are deformation equivalent to OG10 manifolds. One

may wonder if the varieties J T
and J are birational for very general, nonspecial

X. It is clear that they are not birational as Lagrangian fibrations, since one has a
rational section, while the other does not have a rational section. It is likely that
the varieties we are considering have a unique Lagrangian fibration so in fact are
not isomorphic or even birational, but we have not pursued this.

Thanks. I am happy to thank Radu Laza and Giulia Saccà with whom I had
many interesting discussions at the origin of this note.

2. Deforming and constructing hyper-Kähler manifolds

2.1. Deformation theory and the period map. The Bogomolov-Tian-
Todorov theorem says that a compact Kähler manifold X with trivial canonical
bundle has unobstructed deformations. This means that a first order deformation
of the complex structure of X, which is given by an element of H1(X,TX) called the
Kodaira-Spencer class, see [26, 9.1.2], extends to a deformation of arbitrarily large
order, and in fact there exists in this case a universal family X → B where B is a ball
in H1(X,TX) ∼= CN , X is a complex manifold and φ is smooth proper holomorphic
with central fiber X0

∼= X such that the Kodaira-Spencer map TB,0 → H1(X,TX)
(the classifying map for first order deformations) is an isomorphism.

Assume now that X is hyper-Kähler. It is a general fact that the fibers Xt

for t small are still hyper-Kähler: indeed, the close fibers are still Kähler as small
deformations of a compact Kähler manifold, and the holomorphic 2-form still exists
on Xt for small t because the Hodge numbers hp,q(X) := dimHp,q(X), Hp,q(X) =
Hq(X,Ωp

X), are constant under a deformation of compact Kähler manifolds. Ehres-
mann’s fibration theorem tells us that the family φ : X → B is C∞ trivial and in

particular topologically trivial: X
homeo∼= X0 × B. In particular, we have canonical

identifications

H2(Xt,C) ∼= H2(X0,C) = H2(X,C).(2.1)

The period map P associates to t ∈ B the class [σt] of the closed holomorphic
2-form σt on Xt, seen as an element of H2(X,C) via the isomorphism (2.1). Note
that σt is defined up to a multiplicative coefficient, hence [σt] is well-defined only
in P(H2(X,C)). Hence the period map takes value in P(H2(X,C)). It is a gen-
eral result due to Griffiths that the period map is holomorphic. Furthermore the
computation of its differential shows in our case that the period map is an immer-
sion. Note that dimH1(X,TX) = dimH1(X,ΩX) = b2(X) − 2, as Hodge theory
provides the Hodge decomposition H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X) with
H1,1(X) ∼= H1(X,ΩX), the two other spaces being 1-dimensional. It follows that
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P(B) ⊂ P(H2(X,C)) is a germ Dloc of analytic hypersurface. One can use it (see
[3], [12]) to construct the Beauville-Bogomolov quadratic form q on H2(X,Q).

Theorem 2.1. (see [3]) Let X be a hyper-Kähler manifold of dimension 2n.
There exists a nondegenerate quadratic form q of signature (3, b2(X)−3) on H2(X,Q)
which is defined up to a multiplicative coefficient by the following condition: for
some positive rational number λ, one has∫

X

α2n = λq(α)n(2.2)

for any α ∈ H2(X,Q).

This form is usually normalized in such a way that it takes integral values
on H2(X,Z) and is not divisible as an intersection form on H2(X,Z); it is then
uniquely determined. Although Beauville gives an explicit formula for q, the exis-
tence of q follows directly from the study of the period map. Indeed, we observe
that classes [σt] ∈ Dloc satisfy [σt]

n+1 = 0 in H2(X,C). Indeed, they are classes of
holomorphic 2-forms σt on (some deformation Xt of) X, and clearly σn+1

t = 0 as a
form on X. It follows that the hypersurface H2n of degree 2n in P(H2(X,C)) which
is defined by the degree 2n homogeneous form f given by the formula f(α) =

∫
X
α2n

contains Dloc and has multiplicity at least n along it, hence has a component of
multiplicity ≥ n, which is not a hyperplane. One then concludes that this compo-
nent is a quadric hypersurface Q and that Dloc is open in Q. Thus the equation q
of the quadric Q and f are related by f = λqn for some coefficient λ. Finally, using
the fact that f is rational, one sees that both λ and q can be taken to be rational.
The statement concerning the signature of q follows from the Hodge index theorem
and further identities derived from (2.2).

The Verbitsky Torelli theorem for marked hyper-Kähler manifolds involves the
integral structure on cohomology. It says the following:

Theorem 2.2. ([25], [14]) Let X, X ′ be two hyper-Kähler manifolds which are
deformation equivalent. Assume there is an isomorphism φ : H2(X,Z) ∼= H2(X ′,Z)
which is obtained by transporting cohomology along a path of deformations from X
to X ′ and such that φ([σX ]) = [σX′ ]. Then X and X ′ are birationally equivalent.
If furthermore φ sends one Kähler class on X to a Kähler class on X ′, X and X ′

are isomorphic.

2.2. Constructing hyper-Kähler manifolds. One particularity of hyper-
Kähler geometry is the fact that although their deformation theory has an analytic
and transcendental character, all known examples have been constructed by means
of algebraic geometry. Note again that algebraic geometry provides constructions
for the underlying complex manifolds, but of course not for the hyper-Kähler met-
rics. In dimension 2, hyper-Kähler manifolds are K3 surfaces (see [29]). These
surfaces are all obtained by deforming smooth quartic surfaces in P3, defined by
one degree 4 homogeneous equation f(X0, . . . , X3). The projective dimension of
the space of such polynomials is 34, while AutP3 = PGl(4) has dimension 15, so
that the family of isomorphism classes of quartic K3 surfaces has dimension 19.
This is a general fact of hyper-Kähler geometry. The number h1,1 in this case is
equal to 20 and this is the dimension of the space of all deformations of the K3
surface S. The deformations of S as a quartic surface are restricted since these
K3 surfaces carry a holomorphic line bundle L such that c1(L)2 = 4. The class
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c1(L) is a Hodge class, that is integral of type (1, 1), and equivalently it is integral
and satisfies q(c1(L), σS) = 0. Note that the Beauville-Bogomolov form q is in this
case the intersection pairing on middle cohomology. The general situation will be
similar: given a hyper-Kähler manifold X equipped with an ample line bundle L,
the polarized deformations of X, that is the deformations of the pair (X,L) con-
sisting of a complex manifold and a holomorphic line bundle on it, have h1,1(X)−1
parameters, and are parameterized by the period domain Dl ⊂ D determined by
the condition q(σ, l) = 0 where l = c1(L).

In dimension 4, there are two known topological types of hyper-Kähler mani-
folds, namely S[2] and K2(A), where S is a K3 surface and A is a 2-dimensional
abelian surface (or complex torus). The second punctual Hilbert scheme X [2] is
defined for any algebraic variety or complex manifold X as the set of length 2 sub-
schemes of X, which consist either of two distinct points of X or a point with a
tangent vector. If X is smooth, this is the desingularization of the symmetric prod-
uct X(2) obtained by blowing-up the diagonal. The generalized Kummer variety
K2(A) is a fourfold obtained as follows: using the group structure of A, the smooth
variety (or complex manifold) A[3] parametrizing length 3 subschemes of A admits
the sum morphism A[3] → A, and K2(A) is any fiber of this morphism. These
two examples appear in [3], as their next generalizations: It is a general theorem
due to Fogarty [10] that the n-th Hilbert scheme S[n] is smooth for any n and any
smooth surface S. For n ≤ 3, the result is true without any assumptions on the di-
mension because length 3 subschemes are supported on smooth surfaces. Beauville
shows that S[n] and Kn(A) ⊂ A[n+1] are hyper-Kähler manifolds of dimension 2n
for S a K3 surface, A a 2-dimensional complex torus. The holomorphic 2-form
on S[n] comes from the holomorphic 2-form σS on S by descending the (2, 0)-form∑

i pr
∗
i σS on Sn, which is invariant under the action of the symmetric group Sn,

to the smooth part of the quotient S(n) = Sn/Sn and then showing that it extends
to a (2, 0)-form on the desingularization S[n].

Apart from these two series of examples, only two other deformation types
are known, of respective dimensions 6 and 10, and they have been constructed by
O’Grady [22], [23]. The 10-dimensional example is constructed as follows: Consider
the moduli space of simple coherent sheaves E of rank 2 on a K3 surface S, satisfying
det E = OS (equivalently c1(E) = 0 in H2(S,Z)), and deg c2(E) = 4. By results of
Mukai [19], this is a smooth algebraic variety with an everywhere nondegenerate
closed holomorphic (in fact algebraic) 2-form. The variety is quasiprojective and
admits a natural projective completion which is a moduli space of semistable sheaves
(with respect to a given polarization). The later is singular along the locus of
nonstable objects (for example Iz ⊕ Iz′ , where z and z′ are two subschemes of
length 2 in S). O’Grady constructs a hyper-Kähler desingularization of this singular
moduli space. This variety has b2 = 24, hence its algebraic deformations have 21
parameters. Those constructed starting from an algebraic K3 surface have 19
parameters.

Cubic fourfolds, that is smooth cubic hypersurfaces in P5, play an unexpected
role in this study. Although they are Fano varieties, hence have a priori noth-
ing to do with hyper-Kähler varieties, the Hodge decomposition on their degree 4
cohomology takes the form

H4(X,C) = H3,1(X)⊕H2,2(X)⊕H1,3(X),



6 CLAIRE VOISIN

with dimH3,1(X) = dimH1,3(X) = 1. Furthermore, the space H2,2 has dimension
21, and it contains one Hodge (in fact algebraic) class, namely h2, h = c1(OX(1)).
This Hodge structure is polarized by the intersection form 〈 , 〉X on the mid-
dle degree cohomology H4(X,Z) (which will thus play the role of the Beauville-
Bogomolov form). This notion of polarization of the Hodge structure says that the
line H3,1(X) ⊂ H4(X,C) is isotropic for 〈 , 〉X , and futhermore there is a (open)
sign condition saying in our case that 〈α, α〉X < 0 for 0 6= α ∈ H3,1(X). Thus up to
shift of bigrading by (1, 1), (and change of sign for the quadratic form), what we get
is a polarized Hodge structure of hyper-Kähler type. Furthermore, the cubic has
20 parameters (this is the dimension of the projective space of cubic homogeneous
polynomials in 6 variables minus the dimension of PGl(6)) and in fact the period
map t 7→ H3,1(Xt) ⊂ H4(Xt,C) = H4(X,C) is a local isomorphism to the polar-
ized period domain Dh2 which as before is an open set in the quadric defined by

the Poincaré intersection pairing on H4(X,Z)⊥h
2

. The cubic is there only to give
us a polarized variation of Hodge structure of hyper-Kähler type with 20 parame-
ters. Surprisingly enough, there are many hyper-Kähler manifolds associated with
a cubic fourfold, which have their variation of rational Hodge structure isomorphic
to the one described above on the degree 4 cohomology of the cubic (with a shift
of degree). The known examples are:

(1) The variety of lines of a cubic fourfold X [4]. This is a hyper-Kähler fourfold
F (X) and the incidence correspondence P ⊂ F (X) × X (which is the universal
P1-bundle over F (X)) induces an isomorphism P ∗ : H4(X,Z) ∼= H2(F (X),Z) of
Hodge structures. Beauville and Donagi show that for some special cubic fourfolds
X (more precisely “Pfaffian” cubic fourfolds), F (X) becomes isomorphic to S[2] for
some K3 surface S.

(2) The variety of rational curves of degree 3 in X [17]. This is a P2-bundle on
a variety which is the blow-up of a hyper-Kähler 8-fold Z(X) along a Lagrangian
embedding of X in Z(X). Again, the variations of Hodge structures on H4(X)
and H2(Z(X)) coincide, using the fact that up to a unininteresting summand,
the H2 of Z(X) and F3(X) coincide, and then using the universal correspondence
between F3(X) and X. This variety F (X) has been shown in [1] to be of the
same deformation type as S[4], where S is a K3 surface. Another proof of this last
statement has been also given in [15].

(3) The intermediate Jacobian fibration of a cubic fourfold has been already
mentioned in the introduction. This is a quasiprojective holomorphically symplectic
10-fold. It is proved in [16] that it admits a hyper-Kähler compactification J , and
furthermore that J is deformation equivalent to O’Grady’s 10-dimensional varieties.
One remark is that contrarily to the previous cases where we exhibited a complete
family of projective hyper-Kähler manifolds, (hence a family with b2−3 parameters),
the expected dimension for the O’Grady examples should be 21 while our family
has 20 parameters. This is due to the fact that the varieties that we construct are
by definition Lagrangian fibered over P5. Hence their Picard number is at least 2,
containing one class pulled-back from P5 and one ample class, and in fact it has to
be generally equal to 2, since the family we construct has 20 parameters and the
manifolds have b2 = 24.

The rest of this paper is devoted to the description of the twisted version of
(3), giving rise to a second 20 parameters family of deformations of O’Grady 10-
dimensional varieties.
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Remark 2.3. The cubic fourfold is not the only Fano variety X which has
associated hyper-Kähler manifolds whose variation of Hodge structure on H2 is
isomorphic (up to a shift of degree) to the variation of Hodge structure on some
cohomology group of X. Another example can be found in [8], where X is a Plücker
hyperplane section of the GrassmannianG(3, V10) of 3-dimensional vector subspaces
of a given 10-dimensional vector space V10, so that X is defined by a general element
s of

∧3
V ∗10. It is proved in loc. cit. that the fourfold Ks ⊂ G(6, V10) consisting of

6-dimensional vector subspaces of V10 on which s vanishes identically is a hyper-
Kähler fourfold, with VHS on H2

prim isomorphic to the VHS on H20(X)prim.

3. The twisted intermediate Jacobian fibration: smooth and 1-nodal
case

Let X ⊂ P5 be a smooth cubic fourfold, B = (P5)∨ be the set of hyperplane
sections of X, and let Y ⊂ B ×X be the universal hypersurface. Let U ⊂ U1 ⊂ B
be the Zariski open sets of B parametrizing smooth, resp. 1-nodal, hyperplane
sections of X. The reason for introducing U1 is, as in [16] which we follow closely,
the fact that B \U1 has codimension 2 in B, so that the flat fibration with smooth,

hence normal, total space J T
will be determined (see Section 4) by its restriction

J T
U1

over U1.
As we mentioned in the introduction, the twisted intermediate Jacobian fibra-

tion J T
U over U can be interpreted as parametrizing 1-cycles of degree 1 in the

fibers of the universal (smooth) hypersurface u : YU → U over U . If we want to
describe it as an abstract torsor over JU or even better as a complex manifold,
it can be defined by considering Deligne-Beilinson cohomology along the fibers of
u : YU → U . This gives an exact sequence of sheaves of groups on U

0→ JU → H4
D

c→ R4u∗Z→ 0,

where the sheaf R4u∗Z is canonically isomorphic to Z. We can then define J T
U

as c−1(1) (note that we identify here the analytic group fibration and its sheaf of
holomorphic sections). The definition above is not good to understand the extension
J T
U1

and does not describe J T
U as an algebraic object. We will thus give here an

alternative description of J T
U1

actually as a twist of JU1
. Our goal in this section

is to establish the following result:

Proposition 3.1. There exists a quasiprojective variety J T
U1

with a projective

morphism πT
U1

: J T
U1
→ U1 which has the following properties.

(1) The family J T
U1

is étale locally isomorphic to JU1
over U1.

(2) Let f : U ′ → U be a base change, with U ′ smooth, and assume that there is
a codimension 2 cycle Z ∈ CH2(YU ′) that has degree 1 in the fibers of YU ′ → U ′.
Then there is a canonical section U ′ → J T

U ′ of the fibration J T
U ′ := f∗J T

U → U ′.
Equivalently, there is a morphism ΦZ : U ′ → J T

U over U .

More precisely, the morphism ΦZ is in fact compatible with the Abel-Jacobi
map in the sense that for two points u′, u′′ ∈ U ′ with f(u′) = f(u′′) = u, ΦZ(u′) =
ΦZ(u′′) + ΦYu

(Zu′ −Zu′′), where ΦYu
is the Abel-Jacobi map of Yu. This last fact

is automatic, due to the universal property of the Abel-Jacobi map (see [21]). The
proof of the proposition will be done through a few lemmas.

To start with, we observe that JU1
contains a Zariski open set J ◦U1

, which
is a group scheme over U1 and differs from JU1

only over U1 \ U . Over U1 \ U ,



8 CLAIRE VOISIN

the fibers of J ◦U1
are quasiabelian varieties, and more precisely, the fiber J ◦U1,t

over t ∈ U1 \ U is a C∗-bundle over the intermediate Jacobian J(Ỹt), where Ỹt is
the desingularization of Yt obtained by blowing-up the node. Denoting by ot the
singular point of Yt, the fiber J ◦U1,t

can be understood in terms of algebraic cycles

as the group of 1-cycles homologous to 0 in Yt \ {ot} modulo rational equivalence
relative to ot, that is modulo the cycles of the form div φ, where φ is a rational
function on W ⊂ Yt which is well defined and invertible near ot if ot ∈ W (see
[18], [5, Lecture 3]). The fibers JU1,t of the compactified Jacobian fibration JU1

are obtained as the Mumford compactification [20], obtained by replacing the C∗-
bundle mentioned above by the corresponding P1-bundle with the sections 0 and

∞ glued via a translation of the base J(Ỹt). The translation is given by an element

η ∈ J(Ỹt) and the C∗-bundle is given by its class η′ ∈ Pic0J(Ỹt) ; the two classes η

and η′ must be identified via the (principal) Theta divisor of J(Ỹt). This is indeed
the condition that this compactification admits an ample divisor which is the limit
of the Theta divisors on the smooth fibers J(Ys). (The reader will find in [2], [7]
the geometric interpretation of this class in the case of the family of intermediate
Jacobians associated to a Lefschetz degeneration of threefolds.) Notice that the
(sheaf of holomorphic sections of) the analytic group scheme J ◦U1

is given by the
formula

J ◦U1
= H1,2/R3u1∗Z,(3.1)

where u1 : YU1
→ U1 is the universal hypersurface over u1, (thus, by Picard-

Lefschetz theory, R3u1∗Z = j1∗H
3
Z is the natural extension of the local system

H3
Z = R3u∗Z existing on U ,) and H1,2 is the Deligne extension of the Hodge bundle

H1,2
U = R1u∗Ω

2
YU/U

existing on U . Let us prove the following lemma:

Lemma 3.2. The group scheme J ◦U1
acts (over U1) on the compactification JU1 .

Proof. One easy way to prove this is to observe that we have a family πU :
JU → U of principally polarized varieties with a canonical Theta divisor ΘU ⊂ JU
inducing a relative isomorphism

JU ∼= Pic0(JU/U).

Then J ◦U1
identifies to Pic0(JU1/U1

) and by uniqueness, the compactification JU1

identifies with the Mumford compactification of Pic0(JU1/U1
) parameterizing rank

1 torsion free sheaves on fibers of πU1
: JU1

→ U1. The action over U1 of J ◦U1
on

JU1 is then the action of Pic0 on sheaves by tensor product. �

Formula (3.1) shows that R3u1∗(Z/3Z) ⊂ J ◦U1
identifies with the sheaf 3J ◦U1

of 3-torsion points and Lemma 3.2 shows that J ◦U1
⊂ Aut (JU1

/U1). Let us now

exhibit the twisting class in H1
et(U1,Aut (JU1

/U1)) needed to construct J T
U1

. The
twisting class will be of 3-torsion and more precisely will come from a class in
H1

et(U1, 3J ◦U1
) = H1(U1, 3J ◦U1

), where in the right hand side we consider cohomol-
ogy with respect to the usual topology. Consider the morphism u1 : Yu1

→ U1. As
they admit at worst one node, the fibers of u1 satisfy H4(Yt,Z) = Z with gener-
ator at the point t the class of a line (not passing through the node of Yt if Yt is
singular). Let h = c1(OX(1)) and hY ∈ H2(Y,Z) be its pull-back to Y. The image
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h̃2
Y of the class h2

Y in H0(U1, R
4u1∗Z) is equal to 3 times the above generator of

R4u1∗Z = Z. The twisting class comes from the lack of degeneracy at E2 of the
Leray spectral sequence of u1 with integral coefficients.

Lemma 3.3. Let σ ∈ H0(U1, R
4u1∗Z) be the natural generator. Then the im-

age d2σ ∈ H2(U1, R
3u1∗Z) is of 3-torsion, and comes from a canonically defined

element
t ∈ H1(U1, R

3u1∗(Z/3Z)).

Proof. The class d2σ ∈ H2(U1, R
3u1∗Z) is of 3-torsion because 3σ = h̃2

Y is

the image of h2
Y ∈ H4(YU1 ,Z) in H0(U1, R

4u1∗Z). The exact sequence

0→ Z 3→ Z→ Z/3Z→ 0

of constant sheaves on YU1
induces the exact sequence

0→ R3u1∗Z
3→ R3u1∗Z→ R3u1∗(Z/3Z)→ 0(3.2)

because R3u1∗Z and R4u1∗Z have no torsion. The long exact sequence associ-
ated to (3.2) thus shows that d2σ lifts to an element of H1(U1, R

3u1∗(Z/3Z)) =
H1(U1, 3J ◦U1

). This does not prove however that this lift is canonical since in
the considered long exact sequence of Betti cohomology, there is a nontrivial co-
homology group H1(U1, R

3u1∗Z) (this is due to the non-triviality of H4(X,Z)).
We can however go around this difficulty by considering the universal situation
where instead of considering the universal family YU1 of smooth or 1-nodal hy-
perplane sections of the given cubic fourfold X, we consider the universal family
v1 : Yuniv

W1
→ W1 of smooth or 1-nodal cubic threefolds contained in some hyper-

plane P4 ⊂ P5. Here the whole parameter space Buniv is the projective bundle over
(P5)∨ with fiber over [H] the projective space P(H0(OH(3))) and W1 ⊂ Buniv is a
Zariski open set in it. In this case, we have

Sublemma 3.4. One has H1(W1, R
3v1∗Z) = 0.

Proof. One proves the result first of all with Q-coefficients, using the fact that
the Leray spectral sequence degenerates in E2 and that the degree 4 cohomology of
Yuniv
W1

is algebraic and very simple. Then one concludes using the exact sequence
on W1

0→ R3v1∗Z→R3v1∗Q→ R3v1∗(Q/Z)→ 0(3.3)

and the fact that H0(W1, R
3v1∗(Q/Z)) = 0. �

This fact gives us a canonical lift of d2σ
univ to an element

tuniv ∈ H1(W1, R
3v1∗(Z/3Z)),

hence by pull-back to U1 (using the natural map g : U1 →W1), the desired canonical
lift t of d2σ to an element of H1(U1, R

3u1∗(Z/3Z)). �

Lemma 3.3 gives us a class in H1(U1, 3JU1) = H1
et(U1, 3JU1) which by Lemma

3.2 allows us to construct a twisted family πU1
: J T

U1
→ U1, which is above U a

torsor over the group scheme JU . Note that the proof of Lemma 3.3 also shows

that J T
U1

is the pull-back under g1 : U1 → W1 of the corresponding object J T,univ
W1

over W1. We now prove that the torsor so constructed is actually the object we
want, namely, the target of the Abel-Jacobi map for 1-cycles of degree 1 along
the smooth fibers of u. This will follow from the following result: Let as before
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W1 ⊂ Buniv be the Zariski open set parameterizing cubic threefolds in P5 with at
most one ordinary double point. Let o1 : Funiv

1 →W1 be the family of lines in the

fibers of v1 : Yuniv
W1

→ W1 and F0,univ
1 ⊂ Funiv

1 be the Zariski open set consisting
of lines not passing through the node when the corresponding cubic threefold is
singular. Let o1,0 be the restriction of o1 to F0

1 .

Lemma 3.5. There exists an isomorphism

o∗1,0J univ
W1

∼= o∗1,0J
T,univ
W1

(3.4)

of quasi-projective varieties over F0,univ
1 .

Proof. It suffices to show that the pull-back o∗1,0(t) vanishes in the cohomology

group H1(F0,univ
1 , o∗1,0(3J univ

W1
)). Note that the morphism o1,0 is smooth, because

the family of lines in the smooth locus of a cubic hypersurface is smooth. It follows
that the total space of the universal family

Yuniv
F0,univ

1

:= Yuniv
W1

×W1
F0,univ

1

is smooth. Let v′1 : Yuniv
F0,univ

1

→ F0,univ
1 be the natural morphism. LetH4

Z, H
3
Z, H

3
Z/3Z

be respectively the sheaves

R4v′1∗Z = o∗1,0(R4v1∗Z), R3v′1∗Z = o∗1,0(R3v1∗Z), R3v′1∗(Z/3Z) = o∗1,0(R3v1∗(Z/3Z))

on F0,univ
1 . The class

o∗1,0σ ∈ H0(F0,univ
1 , o∗1,0(R4v1∗Z)) = H0(F0,univ

1 , H4
Z)

comes from a class in H4(Yuniv
F0,univ

1

,Z), namely the class [∆univ] of the universal line

∆univ ⊂ Yuniv
F0,univ

1

. We thus get that d2(o∗1,0σ) = 0 in H2(F0,univ
1 , H3

Z). This means

that the class

o∗1,0(t) ∈ H1(F0,univ
1 , H3

Z/3Z) = H1(F0,univ
1 , 3J univ

F0
1

)

vanishes in H2(F0,univ
1 , H3

Z) (using as before the long exact sequence associated to
the short exact sequence

0→ H3
Z → H3

Z → H3
Z/3Z → 0.

In order to prove that o∗1,0(t) vanishes in H1(F0,univ
1 , 3J univ

F0
1

), it thus suffices to

show that H1(F0,univ
1 , o∗1,0H

3
Z) = 0, which is done exactly as before. �

Remark 3.6. The isomorphism between the pullbacks to F0,univ
1 of the twisted

and the untwisted families given in Lemma 3.5 is not canonical since over Funiv
W

the intermediate Jacobian fibration has a nonzero section. Indeed, for each cubic
smooth cubic threefold Y with a line ∆ ⊂ Y , the 1-cycle 3∆−h2 is cohomologous to
zero on Y , hence has a nontrivial Abel-Jacobi invariant. This provides a nontrivial
section which acts by translation on o∗J univ

W over FW . One can show that the
isomorphism is unique up to the action of the group generated by this translation.

Proof of Proposition 3.1. We already constructed J T
U1

as the pull-back

via g1 : U1 → W1 of the twisted family J T
W1

. That it is étale locally isomorphic
to JU1

over U1 is by construction. The only thing to prove is point (2). However,
Lemma 3.5 shows that for any base change morphism f : U ′ → U , assuming there
is a family of lines ∆U ′ ⊂ YU ′ , there is a canonical morphism Φ∆ : U ′ → J T

U over
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U . Indeed, the data above give a morphism c : U ′ → Funiv
W so we can use Φuniv

∆ of
the previous lemma, and define Φ∆ := Φ∆univ ◦c. To see that a family of 1-cycles of
degree 1 in the fibers of YU ′ → U ′ in fact suffices to trivialize the twisted Jacobian
fibration, we can use the universal generation result of [24] which says that any
1-cycle on a smooth cubic hypersurface Y over a field K comes from a 0-cycle on
the surface of lines F (Y ), also defined over K. In our case, K is the function field
of U ′. Using this result, we get a correspondence over U ′ between U ′ and FU ′ ,
which has to be of degree 1. Using this correspondence and the previous step, we
construct the section U ′ → J T

U ′ . �

4. Descent

Our goal in this section is to explain how to mimic the arguments from [16] in
order to construct for a general cubic fourfold X a hyper-Kähler compactification of
the twisted intermediate Jacobian fibration J T

U1
constructed in the previous section.

Recall the notion of very good line in a cubic threefold Y , introduced and used in
[16] (see also [6] for a slightly weaker notion): A line ∆ ⊂ Y is very good if ∆ does
not pass through the singular point of Y (equivalently the surface of lines F (Y )

is smooth at [∆]), the curve C̃∆ of lines in Y meeting ∆ is irreducible and the

natural involution acting on C̃∆ has no fixed points. One of the results proved in
[16] (improving previous results of [6]) is:

Proposition 4.1. If X is a general cubic 4-fold, and Y ⊂ X is any hyperplane
section, Y has a very good line.

Let ovg : Fvg → B be the family of very good lines in the fibers of u : Y → B.
Proposition 4.1 says that ovg is surjective and by definition it is smooth. Restricting
over U1, we get a Zariski open set

Fvg
1 ⊂ F0

1 , ovg,1 : Fvg
1 → U1

with its pulled-back intermediate Jacobian fibration o∗vg,1JU1 := Fvg
1 ×U1JU1 , which

is also isomorphic to o∗vg,1J T
U1

by Lemma 3.5. In [16], a smooth quasiprojective

compactification πFvg : PFvg → Fvg of o∗vg,1JU1 → F
vg
1 is constructed, with a

morphism πFvg which is flat and projective. The compactified intermediate Jaco-
bian fibration J is then obtained by descending the fibration πFvg . The statement
which makes it possible is:

Lemma 4.2. There exists a line bundle O(Θ1) on JU1
whose pull-back o∗vg,1O(Θ1)

to o∗vg,1JU1
extends uniquely to a relatively ample line bundle O(Θvg) on PFvg .

Note that the extension of the pull-back o∗vg,1O(Θ1) to a line bundle on PFvg

exists and is unique because PFvg is smooth and o∗vg,1JU1 ⊂ PFvg is Zariski open
with complement of codimension at least 2. This last point follows from the flatness
of πFvg because Fvg

1 ⊂ Fvg is Zariski open with complement of codimension ≥ 2.
The important point in Lemma 4.2 is thus relative ampleness. Once we have the
line bundle O(Θ1) on JU1

as in the lemma, we get the formula defining J as a Proj
over B, namely, letting j1 : U1 → B be the natural inclusion, we set

J = Proj (⊕kj1∗(R
0πU1∗O(kΘ1))).(4.1)

Using the fact that B \ U1 has codimension 2 in B, flatness of πFvg and rela-
tive ampleness of (the extension of) the pull-back of Θ1, we see that the sheaf of
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algebras ⊕kj1∗(R
0πU1∗O(kΘ1)) is a sheaf of finitely generated algebras over OB

whose graded pieces are locally free and that the Proj is smooth, because all these
properties become true after pull-back to Fvg, thanks to the existence of the flat
compactification πFvg . Indeed, the sheaf of algebras ⊕kj1∗(R

0πU1∗O(kΘ1)) pulls-
back to ⊕kR

0πFvg∗O(kΘvg) on Fvg. (To be completely rigorous here, we should
in fact replace the line bundle Θ1 by a multiple.)

The way this descent construction works also makes clear what ingredient we
need in order to treat the twisted case. Indeed, what we are going to do is to

descend the same fibration πFvg : PFvg → Fvg to a flat fibration πT : J T → B
with a different descent data, given by a different relatively ample divisor. More
precisely, consider πFvg : PFvg → Fvg as a relative flat projective compactification
of o∗vg,1J T

U1
→ Fvg

1 using Lemma 3.5. The only ingredient needed is the following:

Proposition 4.3. There exists a line bundle O(Θvg,T ) on PFvg , which is rel-
atively ample over Fvg, and whose restriction to Fvg

1 is the pull-back (using the
isomorphism (3.4)) of a line bundle O(ΘT

1 ) on J T
U1

.

Indeed, once one has the line bundles O(Θvg,T ) and O(ΘT
1 ) as above, one

defines J T
as

J T
= Proj (⊕kj1∗(R

0πU1∗O(kΘT
1 )))(4.2)

and the same arguments as above show that this is a smooth projective variety, flat
over B and extending J T

U1
.

Proof of Proposition 4.3. It is proved in [16, Section 4] that, X being
general, the fibers of πFvg

: PFvg → Fvg are irreducible. We now use the following
lemma:

Lemma 4.4. Let M be a smooth irreducible quasiprojective variety, f : M → N
be a flat projective morphism with irreducible fibers Mt, ∀t ∈ N , and let L ∈ PicM .
If L|Mt

is topologically trivial for the general point t ∈ N , L|Mt
is numerically trivial

for all t ∈ N .

Proof. The statement is local on N . Let t0 ∈ N and let C ⊂ Mt0 be a
curve. Choosing a sufficiently relatively ample line bundle H on M and using the
fact that Mt0 is irreducible, we can assume that C is contained in an irreducible
surface St0 ⊂ Mt0 which is a complete intersection of members of |H|Mt0

|. Up to
replacing H by a multiple and shrinking N if necessary, we can construct a flat
family fS : S → N, S ⊂M of complete intersection surfaces with fiber St0 over the
point t0. As the line bundle L|Mt

is topologically trivial for general t, we conclude
that

c1(L) · c1(H) · St = 0, c1(L)2 · St = 0

for general t, and by flatness, this is also true for St0 . Let τ : S̃t0 → St0 be a
desingularization. The line bundle L′0 := τ∗L|St0

on the smooth connected surface

S̃t0 satisfies
c1(L′0)2 = 0, c1(L′0) · c1(τ∗H) = 0.

As c1(τ∗H)2 > 0, it follows from the Hodge index theorem that L′0 is topologically

trivial modulo torsion on S̃t0 . In particular, if C ′ ⊂ S̃t0 is a curve mapping onto
C ⊂ St0 , we have degL′0|C′ = 0 = DdegL|C , where D is the degree of C ′ over C.

Thus degL|C = 0. �
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Let now ΘT
1 be any relatively ample line bundle on J T

U1
→ U1. Its pull-back

to J T
Fvg

1

∼= JFvg
1

extends to a line bundle O(Θvg,T ) on the compactified family

of Prym varieties πFvg : PFvg → Fvg. We also have on JFvg
1

the pull-back of

the relatively ample line bundle Θ1 on JU1
→ U1. The later extends (in fact

uniquely) to a relatively ample line bundle O(Θvg) on PFvg → Fvg. Next, an
easy monodromy argument shows (see [16, Section 5]) that the Néron-Severi group
of the intermediate Jacobian of a very general cubic 3-fold is isomorphic to Z. It
follows that for adequate positive integers a, b, the line bundle O(aΘvg,T − bΘvg)
is topologically trivial on the general fibers of πFvg . We then conclude by Lemma
4.4 that O(aΘvg,T − bΘvg) is numerically trivial on all the fibers of πFvg . Thus
O(aΘvg,T ) is the sum of an ample line bundle and a numerically trivial line bundle
on any fiber of πFvg , hence it is relatively ample. �

This concludes the construction of the smooth projective variety J T
. The fact

that this is a hyper-Kähler manifold follows easily, as in [16]: The existence of
the holomorphic 2-form works as in [16]. Indeed, according to Proposition 3.1,
J T
U is naturally the set of 1-cycles of degree 1 modulo rational equivalence in the

fibers of the universal family YU → U , in the sense that for any smooth morphism
φ : M → U , and codimension 2 cycle Z ∈ CH2(M×U ×YU ) such that Zm is
of degree 1 on the fiber Yt, t = φ(m), there exists a morphism (twisted Abel-
Jacobi map) M→ J T

U . A universal cycle, for which M is J T
U and the map is the

identity, may not exist with integer coefficients, but it always exists with rational
coefficients, so we have a cycle Z ∈ CH2(J T

U ×U ×YU )Q with rational coefficients
such that [Z]∗ is the natural isomorphism R3u∗Q ∼= R1πU∗Q. Using the natural
proper map (inclusion) Φ : J T

U ×U ×YU → J T
U ×X, we get a codimension 3 cycle

Z ′ = Φ∗(Z) ∈ CH3(J T
U ×X)Q. We construct the holomorphic 2-form on J T

U as

σU = [Z ′]∗αX ∈ H0(J T
U ,Ω

2
J T

U
),

where αX is a generator of H1(X,Ω3
X). For any algebraic extension W of J T

U ,
we can extend the cycle Z ′ to W × X, showing that the (2, 0)-form σU extends
to W . In particular, we get the desired holomorphic 2-forms σU1 on J T

U1
and σ

on J T
. The fact that σ is nondegenerate on J T

is a consequence of the fact
that σU1

is nondegenerate on J T
U1

, since B \ U1 has codimension ≥ 2 in B and

π : J T → B is flat. The fact that σU1
is nondegenerate on J T

U1
follows from the

similar statement for the untwisted family since they are étale locally isomorphic.
Finally, the fact that the variety we construct is actually hyper-Kähler (i.e. simply
connected with only one holomorphic 2-form up to a coefficient) follows from the
fact that the two varieties are birational (this will also imply a posteriori that they
are deformation equivalent) when the cubic fourfold X acquires an integral Hodge
class α ∈ H4(X,Z) which has degree 1 on its hyperplane sections. Note that the

above construction of J T
and J works a priori only for general X, but the set of

special X’s as above is Zariski dense (this is a countable union of hypersurfaces,
dense for the usual topology in the moduli space of cubic fourfolds), hence there are
points which correspond to special X’s in Hassett’s sense (see [11]), with a special

class of degree 1 along hyperplane sections, and for which the constructions of J T

and J specialize well.
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Remark 4.5. The two varieties J T
and J are isogenous in the sense that

there is a rational map (of degree 310) J T
99K J . This is obvious from the fact

that the open part J T
U is constructed as a torsor over the group scheme J T

U , with
a twisting class of order 3. We believe but did not prove that the two varieties are
not birational. We only note that by construction they are not birational over B.
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