Appendix: On linear subspaces contained in the secant varieties of a projective curve

Claire Voisin
Institut de Mathématiques de Jussieu
CNRS, UMR 7586

1. Introduction.

If $C \subset \mathbb{P}^{N}$ is a curve imbedded in projective space, one can consider the secant variety $\Sigma_{d}=\underset{Z \in C^{(d)}}{\cup}\langle Z\rangle$ swept out by the linear spans of d-uples of points of C. This Σ_{d} contains the \mathbb{P}^{d-1} 's parametrized by $Z \in C^{(d)}$ (here we are assuming that d is not large with respect to $N)$. More precisely, Σ_{d} is birational to a projective bundle of rank $d-1$ over $C^{(d)}$. On the other hand, if d is large enough, $C^{(d)}$ also contains positive dimensional projective spaces, corresponding to linear systems on C. Deciding whether or not Σ_{d} contains linear subspaces other than those contained in some of the \mathbb{P}_{Z}^{d-1},s is thus a non trivial problem.

Some time ago, C. Soulé obtained estimates for the maximal dimension of a linear subspace contained in Σ_{d}, and asked me whether an ad hoc geometric argument would lead to other results.

One answer in this direction is as follows:
We assume that C is smooth of genus $g>0$ and that the embedding $C \subset \mathbb{P}^{N}$ is given by the sections of a line bundle $L \otimes \omega_{C}$, with $\operatorname{deg}(L)=m$. We then show:

Theorem. If $m \geq 2 d+3$, and $\delta \geq d-1$, any \mathbb{P}^{δ} contained in Σ_{d} is one of the $\mathbb{P}^{d-1}=\langle Z\rangle$, $Z \in C^{(d)}$. In particular, Σ_{d} contains no projective space \mathbb{P}^{δ}, for $\delta \geq d$.

Thanks. I wish to thank Christophe Soulé for interesting discussions and for providing the motivation to write this Note.

2. Proof of the theorem.

We first recall a few basic facts about secant varieties of curves (see [1]). First of all, since $m \geq 2 d+1$, for any effective divisor Z of degree $k \leq 2 d$ on C, we have $H^{1}(L \otimes$ $\left.\omega_{C}(-Z)\right)=0$, hence the linear span of Z is of dimension $k-1$. Let now $E \rightarrow C^{(d)}$ be the vector bundle with fiber $H^{0}\left(L \otimes \omega_{C \mid Z}\right)$ at $Z \in C^{(d)}$. Since the restriction map $H^{0}\left(L \otimes \omega_{C}\right) \rightarrow H^{0}\left(L \otimes \omega_{C \mid Z}\right)$ is surjective for any $Z \in C^{(d)}$, there is a well defined morphism $\alpha: \mathbb{P}\left(E^{*}\right) \rightarrow \mathbb{P}^{N}$, whose image is exactly the secant variety Σ_{d}. Since sections of $L \otimes \omega_{C}$ separates any $2 d$ points on C, it follows that α is one to one over $\Sigma_{d}-\Sigma_{d-1}$.

An easy computation shows that for any $Z \in C^{(d)}$, and for any x in the linear span of Z, but not in the linear span of any $Z^{\prime} \nsubseteq Z$, the differential of α is of maximal rank, so that $\Sigma_{d} \backslash \Sigma_{d-1}$ is smooth of dimension $2 d-1$. The projectivized tangent space to Σ_{d} at $\alpha(x)$ is easy to describe, at least when Z is a reduced divisor $\sum_{1}^{d} z_{i}$: indeed this is a $\mathbb{P}^{2 d-1}$ which contains $\langle Z\rangle$ and also each projective line tangent to C at some point $z_{i} \in Z$, as one sees by deforming Z fixing $z_{j}, j \neq i$. It follows that it must be equal to the linear span of the divisor $2 Z$. By continuity, this description of the projectivized tangent space to Σ_{d} remains true at any point of $\Sigma_{d}-\Sigma_{d-1}$.

We now start the proof of the theorem. We suppose that $\delta \geq d-1$, and assume that some projective space \mathbb{P}^{δ} is contained in Σ_{d}. Assuming \mathbb{P}^{δ} is not contained in one of the \mathbb{P}_{Z}^{d-1} 's we shall derive a contradiction.

Note that by induction on d, we may assume that \mathbb{P}^{δ} is not contained in Σ_{d-1}. Let $\widetilde{\mathbb{P}}^{\delta}$ be the closure of $\alpha^{-1}\left(\mathbb{P}^{\delta} \backslash \mathbb{P}^{\delta} \cap \Sigma_{d-1}\right)$ in $\mathbb{P}\left(E^{*}\right)$. Denote by $\pi: \widetilde{\mathbb{P}}^{\delta} \rightarrow C^{(d)}$ the restriction to $\widetilde{\mathbb{P}}^{\delta}$ of the structural projection $\mathbb{P}\left(E^{*}\right) \rightarrow C^{(d)}$. Let $W:=\pi\left(\widetilde{\mathbb{P}}^{\delta}\right)$ and $w:=\operatorname{dim} W$. Our assumption is that $w>0$. We shall denote by P_{v} the fiber $\pi^{-1}(v)$. It is a projective space $\mathbb{P}^{\delta} \cap\left\langle Z_{v}\right\rangle$, which is generically of dimension $s=\delta-w$.

We start with the following observation:
Lemma 1. Under our assumption $\operatorname{dim} W>0$ we have the inequality

$$
\begin{equation*}
w>\delta-w \tag{1}
\end{equation*}
$$

Proof. Indeed, we may assume that for v, v^{\prime} two generic distinct points of W, the supports of the associated divisors $Z_{v}, Z_{v^{\prime}}$ of C are disjoint. Otherwise, Z_{v} would contain a fixed point $x \in C$, for any $v \in W$. But projecting C from x, we then get a curve $C^{\prime} \subset \mathbb{P}^{N-1}$, such that Σ_{d-1}^{\prime} contains a $\mathbb{P}^{\delta-1}$ which is not a \mathbb{P}_{Z}^{d-2}; since we may assume the theorem proven for $(m-1, d-1)$, this is impossible.

Now choose v, v^{\prime} as above. The projective spaces $\left\langle Z_{v}\right\rangle$ and $\left\langle Z_{v^{\prime}}\right\rangle$ do not meet, hence the projective spaces $P_{v}=\left\langle Z_{v}\right\rangle \cap \mathbb{P}^{\delta}, P_{v^{\prime}}=\left\langle Z_{v^{\prime}}\right\rangle \cap \mathbb{P}^{\delta}$ do not meet. Since they are of dimension s in a \mathbb{P}^{δ}, it follows that $2 s<\delta$, or $w>\delta-w$.

Next we observe that, at each point $\alpha(x, Z)$ of $\mathbb{P}^{\delta}-\left(\mathbb{P}^{\delta} \cap \Sigma_{d-1}\right), \mathbb{P}^{\delta}$ is contained in the projectivized tangent space of Σ_{d} at $\alpha(x, Z)$, that is in $\langle 2 Z\rangle$. Hence for any $v \in W$, the corresponding divisor $Z_{v} \in C^{(d)}$ satisfies

$$
\mathbb{P}^{\delta} \subset\left\langle 2 Z_{v}\right\rangle
$$

We next study the infinitesimal variation of $\left\langle 2 Z_{v}\right\rangle \subset \mathbb{P}^{N}$. Let $H:=\mathcal{O}_{\mathbb{P}^{N}}(1)$. Then we have the identification

$$
\begin{equation*}
H^{0}\left(\mathbb{P}^{N}, H\right) \simeq H^{0}\left(C, L \otimes \omega_{C}\right) \tag{2}
\end{equation*}
$$

which by definition of the linear span, induces an identification

$$
\begin{equation*}
H^{0}\left(\mathbb{P}^{N}, H \otimes I_{\left\langle 2 Z_{v}\right\rangle}\right) \simeq H^{0}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right) . \tag{3}
\end{equation*}
$$

If $h \in T_{W, v}$, the infinitesimal deformation of $\left\langle 2 Z_{v}\right\rangle$ in the direction h is described by an homomorphism:

$$
\varphi_{h}: H^{0}\left(\mathbb{P}^{N}, H \otimes I_{\left\langle 2 Z_{v}\right\rangle}\right) \rightarrow H^{0}\left(\left\langle 2 Z_{v}\right\rangle, H_{\mid\left\langle 2 Z_{v}\right\rangle}\right) .
$$

We have now an isomorphism induced by (2) and (3):

$$
\begin{equation*}
H^{0}\left(\left\langle 2 Z_{v}\right\rangle, H_{\mid\left\langle 2 Z_{v}\right\rangle}\right) \simeq H^{0}\left(L \otimes \omega_{C \mid 2 Z_{v}}\right) . \tag{4}
\end{equation*}
$$

We have the following
Lemma 2. Under the isomorphisms (3) and (4), if we identify h to an element $u_{h} \in$ $H^{0}\left(\mathcal{O}_{C}\left(Z_{v}\right)_{\mid Z_{v}}\right), \varphi_{h}$ identifies to the multiplication

$$
u_{h}: H^{0}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right) \rightarrow H^{0}\left(Z_{v}, L \otimes \omega_{C}\left(-Z_{v}\right)_{\mid Z_{v}}\right)
$$

followed by the inclusion

$$
H^{0}\left(Z_{v}, L \otimes \omega_{C}\left(-Z_{v}\right)_{\mid Z_{v}}\right) \hookrightarrow H^{0}\left(2 Z_{v}, L \otimes \omega_{C \mid 2 Z_{v}}\right) .
$$

The proof is straightforward once we recall the construction of φ_{h} by differentiating under the parameters the equations vanishing on $\left\langle 2 Z_{v}\right\rangle$.

We know that the spaces $\left\langle 2 Z_{v}\right\rangle$, for $v \in W$, contain \mathbb{P}^{δ}. Infinitesimally, this translates into the fact that for any $h \in T_{W, v}$, the image of φ_{h} vanishes on \mathbb{P}^{δ}, that is, is contained in

$$
\operatorname{Ker}\left(H^{0}\left(\left\langle 2 Z_{v}\right\rangle, H_{\mid\left\langle 2 Z_{v}\right\rangle}\right) \rightarrow H^{0}\left(\mathbb{P}^{\delta}, H_{\mid \mathbb{P}^{\delta}}\right)\right) .
$$

¿From the description of φ_{h} given in Lemma 2, we see that $\operatorname{Im} \varphi_{h}$ is contained in

$$
K:=\operatorname{Ker}\left(H^{0}\left(\left\langle 2 Z_{v}\right\rangle, H_{\mid\left\langle 2 Z_{v}\right\rangle}\right) \rightarrow H^{0}\left(\left\langle Z_{v}\right\rangle, H_{\mid\left\langle Z_{v}\right\rangle}\right)\right) .
$$

Indeed, via the isomorphism (4), K identifies to

$$
\operatorname{Ker}\left(H^{0}\left(L \otimes \omega_{C \mid 2 Z_{v}}\right) \rightarrow H^{0}\left(L \otimes \omega_{C \mid Z_{v}}\right)\right)=\operatorname{Im} H^{0}\left(L \otimes \omega_{C}\left(-Z_{v}\right)_{\mid Z_{v}}\right) \rightarrow H^{0}\left(L \otimes \omega_{C \mid 2 Z_{v}}\right)
$$

Finally, note that the restriction map $K \rightarrow H^{0}\left(\mathbb{P}^{\delta}, H_{\mid \mathbb{P}^{\delta}}\right)$ has rank equal to the dimension of

$$
\operatorname{Ker}\left(H^{0}\left(\mathbb{P}^{\delta}, H_{\mid \mathbb{P}^{\delta}}\right) \rightarrow H^{0}\left(\mathbb{P}^{\delta} \cap\left\langle Z_{v}\right\rangle, H_{\mid \mathbb{P}^{\delta} \cap\left\langle Z_{v}\right\rangle}\right)\right),
$$

which is equal to $\delta-s$, since $\mathbb{P}^{\delta} \cap\left\langle Z_{v}\right\rangle=P_{v}$ is of dimension s.
Denote now by $V \subset H^{0}\left(\mathcal{O}_{C}\left(Z_{v}\right)_{\mid Z_{v}}\right)$ the tangent space to W at v. Lemma 2 and the estimate above give us the following conclusion:

Lemma 3. Under our assumptions, the multiplication map

$$
\mu: V \otimes H^{0}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right) \rightarrow H^{0}\left(L \otimes \omega_{C}\left(-Z_{v}\right)_{\mid Z_{v}}\right)
$$

has its image contained in a subspace of codimension at least w.
We now derive a contradiction. We observe first that since $\widetilde{\mathbb{P}}^{\delta}$ is a rational variety dominating W, W is contained in a linear system $|D| \subset C^{(d)}$. Hence $\mathcal{O}_{C}(D)=\mathcal{O}_{C}\left(Z_{v}\right)$ for all $v \in W$, and the fact that $W \subset|D|$ translates infinitesimally into the fact that $V=T_{W, v}$ is contained in the image of the restriction map:

$$
H^{0}\left(\mathcal{O}_{C}\left(Z_{v}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{C}\left(Z_{v}\right)_{\mid Z_{v}}\right)
$$

Let now \widetilde{V} be the inverse image of V under this restriction map. Then rk $\widetilde{V}=w+1$, and Lemma 3 shows that the multiplication map

$$
\widetilde{\mu}: \widetilde{V} \otimes H^{0}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right) \rightarrow H^{0}\left(C, L \otimes \omega_{C}\left(-Z_{v}\right)\right)
$$

has its image contained in a space of codimension at least w.
Now we have the equality:

$$
\operatorname{rk} H^{0}\left(C, L \otimes \omega_{C}\left(-Z_{v}\right)\right)=d+\operatorname{rk} H^{0}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right)
$$

since $H^{1}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right)=0$. So we conclude that

$$
\begin{equation*}
\operatorname{rk} \widetilde{\mu} \leq h^{0}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right)+d-w . \tag{5}
\end{equation*}
$$

On the other hand, we can apply Hopf lemma to $\widetilde{\mu}$, and the inequality in Hopf lemma must be strict here, since the line bundle $L \otimes \omega_{C}\left(-2 Z_{v}\right)$ is very ample, being of degree at least $2 g+1$, and C is not rational. This gives us:

$$
\begin{equation*}
\operatorname{rk} \widetilde{\mu}>w+1+h^{0}\left(C, L \otimes \omega_{C}\left(-2 Z_{v}\right)\right)-1 \tag{6}
\end{equation*}
$$

Combining (5) and (6), we get:

$$
\begin{equation*}
d-w>w \tag{7}
\end{equation*}
$$

But this contradicts inequality (1), since $\delta \geq d-1$.

References.

[1] A. Bertram : Moduli of rank 2 vector bundles, theta divisors, and the geometry of curves in projective space, J. Diff. Geom. 35, 1992, 429-469.

