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1. Introduction.

If C ⊂ P
N is a curve imbedded in projective space, one can consider the secant variety

Σd = ∪
Z ∈C(d)

〈Z〉 swept out by the linear spans of d-uples of points of C. This Σd contains

the P
d−1’s parametrized by Z ∈ C(d) (here we are assuming that d is not large with respect

to N). More precisely, Σd is birational to a projective bundle of rank d− 1 over C(d). On

the other hand, if d is large enough, C(d) also contains positive dimensional projective

spaces, corresponding to linear systems on C. Deciding whether or not Σd contains linear

subspaces other than those contained in some of the P
d−1
Z ’s is thus a non trivial problem.

Some time ago, C. Soulé obtained estimates for the maximal dimension of a linear

subspace contained in Σd, and asked me whether an ad hoc geometric argument would

lead to other results.

One answer in this direction is as follows:

We assume that C is smooth of genus g > 0 and that the embedding C ⊂ P
N is given

by the sections of a line bundle L ⊗ ωC , with deg(L) = m. We then show:

Theorem. If m ≥ 2d+3, and δ ≥ d−1, any P
δ contained in Σd is one of the P

d−1 = 〈Z〉,

Z ∈ C(d). In particular, Σd contains no projective space P
δ, for δ ≥ d.

Thanks. I wish to thank Christophe Soulé for interesting discussions and for providing

the motivation to write this Note.

2. Proof of the theorem.

We first recall a few basic facts about secant varieties of curves (see [1]). First of all,

since m ≥ 2d + 1, for any effective divisor Z of degree k ≤ 2d on C, we have H1(L ⊗

ωC(−Z)) = 0, hence the linear span of Z is of dimension k − 1. Let now E → C(d)

be the vector bundle with fiber H0(L ⊗ ωC|Z) at Z ∈ C(d). Since the restriction map

H0(L ⊗ ωC) → H0(L ⊗ ωC|Z) is surjective for any Z ∈ C(d), there is a well defined

morphism α : P(E∗) → P
N , whose image is exactly the secant variety Σd. Since sections

of L ⊗ ωC separates any 2d points on C, it follows that α is one to one over Σd − Σd−1.
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An easy computation shows that for any Z ∈ C(d), and for any x in the linear span of

Z, but not in the linear span of any Z ′ 6⊆ Z, the differential of α is of maximal rank, so

that Σd\Σd−1 is smooth of dimension 2d − 1. The projectivized tangent space to Σd at

α(x) is easy to describe, at least when Z is a reduced divisor
d∑
1

zi: indeed this is a P
2d−1

which contains 〈Z〉 and also each projective line tangent to C at some point zi ∈ Z, as one

sees by deforming Z fixing zj , j 6= i. It follows that it must be equal to the linear span

of the divisor 2Z. By continuity, this description of the projectivized tangent space to Σd

remains true at any point of Σd − Σd−1 .

We now start the proof of the theorem. We suppose that δ ≥ d − 1, and assume that

some projective space P
δ is contained in Σd. Assuming P

δ is not contained in one of the

P
d−1
Z ’s we shall derive a contradiction.

Note that by induction on d, we may assume that P
δ is not contained in Σd−1. Let

P̃
δ be the closure of α−1(Pδ\P

δ ∩Σd−1) in P(E∗). Denote by π : P̃
δ → C(d) the restriction

to P̃
δ of the structural projection P(E∗) → C(d). Let W := π (P̃δ) and w := dimW . Our

assumption is that w > 0. We shall denote by Pv the fiber π−1(v). It is a projective space

P
δ ∩ 〈Zv〉, which is generically of dimension s = δ − w.

We start with the following observation:

Lemma 1. Under our assumption dimW > 0 we have the inequality

(1) w > δ − w .

Proof. Indeed, we may assume that for v, v′ two generic distinct points of W , the supports

of the associated divisors Zv, Zv′ of C are disjoint. Otherwise, Zv would contain a fixed

point x ∈ C, for any v ∈ W . But projecting C from x, we then get a curve C′ ⊂ P
N−1,

such that Σ′
d−1 contains a P

δ−1 which is not a P
d−2
Z ; since we may assume the theorem

proven for (m − 1, d − 1), this is impossible.

Now choose v, v′ as above. The projective spaces 〈Zv〉 and 〈Zv′〉 do not meet, hence

the projective spaces Pv = 〈Zv〉 ∩ P
δ, Pv′ = 〈Zv′〉 ∩ P

δ do not meet. Since they are of

dimension s in a P
δ, it follows that 2s < δ, or w > δ − w.

Next we observe that, at each point α(x, Z) of P
δ − (Pδ ∩ Σd−1), P

δ is contained in

the projectivized tangent space of Σd at α(x, Z), that is in 〈2Z〉. Hence for any v ∈ W ,

the corresponding divisor Zv ∈ C(d) satisfies

P
δ ⊂ 〈2 Zv〉 .

2



We next study the infinitesimal variation of 〈2 Zv〉 ⊂ P
N . Let H := OPN (1). Then we

have the identification

(2) H0(PN , H) ≃ H0(C, L ⊗ ωC) ,

which by definition of the linear span, induces an identification

(3) H0(PN , H ⊗ I〈2Zv〉) ≃ H0(C, L ⊗ ωC(−2 Zv)) .

If h ∈ TW,v, the infinitesimal deformation of 〈2 Zv〉 in the direction h is described by an

homomorphism:

ϕh : H0(PN , H ⊗ I〈2Zv〉) → H0(〈2 Zv〉, H|〈2Zv〉) .

We have now an isomorphism induced by (2) and (3):

(4) H0(〈2 Zv〉, H|〈2Zv〉) ≃ H0(L ⊗ ωC|2Zv
) .

We have the following

Lemma 2. Under the isomorphisms (3) and (4), if we identify h to an element uh ∈

H0(OC(Zv)|Zv
), ϕh identifies to the multiplication

uh : H0(C, L⊗ ωC(−2 Zv)) → H0(Zv, L ⊗ ωC(−Zv)|Zv
)

followed by the inclusion

H0(Zv, L ⊗ ωC(−Zv)|Zv
) →֒ H0(2 Zv, L ⊗ ωC|2Zv

) .

The proof is straightforward once we recall the construction of ϕh by differentiating

under the parameters the equations vanishing on 〈2 Zv〉.

We know that the spaces 〈2 Zv〉, for v ∈ W , contain P
δ. Infinitesimally, this translates

into the fact that for any h ∈ TW,v, the image of ϕh vanishes on P
δ, that is, is contained in

Ker(H0(〈2 Zv〉, H|〈2Zv〉) → H0(Pδ, H|Pδ)) .

¿From the description of ϕh given in Lemma 2, we see that Im ϕh is contained in

K := Ker(H0(〈2 Zv〉, H|〈2Zv〉) → H0(〈Zv〉, H|〈Zv〉)) .

Indeed, via the isomorphism (4), K identifies to

Ker(H0(L ⊗ ωC|2Zv
) → H0(L ⊗ ωC|Zv

)) = Im H0(L ⊗ ωC(−Zv)|Zv
) → H0(L ⊗ ωC|2Zv

) .
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Finally, note that the restriction map K → H0(Pδ, H|Pδ) has rank equal to the dimension

of

Ker(H0(Pδ, H|Pδ) → H0(Pδ ∩ 〈Zv〉, H|Pδ∩〈Zv〉)) ,

which is equal to δ − s, since P
δ ∩ 〈Zv〉 = Pv is of dimension s.

Denote now by V ⊂ H0(OC(Zv)|Zv
) the tangent space to W at v. Lemma 2 and the

estimate above give us the following conclusion:

Lemma 3. Under our assumptions, the multiplication map

µ : V ⊗ H0(C, L ⊗ ωC(−2 Zv)) → H0(L ⊗ ωC(−Zv)|Zv
)

has its image contained in a subspace of codimension at least w.

We now derive a contradiction. We observe first that since P̃
δ is a rational variety

dominating W , W is contained in a linear system |D| ⊂ C(d). Hence OC(D) = OC(Zv) for

all v ∈ W , and the fact that W ⊂ |D| translates infinitesimally into the fact that V = TW,v

is contained in the image of the restriction map:

H0(OC(Zv)) → H0(OC(Zv)|Zv
) .

Let now Ṽ be the inverse image of V under this restriction map. Then rk Ṽ = w + 1, and

Lemma 3 shows that the multiplication map

µ̃ : Ṽ ⊗ H0(C, L ⊗ ωC(−2 Zv)) → H0(C, L ⊗ ωC(−Zv))

has its image contained in a space of codimension at least w.

Now we have the equality:

rk H0(C, L ⊗ ωC(−Zv)) = d + rk H0(C, L ⊗ ωC(−2 Zv)) ,

since H1(C, L⊗ ωC(−2 Zv)) = 0. So we conclude that

(5) rk µ̃ ≤ h0(C, L ⊗ ωC(−2 Zv)) + d − w .

On the other hand, we can apply Hopf lemma to µ̃, and the inequality in Hopf lemma

must be strict here, since the line bundle L⊗ ωC(−2 Zv) is very ample, being of degree at

least 2g + 1, and C is not rational. This gives us:

(6) rk µ̃ > w + 1 + h0(C, L⊗ ωC(−2 Zv)) − 1 .

Combining (5) and (6), we get:

(7) d − w > w .

But this contradicts inequality (1), since δ ≥ d − 1.
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