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Remarks on curve classes on rationally connected varieties

Claire Voisin

This note is dedicated to Joe Harris, whose influence on the subject of curves on rationally
connected algebraic varieties (among other topics!) is invaluable.

Abstract. We study for rationally connected varieties X the group of degree
2 integral homology classes on X modulo those which are algebraic. We show
that the Tate conjecture for divisor classes on surfaces defined over finite fields
implies that this group is trivial for any rationally connected variety.

1. Introduction

Let X be a smooth complex projective variety. Define

Z2i(X) =
Hdg2i(X,Z)

H2i(X,Z)alg
,(1.1)

where Hdg2i(X,Z) is the space of integral Hodge classes on X and H2i(X,Z)alg is
the subgroup of H2i(X,Z) generated by classes of codimension i closed algebraic
subsets of X.

These groups measure the defect of the Hodge conjecture for integral Hodge
classes, hence they are trivial for i = 0, 1 and n = dimX, but in general they can
be nonzero by [1]. Furthermore they are torsion if the Hodge conjecture for rational
Hodge classes on X of degree 2i holds. In addition to the previously mentioned
case, this happens when i = n − 1, n = dimX, due to the Lefschetz theorem on
(1, 1)-classes and the hard Lefschetz isomorphism (cf. [23]). We will call classes in

Hdg2n−2(X,Z) “curve classes”, as they are also degree 2 homology classes.
Note that the Kollár counterexamples (cf. [14]) to the integral Hodge con-

jecture already exist for curve classes (that is degree 4 cohomology classes in this
case) on projective threefolds, unlike the Atiyah-Hirzebruch examples which work
for degree 4 integral Hodge classes in higher dimension.

It is remarked in [21], [23] that the two groups

Z4(X), Z2n−2(X), n := dimX
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are birational invariants. (For threefolds, this is the same group, but not in higher
dimension.) The nontriviality of these birational invariants for rationally connected
varieties is asked in [23]. Still more interesting is the nontriviality of these invariants
for unirational varieties, having in mind the Lüroth problem (cf. [3], [2], [4]).

Concerning the group Z4(X), Colliot-Thélène and the author proved in [8],
building on the work of Colliot-Thélène and Ojanguren [5], that it can be nonzero
for unirational varieties starting from dimension 6. What happens in dimensions 5
and 4 is unknown (the four dimensional case being particularly challenging in our
mind), but in dimension 3, there is the following result proved in [22]:

Theorem 1.1. (Voisin 2006) Let X be a smooth projective threefold which is
either uniruled or Calabi-Yau (meaning that KX is trivial and H1(X,OX) = 0).
Then the group Z4(X) is equal to 0.

This result, and in particular the Calabi-Yau case, implies that the group Z6(X)
is also 0 for a Fano fourfold X which admits a smooth anticanonical divisor. Indeed,
a smooth anticanonical divisor j : Y ↪→ X is a Calabi-Yau threefold, so that we
have Z4(Y ) = 0 by Theorem 1.1 above. As H2(Y,OY ) = 0, every class in H4(Y,Z)
is a Hodge class, and it follows that H4(Y,Z) = H4(Y,Z)alg. As the Gysin map
j∗ : H4(Y,Z) → H6(X,Z) is surjective by the Lefschetz theorem on hyperplane
sections, it follows that H6(X,Z) = H6(X,Z)alg, and thus Z6(X) = 0.

In the paper [11], it was proved more generally that if X is any Fano fourfold,
the group Z6(X) is trivial. Similarly, if X is a Fano fivefold of index 2, the group
Z8(X) is trivial.

These results have been generalized to higher dimensional Fano manifolds of
index n−3 and dimension ≥ 8 by Enrica Floris [9] who proves the following result:

Theorem 1.2. Let X be a Fano manifold over C of dimension n ≥ 8 and
index n − 3. Then the group Z2n−2(X) is equal to 0: Equivalently, any integral
cohomology class of degree 2n− 2 on X is algebraic.

The purpose of this note is to provide evidence for the vanishing of the group
Z2n−2(X), for any rationally connected variety over C. Note that in this case, since
H2(X,OX) = 0, the Hodge structure on H2(X,Q) is trivial, and so is the Hodge
structure on H2n−2(X,Q), so that Z2n−2(X) = H2n−2(X,Z)/H2n−2(X,Z)alg. We
will first prove the following two results.

Proposition 1.3. The group Z2n−2(X) is locally a deformation invariant for
rationally connected manifolds X.

Let us explain the meaning of the statement. Consider a smooth projective
morphism π : X → B between connected quasi-projective complex varieties, with
n dimensional fibers. Recall from [15] that if one fiber Xb := π−1(b) is rationally
connected, so is every fiber. Let us endow everything with the usual topology. Then
the sheaf R2n−2π∗Z is locally constant on B. On any Euclidean open set U ⊂ B
where this local system is trivial, the group Z2n−2(Xb), b ∈ U , is the finite quotient
of the constant group H2n−2(Xb,Z) by its subgroup H2n−2(Xb,Z)alg. To say that
Z2n−2(Xb) is locally constant means that on open sets U as above, the subgroup
H2n−2(Xb,Z)alg of the constant group H2n−2(Xb,Z) does not depend on b.

It follows from the above result that the vanishing of the group Z2n−2(X) for
X a rationally connected manifold reduces to the similar statement for X defined
over a number field.
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Let us now define an l-adic analogue Z2n−2(X)l of the group Z2n−2(X) (cf.
[6], [7]). Let X be a smooth projective variety defined over a field K which in the
sequel will be either a finite field or a number field. Let K be an algebraic closure
of K. Any cycle Z ∈ CHs(XK) is defined over a finite extension of K. Let l be a
prime integer different from p = charK if K is finite. It follows that the cycle class

cl(Z) ∈ H2s
et (XK ,Ql(s))

is invariant under an open subgroup of Gal(K/K).
Classes satisfying this property are called Tate classes. The Tate conjecture for

finite fields asserts the following:

Conjecture 1.4. (cf. [18] for a recent account) Let X be smooth and projec-
tive over a finite field K. The cycle class map gives for any s a surjection

cl : CHs(XK)⊗Ql → H2s(XK ,Ql(s))Tate.

Note that the cycle class map defined on CHs(XK) in fact takes values in
H2s(XK ,Zl(s)), and more precisely in the subgroup H2s(XK ,Zl(s))Tate of classes

invariant under an open subgroup of Gal(K/K). We thus get for each i a morphism

cli : CHi(XK)⊗ Zl → H2i(XK ,Zl(i))Tate.

We can thus introduce the following variant of the groups Z2i(X):

Z2i
et (X)l := H2i

et (XK ,Zl(i))Tate/Im cli.

An argument similar to the one used for the proof of Proposition 1.3 will lead
to the following result:

Proposition 1.5. Let X be a smooth rationally connected variety defined over
a number field K, with ring of integers OK . Assume given a projective model X of
X over SpecOK . Fix a prime integer l. Then except for finitely many p ∈ SpecOK ,
the group Z2n−2

et (X)l is isomorphic to the group Z2n−2
et (Xp)l.

In the course of the paper, we will also consider variants Z2n−2
rat (X), resp.

Z2n−2
et,rat(X)l of the groups Z2n−2(X), resp. Z2n−2

et (X)l, obtained by taking the
quotient of the group of integral Hodge classes (resp. integral l-adic Tate classes)
by the subgroup generated by classes of rational curves. This variant is suggested
by Kollár’s paper (cf. [16, Question 3, (1)]). By the same arguments, these groups
are also deformation and specialization invariants for rationally connected varieties.

Our last result is conditional but it strongly suggests the vanishing of the group
Z2n−2(X) for X a smooth rationally connected variety over C. Indeed, we will
prove using the main result of [19] and the two propositions above the following
consequence of Theorem 1.5:

Theorem 1.6. Assume Tate’s conjecture 1.4 holds for degree 2 Tate classes on
smooth projective surfaces defined over a finite field. Then the group Z2n−2(X) is
trivial for any smooth rationally connected variety X over C.

2. Deformation and specialization invariance

Proof of Proposition 1.3. We first observe that, due to the fact that relative
Hilbert schemes parameterizing curves in the fibers of B are a countable union of
varieties which are projective over B, given a simply connected open set U ⊂ B
(in the classical topology of B), and a class α ∈ Γ(U,R2n−2π∗Z) such that αt is
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algebraic for t ∈ V , where V is a smaller nonempty open set V ⊂ U , then αt is
algebraic for any t ∈ U .

To prove the deformation invariance, we just need using the above observation
to prove the following:

Lemma 2.1. Let t ∈ U ⊂ B, and let C ⊂ Xt be a curve and let [C] ∈
H2n−2(Xt,Z) ∼= Γ(U,R2n−2π∗Z) be its cohomology class. Then the class [C]s is
algebraic for s in a neighborhood of t in U .

Proof. By results of [15], there are rational curves Ri ⊂ Xt with ample
normal bundle which meet C transversally at distinct points, and with arbitrary
tangent directions at these points. We can choose an arbitrarily large number D
of such curves with generically chosen tangent directions at the attachment points.
We then know by [10, §2.1] that the curve C ′ = C∪i≤DRi is smoothable in Xt to a
smooth unobstructed curve C ′′ ⊂ Xt, that is H

1(C ′′, NC′′/Xt
) = 0. This curve C ′′

then deforms with Xt (cf. [12], [13, II.1]) in the sense that the morphism from the
deformation of the pair (C ′′, Xt) to B is smooth, and in particular open. So there
is a neighborhood of V of t in U such that for s ∈ V , there is a curve C ′′

s ⊂ Xs

which is a deformation of C ′′ ⊂ Xt. The class [C
′′
s ] = [C ′′]s is thus algebraic on Xs.

On the other hand, we have

[C ′′] = [C ′] = [C] +
∑

i

[Ri].

As the Ri’s are rational curves with positive normal bundle, they are also unob-
structed, so that the classes [Ri]s also are algebraic on Xs for s in a neighborhood
of t in U . Thus [C]s = [C ′′]s −

∑
i[Ri]s is algebraic on Xs for s in a neighborhood

of t in U . The lemma, hence also the proposition, is proved.
�

Remark 2.2. There is an interesting variant of the group Z2n−2(X), which is
suggested by Kollár (cf. [16]) given by the following groups:

Z2n−2
rat (X) := H2n−2(X,Z)/〈[C], C rational curve in X〉.

Here, by a rational curve, we mean an irreducible curve whose normalization is
rational. These groups are torsion for X rationally connected, as proved by Kollár
([13, Theorem 3.13 p 206]). It is quite easy to prove that they are birationally
invariant.

The proof of Proposition 1.3 gives as well the following result (already noticed
by Kollár [16]) :

Variant 2.3. If X → B is a smooth projective morphism with rationally con-
nected fibers, the groups Z2n−2

rat (Xt) are local deformation invariants.

Let us give one application of Proposition 1.3 (or rather its proof) and/or its
variant 2.3. Let X be a smooth projective variety of dimension n + r, with n ≥ 3
and let E be an ample vector bundle of rank r on X. Let C1, . . . , Ck be smooth
curves in X whose cohomology classes generate the group H2n+2r−2(X,Z). For
σ ∈ H0(X, E), we denote by Xσ the zero locus of σ. When E is generated by
sections, Xσ is smooth of dimension n for general σ.

Theorem 2.4. 1) Assume that the sheaves E ⊗ ICi
are generated by global

sections for i = 1, . . . , k. Then if Xσ is smooth rationally connected for general σ,
the group Z2n−2(Xσ) vanishes for any σ such that Xσ is smooth of dimension n.
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2) Under the same assumptions as in 1), assume the curves Ci ⊂ X are ratio-
nal. Then if Xσ is smooth rationally connected for general σ, the group Z2n−2

rat (Xσ)
vanishes for any σ such that Xσ is smooth of dimension n.

Proof. 1) Let jσ : Xσ → X be the inclusion map. Since n ≥ 3 and E is ample,
by Sommese’s theorem [20], the Gysin map jσ∗ : H2n−2(Xσ,Z) → H2n+2r−2(X,Z)
is an isomorphism. It follows that the group H2n−2(Xσ,Z) is a constant group.
In order to show that Z2n−2(Xσ) is trivial, it suffices to show that the classes
(jσ∗)

−1([Ci]) are algebraic on Xσ since they generate H2n−2(Xσ,Z). Since the
Xσ’s are rationally connected, Theorem 1.3 tells us that it suffices to show that for
each i, there exists a σ(i) such that Xσ(i) is smooth n-dimensional and that the

class (jσ(i)∗)
−1([Ci]) is algebraic on Xσ(i).

It clearly suffices to exhibit one smooth Xσ(i) containing Ci, which follows from
the following lemma:

Lemma 2.5. Let X be a variety of dimension n + r with n ≥ 2, C ⊂ X be a
smooth curve, E be a rank r vector bundle on X such that E ⊗ IC is generated by
global section. Then for a generic σ ∈ H0(X, E ⊗IC), the zero set Xσ is smooth of
dimension n.

Proof. The fact that Xσ is smooth of dimension n away from C is standard
and follows from the fact that the incidence set (σ, x) ∈ P(H0(X, E ⊗ IC))× (X \
C), σ(x) = 0} is smooth of dimension n +N , where N := dimP(H0(X, E ⊗ IC)).
It thus suffices to check the smoothness along C for generic σ.

This is checked by observing that since E ⊗ IC is generated by global sections,
its restriction E ⊗N∗

C/X is also generated by global sections. This implies that for

each point c ∈ C, the condition that Xσ is singular at c defines a codimension n
closed algebraic subset Pc of P := P(H0(X, E ⊗ IC)), determined by the condition
that dσc : NC/X,c → Ec is not surjective. Since dimC = 1, the union of the Pc’s
cannot be equal to P if n ≥ 2. �

This concludes the proof of 1) and the proof of 2) works exactly in the same
way. �

Remark 2.6. (Added in proof.) After this paper was accepted, it has been
proved by Runpu Zong [24] that every curve on a rationally connected variety
over C is algebraically equivalent, hence in particular cohomologous, to a (non-
effective) integral sum of rational curves. This shows that the groups Z2n−2(X)
and Z2n−2(X)rat are in fact isomorphic for rationally connected n-folds X over C.

Let us finish this section with the proof of Proposition 1.5.

Proof of Proposition 1.5. Let p ∈ SpecOK , with residue field k(p). As-
sume Xp is smooth. For l prime to char k(p), the (adequately constructed) special-
ization map

H2n−2
et (XK ,Zl(n− 1)) → H2n−2

et (Xp,Zl(n− 1))(2.1)

is then an isomorphism (cf. [17, Chapter VI, §4]).
Observe also that since XK is rationally connected, the rational étale cohomol-

ogy group H2n−2
et (XK ,Ql(n− 1)) is generated over Ql by curve classes. Hence the

same is true for H2n−2
et (Xp,Ql(n− 1)). Thus the whole cohomology groups

H2n−2
et (XK ,Zl(n− 1)), H2n−2

et (Xp,Zl(n− 1))
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consist of Tate classes, and (2.1) gives an isomorphism

H2n−2
et (XK ,Zl(n− 1))Tate → H2n−2

et (Xp,Zl(n− 1))Tate.(2.2)

In order to prove Proposition 1.5, it thus suffices to prove the following:

Lemma 2.7. 1) For almost every p ∈ SpecOK , the fiber Xp is smooth and
separably rationally connected.

2) If Xp is smooth and separably rationally connected, for any curve Cp ⊂ Xp,

the inverse image [Cp]K ∈ H2n−2
et (XK ,Zl(n−1)) of the class [Cp] ∈ H2n−2

et (Xp,Zl(n−
1)) via the isomorphism ( 2.2) is the class of a 1-cycle on XK .

Proof. 1) When the fiber Xp is smooth, the separable rational connectedness
of Xp is equivalent to the existence of a smooth rational curve Cp

∼= P1
k(p)

together

with a morphism φ : Cp → Xp such that the vector bundle φ∗TXp on P1
k(p)

is a

direct sum ⊕iOP
1

k(p)
(ai) where all ai are positive. Equivalently

H1(P1
k(p)

, φ∗TXp
(−2)) = 0.(2.3)

The smooth projective variety XK being rationally connected in characteristic 0,
it is separably rationally connected, hence there exist a finite extension K ′ of K,
a curve C and a morphism φ : C → X defined over K ′, such that C ∼= P1

K′ and
H1(P1

K′ , φ∗TXK′ (−2)) = 0.
We choose a model

Φ : C ∼= P1
OK′ → X ′

of C and φ defined over a Zariski open set of SpecOK′ . By upper-semi-continuity
of cohomology, the vanishing (2.3) remains true after restriction to almost every
closed point p ∈ SpecOK′ , which proves 1).

2) The proof is identical to the proof of Proposition 1.3: we just have to show
that the curve Cp ⊂ Xp is algebraically equivalent in Xp to a difference C

′′
p−

∑
i Ri,p,

where each curve C ′′
p , resp. Ri,p (they are in fact defined over a finite extension

k(p)′ of k(p)), lifts to a curve C ′′, resp. Ri in XK′ for some finite extension K ′ of
K.

Assuming the curves C ′′
p , Ri,p are smooth, the existence of such a lifting is

granted by the condition H1(C ′′
p , NC′′

p /Xp
) = 0, resp. H1(Ri,p, NRi,p/Xp

) = 0.

Starting from C ⊂ Xp where Xp is separably rationally connected over p, we
obtain such curves C ′′

p , Ri,p as in the previous proof, applying [10, §2.1]. �

The proof of Proposition 1.5 is finished. �

Again, this proof leads as well to the proof of the specialization invariance of
the l-adic analogues Z2n−2

et,rat(X)l of the groups Z
2n−2
rat (X) introduced in Remark 2.2.

Variant 2.8. Let X be a smooth rationally connected variety defined over a
number field K, with ring of integers OK . Assume given a projective model X of
X over SpecOK . Fix a prime integer l. Then for any p ∈ SpecOK such that
Xp is smooth separably connected, the group Z2n−2

et,rat(X)l is isomorphic to the group

Z2n−2
et,rat(Xp)l.
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3. Consequence of a result of Chad Schoen

In [19], Chad Schoen proves the following theorem:

Theorem 3.1. Let X be a smooth projective variety of dimension n defined
over a finite field k of characteristic p. Assume that the Tate conjecture holds for
degree 2 Tate classes on smooth projective surfaces defined over a finite extension
of k. Then the étale cycle class map:

cl : CHn−1(Xk)⊗ Zl → H2n−2(Xk,Zl(n− 1))Tate

is surjective, that is Z2n−2
et (X)l = 0.

In other words, the Tate conjecture 1.4 for degree 2 rational Tate classes implies
that the groups Z2n−2

et (X)l should be trivial for all smooth projective varieties
defined over finite fields. This is of course very different from the situation over C
where the groups Z2n−2(X) are known to be possibly nonzero.

Remark 3.2. There is a similarity between the proof of Theorem 3.1 and
the proof of Theorem 1.1. Schoen proves that given an integral Tate class α on
X (defined over a finite field), there exist a smooth complete intersection surface
S ⊂ X and an integral Tate class β on S such that jS∗β = α, where jS is the
inclusion of S in X. The result then follows from the fact that if the Tate conjecture
holds for degree 2 rational Tate classes on S, it holds for degree 2 integral Tate
classes on S.

I prove that for X a uniruled or Calabi-Yau, and for β ∈ Hdg4(X,Z) there

exist surfaces Si

jSi
↪→ X (in an adequately chosen linear system on X) and integral

Hodge classes βi ∈ Hdg2(Si,Z) such that α =
∑

i jSi∗β. The result then follows
from the Lefschetz theorem on (1, 1)-classes applied to the βi.

We refer to [7] for some comments on and other applications of Schoen’s theo-
rem, and conclude this note with the proof of the following theorem (cf. Theorem
1.6 of the introduction).

Theorem 3.3. Assume Tate’s conjecture 1.4 holds for degree 2 Tate classes on
smooth projective surfaces defined over a finite field. Then the group Z2n−2(X) is
trivial for any smooth rationally connected variety X over C.

Proof. We first recall that for a smooth rationally connected variety X, the
group Z2n−2(X) is equal to the quotient H2n−2(X,Z)/H2n−2(X,Z)alg, due to the
fact that the Hodge structure on H2n−2(X,Q) is trivial. In fact, we have more
precisely

H2n−2(X,Q) = H2n−2(X,Q)alg

by hard Lefschetz theorem and the fact that

H2(X,Z) = H2(X,Z)alg

by the Lefschetz theorem on (1, 1)-classes.
Next, in order to prove that Z2n−2(X) is trivial, it suffices to prove that for

each l, the group Z2n−2(X)⊗ Zl = H2n−2(X,Zl)/(Im cl)⊗ Zl is trivial.
We apply Proposition 1.3 which tells as well that over C, the group Z2n−2(X)⊗

Zl is locally deformation invariant for families of smooth rationally connected vari-
eties. Note that our smooth projective rationally connected variety X is the fiber
Xt of a smooth projective morphism φ : X → B defined over a number field, where
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X and B are quasiprojective, geometrically connected and defined over a number
field. By local deformation invariance, the vanishing of Z2n−2(X)⊗Zl is equivalent
to the vanishing of Z2n−2(Xt′)⊗Zl for any point t′ ∈ B(C). Taking for t′ a point of
B defined over a number field, Xt′ is defined over a number field. Hence it suffices
to prove the vanishing of Z2n−2(X)⊗Zl for X rationally connected defined over a
number field L.

We have

Z2n−2(X)⊗ Zl = H2n−2(X,Zl)/(Im cl)⊗ Zl,

and by the Artin comparison theorem (cf. [17, Chapter III,§3]), this is equal to
H2n−2

et (X,Zl(n− 1))

(Im cl)⊗ Zl
= Z2n−2

et (X)l

since H2n−2
et (X,Zl(n − 1)) consists of Tate classes. Hence it suffices to prove that

for X rationally connected defined over a number field and for any l, the group
Z2n−2
et (X)l is trivial.

We now apply Proposition 1.5 to X and its reduction Xp for almost every

closed point p ∈ SpecOL. It follows that the vanishing of Z2n−2
et (X)l is implied by

the vanishing of Z2n−2
et (Xp)l. According to Schoen’s theorem 3.1, the last vanishing

is implied by the Tate conjecture for degree 2 Tate classes on smooth projective
surfaces. �
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[11] A. Höring, C. Voisin. Anticanonical divisors and curve classes on Fano manifolds, Pure and

Applied Mathematics Quarterly Volume 7, Number 4 (Special Issue: In memory of Eckart
Viehweg), 1371-1393 (2011). MR2918165

[12] K. Kodaira. On stability of compact submanifolds of complex manifolds. Amer. J. Math. 85,
79-94 (1963). MR0153033 (27:3002)

[13] J. Kollár. Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 32. Springer-Verlag, Berlin,
(1996). MR1440180 (98c:14001)

598



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

REMARKS ON CURVE CLASSES ON RATIONALLY CONNECTED VARIETIES 9

[14] J. Kollár. In Trento examples, Lemma p. 134 in Classification of irregular varieties, edited
by E. Ballico, F. Catanese, C. Ciliberto, Lecture Notes in Math. 1515, Springer (1990).
MR1180332 (93d:14005)

[15] J. Kollár, Y. Miyaoka, S. Mori. Rationally connected varieties. J. Algebraic Geom. 1 no. 3,
429–448 (1992). MR1158625 (93i:14014)

[16] J. Kollár. Holomorphic and pseudo-holomorphic curves on rationally connected varieties.
Port. Math. 67 (2010), no. 2, 155-179. MR2662865 (2012a:14112)

[17] J. S. Milne. Etale cohomology, Princeton University Press, 1980. MR559531 (81j:14002)
[18] J. S. Milne. The Tate conjecture over finite fields (AIM talk), arXiv:0709.3040.
[19] C. Schoen. An integral analog of the Tate conjecture for one-dimensional cycles on varieties

over finite fields. Math. Ann. 311 (1998), no. 3, 493-500. MR1637931 (99e:14005)
[20] A. Sommese. Submanifolds of abelian varieties, Math. Ann. 233 (1978), 229-256. MR0466647

(57:6524)
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