A CORRECTION ON

"A CONJECTURE OF CLEMENS ON RATIONAL

 CURVES ON HYPERSURFACES"
CLAIRE VOISIN

1.

The purpose of this note is to correct a mistake in the proof of the main theorem of [3]:

Theorem 1. Let $X \subset \mathbb{P}^{n}$ be a general hypersurface of degree d. Let $k \leq n-3$; then the following hold:
i) If $d \geq 2 n-1-k$, any k-dimensional subvariety Y of X has a desingularization \tilde{Y} with an effective canonical bundle.
ii) If $d>2 n-1-k$, and Y is as above, the canonical map of \tilde{Y} is generically one to one on its image.

Recall that Ein [1] proved the following:
Theorem 2. Let $X \subset \mathbb{P}^{n}$ be a general hypersurface of degree d and $k \leq n-1$. Then the following hold:
i) If $d \geq 2 n-k$, any k-dimensional subvariety Y of X has a desingularization \tilde{Y} with an effective canonical bundle.
ii) If $d>2 n-k$, and Y is as above, the canonical map of \tilde{Y} is generically one to one on its image.

[^0]Ein's theorem follows from the fact that if $\mathcal{X} \subset \mathbb{P}^{n} \times S^{d}$ is the universal hypersurface, $S^{d}=H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)$, with special smooth fiber $X_{F}, F \in S^{d}$, then the bundle $T_{\mathcal{X}}(1)_{\mid X_{F}}$ is generated by global sections. Then $\bigwedge^{n-1-k} T_{\mathcal{X}}(n-1-k)_{\mid X_{F}}$ is also generated by global sections. On the other hand we have

$$
\bigwedge^{n-1-k} T_{\mathcal{X}}(n-1-k)_{\mid X_{F}} \cong \Omega_{\mathcal{X}}^{N+k}(n-1-k-d+n+1)_{\mid X_{F}},
$$

with $N=\operatorname{dim} S^{d}$. Hence if $n-1-k-d+n+1 \leq 0$, the bundle $\Omega_{\mathcal{X}}^{N+k}{ }_{\mid X_{F}}$ is generated by global sections. If we have an étale map $U \rightarrow S^{d}$ and a universal (reduced, irreducible) subscheme $\mathcal{Y} \subset \mathcal{X}_{U}$ of relative dimension k, with desingularization $\tilde{\mathcal{Y}}$, then we will get by restriction non-zero sections of

$$
\Omega_{\tilde{\mathcal{Y}}}^{N+k}{ }_{\mid \tilde{Y}_{t}} \cong K_{\tilde{Y}_{t}} .
$$

The case of strict inequality follows in the same way.
What we proposed to do in [3] for improving these inequalities was to study sections of the bundle $\bigwedge^{2} T_{\mathcal{X}}(1)_{\mid X_{F}}$. When $n-1-k \geq 2$, they will provide, by wedge-product with sections of $T_{\mathcal{X}}(1)_{\mid X_{F}}$, sections of

$$
\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{\mid X_{F}} \cong \Omega_{\mathcal{X}}^{N+k}(n-2-k-d+n+1)_{\mid X_{F}} .
$$

So if now $2 n-1-k-d \leq 0$, and $\mathcal{Y} \subset \mathcal{X}_{U}$ is as above, by restriction one can hope to get non-zero sections of

$$
\Omega_{\tilde{\mathcal{Y}}}^{N+k}{ }_{\mid \tilde{Y}_{t}} \cong K_{\tilde{Y}_{t}},
$$

(respectively of $K_{\tilde{Y}_{t}}(-1)$ if the inequality is strict). We claimed in [3] that for generic F, the space $H^{0}\left(\bigwedge^{2} T_{\mathcal{X}}(1)_{\mid X_{F}}\right)$, viewed as a space of sections of a line bundle on the Grassmannian of codimension two subspaces of $T_{\mathcal{X} \mid X_{F}}$ has no base points on the set of $G l(n+1)$ invariant codimension two subspaces of $T_{\mathcal{X} \mid X_{F}}$, i.e., subspaces $V \subset T_{\mathcal{X},(x, F)}$ containing the tangent space to the $G l(n+1)$-orbit of (x, F), where $G l(n+1)$ acts in the natural way on $\mathcal{X} \subset \mathbb{P}^{n} \times S^{d}$.

However this statement is false, as was pointed out to me by K. Amerik, whom I thank very much for her observation. Her counterexample is the following : assume that $n+1 \leq d \leq 2 n-3$, so that the variety of lines in generic X_{F} is non-empty of dimension $2 n-3-d$, and the subvariety $P_{X_{F}} \subset X_{F}$ covered by the lines is of dimension
$k=2 n-2-d \leq n-3$. We have a corresponding universal subvariety $\mathcal{P} \subset \mathcal{X}$ of relative dimension k, which is obviously $G l(n+1)$-invariant. If the statement were true, since $T_{\mathcal{X}}(1)_{\mid X_{F}}$ is globally generated, there would be sections of

$$
\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{\mid X_{F}} \cong \Omega_{\mathcal{X}}^{N+k}(1)_{\mid X_{F}}
$$

which do not vanish by restriction in

$$
H^{0}\left(\Omega_{\tilde{\mathcal{P}}}^{N+k}(1)_{\mid \tilde{P}_{F}}\right) \cong H^{0}\left(K_{\tilde{P}_{F}}(1)\right),
$$

and this is absurd since \tilde{P}_{F} is covered by lines.
In fact, there are other counterexamples, in any degree $d \geq n+2$, showing that the base locus of $H^{0}\left(\bigwedge^{2} T_{\mathcal{X}}(1)_{\mid X_{F}}\right)$ is somewhat large : choose an integer r such that $1 \leq 2 n-2-(d-r) \leq n-3$, and positive integers l_{1}, \ldots, l_{r} such that $\sum_{i} l_{i}=d$. For generic X, the subvariety $P_{l_{1}, \ldots, l_{r}, X}$ of X made of points x such that there exists a line $\Delta \subset \mathbb{P}^{n}$, with $\Delta \cap X=l_{1} x+l_{2} x_{2}+\ldots+l_{r} x_{r}, x_{2}, \ldots, x_{r} \in X$, is of dimension $k=2 n-2-(d-r)$. Let $\mathcal{P}_{l_{1}, \ldots, l_{r}} \stackrel{j}{\hookrightarrow} \mathcal{X}$ be the corresponding universal subvariety, and

$$
\tilde{\mathcal{P}}_{l_{1}, \ldots, l_{r}} \xrightarrow{\tau} \mathcal{P}_{l_{1}, \ldots, l_{r}}
$$

be a desingularization. If the statement were true, there would be for generic F a section σ of

$$
\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{\mid X_{F}} \cong \Omega_{\mathcal{X}}^{N+k}(-r+1)_{\mid X_{F}}
$$

which does not vanish by restriction in

$$
H^{0}\left(\Omega_{\tilde{\mathcal{P}}}^{N+k}(-r+1)_{\mid \tilde{P}_{F}}\right) \cong H^{0}\left(K_{\tilde{P}_{F}}(-r+1)\right) .
$$

This is absurd for the following reason: the points x_{2}, \ldots, x_{r} give a correspondence from $P_{l_{1}, \ldots, l_{r}, X}$ to X; that is a generically finite smooth cover

$$
P_{l_{1}, \ldots, l_{r}, X}^{\prime} \xrightarrow{r} \tilde{P}_{l_{1}, \ldots, l_{r}, X}
$$

parametrizing the r-uples $\left(x_{1}, \ldots, x_{r}\right)$ such that

$$
\Delta \cap X=l_{1} x+l_{2} x_{2}+\ldots+l_{r} x_{r}
$$

Let

$$
j_{i}: P_{l_{1}, \ldots, l_{r}, X}^{\prime} \rightarrow X,\left(x_{1}, \ldots, x_{r}\right) \mapsto x_{i}
$$

so that $j_{1}=j \circ \tau \circ r$. Now for any point of $P_{l_{1}, \ldots, l_{r}, X}^{\prime}$ the corresponding points x_{i} of X satisfy the condition $\sum_{i} l_{i} x_{i} \equiv H^{n-1} . X$, where $H=$ $c_{1}\left(\mathcal{O}_{X}(1)\right)$, and \equiv is rational equivalence. Adapting the arguments of [4] to this (higher dimensional) situation, we conclude the following:

Lemma 1. For any $s \in H^{0}\left(\Omega_{\mathcal{X}}^{N+k}{ }_{\mid X_{F}}\right)$ with $k>0$, we have

$$
\sum_{i} l_{i} j_{i}^{*} s=0, \text { in } H^{0}\left(\Omega_{\left.\mathcal{P}_{l_{1}, \ldots, l_{r} \mid P_{l_{1}, \ldots, l_{r}, X_{F}}^{N+k}}^{\prime}\right) \cong H^{0}\left(K_{P_{l_{1}, \ldots, l_{r}, X_{F}}^{\prime}}\right)}\right.
$$

Applying this to $s=f . \sigma$, where $f \in H^{0}\left(\mathcal{O}_{X}(r-1)\right)$ vanishes at x_{2}, \ldots, x_{r} but not at x_{1}, and $j_{1}^{*} \sigma$ does not vanish at a point of $P_{l_{1}, \ldots, l_{r}, X_{F}}^{\prime}$ parametrizing $\left(x_{1}, \ldots, x_{r}\right)$, we get a contradiction.

2.

We will correct the proof of Theorem 1 as follows: first of all by Yheorem 2, we have only to study the case $d=2 n-k-1, k \leq n-3$ in i) and $d=2 n-k, k \leq n-3$ in ii). What remains true is the following: Assume we have a universal subscheme

$$
\mathcal{Y} \subset \mathcal{X}_{U}
$$

of relative dimension k, with desingularization $\tilde{\mathcal{Y}}$, which we may assume to be $G l(n+1)$-invariant for some lift of the $G l(n+1)$-action to \mathcal{X}_{U}. Assume in case i) that the restriction map

$$
\begin{aligned}
H^{0}\left(\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{\mid X_{F}}\right) & \cong H^{0}\left(\Omega_{\mathcal{X}}^{N+k}{ }_{\mid X_{F}}\right) \\
& \rightarrow H^{0}\left(\Omega_{\tilde{\mathcal{V}}}{ }^{N+k}{ }_{\mid \tilde{Y}_{F}}\right) \cong H^{0}\left(K_{\tilde{Y}_{F}}\right)
\end{aligned}
$$

vanishes (otherwise $K_{\tilde{Y}_{F}}$ is effective and we are done). Then for a smooth point (y, F) of \mathcal{Y} the tangent space

$$
T_{\mathcal{Y},(y, F)} \subset T_{\mathcal{X}_{U},(y, F)}
$$

is in the base-locus of $H^{0}\left(\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{\mid X_{F}}\right)$, and since $T_{\mathcal{X}}(1)_{\mid X_{F}}$ is globally generated it follows that any codimension-two subspace $V \subset T_{\mathcal{X}_{U},(y, F)}$ containing $T_{\mathcal{Y},(y, F)}$ is in the base-locus of $H^{0}\left(\bigwedge^{2} T_{\mathcal{X}}(1)_{\mid X_{F}}\right)$. Similarly, in case ii) assume that the restriction map

$$
\begin{aligned}
H^{0}\left(\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{\mid X_{F}}\right) & \cong H^{0}\left(\Omega_{\mathcal{X}}^{N+k}(-1)_{\mid X_{F}}\right) \\
& \rightarrow H^{0}\left(\Omega_{\tilde{\mathcal{Y}}}^{N+k}(-1)_{\mid \tilde{Y}_{F}}\right) \cong H^{0}\left(K_{\tilde{Y}_{F}}(-1)\right)
\end{aligned}
$$

vanishes (otherwise $K_{\tilde{Y}_{F}(-1)}$ is effective and we are done). Then for a smooth point (y, F) of \mathcal{Y}, any codimension two subspace $V \subset T_{\mathcal{X}_{U},(y, F)}$ containing $T_{\mathcal{Y},(y, F)}$ is in the base-locus of $H^{0}\left(\bigwedge^{2} T_{\mathcal{X}}(1)_{\mid X_{F}}\right)$. Now recall from [3] the following lemma.

Lemma 2. Let $(x, F) \in \mathcal{X}$, and $V \subset T_{\mathcal{X},(x, F)}$ be a codimension-two subspace which is in the base-locus of $H^{0}\left(\bigwedge^{2} T \mathcal{X}(1)_{\mid X_{F}}\right)$. Then $V \cap S_{x}^{d}$ contains the ideal $I_{\Delta}(d)$ of a line Δ containing x.

Here $S_{x}^{d}=H^{0}\left(\mathcal{I}_{x}(d)\right) \subset S^{d}$ is naturally contained in $T_{\mathcal{X},(x, F)}$ as the vertical tangent space of the first projection $p r_{1}: \mathcal{X} \rightarrow \mathbb{P}^{n}$. It follows easily from this lemma that under our assumptions, in case i) or ii), the tangent space $T_{\mathcal{Y},(y, F)}$ at a smooth point of \mathcal{Y} has to contain $I_{\Delta}(d)$ for a line Δ containing x. Clearly Δ is unique, since otherwise $T_{\mathcal{Y},(y, F)}$ would contain S_{x}^{d}, and since $p r_{1 *}: T_{\mathcal{Y},(y, F)} \rightarrow T_{\mathbb{P}^{n}, y}$ is surjective by $G l(n+1)$-equivariance, $T_{\mathcal{Y},(y, F)}$ would be equal to $T_{\mathcal{X}_{U},(y, F)}$.

Hence under our assumptions, there is a morphism $\phi: \mathcal{Y} \rightarrow \operatorname{Grass}(1, n)$, such that:

- The line $\Delta_{y, F}=\phi((y, F))$ passes through y.
- The ideal $I_{\Delta_{y, F}}$ is contained in $T_{\mathcal{Y},(y, F)}$ (and more precisely in the vertical tangent space $T_{\mathcal{Y},(y, F)}^{v e r t}$ with respect to $\left.p r_{1}\right)$.

Now we prove
Lemma 3. The differential ϕ_{*} of ϕ at (y, F) vanishes on $I_{\Delta_{y, F}} \subset T_{\mathcal{Y},(y, F)}$.

Proof. The inclusion $I_{\Delta_{y, F}} \subset T_{\mathcal{Y},(y, F)}$ defines a distribution $\mathcal{I} \subset T_{\mathcal{Y}}$, which is in fact contained in the integrable distribution $T_{\mathcal{Y}}^{v e r t}=$ $\operatorname{Ker~pr}_{1 *}$. The bracket induces then a \mathcal{O}-linear map

$$
\Psi: \bigwedge^{2} \mathcal{I} \rightarrow T_{\mathcal{Y}}^{v e r t} / \mathcal{I} \subset T_{\mathcal{X}}^{v e r t} \mid \mathcal{Y} / \mathcal{I}
$$

with fiber at (y, F)

$$
\psi: \bigwedge^{2} I_{\Delta_{y, F}} \rightarrow H^{0}\left(\mathcal{O}_{\Delta_{y, F}}(d)(-y)\right)
$$

such that $\operatorname{Im} \psi \subset T_{\mathcal{Y},(y, F)}^{v e r t} \bmod . I_{\Delta_{y, F}}$.
Now note that since $y \in \Delta_{(y, F)}, \phi_{*}\left(T_{\mathcal{Y},(y, F)}^{v e r t}\right)$ is contained in $H^{0}\left(N_{\left.\Delta_{(y, F)}\right)} \mathbb{P}^{n}(-y)\right)$. In the sequel we will denote $\Delta_{y, F}$ by Δ. Recall that there is a natural bilinear map that we will denote by $(a, b) \mapsto a \cdot b$:

$$
I_{\Delta} \otimes H^{0}\left(N_{\Delta / \mathbb{P}^{n}}(-y)\right) \rightarrow H^{0}\left(\mathcal{O}_{\Delta}(d)(-y)\right) .
$$

It is easy to see that ψ is described by

$$
\psi(A \wedge B)=A \cdot \phi_{*}(B)-B \cdot \phi_{*}(A), A, B \in I_{\Delta_{y, F}}
$$

In particular, assume that $A \in I_{\Delta}^{2}$ satisfies $\phi_{*}(A) \neq 0$; then $T_{\mathcal{Y},(y, F)}^{v e r t} \bmod . I_{\Delta}$ would contain the elements $B \cdot \phi_{*}(A)$ for any $B \in I_{\Delta}$, and would be equal to $H^{0}\left(\mathcal{O}_{\Delta}(d)(-y)\right)$, which is absurd because this would imply that $T_{\mathcal{Y},(y, F)}^{v e r t}=T_{\mathcal{X},(y, F)}^{v e r t}$. Hence ϕ_{*} vanishes on I_{Δ}^{2} and gives a map

$$
\phi: I_{\Delta} / I_{\Delta}^{2} \rightarrow H^{0}\left(N_{\Delta / \mathbb{P}^{n}}(-y)\right) .
$$

Denoting by K the ($n-1$)-dimensional vector space $H^{0}\left(N_{\Delta / \mathbb{P}^{n}}(-y)\right)$, we have a natural isomorphism

$$
I_{\Delta} / I_{\Delta_{y, F}}^{2} \cong H^{0}\left(\mathcal{O}_{\Delta}(d-1)\right) \otimes K^{*}
$$

such that the bilinear map, used above and factorized by I_{Δ}^{2}, is the contraction map

$$
H^{0}\left(\mathcal{O}_{\Delta}(d-1)\right) \otimes K^{*} \otimes K \rightarrow H^{0}\left(\mathcal{O}_{\Delta}(d-1)\right)
$$

taken into account the isomorphism

$$
H^{0}\left(\mathcal{O}_{\Delta}(d)(-y)\right) \cong H^{0}\left(\mathcal{O}_{\Delta}(d-1)\right)
$$

Hence the resulting map

$$
\bar{\psi}: \bigwedge^{2}\left(I_{\Delta} / I_{\Delta}^{2}\right) \rightarrow H^{0}\left(\mathcal{O}_{\Delta}(d)(-y)\right)
$$

identifies with

$$
\begin{gathered}
\bigwedge^{2}\left(H^{0}\left(\mathcal{O}_{\Delta}(d-1)\right) \otimes K^{*}\right) \rightarrow H^{0}\left(\mathcal{O}_{\Delta}(d-1)\right) \\
A \wedge B \mapsto<A, \phi(B)>-<B, \phi(A)>
\end{gathered}
$$

Finally we use
Lemma 4. Let $\phi: W \otimes K^{*} \rightarrow K$ be a linear map. If $\phi \neq 0$, then the map

$$
\begin{gathered}
\bar{\psi}: \bigwedge^{2}\left(W \otimes K^{*}\right) \rightarrow W \\
A \wedge B \mapsto<A, \phi(B)>-<B, \phi(A)>
\end{gathered}
$$

has at least a hyperplane of W for image .

Proof. Let $L=\operatorname{Ker} \phi, I=\operatorname{Im} \phi$ and $G=\operatorname{Im} \bar{\psi}$; then G contains the elements $<A, B>$ for $A \in L, B \in I$. It follows that L is contained in $G \otimes K^{*}+W \otimes I^{\perp}$, so that we have

$$
r k \phi \geq \operatorname{dim}(W / G) \otimes\left(K^{*} / I^{\perp}\right)=(\operatorname{dim} W / G) r k \phi
$$

Hence if $r k \phi>0$, then $\operatorname{dim} W / G \leq 1$. q.e.d.
Applying this to $W=H^{0}\left(\mathcal{O}_{\Delta}(d-1)\right)$, we conclude that if $\phi_{*} \neq 0$, the image of ψ contains at least a hyperplane in $H^{0}\left(\mathcal{O}_{\Delta}(d)(-y)\right)$, so that $T_{\mathcal{Y},(y, F)}^{v e r t} \subset T_{\mathcal{X},(y, F)}^{v e r t}$ is at least a hyperplane, which contradicts the fact that the codimension of \mathcal{Y} in \mathcal{X} is at least 2. Hence Lemma 3 is proved.
q.e.d.

From Lemma 3 we conclude that under our assumptions the following hold: for $(y, F) \in \mathcal{Y}$, we have $y \times F+I_{\Delta_{y, F}} \subset \mathcal{Y}$ and $\Delta_{y, G}$ is independent of $G \in F+I_{\Delta_{y, F}}$. Indeed, from the fact that ϕ_{*} vanishes on $I_{\Delta_{y, F}}$, one concludes that the distribution \mathcal{I} is integrable, and since ϕ is constant along the leaves of the corresponding foliation, the leaves must be the affine spaces $y \times F+I_{\Delta_{y, F}}$.

Now the codimension of $T_{\mathcal{Y}, y}^{v e r t}$ in $S_{y}^{d}=T_{\mathcal{X}, y}^{v e r t}$ is equal to the codimension of \mathcal{Y} in \mathcal{X}, that is $n-k-1$. Thus the image of the restriction map

$$
T_{\mathcal{Y},(y, F)}^{v e r t} \rightarrow H^{0}\left(\mathcal{O}_{\Delta}(d)(-y)\right)
$$

has also codimension $n-k-1$, and therefore has dimension $d-n+$ $k+1$ which is equal to $n \leq d-2$ in case i) and to $n+1 \leq d-2$ in case ii). But recall that \mathcal{Y} is invariant under $G l(n+1)$ so that $T_{\mathcal{Y},(y, F)}^{v e r t}$ contains the elements of $T_{S^{d}} \oplus T_{\mathbb{P}^{n}, y}$ tangent to the orbit of (y, F) and projecting to 0 in $T_{\mathbb{P}^{n}, y}$, that is the element $F \in S_{y}^{d}$ and $I_{y} J_{F}^{d-1}$. Finally we may assume that F is generic in the affine space $F+I_{\Delta_{y, F}}$ so that if X_{0}, \ldots, X_{n} are the coordinates in \mathbb{P}^{n} with $X_{i}(y)=$ $0, i \geq 1$ and $X_{i \mid \Delta_{y, F}}=0, i \geq 2$, then the elements $X_{1} \frac{\partial F}{\partial X_{i} \mid \Delta_{y, F}}, i \geq 2$, are generic and in particular independent modulo the space generated by $F_{\mid \Delta_{y, F}}, X_{1} \frac{\partial F}{\partial X_{0}}{\mid \Delta_{y, F}}, X_{1} \frac{\partial F}{\partial X_{1}}{\mid \Delta_{y, F}}$, which depends only on $F_{\left.\right|_{y, F}}$.

The conditions $\operatorname{dim}<F, I_{y} J_{F}^{d-1}>_{\mid \Delta_{y, F}} \leq n$ in case i), and $\operatorname{dim}<F, I_{y} J_{F}^{d-1}>_{\mid \Delta_{y, F}} \leq n+1$ in case ii) imply now that

$$
\left.\operatorname{dim}<F_{\mid \Delta_{y, F}}, X_{1} \frac{\partial F}{\partial X_{0} \mid \Delta_{y, F}}, X_{1} \frac{\partial F}{\partial X_{1 \mid \Delta_{y, F}}}>\leq 1 \text { in case } i\right),
$$

$$
\operatorname{dim}<F_{\mid \Delta_{y, F}}, X_{1} \frac{\partial F}{\partial X_{0 \mid \Delta_{y, F}}}, X_{1} \frac{\partial F}{\partial X_{1 \mid \Delta_{y, F}}}>\leq 2 \text { in case ii). }
$$

Thus $F_{\mid \Delta_{y, F}}=\alpha X_{1}^{d}$ in case i), and $F_{\mid \Delta_{y, F}}=X_{1}^{l} Z^{d-l}$ in case ii), for some linear form Z on $\Delta_{y, F}$ and some $l \geq 1$ which obviously will be independent of $(y, F) \in \mathcal{Y}$. Comparing dimensions we see that in case i), Y_{F} has to be a component of the variety $P_{d, F} \subset X_{F}$ made of points through which passes a line osculating X_{F} to order d, while in case ii) Y_{F} has to be a component of the variety $P_{l, d-l, F} \subset X_{F}$ made of points x through which passes a line Δ with $\Delta \cap X_{F}=l x+(d-l) x^{\prime}$. Note that by the arguments explained in Section 1 the corresponding varieties \mathcal{P}_{d}, (resp. $\left.\mathcal{P}_{l, d-l}\right)$ of \mathcal{X} actually satisfy the condition that the restriction map

$$
H^{0}\left(\Omega_{\mathcal{X}}^{N+k}{ }_{\mid X_{F}}\right) \rightarrow H^{0}\left(\Omega_{\tilde{\mathcal{P}}_{d}}^{N+k}{ }_{\mid \tilde{P}_{d, F}}\right)
$$

vanishes, (resp. the restriction map

$$
H^{0}\left(\Omega_{\mathcal{X}}^{N+k}(-1)_{\mid X_{F}}\right) \rightarrow H^{0}\left(\Omega_{\tilde{\mathcal{P}}_{l, d-l}}^{N_{l-l}+k}(-1)_{\mid \tilde{P}_{l, d-l, F}}\right)
$$

vanishes).
So to finish the proof of Theorem 1, it suffices to show
Proposition 1. Assume $n-3 \geq k_{d}=2 n-1-d \geq 0$ (for case i) or $n-3 \geq k_{l, d-l}=2 n-d \geq 0$ (for case ii); then for generic F, the $k_{d^{-}}$ dimensional variety $P_{d, F}$ admits a desingularization $\tilde{P}_{d, F}$, the canonical map of which is generically one to one on its image. Similarly the $k_{l, d-l}$-dimensional variety $P_{l, d-l, F}$ admits a desingularization $\tilde{P}_{l, d-l, F}$, the canonical map of which is generically one to one on its image.

Let $G \subset \mathbb{P}^{n} \times \operatorname{Grass}(1, n)$ be the set $\{(x, \Delta) / x \in \Delta\}$, and let $\mathbb{P} \xrightarrow{\pi}$ G be the pull-back of the universal \mathbb{P}^{1} bundle on $\operatorname{Grass}(1, n)$. Then there is a natural section τ of π given by $\tau(x, \Delta)=x \in \Delta$, and a corresponding line subbundle \mathcal{L} of the bundle $\mathcal{E}_{d}=\pi_{*} \mathcal{O}(d)$, with fiber at (x, Δ) the set of polynomials of degree d on Δ vanishing to order d at x. Let $\mathcal{F}_{d}=\mathcal{E}_{d} / \mathcal{L}$. Now let F be a section of $\mathcal{O}_{\mathbb{P}^{n}}(d)$; then there is an induced section σ_{F} of \mathcal{F}_{d}, and by definition $P_{d, F}$ is the image by the first projection of $V\left(\sigma_{F}\right)$. Since \mathcal{F}_{d} is generated by the sections $\sigma_{F}, V\left(\sigma_{F}\right)$ is smooth of the right dimension for generic F, and one verifies that $p r_{1}: V\left(\sigma_{F}\right) \rightarrow P_{d, F}$ is a desingularization (one uses here the inequality $\left.n-3 \geq k_{d}=2 n-1-d \geq 0\right)$.

Similarly, to desingularize $P_{l, d-l, F}$, let Y be the blow-up of $\mathbb{P}^{n} \times \mathbb{P}^{n}$ along the diagonal. There is a natural map

$$
f: Y \rightarrow \operatorname{Grass}(1, n),(x, y) \mapsto<x, y>
$$

and there are two sections

$$
\tau_{1}, \tau_{2}, \tau_{1}((x, y))=x \in<x, y>, \tau_{2}((x, y))=y \in<x, y>
$$

of the induced \mathbb{P}^{1} bundle $\mathbb{P} \xrightarrow{\pi} Y$ on Y. There is then a line subbundle \mathcal{L} of the bundle $\mathcal{E}_{d}=\pi_{*} \mathcal{O}_{\mathbb{P}}(d)$, with fiber at (x, y) the set of polynomials f of degree d on Δ vanishing to order l at x and to order $d-l$ at y (when $x=y, f$ should vanish to order d at x). Let $\mathcal{F}_{d}=\mathcal{E}_{d} / \mathcal{L}$. Now let F be a section of $\mathcal{O}_{\mathbb{P}^{n}}(d)$; there is an induced section σ_{F} of \mathcal{F}_{d}, and by definition $P_{l, d-l, F}$ is the image by the first projection of $V\left(\sigma_{F}\right)$. Since \mathcal{F}_{d} is generated by the sections $\sigma_{F}, V\left(\sigma_{F}\right)$ is smooth of the right dimension for generic F and one verifies that $p r_{1}: V\left(\sigma_{F}\right) \rightarrow P_{l, d-l, F}$ is a desingularization (one uses here the inequality $n-3 \geq k_{l, d-l}=2 n-d \geq$ $0)$.

In both cases it suffices to show that the canonical map of $V\left(\sigma_{F}\right)$ is of degree one on its image.

In the case of $P_{d, F}$ the canonical bundle of $V\left(\sigma_{F}\right)$ is equal to $K_{G}+c_{1}\left(\mathcal{F}_{d}\right)$. Now note that G is the universal \mathbb{P}^{1}-bundle on $\operatorname{Grass}(1, n)$, via $p r_{2}$ so that Pic G is generated by $H=p r_{1}^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$ and $L=$ $p r_{2}^{*}\left(\mathcal{O}_{\text {Grass }}(1)\right)$. It is easy to show that $K_{G}=-2 H-n L$.

Next \mathcal{E}_{d} is the pull-back via $p r_{2}$ of the corresponding bundle over $\operatorname{Grass}(1, n)$, hence has determinant equal to $\frac{d(d+1)}{2} L$. Finally the natural section of $\mathbb{P} \xrightarrow{\pi} G$ is simply given by the evaluation map $\pi_{*} \mathcal{O}_{\mathbb{P}}(1)=$ $\mathcal{E}_{1} \rightarrow \tau^{*}\left(\mathcal{O}_{\mathbb{P}}(1)\right)$, and since $\tau^{*}\left(\mathcal{O}_{\mathbb{P}}(1)\right)=H$, its kernel \mathcal{L}_{1} is of class $L-H$. Clearly $\mathcal{L} \cong \mathcal{L}_{1}^{\otimes d}$, hence \mathcal{L} is of class $d(L-H)$. So we have

$$
\begin{aligned}
K_{V\left(\sigma_{F}\right)} & =K_{G}+c_{1}\left(\mathcal{F}_{d}\right) \\
& =-2 H-n L+\frac{d(d+1)}{2} L-d(L-H) \\
& =(d-2) H+\left(\frac{d(d-1)}{2}-n\right) L .
\end{aligned}
$$

Since $n-3 \geq 2 n-1-d \geq 0$, we have $n \geq 3, d \geq n+2 \geq 5$, hence $d-2>0, \frac{1}{2} d(d-1)-n>0$, which implies that $K_{V\left(\sigma_{F}\right)}$ is very ample.

In the case of $P_{l, d-l}, f: Y \rightarrow \operatorname{Grass}(1, n)$ identifies Y with the selfproduct of the tautological \mathbb{P}^{1}-bundle on $\operatorname{Grass}(1, n)$, hence its Picard group is generated by $H_{1}=p r_{1}^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right), H_{2}=p r_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$, and $L=$ $f^{*}\left(\mathcal{O}_{\text {Grass }}(1)\right)$. One computes easily that $K_{Y}=-2 H_{1}-2 H_{2}+(-n+1) L$.

Next the two sections τ_{1}, τ_{2} correspond to the evaluation maps

$$
\mathcal{E}_{1} \rightarrow \tau_{1}^{*}\left(\mathcal{O}_{\mathbb{P}}(1)\right), \mathcal{E}_{1} \rightarrow \tau_{2}^{*}\left(\mathcal{O}_{\mathbb{P}}(1)\right),
$$

with $\tau_{1}^{*}\left(\mathcal{O}_{\mathbb{P}}(1)\right)=H_{1}$, and $\tau_{2}^{*}\left(\mathcal{O}_{\mathbb{P}}(1)\right)=H_{2}$, so their kernels $\mathcal{L}_{1}, \mathcal{L}_{2}$ have for class $L-H_{1}$ and $L-H_{2}$ respectively. Clearly $\mathcal{L} \cong \mathcal{L}_{1}^{\otimes l} \otimes \mathcal{L}_{1}^{\otimes d-l}$, and hence is of class $l\left(L-H_{1}\right)+(d-l)\left(L-H_{2}\right.$. Thus

$$
\begin{aligned}
K_{V\left(\sigma_{F}\right)}= & K_{Y}+c_{1}\left(\mathcal{F}_{d}\right) \\
= & -2 H_{1}-2 H_{2}+(-n+1) L \\
& +\frac{d(d+1)}{2} L-d L+l H_{1}+(d-l) H_{2} .
\end{aligned}
$$

So if $l \geq 2$, and $d-l \geq 2$, we conclude easily that the canonical map of $V\left(\sigma_{F}\right)$ is of degree one on its image.

If $l=1$ or $d-l=1$, say $d-l=1$ for example, we construct another desingularization of $P_{l, d-l}$ as follows: Let as above $G \subset \mathbb{P}^{n} \times \operatorname{Grass}(1, n)$ be the set $\{(x, \Delta) / x \in \Delta\}$. Let $\mathbb{P} \xrightarrow{\pi} G$ be the pull-back of the universal \mathbb{P}^{1} bundle on $\operatorname{Grass}(1, n)$, and τ be the natural section of π. There is a natural rank-two subbundle \mathcal{K} of \mathcal{E}_{d}, whose fiber at (x, Δ) is the set of polynomials of degree d on Δ vanishing to order $d-1$ at x. In fact, if \mathcal{L}_{1} is as above the kernel of the evaluation map

$$
\mathcal{E}_{1} \rightarrow \tau^{*} \mathcal{O}_{\mathbb{P}}(1)=H
$$

\mathcal{K} is isomorphic to $\mathcal{L}_{1}^{\otimes d-1} \otimes \mathcal{E}_{1}$.
Now if F is a section of $\mathcal{O}_{\mathbb{P}^{n}}(d)$, there is an induced section σ_{F} of $\mathcal{F}=\mathcal{E}_{d} / \mathcal{K}$, and by definition $P_{d-1,1, F}$ is the image by the first projection of $V\left(\sigma_{F}\right)$. Since \mathcal{F} is generated by the sections $\sigma_{F}, V\left(\sigma_{F}\right)$ is smooth of the right dimension for generic F, and one verifies that $p r_{1}: V\left(\sigma_{F}\right) \rightarrow$ $P_{d-1,1, F}$ is a desingularization. We have then

$$
\begin{aligned}
K_{V\left(\sigma_{F}\right)} & =K_{G}+c_{1}(\mathcal{F}) \\
& =-2 H-n L+\frac{d(d+1)}{2} L-2(d-1) c_{1}\left(\mathcal{L}_{1}\right)-c_{1}\left(\mathcal{E}_{1}\right) \\
& =(2 d-4) H+\left(\frac{d(d+1)}{2}-n-1-2(d-1)\right) L .
\end{aligned}
$$

Using the inequalities $d \geq n+3 \geq 6$, we immediately see that $K_{V\left(\sigma_{F}\right)}$ is very ample. So Proposition 1 is proved. q.e.d.

References

[1] L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988) 163-169.
[2] , Subvarieties of generic complete intersections. II, Math. Ann. 289 (1991) 465-471.
[3] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996) 200-214.
[4] . Variations de structure de Hodge et zero-cycles sur les surfaces générales, Math. Ann. 299 (1994) 77-103.
[5] H. Clemens, Curves in generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986) 629-636.

[^0]: Received July 11, 1997.

