J. DIFFERENTIAL GEOMETRY 49 (1998) 601-611

A CORRECTION ON "A CONJECTURE OF CLEMENS ON RATIONAL CURVES ON HYPERSURFACES"

CLAIRE VOISIN

1.

The purpose of this note is to correct a mistake in the proof of the main theorem of [3]:

Theorem 1. Let $X \subset \mathbb{P}^n$ be a general hypersurface of degree d. Let $k \leq n-3$; then the following hold:

- i) If $d \ge 2n 1 k$, any k-dimensional subvariety Y of X has a desingularization \tilde{Y} with an effective canonical bundle.
- ii) If d > 2n 1 k, and Y is as above, the canonical map of \tilde{Y} is generically one to one on its image.

Recall that Ein [1] proved the following:

Theorem 2. Let $X \subset \mathbb{P}^n$ be a general hypersurface of degree d and $k \leq n-1$. Then the following hold:

- i) If $d \ge 2n k$, any k-dimensional subvariety Y of X has a desingularization \tilde{Y} with an effective canonical bundle.
- ii) If d > 2n k, and Y is as above, the canonical map of \tilde{Y} is generically one to one on its image.

Received July 11, 1997.

Ein's theorem follows from the fact that if $\mathcal{X} \subset \mathbb{P}^n \times S^d$ is the universal hypersurface, $S^d = H^0(\mathcal{O}_{\mathbb{P}^n}(d))$, with special smooth fiber $X_F, F \in S^d$, then the bundle $T_{\mathcal{X}}(1)_{|X_F}$ is generated by global sections. Then $\bigwedge^{n-1-k} T_{\mathcal{X}}(n-1-k)_{|X_F}$ is also generated by global sections. On the other hand we have

$$\bigwedge^{n-1-k} T_{\mathcal{X}}(n-1-k)_{|X_F} \cong \Omega_{\mathcal{X}}^{N+k}(n-1-k-d+n+1)_{|X_F},$$

with $N = \dim S^d$. Hence if $n - 1 - k - d + n + 1 \leq 0$, the bundle $\Omega_{\mathcal{X}}^{N+k}|_{X_F}$ is generated by global sections. If we have an étale map $U \to S^d$ and a universal (reduced, irreducible) subscheme $\mathcal{Y} \subset \mathcal{X}_U$ of relative dimension k, with desingularization $\tilde{\mathcal{Y}}$, then we will get by restriction non-zero sections of

$$\Omega^{N+k}_{\tilde{\mathcal{Y}}\mid\tilde{Y}_t}\cong K_{\tilde{Y}_t}$$

The case of strict inequality follows in the same way.

What we proposed to do in [3] for improving these inequalities was to study sections of the bundle $\bigwedge^2 T_{\mathcal{X}}(1)|_{X_F}$. When $n-1-k \geq 2$, they will provide, by wedge-product with sections of $T_{\mathcal{X}}(1)|_{X_F}$, sections of

$$\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{|X_F} \cong \Omega_{\mathcal{X}}^{N+k}(n-2-k-d+n+1)_{|X_F}.$$

So if now $2n - 1 - k - d \leq 0$, and $\mathcal{Y} \subset \mathcal{X}_U$ is as above, by restriction one can hope to get non-zero sections of

$$\Omega^{N+k}_{\tilde{\mathcal{Y}}}_{|\tilde{Y}_t} \cong K_{\tilde{Y}_t}$$

(respectively of $K_{\tilde{Y}_t}(-1)$ if the inequality is strict). We claimed in [3] that for generic F, the space $H^0(\bigwedge^2 T_{\mathcal{X}}(1)_{|X_F})$, viewed as a space of sections of a line bundle on the Grassmannian of codimension two subspaces of $T_{\mathcal{X}|X_F}$ has no base points on the set of Gl(n+1) invariant codimension two subspaces of $T_{\mathcal{X}|X_F}$, i.e., subspaces $V \subset T_{\mathcal{X},(x,F)}$ containing the tangent space to the Gl(n+1)-orbit of (x, F), where Gl(n+1) acts in the natural way on $\mathcal{X} \subset \mathbb{P}^n \times S^d$.

However this statement is false, as was pointed out to me by K. Amerik, whom I thank very much for her observation. Her counterexample is the following : assume that $n + 1 \leq d \leq 2n - 3$, so that the variety of lines in generic X_F is non-empty of dimension 2n - 3 - d, and the subvariety $P_{X_F} \subset X_F$ covered by the lines is of dimension

 $k = 2n - 2 - d \leq n - 3$. We have a corresponding universal subvariety $\mathcal{P} \subset \mathcal{X}$ of relative dimension k, which is obviously Gl(n + 1)-invariant. If the statement were true, since $T_{\mathcal{X}}(1)_{|X_F}$ is globally generated, there would be sections of

$$\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{|X_F} \cong \Omega_{\mathcal{X}}^{N+k}(1)_{|X_F},$$

which do not vanish by restriction in

$$H^{0}(\Omega^{N+k}_{\tilde{\mathcal{P}}}(1)_{|\tilde{P}_{F}}) \cong H^{0}(K_{\tilde{P}_{F}}(1)),$$

and this is absurd since \tilde{P}_F is covered by lines.

In fact, there are other counterexamples, in any degree $d \ge n+2$, showing that the base locus of $H^0(\bigwedge^2 T_{\mathcal{X}}(1)_{|X_F})$ is somewhat large : choose an integer r such that $1 \le 2n-2-(d-r) \le n-3$, and positive integers l_1, \ldots, l_r such that $\sum_i l_i = d$. For generic X, the subvariety $P_{l_1,\ldots,l_r,X}$ of X made of points x such that there exists a line $\Delta \subset \mathbb{P}^n$, with $\Delta \cap X = l_1 x + l_2 x_2 + \ldots + l_r x_r, x_2, \ldots, x_r \in X$, is of dimension k = 2n - 2 - (d - r). Let $\mathcal{P}_{l_1,\ldots,l_r} \xrightarrow{j} \mathcal{X}$ be the corresponding universal subvariety, and

$$\tilde{\mathcal{P}}_{l_1,\ldots,l_r} \xrightarrow{\tau} \mathcal{P}_{l_1,\ldots,l_r}$$

be a desingularization. If the statement were true, there would be for generic F a section σ of

$$\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{|X_F} \cong \Omega_{\mathcal{X}}^{N+k}(-r+1)_{|X_F},$$

which does not vanish by restriction in

$$H^{0}(\Omega_{\tilde{\mathcal{P}}}^{N+k}(-r+1)_{|\tilde{P}_{F}}) \cong H^{0}(K_{\tilde{P}_{F}}(-r+1)).$$

This is absurd for the following reason: the points x_2, \ldots, x_r give a correspondence from $P_{l_1,\ldots,l_r,X}$ to X; that is a generically finite smooth cover

$$P'_{l_1,\ldots,l_r,X} \xrightarrow{r} \tilde{P}_{l_1,\ldots,l_r,X}$$

parametrizing the r-uples (x_1, \ldots, x_r) such that

$$\Delta \cap X = l_1 x + l_2 x_2 + \ldots + l_r x_r.$$

Let

$$j_i: P'_{l_1,\ldots,l_r,X} \to X, \ (x_1,\ldots,x_r) \mapsto x_i,$$

so that $j_1 = j \circ \tau \circ r$. Now for any point of $P'_{l_1,\ldots,l_r,X}$ the corresponding points x_i of X satisfy the condition $\sum_i l_i x_i \equiv H^{n-1}.X$, where $H = c_1(\mathcal{O}_X(1))$, and \equiv is rational equivalence. Adapting the arguments of [4] to this (higher dimensional) situation, we conclude the following:

Lemma 1. For any $s \in H^0(\Omega^{N+k}_{\mathcal{X}}|_{X_F})$ with k > 0, we have

$$\sum_{i} l_{i} j_{i}^{*} s = 0, \text{ in } H^{0}(\Omega^{N+k}_{\mathcal{P}'_{l_{1}, \dots, l_{r}}|P'_{l_{1}, \dots, l_{r}, X_{F}}}) \cong H^{0}(K_{P'_{l_{1}, \dots, l_{r}, X_{F}}}).$$

Applying this to $s = f.\sigma$, where $f \in H^0(\mathcal{O}_X(r-1))$ vanishes at x_2, \ldots, x_r but not at x_1 , and $j_1^*\sigma$ does not vanish at a point of P'_{l_1,\ldots,l_r,X_F} parametrizing (x_1,\ldots,x_r) , we get a contradiction.

2.

We will correct the proof of Theorem 1 as follows: first of all by Yheorem 2, we have only to study the case d = 2n - k - 1, $k \le n - 3$ in i) and d = 2n - k, $k \le n - 3$ in ii). What remains true is the following: Assume we have a universal subscheme

 $\mathcal{Y} \subset \mathcal{X}_U$

of relative dimension k, with desingularization $\tilde{\mathcal{Y}}$, which we may assume to be Gl(n + 1)-invariant for some lift of the Gl(n + 1)-action to \mathcal{X}_U . Assume in case i) that the restriction map

$$H^{0}(\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{|X_{F}}) \cong H^{0}(\Omega_{\mathcal{X}}^{N+k}_{|X_{F}})$$
$$\to H^{0}(\Omega_{\tilde{\mathcal{Y}}}^{N+k}_{|\tilde{Y}_{F}}) \cong H^{0}(K_{\tilde{Y}_{F}})$$

vanishes (otherwise $K_{\tilde{Y}_F}$ is effective and we are done). Then for a smooth point (y, F) of \mathcal{Y} the tangent space

$$T_{\mathcal{Y},(y,F)} \subset T_{\mathcal{X}_U,(y,F)}$$

is in the base-locus of $H^0(\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{|X_F})$, and since $T_{\mathcal{X}}(1)_{|X_F}$ is globally generated it follows that any codimension-two subspace $V \subset T_{\mathcal{X}_U,(y,F)}$ containing $T_{\mathcal{Y},(y,F)}$ is in the base-locus of $H^0(\bigwedge^2 T_{\mathcal{X}}(1)_{|X_F})$. Similarly, in case ii) assume that the restriction map

$$H^{0}(\bigwedge^{n-1-k} T_{\mathcal{X}}(n-2-k)_{|X_{F}}) \cong H^{0}(\Omega_{\mathcal{X}}^{N+k}(-1)_{|X_{F}}) \to H^{0}(\Omega_{\tilde{\mathcal{Y}}}^{N+k}(-1)_{|\tilde{Y}_{F}}) \cong H^{0}(K_{\tilde{Y}_{F}}(-1))$$

vanishes (otherwise $K_{\tilde{Y}_{F}(-1)}$ is effective and we are done). Then for a smooth point (y, F) of \mathcal{Y} , any codimension two subspace $V \subset T_{\mathcal{X}_{U},(y,F)}$ containing $T_{\mathcal{Y},(y,F)}$ is in the base-locus of $H^{0}(\bigwedge^{2} T_{\mathcal{X}}(1)_{|X_{F}})$. Now recall from [3] the following lemma.

Lemma 2. Let $(x, F) \in \mathcal{X}$, and $V \subset T_{\mathcal{X},(x,F)}$ be a codimension-two subspace which is in the base-locus of $H^0(\bigwedge^2 T_{\mathcal{X}}(1)_{|X_F})$. Then $V \cap S_x^d$ contains the ideal $I_{\Delta}(d)$ of a line Δ containing x.

Here $S_x^d = H^0(\mathcal{I}_x(d)) \subset S^d$ is naturally contained in $T_{\mathcal{X},(x,F)}$ as the vertical tangent space of the first projection $pr_1 : \mathcal{X} \to \mathbb{P}^n$. It follows easily from this lemma that under our assumptions, in case i) or ii), the tangent space $T_{\mathcal{Y},(y,F)}$ at a smooth point of \mathcal{Y} has to contain $I_\Delta(d)$ for a line Δ containing x. Clearly Δ is unique, since otherwise $T_{\mathcal{Y},(y,F)}$ would contain S_x^d , and since $pr_{1*} : T_{\mathcal{Y},(y,F)} \to T_{\mathbb{P}^n,y}$ is surjective by Gl(n+1)-equivariance, $T_{\mathcal{Y},(y,F)}$ would be equal to $T_{\mathcal{X}_U,(y,F)}$.

Hence under our assumptions, there is a morphism $\phi : \mathcal{Y} \to Grass(1, n)$, such that:

- The line $\Delta_{y,F} = \phi((y,F))$ passes through y.

- The ideal $I_{\Delta_{y,F}}$ is contained in $T_{\mathcal{Y},(y,F)}$ (and more precisely in the vertical tangent space $T_{\mathcal{Y},(y,F)}^{vert}$ with respect to pr_1).

Now we prove

Lemma 3. The differential ϕ_* of ϕ at (y, F) vanishes on $I_{\Delta_{y,F}} \subset T_{\mathcal{Y},(y,F)}$.

Proof. The inclusion $I_{\Delta_{y,F}} \subset T_{\mathcal{Y},(y,F)}$ defines a distribution $\mathcal{I} \subset T_{\mathcal{Y}}$, which is in fact contained in the integrable distribution $T_{\mathcal{Y}}^{vert} = Ker \, pr_{1*}$. The bracket induces then a \mathcal{O} -linear map

$$\Psi: \bigwedge^{2} \mathcal{I} \to T_{\mathcal{Y}}^{vert} / \mathcal{I} \subset T_{\mathcal{X}}^{vert} |_{\mathcal{Y}} / \mathcal{I},$$

with fiber at (y, F)

$$\psi: \bigwedge^2 I_{\Delta_{y,F}} \to H^0(\mathcal{O}_{\Delta_{y,F}}(d)(-y)),$$

such that $Im\psi \subset T^{vert}_{\mathcal{Y},(y,F)} mod. I_{\Delta_{y,F}}$.

Now note that since $y \in \Delta_{(y,F)}$, $\phi_*(T^{vert}_{\mathcal{Y},(y,F)})$ is contained in $H^0(N_{\Delta_{(y,F)}/\mathbb{P}^n}(-y))$. In the sequel we will denote $\Delta_{y,F}$ by Δ . Recall that there is a natural bilinear map that we will denote by $(a, b) \mapsto a \cdot b$:

$$I_{\Delta} \otimes H^0(N_{\Delta/\mathbb{P}^n}(-y)) \to H^0(\mathcal{O}_{\Delta}(d)(-y)).$$

It is easy to see that ψ is described by

$$\psi(A \wedge B) = A \cdot \phi_*(B) - B \cdot \phi_*(A), \ A, \ B \in I_{\Delta_{u,F}}.$$

In particular, assume that $A \in I^2_{\Delta}$ satisfies $\phi_*(A) \neq 0$; then $T^{vert}_{\mathcal{Y},(y,F)} \mod I_{\Delta}$ would contain the elements $B \cdot \phi_*(A)$ for any $B \in I_{\Delta}$, and would be equal to $H^0(\mathcal{O}_{\Delta}(d)(-y))$, which is absurd because this would imply that $T^{vert}_{\mathcal{Y},(y,F)} = T^{vert}_{\mathcal{X},(y,F)}$. Hence ϕ_* vanishes on I^2_{Δ} and gives a map

$$\phi: I_{\Delta}/I_{\Delta}^2 \to H^0(N_{\Delta/\mathbb{P}^n}(-y)).$$

Denoting by K the (n-1)-dimensional vector space $H^0(N_{\Delta/\mathbb{P}^n}(-y))$, we have a natural isomorphism

$$I_{\Delta}/I^2_{\Delta_{y,F}} \cong H^0(\mathcal{O}_{\Delta}(d-1)) \otimes K^*,$$

such that the bilinear map, used above and factorized by $I_{\Delta}^2,$ is the contraction map

$$H^0(\mathcal{O}_{\Delta}(d-1))\otimes K^*\otimes K\to H^0(\mathcal{O}_{\Delta}(d-1)),$$

taken into account the isomorphism

$$H^0(\mathcal{O}_{\Delta}(d)(-y)) \cong H^0(\mathcal{O}_{\Delta}(d-1)).$$

Hence the resulting map

$$\overline{\psi}: \bigwedge^2 (I_\Delta/I_\Delta^2) \to H^0(\mathcal{O}_\Delta(d)(-y))$$

identifies with

$$\bigwedge^{2} (H^{0}(\mathcal{O}_{\Delta}(d-1)) \otimes K^{*}) \to H^{0}(\mathcal{O}_{\Delta}(d-1)),$$
$$A \land B \mapsto \langle A, \phi(B) \rangle - \langle B, \phi(A) \rangle.$$

Finally we use

Lemma 4. Let $\phi: W \otimes K^* \to K$ be a linear map. If $\phi \neq 0$, then the map

$$\overline{\psi} : \bigwedge^{2} (W \otimes K^{*}) \to W,$$
$$A \land B \mapsto < A, \phi(B) > - < B, \phi(A) >$$

has at least a hyperplane of W for image.

Proof. Let $L = Ker \phi$, $I = Im \phi$ and $G = Im \overline{\psi}$; then G contains the elements $\langle A, B \rangle$ for $A \in L, B \in I$. It follows that L is contained in $G \otimes K^* + W \otimes I^{\perp}$, so that we have

$$rk \phi \ge \dim (W/G) \otimes (K^*/I^{\perp}) = (\dim W/G)rk \phi.$$

Hence if $rk \phi > 0$, then $\dim W/G \le 1$. q.e.d.

Applying this to $W = H^0(\mathcal{O}_{\Delta}(d-1))$, we conclude that if $\phi_* \neq 0$, the image of ψ contains at least a hyperplane in $H^0(\mathcal{O}_{\Delta}(d)(-y))$, so that $T^{vert}_{\mathcal{Y},(y,F)} \subset T^{vert}_{\mathcal{X},(y,F)}$ is at least a hyperplane, which contradicts the fact that the codimension of \mathcal{Y} in \mathcal{X} is at least 2. Hence Lemma 3 is proved.

q.e.d.

From Lemma 3 we conclude that under our assumptions the following hold: for $(y, F) \in \mathcal{Y}$, we have $y \times F + I_{\Delta_{y,F}} \subset \mathcal{Y}$ and $\Delta_{y,G}$ is independent of $G \in F + I_{\Delta_{y,F}}$. Indeed, from the fact that ϕ_* vanishes on $I_{\Delta_{y,F}}$, one concludes that the distribution \mathcal{I} is integrable, and since ϕ is constant along the leaves of the corresponding foliation, the leaves must be the affine spaces $y \times F + I_{\Delta_{y,F}}$.

Now the codimension of $T_{\mathcal{Y},y}^{vert}$ in $S_y^d = T_{\mathcal{X},y}^{vert}$ is equal to the codimension of \mathcal{Y} in \mathcal{X} , that is n - k - 1. Thus the image of the restriction map

$$T^{vert}_{\mathcal{Y},(y,F)} \to H^0(\mathcal{O}_\Delta(d)(-y))$$

has also codimension n - k - 1, and therefore has dimension d - n + k + 1 which is equal to $n \leq d - 2$ in case i) and to $n + 1 \leq d - 2$ in case ii). But recall that \mathcal{Y} is invariant under Gl(n + 1) so that $T_{\mathcal{Y},(y,F)}^{vert}$ contains the elements of $T_{S^d} \oplus T_{\mathbb{P}^n,y}$ tangent to the orbit of (y,F) and projecting to 0 in $T_{\mathbb{P}^n,y}$, that is the element $F \in S_y^d$ and $I_y J_F^{d-1}$. Finally we may assume that F is generic in the affine space $F + I_{\Delta_{y,F}}$ so that if X_0, \ldots, X_n are the coordinates in \mathbb{P}^n with $X_i(y) = 0, i \geq 1$ and $X_i|_{\Delta_{y,F}} = 0, i \geq 2$, then the elements $X_1 \frac{\partial F}{\partial X_i}|_{\Delta_{y,F}}, i \geq 2$, are generic and in particular independent modulo the space generated by $F|_{\Delta_{y,F}}, X_1 \frac{\partial F}{\partial X_0}|_{\Delta_{y,F}}, X_1 \frac{\partial F}{\partial X_1}|_{\Delta_{y,F}}$, which depends only on $F|_{\Delta_{y,F}}$.

The conditions $\dim \langle F, I_y J_F^{d-1} \rangle_{|\Delta_{y,F}} \leq n$ in case i), and $\dim \langle F, I_y J_F^{d-1} \rangle_{|\Delta_{y,F}} \leq n+1$ in case ii) imply now that

$$dim \ < F_{\mid \Delta_{y,F}}, \ X_1 \frac{\partial F}{\partial X_0}_{\mid \Delta_{y,F}}, \ X_1 \frac{\partial F}{\partial X_1}_{\mid \Delta_{y,F}} > \le 1 \ in \ case \ i),$$

$$\dim \langle F_{|\Delta_{y,F}}, X_1 \frac{\partial F}{\partial X_0}_{|\Delta_{y,F}}, X_1 \frac{\partial F}{\partial X_1}_{|\Delta_{y,F}} \rangle \leq 2 \text{ in case ii}).$$

Thus $F_{|\Delta_{y,F}|} = \alpha X_1^d$ in case i), and $F_{|\Delta_{y,F}|} = X_1^l Z^{d-l}$ in case ii), for some linear form Z on $\Delta_{y,F}$ and some $l \geq 1$ which obviously will be independent of $(y, F) \in \mathcal{Y}$. Comparing dimensions we see that in case i), Y_F has to be a component of the variety $P_{d,F} \subset X_F$ made of points through which passes a line osculating X_F to order d, while in case ii) Y_F has to be a component of the variety $P_{l,d-l,F} \subset X_F$ made of points through which passes a line Δ with $\Delta \cap X_F = lx + (d-l)x'$. Note that by the arguments explained in Section 1 the corresponding varieties \mathcal{P}_d ,(resp. $\mathcal{P}_{l,d-l}$) of \mathcal{X} actually satisfy the condition that the restriction map

$$H^0(\Omega^{N+k}_{\mathcal{X}_{|X_F}}) \to H^0(\Omega^{N+k}_{\tilde{\mathcal{P}}_d | \tilde{\mathcal{P}}_{d,F}})$$

vanishes, (resp. the restriction map

$$H^{0}(\Omega^{N+k}_{\mathcal{X}}(-1)_{|X_{F}}) \to H^{0}(\Omega^{N+k}_{\tilde{\mathcal{P}}_{l,d-l}}(-1)_{|\tilde{\mathcal{P}}_{l,d-l,F}})$$

vanishes).

So to finish the proof of Theorem 1, it suffices to show

Proposition 1. Assume $n-3 \ge k_d = 2n-1-d \ge 0$ (for case i) or $n-3 \ge k_{l,d-l} = 2n-d \ge 0$ (for case ii); then for generic F, the k_d dimensional variety $P_{d,F}$ admits a desingularization $\tilde{P}_{d,F}$, the canonical map of which is generically one to one on its image. Similarly the $k_{l,d-l}$ -dimensional variety $P_{l,d-l,F}$ admits a desingularization $\tilde{P}_{l,d-l,F}$, the canonical map of which is generically one to one on its image.

Let $G \subset \mathbb{P}^n \times Grass(1, n)$ be the set $\{(x, \Delta)/x \in \Delta\}$, and let $\mathbb{P} \xrightarrow{\pi} G$ be the pull-back of the universal \mathbb{P}^1 bundle on Grass(1, n). Then there is a natural section τ of π given by $\tau(x, \Delta) = x \in \Delta$, and a corresponding line subbundle \mathcal{L} of the bundle $\mathcal{E}_d = \pi_* \mathcal{O}(d)$, with fiber at (x, Δ) the set of polynomials of degree d on Δ vanishing to order d at x. Let $\mathcal{F}_d = \mathcal{E}_d/\mathcal{L}$. Now let F be a section of $\mathcal{O}_{\mathbb{P}^n}(d)$; then there is an induced section σ_F of \mathcal{F}_d , and by definition $P_{d,F}$ is the image by the first projection of $V(\sigma_F)$. Since \mathcal{F}_d is generated by the sections σ_F , $V(\sigma_F)$ is smooth of the right dimension for generic F, and one verifies that $pr_1: V(\sigma_F) \to P_{d,F}$ is a desingularization (one uses here the inequality $n-3 \geq k_d = 2n-1-d \geq 0$).

Similarly, to desingularize $P_{l,d-l,F}$, let Y be the blow-up of $\mathbb{P}^n \times \mathbb{P}^n$ along the diagonal. There is a natural map

$$f: Y \to Grass(1, n), \ (x, y) \mapsto < x, y >,$$

and there are two sections

 $\tau_1, \tau_2, \tau_1((x, y)) = x \in \langle x, y \rangle, \tau_2((x, y)) = y \in \langle x, y \rangle$

of the induced \mathbb{P}^1 bundle $\mathbb{P} \xrightarrow{\pi} Y$ on Y. There is then a line subbundle \mathcal{L} of the bundle $\mathcal{E}_d = \pi_* \mathcal{O}_{\mathbb{P}}(d)$, with fiber at (x, y) the set of polynomials f of degree d on Δ vanishing to order l at x and to order d - l at y(when x = y, f should vanish to order d at x). Let $\mathcal{F}_d = \mathcal{E}_d/\mathcal{L}$. Now let F be a section of $\mathcal{O}_{\mathbb{P}^n}(d)$; there is an induced section σ_F of \mathcal{F}_d , and by definition $P_{l,d-l,F}$ is the image by the first projection of $V(\sigma_F)$. Since \mathcal{F}_d is generated by the sections σ_F , $V(\sigma_F)$ is smooth of the right dimension for generic F and one verifies that $pr_1 : V(\sigma_F) \to P_{l,d-l,F}$ is a desingularization (one uses here the inequality $n-3 \geq k_{l,d-l} = 2n-d \geq$ 0).

In both cases it suffices to show that the canonical map of $V(\sigma_F)$ is of degree one on its image.

In the case of $P_{d,F}$ the canonical bundle of $V(\sigma_F)$ is equal to $K_G+c_1(\mathcal{F}_d)$. Now note that G is the universal \mathbb{P}^1 -bundle on Grass(1,n), via pr_2 so that Pic G is generated by $H = pr_1^*(\mathcal{O}_{\mathbb{P}^n}(1))$ and $L = pr_2^*(\mathcal{O}_{Grass}(1))$. It is easy to show that $K_G = -2H - nL$.

Next \mathcal{E}_d is the pull-back via pr_2 of the corresponding bundle over Grass(1, n), hence has determinant equal to $\frac{d(d+1)}{2}L$. Finally the natural section of $\mathbb{P} \xrightarrow{\pi} G$ is simply given by the evaluation map $\pi_* \mathcal{O}_{\mathbb{P}}(1) = \mathcal{E}_1 \to \tau^*(\mathcal{O}_{\mathbb{P}}(1))$, and since $\tau^*(\mathcal{O}_{\mathbb{P}}(1)) = H$, its kernel \mathcal{L}_1 is of class L - H. Clearly $\mathcal{L} \cong \mathcal{L}_1^{\otimes d}$, hence \mathcal{L} is of class d(L - H). So we have

$$K_{V(\sigma_F)} = K_G + c_1(\mathcal{F}_d)$$

= $-2H - nL + \frac{d(d+1)}{2}L - d(L-H)$
= $(d-2)H + (\frac{d(d-1)}{2} - n)L.$

Since $n-3 \ge 2n-1-d \ge 0$, we have $n \ge 3$, $d \ge n+2 \ge 5$, hence d-2 > 0, $\frac{1}{2}d(d-1) - n > 0$, which implies that $K_{V(\sigma_F)}$ is very ample.

In the case of $P_{l,d-l}$, $f: Y \to Grass(1,n)$ identifies Y with the selfproduct of the tautological \mathbb{P}^1 -bundle on Grass(1,n), hence its Picard group is generated by $H_1 = pr_1^*(\mathcal{O}_{\mathbb{P}^n}(1)), H_2 = pr_2^*(\mathcal{O}_{\mathbb{P}^n}(1)), \text{ and } L =$ $f^*(\mathcal{O}_{Grass}(1))$. One computes easily that $K_Y = -2H_1 - 2H_2 + (-n+1)L$.

Next the two sections τ_1 , τ_2 correspond to the evaluation maps

$$\mathcal{E}_1 \to \tau_1^*(\mathcal{O}_{\mathbb{P}}(1)), \ \mathcal{E}_1 \to \tau_2^*(\mathcal{O}_{\mathbb{P}}(1)),$$

with $\tau_1^*(\mathcal{O}_{\mathbb{P}}(1)) = H_1$, and $\tau_2^*(\mathcal{O}_{\mathbb{P}}(1)) = H_2$, so their kernels $\mathcal{L}_1, \mathcal{L}_2$ have for class $L - H_1$ and $L - H_2$ respectively. Clearly $\mathcal{L} \cong \mathcal{L}_1^{\otimes l} \otimes \mathcal{L}_1^{\otimes d-l}$, and hence is of class $l(L - H_1) + (d - l)(L - H_2)$. Thus

$$\begin{split} K_{V(\sigma_F)} = & K_Y + c_1(\mathcal{F}_d) \\ = & -2H_1 - 2H_2 + (-n+1)L \\ & + \frac{d(d+1)}{2}L - dL + lH_1 + (d-l)H_2. \end{split}$$

So if $l \ge 2$, and $d - l \ge 2$, we conclude easily that the canonical map of $V(\sigma_F)$ is of degree one on its image.

If l = 1 or d - l = 1, say d - l = 1 for example, we construct another desingularization of $P_{l,d-l}$ as follows: Let as above $G \subset \mathbb{P}^n \times Grass(1,n)$ be the set $\{(x, \Delta)/x \in \Delta\}$. Let $\mathbb{P} \xrightarrow{\pi} G$ be the pull-back of the universal \mathbb{P}^1 bundle on Grass(1, n), and τ be the natural section of π . There is a natural rank-two subbundle \mathcal{K} of \mathcal{E}_d , whose fiber at (x, Δ) is the set of polynomials of degree d on Δ vanishing to order d - 1 at x. In fact, if \mathcal{L}_1 is as above the kernel of the evaluation map

$$\mathcal{E}_1 \to \tau^* \mathcal{O}_{\mathbb{P}}(1) = H,$$

 \mathcal{K} is isomorphic to $\mathcal{L}_1^{\otimes d-1} \otimes \mathcal{E}_1$.

Now if F is a section of $\mathcal{O}_{\mathbb{P}^n}(d)$, there is an induced section σ_F of $\mathcal{F} = \mathcal{E}_d/\mathcal{K}$, and by definition $P_{d-1,1,F}$ is the image by the first projection of $V(\sigma_F)$. Since \mathcal{F} is generated by the sections σ_F , $V(\sigma_F)$ is smooth of the right dimension for generic F, and one verifies that $pr_1 : V(\sigma_F) \to P_{d-1,1,F}$ is a desingularization. We have then

$$\begin{split} K_{V(\sigma_F)} = & K_G + c_1(\mathcal{F}) \\ = & -2H - nL + \frac{d(d+1)}{2}L - 2(d-1)c_1(\mathcal{L}_1) - c_1(\mathcal{E}_1) \\ = & (2d-4)H + (\frac{d(d+1)}{2} - n - 1 - 2(d-1))L. \end{split}$$

Using the inequalities $d \ge n+3 \ge 6$, we immediately see that $K_{V(\sigma_F)}$ is very ample. So Proposition 1 is proved. q.e.d.

References

- L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988) 163-169.
- [2] _____, Subvarieties of generic complete intersections. II, Math. Ann. 289 (1991) 465-471.
- [3] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996) 200-214.
- [4] _____, Variations de structure de Hodge et zero-cycles sur les surfaces générales, Math. Ann. 299 (1994) 77-103.
- [5] H. Clemens, Curves in generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986) 629-636.

UNIVERSITÉ PIERRE ET MARIE CURIE 4, PLACE JUSSIEN, PARIS, FRANCE