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We prove that the integral cohomology modulo torsion of a rationally connected
threefold comes from the integral cohomology of a smooth curve via the cylinder
homomorphism associated to a family of 1–cycles. Equivalently, it is of strong
coniveau 1. More generally, for a rationally connected manifold X of dimension n, we
show that the strong coniveau zN n�2H 2n�3.X;Z/ and coniveau N n�2H 2n�3.X;Z/
coincide for cohomology modulo torsion.

14C25, 14E08, 14F99, 14J30, 14M22

0 Introduction

We work over C and cohomology is Betti cohomology. Given an abelian group A,
recall that a cohomology class ˛ 2H k.X;A/ has coniveau � c if ˛jU D 0 for some
Zariski open set U DX nY with codim Y � c. Equivalently, ˛ comes from the relative
cohomology H k.X;U;A/. If X is smooth projective of dimension n and ADZ, using
Poincaré duality, ˛ 2H2n�k.X;Z/ comes from a homology class on Y ,

(1) ˛ D j�ˇ in H2n�k.X;Z/

for some ˇ 2H2n�k.Y;Z/. In the situation above, the closed algebraic subset Y cannot
in general taken to be smooth. Take for example a smooth hypersurface X �PnC1 with
n odd, n � 3. Then �.X /D 1 and by the Lefschetz theorem on hyperplane sections,
for any smooth hypersurface Y � X , H n�2.Y;Z/D 0, so no degree n cohomology
class on X is supported on a smooth hypersurface. One can wonder however if, in the
situation above, after taking a desingularization � W zY ! Y of Y with composite map
Q| D j ı � W zY !X , one can rewrite (1) in the form

(2) ˛ D Q|� Q̌ in H2n�k.X;A/:

In the situation described above, when X is smooth projective, Deligne [7] shows that,
with Q–coefficients,

Im. Q|� WH2n�k. zY ;Q/!H2n�k.X;Q//D Im.j� WH2n�k.Y;Q/!H2n�k.X;Q//;
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2732 Claire Voisin

so the answer is yes with Q–coefficients. With Z–coefficients, this is wrong, as the
following simple example shows: Let j 0 W zC ,! A be a smooth genus 2 curve in an
abelian surface. Let �2 W A! A be the multiplication by 2 and let C D �2. zC / � A

with inclusion map j W C !A. As j .C / is an ample curve, the Lefschetz theorem on
hyperplane sections says that j� W H1.C;Z/! H1.A;Z/ is surjective. However, C

admits Q| WD�2 ıj 0 W zC !A as normalization and the map Q|� WH1. zC ;Z/!H1.A;Z/

is not surjective as Q|� D 2j 0�, so Im Q|� is contained in 2H1.A;Z/.

In this example, the degree 1 homology of A (or degree 3 cohomology) is however
supported on smooth curves. To follow the terminology introduced by Benoist and
Ottem in [2], let us say that a cohomology class ˛ 2H k.X;Z/ on a smooth projective
complex manifold X is of strong coniveau � c if there exists a smooth projective
manifold of dimension n � c, and a morphism f W Y ! X such that ˛ D j�ˇ for
some cohomology class ˇ 2H k�2c.Y;Z/. (Since Y is smooth, we can apply Poincaré
duality and use the Gysin morphism in cohomology.) Benoist and Ottem prove the
following result:

Theorem 0.1 (Benoist and Ottem [2]) If c � 1 and k � 2cC 1, there exist complex
projective manifolds X and integral cohomology classes of degree k on X which are
of coniveau � c but not of strong coniveau � c.

Their construction however imposes restrictions on the dimension of X and, for example,
the case where k D 3, c D 1 and dim X D 3 remains open. For c D 1, the examples
constructed in [2] are varieties of general type.

We study in this paper the case of rationally connected threefolds (and more generally
degree 3 homology of rationally connected manifolds). As we will recall in Section 3,
the integral cohomology of degree > 0 of a smooth complex projective rationally
connected manifold is of coniveau � 1. However, except in specific cases, there are no
general available results for the strong coniveau. Our main result is the following:

Theorem 0.2 Let X be a smooth projective rationally connected threefold over C.
Then the cohomology H 3.X;Z/ modulo torsion has strong coniveau 1.

It turns out that an equivalent formulation is the following:

Corollary 0.3 If X is a rationally connected threefold , there exist a smooth curve C

and a family of 1–cycles Z 2 CH2.C � X / such that the cylinder homomorphism
ŒZ �� WH 1.C;Z/!H 3.X;Z/tf is surjective.

Geometry & Topology, Volume 26 (2022)
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Here and in the sequel, we write �tf WD �=Torsion for any abelian group � .

Proof (see more generally Proposition 1.3) By Theorem 0.2, there exists a smooth
projective surface† and a morphism f W†!X such that f� WH 1.†;Z/!H 3.X;Z/tf
is surjective. The existence of a Poincaré divisor D 2 CH1.Pic0.†/�†/, satisfying
the property that ŒD�� WH1.Pic0.†/;Z/!H 1.†;Z/ is an isomorphism, provides a
codimension 2 cycle

Z D .Id; f /�.D/ 2 CH2.Pic0.†/�X /

such that
ŒZ �� WH1.Pic0.†/;Z/!H 3.X;Z/tf

is surjective. We finally choose any smooth complete intersection curve C of ample
hypersurfaces in Pic0.†/ and restrict Z to C . The corollary then follows by the
Lefschetz hyperplane section theorem applied to C � Pic0.†/.

Theorem 0.2 will be proved in Section 2.3. In fact, we will prove this in more generality
(see Theorem 2.19).

Theorem 0.4 For any rationally connected smooth projective variety of dimension n,
one has the equality

N n�2H 2n�3.X;Z/tf D zN
n�2H 2n�3.X;Z/tf:

Furthermore , the equality

H 2n�3.X;Z/tf D zN
n�2H 2n�3.X;Z/tf

holds assuming that the Abel–Jacobi map ˆX W CH1.X /alg! J 2n�3.X / is injective
on torsion.

This last assumption, which is automatically satisfied when n D 3, is related to the
following question we mentioned in [20, Section 1.3.3]:

Question 0.5 Let X be a rationally connected manifold. Is the Abel–Jacobi map
ˆX W CH1.X /alg! J 2n�3.X / injective on torsion cycles?

Note that, as explained in [loc. cit.], the group

Tors.Ker .ˆX W CH1.X /alg! J 2n�3.X ///

Geometry & Topology, Volume 26 (2022)



2734 Claire Voisin

is a stable birational invariant of projective complex manifolds X , which is trivial
when X admits a Chow decomposition of the diagonal. Results of Suzuki [14] give
a complete understanding of this birational invariant in terms of coniveau (see also
Section 2.1).

In Section 1, we discuss various notions of coniveau in relation to rationality or
stable rationality questions, which we will need to split the statement of the main
theorems into two different statements. In particular, we introduce the “cylinder
homomorphism filtration” Nc;cyl, which has a strong version zNc;cyl. The cylinder
homomorphism filtration Nc;cylHkC2c.X;Z/ on the homology (or cohomology) of a
smooth projective manifold X uses proper flat families Z!Z of subschemes of X

of dimension c, and the associated cylinder map Hk.Z;Z/!HkC2c.X;Z/, which
by flatness can be defined without any smoothness assumption on Z. The strong
version zNc;cylHkC2c.X;Z/ is similar but imposes the smoothness assumption on Z

(so flatness is not needed anymore). When c D 1, it is better to use the stable-cylinder
filtration N1;cyl;stHkC2.X;Z/ (where X is smooth projective of dimension n), which
is generated by the cylinder homomorphisms

Hk.Z;Z/!HkC2.X;Z/

for all families of semistable maps from curves to X , without smoothness assumption
on Z (but we will assume that dim Z�k). These various filtrations and their inclusions
are discussed in Section 1. We prove Theorem 2.5 in Section 2.2, which is the first
step towards the proof of Theorem 0.2, and in dimension 3 says the following:

Theorem 0.6 (cf Corollary 2.7) Restricting to the torsion-free part of cohomology,
one has the equality

N1;cyl;stH
3.X;Z/tf DN 1H 3.X;Z/tf

for any smooth projective complex threefold X .

The second step of the proof of Theorem 0.2 is the following result, now valid for
rationally connected manifolds of any dimension and also for the torsion part of
homology.

Theorem 0.7 (cf Theorem 2.17) Let X be rationally connected smooth projective
over C. Then

(3) N1;cyl;stH
2n�3.X;Z/D zN1;cylH

2n�3.X;Z/:

Equivalently, N1;cyl;stH
2n�3.X;Z/D zN n�2H 2n�3.X;Z/.

Geometry & Topology, Volume 26 (2022)
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1 Various notions of niveau and coniveau

We are going to discuss in this section another filtration on cohomology, namely the
(strong) cylinder homomorphism filtration (which is better understood in homology, so
we will speak of niveau) with emphasis on the niveau 1. It is particularly interesting
in the case of niveau 1 because we will be able to extract from this definition further
stable birational invariants, which is not the case for higher niveau. We will work
with Betti cohomology with integral coefficients and our varieties X will be smooth
projective of dimension n over C. We already mentioned in the introduction the
coniveau filtration N cH k.X;Z/ and the strong coniveau filtration zN cH k.X;Z/. By
definition, zN cH k.X;Z/ is generated by the images ��H k�2c.Y;Z/ for all smooth
projective varieties Y of dimension n � c and all morphisms � W Y ! X or, more
generally, codimension n correspondences � 2 CHn.Y �X /.

We now introduce a different filtration,

(4) zNc;cylH
k.X;Z/�H k.X;Z/;

which we will call the strong cylinder homomorphism filtration (see [13]).

Definition 1.1 We denote by zNc;cylH
k.X;Z/�H k.X;Z/ the subgroup of H k.X;Z/

generated by the images of the cylinder homomorphisms

(5) �� WH2n�k�2c.Z;Z/!H2n�k.X;Z/DH k.X;Z/

for all smooth projective varieties Z and correspondences � 2 CHn�c.Z �X /.

We will occasionally use the notation zNc;cylHk.X;Z/�Hk.X;Z/ for the correspond-
ing filtration on homology, which is in fact more natural. We can view � as a family
of cycles of dimension c in X parametrized by Z.

Lemma 1.2 We have zNc;cylH
k.X;Z/� zN kCc�nH k.X;Z/. In particular , for k D n,

we have zN1;cylH
n.X;Z/� zN 1H n.X;Z/.

Geometry & Topology, Volume 26 (2022)



2736 Claire Voisin

Proof In Definition 1.1, we observe that, as Z is smooth, by the Lefschetz theorem on
hyperplane sections, its homology of degree 2n� k � 2c is supported on smooth sub-
varieties Z0 of Z of dimension� 2n�k�2c. It follows that we can restrict in (5) to the
case where dim Z� 2n�k�2c. The inclusion zNc;cylH

k.X;Z/� zN kCc�nH k.X;Z/

then follows from the fact that, by desingularization, cycles � 2CHn�c.Z�X / can be
chosen to be represented by combinations with integral coefficients of smooth projective
varieties �i mapping to Z �X , so that

Im�� �
X

i

Im�i�:

As dim Z � 2n�k�2c and codim.�i=Z�X /D n� c, we have dim�i � 2n�k� c,
so that, by definition,

Im�i� �
zN kCc�nH k.X;Z/:

With Q–coefficients, Definition 1.1 appears in [15]. For k D n and Q–coefficients, the
Lefschetz standard conjecture for smooth projective varieties Y of dimension n� c and
for degree n� 2c predicts that

(6) zNc;cylH
n.X;Q/D zN cH n.X;Q/:

Indeed, the hard Lefschetz theorem gives, for any smooth projective variety Y of
dimension n� c, the hard Lefschetz isomorphism

Lc
WH n�2c.Y;Q/ŠH n.Y;Q/;

where the Lefschetz operator L is the cup-product operator with the class c1.H / for
some very ample divisor H on Y , and the Lefschetz standard conjecture predicts the
existence of a codimension n� 2c cycle ZLef 2 CHn�2c.Y �Y /Q such that

ŒZLef�� ıLc
D Id WH n�2c.Y;Q/!H n�2c.Y;Q/:

Restricting ZLef to Z �Y , where Z � Y is a smooth complete intersection of c ample
hypersurfaces in jH j, we get a cycle

Z 0Lef 2 CHn�2c.Z �Y /Q

such that
ŒZ 0Lef�� WH

n�2c.Z;Q/!H n�2c.Y;Q/

is surjective. In other words, the Lefschetz standard conjecture predicts that

H n�2c.Y;Q/D zNc;cylH
n�2c.Y;Q/

Geometry & Topology, Volume 26 (2022)



On the coniveau of rationally connected threefolds 2737

for Y smooth projective of dimension n � c. Coming back to X , any class ˛ in
zN cH n.X;Q/ is of the form ��ˇ for some class ˇ 2H n�2c.Y;Q/, where Y is some

smooth (not necessarily connected) projective variety of dimension n � c, and the
previous construction shows that, assuming the Lefschetz standard conjecture for Y ,
one has

˛ D Œ� ıZ 0Lef��


for some 
 2H n�2c.Z;Q/, where Z is constructed as above. As

� ıZ 0Lef 2 CHn�c.Z �X /Q;

where Z is smooth projective of dimension n� 2c, this proves the equality (6).

Coming back to Z–coefficients, there is one case where zNcylH
k.X;Z/ and zN H k.X;Z/

exactly compare, namely:

Proposition 1.3 For any c and any smooth projective variety X of dimension n,

(7) zNn�c;cylH
2c�1.X;Z/D zN c�1H 2c�1.X;Z/:

Proof The inclusion � is Lemma 1.2. For the reverse inclusion, zN c�1H 2c�1.X;Z/

is by definition generated by the groups ��H 1.Y;Z/, for all smooth projective Y of
dimension n�cC1 and all correspondences � 2CHn.Y �X /. For each such Y , there
exists a Poincaré (or universal) divisor

D 2 CH1.Pic0.Y /�Y /

such that
ŒD�� WH1.Pic0.Y /;Z/!H 1.Y;Z/

is the natural isomorphism. (We identify here Pic0.Y / with the intermediate Jacobian
J 1.Y /DH 0;1.Y /=H 1.Y;Z/ via the Abel map.) Now let

Z WD .Id; �/�D 2 CHc.Pic0.Y /�X /:

We have
ŒZ �� D Œ��� ı ŒD�� WH1.Pic0.Y /;Z/!H 2c�1.X;Z/

and it has the same image as Œ���. Thus we proved that zN c�1H 2c�1.X;Z/ is generated
by cylinder homomorphisms associated to families of cycles in X of dimension n� c

parametrized by a smooth basis.

Note that for c D n� 1, Proposition 1.3 applies to degree 2n� 3 cohomology, that is,
degree 3 homology, which we will be considering in the next section.

Geometry & Topology, Volume 26 (2022)



2738 Claire Voisin

The niveau 1 of the cylinder filtration produces stable birational invariants. The follow-
ing result strengthens the corresponding statement for strong coniveau in [2]:

Proposition 1.4 The quotient Hk.X;Z/= zN1;cylHk.X;Z/ is a stable birational invari-
ant of a smooth projective variety X .

Proof The invariance under the relation X � X � P r is obvious by the projective
bundle formula, which shows that Hk.X �P r;Z/DHk.X;Z/C zN1;cylHk.X �P r;Z/,
so that prX � WHk.X�P r;Z/!Hk.X;Z/ is an isomorphism modulo zN1;cyl. It remains
to prove the invariance under birational maps. In fact, it suffices to prove the invariance
under blow-ups along smooth centers, as the considered groups admit both contravariant
functorialities under pullbacks and covariant functoriality under proper pushforwards
for generically finite maps (see [20, Lemma 1.9]). For a blow-up � W zX ! X the
standard formulas show that Hk. zX ;Z/ D ��Hk.X;Z/C zN1;cylHk. zX ;Z/, so that
�� WHk. zX ;Z/!Hk.X;Z/ is an isomorphism modulo zN1;cyl.

The following result is a motivation for introducing Definition 1.1:

Proposition 1.5 Let X be a smooth projective variety admitting a cohomological
decomposition of the diagonal. Then , for any k such that 2n> k > 0,

zN1;cylH
k.X;Z/DH k.X;Z/D zN 1H k.X;Z/:

In particular , these equalities hold if X is stably rational.

Proof The second equality already appears in [2]. Both equalities follow from [19],
where the following result is proved:

Theorem 1.6 If a smooth projective variety X of dimension n admits a cohomological
decomposition of the diagonal , there exist smooth projective varieties Zi of dimension
n� 2, integers ni and correspondences �i 2 CHn�1.Zi �X / such that , choosing a
point x 2X ,

(8) Œ�X �x �X �X �x�D
X

i

ni.�i ; �i/�Œ�Zi
� in H 2n.X �X;Z/:

The correspondence .�i ; �i/ between Zi �Zi and X �X is defined as pr�
1
�i � pr�

2
�i ,

where we identify Zi �Zi �X �X with Zi �X �Zi �X , which defines the two
projections

pr1; pr2 WZi �Zi �X �X !Zi �X:
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Another way to formulate (8) is by introducing the transpose t�i 2 CHn�1.X �Zi/,
which satisfies t�i� D �

�
i . Then (8) is equivalent to the equality of cohomological

self-correspondences of X

(9) Œ�X �X �x�x �X �D
X

i

ni Œ�i ı
t�i � in H 2n.X �X;Z/:

Applying both sides of (9) to any ˛ 2H 0<�<2n.X;Z/, we get

˛ D
X

i

ni Œ�i �� ı Œ�i �
�˛ in H�.X;Z/;

with Œ�i �
�˛ 2H��2.Zi ;Z/. As dim Zi D n� 2 and dim�i D n� 1, this proves that

˛ 2 zN1;cylH
�.X;Z/ and ˛ 2 zN 1H�.X;Z/.

Remark 1.7 Although Theorem 1.6 is stated in [19] only in the cohomological setting,
it is true as well, with the same proof, in the Chow setting; see [12]. The same proof as
above thus gives the following result.

Theorem 1.8 If X admits a Chow decomposition of the diagonal , there exist corre-
spondences �i 2 CHn�1.Zi �X / and integers ni such that

��i W CHn>�>0.X /!
M

i

CH��1.Zi/

has left inverse
P

i ni�i�. In particular ,
P

i ni�i� W
L

CH�.Zi/ ! CH�C1.X / is
surjective for n� 2� � � 0.

Corollary 1.9 If X admits a Chow decomposition of the diagonal , the Chow groups
CHi.X / for 0< i < n satisfy

zN1;cyl CHi.X /D CHi.X /D zN 1 CHi.X /;

where the definition of strong coniveau and cylinder niveau is extended to Chow groups
in the obvious way.

Proposition 1.5 works as well with Q–coefficients, so we get:

Proposition 1.10 Let X be a smooth projective variety admitting a cohomological
decomposition of the diagonal with rational coefficients. Then , for any k such that
2n> k > 0,

zN1;cylH
k.X;Q/DH k.X;Q/D zN 1H k.X;Q/:

In particular , these equalities hold if X is rationally connected.
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2740 Claire Voisin

We now introduce a weaker notion, namely the cylinder homomorphism filtration. Let X

be a smooth projective manifold of dimension n. We have Hk.X;Z/ŠH 2n�k.X;Z/

by Poincaré duality.

Definition 1.11 We define Nc;cylH
k.X;Z/ as the group generated by the cylinder

homomorphisms

f� ıp� WH2n�k�2c.Z;Z/!H2n�k.X;Z/ŠH k.X;Z/

for all morphisms f W Y ! X and flat projective morphisms p W Y ! Z of relative
dimension c, where dim Z � 2n� k � 2c.

In this definition, the morphism p� WH2n�k�2c.Z;Z/!H2n�k.Y;Z/ is obtained at
the chain level by taking the inverse image p�1 under the flat map p. Note that we do
not require here smoothness of Z, and this is the main difference with Definition 1.1.
It is obvious that

Nc;cylH
k.X;Z/�N kCc�nH k.X;Z/;

because, with the above notation, one has dim Y � 2n� k � c. Restricting to the case
where Z is smooth, we claim that

zNc;cylH
k.X;Z/�Nc;cylH

k.X;Z/:

Indeed, zNc;cylH
k.X;Z/ is generated by images of correspondences

f� ıp� WH k�2c.Z;Z/!H k.X;Z/

for all morphisms f W Y ! Z, where Y is smooth and projective, and morphisms
p W Y !Z of relative dimension c, where dim Z D n� 2c. By flattening, there exists
a commutative diagram

Y 0 Y

Z0 Z

�Y

p0 p

�Z

where �Y W Y
0! Y is proper birational, Z0 is smooth, �Z WZ

0!Z is proper birational,
and p0 W Y 0!Z0 is flat. Then we have, denoting f 0 WD f ı �Y ,

f 0� ıp0
�
D f� ıp� ı �Z� WH2n�2c�k.Z

0;Z/!H2n�k.X;Z/:

The map

�Z� WH2n�2c�k.Z
0;Z/!H2n�2c�k.Z;Z/DH k�2c.Z;Z/

Geometry & Topology, Volume 26 (2022)
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is surjective since Z is smooth and �Z is proper birational; hence we conclude that
Imf� ıp� � Imf 0� ıp0

�, proving the claim.

In conclusion, we have the chain of inclusions

(10) zNc;cylH
k.X;Z/�Nc;cylH

k.X;Z/�N kCc�nH k.X;Z/:

We are concerned here with the niveau 1 of the cylinder filtration, which is parametrized
by curves. In this case, we can use the following variant of the cylinder homomorphism
filtration. It has the advantage that we can apply to it the beautiful results we know
about the deformation theory of morphisms from semistable curves (see [9]), while the
local study of the Hilbert scheme, even for curves on threefolds, is hard.

Definition 1.12 We define N1;cyl;stH
k.X;Z/ as the group generated by the cylinder

homomorphisms

f� ıp� WH2n�k�2.Z;Z/!H2n�k.X;Z/ŠH k.X;Z/

for all morphisms f W Y !X and projective flat semistable morphisms p W Y !Z of
relative dimension 1, where dim Z � 2n� k � 2.

The relationship between Definitions 1.11 and 1.12 is not straightforward, since
semistable reduction of a general flat morphism f W Y ! Z of relative dimension 1

will not exist on Z except after base change, which will change the homology of Z.
One may expect however that the two definitions coincide.

We conclude this section with the case of the smooth Fano complete intersections

X D

N�n\
iD1

Yi � PN

with deg Yi D di and
P

i di �N . Given such a smooth n–dimensional variety X , let
F.X / � G.2;N C 1/ be its Fano variety of lines. Being the zero locus of a general
section of a globally generated vector bundle on the Grassmannian of lines G.2;NC1/,
F.X / is smooth for general X . The universal family of lines

P X

F.X /

q

p

Geometry & Topology, Volume 26 (2022)
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provides a “cylinder homomorphism”

(11) P� D q� ıp� WHn�2.F.X /;Z/!Hn.X;Z/DH n.X;Z/:

When F.X / is smooth, we can choose a dimension n�2 smooth complete intersection
Z

j
,�! F.X / of ample hypersurfaces. Then, by the Lefschetz theorem on hyperplane

sections,
j� WHn�2.Z;Z/!Hn�2.F.X /;Z/

is surjective, and thus Im P�D Im P� ıj�. By smoothness of Z, we can write .P ıj /�
in cohomology,

.P ı j /� WH
n�2.Z;Z/!H n.X;Z/:

It is then clear that Im P� is contained in zN1;cylH
n.X;Z/.

Theorem 1.13 (i) For any smooth Fano complete intersection X � PN of dimen-
sion n of hypersurfaces of degrees d1; : : : ; dN�n, the morphism P� of (11) is
surjective.

(ii) We have N1;cyl;stH
n.X;Z/DH n.X;Z/.

(iii) If either F.X / has the expected dimension 2N �2�
P

i.d1C1/ and Sing F.X /

is of codimension � n� 2 in F.X /, or dim X D 3, we have

H n.X;Z/D zN1;cylH
n.X;Z/D zN 1H n.X;Z/:

Note that (ii) is not directly implied by (i) when F.X / is singular, because dim F.X /

can be > n� 2 and we cannot apply the Lefschetz hard section theorem to reduce to a
Z � F.X / of dimension n� 2.

Proof of Theorem 1.13 (i) We first prove:

Claim 1.14 It suffices to prove the surjectivity statement of (i) for a general smooth X

for which the variety of lines F.X / is smooth (or equivalently any such X ).

Proof Indeed, let X0 be a smooth complete intersection as above and choose a family
X !� of smooth deformations Xt of X0 parametrized by the disk, so that the general
fiber Xt has its variety of lines F.Xt / smooth and of the expected dimension. Then we
can consider the corresponding family F !� of Fano varieties of lines, and we have
the family of cylinder homomorphisms

P� WHn�2.Ft ;Z/!Hn.Xt ;Z/:
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Now we can assume that we have a topological retraction rF W F ! F0, compatible
via P with a topological retraction rX W X ! X0. By smoothness, rX induces a
homeomorphism Xt Š X0, and hence an isomorphism

rX � WHn.Xt ;Z/ŠHn.X0;Z/:

As we have
rX � ıP� D P� ı rF� WHn�2.Ft ;Z/!Hn.X0;Z/;

we see that the surjectivity of P� WHn�2.Ft ;Z/!Hn.Xt ;Z/ implies the surjectivity
of P� WHn�2.F0;Z/!Hn.X0;Z/.

The claim being proved, we now assume that F.X / is smooth and we show that
P� WHn�2.F.X /;Z/!Hn.X;Z/ is surjective. We now claim that it suffices to prove
that the primitive homology of X is in the image of P�. If n is odd, the homology and
primitive homology coincide so there is nothing to prove. If nD 2m, we observe that
some special X , which is smooth and with variety of lines smooth and of the expected
dimension, contains m–cycles W which are of degree 1 and whose class is in Im P�.
For example, we choose X to have m–dimensional linear sections which contain cones
over complete intersections in PN�m�1 of degree>1. Each cone has its class contained
in Im P�, so it suffices that the various degrees are coprime, which is possible if d > 4.
The class ŒW � 2 Hn.X;Z/ then maps via j� to the generator of Hn.PN;Z/, where
j is the inclusion map of X in PN and, by definition, Ker j� DWHn.X;Z/prim. It is
then clear that, if the image of P� contains Ker j�, it contains the whole of Hn.X;Z/,
which proves the claim.

We next restrict, as above, the cylinder homomorphism to a smooth Z � F.X / of
dimension n�2. We will now show that the image of PZ� WHn�2.Z;Z/!Hn.X;Z/

contains Hn.X;Z/prim. By the theory of vanishing cycles [16, Section 2.1], it suffices
to show that Im PZ� contains one vanishing cycle, since they are all conjugate and
generate Hn.X;Z/prim. Let Y � PNC1 be a general smooth complete intersection of
hypersurfaces of degrees d1; : : : ; dN�n, so that dim Y D nC 1, Y is smooth, F.Y / is
smooth and Y is covered by lines. We choose a general complete intersection ZY of
ample hypersurfaces in F.Y / with the following properties: dim ZY D n; the restricted
family of lines gives a dominating (generically finite) morphism qY W PY ! Y ; and,
letting X � Y be a general hyperplane section, F.X / is smooth of the expected dimen-
sion and ZY \F.X /DWZ is a smooth complete intersection in F.X /, as above. As X

is chosen to be a general hyperplane section of Y , by Bertini, X 0 WD q�1
Y
.X /�PY is a
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smooth hypersurface of PY . Furthermore the image of qY;X � WHn.X
0;Z/!Hn.X;Z/

contains a vanishing cycle since when X has a nodal degeneration at a generic point y

of Y, X 0 also acquires a nodal degeneration at all the preimages of y in PY , assuming
qY is étale over a neighborhood of y. (This argument appears in [3, Lemma 2.14].)
Finally, we observe that, via pY W PY !ZY , X 0 identifies naturally with the blow-up
of ZY along Z, so that Hn.X

0;Z/DHn.ZY ;Z/˚Hn�2.Z;Z/, and that the image
of the map PY � WHn.ZY ;Z/!Hn.X;Z/ is contained in the image of the restriction
map HnC2.Y;Z/!Hn.X;Z/, which is equal to Zhm by the Lefschetz theorem on
hyperplane sections. The fact that the image of qY;X � WHn.X

0;Z/!Hn.X;Z/ con-
tains a vanishing cycle thus implies that the image of PZ� WHn�2.Z;Z/!Hn.X;Z/

contains a vanishing cycle. Thus (i) is proved.

(ii) We modify the construction above. First, we replace F !� by a family Z � F
whose fiber over t 2�� is an .n�2/–dimensional complete intersection Zt � F.Xt /

of ample hypersurfaces. Second, we replace Z by the union Z 0 of irreducible com-
ponents of Z which dominate �. Then the central fiber Z 0

0
has dimension n � 2.

For the general fiber, we know by (i), by smoothness of F.Xt / and by the Lefschetz
theorem on hyperplane sections that the restriction P 0 of P to Z 0 has the property
that P 0t� W Hn�2.Z 0t ;Z/! Hn.Xt ;Z/ is surjective. We conclude, as in the proof of
Claim 1.14, that P 0

0�
WHn�2.Z 00;Z/!Hn.X0;Z/ is surjective, and, as dimZ 0

0
D n�2

and the fibers of P 0
0
! Z 0

0
are smooth, (ii) is proved.

(iii) The case where dim X D 3 is a consequence of (ii) and Theorem 2.17. Indeed,
(ii) says that H3.X;Z/ D N1;cyl;stH3.X;Z/. Together with Theorem 2.17, we have
H3.X;Z/D zN

1
cylH3.X;Z/, hence, a fortiori, H3.X;Z/D zN

1H3.X;Z/.

We now conclude the proof when F.X / has the right dimension and Sing F.X / is
of codimension � n� 2 in F.X /. As the Fano variety of lines F.X / has the right
dimension, we know already by the proof of (ii) that if Z �X is a general complete
intersection of ample hypersurfaces which is of dimension n� 2, the cylinder homo-
morphism ŒP �� WHn�2.Z;Z/!Hn.X;Z/ is surjective. Furthermore, the assumption
on Sing F.X / implies that Z has isolated singularities. We now apply Proposition 3.4,
proved in Section 2.3, which says that Im.ŒP �� WHn�2.Z;Z/!Hn.X;Z// is contained
in zN1;cylH

n.X;Z/. Thus, zN1;cylH
n.X;Z/DH n.X;Z/ and a fortiori zN 1H n.X;Z/D

H n.X;Z/ by Lemma 1.2.

Remark 1.15 Theorem 1.13(i) is proved in [13] with Q–coefficients.
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2 Proof of Theorem 0.2

2.1 Abel–Jacobi map for 1–cycles

Let X be a smooth complex projective manifold of dimension n. For any smooth
connected projective curve C and cycle Z 2 CHn�1.C �X /, one has an Abel–Jacobi
map

(12) ˆZ W J.C /! J 2n�3.X /; z 7!ˆX .Z�.z//;

where J 2n�3.X /DH 2n�3.X;C/=.Fn�1H 2n�3.X;C/˚H 2n�3.X;Z/tf/. The mor-
phism ˆZ is the morphism of complex tori associated with the morphism of Hodge
structures

(13) ŒZ �� WH 1.C;Z/!H 2n�3.X;Z/tf:

By definition, the images of all morphisms ŒZ �� as above generate zN1;cylH
2n�3.X;Z/tf,

and, applying Proposition 1.3, we find that they also generate zN n�2H 2n�3.X;Z/tf �

N n�2H 2n�3.X;Z/tf.

Consider first the case of a general smooth projective threefold. As proved in [6],
the group H 3.X;Z/=N 1H 3.X;Z/ has no torsion, as it injects into the unramified
cohomology group H 0.XZar;H3.Z//, and the sheaf H3.Z/ has no torsion. It follows
that the group H 3.X;Z/tf=N 1H 3.X;Z/tf has no torsion. The inclusion of lattices

N 1H 3.X;Z/tf �H 3.X;Z/tf

is a morphism of integral Hodge structures of weight 3 which, thanks to the fact that
H 3.X;Z/tf=N 1H 3.X;Z/tf has no torsion, induces an injection of the corresponding
intermediate Jacobians,

J.N 1H 3.X;Z/tf/ ,! J.H 3.X;Z/tf/D J 3.X /:

In higher dimensions, it is observed by Walker [21] that the Abel–Jacobi map for
1–cycles

ˆX W CH1.X /alg! J 2n�3.X /

factors through a surjective morphism

(14) ẑ
X W CH1.X /alg! J.N n�2H 2n�3.X;Z/tf/;
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where the intermediate Jacobian J.N n�2H 2n�3.X;Z/tf/ is not in general a subtorus
of J.H 2n�3.X;Z/tf/. The point is that it is not necessarily the case for higher coniveau
n� 2> 1 that

N n�2H 2n�3.X;Z/tf �H 2n�3.X;Z/tf

is a saturated sublattice. We refer to [14] for the discussion of such phenomena. There
is a related stable birational invariant, which is the torsion of the group

H 2n�3.X;Z/tf=N
n�2H 2n�3.X;Z/tf:

Concerning the Walker lift (14), Suzuki proves:

Theorem 2.1 [14] Let X be a rationally connected manifold of dimension n. Then
the Walker Abel–Jacobi map ẑX W CH1.X /alg! J.N n�2H 2n�3.X;Z/tf/ is injective
on torsion.

Let us come back to a general surjective morphism � WA!B of complex tori A and B,
which we represent as quotients

ADA0;1=AZ; B D B0;1=BZ;

of complex vector spaces by lattices, with induced morphisms

�Z D �� WAZ! BZ; �0;1 D �� WA0;1! B0;1

on integral homology H1. � ;Z/ and on H0;1–groups, respectively. The subgroup Ker�
is a finite union of translates of the subtorus

K WD Ker�0;1=Ker�Z:

More precisely:

Lemma 2.2 Let

(15) D� WD f˛ 2AQ; �Q.˛/ 2 BZg:

Then:

(i) The group T� DD�=AZ is isomorphic to the torsion subgroup of Ker� and

(16) Ker� DKCT� :

(ii) The group T�=Ker�Q is isomorphic to the group of connected components of
Ker�.
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Proof (i) A torsion point of A is an element of AQ=AZ and it is in Ker� when
any of its lifts ˛ in AQ map to BZ via �Q. This proves the first statement. For the
equality (16), as K�Ker� and T� �Ker�, we just have to show that Ker��KCT� .
The result has nothing to do with complex tori, so we can work instead with the
corresponding real tori AR=AZ and BR=BZ, which are naturally isomorphic as real
tori to A and B, respectively. Let t 2 Ker�, and let tR be a lift of t in AR. Then
�R.t/ 2 BZ. Let bt D �R.t/ 2 BZ and let

KR;t D fv 2AR; �R.v/D btg �AR:

Then KR;t is affine, is modeled on the vector space Ker�R, contains tR, and is defined
over Q. Hence it has a rational point tQ which belongs to D� and, thus,

tR D tQC t 0

with t 0 2 Ker�R, which proves that t 2 K C T� by projection modulo AZ since
K D Ker�R=Ker�Z.

(ii) Tors K D Ker�Q=Ker�Z, so T�=Ker�Q is isomorphic to Tors.Ker�/=Tors K.
Using the fact that Ker� is a group which is a finite union of translates of the divisible
group K, it is immediate to see that Tors.Ker�/=Tors K is isomorphic to the group of
connected components of Ker�.

Remark 2.3 By (ii), the group T� is finite if � is an isogeny, and in general it is finite
modulo the torsion points of A contained in the connected component K of 0 in Ker�.
It follows that, in the formula (16), we can replace T� by a finite subgroup of T� .

We will also use the following property of the group T� :

Lemma 2.4 Let , as above , � W A! B be a surjective morphism of tori. Then , with
notation as above , the group T� maps surjectively, via

�Q D �� WAQ! BQ;

to BZ=�Z.AZ/. The map x� WT�!BZ=�Z.AZ/ so defined has kernel Ker�Q=Ker�Z

(that is , the torsion subgroup of K). The image of x� is isomorphic to Tors.BZ=Im�Z/.
In particular , Im x� is isomorphic to the group of connected components of Ker�.

Proof We have indeed, by definition, T� DD�=AZ, where D� D �
�1
Q .BZ/ by (15).

Using the fact that �Q WAQ!BQ is surjective, we get that �Q WD�!BZ is surjective.
The kernel of the induced surjective map

x�Q WD�! BZ=�Z.AZ/
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is clearly Ker�QCAZ; hence x�Q factors through T� , and the induced map x� W T�!
BZ=�Z.AZ/ has for kernel the image of Ker�Q in T� . For the last point, as T� is of
torsion, Im x� is of torsion, and, conversely, a torsion element of BZ=�Z.AZ/ lifts to
an element of AQ.

Coming back to the morphisms induced by the Abel–Jacobi map, the inclusion of the
finite-index sublattice

zN1;cylH
2n�3.X;Z/tf!N n�2H 2n�3.X;Z/tf

induces an isogeny of intermediate Jacobians

(17) J. zN1;cylH
2n�3.X;Z/tf/! J.N n�2H 2n�3.X;Z/tf/:

By definition of zN1;cyl, for any smooth projective curve C and codimension n�1 cycle
Z 2 CHn�1.C �X /, the morphism ŒZ �� WH 1.C;Z/!H 2n�3.X;Z/tf takes values in

zN1;cylH
2n�3.X;Z/tf D zN

n�2H 2n�3.X;Z/tf �N n�2H 2n�3.X;Z/tf:

It follows that the morphism ˆZ of (12), or rather its Walker lift ẑZ , factors through a
morphism

(18) zẑZ W J.C /! J. zN n�2H 2n�3.X;Z/tf/:

Let us clarify one point. One could naively believe that these liftings provide a further
lift of the Walker Abel–Jacobi map

(19) ẑ
X W CHn�1.X /alg! J.N n�2H 2n�3.X;Z/tf/;

defined on cycles algebraically equivalent to 0, to a morphism

(20) zẑ
X W CHn�1.X /alg! J. zN1;cylH

2n�3.X;Z/tf/D J. zN n�2H 2n�3.X;Z/tf/:

For nD 3, the existence of such a lifting would imply zN 1H 3.X;Z/tfDN 1H 3.X;Z/tf,
which is the content of Theorem 0.2 and which we prove only for rationally connected
threefolds. Indeed, by [11], the Abel–Jacobi map (19) is the universal regular homomor-
phism for codimension 2 cycles, so such a factorization is possible only if the natural
map (17) between the two intermediate Jacobians is an isomorphism. The reason why
the various liftings (18) do not allow us to construct a lift of (19) to a morphism (20) is the
fact that a 1–cycle Z 2CH1.X /alg does not come canonically from a family of 1–cycles
parametrized by a smooth curve C as above. Two different such representations could
lead to two different lifts of ẑX .Z/ in J. zN1;cylH

2n�3.X;Z/tf/. A first lift allows us to
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write Z D @�1 for some 3–chain supported on a smooth projective surface S1 mapping
to X , and a second lift will allow us to write Z D @�2 for some 3–chain supported
on a smooth projective surface S2 mapping to X . Then �1��2 has no boundary, and
hence provides a priori a homology class 
 in H3.X;Z/ŠH 2n�3.X;Z/ which is in
N n�2H 2n�3.X;Z/ but it is not supported on a smooth surface and has no reason to
be in zN n�2H 2n�3.X;Z/. Due to the ambiguity of the choice, the Abel–Jacobi image
of Z will be well defined only modulo these cycles 
 . Note that this argument also
explains the existence of the Walker lift.

Coming back to the case where X is a rationally connected threefold, Theorem 0.2 is
equivalent to the fact that

zN 1
cylH

3.X;Z/tf DH 3.X;Z/tf:

Equivalently, for some smooth projective curve C and cycle Z as above, the morphism
(13) is surjective. If we consider the corresponding morphism (12) of intermediate
Jacobians, its surjectivity holds once the morphism (13) becomes surjective after passing
to Q–coefficients, and the surjectivity of (13) is equivalent to the fact that KerˆZ is
connected.

2.2 Cylinder homomorphism filtration on degree 3 homology

Recall the definition of the cylinder homomorphism and, for niveau 1, stable cylinder
homomorphism filtrations (Definitions 1.11 and 1.12). The proof of Theorem 0.2 has
two independent steps. The first one is the following statement that works without
any rational connectedness assumption. Here we recall that, in higher dimension, the
Abel–Jacobi map for 1–cycles has the Walker factorization through

ẑ
X W CH1.X /alg! J.N n�2H 2n�3.X;Z/tf/:

Theorem 2.5 Let X be a complex projective manifold of dimension n. Then , if the
Walker Abel–Jacobi map ẑX W CH1.X /alg! J.N n�2H 2n�3.X;Z/tf/ is injective on
torsion , one has

(21) N1;cyl;stH
2n�3.X;Z/tf DN n�2H 2n�3.X;Z/tf:

In dimension 3, N 1H 3.X;Z/tf �H 3.X;Z/tf has torsion-free cokernel, so

J.N 1H 3.X;Z/tf/! J.H 3.X;Z/tf/

is injective and ˆX D
ẑ

X . Furthermore, we can apply the following theorem due to
Bloch (see [4; 11]):
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Theorem 2.6 Let X be a smooth projective variety over C. The Abel–Jacobi map
ˆX W CH2.X /alg! J 3.X / is injective on torsion cycles.

Theorem 2.5 thus gives in this case:

Corollary 2.7 (cf Theorem 0.6) Let X be a complex projective threefold. Then

(22) N1;cyl;stH
3.X;Z/tf DN 1H 3.X;Z/tf:

For rationally connected manifolds of any dimension, we can apply Suzuki’s Theorem
2.1. Theorem 2.5 thus gives in this case:

Corollary 2.8 Let X be a rationally connected complex projective manifold of dimen-
sion n. Then

(23) N1;cyl;stH
2n�3.X;Z/tf DN n�2H 2n�3.X;Z/tf:

We do not know if these statements hold true for the whole group H 2n�3.X;Z/ (instead
of its torsion-free part). By definition, they say that if the Abel–Jacobi map for 1–cycles
is injective on torsion, the torsion-free part of coniveau n�2, degree 2n�3 cohomology
of X is generated by cylinder homomorphisms

f� ıp� WH1.C;Z/!H3.X;Z/tf

for all diagrams

(24)
Y X

C

f

p

where p is flat semistable projective of relative dimension 1 and C is any reduced
curve (possibly singular, and not necessarily projective).

Proof of Theorem 2.5 We first choose a smooth connected projective curve C and a
cycle Z 2 CHn�1.C �X / with the property that

(25) ŒZ �� WH 1.C;Z/! zN n�2H 2n�3.X;Z/tf

is surjective. We have a lot of freedom in choosing this curve. The cycle Z induces
a Walker Abel–Jacobi morphism ẑZ D ẑX ıZ� W J.C /! J.N n�2H 2n�3.X;Z/tf/

with lift
zẑZ W J.C /! J. zN n�2H 2n�3.X;Z/tf/;
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as explained in (18), which is induced by the morphism of Hodge structures (25).
Choosing a reference point 0 2 C , we get an embedding C ! J.C /, and hence a
restricted Abel–Jacobi map

ẑZ;C;0 W C ! J.N n�2H 2n�3.X;Z/tf/

with lift
zẑZ;C;0 W C ! J. zN n�2H 2n�3.X;Z/tf/:

Lemma 2.9 Choosing C and 0 in an adequate way, we can assume the following:

(i) Let ˛ W J. zN n�2H 2n�3.X;Z/tf/! J.N n�2H 2n�3.X;Z/tf/ be the natural iso-
geny with torsion kernel T˛. Then there are points xi 2 C (say with x0 D 0)
such that the set of points

f
zẑZ;C;0.xi/g � J. zN n�2H 2n�3.X;Z/tf/

is equal to T˛.

(ii) The cycles Zxi
�Zx0

are of torsion in CH1.X /.

Proof (i) We first start with any curve C0 and cycle Z0 with surjective ŒZ0�� as in (25).
Then we will replace C0 by a general complete intersection curve C in J.C0/ whose
image in J. zN n�2H 2n�3.X;Z/tf/ passes through all the points in T˛ . We observe that
the cycle Z0 2 CHn�1.C0 �X / induces a cycle Z0;J .C0/ 2 CHn�1.J.C0/�X / with
the property that

ŒZ0;J .C0/�� WH1.J.C0/;Z/! zN
n�2H 2n�3.X;Z/tf

is surjective, so we can take for Z the restriction to C �X of Z0;J .C0/. The surjectivity
of ŒZ �� W H 1.C;Z/! zN n�2H 2n�3.X;Z/tf follows from the Lefschetz theorem on
hyperplane sections which gives the surjectivity of the map H 1.C;Z/!H1.J.C0/;Z/.

(ii) We do the same construction as above, except that we first choose torsion elements
ˇi 2 J.C0/ over each ˛i 2 J. zN n�2H 2n�3.X;Z/tf/. We then ask that C � J.C0/ pass
through the points ˇi at xi .

As ˇi is a torsion point of J.C0/, the 0–cycle fˇig� f0g is of torsion in CH0.J.C0//;
hence, the cycle

Zxi
�Zx0

D Z0;J .C0/�.fˇig� f0g/

is of torsion in CH1.X /, which proves (ii).
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We also note that we can assume the cycle Z 2 CHn�1.C �X / to be effective, repre-
sented by a surface mapping to X and C with smooth fibers over the points xi (and
semistable fibers otherwise). This follows from the definition of zN n�2H 2n�3.X;Z/tf
as coming from the degree 3 homology of a smooth projective surface Y mapping to X .
The statement thus follows from the corresponding assertion for any universal divisor
on Pic0.Y / � Y restricted to C � Y for an adequate choice of curve C � Pic0.Y /,
to which we can apply Bertini-type theorems by adding ample divisors coming from
C and Y. We assume now that we are in the situation of Lemma 2.9. The cycles
Zxi
�Zx0

2CHn�1.X /alg are thus of torsion by Lemma 2.9(ii), and annihilated by ẑX

since
zẑZ.xi �x0/D ˇi ; ˛ ı

zẑZ D ẑZ ;

and ˛.ˇi/ D 0 by Lemma 2.9(i). By assumption, the Walker Abel–Jacobi map ẑX

is injective on torsion cycles; hence the cycles Zxi
�Zx0

2 CH1.X /alg are rationally
equivalent to 0, which means that there exist smooth (not necessarily connected)
projective surfaces †i and morphisms

fi W†i!X; pi W†i! P1

such that

(26) fi�.p
�1
i .0/�p�1

i .1//D Zxi
�Zx0

:

Let 
i be a continuous path from x0 to xi on C . We thus get a real 3–chain

�i D .pX /�Z
i

in X satisfying
@�i D Zxi

�Zx0
:

Next, let 
 be a continuous path from 0 to1 on CP1. Then we get a real 3–chain
� 0i D fi�.p

�1
i .
 // in X also satisfying

@� 0i D Zxi
�Zx0

:

It follows that �i ��
0
i satisfies @.�i ��

0
i /D 0, and hence has a homology class

(27) �i 2H3.X;Z/;

which belongs to N n�2H3.X;Z/ since the chains �i and � 0i are supported on surfaces
in X .

We now apply the results of Section 2.1 to the isogeny

˛ W J. zN n�2H 2n�3.X;Z/tf/! J.N n�2H 2n�3.X;Z/tf/:
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For the clarity of the argument, it will be more convenient to use the homology groups
H3.X;Z/ instead of the cohomology groups H 2n�3.X;Z/ (they are isomorphic by
Poincaré duality). We thus have the group isomorphism

x̨ W T˛!N n�2H3.X;Z/tf= zN
n�2H3.X;Z/tf

discussed in Lemma 2.4.

Lemma 2.10 For any i , the class �i of (27) satisfies

(28) �i D x̨.ˇi/ in N n�2H3.X;Z/tf= zN
n�2H3.X;Z/tf:

Remark 2.11 The construction of �i depends on the choice of 
i , so it is in fact
naturally defined only modulo a class coming from H1.C;Z/, and hence modulo
zN n�2H3.X;Z/tf.

Proof of Lemma 2.10 As we are working with the torsion-free part H3.X;Z/tf, which
embeds in the complex vector space F2H 3.X /�, it suffices to check the result after
integration of classes in F2H 3.X /. These classes are represented by closed forms �
of type .3; 0/C .2; 1/ on X . When pulling back these forms on †i via fi and pushing
forward to P1 via pi , we get 0 since there are no nonzero holomorphic forms on P1.
We thus conclude that

R
� 0

i
� D 0; hence,

(29)
Z
�i

� D

Z
�i

�

for any closed form � of type .3; 0/C .2; 1/ on X .

It remains to understand why (29) is equivalent to (28). In fact, consider the general
case of an isogeny � WADAR=AZ! BR=BZ of real tori, with induced morphisms

�Z WH1.A;Z/!H1.B;Z/; �R WH1.A;R/!H1.B;R/

on degree 1 homology. Then, referring to the proof of Lemma 2.2 for the notation, the
isomorphism x� W T� ! BZ=�Z.AZ/ is obtained by passing to the quotient from the
natural map ��1

R .H1.B;Z//DWD�!H1.B;Z// given by restricting �R to D� .

In our case, the map ˛R is induced by the cylinder map associated with the cycle Z,
and the choice of a path 
i from x0 to xi determines a class in H1.J.C /;R/ whose
image in J.C / is the Abel–Jacobi image of xi �x0. The image of this class under ˛R

is the element
R
�i
2 F2H 3.X /� ŠH 3.X;R/�. Hence, the equality (29) exactly says

that x̨.ˇi/D �i modulo torsion and Im˛Z.
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We now conclude the proof of Theorem 2.5. We start from a smooth projective curve C

and cycle Z 2 CHn�1.C �X / satisfying the properties stated in Lemma 2.9 and such
that

ŒZ ��.H1.C;Z//D zN
n�2H3.X;Z/tf:

We then get as in (26) the surfaces †i and the morphisms

(30) fi W†i!X; pi W†i! P1

with the property that

(31) fi�.p
�1
i .0/�p�1

i .1//D Zxi
�Zx0

:

Let us first explain the proof in a simplified case. Assume that there is a single index
i D 1, f1 is an embedding along the curves p�1

1
.0/ and p�1

1
.1/ which are smooth

curves in †1, and we have identifications of smooth curves in X ,

(32) f1.p
�1
1 .0//D Zx1

; f1.p
�1
1 .1//D Zx0

:

In this case, we construct the singular curve C 0 as the union of C and a copy of P1

glued by two points to C , with 0 2 P1 identified to x1 2 C and 1 2 P1 identified
to x0 2 C . Over C 0, we put the family Z 0 ! C 0 of curves in X , which over C is
f W Z!X and p W Z! C , and over P1 is f1 W†1!X and p1 W†1! P1. They glue
by assumption over the intersection points using the identifications (32). Flatness is
easy to check in this case. For semistability, it suffices to restrict to the Zariski open set
C 0

0
of C 0 (which contains all the singular points of C 0) parametrizing semistable fibers.

If we now look at the cylinder homomorphism

Z 0� WH1.C
0
0;Z/!H3.X;Z/tf;

its image contains Z�H1.C;Z/D zN
n�2H3.X;Z/ and an extra generator over the loop

in C 0
0

made of the paths 
 on P1 and 
1 on C (which we can assume to avoid the points
with nonsemistable fibers). Lemma 2.10 tells us that the image of this path under Z 0� is
the element �1 of N n�2H3.X;Z/tf which, together with zN n�2H3.X;Z/tf, generates
N n�2H3.X;Z/tf. As ImZ 0� �N1;cyl;stH3.X;Z/, we proved the theorem in this case.

Remark 2.12 The reason why the above argument does not cover the general case
is the fact that rational equivalence of two curves in X does not in general take the
simple form described above.
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Let us now prove the general case. Out of the data (30)–(31), we shall construct a
modified family over a singular curve as above. Up to now, we have not been really
using the fact that we are working with 1–cycles, but we will use it now. We fix i and
prove the following:

Claim 2.13 After replacing X by X �P r and modifying the family p W Z! C and
f W Z ! X by gluing components Z 0

l
! C and Z 0

l
! X with trivial Abel–Jacobi

map , we can choose the rational equivalence relation (30)–(31) so that it takes the
following form: There exists a chain C1; : : : ;Cm of smooth curves with two marked
points sj ; tj 2Cj , glued by tj D sjC1, and surfaces†j for j D 1; : : : ;m with two maps

(33) fj W†j !X; pj W†j ! Cj

satisfying the conditions:

(i) For each j D 1; : : : ;m, fj is an embedding and the morphism pj is flat with
semistable fibers (so (33) is a family of stable maps to X parametrized by Cj ).

(ii) For 1� j �m� 1, the stable map fj W p
�1
j .tj /!X is isomorphic to the stable

map fjC1 W p
�1
jC1

.sjC1/!X .

(iii) We have equalities of stable maps

(f1 W p
�1
1 .s1/!X /D .f jZxi

W Zxi
!X /;

(fm W p
�1
m .tm/!X /D .f jZx0

W Zx0
!X /:

(iv) The Abel–Jacobi map Cj ! J 2n�3.X / is trivial for each family of curves
pj W†j ! Cj and fj W†j !X .

Furthermore , we can choose the surfaces †j to be unions of smooth surfaces with
normal crossings.

Claim 2.13 concludes the proof of Theorem 2.5 by the same argument as before,
except that the loop 
 [ 
1 on P1 [ C is replaced by the continuous path 
 [ 
1

on C 0 D
S

j Cj [C constructed as follows: let C 0 be the curve which is the unionS
j Cj [C , with the points tj and sjC1 identified for j �m�1, the point s1 identified

with x0, and the point tm identified with xi . We choose the continuous path 
 onS
j Cj � C 0 to be the union of arbitrarily chosen paths from sj to tj on Cj . We thus

have a closed 1–chain 
 [ 
1 on C 0. There is a family of semistable maps

(34) f 0 W†0!X; p0 W†0! C 0
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constructed from Claim 2.13 by gluing the various pieces

fj W†j !X; pj W†j ! Cj

using the identifications (ii) and (iii). Using the fact that the Abel–Jacobi map associated
with the families †j ! Cj , †j !X is trivial on Cj (assumption (iv)), we conclude as
in Lemma 2.10 that the element

�i 2N n�2H3.X;Z/tf= zN
n�2H3.X;Z/tf

is the image of an element of N1;cyl;stH3.X;Z/tf, namely the image of the class of

 [ 
1 in H1.C

0;Z/ under the cylinder homomorphism associated to the family (34).
Doing this for every i , we conclude that N1;cyl;stH3.X;Z/tf DN n�2H3.X;Z/tf.

Proof of Claim 2.13 Starting from the data (30)–(31), where we fix i and write †i

as a disjoint union of smooth connected surfaces †j mapping to X via fj and to P1

via pj , we can choose embeddings ij W†j ,!P r and then f 0j D .fj ; ij / W†j!X �P r

is an embedding. We can even assume that the surfaces f 0j .†j / are disjoint. Next we
observe that, by resolution of singularities, for each surface †j , the group of nonzero
rational functions on †j is generated by those rational functions � W†j Ü P1 with
the following property: after replacing †j by a blow-up z†j;� , � induces a surjective
map †j ! P1 which is a Lefschetz pencil. Furthermore, the divisor of � is, up to sign,
of the form A�B �C , where A, B and C are smooth irreducible curves.

The pj are given by rational functions �j on †j , which we factor as above as

�j D �j1 � � ��j2 � � ��jsj

on †j , with corresponding blown-up surfaces †jl WD
z†j;�l

and morphisms pjl to P1.
We choose disjoint embeddings ijl for lD1; : : : ; sj of the surfaces†jl in P r and do the

same trick as before. After performing these operations, we get surfaces†jl

f 0
j l

,�!X�P r

with morphisms pjl W†jl ! P1 satisfying condition (i).

Let � W X � P r ! X be the first projection. The data above satisfy the equality of
cycles

(35) ��

�X
j ;l

f 0jl�.div�jl/

�
D Zxi

�Zx0
:

Note that the curves Zxi
and Zx0

can be assumed to be smooth connected. We can also
assume, by removing finitely many points of X and working with the complement X 0
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if necessary, that all the irreducible curves in the support of fjl.div�jl/ map to smooth
curves D in X 0. Denote by D˛;0 (resp. Dˇ;i) the curves in Supp

�P
jl f

0
jl�
.div�jl/

�
mapping to Zx0

(resp. to Zxi
) via � , and, for any other curve D �X 0, by D
;D the

curves in Supp
�P

j ;l f
0

jl�
.div�jl/

�
mapping to D. Then it follows from (35) that

(36)

X
˛

n˛;0 deg.D˛;0=Zx0
/D 1;X

ˇ

nˇ;i deg.Dˇ;i=Zxi
/D�1;

X



n
;D deg.D
;D=D/D 0;

where n˛;0 D ˙1 is the multiplicity of D˛;0 in the cycle
P

jl f
0

jl�
.div�jl/, and

similarly for nˇ;i and n
;D . Assuming r D 1 for simplicity, each curve D˛;0 is
rationally equivalent in the surface Zx0

� P1 to a disjoint union of deg.D˛;0=Zx0
/

sections Zx0
� t˛;0;s , where t˛;0;s 2 P1, modulo vertical curves x�P1, which provides

a rational function  ˛;0 on Zx0
�P1, and similarly for Zxi

and D, providing rational
functions  ˇ;i on Zxi

�P1 and  
;D on D �P1. Using (36) and choosing another
point t0 2 P1, we finally have rational functions  0 on Zx0

�P1,  i on Zxi
�P1 and

 D on D �P1 for each curve D ¤ Zx0
;Zxi

, such that the equalities of 1–cycles in
X 0 �P1

(37)

div 0 D

X
˛;s

n˛;0Zx0
� t˛;0;s �Zx0

� t0;

div i D

X
ˇ;s0

nˇ;iZxi
� tˇ;i;s0 CZxi

� t0;

div D D

X

;s00

n
;DD � t
;D;s00 ;

hold modulo vertical cycles z�P1 and z 2Z0.X
0/. Equivalently, these equalities hold

in Z1.X
00 �P1/, where X 00 �X 0 is the complement in X of finitely many points.

Adding to the previous surfaces †jl

f 0
j l
�!X �P1 and rational functions �jl the surfaces

Zx0
�P1; Zxi

�P1; D �P1

naturally contained in X � P1, with the rational functions  j;0 and  0, the surface
Zxi
�P1 with the rational functions  j;i and  i , and the surfaces D �P1 with the

rational functions  j;D and  D , we arrive now at a situation where we have surfaces
†0

l
� X 00 � P1, and rational functions �l on †0

l
such that the 1–cycles div�l of
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X 00 � P1 have the property that each irreducible curve in
S

l Supp.div�l/ appears
twice with opposite multiplicities ˙1 in

P
l div�l , except for Zx0

� t0 and Zx1
� t0,

which appear only once, the first one with multiplicity 1 and the second one with
multiplicity �1. Working now over the whole of X , and taking the Zariski closure
†0

l
�X �P1 of these surfaces in X �P1, we find that the 1–cycle

P
l div�l of X �P1

is the sum of a vertical 1–cycle z � P1 and Zx0
� t0 �Zxi

� t0. Recalling that the
supports of the divisors of the original rational functions on the original surfaces in
X �P1 were normal crossing divisors, we can arrange by looking more closely at the
surfaces D �P1 (and in particular by normalizing the curves D) that this is still true
for the supports of the divisors div�l in †0

l
. The cycle z �P1 is rationally equivalent

to 0 in X �P1, because the cycleX
l

div�l D Zx0
� t0�Zxi

� t0C z �P1

is rationally equivalent to 0, and the cycle Zx;0 � t0�Zx;i � t0 is rationally equivalent
to 0. It follows that z is rationally equivalent to 0 in X . Writing z D

P
ˇ �ˇxˇ with

xˇ 2X and �ˇ D˙1, this provides us with a curve E in X and a rational function  E

on E with divisor
P
ˇ �ˇxˇ , and hence also a surface E �P1 �X �P1 with rational

function z E with divisor
P
ˇ �ˇxˇ � P1 in X � P1. As the function  E W E ! P1

has nonreduced fibers (corresponding to ramification), this last rational function z E

does not provide a semistable family, but this is not a serious issue. Indeed, we did not
ask in Claim 2.13 that the curves be projective, so we can simply remove the points
parametrizing nonreduced fibers, assuming they are not gluing points.

Consider the disjoint union †00 of all the surfaces above, with morphisms

(38) p00 W†00! P1; f 00 W†00!X �P1:

We find that

f 00� .p
00�.0�1//D Zx0

� t0�Zxi
� t0

and, more precisely,

(39) f 00.p00
�1
.0//D Zx0

� t0[A; f 00.p00
�1
.1//D Zxi

� t0[A;

where both curves Zx0
� t0[A and Zxi

� t0[A have ordinary double points and both
maps

f 000 W p
00�1

.0/! Zx0
� t0[A; f 001 W p

00�1
.1/! Zxi

� t0[A
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are partial normalizations. In other words, we have almost achieved the previous
situation of (32), but with the curve A glued to Zx0

� t0 and Zxi
� t0. From now on,

we write X for X �P1, Zx0
for Zx0

� t0, and Zxi
for Zxi

� t0. The two fibers

(40) f 000 W p
00�1

.0/!X; f 001 W p
00�1

.1/!X

are obtained by gluing to the curves Zx0
and Zxi

curves A0 ! X and A1 ! X ,
respectively, partially normalizing A. In other words,

(41) p00
�1
.0/D Zx0

[A0; p00
�1
.1/D Zxi

[A1:

Unfortunately, the two stable maps A0!X and A1!X a priori are different, and
it is not even clear that we glue them respectively to Zx0

and Zxi
by the same number

of points. What we know however is that the genera of Zx0
and Zxi

are equal, and the
genera of the fibers Zx0

[A0 and Zxi
[A1 appearing in (41) are equal, because in

both cases, by construction, these curves are deformations of each other. It follows that
the total numbers of gluing points in the unions Zx0

[A0 and Zxi
[A1 (including

those between the components of A0 or A1) are the same. Let W0 be the set of gluing
points in p00

�1
.0/ D Zx0

S
j Aj . The set W0 splits into a union W0 DW00 tW0A,

where W00 is the set of gluing points of Zx0
with the components Aj , and W0A is

the set of gluing points between the components Aj (thus determining the curve A0).
We have similarly a set W1 DW1i tW1A. Although we know that W0 and W1

have the same cardinality, we do not know that the sets W00 and W1i have the same
cardinality, nor that the curves A0 and A1 have the same topology. To circumvent this
problem, we will use the following:

Lemma 2.14 Let Y be a complex projective manifold and let C and Aj be smooth
curves in Y meeting transversally in distinct points z1; : : : ; zM . Then , for a smooth
complete intersection curve R meeting the Aj and C in sufficiently many points , and
for any two subsets fzi1

; : : : ; ziN
g and fzj1

; : : : ; zjN
g of N points , there exists a family

of stable maps

(42) m W C!X;  W C!D

parametrized by a smooth connected quasiprojective curve D and two points 01; 02 2D

with the following properties:

(i) The stable curve
m01
W C01

!X
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over 01 is the normalization of C [R[
S

i Ai at the points zi1
; : : : ; ziN

, and
the stable curve

m02
W C02

!X

over 02 is the normalization of C [R[
S

i Ai at the points zj1
; : : : ; zjN

.

(ii) The family of curves (42) has trivial Abel–Jacobi map.

Remark 2.15 The curve R is necessary in this statement, as it adds to the connectivity
of the curves. Lemma 2.14 is wrong without it, for topological reasons. For example,
consider the union C of three curves C1, C2 and C3 isomorphic to P1, and glued
as follows: C2 is glued to C1 in two points, x and y, and C3 is glued to C1 in two
points, z and w. Then the curves obtained by normalizing C in x and y and x and z,
respectively, are not deformations of each other, since one is disconnected but not the
other.

Proof of Lemma 2.14 We first choose a smooth surface S � Y which is a complete
intersection of ample hypersurfaces and which contains the curves C and Ai . The
curve R will be any sufficiently ample curve in S meeting C and Ai transversally. We
choose R ample enough that, for any set fw1; : : : ; wN g of N points in S , the set of
curves in the linear system

ˇ̌
C C

P
i AiCR

ˇ̌
which are singular at all the wi and have

ordinary quadratic singularities is a Zariski open set in a projective space Pw1;:::;wN

of the expected dimension. We next choose a curve D in S ŒN � passing through the
two sets fzi1

; : : : ; ziN
g and fzi1

; : : : ; zjN
g at points 01 and 02. There exists a Zariski

open set D � D and a section of the projective bundle above over D passing over
01 and 02 through the curve C [R [

S
i Ai . This provides a family of curves C0

parametrized by D, equipped with a choice of N singular points, which are ordinary
quadratic. The desired family is obtained by normalizing the curves of the family C0 at
these N points.

Let n00 WD jW00j and n1i WD jW1i j. We can assume that n00 � n1i . Let W be the
set of gluing points in the stable curve p00

�1
.0/DZx0

[A0 mapping to X via f 00
0

(see
(40)–(41)). Let N WD jW j. Lemma 2.14 says that, after gluing a complete intersection
curve R, we can deform the stable map

f 000R W Zx0
[W00

A0[R!X

obtained by gluing to f 00
0

the inclusion of R, to any other stable map

f 0000R W Zx0
[A00[R!X;
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inducing the same map on normalizations, but factoring through a different gluing of
the components contained in A0 or Zx0

, assuming the total number of identification
points are the same. Furthermore, according to the lemma, this deformation can be done
via a family of curves with trivial Abel–Jacobi map. As we assumed that n00 � n1i ,
we can choose A0

0
DA1 glued by n1i points to Zx0

.

Looking at the proof of Lemma 2.14 and using the same notation, we see that we can
arrange that the same surface S also contains the curve Zxi

and then, because Zx0

and Zxi
are algebraically equivalent, the curve R, which can be taken the same for

Zx0
and Zxi

, meets Zx0
and Zxi

in the same number of points.

We now have three families of semistable curves:

(1) The original family Z ! C , Z ! X with respective fibers Zx0
and Zxi

over
x0 and xi .

(2) The family f 00 W†00!X; p00 W†00!P1 of (38), with respective fibers Zx0
[A0

and Zxi
[A1 over 0 and1.

(3) The family m W C!X and  W C!D given by Lemma 2.14 and the arguments
above, with fibers Zx0

[A0[R and Zx0
[A1[R.

In (3), the family has trivial Abel–Jacobi map, and the number of attachment points
of Zx0

with A1 is the same as the number of attachment points of Zxi
with A1

and, furthermore, the curve R has the same number of points of attachment with Zx0

and Zxi
.

The following lemma will allow us (after changing R if necessary) to replace the
family (1) by a family over C with the same Abel–Jacobi map and fibers Zx0

[R[A1

and Zxi
[R[A1, and the family (2) by a family parametrized by P1, with fibers

Zx0
[R[A0 and Zxi

[R[A1.

Lemma 2.16 Let

(43) f W†!X; p W†! C

be a family of semistable curves generically embedded in X and parametrized by a
quasiprojective smooth curve C . Let x and y be two points of C and let S be a curve
in X meeting both curves f .†x/ and f .†y/ transversally in M smooth points. Then ,
up to replacing S by a union S 0 D S [S1, where S1 is a complete intersection curve ,
there exists a family of stable maps

(44) fS 0 W†S 0 !X; pS 0 W†S 0 ! C 0;
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where C 0 � C is a Zariski dense open set of C containing x and y, with the same
Abel–Jacobi map as (43), and with the following properties:

(i) The curve S1 meets f .†x/ and f .†y/ transversally in M 0 points.

(ii) The fibers of the family (44) over x and y are †x [S [S1 and †y [S [S1,
respectively, mapped to X via fx and fy on the first term.

Proof We would like to attach the curve S to the other fibers, but it does not a priori
meet the other fibers, so we need to vary the curve S . Let us assume for simplicity that
dim X D 3. We choose a smooth surface T �X containing S and meeting the curves
f .†x/ and f .†y/ (and hence the general fiber f .†t /) transversally. We choose the
curve S1 in T in such a way that S [S1 has normal crossings and is ample enough,
and S1 contains the intersection points in f .†x/\T and f .†y/\T , which are not
on S . For a generic t 2C , we choose a curve St in the linear system S[S1 containing
the intersection f .†t /\T in such a way that Sx D Sy D S [S1. Gluing St to †t at
all the intersection points f .†t /\T provides the desired family.

Lemma 2.16 concludes the proof of Claim 2.13 once one observes from the proof
that the same curve S1 can be used for the families (1)–(3) above, providing modified
families of semistable curves with fibers

(10) Zx0
[A1[R[S1 and Zxi

[A1[R[S1,

(20) Zx0
[A0[R[S1 and Zxi

[A1[R[S1,

(30) Zx0
[A0[R[S1 and Zx0

[A1[R[S1.

These three families, the first of which has the same Abel–Jacobi map as the original
family Z!C and Z!X while the two others have trivial Abel–Jacobi map, provide
the desired chain.

2.3 The case of rationally connected manifolds

The second step in the proof of Theorem 0.2 is the following statement, which is valid
in any dimension but concerns only rationally connected projective manifolds.

Theorem 2.17 Let X be a rationally connected smooth projective manifold of dimen-
sion n over C. Then

(45) N1;cyl;stH
2n�3.X;Z/D zN1;cylH

2n�3.X;Z/D zN n�2H 2n�3.X;Z/:
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Proof The second equality is proved in Proposition 1.3. Let Z be a connected reduced
curve with a family

p W Y !Z; f W Y !X

of semistable curves in X ; that is, p is flat projective of relative dimension 1 and the
fibers of p are semistable curves. We can also assume these curves are embedded in X ,
so the maps are stable and automorphism-free. It is enough to prove that the image of

f� ıp� WH1.Z;Z/!H3.X;Z/

is contained in zN1;cyl;stH
2n�3.X;Z/; that is, there exists a smooth (but not necessarily

projective) variety Z0 and a family of stable curves

p0 W Y 0!Z0; f 0 W Y 0!X;

with
Imf� ıp� � Im.f 0� ıp0

�
WH1.Z

0;Z/!H3.X;Z//:

Assume first that the following holds:

.�/ At each singular point of Z, the semistable map fz W Yz WDp�1.z/!X is stable
and automorphism-free and has unobstructed deformations.

Then we take for Y 0 ! Z0 the universal deformation of the general fiber fz , or,
rather, its restriction to the Zariski open set Z0 of the base consisting of smooth points,
that is, unobstructed stable maps, which furthermore are automorphism-free. By our
assumption, there is a dense Zariski open set Z0 j

,�!Z such that Z nZ0 consists of
smooth points of Z, and Z0 maps to Z0 via the classifying map j 0. We thus have two
commutative (in fact Cartesian) diagrams

X Y Y 0 Y 0 X

Z Z0 Z0

f
�

p

j 00

p0

f 0

p0

j j 0

where Y 0 D p�1.Z0/ and

f 0 ı j 00 D f 0; f 0
WD f jY 0 :

We deduce from this diagram that the two maps

f 0� ıp0
�
WH1.Z

0;Z/!H3.X;Z/; f� ıp� WH1.Z;Z/!H3.X;Z/

coincide on H1.Z
0;Z/, which maps to both via the maps

j� WH1.Z
0;Z/!H1.Z;Z/; j 0� WH1.Z

0;Z/!H1.Z
0;Z/
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induced respectively by the morphisms

j WZ0 ,!Z; j 0 WZ0
!Z0:

As Z nZ0 consists of smooth points of Z, the map j� WH1.Z
0;Z/!H1.Z;Z/ is

surjective, and we conclude that

Imf� ıp� D Imf 0
� ıp0�

� Imf 0� ıp0
�
;

and this finishes the proof since Z0 is smooth.

It remains to show that we can achieve .�/. This is proved in the following lemma.
First of all, we observe that after replacing X by X �P r — which does not change H3

since, by rational connectedness, H1.X;Z/D 0 — we can assume the map fz WYz!X

to be an embedding for all z 2Z. In particular all maps are stable. Then we have:

Lemma 2.18 Let p W Y !Z, f W Y !X be a family of semistable curves embedded
in X , parametrized by a reduced curve Z. There exists a Zariski open set Z0 j

,�!Z

such that Z nZ0 consists of smooth points of Z and a family Qp0 W zY 0 ! Z0 and
Qf 0 W zY 0!X of semistable curves in X parametrized by Z0 such that

(i) the fibers Qfz W
zY 0
z !X are stable maps with unobstructed deformations;

(ii) the cylinder map

(46) Qf 0
� ı . Qp

0/� WH1.Z
0;Z/!H3.X;Z/

coincides with the composition f� ıp� ı j�.

Proof We first choose a general sufficiently ample hypersurface W in X . There exists
a Zariski open set Z0

1
�Z, which we can assume to contain the singular points of Z,

such that W meets the fibers of p only in smooth distinct points xi for i D 1; : : : ;N .
Furthermore, attaching to the fibers Yz a complete intersection curve Ci in X at each
of these intersection points, and restricting again Z0

1
, we can assume (see [8; 9])

that the curves Ci are smooth and disjoint, and the curves Yz;1 D Yz [ Cz , where
Cz WD

S
i Ci �X , are semistable and satisfy

(47) H 1.Yz;NYz;1=X jYz
/D 0:

The family of curves

(48) f 0
1 W Y

0
1 !X; p0

1 W Y
0
1 !Z0

1
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so constructed has the same cylinder homomorphism map (46) as the original family,
since the part of the cylinder homomorphism coming from the Ci is easily seen to be
trivial.

Unfortunately, the modified family is not unobstructed because the vanishing condition
(47) is satisfied only after restriction to Yz , and not on the whole of Yz;1. We use
now rational connectedness which allows us to glue very free rational curves to the
components Ci . We first do this over a dense Zariski open set M 0 of the parameter
space M parametrizing the disjoint union of N complete intersection curves Ci . This
construction modifies each curve D D

S
i Ci into a union D0 D

S
i C 0i of Ci and

very free rational curves, satisfying the property that H 1.D0;ND0=X /D 0. Then we
consider the morphism

� WZ0
1 !M; z 7! Cz;

appearing in the previous construction. We can assume that M 0 contains �.Sing Z0
1
/,

so that, letting Z0 WD ��1.M 0/, we can construct the family

(49) Qp0
W zY 0
!Z0; Qf 0

W zY 0
!X

by gluing to the curves Yz the curves C 0i instead of Ci . The cylinder homomorphism
map for the family (49) is the same as the cylinder homomorphism map (46) for the
family (48) because the extra part coming from the rational legs has its cylinder map
factoring through the cylinder map associated to the family of curves D0 over M 0,
which is trivial since M 0 is smooth and rational.

The proof of Theorem 2.17 is now complete.

We can now prove our main theorem.

Theorem 2.19 Let X be a rationally connected smooth projective manifold of dimen-
sion n over C. Then N n�2H 2n�3.X;Z/tf D zN n�2H 2n�3.X;Z/tf.

When nD 3, one has N 1H 3.X;Z/DH 3.X;Z/, so Theorem 0.2 is proved.

Proof of Theorem 2.19 Let X be smooth projective and rationally connected. By
Corollary 2.8, one has

(50) N n�2H 2n�3.X;Z/tf DN1;cyl;stH
2n�3.X;Z/tf:

By Theorem 2.17, one also has

(51) N1;cyl;stH
2n�3.X;Z/tf D zN1;cylH

2n�3.X;Z/tf:
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Equations (50) and (51) imply that N n�2H 2�3.X;Z/tfD zN1;cylH
2n�3.X;Z/tf, where

the last group is also equal to zN n�2H 2n�3.X;Z/tf by Proposition 1.3. The result is
proved.

3 Complements and final comments

The following important questions concerning the (strong or cylinder) coniveau for
rationally connected manifolds remain completely open starting from dimension 4. As
we already mentioned in the case of dimension 3, it follows from the results of [6] that,
for a rationally connected complex projective manifold X ,

N 1H k.X;Z/DH k.X;Z/

for any k > 0. Indeed, the quotient H k.X;Z/=N 1H k.X;Z/ is of torsion because X

has a decomposition of the diagonal with Q–coefficients, and, on the other hand, when
X is smooth quasiprojective, H k.X;Z/=N 1H k.X;Z/ is torsion free by [6].

Question 3.1 Let X be a rationally connected complex projective manifold of dimen-
sion n. Is it true that

zN 1H k.X;Z/DH k.X;Z/

for k > 0?

Of course, this question is open only starting from k D 3. Our main result solves this
question when dim X D 3 and for the cohomology modulo torsion. In dimension 3, it
leaves open the question, also mentioned in [2], whether, for a rationally connected
threefold X , we have the equality H 3.X;Z/D zN 1H 3.X;Z/.

Question 3.2 Let X be a rationally connected complex projective manifold of dimen-
sion n. Is it true that

N1;cylH
k.X;Z/DH k.X;Z/

for k < 2n?

These questions are not unrelated, due to the results of Section 1. For example, in degree
k D 3, a positive answer to Question 3.1 even implies the much stronger statement that
zNn�2;cylH

3.X;Z/DH 3.X;Z/ by Proposition 1.3. In degree kD 2n�2, Question 3.2
is equivalent to asking whether H2.X;Z/ is algebraic, a question that has been studied
in [17], where it is proved that this would follow from the Tate conjecture on divisor
classes on surfaces over a finite field.
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Another question concerns possible improvements of Theorem 2.17.

Question 3.3 Let X be a rationally connected smooth projective manifold of dimen-
sion n over C. Is it true that

(52) N1;cylH
k.X;Z/DN1;cyl;stH

k.X;Z/D zN1;cylH
k.X;Z/

for any k?

We believe that the proof of Theorem 2.17 should work by the same smoothing argument
for the cohomology of any degree. The difficulty that one meets here is that, while
we had before a singular curve in the moduli space of stable maps f to X and only
needed to modify the fibers fz in a Zariski open neighborhood of the singular points
of C so as to make them unobstructed, one would need to do a similar construction for
a higher-dimensional variety Z with a possibly positive-dimensional singular locus. In
this direction, let us note the following generalization of Theorem 2.17:

Proposition 3.4 Let X be a smooth projective rationally connected manifold of
dimension n and let Z be a variety of dimension n� 2 with isolated singularities. Let

f W Y !X; p W Y !Z

be a family of stable maps with value in X parametrized by Z. Then , for any k,

Im.f� ıp� WHk�2.Z;Z/!Hk.X;Z//

is contained in zN1;cylH
2n�k.X;Z/.

For k D n, Im.f� ıp� WHn�2.Z;Z/!Hn.X;Z// is contained in zN 1H n.X;Z/.

Proof The second statement is implied by the first using Lemma 1.2. Using the fact
that the singularities of Z are isolated, we apply the same construction as in the proof
of Theorem 2.17 of gluing very free curves to the fiber fz W Yz!X , getting a modified
family

(53) f 0 W Y 0!X; p0 W Y 0!Z0

of stable maps to X parametrized by a variety Z0 �
�!Z which is birational to Z and

isomorphic to Z near Sing Z with the following properties:

(a) The cylinder homomorphism f 0� ıp0
�
WHk�2.Z

0;Z/!Hk.X;Z/ coincides
with f� ıp� ı ��.
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(b) The moduli space M of stable maps to X is smooth at any point f 0z W Y
0
z !X ,

where z is a singular point of Z0 (or equivalently Z), and hence at the point f 0z
for z general in Z0.

We now conclude as follows: First of all, we reduce to the case where the maps are
embeddings (for example by replacing X by X � P r ), so that the stable maps are
automorphism-free. We then consider the universal deformation of f 0z for z 2Z0 given
by a family of automorphism-free stable maps

(54) fM W YM !X; pM W YM !M

parametrized by M . Using the automorphism-free assumption, we have a classifying
morphism g WZ0!M such that the family (53) is obtained from the family (54) by
base change under g. We know that M is smooth near g.Sing Z0/, so we can introduce
a desingularization zM of M , and a modification � 0 W zZ0!Z0 which is an isomorphism
over Sing Z0, such that the rational map g WZ0Ü zM induces a morphism

Qg W zZ0! zM :

Over the desingularized moduli space zM , we have the pulled-back family

(55) QfM W Y zM !X; QpM W Y zM !
zM ;

and, over zZ0, we have the family

(56) Qf 0 W zY 0!X; Qp0 W zY 0! zZ0;

which is deduced either from (55) by base-change under Qg or from (53) by base-change
under � 0. We conclude that

Qf 0� ı . Qp
0/� D QfM� ı Qp

�
M ı Qg� WHk�2. zZ

0;Z/!Hk.X;Z/;

and, as zM is smooth, Im Qf 0� ı . Qp
0/� � zN1;cylHk.X;Z/. Finally, we also have by (a)

Qf 0� ı . Qp
0/� D f� ıp� ı .� ı � 0/� WHk�2. zZ

0;Z/!Hk.X;Z/;

and, as � ı � 0 W zZ0!Z is proper birational and an isomorphism over Sing Z, the map

.� ı � 0/� WHk�2. zZ
0;Z/!Hk�2.Z;Z/

is surjective. It follows that Imf� ıp� � zN1;cylHk.X;Z/.

Our last question concerns the representability of the Abel–Jacobi isomorphism for
1–cycles on rationally connected threefolds (we refer here to [1] for a general discussion
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of the motivic nature of J 3.X /). As discussed in Section 2.1, another way of stating
Theorem 0.2 or its generalization, Theorem 2.19, is to say that, if X is a rationally
connected manifold of dimension n, there exists a curve C and a codimension n� 1

cycle Z 2 CHn�1.C �X / such that the lifted Abel–Jacobi map

ẑZ W J.C /! J.N n�2H 2n�3.X;Z/tf/

is surjective with connected fibers. (For nD 3, we already noted that N 1H 3.X;Z/tfD

H 3.X;Z/tf.)

Note that it was proved in [18] that, even for X rationally connected of dimension 3,
there does not necessarily exist a universal codimension n� 1 cycle

Zuniv 2 CHn�1.J.N n�2H 2n�3.X;Z/tf/�X /

such that the induced lifted Abel–Jacobi map

ẑZ W J.N
n�2H 2n�3.X;Z/tf/! J.N n�2H 2n�3.X;Z/tf/

is the identity. However, the following question remains open:

Question 3.5 Let X be a rationally connected manifold of dimension n. Does there
exist a smooth projective manifold M and a codimension n� 1 cycle

ZM 2 CHn�1.M �X /

such that the map

ẑZM
W Alb M ! J.N n�2H 2n�3.X;Z/tf/

is an isomorphism?

In practice, the answer is yes for Fano threefolds, at least for generic ones. For example,
one can use the Fano surface of lines for the cubic threefold [5], and similarly for the
quartic double solid [22]. For quartic threefolds, the surface of conics works [10].

The motivation for asking this question is the following:

Proposition 3.6 If X admits a cohomological decomposition of the diagonal (in
particular if X is stably rational ), there exists a smooth projective manifold M and a
codimension n� 1 cycle

ZM 2 CHn�1.M �X /

such that the Abel–Jacobi map

ẑZM
W Alb M ! J.H 2n�3.X;Z/tf/

is an isomorphism.
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(Note that N n�2H 2n�3.X;Z/tf DH 2n�3.X;Z/tf under the same assumption.)

Proof of Proposition 3.6 It follows from Theorem 1.6 that there exists a (not nec-
essarily connected) smooth projective variety Z of dimension n� 2 and a family of
1–cycles

� 2 CHn�1.Z �X /

such that
�� W Alb.Z/! J.H 2n�3.X;Z/tf/

is surjective with a right inverse � 0� W J.H 2n�3.X;Z/tf/!Alb.Z/. We now have the
following lemma:

Lemma 3.7 Let Z be a smooth projective variety of dimension n� 2 and A� Alb Z

be an abelian subvariety. Then there exists a smooth projective variety Z0 and a 0–
correspondence 
 02CHn�2.Z0�Z/ inducing an isomorphism 
 0� WAlb Z0ŠA�Alb Z.

Proof Suppose first that Z is connected of dimension 1. Then, for N large enough,
the Abel map

f WZ.N /
! Alb.Z/

is a projective bundle. Now let Z0 WD f �1.A/. One has Alb.Z0/ŠA, and we can take
for 
 0 the restriction to Z0�Z of the natural incidence correspondence I �Z.N /�Z.

For the general case, we quickly reduce, using the Lefschetz theorem on hyperplane
sections, to the case where Z is a connected surface. Then we consider a Lefschetz
pencil zZ ! P1 of ample curves on Z. Let Z0 be a smooth projective model of
Pic0. zZ=P1/. Then Z0 is birational to Pic1. zZ=P1/ using one of the basepoints, and
thus admits a natural correspondence 
 2 CH2.Z0 �

zZ/. It is immediate to check that


� W Alb.Z0/! Alb.Z/

is an isomorphism. Let a WZ0!Alb.Z0/ be the Albanese map. We claim that, denoting
Z0u WD a�1.Au/, where Au is a generic translate of A in Alb.Z/, Z0u is smooth and

Alb.Z0u/ŠA:

As Z0 and Au are smooth, the smoothness of a�1.Au/ for a general translate Au of A

follows from standard transversality arguments. For the second point, we observe
that, by definition, a Zariski open set of Z0 is fibered over P1 into Jacobians J. zZt /

for t 2 P1, and that the natural map J. zZt /! Alb.Z/D Alb. zZ/ has connected fiber
isomorphic to J.Ker.H 1. zZt ;Z/ ! H 3. zZ;Z/tf//. Here the connectedness of the
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fibers indeed follows from the Lefschetz theorem on hyperplane sections, which says
that the Gysin morphism

H 1. zZt ;Z/!H 3. zZ;Z/tf

is surjective (see Section 1). It follows that a Zariski open set of Z0u is fibered over
P1 �Au into connected abelian varieties J

�
Ker.H 1. zZt ;Z/!H 3. zZ;Z/tf/

�
. On the

other hand, by the Deligne global invariant cycle theorem, there is no nonconstant
morphism from J.Ker.H 1. zZt ;Z/!H 3. zZ;Z/tf// to a fixed abelian variety. It follows
that Alb Zu DA.

Finally, we have Z0u �Z0 and Z0 has a natural correspondence to Z, so combining
both we get a natural correspondence 
 0 between Z0u and Z, inducing the morphism

Alb.Z0u/ŠA� Alb Z:

Then � ı 
 0 produces the desired correspondence.

We apply this lemma to A WD Im.�� W J.H 2n�3.X;Z/tf/! Alb.Z//. We thus get a
smooth projective variety Z0 with Albanese variety isomorphic to J.H 2n�3.X;Z/tf/

and cycle � 0 WD � ı 
 0 2 CHn�1.Z0 �X /, which induces the isomorphism

�� ı 
� W Alb Z0 Š J.H 2n�3.X;Z/tf/:
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