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0 Introduction

Let X be a smooth complex projective variety of dimension n. The Hodge conjecture
is then true for rational Hodge classes of degree 2n−2, that is, degree 2n−2 rational
cohomology classes of Hodge type (n − 1, n − 1) are algebraic, which means that
they are the cohomology classes of algebraic cycles with Q-coefficients. Indeed, this
follows from the hard Lefschetz theorem, which provides an isomorphism:

∪c1(L)n−2 : H2(X,Q) ∼= H2n−2(X,Q),

from the fact that the isomorphism above sends the space of rational Hodge classes
of degree 2 onto the space of rational Hodge classes of degree 2n− 2, and from the
Lefschetz theorem on (1, 1)-classes.

For integral Hodge classes, Kollár [11], (see also [14]) gave examples of smooth
complex projective manifolds which do not satisfy the Hodge conjecture for integral
degree 2n − 2 Hodge classes, for any n ≥ 3. The examples are smooth general
hypersurfaces X of certain degrees in Pn+1. By the Lefschetz restriction theorem,
such a variety satisfies

H2(X,Z) = ZH, H = c1(OX(1)),

and
H2n−2(X,Z) = Zα, < α,H >= 1.

Plane sections C of X have cohomology class [C] = dα, d = deg X, because

deg C = d =< [C],H > .

Kollár [11] proves the following :

Theorem 1 Assume the degree d of X satisfies the property that pn divides d, for
some integer p coprime to n!. Then for a general X, any curve C in X has degree
divisible by p, hence its cohomology class is a multiple of pα. Thus the class α is not
algebraic, that is, it is not the cohomology class of an algebraic cycle with integral
coefficients.
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The condition on the degree makes the canonical bundle of X very ample, since
the smallest possible degree available by this construction is ≥ 2n. It is thus natural
to try to understand whether this is an artificial consequence of the method of
construction, or whether the positivity of the canonical bundle is essential.

Another reason to ask whether one could find examples above with Kodaira
dimension equal to −∞ is the remark made in [14] :

Lemma 1 Let X be a smooth rational complex projective manifold. Then the Hodge
conjecture is true for integral Hodge classes of type (n− 1, n− 1).

(Note that the whole degree 2n−2 cohomology of such an X is of type (n−1, n−1),
so the statement is that classes of curves generate H2n−2(X,Z) for a rational variety
X.)

One can thus ask whether this criterion could be used to produce new examples
of unirational or rationally connected, but non rational varieties (we refer to [5],
[1],[9] for other criteria). Namely, it would suffice to produce a smooth projective
rationally connected variety which does not satisfy the Hodge conjecture for degree
2n − 2 integral cohomology classes. The main result of this paper implies that in
dimension 3, this cannot be done:

Theorem 2 Let X be a smooth complex projective threefold which either is uniruled,
or satisfies

KX
∼= OX , H2(X,OX) = 0.

Then the Hodge conjecture is true for integral degree 4 Hodge classes on X.

Remark 1 Recall [12] that a complex projective threefold is uniruled, that is swept
out by rational curves, if and only if it has Kodaira dimension equal to −∞. Thus
our condition is that either κ(X) = −∞ or KX = OX and H2(X,OX) = 0.

Note that as an obvious corollary, we get the following:

Corollary 1 Let X be a smooth complex projective n-fold. Assume X contains a
subvariety Y which is a smooth 3-dimensional complete intersection of ample divi-
sors, and satisfies one of the conditions in Theorem 2. Then the Hodge conjecture
is true for integral degree 2n− 2 Hodge classes on X.

Indeed, let j be the inclusion of Y into X. By Lefschetz restriction theorem, the
map

j∗ : H4(Y,Z) = H2(Y,Z) → H2(X,Z) = H2n−2(X,Z)

is an isomorphism. Thus the Hodge conjecture for integral Hodge classes of degree
4 on Y implies the Hodge conjecture for integral Hodge classes of degree 2n− 2 on
X.

Note that in higher dimensions, there are two possible generalizations of the
problem studied above. Namely, one can study the Hodge conjecture for integral
Hodge classes in degree 4 or 2n−2. Both problems are birationally invariant, in the
sense that the two groups

Hdg4(X,Z)/ < [Z] >, Hdg2n−2(X,Z)/ < [Z] >,
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where < [Z] > denotes the subgroups generated by classes of algebraic cycles with
integral coefficients, are birational invariants of a smooth complex projective man-
ifold X of dimension n (see [14]). For both problems, it is clear that the assump-
tion “uniruled” will not be sufficient in higher dimension to guarantee that the
groups above vanish. Indeed, starting from one of Kollár’s 3-dimensional example
X, α ∈ H4(X,Z), with α a non-algebraic integral Hodge class (Theorem 1), we can
consider the product

Y = X × P1,

and both classes
pr∗1α, pr∗1α ∪ pr∗2([pt])

in degree 4 and 6 = 2n− 2 respectively will give examples of non-algebraic integral
Hodge classes. However, one could ask whether the analogue of Theorem 2 holds
for X rationally connected, and for integral Hodge classes of degree 4 or 2n− 2 on
X, n = dimX.

The proof of Theorem 2 uses the Noether-Lefschetz locus for surfaces S in an
adequately chosen ample linear system on X. This leads to simple criteria which
guarantee that integral degree 2 cohomology classes on a given S are generated
over Z by those which become algebraic on some small deformation St of S. The
Lefschetz hyperplane section Theorem allows then to conclude.

In section 1, we state this criterion, which is an algebraic criterion concern-
ing the infinitesimal variation of Hodge structure on H2(S), for varieties X with
H2(X,OX) = 0. In section 2, we prove that this criterion is satisfied for uniruled
or K-trivial varieties with trivial H2(X,OX). In the case of K-trivial varieties, the
criterion had been also checked in [16], but the proof given here is substantially
simpler. In section 3, a refinement of this criterion for uniruled threefolds with
H2(X,OX) 6= 0 is given and proven to hold for an adequate choice of linear system.

Thanks. This work was started during the very interesting conference “Arith-
metic Geometry and Moduli Spaces. It is a pleasure to thank the organizers for the
nice atmosphere they succeeded to create. I also wish to thank S. Mori for his help
in the proof of Lemma 4 and J. Starr for interesting discussions on related questions.

1 An infinitesimal criterion

Let X be a smooth complex projective n-fold. Let j : S ↪→ X be a surface which is
a smooth complete intersection of ample divisors. Thus by Lefschetz theorem, the
Gysin map:

j∗ : H2(S,Z) → H2n−2(X,Z)

is surjective.
We assume that the Hilbert schemeH of deformations of S in X is smooth near S.

This is the case if S is a smooth complete intersection of sufficiently ample divisors.
The space H0(S,NS/X) is the tangent space to H at S. Let ρ : H0(S, NS/X) →
H1(S, TS) be the Kodaira-Spencer map, which is the classifying map for the first
order deformations of the complex structure on S induced by the universal family
π : S → H of surfaces parameterized by H.
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For u ∈ H1(S, TS) we have the interior product with u:

uy : H1(S, ΩS) → H2(S,OS).

The criterion we shall use is the following:

Proposition 1 Assume there exists a λ ∈ H1(S, ΩS) such that the map

µλ : H0(S, NS/X) → H2(S,OS), (1.1)
µλ(n) = ρ(n)yλ,

is surjective. Then any class α ∈ H2n−2(X,Z) is algebraic.

Remark 2 Our assumptions imply immediately that the cohomology H2n−2(X,C)
is of type (n − 1, n − 1). Indeed, this last fact is equivalent to the vanishing of the
space Hn(X, Ωn−2

X ). On the other hand, interpreting the map µλ above in terms
of infinitesimal variations of Hodge structures on the degree 2 cohomology of the
surfaces St parameterized by H, one sees that Im µλ is contained in

Ker (j∗ : H2(S,OS) → Hn(X, Ωn−2
X )).

Thus the assumptions imply that this last map j∗ is 0, and as it is surjective by
Lefschetz theorem, it follows that Hn(X, Ωn−2

X ) = 0.

Remark 3 The assumption of Proposition 1 is exactly the assumption of Green’s
infinitesimal criterion for the density of the Noether-Lefschetz locus (see [19], 5.3.4),
which allows to conclude that real degree 2 cohomology classes on S can be approx-
imated by rational algebraic cohomology classes on nearby fibers St. It had been
already used in [17], [18] to construct interesting algebraic cycles on Calabi-Yau
threefolds.

Proof of Proposition. We refer to [19], chapter 5, for more details on infinitesimal
variations of Hodge structures. On a simply connected neighborhood U in H of the
point 0 ∈ H parameterizing S ⊂ X, the restricted family

π : SU → U

is differentiably trivial, and in particular the local system

H2
Z := R2π∗Z/torsion

is trivial. Thus the locally free sheaf

H2 := H2
Z ⊗OU

is canonically trivial, and denoting by H2 the corresponding vector bundle on U , we
get a canonical isomorphism

H2 ∼= U ×H2(S,C),

since the fiber of H2 at 0 is canonically isomorphic to H2(S,C). Composing with
the second projection gives us a holomorphic map

τ : H2 → H2(S,C),
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which on each fiber H2
t = H2(St,C) is the natural identification

H2(St,C) ∼= H2(S,C).

Next the vector bundle H2 contains a holomorphic subbundle F 1H2, which at the
point t ∈ U has for fibre the subspace

F 1H2(St) := H2,0(St)⊕H1,1(St) ⊂ H2(St,C).

We shall denote by
τ1 : F 1H2 → H2(S,C)

the restriction of τ to F 1H2.
The key point is the following fact, for which we refer to [19]??:

Lemma 2 For λ ∈ H1(St, ΩSt), choose any lifting λ̃ ∈ F 1H2
t of λ. Then the

surjectivity of the map

µλ : H0(St, NSt/X) → H2(St,OSt)

is equivalent to the fact that the map τ1 is a submersion at λ̃.

Having this, we conclude as follows: First of all, we observe that the assumption
of Proposition 1 is a Zariski open condition on λ ∈ H1(S, ΩS). Now, the space
H1(S, ΩS) = H1,1(S) has a real structure, namely

H1,1(S) = H1,1(S)R ⊗ C,

where H1,1(S)R = H1,1(S) ∩ H2(S,R). Thus if the assumption is satisfied for one
λ ∈ H1,1(S), it is satisfied for one real λ ∈ H1,1(S)R.

In the Lemma above, choose for lifting λ̃ the class λ itself. Thus λ̃ is real, and
so is τ1(λ̃). As the assumption on λ and the Lemma imply that τ1 is a submersion
at λ̃, so is the restriction

τ1,R : H1,1
R → H2(S,R)

of τ1 to τ−1
1 (H2(S,R)). Here we identified τ−1

1 (H2(S,R)) to

∪t∈UF 1H2(St) ∩H2(St,R) = ∪t∈UH1,1(St)R =: H1,1
R .

As τ1,R is a submersion at λ̃, and H1,1(S)R is a smooth real manifold, because it is a
real vector bundle on U and U is smooth, Im τ1,R contains an open set of H2(S,R).
On the other hand Im τ1,R is a cone. We use now the following elementary Lemma:

Lemma 3 Let VZ be a lattice, and let C be an open cone in VR := VZ ⊗ R. Then
VZ is generated over Z by the points in VZ ∩ C.

We apply Lemma 3 to VZ = H2(S,Z)/torsion and to C = Im τ1,R. Thus we
conclude that H2(S,Z)/torsion is generated over Z by classes α ∈ Im τ1,R. But by
definition of τ1, if α = τ1,R(λt), for some λt ∈ H1,1(St)R, the corresponding class
αt ∈ H2(St,Z)/torsion identifies to λt in H2(St,R). Thus the class

λt ∈ H1,1(St)R ⊂ H2(St,R)
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is in fact integral, hence it is algebraic by Lefschetz theorem on (1, 1)-classes.
The conclusion is that, under the assumptions of Proposition 1, the lattice

H2(S,Z)/torsion is generated over Z by integral classes which become algebraic
(i.e. are the class of a divisor) on some nearby fiber St. As the torsion of H2(S,Z)
is algebraic, the same conclusion holds for H2(S,Z).

Finally, as the map j∗ : H2(S,Z) → H2n−2(X,Z) is surjective, we conclude that
H2n−2(X,Z) is generated over Z by classes of 1-cycles in X.

2 Proof of Theorem 2 when H2(X,OX) = 0

In this section, we assume that H2(X,OX) = 0 and X either has trivial canonical
bundle or is uniruled.

In case where X is uniruled, we have the following result:

Lemma 4 Let X be a uniruled threefold. Then a smooth birational model X ′ of X
carries an ample line bundle H such that

H2KX′ < 0.

Proof. As X is uniruled, X is birationally equivalent to a Q-Gorenstein threefold
Y which is either a singular Fano threefold, or a Del Pezzo fibration over a smooth
curve, or a conic bundle over a Q-Gorenstein surface. Let us first prove the existence
of an ample line bundle HY on Y such that KY H2

Y < 0:
a) If Y is Fano, −KY is ample, so we can take for HY an integral multiple of

−KY .
b) Otherwise there is a morphism

π : Y → B,

where B is Q-Gorenstein of dimension 1 or 2, and the relative canonical bundle Kπ

has the property that −Kπ is a relatively ample Q-divisor. Let HB be an ample line
bundle on B, and choose for HY the Q-divisor

HY = π∗HB − εKπ,

where ε is a small rational number. As −Kπ is relatively ample, HY is ample for
small enough ε. We compute now:

H2
Y KY = (π∗HB − εKπ)2(π∗KB + Kπ)

= π∗H2
BKπ − 2εKππ∗HB(π∗KB + Kπ) + O(ε2).

If dimB = 2, the term π∗H2
BKπ is negative, so that for small ε, H2

Y KY < 0. If
dimB = 1, the first term vanishes but the second term is equal to −2εK2

ππ∗HB and
this is negative because −Kπ is relatively ample.

Let now Y, HY be as above, and let τ : X ′ → Y be a desingularization of Y .
Thus X ′ is a smooth birational model of X. Then there is a relatively ample divisor
E on X ′ which is supported on the exceptional divisor of τ . Consider the Q-divisor

H = τ∗HY + εE,
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for ε a sufficiently small rational number. Then we have KX′ = τ∗KY + F where F
is supported on the exceptional divisor of τ . This gives

H2KX′ = (τ∗HY + εE)2(τ∗KY + F ).

As τ∗H2
Y F = 0, the dominating term is equal to τ∗H2

Y τ∗KY = H2
Y KY < 0. Thus

for small ε we have H2KX′ < 0.

From now on, we will, in the uniruled case, consider X ′ instead of X, which can
be done since the statement of Theorem 2 is invariant under birational equivalence,
and we will assume that H satisfies the conclusion of Lemma 4.

Our aim in this section is to prove the following Proposition, which by Proposi-
tion 1 implies Theorem 2 for uniruled and Calabi-Yau threefolds X with H2(X,OX) =
0.

Proposition 2 Let X be a smooth projective uniruled or Calabi-Yau threefold such
that H2(X,OX) = 0. Let H be an ample line bundle on X. In the uniruled case,
assume that H satisfies H2KX < 0. Then for n large enough, and for S a generic
surface in | nH |, there is a λ ∈ H1(S, ΩS) which satisfies the property that

µλ : H0(S,OS(nH)) → H2(S,OS)

is surjective.

To see that this is a reasonable statement, note that in the K-trivial case, the spaces
H0(S,OS(nH)) and H2(S,OS) have the same dimension, since, if S ∈| nH |, we
have by adjunction

H0(S, KS) = H0(S,OS(S)) = H0(S, NS/X),

with H0(S,KS) = H2(S,OS)∗. Thus the two spaces involved in Proposition 2 have
the same dimension. In the uniruled case, we have:

Lemma 5 Assume X, H satisfies H2KX < 0, then for S ∈| nH |, we have

h0(OS(S)) = h0(KS) + φ(n),

where φ(n) = αn2 + o(n2), α > 0.

Proof. We have KS = KX(S)|S . Thus

χ(OS(S)) = χ(KS(−KX))

= χ(KX |S) = χ(OS) +
1
2
(K2

X|S −KX|S(KX|S + nH|S))

= χ(KS) +
1
2
(nHK2

X − nHKX(nH + KX)).

It follows that

χ(OS(S))− χ(KS) = −1
2
n2H2KX + affine linear term in n.
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On the other hand, for large n, the ranks

h1(OS(S)) = h2(OX), h2(OS(S)) = h3(OX),

h1(KS) = h1(OS) = h1(OX), h2(KS) = C

do not depend on n. It follows that we also have

h0(OS(S))− h0(KS) = −1
2
n2H2KX + affine linear term in n,

which proves the result with α = −1
2H2KX > 0.

By this Lemma, we conclude that in the K-trivial case and in the uniruled case,
we can assume that we have for n large enough, and S ∈| nH |,

h0(NS/X) = h0(S,OS(S)) ≥ h0(KS) = h2(OS).

This makes possible the surjectivity of the map

µλ : H0(S, NS/X) → H2(S,OS)

of (1.1), and also says that µλ is surjective if and only if it has maximal rank.
Another way to see this is to introduce

V := H0(S, KS), V ′ := H0(S,NS/X).

The bilinear map

µ : V × V ′ → H1(S, ΩS), (2.2)
µ(v, v′) = ρ(v′)yv

and Serre’s duality H1(S, ΩS) ∼= H1(S, ΩS)∗ give a dual map

q = µ∗ : H1(S, ΩS) → (V ⊗ V ′)∗ = H0(P(V )× P(V ′),O(1, 1)),

given by
q(λ)(v ⊗ v′) =< λ, µ(v × v′) > .

As we have
< λ, ρ(v′)yv >= − < ρ(v′)yλ, v >,

where the <,> stand for Serre’s duality on H1(S, ΩS) on the left and between
H0(S,KS) and H2(S,OS) on the right, we see that q(λ) identifies to µλ ∈ Hom (V, V ′∗).

Thus the condition that µλ has maximal rank for generic λ is equivalent to the
condition that the hypersurface of P(V )× P(V ′) defined by q(λ) is non singular.

We shall use the following criterion:

Lemma 6 Given µ as in (2.2), the generic hypersurface defined by q(λ) is non
singular if the following set

Z = {(v1, v2) ∈ P(V )× P(V ′), µ(v1 × v2) = 0 in H1(S, ΩS)} (2.3)

satisfies
dimZ < dimP(V ′).
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Proof. Assume to the contrary that the generic q(λ) is singular. Let

Z ′ ⊂ P(H1(S, ΩS))× P(V ),

Z ′ = {(λ, v), q(λ) is singular at (v, v′) for some v′ ∈ P(V ′)}.
By assumption Z ′ dominates P(H1(S, ΩS)). Clearly there is only one irreducible
component Z ′g of Z ′ which dominates P(H1(S, ΩS)). Let Z ′1 be the second projection
of Z ′g in P(V ).

As Z ′g dominates P(H1(S, ΩS)) we have

dimZ ′g ≥ rk H1(S, ΩS)− 1.

On the other hand, the fiber of Z ′g over the generic point vg of Z ′1 is equal to

µ(vg × V ′)⊥.

Thus we have
dimZ ′g = dimZ ′1 + rk H1(S, ΩS)− 1− rk µvg ,

where µvg : V ′ → H1(S, ΩS) is the map v′ 7→ µ(vg × v′).
The condition dimZ ′g ≥ rk H1(S, ΩS)− 1 is thus equivalent to

dimZ ′1 ≥ rk µvg . (2.4)

But on the other hand, the unique irreducible component Z0 of Z ′1 which dominates
Z ′1 has dimension equal to dimZ ′1 + dimP(V ′)− rk µvg and inequality (2.4) implies
that this is ≥ dimP(V ′).

Our first task will be thus to study the set Z introduced in (2.3). To this effect,
we degenerate the surface S ∈| nH | to a surface with many nodes. The reason for
doing that is the following fact (cf [16]):

Lemma 7 Let S → ∆ be a Lefschetz degeneration of surfaces St ∈| nH |, where
the central fiber has ordinary double points x1, . . . , xN as singularities. Then the
limiting space

lim
t→0

Im (qt : H1(St, ΩSt) → (H0(St,KSt)⊗H0(St,OSt(nH)))∗)

which is a subspace of (H0(S0,KS0) ⊗ H0(S0,OS0(nH)))∗ contains for each i =
1, . . . , N the multiplication-evaluation map which is the composite:

H0(S0,KS0)⊗H0(S0,OS0(nH)) → H0(S0,KS0(nH)) → H0(KS0(nH)|xi
).

To get surfaces with many nodes, we use discriminant surfaces as in [2]. We assume
here that H is very ample on X, and we consider a generic symmetric n by n matrix
A whose entries Aij are in H0(X,OX(H)). Let σA := discr A ∈ H0(X,OX(nH))
and SA be the surface defined by σA.

Theorem 3 (Barth [2]) The surface SA has N ordinary double points as singular-
ities, with

N =
(

n + 1
3

)
H3.
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Note that for large n, this grows like n3

6 H3 while both dimensions h0(KS), h0(OS(nH))
of the spaces V, V ′ grow like h0(OX(nH)), that is like n3

6 H3 by Riemann-Roch.
Next we have the following Proposition, which might well be known already, but

for which we could not find a reference:

Proposition 3 Let X be a smooth projective threefold, and H a very ample line
bundle on X which satisfies the property that H i(X,OX(lH)) = 0 for i > 0, l > 0.
Let SA ∈| nH | be a generic discriminant surface as above, and let W ⊂ X be its
singular set. Then the cohomology group H1(X, IW ((n + 2)H)) vanishes.

Proof. Let G = Grass(2, n) be the Grassmannian of 2-dimensional vector subspaces
of K := Cn. The matrix A as above can be seen as a family of quadrics Ax on P(K)
parameterized by x ∈ X, the surface SA corresponds to singular quadrics and the
singular set W parameterizes quadrics of rank n − 2. Thus W is via the second
projection in one-to-one correspondence with the following algebraic set:

W̃ := {(l, x) ∈ G×X,Ax is singular along l}.

Let E be the tautological rank 2 quotient bundle on G, whose fiber at l is H0(O∆l
(1)).

E is a quotient of K∗ ⊗OG, and there is the natural map

e : S2K∗ ⊗OG → K∗ ⊗ E .

Let

F := Im e. (2.5)

Clearly, a quadric A ∈ S2K∗ on P(K) is singular along ∆l if and only if it vanishes
under the map e at the point l. Thus the set W̃ is the zero locus of a section of the
vector bundle

F £OX(H)

which is of rank 2n−1 on G×X. Note that the cokernel of e identifies to
∧2 E =: L

where L is the Plücker line bundle on G. Thus we have an exact sequence

0 → F → K∗ ⊗ E → L → 0 (2.6)

on G.
As W̃ is the zero set of a transverse section of a rank 2n − 1 vector bundle on

G×X, its ideal sheaf admits the Koszul resolution:

0 →
2n−1∧

F∗ £OX((−2n + 1)H) → . . . → F∗ £OX(−H) → I
W̃
→ 0.

Thus the space H1(X, IW ((n + 2)H)) = H1(G × X, I
W̃
⊗ pr∗2((n + 2)H)) is the

abutment of a spectral sequence whose E1-term is equal to

H i(G×X,
i∧
F∗ £OX((n + 2− i)H)), i ≥ 1.

By Künneth decomposition and the vanishing assumptions, these spaces split as:
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H i(G,
i∧
F∗)⊗H0(X, (n + 2− i)H), n + 2− i > 0,

H i(G,
i∧
F∗)⊗H0(X,OX)⊕H i−1(G,

i∧
F∗)⊗H1(X,OX)

⊕H i−2(G,
i∧
F∗)⊗H2(X,OX)⊕H i−3(G,

i∧
F∗)⊗H3(X,OX), i = n + 2,

H i−3(G,

i∧
F∗)⊗H3(X, (n + 2− i)H), n + 2− i < 0.

The proof of the proposition is thus concluded by the following Lemma, which implies
that the E1-terms of the spectral sequence above all vanish.

Lemma 8 On the Grassmannian G = Grass(2, n), the bundle F being defined as
in (2.5), we have the vanishings:

1. H i(G,
∧iF∗) = 0, n + 2− i ≥ 0, i ≥ 1

2. H i−1(G,
∧iF∗) = 0, n + 2− i = 0.

3. H i−2(G,
∧iF∗) = 0, n + 2− i = 0.

4. H i−3(G,
∧iF∗) = 0, n + 2− i ≤ 0, i ≥ 1.

The proof of the Lemma is postponed to an appendix.

As an immediate corollary, we get the following:

Corollary 2 Under the same assumptions as in Proposition 3, the numbers

rk H1(X, KX ⊗ IW (nH)), rk H1(X, IW (nH))

are bounded by Cn2 for some constant C.

Combining Corollary 2 with Riemann-Roch and Barth’s Theorem 3, we get the
following corollary:

Corollary 3 The spaces H0(X, KX(nH)⊗ IW ) and H0(X, IW (nH)) have dimen-
sion bounded by cn2 for some constant c.

We shall use the following consequence of the uniform position principle of Harris:

Lemma 9 Let A be generic and let W ′ ⊂ W be a subset of W = Sing SA. Then if

H0(X,KX(nH)⊗ IW ′) 6= H0(X, KX(nH)⊗ IW ),

W ′ imposes cardW ′ independent conditions to H0(X,KX(nH)). Similarly, if

H0(X,OX(nH)⊗ IW ′) 6= H0(X,OX(nH)⊗ IW ),

W ′ imposes cardW ′ independent conditions to H0(X,OX(nH)).
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Proof. Indeed, we represented in the previous proof the set W as the projection in
X of a 0-dimensional subscheme W̃ of G × X, defined as the zero set of a generic
transverse section of a very ample vector bundle F £OX(H) on G ×X. Thus the
uniform position principle [8] applies to W̃ , and allows to conclude that all subsets
of W of given cardinality impose the same number of independent conditions to
H0(X,KX(nH)) or H0(X,OX(nH)). This number is then obviously equal to

Min (cardW ′, a)

where a = rk (rest : H0(X, KX(nH))→H0(W,KX(nH)|W ))), resp.

a = rk (rest : H0(X,OX(nH))→H0(W,OW (nH)))

in the second case.

From now on, we will treat separately the uniruled and the K-trivial cases.

The uniruled case. We may assume (X, H) satisfies the inequality H2KX < 0
of Lemma 4. We want to study the set Z of (2.3) for a generic surface S ∈| nH |,
and more precisely the irreducible components Z ′ of Z which are of dimension ≥
dimP(V ′).

Degenerating S to SA and applying Lemma 7, we find that the specialization Z ′s
of Z ′ is contained in

Z0 := {(v, v′) ∈ P(VA)× P(V ′
A), vv′|W = 0},

where
VA = H0(SA,KSA

), V ′
A = H0(SA,OSA

(nH)).

Proposition 4 Z ′s is contained in the union

PH0(SA, KSA
⊗ IW )× P(V ′

A) ∪ P(VA)× PH0(SA,OSA
(nH)⊗ IW ). (2.7)

Proof. We observe that Z0 is a union of irreducible components indexed by subsets
W ′ ⊂ W , with complementary set W ′′ := W \W ′:

Z0 = ∪W ′⊂W ZW ′ , ZW ′ := PH0(SA,KSA
⊗ IW ′)× PH0(SA,OSA

(nH)⊗ IW ′′).

We use now Lemma 9: it says that if both conditions

H0(X,KX(nH)⊗ IW ′) 6= H0(X, KX(nH)⊗ IW ),

H0(X,OX(nH)⊗ IW ′′) 6= H0(X,OX(nH)⊗ IW )

hold, then W ′ imposes cardW ′ independent conditions to H0(X, KX(nH)) and W ′′

imposes cardW ′′ independent conditions to H0(X,OX(nH)). Thus the codimension
of ZW ′ in P(VA) × P(V ′

A) is equal to cardW ′ + cardW ′′ = cardW . But cardW is
equal to n(n2−1)

6 H3 by Theorem 3, while the dimension of VA = H0(SA,KSA
) ∼=

H0(X,KX(nH)) is equal to

1
6
n3H3 +

1
4
n2KXH2 + affine linear term in n

12



by Riemann-Roch.
As KXH2 < 0, we conclude that for n large enough, if W ′ is as above, we

have dimZW ′ < dimP(V ′
A). Thus, for large n, the only components of Z0 which

may have dimension ≥ dimP(V ′
A) are PH0(SA,KSA

⊗ IW ) × P(V ′
A) and P(VA) ×

PH0(SA,OSA
(nH)⊗ IW ).

Corollary 4 Assume S is generic and Z ′ ⊂ P(V )× P(V ′) is an irreducible compo-
nent of Z which has dimension ≥ dimP(V ′). Then either

i) dimpr1(Z ′) ≤ cn2 or
ii) dimpr1(Z ′) ≤ cn2,
where c is the constant of Corollary 3.

Proof. By Proposition 4, the specialization Z ′s of Z ′ is contained in the union
(2.7). As we have by Corollary 3

dimPH0(X,KX(nH)⊗ IW ) < cn2, dimPH0(X, IW (nH)) < cn2,

this implies that the cycle Z ′s satisfies:

hnc2

1 hnc2

2 [Z ′s] = 0 in H∗(P(VA)× P(V ′
A),Z),

where
h1 := pr∗1c1(OP(VA)(1)), h2 := pr∗2c1(OP(V ′A)(1)),

and [Z ′s] is the cohomology class of the cycle Z ′s.
It follows that we also have

hnc2

1 hnc2

2 [Z ′] = 0 in H∗(P(V )× P(V ′),Z). (2.8)

We claim that this implies that i) or ii) holds. Indeed, as Z ′ is irreducible of dimen-
sion ≥ 2cn2, there are well defined generic ranks k1, k2 of the projection pr1|Z′ , pr2|Z′
respectively, which are also the generic ranks of the pull-back of the (1, 1)-forms
pr∗1ω1, pr∗2ω2 to Z ′, where ωi are the Fubini-Study (1, 1)-forms on P(V ), P(V ′). As
the form

pr∗1ω
nc2

1 ∧ pr∗1ω
nc2

2

is semi-positive on Z ′, the condition (2.8) implies that everywhere on Z, we have

pr∗1ω
nc2

1 ∧ pr∗2ω
nc2

2 = 0.

As dimZ ′ ≥ 2cn2 and (pr1, pr2) is an immersion on the smooth locus of Z ′, this
implies easily that either k1 = rk pr1 or k2 = rk pr2 has to be < cn2, that is i) or
ii).

Corollary 5 With the same assumptions as in the previous corollary, if (v, v′) ∈ Z ′,
one has either

i) rk µv : V ′ → H1(S, ΩS) < cn2, or
ii) rk µv′ : V → H1(S, ΩS) < cn2,
where i) and ii) refer to the two cases of Corollary 4 and

µv(·) = µ(v ⊗ ·), µv′(·) = µ(· ⊗ v′).

13



Proof. Indeed, assume case i) of Corollary 4 holds. As dimZ ′ ≥ dimP(V ′), the
generic fibre of pr1 : Z ′ → P(V ′) has dimension > dimP(V ′)− cn2. But the generic
fibre is, by definition of Z, equal to P(Ker µv). Thus rank µv < cn2.

In case ii), we can do the same reasoning, as we have

dimZ ′ ≥ dimP(V ′) ≥ dimP(V ).

The proof that such a Z ′ does not exist, and thus, the proof of Proposition 2 in
the uniruled case, concludes now by the following two Propositions :

Proposition 5 Let S ∈| nH | be generic, with n large enough. Let c be any positive
constant. Then there exists a constant A such that the sets

Γ = {v ∈ V, rk µv < cn2}, (2.9)
Γ′ = {v′ ∈ V ′, rk µv′ < cn2}, (2.10)

both have dimension bounded by A.

Proposition 6 Let A be any positive constant. Let S ∈| nH | be generic, with n
large enough (depending on A). Then the set

B = {v ∈ V, rk µv < A}

reduces to 0.

Indeed, we know by Corollary 5 that our set Z ′ should satisfy either pr1(Z) ⊂ Γ
(case i) ) or pr2(Z) ⊂ Γ′ (case ii) ), where the · means projection to projective space.
Thus by Proposition 5, one concludes that in case i), dim pr1(Z ′) ≤ A and in case
ii), dimpr2(Z) ≤ A, where A does not depend on n.

In case ii), it follows that dimZ ≤ dimP(V )+A and as we have dimP(V )+A <
dimP(V ′) by Lemma 5, this gives a contradiction.

In case i), it follows, arguing as in the proof of Corollary 5, that for (v, v′) ∈ Z ′,
one has rk µv < A. This is impossible unless Z ′ is empty by Proposition 6. Thus,
assuming Propositions 5 and 6, Proposition 2 is proved for uniruled threefolds with
H2(X,OX) = 0.

Proof of Proposition 5. Our first step is to reduce the statement to the case
where S is a surface in P3. This is done as follows: we choose once for all a morphism

f : X → P3

given by 4 sections of H, so that f∗OP3(1) = H. We shall prove the result for
surfaces of the form S = f−1(Σ), where Σ is a generic smooth surface of degree n
in P3. Let fS : S → Σ be the restriction of f to S. We have trace maps

fS∗ : H1(S, ΩS(sH)) → H1(Σ,ΩΣ(s)),

fS∗ : H0(S, KS(sH)) → H0(Σ,KΣ(s))

14



for all integers s. We note now that the map µ admits obvious twists that we shall
also denote by µ:

µ : H0(S, KS(lH))⊗H0(S,OS(nH)) → H1(S, ΩS(lH)).

Furthermore, we have similarly defined bilinear maps µΣ:

µΣ : H0(Σ, KΣ(l))⊗H0(Σ,OΣ(n)) → H1(Σ,ΩΣ(l)).

All the maps µ can be defined using the maps

δ : H0(S, KS(lH)) ↪→ H1(S, ΩS((−n + l)H)),

induced by the exact sequence (which is itself a twist of the normal exact sequence)

0 → ΩS(−nH) → Ω2
X |S → KS → 0,

twisted by lH, and then the product map

H1(S, ΩS((−n + l)H))⊗H0(S,OS(nH)) → H1(S, ΩS(lH)).

The same is true for the maps µΣ.
As there is a commutative diagram of normal exact sequences

0 → TS → TX |S → OS(nH) → 0
fS∗ ↓ f∗ ↓ ‖

0 → f∗TΣ → f∗TP3 |S → OS(nH) → 0
,

where the bottom line is the normal bundle sequence of Σ pulled-back to S, it follows
that for v ∈ H0(S,KS(l)) and η ∈ H0(Σ,OΣ(n)), we have:

fS∗(µv(f∗Sη)) = µΣ
fS∗(v)(η), (2.11)

Equation (2.11) implies that

rk (µΣ
fS∗(v) : H0(Σ,OΣ(n)) → H1(Σ, ΩΣ(l)))

≤ rk (µv : H0(S,OS(n)) → H1(S, ΩS(l))).

Let us now prove the first case of Proposition 5, namely for the set Γ. The second
proof is done similarly.

Starting from a sufficiently ample H, one finds that H0(X,OX(4H)) restricts
surjectively onto H0(Xu,OXu(4H)), for any u ∈ P3, where Xu := f−1(u).

We have the following Lemma:

Lemma 10 The image ΓΣ of the composed map

Γ×H0(X,OX(4H)) ν→ H0(S, KS(4H))
fS∗→ H0(Σ,KΣ(4)),

where ν is the product, has dimension at least equal to 1
N dimΓ, where

N := rk H0(X,OX(4H)).
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Proof. Indeed, as the restriction map H0(X,OX(4H)) → H0(Xu,OXu(4H)) is
surjective, if ei is a basis of H0(X,OX(4H)), the map

Γ → ΓD
Σ ,

γ 7→ fS∗(γei),

is injective. Thus dimΓ ≤ NdimΓΣ.

On the other hand, if v ∈ Γ, α ∈ H0(X,OX(4H)), we have

rk µαv ≤ rk µv

because µαv = αµv. Thus we conclude that the following hold:

dimΓΣ ≥ 1
N

dimΓ,

rk µΣ
w ≤ rk µv ≤ cn2,

for all w ∈ ΓΣ.
As N does not depend on n, it suffices to show the result for generic Σ in P3 and

for the product

µΣ : H0(Σ,KΣ(4))×H0(Σ,OΣ(n)) → H1(Σ,ΩΣ(4)).

This last product is well known (cf [19],6.1.3) to identify to the multiplication in the
Jacobian ring of Σ:

µΣ : H0(Σ,OΣ(n))×H0(Σ,OΣ(n)) → R2n
Σ .

Thus we have to show that for generic Σ, the set

ΓΣ := {v ∈ H0(Σ,OΣ(n)), rk µΣ,v ≤ cn2}

has dimension bounded by a constant which is independent of n.
For this, we specialize to the case where Σ is the Fermat surface, that is, its

defining equation is σ =
∑3

0 Xn
i . The Jacobian ideal of Σ is then generated by the

Xn−1
i , and there is thus a natural action of the torus (C∗)4 on the Jacobian ring RΣ,

by multiplication of the coordinates by a scalar. The subspace

ΓΣ ⊂ Rn−1
Σ

is thus invariant under (C∗)4. Note that the fixed points of the induced action
on P(Rn−1

Σ ) are the monomials, and are thus isolated. It follows that we have the
inequality

dimΓΣ ≤ number of fixed points on ΓΣ.

Thus we have to bound the number of monomials

XI = Xi0
0 Xi1

1 Xi2
2 Xi3

3 , i0 + i2 + i3 + i4 = n,

such that
rk XI : Rn

Σ → R2n−1
Σ ≤ cn2.
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But the kernel of the multiplication by XI above is equal to the ideal

Xn−i0
0 Si0 + . . . Xn−i3

3 Si3 ,

where Sl := H0(P3,OP3(l)), and thus has dimension ≤ ∑
k rk Sik . Hence, if rk XI ≤

cn2, we must have
∑

k

rk Sik ≥ rk Sn − cn2, (2.12)

with
∑

k ik = n. It is not hard to see that there exists an integer l > 0 such that, if
n is large enough and (2.12) holds for I, n, one of the i′ks has to be ≥ n− l. Thus the
other ij ’s have to be non greater than l. This shows immediately that the number
of such monomials is bounded by a constant independent of n and concludes the
proof.

Proof of Proposition 6. The key point is the following fact from [6].

Proposition 7 Let X be any projective manifold and H be a very ample line bundle
on X. Let A be a given constant, and for n > A, let M ⊂ H0(X,OX(nH)) be a
subspace of codimension ≤ A. Then

H0(X,OX(H)) ·M ⊂ H0(X,OX((n + 1)H))

has codimension ≤ A, with strict inequality if M has no base-point.

Assume v ∈ V satisfies the condition that rk µv < A. Let M := Ker µv ⊂
H0(S,OS(nH)). By Proposition 7, we conclude that if n > A, we have

H0(S,OS(H)) ·M ⊂ H0(S,OS((n + 1)H))

has codimension < A. Next, we consider for each l the map

µl
v : H0(S,OS((n + l)H)) → H1(S, ΩS(l)),

obtained as the composite of the twisted Kodaira-Spencer map

H0(S,OS((n + l)H)) → H1(S, TS(l)),

and the contraction with v, using the contraction map

H0(S,KS)⊗H1(S, TS(l)) → H1(S, ΩS(l)).

We note that the kernel Ml of the map µl
v contains

M1 ·H0(S,OS((l − 1)H)).

On the other hand, M1 also contains the image of the map

H0(S, TX(H)|S) → H0(S,OS((n + 1)H))

induced by the normal bundle sequence twisted by H. We may assume that H is
ample enough so that H0(X, TX(1)) is generated by global sections, and then M1

has no base-point. Proposition 7 thus implies that if n > A, the numbers

corank Ml
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are strictly decreasing, starting from l ≥ 1. Hence we conclude that

MA = H0(S,OS((n + A)H)).

As n is large and A is fixed, we may assume that

H0(X, KX((2n−A)H))⊗H0(X,OX((n + A)H)) → H0(X,KX(3nH))

is surjective, and that the same is true after restriction to S. Thus we conclude that

MA ·H0(S, KX((2n−A)H)|S) = H0(S,KX(3nH)|S).

We use now the definition of MA, and the compatibility of the twisted Kodaira-
Spencer maps and the maps yv with multiplication. This implies that for any P ∈
H0(S,KX((3n)H)|S), sending to P ∈ H1(S, TS(KS(2nH))), via the map induced
by the twisted normal bundle sequence

0 → TS(KS(2nH)) → TX |S(KS(2nH)) → KX(3nH)|S → 0,

we have

Pyv = 0 in H1(S, ΩS(KS(nH))). (2.13)

We have now a map

δ : H1(S, ΩS(KS(nH))) → H2(S,KS),

induced by the exact sequence

0 → KS → ΩX(KX(2nH))|S → ΩS(KS(nH)) → 0,

and one knows (cf [4]) that up to a multiplicative coefficient, one has

δ(Pyv) =< v, resS(P ) >, (2.14)

where on the right, <,> is Serre duality between H0(S, KS) and H2(S,OS), and
the Griffiths residue map

H0(X, KX(3nH)) resS→ H2(S,OS) (2.15)

is described in [19],6.1.2. The key point for us is that, because in our case H3(X, ΩX) =
0 and because n is large enough, the residue map (2.15) is surjective, and thus (2.13)
together with (2.14) imply that, for all η ∈ H2(S,OS), one has

< η, v >= 0,

which implies that v = 0.

The Calabi-Yau case. Here X has trivial canonical bundle and satisfies
H2(X,OX) = 0. We use in this case a variant of Lemma 6. As KX is trivial, the
spaces V and V ′ are equal, and the pairing µ : V × V ′ → H1(S, ΩS) is symmetric.
Thus, using Bertini, Lemma 6 can be refined as follows (cf [16]):

18



Lemma 11 Let µ : V ⊗ V ′ → H1(S, ΩS) be symmetric and q : H1(S, ΩS) →
S2V ∗ be its dual. Then the generic quadric in Im q is non-singular if the following
condition holds. There is no subset Z ⊂ P(V ) contained in the base-locus of Im q
and satisfying:

rk µv ≤ dimZ, ∀v ∈ Z.

We have to verify that such a Z does not exist for generic S ∈| nH |, n large
enough. Degenerating S to SA as before, the base-locus of Im q specializes to a
subspace of the base-locus of Im qA. We now use Lemma 7, together with Corol-
lary 3, to conclude that the base-locus of Im qA has dimension ≤ cn2, for some c
independent of n.

Thus the base-locus of Im q also has dimension bounded by cn2, for generic S.
By definition of Z, it follows that for v ∈ Z one has

rk (µv : V → H1(S, ΩS)) ≤ cn2.

Using Proposition 5, it follows that dimZ ≤ A for some constant A independent
of N . But then, for v ∈ Z, one has

rk (µv : V → H1(S, ΩS)) ≤ A

which implies that Z is empty by Proposition 6. This concludes the proof of Propo-
sition 2 when X is a Calabi-Yau threefold.

3 The case where H2(X,OX) 6= 0

In this section, we show how to adapt the previous proof to the case where X is
uniruled with H2(X,OX) 6= 0.

In this case, a smooth birational model of X admits a map φ : X ′ 99K Σ, with
generic fibre isomorphic to P1, where Σ is a smooth surface. Note that φ∗ sends
H3(X,ΩX) isomorphically to H2(Σ,OΣ).

We may assume that X ′ carries a line bundle H such that

H2KX′ < 0,

because there is a smooth birational model of X on which such an H exists, and
by blowing-up this X ′ to an X̃ with exceptional relatively anti-ample divisor E, we
may assume that φ becomes defined, while an H̃ of the form τ∗H − εE with small
ε will still satisfy the property H̃2.K

X̃
< 0.

In the sequel X, H, φ will satisfy the properties above. For S a smooth surface
in | nH |, we have the Gysin maps:

φ∗ : H1(S, ΩS) → H1(Σ,ΩΣ), φ∗ : H2(S,OS) → H2(Σ,OΣ),

φ∗ : H2(S,Z) → H2(Σ,Z).

We will denote by
H1(S, ΩS)Σ, H2(S,OS)Σ, H2(S,Z)Σ

the respective kernels of these maps. The proof will use the following variant of
Proposition 1:
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Proposition 8 Assume there is a S ∈| nH |, and a λ ∈ H1(S, ΩS)Σ such that the
natural map

µλ : H0(S,OS(nH)) → H2(S,OS)Σ

defined as in (1.1) is surjective. Then the Hodge conjecture is true for integral Hodge
classes on X.

Proof. We consider a simply connected open set in | nH | parameterizing smooth
surfaces and containing the point 0 ∈| nH | parametrizing S. We study the infinites-
imal variation of Hodge structure on H2(St,Z)Σ for t ∈ B.

By the same reasoning as in the proof of Proposition 1, the existence of λ sat-
isfying the property above implies that at some point λ ∈ H1,1(S)R,Σ, the natural
map

ψ : H1,1
R,Σ → H2(S,R)Σ

is a submersion. Here on the left hand side, we have the real vector bundle with
fibre H1,1(St)R,Σ at the point t, and on each fibre H1,1(St)R,Σ, ψ is the inclusion
H1,1(St)R,Σ ⊂ H2(St,R)Σ, followed by the topological isomorphism H2(St,R)Σ ∼=
H2(S,R)Σ.

This implies that the image of ψ contains an open cone and we deduce from this
as in the proof of Proposition 1 that H2(S,Z)Σ is generated over Z by classes α
which are algebraic on some nearby fiber St.

Consider now the inclusion j : S → X. It induces a surjective Gysin map

H2(S,Z) → H4(X,Z)

by Lefschetz hyperplane theorem. On the other hand, we have a commutative
diagram of Gysin maps:

H2(S,Z)
j∗→ H4(X,Z)

φ∗ ↓ φ∗ ↓
H2(Σ,Z) = H2(Σ,Z) .

From this and the previous conclusion, we deduce that the group

Ker (φ∗ : H4(X,Z) → H2(Σ,Z)) = j∗H2(S,Z)Σ

is generated by classes of algebraic cycles on X.
Thus it suffices to prove the following:

Lemma 12 Let α be an integral Hodge class of degree 2 on Σ which is in

Im (φ∗ : H4(X,Z) → H2(Σ,Z)).

Then there is an algebraic 1- cycle Z on X such that

α = φ∗([Z]).

Indeed, assuming the Lemma, if α is an integral Hodge class on X of degree 4, φ∗α
is an integral Hodge class of degree 2 on Σ, hence is equal to φ∗([Z]) for some Z.
Hence α− [Z] belongs to Ker φ∗ and thus it is algebraic as we already proved. This
proves the Proposition.
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Proof of Lemma 12. We may assume by Lefschetz (1, 1) theorem and because
Σ is algebraic, that α is the class of a curve C ⊂ S which is in general position.
Thus

φC : XC := φ−1(C) → C

is a geometricall ruled surface, which admits a section C ′ ⊂ XC (see [3], or [7] for a
more general statement).

But then the curve C ′ ⊂ X satisfies φ∗[C ′] = [C].

By Proposition 8, the proof of Theorem 2 in case where X is uniruled and satisfies
H2(X,OX) 6= 0 will now be a consequence of the following proposition.

Proposition 9 Let the pair (X, H) satisfy the inequality H2KX < 0. Then for n
large enough, for S a generic surface in | nH |, there is a λ ∈ H1(S, ΩS)Σ which
satisfies the property that

µλ : H0(S,OS(nH)) → H2(S,OS)Σ

is surjective.

The proof works exactly as the proof of Proposition 2 in the uniruled case. The
only thing to note is the fact that the analogue of Proposition 6 still holds in this
case, with V = H0(S, KS)Σ, V ′ = H0(S,OS(nH)). This is indeed the only place
where we used the assumption H2(X,OX) = 0.

In this case, we have an isomorphism

φ∗ : H3(ΩX) ∼= H2(Σ,OΣ),

so that for S ⊂ X a smooth surface

H2(S,OS)Σ = Ker (j∗ : H2(S,OS) → H3(X,ΩX)),

where j is the inclusion of S into X.
But the theory of Griffiths residues shows that the last kernel is precisely gener-

ated by residues resSω, ω ∈ H0(X, KX(3nH)). Thus, the arguments of Proposition
6 will show in this case that if v ∈ H0(S, KS) satisfies rank µv ≤ A, where A is a
given constant, and S ∈| nH | with n large enough, then

v ∈ (Ker j∗)⊥,

where ⊥ refers to Serre duality between H0(S, KS) and H2(S,OS). But as Ker φ∗ =
Ker j∗, we have

(Ker j∗)⊥ = φ∗H0(Σ,KΣ).

Thus if furthermore v ∈ H0(S,KS)Σ, we must have v = 0 because

H0(S,KS)Σ ∩ φ∗H0(Σ,KΣ) = 0.
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4 Appendix

We give for the convenience of the reader the proof of the vanishing Lemma 8. Recall
that we want to prove the vanishing of the spaces:

1. H i(G,
∧iF∗), n + 2− i ≥ 0, i ≥ 1

2. H i−1(G,
∧iF∗), n + 2− i = 0.

3. H i−2(G,
∧iF∗), n + 2− i = 0.

4. H i−3(G,
∧iF∗), n + 2− i ≤ 0.

We use first the dual of the exact sequence (2.6) to get a resolution of
∧iF∗:

. . . →
i−1∧

(K ⊗ E∗)⊗ L−1 →
i∧

(K ⊗ E)∗ →
i∧
F∗ → 0.

This induces a spectral sequence converging to

H i(G,

i∧
F∗), H i−1(G,

i∧
F∗), H i−2(G,

i∧
F∗), H i−3(G,

i∧
F∗),

whose E1 terms are

Case 1 H i+s(G,
i−s∧

(K ⊗ E∗)⊗ L−s), n + 2 ≥ i ≥ 1, i ≥ s ≥ 0,

Case 2 H i+s−1(G,
i−s∧

(K ⊗ E∗)⊗ L−s), i = n + 2, i ≥ s ≥ 0,

Case 3 H i+s−2(G,
i−s∧

(K ⊗ E∗)⊗ L−s), i = n + 2 i ≥ s ≥ 0

Case 4 H i+s−3(G,
i−s∧

(K ⊗ E∗)⊗ L−s), n + 2 ≤ i, i ≥ s ≥ 0

respectively.
Let P ⊂ P(K) × G be the incidence scheme, so P is a P1-bundle over G. Let

pri, i = 1, 2 denote the projections from P to P(K) and G respectively. Let H :=
pr∗1O(1) and denote also by L the pull-back of L to P . Then pr∗2E∗ fits into an exact
sequence:

0 → H−1 → pr∗2E∗ → H ⊗ L−1 → 0.

Thus the bundle

pr∗2(
i−s∧

(K ⊗ E∗)⊗ L−s)

admits a filtration whose successive quotients are line bundles of the form

H−α ⊗ (H ⊗ L−1)β ⊗ L−s = H−α+β ⊗ L−β−s,

where α + β = i− s, α ≥ 0, β ≥ 0. As we are interested in

H∗(G,
i−s∧

(K ⊗ E∗)⊗ L−s) = H∗(G,R0pr2∗(pr∗2(
i−s∧

(K ⊗ E∗)⊗ L−s))),
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it suffices to study the cohomology groups

H∗(P,H−α+β ⊗ L−β−s),

with −α + β ≥ 0. These groups are equal to the groups

H∗(G,S−α+βE ⊗ L−β−s)

which are partially computed in [15]. The conclusion is the following:

Lemma 13 a) These groups vanish for ∗ 6= n− 2, 2(n− 2) and for β + s ≤ n− 2.
b) For ∗ = n− 2, these groups vanish if −s− α + 1 < 0.
c) For ∗ = 2(n− 2), these groups vanish if −s− α ≥ −n + 1.

Case 1. Here ∗ = i + s, and the following inequalities hold:

β ≥ α ≥ 0, β + s ≥ n− 1 (4.16)

and furthermore
1 ≤ i ≤ n + 2, α + β = i− s.

According to Lemma 13, in order to get a non trivial cohomology group, we have
only two possibilities:

a) i + s = n− 2, −s− α + 1 ≥ 0.
b) i + s = 2(n− 2), −s− α < −n + 1.
In case a), we have β + s ≥ n− 1 and α+β +2s = i+ s = n− 2, which is clearly

a contradiction as α + s ≥ 0.
In case b), we have β + s ≥ n− 1, α + s ≥ n and thus

2n− 1 ≤ α + β + 2s = i + s = 2(n− 2)

which is clearly a contradiction.

Case 2. Now ∗ = i + s− 1 and i = n + 2. We have again the inequalities (4.16)
and furthermore

i = n + 2, α + β = i− s.

By Lemma 13, in order to get a non trivial cohomology group, we have only two
possibilities:

a) i + s− 1 = n− 2, −s− α + 1 ≥ 0.
b) i + s− 1 = 2(n− 2), s + α ≥ n.
In case a), we have i = n + 2 and s ≥ 0, hence i + s− 1 = n− 2 is impossible.
In case b), we have i + s = 2n − 3, while s + α ≥ n and β + s ≥ n − 1 give

α + β + 2s = i + s ≥ 2n− 1, contradiction.

Case 3. Now ∗ = i + s− 2 and i = n + 2. We have again the inequalities (4.16)
and furthermore i = n + 2, α + β = i − s. As before, in order to get a non trivial
cohomology group, we have only two possibilities:

a) i + s− 2 = n− 2, −s− α + 1 ≥ 0.
b) i + s− 2 = 2(n− 2), s + α ≥ n.
In case a), we have i = n + 2 and s ≥ 0, hence i + s− 2 = n− 2 is impossible.
In case b), we have i + s = 2n − 2, while s + α ≥ n and β + s ≥ n − 1 give

α + β + 2s = i + s ≥ 2n− 1, contradiction.
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Case 4. Now ∗ = i + s− 3 and i ≥ n + 2. We have again the inequalities (4.16)
and furthermore i ≥ n + 2, α + β = i − s. As before, in order to get a non trivial
cohomology group, we have only two possibilities:

a) i + s− 3 = n− 2, −s− α + 1 ≥ 0.
b) i + s− 3 = 2(n− 2), s + α ≥ n.
In case a), we have i ≥ n + 2 and s ≥ 0 thus i + s− 3 = n− 2 is impossible.
In case b), we have i + s = 2n − 1, while s + α ≥ n and β + s ≥ n − 1 give

α + β + 2s = i + s ≥ 2n− 1. Thus we must have the two equalities

s + α = n, β + s = n− 1.

This contradicts the fact that β ≥ α.
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