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Abstract

We prove that Lagrangian fibrations on projective hyper-Kähler 2n-folds with max-
imal Mumford-Tate group satisfy Matsushita’s conjecture, namely the generic rank of
the period map for the fibers of such a fibration is either 0 or maximal (that is n).
We establish for this a universal property of the Kuga-Satake variety associated to a
K3-type Hodge structure with maximal Mumford-Tate group.

0 Introduction

Let X be a smooth projective hyper-Kähler manifold of dimension 2n admitting a La-
grangian fibration f : X → B. The smooth fibers Xb of f are thus abelian varieties of
dimension n. It is proved in [14, Lemma 2.2] (see also [15] when B is smooth) that the
restriction map

H2(X,Z) → H2(Xb,Z)

has rank 1, so that the fibers Xb are in fact canonically polarized by the restriction of any
ample line bundle on X. Denoting by α the type of the polarization, we thus have a moduli
morphism

m : B0 → An,α

where B0 ⊂ B is the open set parameterizing smooth fibers and An,α is the moduli space
of n-dimensional abelian varieties with a polarization of type α. It has been conjectured
by Matsushita that m is either generically finite on its image or constant (the second case
being the case of isotrivial fibrations). This conjecture was communicated to us by Ljudmila
Kamenova and Misha Verbitsky. Our goal in this note is to prove the following weakened
form of Matsushita’s conjecture. Let P ⊂ H2(X,Z) be a subgroup of the Néron-Severi group
of X containing one ample class and the pull-back of the generator of PicB (one has PicB =
Z by [10]). One can construct the universal family MP of marked deformations of X with
fixed Picard group P , that is deformations Xt for which all the classes in P remain Hodge
on Xt. It follows from [14] (see also the proof of Corollary 11 for an alternative argument)
that such deformations locally preserve the Lagrangian fibration on X. So deformations
parameterized by MP automatically induce a deformation of the triple (X, f,B), at least
on a dense Zariski open set of MP . Furthermore, up to shrinking this Zariski open set, the
deformed variety Xt remains projective.

Theorem 1. Let X be a projective hyper-Kähler manifold of dimension 2n admitting a
Lagrangian fibration f : X → B. Assume b2,P (X) := b2(X) − rankP ≥ 5. Then the
deformation (X ′, f ′, B′) of the triple (X, f,B) parameterized by a very general point of MP

satisfies Matsushita’s conjecture, that is the moduli map m′ : B′ 99K An,α is either constant
or generically of maximal rank n.

Corollary 2. In the space MP of deformations of X with Néron-Severi group containing
P , either there is a dense Zariski open set of points parameterizing triples (X ′, f ′, B′) for
which the moduli map has maximal rank n, or for any point of MP , the moduli map is
constant.
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This follows indeed from the fact that the condition that m is generically of maximal
rank is Zariski open.

Remark 3. The assumption b2(X) − rankP ≥ 5 (hence in particular b2(X) − 2 ≥ 5)
in Theorem 1 is presumably not essential here, but some more arguments would be needed
otherwise. It is related to the simplicity of the orthogonal groups. Note also that no compact
hyper-Kähler manifold with b2 < 7 is known, so in practice, this does not seem to be very
restrictive.

Remark 4. We had originally proved Theorem 1 and Corollary 2 under the assumption
that B is smooth, (and in fact it is believed that this condition always holds). Matsushita
[10], [11] proved a number of results on the geometry and topology of the base B suggesting
that it must be isomorphic to Pn, and Hwang [7] proved this is the case if it is smooth. The
only property that we actually use is the deformation result from [14], which does not need
the smoothness of the base (see also the proof of Corollary 11). Note that this deformation
result had been proved earlier in [13, Corollary 1.7] when the base is Pn, or equivalently is
smooth.

Our proof will use the fact that the very general point ofMP parameterizes a deformation
X ′ of X for which the Mumford-Tate group of the Hodge structure on

H2(X ′,Q)tr = H2(X ′,Q)⊥P ∼= H2(X,Q)⊥P

is the full special orthogonal group of the Q-vector space H2(X ′,Q)tr equipped with the
Beauville-Bogomolov intersection form q (see Section 1). Theorem 1 will be then a conse-
quence of the following more precise result:

Theorem 5. Let X be a projective hyper-Kähler manifold of dimension 2n admitting a
Lagrangian fibration f : X → B. Assume b2,tr(X) := b2(X)− ρ(X) ≥ 5 and the Mumford-
Tate group of the Hodge structure on H2(X,Q) is the group SO(H2(X,Q)tr, q). Then the
pair (X, f) satisfies Matsushita’s conjecture.

The proof of Theorem 5 will be obtained as a consequence of the following proposition
(cf. Proposition 12) establishing a universal property of the Kuga-Satake construction (see
[9], [3], [4]):

Proposition 6. Let (H, q,Hp,q) be a weight 2 polarized rational Hodge structure of K3
type, that is, such that h2,0 = 1. Assume that dimH ≥ 5 and the Mumford-Tate group
of (H,Hp,q) is the special orthogonal group of of (H, q). Then for any irreducible weight
1 polarized rational Hodge structure H1 such that, for some weight 1 Hodge structure H2,
there is an embedding of weight 2 Hodge structures

H ⊂ H1 ⊗H2,

H1 is isomorphic to an irreducible weight 1 sub-Hodge structure of H1(AKS(H),Q), where
AKS(H) is the Kuga-Satake variety of (H, q,Hp,q).

Remark 7. This implies that there is a finite and in particular discrete set of such Hodge
structures H1. The condition on the Mumford-Tate group of H is quite essential here.
We will give in the last section an example of a K3 type polarized Hodge structure H for
which there is a continuous family of irreducible weight 1 Hodge structures H1 satisfying
the conditions above.

Thanks. The second author would like to thank Ljudmila Kamenova for bringing Mat-
sushita’s conjecture to her attention and also for interesting discussions and useful comments
on a version of this note. We are also indebted to Christian Lehn, who convinced us that the
smoothness assumption on the base was not necessary and helped us with the deformation
theory of Lagrangian fibrations.
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1 Mumford-Tate groups and the Kuga-Satake construc-
tion

Let (H,Hp,q) be a rational Hodge structure of weight k. The group S1 acts on HR by the
following rule: z · αp,q = zpzqαp,q for z ∈ S1 and αp,q ∈ Hp,q ⊂ HC.

Definition 8. The Mumford-Tate group of H is the smallest algebraic subgroup of GL(H)
which is defined over Q and contains the image of S1.

Let X be a compact hyper-Kähler manifold. Consider the Hodge structure of weight 2 on
H2(X,Q). It is compatible with the Beauville-Bogomolov intersection form q (by the first
Hodge-Riemann bilinear relations), so that its Mumford-Tate group is contained in SO(q).
We now have:

Lemma 9. Let P ⊂ NS(X) ⊂ H2(X,Q) be a subspace which contains an ample class (so
that the Beauville-Bogomolov form is nondegenerate of signature (1, rankP − 1) on P ).
Then for a very general marked deformation X ′ of X for which P ⊂ NS(X ′), the Mumford-
Tate group of the Hodge structure on H2(X ′,Q)tr is the whole special orthogonal group
SO(H2(X ′,Q)tr, q).

Remark 10. Note that the fact that the period map for hyper-Kähler manifolds is open
implies that for X ′ as above, H2(X ′,Q)tr is nothing but the orthogonal complement of P
in H2(X ′,Q) with respect to q.

Proof of lemma 9. Via the period map, the marked deformations Xt of X for which P ⊂
NS(Xt) are parameterized by an open set D0

P in the period domain

DP = {σt ∈ P(H2(X,C)⊥P ), q(ηt) = 0, q(ηt, ηt) > 0}.

For such a period point σt, the Mumford-Tate group MT (H2(Xt,Q)) is the subgroup leav-
ing invariant all the Hodge classes in the induced Hodge structures on the tensor pow-
ers

⊗
H2(Xt,Q). For each such class α, either α remains a Hodge class everywhere on

the family, or the locus where it is a Hodge class is a closed proper analytic subset of
the period domain. As there are countably many such Hodge classes, it follows that the
Mumford-Tate group for the very general fiber X ′ of the family contains the Mumford-Tate
groups of H2(Xt,Q) for all t ∈ D0

P . We then argue by induction on dimH2(X,Q)⊥P . If
dimH2(X,Q)⊥P = 2, then it is immediate to check that MT (H2(X,Q)) is the Deligne
torus itself, which is equal to SO(H2(Xt,Q)⊥P ). Suppose now that we proved the result
for dimH2(X,Q)⊥P = k − 1 and assume dimH2(X,Q)⊥P = k ≥ 3. First of all, we easily
see that the strong form of Green’s theorem on the density of the Noether-Lefschetz locus
holds, by which we mean the following statement:

There exists a non-empty open set V ⊂ H2(X,R)⊥P such that for any λ ∈ V ∩H2(X,Q)⊥P ,
the Noether-Lefschetz locus

NLλ ∩ D0
P =: {t ∈ D0

P , λ ∈ H1,1(Xt)} = {t ∈ D0
P , q(σt, λ) = 0}

is nonempty.
Letting σt ∈ D0

P be the period point of Xt, for any λ ∈ H2(X,Q)⊥P ∼= H2(Xt,Q)⊥P ,
one has

D0
P ∩NLλ = {σt ∈ D0

P , q(σt, λ) = 0},
which can be rephrased by saying that σt ∈ D0

P ∩NLλ if and only if λ ∈ H2(X,Q)⊥<P,σt>

and by taking complex conjugates,

λ ∈ H2(X,Q)⊥<P,σt,σt>.

But clearly, ∪σt∈D0
P
H2(X,R)⊥⟨P,σt,σt⟩ is an open non-empty subset of H2(X,R) since the

real 2-plane ⟨σt, σt⟩ runs through a non-empty open subset of the Grassmannian of real
2-planes of H2(X,R)⊥P . We thus can take for V this open set.
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For any t ∈ NLλ ∩ D0
P , the rational subspace < P, λ >⊂ H2(Xt,Q) is contained in

NS(Xt)Q and applying the induction hypothesis, we conclude that for the very general point
t of NLλ∩D0

P , the Mumford-Tate group of H2(Xt,Q) is equal to SO(H2(X ′
λ,Q)⊥<λ,P>, q)

(and acts as the identity on < λ,P >).
By the previous argument, we then conclude that for the very general pointX ′ of D0

P , the
Mumford-Tate groupMT (H2(X ′,Q)) contains the orthogonal groups SO(H2(X ′

λ,Q)⊥<λ,P>, q)
for any λ ∈ V ∩ H2(X,Q)⊥P . As V is open in H2(X,R)⊥P , it immediately follows that
MT (H2(X ′,Q)) is equal to the orthogonal group SO(H2(X ′,Q)⊥P , q).

Let now X be a hyper-Kähler manifold admitting a Lagrangian fibration f : X → B.
Let P ⊂ NS(X) be a sublattice containing l := f∗c1(L), where L generates PicB. We get
the following:

Corollary 11. There exists a (small) deformation X ′ of X which is projective with Néron-
Severi group P , admits a Lagrangian fibration X ′ → B′ deforming the Lagrangian fibration
of X, and such that the Mumford-Tate group of H2(X ′,Q) is equal to SO(H2(X ′,Q)⊥P , q).

Proof. By Lemma 9, the very general X ′ in the family MP of deformations of X with
Néron-Severi group containing P has Mumford-Tate group SO(H2(X ′,Q)⊥P , q). Further-
more, as P contains an ample class, X ′ is also projective, at least on a dense open set of the
deformation family. On the other hand, it follows from the stability result of [14] that defor-
mations of X preserving the Hodge class l ∈ NS(X) locally preserve the given Lagrangian
fibration on X. The following alternative argument was also shown to us by Ch. Lehn:
Matsushita proves in [14, Lemma 2.2] that denoting Jb the general fiber of our Lagrangian
fibration f : X → B, the rank of the restriction map H2(X,Q) → H2(Jb,Q) is 1, and
its kernel is equal to H2(X,Q)⊥l. By [17], the locus of deformations of X preserving one
Lagrangian smooth torus Jb is open in the locus of deformations of X preserving the Hodge
class l. By [8] or [5, Lemmas 3.2 and 2.9], any projective deformation Xt of X containing a
deformation J ′ of Jb has a deformed Lagrangian almost holomorphic fibration with fiber J ′.
By [12], almost holomorphic fibration are holomorphic. This allows to conclude that if the
deformation is small enough and satisfies P ⊂ NS(X ′), X ′ admits a Lagrangian fibration
deforming the one of X.

Recall [2], [9], [4] that a polarized integral Hodge structure H of weight 2 with h2,0 = 1
has an associated Kuga-Satake variety AKS(H), which is an abelian variety with the prop-
erty that the Hodge structure H can be realized (up to a shift) as a sub-Hodge structure of
the weight 0 Hodge structure on End (H1(AKS(H),Z)). If H is a rational polarized Hodge
structure, AKS(H) is defined only up to isogeny. The Kuga-Satake variety is essentially
constructed by putting, using the Hodge structure on H, a complex structure on the under-
lying vector space of the Clifford algebra C(HR, q), which provides a complex structure on
the real torus C(HR, q)/C(H). In general, the Kuga-Satake is not a simple abelian variety,
because it has a big endomorphism algebra given by right Clifford multiplication of C(H)
on this torus. The main ingredient in our proof of Theorem 5 will be the following result:

Proposition 12. Let (H, q) be a weight 2 polarized Hodge structure with Mumford-Tate
group equal to SO(q). Let A, B be polarized weight 1 rational Hodge structures such that
H ⊂ A ⊗ B as weight 2 Hodge structures. Then if A is simple (as a Hodge structure) and
dimH ≥ 5, A is isomorphic as a rational Hodge structure to H1(M,Q), where M is an
abelian subvariety of the Kuga-Satake variety of H.

Proof. The Mumford-Tate group MT (A ⊗ B) maps onto MT (H). As dimH ≥ 5, the Lie
algebra mt(H) = so(q) is simple, so it is a summand of mt(A ⊗ B). As MT (A ⊗ B) ⊂
MT (A)×MT (B), the Lie algebra mt(A⊗B) is contained in mt(A)×mt(B).

If the projection of the simple Lie algebra mt(H) = so(q) to mt(A) and to mt(B) is
injective and mt(A ⊗ B) contains both these copies of so(q), then the Lie algebra of the
Mumford Tate group of the tensor product of the corresponding weight one sub-Hodge
structures of A and B has so(q) × so(q) as sub-Lie algebra. This contradicts that A ⊗ B
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has a sub-Hodge structure with h2,0 = 1. Using Proposition 1.7 of [6], one concludes that
mt(A ⊗ B) contains one copy of so(q) which maps onto mt(H) and whose projections to
mt(A) and tomt(B) are injective. The Hodge structures on H and the sub-Hodge structures
of A and B defined by this copy of so(q) in mt(A) ×mt(B) are obtained from one map of
the Lie algebra of S1 to so(q)R.

Now one considers the classification of the cases where the complex Lie algebra so(q)C
is a (simple) factor of the complexified Lie algebra of the Mumford-Tate group of a weight
1 polarized Hodge structure A and then one finds all the possible representations of so(q)C
on AC. This was done by Deligne [3].

The case where dimH is odd is the easiest one: in that case the Lie algebra so(q)C has a
unique such representation, which is the spin representation. This spin representation also
occurs on H1(AKS(H),C), with the same map of the Lie algebra of S1 to so(q)R. Thus
there is non-trivial so(q)C-equivariant map, respecting the Hodge structures, from AC to
H1(AKS(H),C). As the complex vector space of such maps is the complexification of the
rational vector space of so(q)-equivariant maps from A to H1(AKS(H),Q), there is such a
map from A to H1(AKS(H),Q). It follows that A is a simple factor of the Hodge structure
on H1(AKS(H),Q).

In the case where dimH is even, the representations of so(q)C that can occur are the
standard representation and the two half spin representations. However, the tensor product
of the standard representation with any of these three cannot have a subrepresentation
which is again the standard representation. Thus H cannot be a summand of A⊗B if AC is
the standard representation of so(q)C. Therefore AC must have a half-spin representation of
so(q)C as summand. As before, it follows that A is a summand of the H1 of the Kuga-Satake
variety of H.

2 Proof of the theorems

We first prove that Theorem 1 is a consequence of Theorem 5. Let X be a projective
hyper-Kähler manifold of dimension 2n with a Lagrangian fibration f : X → B and let
P ⊂ H2(X,Z) be a sublattice containing the class l = f∗c1(L) and an ample class. Then
by Corollary 11, there exists a point (in fact many!) in the space MP of deformations of X
with Picard group containing P , which parameterizes a projective hyper-Kähler manifold X ′

such that NS(X ′) = P and the Mumford-Tate group of the Hodge structure on H2(X ′,Q) is
the orthogonal group of (H2(X ′,Q)tr, q) = (H2(X,Q)⊥P , q). As we assumed that b2(X)−
rankP ≥ 5, Theorem 5 applies to X ′, which proves Theorem 1.

We now assume that X = X ′ satisfies the assumption in Theorem 5 and turn to the
proof of Theorem 5.

Proof of Theorem 5. Let f : X → B be a Lagrangian fibration with dimH2(X,Q)tr ≥ 5
and MT (H2(X,Q)tr) = SO(H2(X,Q)tr, q). We have to prove that f satisfies Matsushita’s
conjecture, that is, if the general fiber of the moduli map m is positive dimensional, then the
moduli map is constant. Let b ∈ B be a general point and assume the fiber Fb of the moduli
map m passing through b is positive dimensional. Over the Zariski open set U = Fb ∩ B0

of Fb, the Lagrangian fibration restricts to an isotrivial fibration XU → U . As we are in
the projective setting, it follows that after passing to a generically finite cover U ′ of U , the
base-changed family XU ′ → U ′ splits as a product Jb × U ′, where the abelian variety Jb is
the typical fiber f−1(b), for b ∈ U . Let F ′

b be a smooth projective completion of U ′ and XF ′
b

be a smooth projective completion of XU ′ . The natural rational map XF ′
b
99K X induces a

rational map fb : Jb × F ′
b 99K X. Consider the induced morphism of Hodge structures

f∗b : H2(X,Q) → H2(Jb × F ′
b,Q).

We claim that the composite map

α : H2(X,Q)
f∗
b→ H2(Jb × F ′

b,Q) → H1(Jb,Q)⊗H1(F ′
b,Q),
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where the second map is given by Künneth decomposition, has an injective restriction to
H2(X,Q)tr.

This indeed follows from the following facts :
a) The Hodge structure on H2(X,Q)tr is simple. Indeed, it is polarized with h2,0-

number equal to 1 and it does not contain nonzero Hodge classes. Hence if there is a
nontrivial sub-Hodge structure H ⊂ H2(X,Q)tr, it must have H2,0 ̸= 0. But then the
orthogonal complement H⊥ ⊂ H2(X,Q)tr is either trivial or with nonzero (2, 0)-part, which
contradicts the fact that H2,0(X) is of dimension 1.

b) The (2, 0)-form σ on X has a nonzero image in H0(ΩJb
) ⊗ H0(ΩF ′

b
). To see this

last point, we recall that Jb is Lagrangian, that is, the form σ restricts to zero on Jb. If it
vanished also in H0(ΩJb

)⊗H0(ΩF ′
b
), its pull-back to Jb × F ′

b would lie in H0(Ω2
F ′

b
). But as

dimFb > 0, this contradicts the fact that σ is nondegenerate and dimJb = n = 1
2dimX.

This proves the claim since by b), the map α is nonzero and thus by a) it is injective.
The abelian variety Jb might not be a simple abelian variety, (or equivalently, the weight

1 Hodge structure on H1(Jb,Q) might not be simple), but the (polarized) Hodge structure
on H1(Jb,Q) is a direct sum of simple weight 1 Hodge structures

H1(Jb,Q) ∼= A1 ⊕ . . .⊕As,

and for some i ∈ {1, . . . s} the induced morphism of Hodge structures

β : H2(X,Q)tr
α→ H1(Jb,Q)⊗H1(F ′

b,Q) → Ai ⊗H1(F ′
b,Q)

must be nonzero, hence again injective by the simplicity of the Hodge structure onH2(X,Q)tr.
We are now in position to apply Proposition 12 because Ai is simple. We thus conclude

that Ai is isomorphic to a direct summand of H1(AKS(X),Q), where AKS(X) is the Kuga-
Satake variety built on the Hodge structure on H2(X,Q)tr. Let f0 : X0 → B0 be the
restriction of f to f−1(B0), where B0 ⊂ B is the open set of regular values of f . The above
reasoning shows that HomHS(H

1(AKS(X),Q),H1(Xb,Q)) ̸= 0 for b ∈ B0. The end of the
proof given below is a translation in the language of variations of Hodge structures of weight
1, suggested by one of the referees, of our original argument which was written in terms of
abelian fibrations. Let M be the local system

Hom(H1(AKS(X),Q), R1f0∗Q)

on B0. Then M carries a weight 0 variation of Hodge structure and at the very general
point of B0, Mb contains nontrivial Hodge classes. There is a local subsystem Hdg(M) of
M on B0 whose stalk at the very general point b ∈ B0 is HomHS(H

1(AKS(X),Q), R1f0∗Q)
(see [18]), so this local system is nontrivial, and an obvious nontrivial evaluation morphism
of local systems on B0

α : Hdg(M)⊗H1(AKS(X),Q) → R1f∗Q. (1)

This morphism is a morphism of variations of Hodge structures, where the left hand side
has a locally constant Hodge structure. Thus R1f0∗Q contains a local subsystem A which
is defined as the image of α. If α is surjective, then the variation of Hodge structure on
R1f0∗Q is trivial, which shows that the fibration f is isotrivial. If α is not surjective, as the
variation of Hodge structure on R1f0∗Q is polarized because X is projective, there is a direct
sum decomposition

R1f0∗Q ∼= A⊕B, (2)

where B is a subvariation of Hodge structure of R1f0∗Q. This contradicts [14, Lemma 2.2],
which (combined with Deligne’s global invariant cycle theorem) says that R2f0∗Q has only
one global section up to multiples, since the global section of R2f0∗Q polarizes the variation

of Hodge structure on R1f0∗Q, hence has a nontrivial image in
∧2

A and
∧2

B.
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Remark 13. One may wonder if the hypothesis that X is projective has really been used in
the proof of Theorem 5. Indeed, even if X is not projective, one knows that the fibers of a
Lagrangian fibration are abelian varieties, and even canonically polarized abelian varieties.
It is possible that Matsushita’s conjecture holds in this context, however our argument would
fail at the following point. In the Kähler context, one would work with deformations of X
preserving the class of the line bundle coming from the base. This class l is isotropic for the
Beauville-Bogomolov form but we can work with the Hodge structure on H2(X,Q)⊥l/Ql
which certainly has Mumford-Tate group equal to the special orthogonal group for a very
general deformation of (X, l). Unfortunately, with the notation introduced in the proof of
Theorem 5, this Hodge structure does not map to H2(XF ′

b
,Q), since the class l does not

vanish in H2(XF ′
b
,Q).

3 An example

In this section, we construct an example of a projective K3 surface S, such that the Hodge
structure H on H2(S,Q)tr can be realized as a sub-Hodge structure of a tensor product
H1 ⊗H2, with H1 and H2 of weight 1, for a continuous family of weight 1 polarized Hodge
structures H1.

We start with a projective K3 surface S admitting a non-symplectic automorphism ϕ of
prime order p ≥ 5 (see [1], [16] for construction and classification). Let H = H2(S,Q)prim.

Proposition 14. There is a continuous family of polarized Hodge structures H1 of weight
1 such that for some weight 1 Hodge structure H2, one has

H ⊂ H1 ⊗H2

as Hodge structures.

Proof. Let λ ̸= 1 be the eigenvalue of ψ = ϕ∗ acting on H2,0(S). Let H1 be any weight 1
polarized Hodge structure admitting an automorphism ψ′ of order p such that

1. λ−1 is not an eigenvalue of ψ′ acting on H1,0
1 .

2. λ−1 is an eigenvalue of ψ′ acting on H0,1
1 .

For such H1, we find that the weight 3 Hodge structure

H2 := (H1 ⊗H)G
i
↪→ H1 ⊗H,

where G is Z/pZ acting on H⊗H1 via ψ⊗ψ′, is the Tate twist of a weight 1 Hodge structure
H2, since we have

((H1 ⊗H)G)3,0 = (H1,0
1 ⊗H2,0)G = (H1,0

1 )λ
−1

⊗H2,0 = 0.

On the other hand, H2 is nonzero, since λ−1 is an eigenvalue of ψ′ acting on H0,1
1 , which by

the same argument as above provides a nonzero element in (H0,1
1 ⊗H2,0

2 )G.
By composing the inclusion IdH∗

1
⊗ i : H∗

1 ⊗H2 ↪→ H∗
1 ⊗H1 ⊗H with the contraction

map c⊗ IdH : H∗
1 ⊗H1⊗H → H, we get a map µ : H∗

1 ⊗H2 → H. This map is non-trivial,

since choosing nonzero σ ∈ (H0,1
1 )λ

−1

and η ∈ H2,0 we have σ ⊗ η = i(ω) for some ω ∈ H2.
Next, choosing u ∈ H∗

1 such that u(σ) ̸= 0, we see that, after tensoring with C,

µ(u⊗ ω) = (c⊗ IdH)((IdH∗
1
⊗ i)(u⊗ ω)) = (c⊗ IdH)(u⊗ σ ⊗ η) = u(σ)η ̸= 0.

Since these Hodge structures are polarized, they are isomorphic to their duals up to Tate
twists. Thus there is a nontrivial morphism of Hodge structures

H → H∗
1 ⊗H2

that is injective by the simplicity of the Hodge structure H.
We conclude observing that by the assumption p ≥ 5, the family of weight 1 polarized

Hodge structures H1 satisfying conditions 1 and 2 above has positive dimension.
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