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Hyper–Kähler Manifolds of Generalized
Kummer Type and the Kuga–Satake
Correspondence

M. Varesco and C. Voisin

Abstract. We first describe the construction of the Kuga–Satake variety associated
to a (polarized) weight-two Hodge structure of hyper-Kähler type. We describe
the classical cases where the Kuga–Satake correspondence between a hyper-Kähler
manifold and its Kuga–Satake variety has been proved to be algebraic. We then
turn to recent work of O’Grady and Markman which we combine to prove that the
Kuga–Satake correspondence is algebraic for projective hyper-Kähler manifolds
of generalized Kummer deformation type.

1. Introduction

The Kuga–Satake construction associates to any K3 surface, and more generally
to any weight-two Hodge structure of hyper-Kähler type a complex torus which is
an abelian variety when the Hodge structure is polarized. This construction allows
to realize the Hodge structure on degree-two cohomology of a projective hyper-
Kähler manifold as a direct summand of the H2 of an abelian variety. Although the
construction is formal and not known to be motivic, it has been used by Deligne in
[2] to prove deep results of a motivic nature, for example the Weil conjecture for
K3 surfaces can be deduced from the Weil conjectures for abelian varieties.

Section 2 of the notes is devoted to the description of the original construction
and the presentation of a few classical examples where the Kuga–Satake corre-
spondence is known to be algebraic, i.e., realized by a correspondence between the
hyper-Kähler manifold and its Kuga–Satake variety. In Sect. 3, we focus on the case
of hyper-Kähler manifolds of a generalized Kummer type and present a few recent
results. If X is a (very general) projective hyper-Kähler manifold of generalized
Kummer type, the Kuga–Satake variety KS(X) built on H2(X,Z)tr is a sum of
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copies of an abelian fourfold KS(X)c of Weil type. There is another abelian fourfold
associated to X, namely the intermediate Jacobian J3(X) which is defined as the
complex torus

J3(X) = H1,2(X)/H3(X,Z)

where b3(X) = 8. Here we use the fact that H3,0(X) = 0 and the projectivity of
X guarantees that J3(X) is an abelian variety. O’Grady [11] proves the following
result.

Theorem 1.1. The two abelian varieties J3(X) and KS(X)c are isogenous.

We also prove in Sect. 3.2 a more general statement concerning hyper-Kähler
manifolds with b3(X) �= 0. Section 3.3 is devoted to the question of the algebraicity
of the Kuga–Satake correspondence. Following [20], we prove, using a theorem of
Markman and Theorem 1.1 above that the Kuga–Satake correspondence is algebraic
for hyper-Kähler manifolds of generalized Kummer type.

Theorem 1.2. There exists a codimension-2n cycle Z ∈ CH2n(KS(X)c × X)Q such
that

[Z]∗ : H2(KS(X)c,Q) → H2(X,Q) (1.1)

is surjective.

2. The Kuga–Satake Construction

2.1. Main Construction

In this section, we recall the construction and some properties of the Kuga–Satake
variety associated to a Hodge structure of hyper-Kähler type. This construction is
due to Kuga and Satake in [6]. For a complete introduction see [15] and [4, Ch. 4].

Definition 2.1. A pair (V, q) is a Hodge structure of hyper-Kähler type if the follow-
ing conditions hold: V is a rational level-two Hodge structure with dimV 2,0 = 1,
and q : V ⊗ V → Q(−2) is a morphism of Hodge structures whose real extension is
negative definite on (V 2,0 ⊕ V 0,2) ∩ VR.

Remark 2.2. Note that if X is a hyper-Käler manifold and qX is the Beauville-
Bogomolov quadratic form, the pair (H2(X,Q), −qX) is indeed a Hodge structure
of hyper-Kähler type.

Let (V, q) be a Hodge structure of hyper-Kähler type, and let T (V ) be the
tensor algebra of the underlying rational vector space V :

T (V ) :=
⊕

i≥0

V ⊗i

where V ⊗0 := Q. The Clifford algebra of (V, q) is the quotient algebra

Cl(V ) := Cl(V, q) := T (V )/I(q),
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where I(q) is the two-sided ideal of T (V ) generated by elements of the form v ⊗
v − q(v) for v ∈ V . Since I(q) is generated by elements of even degree, the natural
Z/2Z-grading on T (V ) induces a Z/2Z-grading on Cl(V ). Write

Cl(V ) = Cl+(V ) ⊕ Cl−(V ),

where Cl+(V ) is the even part and Cl−(V ) is the odd part. Note that Cl+(V ) is
still a Q-algebra, it is called the even Clifford algebra.

We now use the assumption that (V, q) is a Hodge structure of hyper-Kähler
type to define a complex structure on Cl+(V )R. Consider the decomposition of the
real vector space VR = V1 ⊕ V2, with

V1 := V 1,1 ∩ VR, V2 := {V 2,0 ⊕ V 0,2} ∩ VR.

The C-linear span of V2 is the two-dimensonal vector space V 2,0 ⊕ V 0,2. Therefore,
q is negative definite on V2. Pick a generator σ = e1 + ie2 of V 2,0 with e1, e2 ∈ V2

and q(e1) = −1. Since q(σ) = 0, we deduce that q(e1, e2) = 0 and q(e2) = −1, i.e.,
{e1, e2} is an orthonormal basis of V2. From this, it is straightforward to check that
e1 · e2 = −e2 · e1 in Cl(V )R. Therefore, J := e1 · e2 satisfies the equation J2 = −1
and left multiplication by J induces a complex structure on the real vector space
Cl(V )R which preserves the real subspaces Cl+(V )R and Cl−(V )R. Giving a complex
structure on a real vector space is equivalent to giving a Hodge structure of level
one on the rational vector space:

Definition 2.3. The Kuga–Satake Hodge structure H1
KS(V ) is the Hodge structure

of level one on Cl+(V ) given by

ρ : C∗ → GL(Cl+(V )R), x + yi → x + yJ,

where x + yJ acts on Cl+(V )R via left multiplication.

Therefore, starting from a rational level-two Hodge structure of hyper-Kähler
type (V, q), we constructed a rational Hodge structure of level one on Cl+(V ). This
determines naturally a complex torus up to isogeny: let Γ ⊆ Cl+(V ) be a lattice
in the rational vector space Cl+(V ). Then, the Kuga–Satake variety associated to
(V, q) is the (isogeny class of) the complex torus

KS(X) := Cl+(V )R/Γ,

where Cl+(V )R is endowed with the complex structure induced by left multiplication
by J . Note that if (V, q) is an integral Hodge structure of hyper-Kähler type, then V
can be viewed as a lattice in Cl+(VQ). Thus, the natural choice Γ := V determines
the complex torus KS(V ), and not just up to isogeny.

By construction, one has the following:

H1
KS(V ) := H1(KS(V ),Q) 	 Cl+(V )∗ 	 Cl+(V ),

where the isomorphism between Cl+(V ) and its dual is induced by the nondegen-
erate form q.

Remark 2.4. Consider the case where V can be written as a direct sum of Hodge
structures V = V1 ⊕ V2. Since dim V 2,0 = 1, either V1 or V2 has to be pure of
type (1, 1). We may then assume that V 2,0

2 = 0. In this case, one checks that the
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Kuga–Satake Hodge structure Cl+(V ) is isomorphic to the product of 2n2−1 copies
of Cl+(V1) ⊕ Cl−(V1), with n2 := dim V2. In particular:

KS(V1 ⊕ V2) ∼ KS(V1)2
n2

.

Remark 2.5. For any element w ∈ Cl+(V ), the right-multiplication morphism

rw : Cl+(V ) → Cl+(V ), rw(x) := x · w

is a morphism of Hodge structures. This follows from the fact that the Kuga–Satake
Hodge structure on Cl+(V ) is induced by left multiplication by J ∈ Cl+(V ) which
commutes with right multiplication by elements of Cl+(V ). Therefore, there is an
embedding

Cl+(V ) ↪→ EndHdg(Cl+(V )) 	 End(KS(V )) ⊗ Q.

Since the dimension of Cl+(V ) is 2dimV −1, we deduce that the endomorphism alge-
bra of KS(V ) is in general big. This is related with the fact that the Kuga–Satake
variety of a Hodge structure of hyper-Kähler type is in general not simple, but it is
isogenous to the power of a smaller-dimensional torus.

Remarkably, the Kuga–Satake construction realizes the starting level-two
Hodge structure as a Hodge substructure of the tensor product of two Hodge struc-
tures of level one:

Theorem 2.6. Let (V, q) be a Hodge structure of hyper-Kähler type. Then, there is
an embedding of Hodge structures:

V ↪→ Cl+(V ) ⊗ Cl+(V ),

where Cl+(V ) is endowed with the level-one Hodge structure of Definition 2.3.

Proof. We recall here just the definition of the desired map, for more details we
refer to [4, Prop. 3.2.6]. Fix an element v0 ∈ V such that q(v0) �= 0 and consider
the following left multiplication map:

ϕ : V → End(Cl+(V )), v �→ fv,

where fv(w) := v · w · v0. The injectivity of ϕ follows from the equality fv(v′ · v0) =
q(v0)(v · v′) for any v′ ∈ V . See the reference above for the proof of the fact that ϕ
is a morphism of Hodge structures. Finally, the desired embedding is given by the
composition of φ and the isomorphisms

End(Cl+(V )) 	 Cl+(V )∗ ⊗ Cl+(V ) 	 Cl+(V ) ⊗ Cl+(V ),

where the isomorphism Cl+(V )∗ 	 Cl+(V ) is induced by q. �
Remark 2.7. Note that the embedding of Theorem 2.6 depends on the choice of
v0 ∈ V . Nevertheless, choosing another v′

0 ∈ V changes the embedding by the
automorphism of Cl+(V ) which sends w to w·v0·v′

0
q(v0)

.

Theorem 2.6 shows that any Hodge structure of hyper-Kähler type can be
realized as a Hodge substructure of W ⊗ W for some level-one Hodge structure W .
On the other hand, in [2, Sec. 7], Deligne proves that the same conclusion does not
hold for a very general level-two Hodge structure. We recall here a version of this
fact as presented in [15, Prop. 4.2].
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Theorem 2.8. Let (V, q) be a polarized level-two Hodge structure whose Mumford–
Tate group MT(V ) is maximal, that is, equal to SO(q). If dim V 2,0 > 1, then V
cannot be realized as a Hodge substructure of W ⊗W for any level-one Hodge struc-
ture W .

Remark 2.9. One can show in some cases that the technical condition MT(V ) =
SO(q) of Theorem 2.8 is satisfied for a very general Hodge structure, see [2, Sec. 7]
and [19, Cor. 4.12]. The proof goes as follows: Given a smooth projective morphism
π : X → B, one shows that for very general t ∈ B, the Mumford–Tate group MT(Xt)
contains a finite index subgroup of the monodromy group of the base. Already in
the case of hypersurfaces in a (2r + 1)-dimensional projective space, this shows
that for a very general hypersurface Xs, the Mumford–Tate group of H2r(X,Q) is
maximal in the above sense. Applying Theorem 2.8, one then sees that the second
cohomology of a very general surface X in P

3 of degree ≥ 5 cannot be realized as a
Hodge substructure of W ⊗ W for any level-one Hodge structure W .

To conclude this section, we recall the fact that if the Hodge structure of hyper-
Kähler type is polarized, the resulting Kuga–Satake Hodge structure on the even
Clifford algebra is naturally polarized.

Theorem 2.10. If (V, q) is a Hodge structure of hyper-Kähler type such that q is a
polarization for V , then the Kuga–Satake Hodge structure on Cl+(V ) has a natural
polarization. In particular, the Kuga–Satake torus KS(V ) is an abelian variety.

2.2. Some Examples

Let X be a hyper-Kähler variety (resp. a two-dimensional complex torus). The pair
(H2(X,Q), −qX) where qX is the Beauville–Bogomolov form (resp. the intersection
pairing) is a Hodge structure of hyper-Kähler type. Therefore, we can apply the
Kuga–Satake construction to it and we get the Kuga–Satake variety of X:

KS(X) := KS(H2(X,Q)).

Since −qX is not a polarization on the whole H2(X,Q), the variety KS(X) is not
necessarily an abelian variety, but it is just a complex torus. On the other hand, if
X is projective and l is an ample class on X, the primitive part

H2(X,Q)p := l⊥ ⊆ H2(X,Q)

is a Hodge substructure which is polarized by the restriction of the form −qX .
Therefore, by Theorem 2.10, the Kuga–Satake variety of H2(X,Q)p is an abelian
variety. Moreover, by Remark 2.4, we have

KS(X) := KS(H2(X,Q)) ∼ KS(H2(X,Q)p)2.

In particular, in the projective case, KS(X) is an abelian variety. A similar argument
can be applied to H2(X,Q)tr ⊆ H2(X,Q), the transcendental lattice of a projective
K3 surface, to deduce that KS(X) is isogenous to some power of the abelian variety
KS(H2(X,Q)tr). On the other hand, if X is not projective, the torus KS(X) need
not be polarized.



438 M. Varesco and C. Voisin Vol. 90 (2022)

Theorem 2.11. [10] Let A a complex torus of dimension two. Then, there exists an
isogeny

KS(A) ∼ (A × Â)4,

where Â is the dual complex torus. In particular, if A is an abelian surface

KS(A) ∼ A8 and KS(Kum(A)) ∼ A219 ,

where Kum(A) is the Kummer surface associated to A.

Definition 2.12. Let A be an abelian variety of dimension 2n and let d be a positive
real number. Then, A is called of Q(

√−d)-Weil type if Q(
√−d) ⊆ End(A) ⊗Z Q

and if the action of
√−d on the tangent space at the origin of A has eigenvalues√−d and −√−d both with multiplicity n.

Given an abelian of Q(
√−d)-Weil type A, then one can associate naturally an

element δ ∈ Q/N(Q(
√−d)), where N(Q(

√−d)) is the set of norms of Q(
√−d). The

element δ is called the discriminant of A. Abelian varieties of Weil type appear
often as simple factors of Kuga–Satake varieties; the next result due to Lombardo
[7] gives an example of this fact. We recall here the version presented in [15, Thm.
9.2]. In the following, U denotes the hyperbolic plane.

Theorem 2.13. Let d be a positive real number and let A be an abelian fourfold of
Q(

√−d)-Weil type of discriminant δ = 1. Then, A4 is the Kuga–Satake variety of
a polarized Hodge structure of hyper-Kähler type of dimension six (V, q), such that

V 	 U⊕2 ⊕ 〈−1〉 ⊕ 〈−d〉
as quadratic spaces. Conversely, if (V, q) is a Hodge structure of hyper-Kähler type
of dimension six as above, its Kuga–Satake variety is isogenous to A4 for some
abelian fourfold of Q(

√−d)-Weil type.

2.3. Kuga–Satake Hodge Conjecture

In this section, we analyze the morphism of Hodge structures

V ↪→ Cl+(V ) ⊗ Cl+(V )

of Theorem 2.6, in the case where V = H2(X,Q)tr, the transcendental lattice of
a projective hyper-Kähler variety X. Using the isomorphism Cl+(H2(X,Q)tr) 	
H1

KS(H
2(X,Q)tr), we apply the Künneth decomposition and obtain an embedding

H1
KS(H

2(X,Q)tr) ⊗ H1
KS(H

2(X,Q)tr) ↪→ H2(KS(H2(X,Q)tr)2,Q).

On the other hand, since we the variety X is projective there is a natural pro-
jection map H2(X,Q) → H2(X,Q)tr. Composing these morphisms, we obtain the
morphism of Hodge structures

H2(X,Q) → H2(KS(H2(X,Q)tr)2,Q),

which is called the Kuga–Satake correspondence. This morphism corresponds via
Poincaré duality to a Hodge class

κ ∈ H2n,2n(X × KS(H2(X,Q)tr) × KS(H2(X,Q)tr)),

where 2n = dim X. The Hodge conjecture applied to this special case gives us the
following:
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Conjecture 2.14. (Kuga–Satake Hodge conjecture) Let X be a projective hyper-
Kähler variety or a complex projective surface with h2,0 = 1. Then, the class κ
is algebraic.

Remark 2.15. In the case where X is an abelian surface or a Kummer surface, the
Kuga–Satake Hodge conjecture can be deduced from Theorem 2.11, using the fact
that the Hodge conjecture is known for self-products of any given abelian surface
[9].

The Kuga–Satake Hodge conjecture is not known in most cases, already in the
case of K3 surfaces. One of the very few examples for which it has been proved is
the family of K3 surfaces studied by Paranjape in [12]: let L1, . . . , L6 be six lines in
P
2 no three of which intersect in one point, and let π : Y → P

2 be the double cover
of P2 branched along the six lines. Then, Y is a singular surface with simple nodes
in the preimages of the intersection points of the lines Li. Resolving the singularities
of π by blowing up the nodes one obtains a K3 surface X. For a general choice of the
six lines, the Picard number of X is equal to 16, where a basis of the Néron–Severi
group is given by the 15 exceptional divisors over the singular points of Y , together
with the pullback of the ample line of P

2 via the map X → P
2. In particular,

the transcendental lattice of X is six-dimensional, and satisfies the hypotheses of
Theorem 2.13. Its Kuga–Satake variety is therefore isogenous to the fourth power
of some abelian fourfold. In [12], the author shows that this abelian fourfold is the
Prym variety of some 4 : 1 cover C → E where C is a genus 5 curve and E is an
elliptic curve, and finds a cycle in the product of X and the Prym variety which
realizes the Kuga–Satake correspondence.

The fact that the Kuga–Satake correspondence is algebraic for the family
described above has been used by Schlickewei to prove the Hodge conjecture for
the square of those K3 surfaces:

Theorem 2.16. [14, Thm. 2] Let X be a K3 surface which is the desingularization
of a double cover of P2 branched along six lines no three of which intersect in one
point. Then, the Hodge conjecture is true for X2.

In [5], the Kuga–Satake Hodge conjecture is proved for K3 surfaces which are
desingularization of singular K3 surfaces in P

4 with 15 nodal points. The authors
then show that the same techniques as in Theorem 2.16 can be used to prove the
Hodge conjecture for the square of these K3 surfaces.

Theorem 2.17. [5] Let X be a K3 surface which is the desingularization of a singular
K3 surface in P

4 with 15 nodal points. Then, the Kuga–Satake Hodge conjecture
holds for X and the Hodge conjecture is true for X2.

As a part of its PhD thesis, the first author of these notes generalize these two
results and proves the following:

Theorem 2.18. [17, Thm. 4.3] Let X → S be a four-dimensional family of K3
surfaces whose general fibre is of Picard number 16 with an isometry

T (Xs) 	 U2 ⊕ 〈a〉 ⊕ 〈b〉,
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for some negative integers a and b. If the Kuga–Satake correspondence is algebraic
for the fibres of this family, then the Hodge conjecture holds for all powers of every
K3 surface in this family.

The families of K3 surfaces studied in [14] and in [5] satisfy the hypotheses of
Theorem 2.18. Therefore, Theorem 2.18 shows in particular that the Hodge conjec-
ture holds for all powers of the K3 surfaces in the two families considered in [5,14].
The techniques applied are similar to the one introduced in [14] with the addition of
a deformation argument which allows to prove the Hodge conjecture for all powers
of the K3 surfaces of higher Picard number in the family.

In the next section, we review another type of polarized hyper-Kähler manifolds
for which the Kuga–Satake Hodge conjecture can be proved: The family of hyper-
Kähler manifolds of generalized Kummer type.

3. The Case of Hyper-Kähler Manifolds of Generalized Kummer
Type

3.1. Cup-Product: Generalization of a Result of O’Grady

Let X be a hyper-Kähler manifold of dimension 2n with n ≥ 2. The Beauville–
Bogomolov quadratic form qX is a nondegenerate quadratic form on H2(X,Q),
whose inverse gives an element of Sym2H2(X,Q). By Verbitsky [18], the later space
imbeds by cup-product in H4(X,Q), hence we get a class

cX ∈ H4(X,Q). (3.1)

The O’Grady map φ :
∧2

H3(X,Q) → H4n−2(X,Q) is defined by

φ(α ∧ β) = cn−2
X ∪ α ∪ β. (3.2)

The following result was first proved by O’Grady [11] in the case of a hyper-
Kähler manifold of generalized Kummer deformation type.

Theorem 3.1. [11,20] Let X be a hyper-Kähler manifold of dimension 2n. Assume
that H3(X,Q) �= 0. Then, the O’Grady map map φ :

∧2
H3(X,Q) → H4n−2(X,Q)

is surjective.

Proof. We can choose the complex structure on X to be general, so that ρ(X) = 0.
This implies that the Hodge structure on H2(X,Q) (or equivalently H4n−2(X,Q)
as they are isomorphic by combining Poincaré duality and the Beauville-Bogomolov
form) is simple. As the morphism φ is a morphism of Hodge structures, its image
is a Hodge substructure of H4n−2(X,Q), hence either φ is surjective, or it is 0.
Theorem 3.1 thus follows from the next proposition. �

Proposition 3.2. The map φ is not identically 0.

Sketch of proof. Let ω ∈ H2(X,R) be a Kähler class. Then, we know that the ω-
Lefschetz intersection pairing 〈 , 〉ω on H3(X,R), defined by

〈α, β〉ω :=
∫

X

ω2n−3 ∪ α ∪ β
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is nondegenerate. This implies that the image of the map

ψ :
2∧

H3(X,Q) → H6(X,Q)

pairs nontrivially with the image of Sym2n−3H2(X,Q) in H4n−6(X,Q). Note that
the Hodge structure on H3(X,Q) has Hodge level one, so that the Hodge structure
on the image of Im ψ in Sym2n−3H2(X,Q)∗ is a Hodge structure of level at most
two. One checks by a Mumford–Tate group argument (see [20] for more details)
that, for a very general complex structure on X, the only level-two Hodge substruc-
ture of Sym2n−3H2(X,Q) is cn−2

X H2(X,Q), where we see here cX as an element
of Sym2H2(X,Q). It follows that the image of Im ψ in Sym2n−3H2(X,Q)∗ pairs
nontrivially with cn−2

X H2(X,Q), which concludes the proof. �

3.2. Intermediate Jacobian and the Kuga–Satake Variety

3.2.1. Universal Property of the Kuga–Satake Construction. The following result is
proved in [1]. Using the Mumford–Tate group, this is a statement in representation
theory of the orthogonal group.

Theorem 3.3. Let (H2, q) be a polarized Hodge structure of hyper-Kähler type.
Assume that the Mumford–Tate group of the Hodge structure on H2 is maximal
(that is, equal to the orthogonal group of q). Let H be a simple effective weight-one
Hodge structure, such that there exists an injective morphism of Hodge structures
of bidegree (−1, −1)

H2 ↪→ End(H).

Then, H is a direct summand of the Kuga–Satake Hodge structure H1
KS(H

2, q).

Idea of the proof. Let G := MT(End(H)) and denote by g its Lie algebra. Note
that the group G acts on H2, since H2 is a Hodge substructure of End(H). Using
the fact that the action of G preserves the polarization on H2 and the hypothesis
MT(H2) = SO(H2), one sees that the image of G in GL(H2) is SO(H2). As so(H2)
is a simple Lie algebra, we conclude that there exists a simple factor g0 of the
Lie algebra g that maps isomorphically onto so(H2). Note that G is naturally a
subgroup of MT(H), which is contained in CSp(H), the group generated by the
symplectic group and the homotheties of H. In particular, there is a morphism of
Lie algebras:

so(H2) 	 g0 ↪→ sp(H). (3.3)

By the classification result presented in [13] and explained in [3, 1.3.5–1.3.9], one
concludes that the only embeddings as in (3.3) which correspond to irreducible
representations of SO(V ) are the spin representations. This proves that H is a
direct summand of H1

KS(H
2, q). �

Charles’ theorem is in fact stronger, as it proves a similar statement for all
tensor powers H⊗k⊗(H∗)⊗k+2r. It also addresses the nonpolarized case that appears
when dealing with nonprojective hyper-Kähler manifolds. In [16], another version
of the universality property is proved. Namely
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Theorem 3.4. Let (H2, q) be a polarized Hodge structure of hyper-Kähler type.
Assume that dim H2 ≥ 5 and that the Mumford–Tate group of the Hodge structure
on H2 is maximal. Let H be a simple effective weight-one Hodge structure, such
that there exists an injective morphism of Hodge structures of bidegree (−1, −1)

H2 ↪→ Hom(H, A),

for some weight-one Hodge structure A. Then, H is a direct summand of the Kuga–
Satake Hodge structure H1

KS(H
2, q).

Coming back to Theorem 3.3, under the same assumption on the Mumford–
Tate group, one knows that the Kuga–Satake weight-one Hodge structure is a power
of a simple weight-one Hodge structure of dimension ≥ 2� b2−1

2 	, where b2 = dim H2,
hence one gets as a consequence an inequality (see [1] for a more precise estimate)

dim H ≥ 2� b2−1
2 	.

Proof of Theorem 1.1. Let X be a very general projective hyper-Kähler manifold of
generalized Kummer type of dimension ≥ 4. We apply Theorem 3.3 to the O’Grady
map (3.2) that we know to be a surjective morphism of Hodge structures by The-
orem 3.1, or rather to its dual. We then conclude that H3(X,Q) contains a direct
summand of H1

KS(H
2(X,Q)tr). As H1

KS(H
2(X,Q)tr) is a power of a simple weight-

one Hodge structure H1
KS(H

2(X,Q)tr)c of dimension 8, and b3(X) = 8, we conclude
that H3(X,Q) ∼= H1

KS(H
2(X,Q)tr)c as rational Hodge structures. �

3.3. Algebraicity of the Kuga–Satake Correspondence for Hyper-Kähler Manifolds
of Generalized Kummer Type

3.3.1. Markman’s Result. For a projective manifold X with h3,0(X) �= 0, it is
expected from the Hodge conjecture that there exists a cycle Z ∈ CH2(J3(X)×X)Q
such that [Z]∗ : H1(J3(X),Q) → H3(X,Q) is the natural isomorphism. Indeed, the
map [Z]∗ is an isomorphism of Hodge structures, hence provides a degree-4 Hodge
class on J3(X) × X. Equivalently, after replacing Z by a multiple that makes it
integral, the Abel–Jacobi map

ΦZ : J3(X) → J3(X), ΦZ := ΦX ◦ Z∗,

is a multiple of the identity and in particular ΦX is surjective.

Theorem 3.5. (Markman [8]) Let X be a projective hyper-Kähler manifold of gener-
alized Kummer type. Then, there exists a codimension-two cycle Z ∈ CH2(J3(X) ×
X)Q satisfying the property above.

The proof of this theorem uses a deformation argument starting from a gen-
eralized Kummer manifold, using the fact that J3(X) can be realized as a moduli
space of sheaves on X in that case.

We now use Markman’s result to prove Theorem 1.2.

Proof of Theorem 1.2. Let Z be the Markman codimension-two cycle of Theorem
3.5. We choose a cycle CX ∈ CH2(X)Q of class [CX ] = cX (it exists by results of
Markman [8]). We now consider the cycle

Γ = Z2 · pr∗
XCn−2

X ∈ CH2n(J3(X) × X)Q.
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One checks using the Künneth decomposition (see [20] for more details) that

[Γ]∗ : H2(J3(X),Q) → H2(X,Q)

is the O’Grady map. By Theorem 1.1, this is also the surjective morphism of Hodge
structures (1.1). �
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