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0 Introduction

This paper is a set of expanded notes for lectures I gave in Miami, Sienne, Udine and
Gargnano. The Lüroth problem is very simple to state, namely can one distinguish rational
varieties from unirational ones? Here the definitions are the following:

Definition 0.1. A smooth projective variety X over a field K is unirational if there exist
an integer N and a dominant rational map Φ : PN

K 99K X.
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Note that one can always (at least if K is infinite) reduce to the case N = n = dimX
by restricting Φ to a general linear subspace Pn

K ⊂ PN
K .

Definition 0.2. A smooth projective variety X over a field K is rational if there exists a
birational map Pn

K 99K X. The variety X is stably rational if X × Pr is rational for some
integer r.

More generally, we will say that X and Y are stably birational if X ×Pr
birat∼= Y ×Ps for

some integers r, s. This is an equivalence relation on the set of irreducible algebraic varieties
over K. Of course, all these notions can be reformulated using only the function field K(X)
of X, so that the smoothness or projectivity of X is not important here. However, it is
very important in practice to work with smooth projective models in order to exhibit stable
birational invariants. The simplest example is the case of algebraic differential forms (see
Section 1.1): For the space of algebraic differential forms on X of a given degree to be a
stable birational invariant of X, one needs to take X to be smooth and projective (or at
least complete).

The above mentioned problem had a classical satisfactory solution for curves and surfaces
over an algebraically closed field of characteristic 0, namely they are rational once they are
rationally connected, that is contain plenty of rational curves. However, after some delicate
episodes (we refer to [10] for a precise history of the subject), it was found that in dimension
3, these two notions do not coincide. The three contributions leading to this conclusion were
very different. We refer to Kollár’s paper in this book for an account of one of the methods,
namely “birational rigidity” which in its simple form proposed by Iskovskikh and Manin
[31], consisted in proving that the considered variety (they were considering smooth quartic
hypersurfaces in P4) has a very small birational automorphisms group, unlike projective
space which has a huge group of birational automorphisms, called the Cremona group. The
other approach, proposed by Clemens and Griffiths, has been extremely efficient in dimension
3, starting with the celebrated example of the cubic threefold hypersurface that they had
solved. It involves the geometry of the intermediate Jacobian and its theta divisor. The
relationships with birational geometry in dimension 3 is the fact that under the blow-up of
a smooth curve, this Jacobian gets an extra summand added, which is the Jacobian of a
curve.

The Clemens-Griffiths method works a priori only in dimension 3, although the develop-
ments of categorical methods might lead to higher dimensional variants. We refer for such
developments to the notes of Macr̀ı and Stellari in this volume. Both the Iskovskikh-Manin
method and the Clemens-Griffiths method deal with rationality but not stable rationality
for which we need to analyze the rationality not only of X but also of all the products
X × Pr. For the Clemens-Griffiths method, this limitation is due to the fact that the ratio-
nality criterion they use works only in dimension 3. For the Iskovskikh-Manin method, the
limitation is due to the fact that analyzing the birational automorphisms of X × Pr seems
to be very hard.

The third method due to Artin and Mumford not only works in any dimension, but also
it rests on the introduction of invariants that have higher degree versions which are more
and more subtle as the degree increases. A last crucial point is the fact that these invariants
are stable birational invariants. They were the first to prove the following result:

Theorem 0.3. [3] There exist unirational threefolds X which are not stably rational.

The invariant used by Artin-Mumford is the torsion in Betti cohomology of degree 3
of a smooth projective model of X. We will describe this example in Section 1.1.1. The
Artin-Mumford method has been further developed by Colliot-Thélène-Ojanguren [16] who
used higher degree unramified cohomology groups with torsion coefficients as stable birational
invariants in order to construct new examples of this phenomenon but having trivial Artin-
Mumford invariants. We will introduce unramified cohomology in Section 1.2.2. We will
also describe its main properties, and compute it in small degreee. The degree 2 case is in
fact the Brauer group and it is immediately related to the Artin-Mumford invariant which
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is the topological version of it. The degree 3 case was shown in [19] to measure the defect
of the Hodge conjecture in degree 4 with integral coefficients. These developments build on
one hand on Bloch-Ogus theory [11] that we will survey in Section 1.2.1, and on the other
hand on the Bloch-Kato conjecture proved by Voevodsky [58], that is the main recent new
ingredient in the theory of unramified cohomology, together with Kerz’ work [33].

We now explain our input to the subject. The theory of algebraic cycles of complex
algebraic varieties received a great impulse from Bloch-Srinivas contribution [11] who gave
an elegant proof and various generalizations of Mumford’s theorem [44] saying that a smooth
projective complex variety with trivial CH0 group (in the sense that all points are rationally
equivalent) has no nonzero algebraic differential form of degree > 0. Their approach used the
“decomposition of the diagonal” which we will describe in Section 2.1. The decomposition
of the diagonal is the beginning of a Künneth decomposition. It says that after removing the
first termX×x of the diagonal ∆X , the remaining cycle is supported onD×X, whereD ⊂ X
is a proper closed algebraic subset. We will show that for quantities with enough funtoriality
under correspondences, such a decomposition allows to show that they are supported on D
in a strong sense. The first instance of this phenomenon was of course the Bloch-Srinivas
improvement of Mumford’s theorem saying that if X has CH0(X) = Z, the positive degree
rational cohomology of X has coniveau ≥ 1: more precisely, it is supported on the divisor
D appearing in the decomposition of the diagonal.

The Bloch-Srinivas decomposition of the diagonal is with Q-coefficients, and as we will
see, there are many further obstructions to get a decomposition of the diagonal (Chow-
theoretic or cohomological) with integral coefficients. We will discuss many of them in
Sections 2.3.2 and 2.3. Actually, in the cohomological setting, we have a complete under-
standing of this condition at least in dimension 3. The relevance of this study for rationality
questions is the fact that the existence of such a decomposition is a necessary criterion
for stable rationality. In the Chow setting, this property governs all the invariants of a
Chow-theoretic/cohomological nature that we mentioned previously, including unramified
cohomology (see Section 2.3.2), in the sense that they vanish if the variety has a Chow
decomposition of the diagonal with integral coefficients.

What we realized in [62] is the fact that the existence of a Chow decomposition (and with
some care, also of a cohomological decomposition) is stable under the following operation:
degenerate (or specialize) a smooth general fiber Xt to a mildly singular special fiber X0 and

then desingularize X0 to X̃0. (This statement is the degeneration theorem 3.4.) The paper
[62] had considered only the simplest such mild singularities, namely nodal singularities in
dimension at least 2. This already led us to the following conclusion:

Theorem 0.4. There exist unirational threefolds which are not stably rational although all
their unramified cohomology groups are trivial. The very general quartic double solids are
such examples.

Note that the only possibly nontrivial unramified cohomology groups for rationally con-
nected threefolds are in fact the group H2

nr(X,Q/Z), that is, the Artin-Mumford invariant.
The gain over Theorem 0.3 is the fact that these varieties are very simple to construct and
exhibit (in fact they are general hypersurfaces in a toric fourfold), while Fano threefolds
with a nontrivial Artin-Mumford invariant as exhibited in [3] are hard to construct.

The quartic double solids appearing in Theorem 0.4 are Fano threefolds which specialize
to Artin-Mumford double solids X0, which are nodal. The situation is thus the following:
The desingularized Artin-Mumford double solid X̃0 does not admit a decomposition of the
diagonal because it has a nontrivial Artin-Mumford invariant. This implies that a general
deformation Xt of X0 neither admits a decomposition of the diagonal by the specialization
theorem mentioned above. However for all deformations smoothifying a node, the Artin-
Mumford invariant disappears. One can summarize the above argument in the following
statement which does not involve explicitly the decomposition of the diagonal:

Proposition 0.5. Let π : X → C be a flat projective morphism of relative dimension n ≥ 2,
where C is a smooth curve. Assume that the fiber Xt is smooth for t ̸= 0, and has at worst
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ordinary quadratic singularities for t = 0. Then if TorsH3
B(X̃0,Z) ̸= 0, the general fiber Xt

is not stably rational.

The paper [18] describes the exact conditions on the singularities which make the spe-
cialization theorem (hence Proposition 0.5) work. Colliot-Thélène and Pirutka applied their
method to the case of the general quartic hypersurface in P4 for which they proved the
analogue of Theorem 0.4. Although the precise nature of the allowed singularities is not
known because it is related to the rationality of the exceptional divisors, their criterion was
explicit enough to allow many other applications that we will try to survey in Section 3.3.
The most striking and important consequence is the following result obtained in [27]:

Theorem 0.6. Stable rationality is not deformation invariant. There exist families of
smooth projective varieties such that the fiber Xt is rational over a dense set (a countable
union of algebraic subsets) of the base, but the very general fiber is not stably rational.

We will also describe in that section the Totaro method [56], which combines the spe-
cialization method with the Kollár argument in [35] of reduction to nonzero characteristic
and analysis of algebraic differential forms on the central fiber. Finally we will explain
Schreieder’s further improvement (see [52], [53]) of Proposition 0.5.

1 Birational invariants

We will say that a property or a quantity is birationally invariant, resp. stably birationally
invariant, if it is constant on any birational equivalence class of varieties, resp. on any stable
birational equivalence class of varieties.

1.1 Classical birational invariants and functoriality

The following obvious lemma allows to produce stable birational invariants:

Lemma 1.1. Let X 7→ I(X) be a group defined for smooth varieties over a given field K.
Assume that I(X) is covariant for morphisms of K-varieties and has the property that:

(i) I(U) → I(X) is surjective for U ⊂ X a Zariski open set, and
(ii) it is an isomorphism if codim (X \ U ⊂ X) ≥ 2.
Then:
(a) I(X) is a birational invariant for smooth projective varieties over K.
(b) If furthermore
(iii) I(X) ∼= I(X × A1) (by push-forward) for any X,
then I(X) is a stable birational invariant for smooth projective varieties X over K.

Proof. Let ϕ : X 99K Y be a birational map between smooth and projective varieties over
K. Then there is an open set U ⊂ X such that codim (X \ U ⊂ X) ≥ 2 and ϕ|U is a
morphism. Then we have I(X) ∼= I(U) by (ii) and by covariant functoriality a morphism
ϕU∗ : I(U) → I(Y ), hence a morphism ϕ∗ : I(X) → I(Y ). It remains to see that ϕ∗ is an
isomorphism. Replacing ϕ by ϕ−1, we get ϕ−1

V ∗ : I(V ) → I(X) for some Zariski open set V
of Y such that I(V ) ∼= I(Y ). Let U ′ ⊂ U be defined as ϕ−1(V ). Then ϕ−1 ◦ϕ is the identity
on U ′, hence (ϕ−1)∗ ◦ ϕ∗ : I(U ′) → I(U ′) is the identity. As I(U ′) → I(X) is surjective
by (i), we conclude that (ϕ−1)∗ ◦ ϕ∗ : I(X) → I(X) is the identity which proves the first
statement after exchanging ϕ and ϕ−1. This proves (a).

For statement (b), we observe that (iii) implies that I(X) ∼= I(X × Al) for any X and
any l, and then that I(X) ∼= I(X × Pl) for any X and any l. Indeed we have

I(X) ∼= I(X × Al) � I(X × Pl) → I(X),

where the second arrow is surjective by (i) and the composite is the identity. Together with
(a) (proved for smooth projective varieties), this implies (b).
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The obvious application is the case of the fundamental group π1(Xan) when K = C,
where Xan is X(C) endowed with the Euclidean topology. It clearly satisfies properties
(i) and (ii). Unfortunately, the birational invariant so constructed is trivial for rationally
connected varieties by the following result which is due to Serre in the case of unirational
varieties.

Theorem 1.2. Let X be a smooth projective rationally connected variety over the complex
numbers. Then π1(Xan) = {e}.

Proof. AsX is rationally connected, there exist a smooth projective variety B, and a rational
map

ϕ : B × P1 99K X (1.1)

which has the property that (i) ϕ(B × 0) = {x} for a fixed point x ∈ X(C) and
(ii) ϕ∞ := ϕ|B×∞ : B 99K X is dominant (say generically finite).
Using the same arguments as above, there is an induced morphism ϕ∗ : π1(Ban×CP1) →

π1(Xan). This morphism is trivial by (i) and its image is of finite index by (ii). This implies
that π1(Xan) is finite. The end of the proof is an argument of Serre : Consider the universal

cover X̃an → Xan. Then X̃an is the analytic space of an algebraic variety X̃ which is
rationally connected because all rational curves contained in X lift to X̃. This implies that
the degree of the covering map X̃ → X is 1 (and thus that X is in fact simply connected)
by the following Euler-Poincaré characteristic argument: When X is rationally connected
over a field of characteristic 0, one has Hi(X,OX) = 0 for i > 0 (see Proposition 1.4 below).

This implies that χ(X,OX) = 1. This equality has to hold for both X and X̃, giving

χ(X,OX) = 1, χ(X̃,OX̃) = 1. (1.2)

However, for a proper étale cover, one has

χ(X,OX) = deg(X̃/X)χ(X̃,OX̃).

Comparing with (1.2), we get that deg(X̃/X) = 1.

The contravariant version of Lemma 1.1 is the following:

Lemma 1.3. Let X 7→ I(X) be a group defined for smooth varieties over a given field k.
Assume that I(X) is contravariant and has the property that:

(i) I(X) → I(U) is injective for U ⊂ X a Zariski open set, and
(ii) it is an isomorphism if codim (X \ U ⊂ X) ≥ 2.
Then:
(a) I(X) is a birational invariant for smooth projective varieties over K.
(b) If furthermore (iii) I(X) = I(X×A1) (by pull-back) for any X, then I(X) is a stable

birational invariant for smooth projective varieties over K.

This lemma applies to closed differential forms of fixed positive degree. In characteristic
0, algebraic differential forms on smooth projective varieties are closed, but of course this
is not true on nonprojective varieties and in fact condition (b) is not satisfied for algebraic
differential forms, while it is for closed differential forms. The stable birational invariant
that we get is trivial for rationally connected varieties in characteristic 0 by the following
proposition:

Proposition 1.4. Let X be smooth projective rationally connected over a field of charac-
teristic 0. Then H0(X,Ω⊗l

X ) = 0 and H l(X,OX) = 0 for any l > 0.

Proof. The second statement is a consequence of the first by Hodge symmetry, which gives
that over C, H l(X,OX) is canonically isomorphic to the complex conjugate of H0(X,Ωl

X),
which is naturally a subspace of H0(X,Ω⊗l

X ). Consider a rational map ϕ : B × P1 99K X as
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in (1.1). As X is projective, ϕ is well defined along a generic fiber P1
b := b×P1. As ϕB×∞ is

dominant, we can assume that ϕ is a submersion at (b,∞). The differential ϕb∗ of ϕ along
P1
b gives a morphism

ϕb∗ : TP1
b
⊕ TB,b ⊗OP1

b
→ ϕ∗bTX

of vector bundles along P1
b . As ϕ(B × 0) reduces to one point, ϕb∗ vanishes at 0. On the

other hand, ϕb∗ is by assumption surjective at ∞. We thus conclude that the vector bundle
(ϕ∗TX)|P1

b
(−0) is generically generated by sections, hence that it is a direct sum of line

bundles OP1
b
(ai) with ai ≥ 0 on P1

b . Hence (ϕ∗TX)|P1
b
is a direct sum of line bundles OP1

b
(bi)

with bi > 0. It follows that for any l > 0, H0(P1
b , (ϕ

∗Ω⊗l
X )|P1

b
) = 0. As b ∈ B is generic, this

implies that H0(X,Ω⊗l
X ) = 0 for l > 0.

Proposition 1.4 is not true in nonzero characteristic. The problem is that the dominant
map ϕ could be nonseparable, hence nowhere submersive. Kollár [35] exhibited such a
phenomenon for some mildly singular double covers of a hypersurfaces in projective space.

Theorem 1.5. [35] Let X ⊂ Pn be a hypersurface of degree 2d. Then X specializes to
a double cover X0 of a hypersurface of degree d branched along a hypersurface Y0 ⊂ X0

of degree 2d. Assume charK = 2 and 3d > n + 2. Then X0 has a desingularization X̃0

admitting a nonzero section of Ωn−2

X̃0
⊗ L−1, where the line bundle L is big and effective.

We will see in Section 3.3 how Totaro uses this construction. Totaro only uses the
effectivity of L, while Kollár needs the bigness of L, in order to apply the following result:

Proposition 1.6. A separably uniruled (in particular, a ruled) variety Y does not admit a
nonzero section of Ωl

Y ⊗ L−1 for some l ≤ dimY , where the line bundle L is big.

Proof. If there is a variety Z admitting a morphism f : Z → B with general fiber P1 and
a separable dominant map ϕ : Z 99K Y not mapping the fibers of f to points, then we
may assume ϕ is generically finite separable and dominant. If there is a nonzero section of
Ωn−2

Y ⊗L−1, there is a nonzero section of Ωl
Z ⊗ϕ∗L−1, where the line bundle ϕ∗L is also big,

and in particular has positive degree along the fibers of f . But this is clearly impossible as
ΩZ|Zb

= f∗ΩB ⊕ ΩZb
, and the first term is a trivial vector bundle along the fiber Zb while

the second term is a negative line bundle along the fibers Zb
∼= P1.

One major application obtained by Kollár is :

Theorem 1.7. [35] If X ⊂ Pn
C is a very general hypersurface of degree d ≥ 2pn+3

3 q, X is
not ruled, hence not rational.

Proof. (We give the argument only for even d.) It suffices to exhibit one hypersurface in the
above range of degree and dimension which is not ruled. The crucial point is that ruledness
is stable under specialization. This result is due to Matsusaka [41]. Consider a hypersurface
X defined over Z, which admits a reduction modulo 2 of the form described in Theorem 1.5.
If X is ruled, so is the specialization X0 or rather its desingularization X̃0. But Proposition
1.6 precisely says that X̃0 is not ruled.

Remark 1.8. It is not true that (separable) rational connectedness is stable under special-
ization. Under specialization to nonzero characteristic, a family of rational curves sweeping-
out X can specialize to a family of rational curves sweeping-out X0 but nonseparably. This
problem does not appear for ruledness because in this case the morphism from the family
of curves to X has degree 1, hence also its specialization. Hence the specialized morphism
is separable.
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1.1.1 The Artin-Mumford invariant

Our last examples of classical birational invariants will need functoriality properties slightly
different from what we used in Lemmas 1.1 and 1.3, namely functoriality under correspon-
dences. Let X 7→ I(X) be an invariant of smooth projective varieties. Assume that any
correspondence Γ ⊂ X × Y with dimΓ = dimX = dimY induces Γ∗ : I(Y ) → I(X)
and that this action is compatible with composition of correspondences. In particular a
morphism ϕ : X → Y between smooth projective varieties of the same dimensions induces
ϕ∗ : I(Y ) → I(X) and ϕ∗ : I(X) → I(Y ). Assume also that the projection formula
ϕ∗ ◦ ϕ∗ = (deg ϕ) Id : I(Y ) → I(Y ) holds. Assume the characteristic is 0 or resolution of
singularities holds in the following sense: for any rational map ϕ : X 99K Y , with Y projec-
tive, there exists a smooth variety τ : X̃ → X, obtained from X by a sequence of blow-ups
along smooth centers, such that ϕ ◦ τ gives a morphism X̃ → Y .

Lemma 1.9. Let X 7→ I(X) be an invariant of smooth projective varieties satisfying the
functoriality properties above. Then I(X) is invariant under birational maps of smooth
projective varieties if and only if it is invariant under blow-up.

Proof. Let ϕ : X 99K Y be a birational map. The graph Γϕ ⊂ X × Y induces a morphism
Γ∗
ϕ : I(Y ) → I(X). If

ϕ̃ : X̃ → Y, τ : X̃ → X

is a resolution of indeterminacies of ϕ (or singularities of Γϕ), with τ a composition of
blow-ups, one has

Γ∗
ϕ = τ∗ ◦ ϕ∗ (1.3)

because Γϕ = (τ, IdY )(Γϕ̃) or equivalently Γϕ = tΓτ ◦ Γϕ̃. Invariance of I under blow-ups

guarantees that τ∗ : I(X̃) → I(X) is an isomorphism. But ϕ∗ is injective on I(Y ) because
ϕ∗ ◦ϕ∗ = Id on I(Y ). Hence by (1.3), Γ∗

ϕ is injective. In order to prove surjectivity, we now

use resolution of singularities for ϕ−1. We thus have a diagram

ϕ̃−1 : Ỹ → X, τ ′ : Ỹ → Y

where τ ′ is a composition of blow-ups.
As before we have Γ∗

ϕ = ϕ̃−1
∗ ◦ τ ′∗, where now τ ′

∗
is an isomorphism by assumption while

ϕ̃−1
∗ is surjective by the projection formula ϕ̃−1

∗ ◦(ϕ̃−1)∗ = IdI(X). Thus Γ
∗
ϕ is surjective.

Remark 1.10. The proposition above becomes a triviality if we use the weak factorization
instead of resolutions of singularities.

Let us now introduce the Artin-Mumford invariant which was used in [3]. It will be
generalized in the next section but the simplest version of it is the following: X is defined
over the complex numbers and

I(X) = TorsH3
B(X,Z), (1.4)

where Hi
B(X,A) denotes Betti cohomology group Hi(Xan, A).

Proposition 1.11. The Artin-Mumford invariant is a stable birational invariant of smooth
projective varieties.

Proof. As all the Betti cohomology groups with integral coefficients have functoriality under
correspondences, the same holds for their torsion subgroups. Similarly for the projection
formula. By Lemma 1.9, in order to show birational invariance of TorsH3

B(X,Z), it thus
suffices to show its invariance under blow-up. We now use the blow-up formula

Hi
B(X̃,Z) = Hi

B(X,Z)⊕Hi−2
B (Z,Z)⊕Hi−4

B (Z,Z)⊕ . . . ,
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where τ : X̃ → X is the blow-up of X along the smooth locus Z with exceptional divisor
τE : E → Z and the first map is τ∗ while the other maps are j∗ ◦(es∪)◦τ∗E , with e = [E]|E ∈
H2

B(E,Z). The end of the proof follows from the observation that the blow-up formula
remains true if we replace integral cohomology by its torsion and that TorsH1

B(W,Z) = 0
for any topological space W . This last fact follows indeed from the cohomology long exact
sequence associated with the short exact sequence of constant sheaves

0 → Z m→ Z → Z/mZ → 0

on W . The blow-up formula then gives

TorsH3
B(X̃,Z) = TorsH3

B(X,Z).

In order to get stable birational invariance, it remains to see invariance under X 7→ X ×Pr.
This follows from Künneth formula which gives H3

B(X × Pr,Z) = H3
B(X,Z) ⊕ H1

B(X,Z),
hence

TorsH3
B(X × Pr,Z) = TorsH3

B(X,Z)⊕ TorsH1
B(X,Z) = TorsH3

B(X,Z).

Remark 1.12. The same proof shows as well that TorsH2
B(X,Z) is also a birational in-

variant. However, this invariant is trivial for rationally connected varieties, because they
are simply connected by Theorem 1.2.

The Artin-Mumford invariant of X has an important interpretation as the topological
part of the Brauer group of X, which detects Brauer-Severi varieties on X. These varieties
are fibered over X into projective spaces, but are not projective bundles P(E) for some
vector bundle E on X. Given such a fibration π : Z → X with fibers Zx isomorphic to
Pr, Z ∼= P(E) for some vector bundle of rank r + 1 if and only if there exists a line bundle
L on Z which restricts to O(1) on each fiber. The topological part of the obstruction to
the existence of L is the obstruction to the existence of α ∈ H2

B(Z,Z) which restricts to
c1(OZx

(1)) ∈ H2
B(Zx,Z). The relevant piece of the Leray spectral sequence of π gives the

exact sequence

H2(Z,Z) → H0(X,R2π∗Z)
d2→ H3(X,R0π∗Z) = H3(X,Z),

where the second map is 0 with Q-coefficients by the degeneration at E2 of the Leray
spectral sequence (or because there is a line bundle on Z whose restriction to the fibers is
OZx

(−r − 1), namely the canonical bundle KZ). The image d2(h) is thus a torsion class in
H3(X,Z), called the Brauer class. The same argument shows that the order of the Brauer
class divides r + 1.

The Artin-Mumford invariant was used by Artin and Mumford to exhibit unirational
threefolds which are not stably rational. Let Sf ⊂ P3 be a quartic surface defined by a
degree 4 homogeneous polynomial f . Let Xf → P3 be the double cover of P3 ramified along
Sf . It is defined as Spec (OP3 ⊕ OP3(−2)) , where the algebra structure A ⊗ A → A on
A = OP3 ⊕OP3(−2)) is natural on the summands OP3 ⊗OP3 and OP3 ⊗OP3(−2) and sends
OP3(−2)⊗OP3(−2) to OP3 via the composition

OP3(−2)⊗OP3(−2) → OP3(−4)
f→ OP3 .

The local equation for Xf ⊂ Spec (⊕l≥0OP3(−2l)) is thus u2 = f , from which we conclude
that Xf has ordinary quadratic singularities if Sf does. When Sf is smooth, Xf has trivial
Artin-Mumford invariant. This follows from Lefschetz theorem on hyperplane sections as Xf

can be seen as a hypersurface (not ample but positive) in the P1-bundle Proj (Sym (OP3 ⊕
OP3(−2))) over P3. Assume now that Sf has ordinary quadratic singularities and let X̃f be

the desingularization of Xf by blow-up of the nodes. Note that X̃f is unirational. This is
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true for all quartic double solids but becomes particularly easy once Sf has a node. Indeed,
choose a node O ∈ Sf . The lines in P3 passing through O intersect Sf in the point O with
multiplicity 2 and two other points. The inverse image of such a line ∆ in Xf has a singular

point at O (that we see now as a point of Xf ), and its proper tranform C∆ in X̃f is the
double cover of ∆ ∼= P1 ramified over the two remaining intersection points of ∆ and Sf . It

follows that C∆ is rational and we thus constructed a conic bundle structure a : X̃f → P2

on X̃f . On the other hand, if we choose a generic plane P in P3, its inverse image Σf,P in
Xf is a del Pezzo surface, hence is rational, and via a, it is a double cover of P ∼= P2. The

double cover X̃f ×P Σf,P of Xf is then rational, being rational over the function field of
Σf,P since it is a conic bundle over Σf,P which has a section. We thus constructed a degree
2 unirational parametrization of Xf :

X̃f ×P Σf,P

birat∼= P3 99K Xf .

Artin and Mumford construct f in such a way that Xf is nodal and X̃f has a nontrivial
Artin-Mumford invariant. Their construction is as follows: Project Sf from one of its nodes

O. Then this projection makes the blow-up S̃f of Sf at O a double cover of P2 ramified along
a sextic curve. This sextic curve D is not arbitrary: it has to be tangent to a conic C ⊂ P2

at any of their intersection points. This conic indeed corresponds to the exceptional curve
of S̃f . Another way to see it is to write the equation f as X2

0q +X0t+ s, where q, t, s are
homogeneous of respective degrees 2, 3, 4 in three variables X1, X2, X3. The ramification
curve of the 2 : 1 map S̃f → P2 is defined by the discriminant of f seen as a quadratic
polynomial in X0, that is,

g = t2 − 4qs. (1.5)

The conic C is defined by q = 0 and (1.5) shows that g|C is a square, and g is otherwise
arbitrary. Artin and Mumford choose g to be a product of two degree 3 polynomials, each of
which satisfies the tangency condition along C. Note that Sf has then 9 extra nodes coming
from the intersection of the two cubics.

Theorem 1.13. [3] If the ramification curve D is the union of two smooth cubics E, F
meeting transversally and tangent to C at each of their intersection points, the desingularized
quartic double solid X̃f has TorsH3

B(X̃f ,Z) ̸= 0.

Rather than giving the complete proof of this statement, we describe Beauville’s con-
struction [10] of the Brauer-Severi variety Z → X̃f providing a Brauer class which is a

2-torsion class in H3
B(X̃f ,Z) as described previously. The Artin-Mumford condition implies

that the polynomial f is the discriminant of a (4, 4)-symmetric matrix M whose entries are
linear forms in four variables (the quartic surface Sf is then called a quartic symmetroid).
This defines a family of quadric surfaces Q over P3 if we see M as an equation of type (2, 1)
on P3

1×P3
2, and the associated double cover of P3

2 parameterizes the choice of a ruling in the
corresponding quadric Qt ⊂ P3

1. The family of lines in a given ruling on a given fiber is a
curve ∆ ∼= P1 but the natural embedding of ∆ in G(2, 4) gives ∆ as a conic. This way we

get a family of rational curves over X̃f , smooth away from the surface Sf parameterizing
singular quadrics. We refer to [10] and also to [37] for the local analysis which shows how

to actually construct a P1-fibration on the whole of X̃f .
The last, less classical, birational invariant that we will mention is defined as follows.

For a smooth complex variety X, one has the cycle class map

cl : Z2(X) → H4
B(X,Z)

and we will denote by H4
B(X,Z)alg ⊂ H4

B(X,Z) the image of cl. The group H4
B(X,Z)alg is

contained in the group Hdg4(X,Z) of integral Hodge classes of degree 4 on X.

9



Lemma 1.14. The groups Tors (H4
B(X,Z)/H4

B(X,Z)alg) and Hdg4(X,Z)/H4
B(X,Z)alg are

birational invariants of the smooth projective variety X.

Proof. The two groups satisfy the functoriality conditions needed to apply Lemma 1.9, hence
in order to show birational invariance, it suffices to show their invariance under blow-up.
However, for the blow-up X̃ → X of Z ⊂ X, one has

H4
B(X̃,Z) = H4

B(X,Z)⊕H2
B(Z,Z)⊕H0

B(Z,Z),

where the last term appears only if codimZ ≥ 3. In this decomposition, all the maps are
natural and induced by algebraic correspondences. In particular this is a decomposition into
a direct sum of Hodge structures. This decomposition thus induces

H4
B(X̃,Z)alg = H4

B(X,Z)alg ⊕H2
B(Z,Z)alg ⊕H0

B(Z,Z)alg,

and
Hdg4(X̃,Z) = Hdg4(X,Z)⊕Hdg2(Z,Z)⊕Hdg0(Z,Z).

Using the facts thatH2
B(Z,Z)/H2

B(Z,Z)alg has no torsion and Hdg2(Z,Z) = H2
B(Z,Z)alg,

which both follow from the integral Hodge conjecture in degree 2 (or Lefschetz theorem on
(1, 1)-classes), we conclude that

Tors (H4
B(X̃,Z)/H4

B(X̃,Z)alg) = Tors (H4
B(X,Z)/H4

B(X,Z)alg),

Hdg4(X̃,Z)/H4
B(X̃,Z)alg = Hdg4(X,Z)/H4

B(X,Z)alg,

which proves the desired result.
The invariance of these groups under X 7→ X × Pr is proved similarly.

Note that if the rational Hodge conjecture holds for degree 4 Hodge classes on X, these
two groups are naturally isomorphic:

Lemma 1.15. For any smooth projective variety X,

Tors (H4
B(X,Z)/H4

B(X,Z)alg)) = Tors (Hdg4(X,Z)/H4
B(X,Z)alg).

Assume X satisfies the rational Hodge conjecture in degree 4, the group Tors (H4
B(X,Z)/H4

B(X,Z)alg))
identifies with the group Hdg4(X,Z)/H4

B(X,Z)alg which measures the defect of the Hodge
conjecture for integral Hodge classes of degree 4 on X.

Proof. Indeed, a torsion element in H4
B(X,Z)/H4

B(X,Z)alg is given by a class α on X such
that Nα is algebraic on X. Then α is an integral Hodge class on X, which proves the
first statement. Finally, the rational Hodge conjecture in degree 4 for X is equivalent to
the fact that the group Hdg4(X,Z)/H4

B(X,Z)alg is of torsion, which proves the second
statement.

1.2 Unramified cohomology

1.2.1 The Bloch-Ogus spectral sequence

Let X be an algebraic variety (in particular, it is irreducible and we can speak of its function
field). If X is defined over C, we can consider two topologies on X(C), namely the Euclidean
(or analytic) topology and the Zariski topology. We will denote Xan, resp. XZar, the
topological space X(C) equipped with the Euclidean topology, resp. the Zariski topology.
As Zariski open sets are open for the Euclidean topology, the identity ofX(C) is a continuous
map

f : Xan → XZar.
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Given any abelian group A, the Bloch-Ogus spectral sequence is the Leray spectral sequence
of f , abutting to the cohomology Hi

B(X,A) := Hi(Xan, A). It starts with

Ep,q
2 (A) = Hp(XZar,Hq(A)),

where Hq(A) is the sheaf on XZar associated with the presheaf U 7→ Hq
B(U,A). The Betti

cohomology groups Hn
B(X,A) = Hn(Xan, A) thus have a filtration, (which is in fact when X

is smooth the coniveau filtration,) namely the Leray filtration for which GrpLH
p+q
B (Xan, A) =

Ep,q
∞ , the latter group being a subquotient of Ep,q

2 .
A fundamental result of Bloch-Ogus [11] is the Gersten-Quillen resolution for the sheaves

Hq(A). It is constructed as follows: For any variety Y , we denote by Hi(C(Y ), A) the direct
limit over all dense Zariski open sets U ⊂ Y of the groups Hi

B(U,A):

Hi(C(Y ), A) = lim
→

∅̸=U⊂Y,open

Hi
B(U,A). (1.6)

Let now Z be a normal irreducible closed algebraic subset of X, and let Z ′ be an irreducible
reduced divisor of Z. At the generic point of Z ′, both Z ′ and Z are smooth. There is thus
a residue map ∂ : Hi(C(Z), A) → Hi−1(C(Z ′), A). It is defined as the limit over all pairs of
dense Zariski open sets V ⊂ Zreg, U ⊂ Z ′

reg such that U ⊂ V ∩ Z ′
reg, of the residue maps

ResZ,Z′ : Hi((V \ V ∩ Z ′)an, A) → Hi−1(Uan, A).

If now Z ′ ⊂ Z is a divisor, with Z not necessarily normal along Z ′, we can introduce the
normalization n : Z̃ → Z with restriction n′ : Z ′′ → Z ′, where Z ′′ = n−1(Z ′), and then
define ∂ : Hi(C(Z), A) → Hi−1(C(Z ′), A) as the composite

Hi(C(Z), A) ∼= Hi(C(Z̃), A) ∂→ Hi−1(C(Z ′′), A)
n′
∗→ Hi−1(C(Z ′), A). (1.7)

In (1.7), the pushforward morphism

n′∗ : Hi−1(C(Z ′′), A)→Hi−1(C(Z ′), A)

is defined by restricting to pairs of Zariski open sets U ⊂ Z ′′
reg, V ⊂ Z ′

reg such that n′

restricts to a proper (in fact, finite) morphism U → V . More precisely, as Z ′′ is not
necessarily irreducible, we should in the above definition write Z ′′ = ∪jZ

′′
j as a union of

irreducible components, and take the sum over j of the morphisms (1.7) defined for each
Z ′′
j .

For each subvariety j : Z ↪→ X, we consider the group Hi(C(Z), A) as a constant sheaf
supported on Z and we get the corresponding sheaf j∗H

i(C(Z), A) on XZar. Finally, we
observe that we have a natural sheaf morphism

Hi(A) → Hi(C(X), A)

where we recall that the second object is a constant sheaf on XZar. This sheaf morphism
is simply induced by the natural maps Hi(Uan, A) → Hi(C(X), A) for any Zariski open set
U ⊂ X, given by (1.6). The residue maps have the following property: Let D1, D2 ⊂ Y be
two smooth divisors in a smooth variety, let Z be a smooth reduced irreducible component
of D1 ∩D2 and let α ∈ Hi

B(U,A), where U : Y \ (D1 ∪D2). Then

ResZ(ResD1(α)) = −ResZ(ResD2(α)), (1.8)

where on the left Z is seen as a divisor in D1, and on the right it is seen as a divisor of D2.
Considering the case where Y ⊂ X is the regular locus of any subvariety of codimension k
of X, D, D′ ⊂ Y are of codimension k + 1, and Z ⊂ D ∩D′ ⊂ Y is of codimension k + 2 in
X, we conclude from (1.8) that for any i, the two sheaf maps

∂ : ⊕codimY=kH
i(C(Y ), A) → ⊕codimD=k+1H

i−1(C(D), A)
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and

∂ : ⊕codimD=k+1H
i−1(C(D), A) → ⊕codimZ=k+2H

i−2(C(Z), A)

satisfy ∂ ◦ ∂ = 0.

Theorem 1.16. (Bloch-Ogus, [11]) Let X be smooth. The complex

0 → Hi(A) → Hi(C(X), A) → ⊕ D irred
codimD=1

Hi−1(C(D), A) → . . .→ ⊕ Z irred
codimZ=i

H0(C(Z), A) → 0(1.9)

is an acyclic resolution of Hi(A).

It is clear that this resolution is acyclic. Indeed, all the sheaves appearing in the resolution
are acyclic, being constant sheaves for the Zariski topology on algebraic subvarieties of X.
Note that the codimension i subvarieties Z of X appearing above are all irreducible, so that
H0(C(Z), A) = A and the global sections of the last sheaf appearing in this resolution is the
group Zi(X)⊗A of codimension i cycles with coefficients in A.

Theorem 1.16 says first that the sheaf map Hi(A) → Hi(C(X), A) is injective, which is
by no means obvious. The meaning of this assertion is that if a class α ∈ Hi

B(U,A) vanishes
on a dense Zariski open set V ⊂ U , then U can be covered by Zariski open sets Vi such that
α|Vi

= 0. This is a moving lemma for the support of cohomology.
We now come back to the Bloch-Ogus spectral sequence and describe the consequences

of this theorem, following [11].

Theorem 1.17. (i) For any two integers p > q, one has Ep,q
2 (A) = Hp(XZar,Hq(A)) = 0.

(ii) For p ≤ q, one has

Hp(XZar,Hq(A)) =
Ker (∂ : ⊕codimZ=pH

q−p(C(Z), A) → ⊕codimZ=p+1H
q−p−1(C(Z), A))

Im (∂ : ⊕codimZ=p−1Hq−p+1(C(Z), A) → ⊕codimZ=pHq−p(C(Z), A))
.(1.10)

(iii) The group Hp(X,Hp(Z)) is isomorphic to the group Zp(X)/alg of codimension p cycles
of X modulo algebraic equivalence.

Proof. (i) Indeed, Theorem 1.16 says that Hq(A) has an acyclic resolution of length q.
(ii) As (1.9) is an acyclic resolution of Hq(A), the complex of global sections of (1.9) has

degree p cohomology equal to Hp(XZar,Hq(A)).This is exactly the contents of (1.10).
(iii) We use (ii), which gives in this case

Hp(XZar,Hp(Z)) =
⊕codimZ=pH

0(C(Z),Z)
Im (∂ : ⊕codimZ=p−1H1(C(Z),Z) → ⊕codimZ=pH0(C(Z),Z))

.

We already mentioned that the numerator is the group Zp(X). The proof is concluded by
recalling the following two facts :

(1) A cycle Z of codimension p on X is algebraically equivalent to 0 if it belongs to the
group generated by divisors homologous to 0 in the (desingularization of a) subvarieties of
codimension p− 1 of X.

(2) A divisor D in a smooth complex manifold is cohomologous to 0 if and only if there
exists a degree 1 integral Betti cohomology class α on X \ |D| such that Resα = D. Here
we denote by |D| the support of D.

The vanishing (i) in Theorem 1.17 is very important. Let us give some applications taken
from [11]. We will give further applications in Section 1.2.3. First of all, by the vanishing (i),
we conclude that there is no nonzero Leray differential dr, r ≥ 2 starting from Ep,p

2 (Z) =
Hp(XZar,Hp(Z)). It follows that Ep,p

∞ (Z) is a quotient of the group Hp(XZar,Hp(Z)).
Futhermore, by the same vanishing (i) above, the Bloch-Ogus filtration on H2p

B (X,Z) has

Lp+1 = 0, and thus LpH2p
B (X,Z) = GrpLH

2p
B (X,Z) = Ep,p

∞ (Z). We conclude that there is a
natural composite map

Hp(XZar,Hp(Z)) → Ep,p
∞ (Z) ↪→ H2p

B (X,Z). (1.11)
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It is proved in [11] that, via the identification given by Theorem 1.17, (iii), this map is the
cycle class map in Betti cohomology. Note that by definition, the kernel of the cycle class
map Zp(X)/alg → H2p

B (X,Z) is the Griffiths group Griffp(X). We finally have the following
result for codimension 2 cycles which describes the kernel of the cycle class map.:

Theorem 1.18. [11] Let X be a smooth variety over C. There is a natural exact sequence

H3
B(X,Z) → H0(XZar,H3(Z)) → H2(XZar,H2(Z)) → H4

B(X,Z).

Proof. The maps are the natural ones. The first map is given by restriction to Zariski open
sets. The second map is the differential d2 of the Bloch-Ogus spectral sequence and the last
map is the one appearing in (1.11) and just identified with the cycle class map. The proof
of the exactness follows from inspection of the Bloch-Ogus spectral sequence. The kernel
of the map H2(XZar,H2(Z)) = E2,2

∞ → H4
B(X,Z) must be in the image of some dr and

obviously only r = 2 is possible. This shows exactness in the third term. Finally, by the
vanishing of Theorem 1.17,(i), the only nonzero dr starting from H0(XZar,H3(Z) is d2. It
follows that Ker d2 = E0,3

∞ , and this is a quotient of H3
B(X,Z). This shows exactness in the

second term.

1.2.2 Unramified cohomology

The following definition was first introduced in [16] in the setting of étale cohomology.

Definition 1.19. Let X be an algebraic variety over C and let A be an abelian group. Then
Hi

nr(X,A) = H0(XZar,Hi(A)).

This definition can be made in fact over other fields, with Betti cohomology replaced by
étale cohomology. If A is finite, and X is over C, étale and Betti cohomology compare natu-
rally. The advantage of Betti cohomology is that we can consider integral coefficients, while
étale cohomology needs coefficients like Zℓ which are projective limits of Z/lnZ. However a
big advantage of étale cohomology is that it fits naturally with Galois cohomology. In fact,
we have a natural isomorphism

lim
→

U⊂X,open

Hi
et(U,A) = Hi

Gal(C(X), A), (1.12)

where A is finite, and the direct limit is over the dense Zariski open sets of X. The term on
the right is the cohomology of the Galois group of the field C(X) with coefficients in A,The
term on the left is the analogue of what we defined to be Hi(C(X), A) in the Betti context.
If A is finite, then

Hi
et(U,A)

∼= Hi
B(U,A)

hence Hi(C(X), A) = Hi
Gal(C(X), A).

One consequence of Theorem 1.16 is the following formula for unramified cohomology:
this is actually cohomology without residues.

Proposition 1.20. Assuming X smooth over C, one has

Hi
nr(X,A) = Ker (Hi(C(X), A)

∂→ ⊕codimZ=1H
i−1(C(Z), A). (1.13)

In particular, the restriction map Hi
nr(X,A) → Hi

nr(U,A) is injective for any Zariski dense
open set U of X.

Proof. Looking at Definition 1.19, this is a particular case of formula (1.10).

We now get the following important consequence:

Theorem 1.21. Unramified cohomology groups Hi
nr(X,A) are birational invariants of smooth

projective varieties.
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We should make precise here that we consider complex varieties over C if we want to
work with Betti cohomology and any coefficients, and that for more general fields, we use
étale cohomology and have to restrict coefficients as mentioned below.

Proof of Theorem 1.21. This is an immediate application of Proposition 1.20 and 1.3, be-
cause formula (1.13) shows that the natural restriction mapHi

nr(X,A) → Hi
nr(U,A) is injec-

tive when U is a dense Zariski open set of X, and that it is an isomorphism if codim (X \U ⊂
X) ≥ 2. One uses of course the obvious contravariant functoriality of unramified cohomol-
ogy.

We refer to Section 2.3.2 for the proof that unramified cohomology is in fact a stable
birational invariant. The following example shows that unramified cohomology generalizes
Artin-Mumford invariant to higher degree.

Proposition 1.22. Let X be a smooth projective complex variety. Then

H2
nr(X,Q/Z) = TorsH2(Xan,O∗

Xan
), (1.14)

where O∗
Xan

is the sheaf of invertible holomorphic functions on Xan, is the Brauer group
of X. In particular, if X is rationally connected, H2

nr(X,Q/Z) ∼= TorsH3
B(X,Z) is the

Artin-Mumford group of X.

Proof. Let us show the following precise version of (1.14):

H2
nr(X,Z/nZ) = n− Tors (H2(Xan,O∗

Xan
)). (1.15)

Consider the exact sequence

0 → Z/nZ → O∗
Xan

→ O∗
Xan

→ 1,

where the second map is x 7→ xn and Z/nZ is identified with the group of n-th roots of
unity. The associated long exact sequence shows that

n− TorsH2(Xan,O∗
Xan

) ∼= H2(Xan,Z/nZ)/Im cln,

where
cln : H1(Xan,O∗

Xan
) = H1(X,O∗

X) = CH1(X) → H2(Xan,Z/nZ)

is the cycle class modulo n. We consider the Bloch-Ogus exact sequence for the sheaf Z/nZ
on Xan. The E

p,q
2 -terms in degree 2 are, by Theorem 1.17, (i)

E0,2
2 = H0(XZar,H2(Z/nZ)) = H2

nr(X,Z/nZ), E
1,1
2 = H1(XZar,H1(Z/nZ)).

The last term maps to H2(Xan,Z/nZ) as all the higher dr vanish on it, again by Theorem
1.17, (i). No dr for r ≥ 2 starts from or arrives to E0,2

2 , by Theorem 1.17, (i) again. Hence
E0,2

2 = E0,2
∞ is the quotient of H2(Xan,Z/nZ) by the image of E1,1

2 . One then proves that
this image is Im cln.

1.2.3 Bloch-Kato conjecture and applications

Define the Milnor K-theory groups of a field K (or a ring R) as follows

KM
i (K) = (K∗)⊗i/I,

where I is the ideal generated by x⊗ (1−x) for x ∈ K∗, 1−x ∈ K∗. In particular, we have
KM

1 (K) = K∗. Fix an integer n prime to the characteristic of K. The exact sequence of
Galois modules

0 → µn → K
∗ → K

∗ → 1,
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where µn ⊂ K
∗
is the group of n-th roots of unity, gives a map

∂ : K∗/n→ H1(K,µn) := H1(GK , µn), (1.16)

where GK = Gal (K/K), which is known by Hilbert’s Theorem 90 to be an isomorphism

(this is equivalent to the vanishing H1(GK ,K
∗
) = 0). More generally, one has a morphism

(called the Galois symbol or norm residue map)

∂i : K
M
i (K)/n→ Hi(GK , µ

⊗i
n ) (1.17)

which to (x1, . . . , xi) associates α(x1) ∪ . . . ∪ α(xi). The following fundamental result gen-
eralizing the isomorphism (1.16) is the Bloch-Kato conjecture solved by Voevodsky [58].

Theorem 1.23. The map ∂i is an isomorphism for any i and n prime to charK.

This result was known for i = 2 as the Merkur’ev-Suslin theorem [42]. The following
result is proved in [19], and [6] (see also [7]) to be a consequence of the Bloch-Kato conjecture
(now Voevodsky’s theorem).

Theorem 1.24. Let X be a smooth complex variety. Then the sheaves Hi(Z) on XZar have
no torsion.

In other words, if an integral Betti cohomology class α defined on a Zariski open set U
of X is of n-torsion for some integer n, then U is covered by Zariski open sets V such that
α|V = 0.

Proof of Theorem 1.24. The exact sequence of sheaves on Xan

0 → Z n→ Z → Z/nZ → 0

provides an associated long exact sequence of sheaves on XZar

. . .Hi(Z) → Hi(Z/nZ) → Hi+1(Z) n→ Hi+1(Z) . . .

from which one concludes that the sheaves Hi(Z) have no n-torsion (for any n, i) if and only
the natural sheaf maps

Hi(Z) → Hi(Z/nZ) (1.18)

are surjective for all i, n. This is however implied by Voevodsky’s theorem as follows:
Voevodsky gives the isomorphisms

KM
j (C(D))/n ∼= Hj

Gal(C(D),Z/nZ)

for all j, n and closed algebraic subsets D of X. If one combines these isomorphisms with
the Bloch-Ogus resolution of Hi(Z/nZ) on one hand and the Gersten-Quillen resolution of
the sheaves KM

i (OX) established by Kerz [33] on the other hand, one concludes that the
natural maps

KM
i (OX) → Hi(Z/nZ) (1.19)

are sheaf isomorphisms. On the other hand, we note that for a Zariski open set U ⊂ X, we
have the inclusion

Γ(O∗
U ) ⊂ Γ(O∗

Uan
)

where on the right we consider the invertible holomorphic functions on U . There are natural
maps given by the exponential exact sequence on Uan

KM
1 (Γ(OUan

)) = Γ(O∗
Uan

) → H1(Uan,Z), KM
i (Γ(OUan

)) → Hi(Uan,Z)

15



and the maps KM
i (Γ(OU )) → Hi(Uan,Z/nZ) appearing in (1.19) fit in a commutative

diagram

KM
i (Γ(OU )) //

f

��

KM
i (Γ(OUan))

c //

fan

��

Hi(Uan,Z)

g

��
KM

i (Γ(OU ))/n // KM
i (Γ(OUan))/n

cn // Hi(Uan,Z/nZ)

(1.20)

where the first vertical maps f and fan given by reduction mod n are obviously surjective
and the vertical map g is the map (1.18), or rather its global sections version over U .
Voevodsky’s theorem implies a fortiori the surjectivity of the bottom horizontal map cn at
the sheaf level, so by surjectivity of fan, we conclude that cn ◦ fan = g ◦ c is surjective at
the sheaf level. A fortiori g is surjective at the sheaf level, that is, the sheaf maps (1.18) are
surjective.

Corollary 1.25. The groups Hi
nr(X,Z) have no torsion, for any smooth algebraic variety

over C.

We will however also see that these groups are trivial for X unirational. (We refer
to Theorem 2.22 in Section 2.3.2 for details of proof and for a more general statement.)
The unirationality assumption guarantees by functoriality considerations that the groups
Hi

nr(X,Z) are torsion for i > 0. The torsion freeness statement then implies that they
are trivial. It follows that we cannot use the unramified cohomology groups with integral
coefficients to distinguish rational varieties from unirational ones. In fact, unramified co-
homology with torsion coefficients are the right invariant to use, as it already appeared in
Proposition 1.22. The following result proved in [19] uses Theorem 1.24 to describe the next
group H3

nr(X,Q/Z) (or H3
nr(X,Z/nZ)). In fact we relate it to the birationally invariant

group we introduced in Lemma 1.14.

Theorem 1.26. [19] (i) For any smooth algebraic variety X over C, there is an exact
sequence

0 → H3
nr(X,Z)⊗ Z/nZ → H3

nr(X,Z/nZ) → n− Tors (H4
B(X,Z)/H4

B(X,Z)alg) → 0(1.21)

(ii) If X is rationally connected, then H4
nr(X,Z/nZ) ∼= n − Tors (H4

B(X,Z)/H4
B(X,Z)alg)

and H4
nr(X,Q/Z) measures the defect of the Hodge conjecture for degree 4 integral Hodge

classes on X.

Proof. The second statement follows from the first by Theorem 2.22, (ii), using Lemma 1.15
and the fact that if X is rationally connected, the Hodge conjecture holds for rational Hodge
classes of degree 4 on X (see [20], [12], and Section 2.3.1).

We now prove (i). The result is obtained by examining the Bloch-Ogus spectral se-
quence for degree 4 integral cohomology. Recall from Section 1.2.1 that we have Ep,q

2 -terms
Hp(XZar,Hq(Z)) with p+ q = 2 converging to H4

B(X,Z). By Theorem 1.17, (i), only

H0(XZar,H4(Z)), H1(XZar,H3(Z)), H2(XZar,H2(Z))

appear. Furthermore, as we already saw, the group H2(XZar,H2(Z)) maps onto its image
E2,2

∞ in H4
B(X,Z), which identifies with H4

B(X,Z)alg. We conclude that the Bloch-Ogus
filtration on H4

B(X,Z) induces a filtration on H4
B(X,Z)/H4

B(X,Z)alg with two successive

quotients, namely E1,3
∞ and E0,4

∞ . The space E0,4
∞ is a subspace of E0,4

2 = H0(XZar,H4(Z)),
hence it has no torsion by Theorem 1.24. It thus follows that

Tors (H4
B(X,Z)/H4

B(X,Z)alg) = TorsE1,3
∞ .

Finally, applying again Theorem 1.17, (i), we see that no dr can start from E1,3
∞ , so that

E1,3
∞ = E1,3

2 = H1(XZar,H3(Z)). Finally we have to compute the n-torsion of the last group
and for this we use the short exact sequence of sheaves on XZar given by Theorem 1.24:

0 → H3(Z) n→ H3(Z) → H3(Z/nZ) → 0.
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Taking the long exact sequence associated to it, we get

0 → H3
nr(X,Z)⊗ Z/nZ → H3

nr(X,Z/nZ) → n− Tors (H1(XZar,H3(Z))) → 0,

that is, (1.21).

It is well-known that the integral Hodge conjecture is not true in general in degree 4.
This was first observed by Atiyah and Hirzebruch [4]; further examples were found by Kollár
[34], and we refer to [50] for a development of Kollár’s method. One question which remained
open was whether there are such counterexamples to the integral Hodge conjecture for degree
4 Hodge classes on a rationally connected variety (such a variety is then stably irrational
by Lemma 1.14). That such examples exist follows from Theorem 1.26 and earlier work of
Colliot-Thélène-Ojanguren [16].

Theorem 1.27. [16] There exist unirational 6-fold X, which satisfy H3
nr(X,Z/2Z) ̸= 0.

The varietiesX are constructed as quadric bundles over P3. No smooth model is provided
in [16] but in fact, although the formulas we gave above need a smooth projective model, it
is not actually needed to compute unramified cohomology, as this is a birational invariant,
hence can be computed using only the function field, which is what the authors do in [16].
By Theorem 1.26 (ii), any smooth projective model of such a variety X has an integral
Hodge class of degree 4 which is not algebraic, but it is not obvious to see it geometrically.

1.3 Further stable birational invariants

We work over the complex numbers. We describe in this section a number of interesting
birational invariants constructed from the group of 1-cycles. It is not clear whether these
invariants can be nontrivial for some rationally connected varieties.

1.3.1 Curve classes

Let X be a smooth projective rationally connected variety of dimension n over C. As
H2(X,OX) = 0, the Hodge structure on H2n−2

B (X,Z) ∼= HB
2 (X,Z) is trivial, that is, purely

of type (n − 1, n − 1). For any smooth projective variety X as above, the cycle class map
Z1(X)⊗Q → Hdg2n−2(X,Q) := H2n−2

B (X,Q)∩Hn−1,n−1(X) is surjective, as follows from
the Lefschetz theorem on (1, 1)-classes and the hard Lefschetz theorem in degree 2, which
provides an isomorphism

ln−2 : Hdg2(X,Q) ∼= Hdg2n−2(X,Q).

The following was observed in [50]:

Proposition 1.28. The quotient group

Hdg2n−2(X,Z)/H2n−2(X,Z)alg, (1.22)

where H2n−2(X,Z)alg denotes the image of the cycle class map Z1(X) → Hdg2n−2(X,Z),
is a stable birational invariant.

Proof. Using Lemma 1.9, we only have to prove invariance under blow-up and under X 7→
X×Pr. When we blow-up X along a smooth subvariety Z ⊂ X, the extra (Hodge) classes of
degree 2n−2 are generated by the classes of vertical lines of the exceptional divisor EZ → Z.
They are all algebraic so that the quotient (1.22) remains unchanged. When taking the
product with Pr, the extra Hodge homology classes of degree 2 are generated by the class
of a line in Pr, hence are algebraic, so that the quotient (1.22) remains unchanged

We conjectured in [64] that the group (1.22) is trivial for rationally connected varieties.
This conjecture is proved in [65] in the case of threefolds. More generally, we prove the
following:
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Theorem 1.29. [65] Let X be a smooth projective threefold which is uniruled or has trivial
canonical bundle.Then the integral Hodge classes of degree 4 on X are algebraic.

The conjecture is also proved in [29] for Fano fourfolds, building on the K-trivial case in
Theorem 1.29. In the paper [65], we also proved that the conjecture would be a consequence
of the Tate conjecture for divisor classes on surfaces defined over a finite field.

1.3.2 Griffiths group

Here is a more refined birational invariant that one can define using 1-cycles. Recall that
the Griffiths group Griffk(X) (see [25]) is defined as the group of k-cycles of X homologous
to 0 modulo algebraic equivalence.

Proposition 1.30. The group Griff1(X) is a stable birational invariant of the smooth pro-
jective variety X.

Proof. Using Lemma 1.9, we only have to prove invariance under blow-up and under X 7→
X × Pr. When we blow-up X along a smooth subvariety Z ⊂ X, the blow-up formulas
show that the extra elements in the group Griff1(X̃) come from Griff0(Z) which is 0 as
0-cycles homologous to 0 are algebraically equivalent to 0. When we take the product of X
with Pr, the extra 1-cycles in X × Pr are coming from 0-cycles of X, and the extra 1-cycles
homologous to 0 from 0-cycles homologous to 0 on X, which are algebraically equivalent to
0.

It is not known if the group Griff1(X) can be nonzero for a rationally connected variety.
It is tempting to conjecture that it is always trivial for X rationally connected. This has
been proved by Tian and Zong [55] for Fano complete intersections of index at least 2. For
such a variety X, they prove that all rational curves deform to a union of lines.

Remark 1.31. If dimX = 3, then Griff1(X) = Griff2(X). If furthermore X is rationally
connected, then Griff2(X) = 0 by Theorem 2.21.

1.3.3 Torsion 1-cycles with trivial Abel-Jacobi invariant

It is an important and classical result due to Roitman [48] that the kernel of the Albanese
map

albX : CH0(X)hom → Alb(X)

has no torsion if X is a smooth projective variety over C (or any algebraically closed field
of characteristic 0). Let J3(X) = J2n−3(X) be the intermediate Jacobian built from the
Hodge structure on H2n−3

B (X,Z) ∼= HB
3 (X,Z). If X is rationally connected, H3,0(X) = 0 =

Hn,n−3(X) and J3(X) is an abelian variety which is the target of the Abel-Jacobi map

ϕn−1
X : CH1(X)hom → J3(X). (1.23)

The Abel-Jacobi map for 3-dimensional varieties played an important role in the study of
the rationality problem, thanks to Clemens-Griffiths criterion that we will revisit in Section
4.2. The following provides another birationally invariant group:

Proposition 1.32. The group Tors (Kerϕn−1
X ) is a stable birational invariant of the smooth

projective variety X.

Proof. Using Lemma 1.9, we only have to prove invariance under blow-up and under X 7→
X × Pr. When we blow-up X along a smooth subvariety Z ⊂ X, the blow-up formulas for
Chow groups and cohomology give

CH1(X̃) = CH1(X)⊕ CH0(Z)

HB
2 (X̃,Z) = HB

2 (X,Z)⊕H0(Z,Z),
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hence
CH1(X̃)hom = CH1(X)hom ⊕ CH0(Z)hom

and similarly J3(X̃) = J3(X) ⊕ J1(Z) where J1(Z) = Alb(Z). The Abel-Jacobi map ϕn−1

X̃

is the direct sum of the Abel-Jacobi map ϕn−1
X and the Albanese map of Z. It follows that

Tors (Kerϕn−1

X̃
) = Tors (Kerϕn−1

X )⊕ Tors (Ker albZ)

and the second group on the right is trivial by Roitman’s theorem.
Similarly, for any r ≥ 1, we have

CH1(X × Pr)hom = CH1(X)hom ⊕ CH0(X)hom

and J3(X × Pr) = J3(X)⊕ J1(X) where J1(X) = Alb(X). The Abel-Jacobi map ϕn−1+r
X×Pr is

the direct sum of the Abel-Jacobi map ϕn−1
X and the Albanese map of X. It follows that

Tors (Kerϕn−1+r
X×Pr ) = Tors (Kerϕn−1

X )⊕ Tors (Ker albX)

and the second group on the right is trivial by Roitman’s theorem.

It is again an open question whether a smooth projective rationally connected variety
over C can have some nonzero torsion in (Kerϕn−1

X ).

Remark 1.33. If dimX = 3, then the 1-cycles are codimension 2 cycles and a difficult
theorem of Bloch (see Theorem 2.19) thus applies and says that Kerϕn−1

X = Kerϕ2X has no
torsion in this case.

2 0-cycles

2.1 Bloch-Srinivas principle

The Bloch-Srinivas principle [12] says the following:

Theorem 2.1. Let Y → B be a flat morphism of varieties defined over a field k, with B
smooth, and let Z be a cycle on Y . Assume that K ⊇ k is an algebraically closed field of
infinite transcendence degree over k and that for any point b ∈ B(K), the restricted cycle
Z|Yb

is rationally equivalent to 0. Then there exist an integer N > 0 and a dense Zariski
open set U ⊂ B such that NZ|YU

= 0 in CH(YU ), where YU := ϕ−1(U) ⊂ Y .

The condition on K guarantees that it contains any finitely generated extension of k.
The assumptions we imposed on B and ϕ are used to give a meaning to the restricted cycles
Z|Yb

. As the conclusion concerns only a dense Zariski open set of B, smoothness of B is
not restrictive. The theorem is obtained by embedding k(B) into K and by applying the
assumption to the generic point η of B, which is defined over k(B) but can be seen as defined
over K via k(B) ⊂ K. As Z vanishes in CH(YηK

), one easily concludes by a trace argument
that it is torsion in CH(Yη). Finally, as η is the generic point of B, the vanishing of NZ
in CH(Yη) implies the vanishing of NZ in CH(YU ) for some dense Zariski open set U of
B, which proves the theorem. Note that the same argument proves as well the following
statement:

Proposition 2.2. Under the same assumptions as in Theorem 2.1, there exist a dense
Zariski open set U ⊂ Breg and a finite cover U ′ → U such that ZU ′ = 0 in CH(YU ′), where
YU ′ := U ′ ×U YU and ZU ′ is the pull-back of Z|YU

to YU ′ .

If X is a complex variety, then X is defined over a field k which has finite transcendence
degree over Q and C satisfies the desired properties with respect to k. We then conclude:
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Theorem 2.3. Let ϕ : Y → B be a morphism of complex varieties and let Z be a cycle
on Y . Assume that for any complex point b ∈ B(C), the restricted cycle Z|Yb

is rationally
equivalent to 0. Then there exist an integer N > 0 and a dense Zariski open set U ⊂ B such
that NZ|YU

= 0 in CH(YU ), where YU := ϕ−1(U) ⊂ Y .

This theorem leads us to the “decomposition of the diagonal” first introduced by Bloch
and Srinivas, some applications of which we will describe below:

Theorem 2.4. [12] Let X be a variety of dimension n over C and assume that there exists
a closed algebraic subset W ⊂ X such that CH0(W ) → CH0(X) is surjective. Then for
some integer N > 0, one has a decomposition

N∆X = ZW + Z in CHn(X ×X), (2.24)

where ∆X is the diagonal of X, ZW is supported on X ×W and Z is supported on D ×X
for some proper closed algebraic subset D ⊂ X.

Proof. The assumption is equivalent, by the localization exact sequence, to the vanishing of
CH0(X \W ). We can then apply Theorem 2.3 and conclude that for some Zariski open set
U ⊂ X, and for some integer N > 0,

N∆X |U×(X\W ) = 0 in CHn(U × (X \W )).

By the localization exact sequence, lettingD := X\U , this is equivalent to the decomposition
(2.24).

In these notes, we are interested in rationally connected varieties X, which have “trivial”
CH0 group over an algebraically closed field, as all points of X are rationally equivalent in
X. We are thus in the situation of Theorem 2.4, where we can take for W any point x ∈ X.
One then gets:

Theorem 2.5. Let X be a complex algebraic variety of dimension n, such that all points of
X are rationally equivalent to any given point x ∈ X. Then there is a divisor D ⊂ X and
an integer N such that

N∆X = N(X × x) + Z in CHn(X ×X) (2.25)

where Z is supported on D ×X.

The decomposition (2.25) is a Chow decomposition of the diagonal with rational coeffi-
cients, due to the presence of the coefficient N . It was used by Bloch and Srinivas to give
a new proof and a generalization of Mumford’s theorem [44]. Note conversely that, if X is
smooth projective, and admits a decomposition as in (2.25), then CH0(X) = Z. Indeed, for
any y ∈ X, we get by letting act the correspondences appearing in (2.25) on any 0-cycle z :

Nz = N(deg z)x in CH0(X),

This shows that up to torsion, CH0(X) = Z, and in particular that AlbX = 0. On the
other hand Roitman’s theorem [48] says that the kernel of the Albanese map has no torsion,
hence finally CH0(X) = Z.

2.2 Universal Chow group of 0-cycles

The universal CH0 group of X is not a group but a functor. If X is a variety defined over
a field K, this functor, from the category of fields containing K to the category of abelian
groups, associates to any field L k K the group CH0(XL). The crucial point is that it
provides much more information on X than the group CH0(X), even if K is very big like
C, because the considered fields L are not algebraically closed. The interest of this notion
for rationality questions comes from the following facts:

20



Lemma 2.6. One has CH0(Pn
K) = Z for any field K. One can take for generator the class

of any K-point of Pn
K .

Proof. (See also [22, 1.9].) This follows indeed by induction from the localization exact
sequence

CH0(Pn−1
K ) → CH0(Pn

K) → CH0(An
K) → 0,

where Pn−1
K ⊂ Pn

K is any hyperplane, and from CH0(An
K) = 0 which is almost trivial: any

effective 0-cycle of A1
K is the divisor of a polynomial P ∈ K[X].

Note that the same proof shows that CH0(X × Pn
K) ∼= CH0(X), see [22, 3.1].

The following definition appears in [5]:

Definition 2.7. A variety X over K has universally trivial CH0-group if X has a 0-cycle
z of degree 1 and CH0(XL) = Zz for any field L k K.

We then have

Proposition 2.8. If X and Y are smooth projective over K and are stably birational over
K, then X has universally trivial CH0-group if and only Y does.

In particular, if X is stably rational over K, X has universally trivially trivial CH0-group.

Let us first recall the following basic facts that will be used many times in the sequel.
Let X be a smooth projective variety of dimension n. Any cycle Γ ∈ CHn(X × X) (also
called a self-correspondence) acts on Chow groups of X in the following way: the upper-star
action Γ∗ : CH(X) → CH(X) is defined by

Γ∗(z) = pr1∗(pr
∗
2z · Γ), (2.26)

where pri : X ×X → X are the two projections, and the lower-star action Γ∗ : CH(X) →
CH(X) is defined by

Γ∗(z) = pr2∗(pr
∗
1z · Γ). (2.27)

Obviously Γ∗ = tΓ
∗
where tΓ is the image of Γ under the involution of X ×X exchanging

the factors, but it is important for us in this section to use the two actions.

Proof of Proposition 2.8. The CH0-group has the functoriality properties needed to apply
Lemma 1.9. Hence assuming resolution of singularities, it suffices to show invariance under
blow-up and invariance under X 7→ X × Pr. The former follows more generally from the
blow-up formulas for Chow groups, and the later was noted above. An alternative proof
which does not use resolution of singularities is as follows: Let ϕ : X 99K Y be a birational
map. Then the graphs Γϕ ⊂ X × Y and Γϕ−1 ⊂ Y ×X are correspondences which satisfy

Γϕ−1 ◦ Γϕ = ∆X + Z in CHn(X ×X) (2.28)

Γϕ ◦ Γϕ−1 = ∆Y + Z ′ in CHn(Y × Y )

where the self-correspondences Z (resp. Z ′) have the property of being supported on D×X
(resp. D′ × Y ) for some proper closed algebraic subset D of X (resp. D′ of Y ). But a
correspondence Z satisfying this property acts trivially on CH0(X), and similarly for Z ′.
Thus we conclude that

(Γϕ−1)∗ ◦ (Γϕ)∗ = IdCH0(X), (Γϕ)∗ ◦ (Γϕ−1)∗ = IdCH0(Y ).

We now consider the previous situation where X is a smooth complex projective variety.
The precise relationship between CH0-triviality and universal CH0-triviality is described by
the Bloch-Srinivas Theorem 2.5:
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Proposition 2.9. If CH0(X) = Z, the universal CH0 group of X is trivial modulo torsion;
more precisely, there is an integer N > 0 such that NCH0(XL)0 = 0 for any field L k C.

Here CH0(XL)0 is the Chow group of 0-cycles of degree 0.

Proof. We use Bloch-Srinivas decomposition of the diagonal of X/C

N∆X = N(X × x) + Z in CHn(X ×X) (2.29)

with Z supported on D ×X. It clearly remains true for XL, which gives

N∆XL
= N(XL × x) + ZL in CHn(XL ×XL), (2.30)

with ZL supported on DL ×XL. Both sides of this equality act on CH0(XL)0. The action
of ZL∗ and N(XL × x)∗ are clearly 0 on CH0(XL)0, while (N∆XL

)∗ = N IdCH0(XL)0 .

The next question (and the central subject of these notes) is whether one can get rid of
the coefficient N , that is whether X has universally trivial CH0 and we will see in the next
sections that there are many obstructions to that, which all provide interesting obstuctions
to stable rationality. We will shift to the language of decomposition of the diagonal, that
was studied first in [61] in relation with rationality questions.

Definition 2.10. A n-dimensional variety X over K admitting a K-point x (or a 0-cycle
of degree 1) has a Chow decomposition of the diagonal if one can write

∆X = X × x+ Z in CHn(X ×X), (2.31)

where Z is a cycle of X ×X which is supported on D×X, where D ⊂ X is a proper closed
algebraic subset.

It is immediate to see that the definition is independent of the choice of x. The equiva-
lence of the two definitions is contained in the following result proved in [5]:

Proposition 2.11. A variety X over K admitting a K-point x (or a 0-cycle of degree 1)
has a Chow decomposition of the diagonal if and only if X has universally trivial CH0 group.

Proof. If we look at the proof of Proposition 2.9, and put N = 1, we see that it proves the
“iff” direction. Conversely, assume X has universally trivial CH0 group and let L = K(X).
The diagonal of X provides a L-point ηX of XL (namely the generic point). By assumption,
we get that

ηX = xL in CH0(XL). (2.32)

Now we use the fact that

CH0(XL) = CHn(XL) = lim
→

U⊂X

CHn(U ×X), n = dimX,

where the direct limit is over all the dense Zariski open sets of X. The points ηX and xL
are the limits of the cycles (∆X)|U×X and U ×x respectively. Formula (2.32) thus says that
there exists a Zariski open set U ⊂ X such that

(∆X)|U×X − U × x = 0 in CHn(U ×X),

which is equivalent to a decomposition of the diagonal (2.31) with D = X \ U by the
localization exact sequence.

The study of the decomposition (2.31) and its consequences will allow us in next section
to exhibit many obstructions, some topological, to the universal triviality of CH0.
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2.3 Decomposition of the diagonal : consequences

Here we will work over C and use integral Betti cohomology classes, but of course Zℓ-étale
cohomology classes could be used in general. A cohomology class α ∈ H2n

B (X × X) acts
on integral cohomology of X by the same formulas as (2.26) and (2.27). We will denote by
α∗ and α∗ these actions. When α is an integral Hodge class, in particular when α = [Γ] is
algebraic, the two maps α∗ : H l

B(X,Z) → H l
B(X,Z) are morphisms of Hodge structures. In

particular, when l = 2j + 1 is odd, there are corresponding endomorphisms α∗, α∗ of the
associated Jacobian J l(X) = H l

B(X,C)/(F iH l
B(X)⊕H l

B(X,Z)tf ).
We will use freely the fact that the actions of Γ∗, resp. Γ∗ on Chow groups are com-

patible via the cycle class map and Abel-Jacobi map with the action of [Γ]∗, resp. [Γ]∗, on
cohomology and Jacobians, see [66, 9.2].

2.3.1 Consequences of a cohomological decomposition of the diagonal

Let X be smooth projective of dimension n over C. We will say that X has a cohomological
decomposition of the diagonal if one can write

[∆X ] = [X × x] + [Z] in H2n
B (X ×X,Z), (2.33)

where Z is a cycle of X ×X which is supported over D ×X, with D ⊂ X a proper closed
algebraic subset, that we can assume to be a divisor. Clearly, if X has a Chow decomposition
of the diagonal as in (2.31), then it has a cohomological decomposition of the diagonal by
taking cohomology classes. Note that (2.33) implies that ([∆X ] − [X × x])|U×X = 0 in
H2n

B (U × X,Z) but that this is a priori a stronger statement, because the latter is just
saying that the homology class [∆X ] − [X × x] comes from an integral homology class β
supported on D × X for some proper closed algebraic subset D, but it is not saying that
this β can be taken algebraic on D × X. In order to draw consequences of (2.33), we use
it in the following form: We observe that we can choose D to be smooth generically along
each component of pr1(SuppZ). It then follows that the cycle Z lifts to a codimension n−1

cycle Z̃ of D̃ ×X, where j̃ : D̃ → X is a desingularization of D ⊂ X. Then (2.33) rewrites
as

[∆X ]− [X × x] = (j̃, IdX)∗([Z̃]) in H
2n
B (X ×X,Z). (2.34)

We now get the following consequence:

Lemma 2.12. If X has a cohomological decomposition of the diagonal as in (2.34), then
for any α ∈ H∗

B(X,Z) of degree ∗ > 0, one has

α = j̃∗([Z̃]
∗α) in H∗

B(X,Z). (2.35)

Similarly, for any α ∈ H∗(X,Z) of degree ∗ < 2n, one has

α = [Z̃]∗(j̃
∗α) in H∗

B(X,Z). (2.36)

Proof. For (2.35), we let both sides of (2.34) act on H∗
B(X,Z) by the upper-star action. We

observe that [X × x]∗α = 0 if ∗ = degα > 0 and [∆X ]∗α = α. Finally we have

((j̃, IdX)∗([Z̃]))
∗(α) = j̃∗([Z̃]

∗α) in H∗
B(X,Z),

which proves (2.35).
For (2.36), we argue similarly but use the lower-star action. We observe that [X×x]∗α =

0 if ∗ = degα < 2n and [∆X ]∗α = α. Finally we have

((j̃, IdX)∗([Z̃]))∗α = [Z̃]∗(j̃
∗α) in H∗

B(X,Z),

which proves (2.36).
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We now get the following:

Theorem 2.13. If X has a cohomological decomposition of the diagonal, then the following
hold:

1. Hi,0(X) = 0 (hence also H0,i(X) = 0 for i > 0.

2. TorsHi
B(X,Z) = 0 for i ≤ 3. Dually TorsHi

B(X,Z) = 0 for i ≥ 2n− 2.

3. Integral Hodge classes of degree 4 on X are algebraic.

4. Integral cohomology classes of degree 2n− 2 on X are algebraic.

Remark 2.14. Statement 1 is due to Bloch and Srinivas [12] and uses only the cohomological
decomposition of the diagonal with Q-coefficients. Statement 3 is proved by Bloch and
Srinivas in [12] with Q-coefficients. Statements 2 and 3 appear in [19] and statement 4 in
[61].

Remark 2.15. If X is rationally connected of dimension 3 over C, the only property,
among these four properties, which can be violated is the vanishing of TorsH3

B(X,Z) and
of TorsH4

B(X,Z). Indeed, by Theorem 1.2, the other cohomology groups have no torsion.
Furthermore, by Theorem 1.29, properties 3 and 4, which coincide in this case, are satisfied.

Proof of Theorem 2.13. We use formula (2.35). If α ∈ Hi,0(X) with i > 0, then j̃∗([Z̃]
∗α) =

0 in Hi,0(X) as this is a holomorphic form on X which vanishes on the dense Zariski open
set X \D. Thus (2.35) gives α = 0, proving 1.

Remark 2.16. To make this argument totally rigorous, we should use the action of classes
of correspondences on Dolbeault cohomology, rather than Betti cohomology (they coincide
on X but not on U). We refer to the discussion starting the proof of Theorem 2.20 for more
detail.

If α is torsion and of degree ∗ ≤ 3, then [Z̃]∗α is torsion and of degree ∗ − 2 ≤ 1, hence

vanishes in H∗−2(D̃,Z). Hence (2.35) gives α = j̃∗([Z̃]
∗α) = 0. The other statements are

obtained by duality or can be obtained directly by using formula (2.36). This proves 2.

If α is an integral Hodge class of degree 4, then [Z̃]∗α is an integral Hodge class of degree

2 on D̃, hence is algebraic by the Lefschetz (1, 1)-theorem. Thus α = j̃∗([Z̃]
∗α) is algebraic

and 3 holds.
For the remaining statement, we use (2.36). If α is an integral cohomology class of degree

2n−2 on X, then j̃∗α ∈ H2n−2(D̃,Z) is algebraic on D̃ which is smooth of dimension n−1.

Thus α = [Z̃]∗(j̃
∗α) is algebraic on X.

2.3.2 Consequences of a Chow decomposition of the diagonal

We now describe consequences of a Chow decomposition of the diagonal that a priori cannot
be obtained from a cohomological decomposition of the diagonal, for which we refer to
Theorem 2.13 .

Theorem 2.17. If X has a Chow decomposition of the diagonal, then

1. The Griffiths group Griff1(X) is trivial.

2. The kernel of the Abel-Jacobi map ϕ2n−3
X : CHn−1(X)hom → J2n−3(X) has no torsion.

3. The kernel of the Abel-Jacobi map ϕ3X : CH3(X)hom → J5(X) has no torsion.

We start the proof by redoing in the Chow setting the analysis done previously in the
cohomological setting. A Chow decomposition of the diagonal ∆X = X×x+Z in CHn(X×
X) rewrites by desingularization in the form

∆X −X × x = (j̃, IdX)∗(Z̃) in CHn(X ×X) (2.37)
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where D̃ is smooth of dimension n−1 and maps toX via j̃. We get the following consequence
by letting both sides of (2.37) act on CH(X), either by the lower star or by the upper star
action:

Lemma 2.18. If X has a Chow decomposition of the diagonal, then for any z ∈ CH∗(X)
of codimension ∗ > 0, one has

z = j̃∗(Z̃
∗z) in CH∗(X). (2.38)

Similarly, for any z ∈ CH∗(X) of codimension ∗ < n, one has

z = Z̃∗(j̃
∗z) in CH∗(X). (2.39)

Proof of Theorem 2.17. By assumption, X has a Chow decomposition of the diagonal that
we write as in (2.37). If z ∈ CH1(X), we get z = j̃∗(Z̃

∗z) in CH1(X) by Lemma 2.18, and

if z is homologous to 0, Z̃∗z is a 0-cycle homologous to 0 on D̃. It is thus algebraically
equivalent to 0 and so z = j̃∗(Z̃

∗z) is also algebraically equivalent to 0. This proves 1.

Assume now that z is of torsion and annihilated by the Abel-Jacobi map. Then Z̃∗z is
a torsion 0-cycle on D̃ which is annihilated by the Albanese map and Roitman’s theorem
gives that Z̃∗z = 0. Thus z = 0, which proves 2.

If dimX ≥ 4 and z ∈ CH3(X), we have by Lemma 2.18, z = j̃∗(Z̃
∗z) in CH3(X), where

Z̃∗z is a codimension 2 cycle on D̃. If now z is of torsion and annihilated by the Abel-Jacobi
map, Z̃∗z is of torsion and annihilated by the Abel-Jacobi map, hence it vanishes in CH2(D̃)
by the following result of Bloch:

Theorem 2.19. (Bloch) The kernel of the Abel-Jacobi map for codimension 2 cycles ho-
mologous to zero on complex projective manifolds has no torsion.

It then follows that z = j̃∗(Z̃
∗z) = 0, which proves 3.

We conclude this section with an implication of cohomological type which is due to
Totaro [56] and will be used in Section 3.3. The statement is due to Bloch and Srinivas
when charK = 0.

Theorem 2.20. Let X be a smooth projective variety of dimension n defined over a field
K of any characteristic. Assume X has a Chow decomposition of the diagonal. Then
H0(X,Ωi

X) = 0 for i > 0.

Proof. We use the algebraic de Rham cycle class for cycles in any smooth variety Y over K.
For any cycle Z ∈ CHk(Y ), we get a class [Z] ∈ Hk(Y,Ωk

Y ). Furthermore, if X is smooth
projective of dimension n, a class α ∈ Hn(Y ×X,Ωn

Y×X), with Y smooth but not necessarily
projective, induces a morphism

α∗ : Hp(X,Ωq
X) → Hp(Y,Ωq

Y )

α∗(a) = pr1∗(α ∪ pr∗2a).

We now start from our Chow decomposition of the diagonal in the form

(∆X)|U×X = U × x in CHn(U ×X) (2.40)

for some Zariski dense open set of X. Taking de Rham cycle classes, we get

[∆X ]|U×X = [U × x] in Hn(U ×X,Ωn
U×X). (2.41)

We let both sides act on elements a ∈ Hi,0(X) for i > 0 . The right hand side acts by
0 and the left hand side acts by restriction of forms to U . We thus conclude that for any
a ∈ H0(X,Ωi

X) with i > 0, a|U = 0, hence a = 0 because U ⊂ X is a dense Zariski open
set.
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We finish this section with an important result due to Bloch and Srinivas [12] and uses
in fact only the Chow decomposition of the diagonal with Q-coefficients.

Theorem 2.21. Let X be a smooth projective complex variety admitting a Chow decom-
position of the diagonal with Q-coefficients (equivalently, by Theorem 2.4, CH0(X) = Z).
Then the Griffiths group Griff2(X) is trivial and the Abel-Jacobi map

ϕ2X : CH2(X)hom → J3(X)

is an isomorphism.

Proof. We write the decomposition of the diagonal as

N∆X = N(X × x) + (j̃, IdX)∗(Z̃) in CHn(X ×X), (2.42)

where j̃ : D̃ → X s a morphism from a smooth variety of dimension n − 1. This provides
for any z ∈ CH2(X) the equality

Nz = j̃∗(Z̃
∗z), (2.43)

where Z̃∗z is a codimension 1 cycle on D̃. If z is cohomologous to 0, so is Z̃∗z, hence
Z̃∗z is algebraically equivalent to 0 and Nz is algebraically equivalent to 0 by (2.43). We
thus proved that Griff2(X) is a torsion group. On the other hand, using the cohomological

version of (2.42), we conclude that for any α ∈ H3(X,Z), Nα = j̃∗(Z̃
∗ ∗ α), hence vanishes

on U = X \ D. Using notation of Section 1.2, this implies that the map H3(X,Z) →
H0(XZar,H3(Z)) is of N -torsion, hence is trivial as the second group has no torsion by
Theorem 1.24. Recalling the Bloch-Ogus exact sequence

H3
B(X,Z) → H0(XZar,H3(Z)) → Griff2(X) → 0

from Theorem 1.18, we conclude that in this case Griff2(X) = H0(XZar,H3(Z)) has no
torsion. Hence it is in fact trivial, which proves the first statement.

The second statement is obtained as follows: we use again (2.43). If now z is homologous

to 0 and annihilated by ϕ2X , then Z̃∗z is a codimension 1 cycle on D̃ which is homologous
to 0 and annihilated by ϕ1

D̃
, hence is trivial. Thus Nz = 0 in CH2(X) by (2.43). We then

conclude that z = 0 using Theorem 2.19.

We finally turn to unramified cohomology. The following result was proved in [19]:

Theorem 2.22. Let X be a smooth projective complex variety. (i) If N∆X decomposes as
in (2.25), Hi

nr(X,A) is of N -torsion for any i > 0 and any coefficients A. In particular, if
X has a Chow decomposition of the diagonal, the unramified cohomology groups Hi

nr(X,A)
vanish for any i > 0 and any coefficients A.

(ii) If X satisfies CH0(X) = Z, Hi
nr(X,Z) vanishes for any i > 0.

Proof. Statement (ii) follows from (i), using Theorem 2.5, which guarantees the existence
of a decomposition of N∆X assuming CH0(X) = Z, and Corollary 1.25, which tells that
Hi

nr(X,Z) has no torsion.
The proof of (i) uses the fact that Chow correspondences Γ ∈ CHi(X × Y ) with X, Y

smooth and Y projective of dimension n act on unramified cohomology providing

Γ∗ : H l
nr(Y,A) → H l+i−n

nr (X,A). (2.44)

We refer to the appendix of [19] for a precise construction of this action. It factors through
the cycle class [Γ]mot ∈ Hi((X × Y )Zar,Hi(Z)) = Zi(X × Y )/alg introduced in Theorem
1.17 (iii). The construction of the action then rests on the basic functoriality properties of
unramified cohomology for pull-back, and push-forward under proper maps and the existence
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of a cup-product. Having this action, we simply let act on Hi
nr(X,A) both sides of the

decomposition
N [∆X ]mot = N [X × x]mot + [Z]mot

with Z supported on D×X for some proper closed algebraic subset D ⊂ X. The left hand
side acts as NId. The term N [X×x]mot acts trivially on Hi

nr(X,A) for i > 0. The fact that
[Z]∗mot = 0 on Hi

nr(X,A) follows from the fact that, denoting U := X \D and jU : U → X
the inclusion, we clearly have

j∗U ◦ [Z]∗mot = 0 : Hi
nr(X,A) → Hi

nr(U,A)

for any i since Z is supported on D × X. On the other hand, the restriction map j∗U is
injective on Hi

nr(X,A) by Proposition 1.20.

Corollary 2.23. (i) The unramified cohomology of Pn with any coefficients vanishes in
degree > 0.

(ii) Unramified cohomology with any coefficients is a stable birational invariant.

Proof. Clearly Pn admits a decomposition of the diagonal. This follows from the compu-
tation of CH(Pn × Pn) as the free abelian group with basis hi1 · hj2, 0 ≤ i, j ≤ n, where
h1 = pr∗1c1(OPn(1)), h2 = pr∗2c1(OPn(1)) ∈ CH1(Pn × Pn). Thus (i) follows from Theorem
2.22, (i).

For the proof of (ii), as we already proved birational invariance of unramified cohomology
in Theorem 1.21, it suffices to show invariance under X 7→ X × Pr. We use for this the
following partial or relative decomposition of the diagonal of X × Pr:

∆X×Pr =

r∑
i=0

p∗13∆X · p∗24(hi1 · hr−i
2 ), (2.45)

where p13 : X×Pr ×X×Pr → X×X and p24 : X×Pr ×X×Pr → Pr ×Pr are the obvious
projections, and the h1, h2 are as above codimension 1 cycles on Pr × Pr. We let act both
sides of the decomposition above on Hi

nr(X ×Pr, A), say by the upper-star action. The left
hand side acts trivially, and a term p∗13∆X ·p∗24(hi1 ·hr−i

2 ) acts nontrivially on Hi
nr(X×Pr, A)

only if it dominates X×Pr by the projection p12, as follows from the argument already given
above and using the injectivity of the restriction map to an open set. The only term which
dominates X × Pr by the projection p12 is

W := p∗13∆X · p∗4(hr2),

which acts on Hi
nr(X × Pr, A) by the composite map:

Hi
nr(X × Pr, A)

rest→ Hi
nr(X × pt, A) = Hi

nr(X,A)
p∗
X→ Hi

nr(X × Pr, A).

It follows from the above arguments that W ∗ = Id on Hi
nr(X × Pr, A), from which

we conclude immediately that the pull-back map p∗X : Hi
nr(X,A)→Hi

nr(X × Pr, A) is an
isomorphism.

2.3.3 Cohomological versus Chow decomposition

We explained above that the existence of a Chow decomposition of the diagonal has a priori
stronger consequences than the existence of a cohomological decomposition of the diagonal.
We are going to discuss here how the two properties relate.

Note first that, by Theorem 2.13, 1, a smooth complex projective variety admitting a
cohomological decomposition of the diagonal has hi,0(X) = 0 for i > 0, hence Bloch’s conjec-
ture predicts that CH0(X) = Z. The Bloch-Srinivas theorem 2.5 then shows that X admits
a Chow decomposition of the diagonal with Q-coefficients. In conclusion, when working with
Q-coefficients, having a cohomological and a Chow decomposition of the diagonal should be
equivalent.

Turning to integral coefficients, the following result appears in [63].
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Proposition 2.24. A smooth projective variety defined over an algebraically closed field
admits a Chow decomposition of the diagonal if and only if it admits a decomposition of the
diagonal modulo algebraic equivalence.

Proof. We use the following result of [57] and [59].

Theorem 2.25. Let Γ ∈ CH∗(X ×X) be a self-correspondence which is algebraically equiv-
alent to 0. Then Γ is nilpotent in the ring CH∗(X ×X) of self-correspondences of X.

Starting from our decomposition

∆X = X × x+ Z

modulo algebraic equivalence, with Z supported on D × X, let Γ = ∆X − X × x − Z ∈
CHn(X × X). Theorem 2.25 implies that Γ◦N = 0 in CHn(X × X) for some N > 0. We
finally observe that Γ◦N = ∆X − X × x − Z ′ in CHn(X × X) for some Z ′ supported on
D′ ×X, for some proper closed algebraic subset D′ ⊂ X. The equality

Γ◦N = 0 = ∆X −X × x− Z ′ in CHn(X ×X)

thus gives a Chow decomposition of the diagonal for X.

In the surface case, we have the following result (proved in [63], and reproved in [32]).

Theorem 2.26. Let X be a smooth projective surface with CH0(X) = Z. Then the following
are equivalent:

1. X admits a Chow decomposition of the diagonal.

2. X admits a cohomological decomposition of the diagonal.

3. TorsH∗
B(X,Z) = 0.

Proof. The implications 1 ⇒ 2 ⇒ 3 are clear (the second one is Theorem 2.13, 2). Let
us prove 3 ⇒ 1. The condition TorsH∗(X,Z) = 0 implies that X admits a Künneth
decomposition with integral coefficients, so that we can write

[∆X ] =
∑
i

αi ⊗ βi in H
4
B(X ×X,Z) (2.46)

for some integral cohomology classes αi, βi. As CH0(X) = Z we have by Mumford’s theorem
[44] or Bloch-Srinivas that Hi,0(X) = 0 for i > 0, which in our case implies that the whole
cohomology of X is algebraic. (In particular X has no odd degree cohomology.) In formula
(2.46), the classes αi, βi are classes of algebraic cycles (points, curves, or X itself), which
gives a cohomological decomposition of the diagonal that takes the form

[∆X −X × x− Z] = 0, (2.47)

where Z is a cycle supported on D×X for some curve D ⊂ X. We then apply Theorem 2.21
to Y = X ×X which has CH0(Y ) = Z. This theorem tells us that the group Griff2(Y ) is
trivial. It follows that the cycle ∆X −X×x−Z homologous to 0 is algebraically equivalent
to 0. We conclude that X has a decomposition of the diagonal modulo algebraic equivalence,
hence admits a Chow decomposition of the diagonal by Proposition 2.24.

The following question is open:

Question 2.27. Do there exist smooth projective complex varieties which admit a cohomo-
logical decomposition of the diagonal, but no Chow decomposition of the diagonal?
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The answer might be affirmative in view of the discussion made in the previous sections
concerning what is controled by the Chow, resp. cohomological decompositions of the diag-
onal. If we look at the proof of Proposition 2.24, we see that the key point is the nilpotence
of self-correspondences algebraically equivalent to 0 (Theorem 2.25). A big conjecture in
the theory of algebraic cycles is the following nilpotence conjecture:

Conjecture 2.28. Self-correspondences Γ ∈ CH(X ×X)Q with Q-coefficients and homolo-
gous to 0 are nilpotent, that is, Γ◦N = 0 in CH(X ×X)Q, for any smooth projective variety
X over C.

This conjecture is not formulated for self-correspondences Γ ∈ CH(X ×X), that is with
Z-coefficients, and is presumably false, although we are not aware of an explicit counterex-
ample. In fact, there is a different and more general nilpotence conjecture by Voevodsky
[57] which predicts the following:

Conjecture 2.29. For any smooth projective variety Y , any cycle Z ∈ CH(Y )Q with Q-
coefficients and homologous to 0 is smash-nilpotent, namely ZN = 0 in CH(XN )Q for some
N > 0.

This conjecture implies Conjecture 2.28 by putting Y = X ×X and realizing that Γ◦N

is obtained from ΓN ∈ CH((X ×X)N )Q by a natural correspondence. However, Conjecture
2.29 is shown not to be true with integral coefficients in [50, Theorem 5].

3 The degeneration method

3.1 A specialization result

First of all, let us explain a version of Fulton’s specialization map [22, 20.3].

Proposition 3.1. Let π : Y → C be a flat morphism to a smooth curve over C. Let Z be a
cycle on Y such that for the very general complex point t ∈ C, Z|Yt

is rationally equivalent
to 0, where Yt := π−1(t) ⊂ Y . Then for any t ∈ C, Z|Yt

is rationally equivalent to 0.

Remark 3.2. There is no smoothness assumption in this statement, neither for Y , nor for
the morphism π. Indeed, by flatness of π and smoothness of C, the fibers Yt are Cartier
divisors, so the restricted cycle Z|Yt

is well-defined.

Proof. We apply Proposition 2.2. It says that there exist a base change C ′ → C, where we
obviously can assume that C ′ is smooth, and a Zariski open set U ′ ⊂ C ′, such that ZU ′ = 0
in CH(YU ′). The cycle ZC′ ∈ CH(YC′) thus vanishes on the Zariski open set YU ′ ⊂ YC′ , and
it follows from the localization exact sequence that there are finitely many fibers Yt′i ⊂ YC′

such that ZC′ is supported on the union of the Yt′i ’s. Clearly the restriction Z|Yt′
vanishes

for any t ̸= t′i for all i, but in fact this is also true for t′ = t′i. Indeed, let ji : Yt′i → YC′

be the inclusion. Then Yt′i is a Cartier divisor, which furthermore has the property that
OYt′

i
(Yt′i) is trivial. It follows that j

∗
i ◦ ji∗ : CH(Yt′i) → CH(Yt′i) is 0. This proves the result

also for the special points t′i since we know that ZC′ =
∑

i ji∗(Zi). (One uses here the fact
that the fibers of YC′ → C ′ and Y → C are the same.)

Corollary 3.3. Let X → C be a flat morphism over C where C is a smooth curve and
X is irreducible. Assume that for a very general point t ∈ C, the fiber Xt has a Chow
decomposition of the diagonal. Then any fiber Xt has a Chow decomposition of the diagonal.

Proof. Consider the flat morphism Y := X ×C X → C. By assumption, for a very general
point t ∈ C, there exist a divisor Dt ⊂ Xt and a point xt ∈ Xt such that

∆Xt = Xt × xt + Zt in CH(Xt ×Xt),
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where the cycle Zt is supported on Dt×Xt. The data such as Dt, Zt or xt are parameterized
by a countable union of Chow varieties which are proper over C ′, and we conclude that,
after base change C ′ → C, there exists a divisor D ⊂ XC′ which does not contain any fiber,
there exist a section σ : C ′ → XC′ and a cycle Z supported on D ×C′ XC′ such that the
cycle

Γ := ∆X′/C′ −X ′ ×C′ σ(C ′)− Z ∈ CH(YC′) (3.48)

has the property that for a very general point t ∈ C ′, Γ|Yt
= 0. Note that we can assume

that D is the Zariski closure of its generic fiber over C ′, as the only constraint it has to
satisfy, namely (3.48), concerns its generic fiber. By Proposition 3.1, this remains true for
any t ∈ C ′. As X is irreducible and flat over C, the fibers of X → C are equidimensional of
dimension n, hence we can assume that D does not contain any component of any fiber of
XC′ → C ′ (such a fiber would form an irreducible component of D that does not dominate
C ′, hence would not be in the Zariski closure of the generic fiber of D). Thus D ∩Xt is a
proper divisor for any point t ∈ C ′, and the condition Γ|Yt

= 0 for any t thus says that Xt

has a Chow decomposition of the diagonal.

The following result is proved in [62].

Theorem 3.4. Let π : X → C be a flat projective morphism of relative dimension n ≥ 2,
where C is a smooth curve. Assume that the fiber Xt is smooth for t ̸= 0, and has at worst
isolated ordinary quadratic singularities for t = 0. Then

(i) If for general t ∈ B, Xt admits a Chow theoretic decomposition of the diagonal
(equivalently, CH0(Xt) is universally trivial), the same is true for any smooth projective

model X̃0 of X0.
(ii) If for general t ∈ B, Xt admits a cohomological decomposition of the diagonal, and

the even degree integral homology of a smooth projective model X̃0 of X0 is algebraic (i.e.

generated over Z by classes of subvarieties), X̃0 also admits a cohomological decomposition
of the diagonal.

In order to prove (ii), we will need an intermediate step involving the notion of a homo-
logical decomposition of the diagonal for singular projective varieties: to make sense of this,
we just need to know that cycles Z have a homology class [Z]hom in Betti integral homology,
which is standard. Then a homological decomposition of the diagonal of a singular but
projective X of pure dimension n is an equality

[∆X ]hom = [X × x]hom + [Z]hom in H2n(X ×X,Z),

where as usual Z is a cycle supported on D × X for some nowhere dense closed algebraic
subset D of X.

Proof of Theorem 3.4 . By Corollary 3.3 and under the assumptions made on the general
fibers in (i), the central fiber admits a Chow decomposition of the diagonal. This step does
not need any assumption on the singularities of the fibers. Similarly, under the assumptions
made on the general fibers in (ii), the central fiber admits a homological decomposition
of the diagonal. The proof here uses the fact that as we are over C, for any proper flat
analytic morphism X ′ → ∆, after shrinking ∆ if necessary, there is a continuous retraction
X ′ → X0. Passing to X ′×∆X

′, this retraction maps the diagonal ∆X′
t
to the diagonal ∆X′

0
.

This implies that a homological relation [Γt] = 0 in H2n(X
′
t×X ′

t,Z), where Γt is as in (3.48)
implies a homological relation [Γ0] = 0 in H2n(X

′
0 × X ′

0,Z), which provides a homological
decomposition of the diagonal for X ′

0 = X0.

The second step is passing from X0 to X̃0 and this is here that we use the assumption
on the singularities. Let us first concentrate on (i). From the decomposition

∆X0 = X0 × x+ Z in CHn(X0 ×X0),
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where Z is supported on D ×X0, we deduce by restriction to

U × U, U := X0 \ SingX0 = X̃0 \ E,

where E is the exceptional divisor of the resolution of singularities ofX0 obtained by blowing-
up the singular points:

∆U = U × x+ Z|U×U in CHn(U × U).

By the localization exact sequence, we get a decomposition on X̃0 which takes the following
form:

∆X̃0
= X̃0 × x0 + Z̃ + Γ1 + Γ2 in CHn(X̃0 × X̃0),

where Z̃ is supported on D′ × X̃0 for some D′ $ X̃0, and Γ1 is supported on E × X̃0,

Γ2 is supported on X̃0 × E. Of course the cycle Γ1 does not dominate X̃0 by the first
projection, so we need only to understand Γ2. But E is a disjoint union of smooth quadrics
Qi of dimension ≥ 1, and for each of them, n-dimensional cycles in X̃0 ×Qi decompose as
niX̃0×xi+Zi, where Zi does not dominate X̃0 by the first projection, ni is an integer, and
xi is any point of Qi. At this point, we obtained a decomposition of the form

∆X̃0
= X̃0 × x0 +

∑
i

niX̃0 × xi + Z in CH(X̃0 × X̃0). (3.49)

In order to conclude, we have to use the assumption n ≥ 2. It implies that X̃0 is irreducible
or equivalently, connected. Indeed the general fiber Xt is connected as this is a consequence
of the existence of a decomposition of the diagonal for Xt. Formula (3.49) tells us by letting

both sides act on CH0(X̃0) that CH0(X̃0) is generated over Z by x0 and the xi. By Roitman’s

theorem [48], this implies that CH0(X̃0) = Z, so that all the xi’s are rationally equivalent

to x0 in X̃0. Then (3.49) gives a Chow decomposition of the diagonal for X̃0.

The proof of (ii) is quite similar although the tools are slightly different. It is important
here to realize that homology and algebraic cycles do not work completely in the same way.
For example, we do not have in homology the localization exact sequence.

We know that the central fiber has a homological decomposition of the diagonal in
H∗(X0 × X0,Z). A fortiori it has a homological decomposition in the relative homology

H∗(X0 ×X0, B,Z) where B = Sing(X0)×X0 ∪X0 × Sing(X0) As X̃0 \ E ∼= X0 \ SingX0,

it follows that we get for X̃0 a homological decomposition of the diagonal modulo E × X̃0 ∪
X̃0 × E. This shows that we have a relation

[∆X̃0
]hom = [X̃0 × x0] + [Z̃] + α in H2n(X̃0 × X̃0,Z), (3.50)

where α ∈ H2n(E × X̃0 ∪ X̃0 ×E,Z). We use now the fact that E = ⊔Qi so that the union

above is the union of the Qi × X̃0 and X̃0 ×Qj intersecting along the union of the Qi ×Qj .

As Qi ×Qj has trivial odd degree cohomology, it follows that H2n(E × X̃0 ∪ X̃0 × E,Z) is
generated by the subgroups H2n(Qi × X̃0,Z) and H2n(X̃0 ×Qi,Z). Hence α =

∑
i αi + βi

with αi ∈ H2n(Qi × X̃0,Z), βi ∈ H2n(X̃0 ×Qi,Z).
We assume for simplicity thatH2∗(X̃0,Z) is algebraic (we only assumed that this assump-

tion holds for some variety birationally equivalent to X̃0). We then get using the Künneth

decomposition of the even degree cohomology (or homology) of X̃0 ×Qi and Qi × X̃0 that
each αi is algebraic and each βi is algebraically decomposable, that is of the form

∑
l[Zl×Z ′

l ]
for some algebraic cycles on each summand. Clearly αi is then the class of a cycle zi in
X̃0 × X̃0 which does not dominate X̃0 by the first projection. For the βi =

∑
l[Zl × Z ′

l ], if

dimZ ′
l > 0, then dimZl < n and Zl does not dominate X̃0 by the first projection. Finally,

if dimZ ′
l = 0, then one gets a contribution [X̃0 × xi]. Putting this decomposition in (3.50)
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and using the fact that [xi] = [x0] in H2n(X̃0,Z), this clearly provides a homological (or

equivalently cohomological as X̃0 is smooth) decomposition of the diagonal of X̃0. We used

in the last step the fact that n ≥ 2 to guarantee that H2n
B (X̃0,Z) = Z is generated by the

class of the point x0.

Remark 3.5. The assumptions on the singularities in Theorem 3.4 are too strong and this
will be discussed in next section, but some assumptions on the singularities are necessary.
Consider the case of the cubic surface degenerating to a cone over an elliptic curve. The
general fiber is rational hence has a Chow decomposition of the diagonal, but the desin-
gularization S̃0 of the central fiber has nonzero holomorphic forms, so it does not admit a
decomposition of the diagonal by Theorem 2.13.

As a first application, let us prove Proposition 0.5 stated in the introduction:

Proof of Proposition 0.5. Indeed, if Xt was stably rational, it would admit a Chow decom-
position of the diagonal. Then X̃0 would also admit a Chow decompositon of the diagonal
by Theorem 3.4, because clearly the fiber dimension has to be ≥ 2. By Theorem 2.13, this
contradicts the fact that TorsH3(X̃0,Z) ̸= 0.

3.1.1 The very general quartic double solid is not stably rational

Recall that a quartic double solid is a hypersurface X in L := Spec (SymOP3(−2))
π→ P3

defined by the equation u2 = p∗f , where u is the canonical extra section of π∗OP3(2) on L and
f ∈ H0(P3,OP3(4)). Thus quartic double solids are parameterized by P(H0(P3,OP3(4))).
We described in Section 1.1.1 the Artin-Mumford double solid X0 which is nodal, with the
property that X̃0 has a nontrivial Artin-Mumford invariant.

Theorem 3.6. The very general quartic double solid X does not admit a cohomological
(hence a fortiori Chow-theoretic) decomposition of the diagonal. Similarly, the desingular-
ization of the very general quartic double solid X with k ≤ 7 nodes in general position does
not admit a cohomological decomposition of the diagonal.

Here we observe that given k ≤ 7 general points in P3, there is a linear space of dimension
34−4k > 0 of quartic homogeneous polynomials f having multiplicity ≥ 2 at these k points.
There is thus an irreducible variety parameterizing quartic double solids with k nodes in
general position. As usual, “very general” in Theorem 3.6 means that the statement is true
for a parameter f in the complement of a countable union of proper closed algebraic subsets
of this variety.

Theorem 3.6 immediately follows from Theorem 3.4 by degeneration to the Artin-Mumford
double solid. Indeed, if X0 is the Artin-Mumford double solid, X̃0 does not admit a co-
homological decomposition of the diagonal by Theorem 2.13, because the Artin-Mumford
invariant of X̃0 is not trivial. Furthermore, the even degree integral Betti cohomology of X̃0

is algebraic by Theorem 1.29 because X̃0 is a rationally connected threefold. For the nodal
case, one needs to check that the Artin-Mumford double solid smoothifies partially to the
k-nodal quartic double solid with k nodes in general position, for k ≤ 7.

A a consequence of Theorem 3.6, one gets the following

Corollary 3.7. The desingularization of the very general quartic double solid with k ≤ 7
nodes in general position is not stably rational.

Note that by Endrass [21], if X̃ is as in Theorem 3.7, X̃ has trivial Artin-Mumford
invariant. In fact Endrass proves that the desingularization of a quartic double solid with
less than 10 points has no torsion in its third Betti cohomology. To our knowledge, the only
criterion for stable irrationality of rationally connected threefolds used previously was the
Artin-Mumford invariant.
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3.2 Colliot-Thélène-Pirutka and Schreieder’s work

It was noticed in [62] that the assumptions on the singularities in theorem 3.4 were too
strong, even if, according to Remark 3.5, some assumptions are necessary. The paper by
Colliot-Thélène and Pirutka [18], written in the equivalent language of universally CH0-
trivial varieties (see Section 2.2), provides a similar specialization result under weaker as-
sumptions. They prove the following theorem that we in turn reformulate below in the
language of decomposition of the diagonal. We will state the result over any algebraically
closed field k. The only difference when working over C is the fact that, C being a large
field, we can use the assumption on the very general fiber of a morphism as being equivalent
to the similar assumption on the geometric generic fiber (see the discussion in Section 2.1).
Note however that the setting of Colliot-Thélène-Pirutka’s work is that of a scheme over a
DVR, which includes specialization from varieties defined over a number field to varieties
defined over a finite field. This is very important in Totaro’s work (Theorem 3.15) that we
will review later on.

The Colliot-Thélène and Pirutka’s condition in [18] asks that the resolution map τ :

X̃0 → X0 is universally Chow-trivial, which means that for any field L containing the base
field k, the morphism τ∗ : CH0(X̃0,L) → CH0(X0,L) is an isomorphism. This condition is
rather strong and needs to be carefully checked geometrically. It says that for each subvariety
M ⊂ X0, the generic fiber X̃0,M of the induced morphism τ−1(M) →M , which is a variety
over k(M), has CH0 universally trivial.

Let us first consider the following condition (*) that is slightly stronger than the Colliot-
Thélène-Pirutka condition but is explicit geometrically:

(*) For any irreducible subvariety Y ⊂ X0, the map τY : EY := τ−1(Y ) → Y has
a rational section (or a 0-cycle of degree 1) and its generic fiber is smooth geometrically
irreducible and has a decomposition of the diagonal over k(Y ).

Remark 3.8. In practice, condition (*) is proved by checking that each generic fiber EY,η

is smooth rational over k(Y ).

Here the decomposition of the diagonal for EY,η is supposed to hold with respect to the
given point or 0-cycle yη ∈ EY,η(k(Y )). Note that we use here the Chow decomposition of
the diagonal for any variety defined over any field, in particular not algebraically closed.

Theorem 3.9. Let X → C be a flat morphism, where C is a smooth curve over C. Assume
the very general fiber Xt is smooth and has a Chow decomposition of the diagonal. Then
if the central fiber has a desingularization τ : X̃0 → X0 satisfying (*), X̃0 has a Chow
decomposition of the diagonal.

Remark 3.10. We recover the case of nodal singularities by considering the standard res-
olution by blow-up. The condition that the fibers have dimension at least 2 is hidden in
condition (*), because in dimension 2, the exceptional fiber of the resolution over a singular
point consists of two points, which does not satisfy (*).

Proof of Theorem 3.9. The proof starts as the proof of Theorem 3.4: we thus conclude that
X0 has a Chow decomposition of the diagonal and we want to deduce that X̃0 also has one,
so that we get by lifting the cycles to X̃0 × X̃0:

∆X̃0
= X̃0 × x0 + Z̃ + Γ in CHn(X̃0 × X̃0), (3.51)

where Z̃ is supported on D′ × X̃0 for some proper closed algebraic subset D′ ⊂ X̃0, and
Γ is supported on E × X̃0 ∪ X̃0 × E. Here E is the exceptional locus of the considered
desingularization of X0. A key point observed by Colliot-Thélène and Pirutka is the fact
that for some dense Zariski open set U of X0, the cycle Γ satisfies

(τ, τ)∗Γ|U×X0
= 0 in CHn(U ×X0).
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The end of the proof then rests on the following statement:

Lemma 3.11. Let ϕ : W → V be a proper dominant morphism with irreducible smooth
generic fiber. Assume there is a generic relative decomposition of the diagonal for ϕ, namely
there exist a rational section ψ of ϕ with image S ⊂ W , a proper closed algebraic subset
W1 ⊂W and a cycle T ⊂W ×V W → V which is supported over W1 ⊂W , such that

∆W =W ×V S + T in CH(W ×V W ). (3.52)

Then for any smooth projective variety Y of dimension n and any cycle Γ1 ∈ CHn(Y ×W )
such that (IdY , ϕ)∗Γ1 vanishes in CH(U ×V ) for some dense Zariski open set U of Y , there
exist a proper closed algebraic subset V ′ ⊂ V and a cycle Γ′

1 ∈ CHn(Y × W ′), where
W ′ := ϕ−1(V ′), such that ϕ′∗Γ

′
1 = 0 in CHn(U ×V ′) and Γ′

1 = Γ1 in CHn(U ×W ) for some
dense Zariski open set U of Y .

Proof. As (IdY , ϕ)∗Γ1 vanishes in CH(U × V ) for some dense Zariski open set U of Y , and
there is a rational section of ϕ, we can assume that (IdY , ϕ)∗Γ1 actually vanishes as a n-
cycle of U × V by replacing the cycle Γ1 ∈ Zn(Y ×W ) by Γ1 − (Id, ψ)∗(Id, ϕ)∗(Γ1) which
is rationally equivalent to it. Moving cycles, we can assume that the support SuppΓ1 of Γ1

does not have its image in W contained in W1. As dimSuppΓ1 = n = dimY , there exists
a dense Zariski open set of Y (that we can assume to be U), such that, over U , SuppΓ1

and pr−1
W (W1) do not intersect. Let m = dimW and let V 0 be a dense Zariski open set

over which ϕ : W → V is smooth and let W 0 := ϕ−1(V 0). The group CHm(W 0 ×V 0 W 0)
acts on CHn(Y ×W 0) by composition over V 0. The diagonal ∆W 0 acts as the identity and
W 0 ×V 0 S acts as (Id, ψ)∗ ◦ (Id, ϕ)∗. It thus follows from (3.52) and from the vanishing of
(Id, ϕ)∗Γ1 in CHn(U × V ), that

Γ1|U×W 0 = T ◦ Γ1 in CHn(U ×W 0). (3.53)

As T is supported over W1 and SuppΓ1 does not meet pr−1
W (W1) over U , the cycle T ◦ Γ1

vanishes over the Zariski open set U ×W 0 of Y ×W . By (3.53) and the localization exact
sequence, Γ1|U×W is rationally equivalent to a cycle Γ′

1 supported over a proper closed
algebraic subset V ′ ⊂ V . Denoting by ϕ′ : W ′ := ϕ−1(V ′) → V , it remains to see that
(Id, ϕ′)∗(Γ

′
1) = 0 in CH(U × V ′) if U is small enough. This is because, taking the limit over

the Zariski open sets U of Y , Γ1 can be seen as a 0-cycle of WK , with K = k(Y ), which
vanishes in Z0(VK). When we apply the map T∗, to it, the resulting cycle also vanishes as a
0-cycle of VK , and at the same time it is supported on V ′

K . Hence it vanishes in Z0(V
′
K).

We apply Lemma 3.11 in an iterated way, with Y = X̃0, starting from the situation where
W = X̃0, V = X0, ϕ = τ and Γ1 is the component of the cycle Γ appearing in (3.51) which is

supported on X̃0×E. (We do not care about the component supported on E×X̃0 as it does

not dominate Y = X̃0 by the first projection.) We then conclude using the condition (*) and
Lemma 3.11 that we can decrease step by step the dimension of τ(SuppΓk(Y )) until finally

we conclude that the cycle Γ1 vanishes in U × X̃0, for a small enough dense Zariski open
set U ⊂ X̃0, and equivalently, Γ1 is supported on D × X̃0 for some proper closed algebraic
subset D of X̃0. Formula (3.51) then provides a Chow decomposition of the diagonal for

X̃0. The proof of the theorem is thus finished.

Combining Theorem 3.9, Theorem 2.22 and Remark 3.8, one gets the following improve-
ment of Proposition 0.5:

Proposition 3.12. Let ϕ : X → C be a flat morphism, where C is a smooth curve over an
algebraically closed field k. Then if the central fiber has a desingularization τ : X̃0 → X0

satisfying assumption (*) (for example, if τ has rational generic fibers EYη over k(Y ) for

any Y ⊂ X̃0), and X̃0 has a nontrivial Brauer group, the geometric generic fiber XηC
of ϕ

is not stably rational. If k = C, the very general fiber Xt is not stably rational.
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We now come to Schreieder’s improvement of Propositions 0.5 and 3.12. This is a very
simple observation but it is very useful in practice because it does not need any control of
the singularities of the special fiber X0. The statement is as follows:

Theorem 3.13. (See [52, Proposition 26], [53, Proposition 3.1].) Let ϕ : X → C be a
flat morphism where C is a smooth curve over an algebraically closed field k. Assume that
the central fiber has a desingularization τ : X̃0 → X0 satisfying the following property:
There exists a nontrivial unramified cohomology class η of positive degree on X̃0 such that
any component Ei of the exceptional divisor is smooth and satisfies η|Ei

= 0. Then the
geometric generic fiber XηC

of ϕ is not stably rational. If k = C, the very general fiber Xt

is not stably rational.

Proof. By the first step in the proofs of Theorems 3.4 and 3.9, it suffices to show that the
central fiber X0 itself does not admit a Chow decomposition of the diagonal. Lifting such a
decomposition to X̃0 would provide as before an equality

∆X̃0
= X̃0 × x0 + Z + Γ in CHn(X̃0 × X̃0), (3.54)

where Z is supported on D× X̃0 for some D $ X̃0, and Γ is supported on E× X̃0 ∪ X̃0×E.
Here E = ∪iEi is the exceptional locus of the considered desingularization of X0.

Now we write Γ =
∑

i Γi +
∑

i Γ
′
i where Γi is supported on Ei × X̃0 ∪ X̃0 × Ei, and we

let both sides of the equality (3.54) act on η by the upper-star action. We observe here that
Γ∗
i η = 0 by Proposition 1.20, because this is a unramified cohomology class which vanishes

on the dense Zariski open set X̃0 \ ∪iEi. Next (Γ′
i)

∗η = 0, because η|Ei
= 0. As deg η > 0,

X̃0 × x0 acts trivially on η, and thus (3.54) provides

η = Z∗η

where the right hand side is 0 again by Proposition 1.20 because Z∗η vanishes on X̃0\D.

Remark 3.14. We used here unramified cohomology but other invariants as discussed in
Section 1 can be used as well, for example the differential forms in nonzero characteristic.

3.3 Further developments and consequences

In this section, we will describe further variants of Proposition 3.12, and some applications.
In the paper [56], Totaro uses a version of the specialization theorem where the geometric
degeneration is replaced by specialization mod p of a variety defined over a number field. This
generalization is already present in Colliot-Thélène-Pirutka’s paper. The second important
ingredient is the fact that he uses as an obstruction to the Chow decomposition of the
diagonal (or universal triviality of CH0) for the desingularized central fiber X̃0 the space of
algebraic differential forms of positive degree as discussed in Section 2.3.2 (Theorem 2.20).

Finally, the specialization he uses is the same as in [35], although the degree range in
the final statement is slightly different. Kollár’s specialization produces in characteristic
2 limits of hypersurfaces in Pn+1, of any even degree ≥ 2p(n+2

3 )q which admit nonzero
algebraic differential forms of degree n− 1. The important point to be discussed here is the
nature of the singularities : not only the forms have to extend on the desingularization, a
point which is discussed in Kollár’s paper, but the singularities have to satisfy the condition
(*) of Colliot-Thélène and Pirutka. This is done in [56].

Combining all these ingredients, Totaro finally proves the following theorem, where the
ground field is assumed to be uncountable of characteristic 0 or 2:

Theorem 3.15. [56] A very general hypersurface of degree ≥ 2p(n+2
3 )q in Pn+1, n ≥ 3, is

not stably rational.
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The method of the proof actually shows that such hypersurfaces defined over a number
field exist, and not only they are not stably rational, but they in fact do not have universally
trivial CH0 group.

Let us finally state the following spectacular asymptotic improvement of Totaro’s Theo-
rem. This result by Schreieder [53] uses in an essential way Theorem 3.13.

Theorem 3.16. (Schreieder [53]) A very general complex projective hypersurface of dimen-
sion n and degree at least log2n+ 2, n ≥ 3, is not stably rational.

We conclude this section with some hints on the following theorem solving a longstanding
question:

Theorem 3.17. [27] Let Y ⊂ P2 × P3 be a very general hypersurface of bidegree (2, 2).
Then Y is not stably rational.

On the other hand, there is a dense set of points b in the parameter space for these Y ’s,
such that Yb is rational. In particular, rationality and stable rationality are not invariant
under deformation.

The proof uses the specialization method described above. Let us give a complete proof
for the density statement which is not hard but useful. We will use the following fact from
[17, Section 3] (see also [19, Section 8]):

Proposition 3.18. Let Y be a smooth fourfold fibered in 2-dimensional quadrics over a
surface. Then integral Hodge classes of degree 4 on Y are algebraic.

We also have the following standard lemma due to Springer [54] (it is in fact true in any
dimension and over any field).

Lemma 3.19. Let Q be a smooth quadric surface over a field k of characteristic 0. Then
Q has a k-point, hence is rational over k, if and only if Q has a 0-cycle z of odd degree.

Proof. Indeed, let C be the family of lines in Q. The curve Ck is the disjoint union of
two copies of P1

k
. Let k ⊂ k′ be the degree 2 (or 1) extension on which the two geometric

components of Ck are defined. Then Ck′ is the disjoint union of two curves C1, C2 which

become isomorphic to P1
k′ over k

′. But each of these curves Ci has a divisor of odd degree

defined over k′, namely the incidence divisor P ∗z ∈ CH1(Ci), where P ⊂ Ci × Q is the
universal correspondence. It follows that each component Ci is isomorphic to P1

k′ , and has
a k′-point l, providing a line l ⊂ Q defined over k′. Let i be the Galois involution acting on
C(k′). Then if i(l) = l, (so that in fact k = k′ and i = Id), l is defined over k and Q has
a k-point. Otherwise we get two different conjugate lines l and i(l) in Q which belong to
different rulings of Q, and their intersection point is defined over k.

Corollary 3.20. Let Y be a fourfold as in Theorem 3.17. Then Y is rational if Y has an
integral Hodge class α of degree 4 which has odd intersection number with the fibers Qs of
the morphism pr1 : Y → P2.

Proof. Indeed, Y is fibered via pr1 into quadric surfaces over P2. Proposition 3.18 thus
applies to Y and α is the class of a codimension algebraic cycle Z on Y . Restricting Z to
the generic fiber Yη of pr1, we get a 0-cycle of odd degree on Yη defined over the function
field C(η) of P2 and Lemma 3.19 then tells that Yη is rational over C(η). A fortiori, Y is
rational.

Corollary 3.20 reduces the proof of the density statement to the following proposition:

Proposition 3.21. Let B be the family of all smooth fourfolds Y described in Theorem
3.17. Then the set of points b ∈ B such that Yb has an integral Hodge class α of degree 4
which has odd intersection number with the fibers of pr1 is dense in B for the usual topology.
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Proof. This will follow by applying the following infinitesimal criterion (Proposition 3.22)
below : Consider our family of fourfolds Y → B. We have an associated infinitesimal
variation of Hodge structures (see [66, 5.1.2]) at any point t ∈ B

H2,2(Yt) → Hom(TB,t,H
1,3(Yt)),

α 7→ ∇(α) : TB,t → H1,3(Yt).

Using the fact that the Hodge structure onH4(Yt,Q) is of Hodge niveau 2, that is,H4,0(Yt) =
0, we have (see [66, 5.3.4]):

Proposition 3.22. If there exist t0 ∈ B and α ∈ H2,2(Yt0) such that ∇(α) : TB,t0 →
H1,3(Yt0) is surjective, then for any Euclidean open set U ⊂ B containing t0, the image of
the natural map

Tt0 : H2,2
YU ,R → H4(Yt0 ,R)

defined by composing the inclusion H2,2
Y,R → H4

Y,R with a local flat trivialization over U of

H4
Y,R, contains an open subset VU of H4(Yt0 ,R).

Here H4
Y,R is the flat real vector bundle with fiber H4(Yb,R) over any b ∈ B and H2,2

Y,R is

the real vector bundle over B with fiber over t ∈ B the space H2,2(Yt)R of real cohomology
classes of type (2, 2) on Yt. Note that the image of Tt0 is by definition the set of real degree
4 cohomology classes on Yt which are of type (2, 2) at some point t′ ∈ U .

Corollary 3.23. Under the same assumption, for any t ∈ B, and any Euclidean open set
U ⊂ B containing t, there exists t′ ∈ U and αt′ ∈ H2,2(Yt′)∩H4(Yt′ ,Z) such that the degree
of α on the fibers Qs of pr1 : Yt′ 99K P2 is odd.

Proof. We observe first that the condition on t0 in Proposition 3.22 is Zariski open, hence is
satisfied on a dense open set. We also note that the open subset VU of H4(Yt0 ,R) appearing
in Proposition 3.22 is in fact a subcone. It is then immediate to prove that a non-empty
open subcone of H4(Yt0 ,R) = H4(Yt0 ,Z)⊗R has to contain an integral class which has odd
degree on the fibers Qs.

What remains to be done is to check the infinitesimal criterion, which is quite well-
understood thanks to the Carlson-Griffiths theory of variation of Hodge structures of hy-
persurfaces (see [66, 5.3.4]).

4 Cohomological decomposition of the diagonal and the
Abel-Jacobi map

4.1 Intermediate Jacobians, Abel-Jacobi map and universal cycle

We already encountered in the previous sections the Abel-Jacobi map

ϕ2X : CH2(X)hom → J3(X) (4.55)

which is an isomorphism by Theorem 2.21 when X is a smooth projective complex manifold
with CH0(X) = Z. The right hand side is an abelian variety but the left hand side is
not an algebraic variety, even if it is more than an abstract group. Namely, we can use
the families of codimension 2 algebraic cycles on X given by codimension 2 cycles Z ∈
CH2(B ×X) parameterized by smooth connected varieties B and the associated maps Z∗ :
B → CH2(X)alg, b 7→ Zb − Zb0 , where b0 ∈ B is a fixed reference point, to say that ϕ2X is
a “regular homomorphism”. This notion was introduced by Murre [45] and it says that for
any cycle Z as above, the map

ϕZ := ϕ2X ◦ Z∗ : B → J3(X)
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is a morphism of algebraic varieties.
The question left open concerning the isomorphism (4.55) is the existence of a universal

codimension 2 cycle, which was first asked in [61]:

Definition 4.1. A universal codimension 2 cycle for X is a codimension 2 cycle Z ∈
CH2(J3(X)×X) such that Z0 = 0 and the associated map

ϕZ : J3(X) → J3(X)

is the identity.

For codimension 1 cycles, the universal cycle exists and is called the Poincaré divisor. Its
existence in this case can be proved using the fact that the complete family of sufficiently
ample divisors of given cohomology class on X is via ϕ1X a honest projective bundle on
J1(X). Indeed, the fiber over a divisor class L is the projective space |L| and a point x ∈ X
determines for any L the hyperplane |L|x ⊂ |L| of divisors in |L| passing through x.

We will see in next section that, as a consequence of the degeneration method, there
are Fano threefolds which do not admit a universal codimension 2 cycle. Note that, once
one knows that the Abel-Jacobi map ϕ2X is surjective, there exists a codimension 2 cycle
Z ∈ CH2(J3(X)×X) such that Z0 = 0 and the associated map

ϕZ : J3(X) → J3(X)

is N times the identity for a certain integer N > 0. Indeed, we use for this the fact that ϕ2X
is regular. There are countably many complete families of codimension 2 algebraic cycles on
X, so the surjectivity of the Abel-Jacobi map implies that there exist a smooth projective
variety B and a cycle Z ∈ CH2(B ×X), such that the morphism

ϕZ : B → J3(X)

is surjective. We can replace B by a subvariety B′ containing the reference point b0 such
that the restriction ϕ′ of ϕZ to B′ is a generically finite map. Then we consider the cycle

ZJ = (ϕ′, IdX)∗(Z ′) ∈ CH2(J3(X)×X),

where Z ′ := Z ′
|B′×X . The integer N obtained by this construction is deg ϕ′.

The existence of a universal cycle for codimension 1 cycles allows us to prove the following
result:

Proposition 4.2. [61] If X has a cohomological decomposition of the diagonal, X has a
universal codimension 2 cycle.

Proof. We write the decomposition in the form

[∆X ] = [X × x] + (j̃, IdX)∗[Z̃] in H
2n
B (X ×X,Z), (4.56)

where j̃ : D̃ → X is a morphism from a smooth projective variety of dimension n − 1. As
we used several times, this implies that for any α ∈ H3

B(X,Z)

α = j̃∗([Z̃]
∗α). (4.57)

The considered morphisms are morphisms of Hodge structures of odd weight and they induce
as well morphisms between the associated intermediate Jacobians. (4.57) then says that

j̃∗ ◦ [Z̃]∗ = IdJ3(X) : J
3(X) → J3(X). (4.58)

Let now D ∈ CH1(J1(D̃) × D̃) be a universal codimension 1-cycle. By pull-back to J3(X)

it provides a codimension 1-cycle on J3(X)× D̃ and by push-forward to X, we get finally a
codimension 2 cycle on J3(X)×X defined by the formula

Z = (IdJ3(X), j̃)∗(([Z̃]
∗, IdD̃)∗D).

The map ϕZ : J3(X) → J3(X) equals by construction j̃∗ ◦ [Z̃]∗, hence it is the identity of
J3(X) by (4.58).
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4.2 Extending Clemens-Griffiths criterion

The discussion in this section is specific to dimension 3, although it concerns stable ra-
tionality for them. The stable rationality of X says that X × Pr is rational for some r,
hence it involves birational geometry of higher dimensional varieties. Because of this, the
Clemens-Griffiths criterion that we now describe concerns only rationality of threefolds and
not stable rationality.

Let X be a smooth complex projective threefold. Let us assume that H1
B(X,Z) =

0 and H3,0(X) = 0, which will be the case if X is rationally connected. Consider the
intermediate Jacobian J3(X) = H3

B(X,C)/(F 2H3
B(X,C)⊕H3

B(X,Z)tf ), which in this case
equals H1,2(X)/H3

B(X,Z)tf . Here H3
B(X,Z)tf denotes the abelian group H3

B(X,Z) modulo
torsion. By definition, one has a canonical isomorphism

HB
1 (J3(X),Z) ∼= H3

B(X,Z)tf . (4.59)

The unimodular intersection pairing ⟨ , ⟩X on H3
B(X,Z)tf provides, thanks to the Hodge-

Riemann relations, a principal polarization on J3(X) of class θX ∈ H2
B(J

3(X),Z). If g =

dim J3(X), the integral degree 2g − 2 cohomology class (or degree 2 homology class)
θg−1
X

(g−1)!

on J3(X) is called the minimal class. It is not known if it is algebraic for a general principally
polarized abelian variety (A, θA), although it is when (A, θA) = (J1(C), θC) is the Jacobian of
a smooth projective curve, or a product of them. The celebrated Clemens-Griffiths criterion
[15] says the following:

Theorem 4.3. If a smooth projective threefold X is rational, then (J3(X), θX) is the direct
product of Jacobians (J1(Ci), θCi

) of curves.

This theorem follows indeed from the fact that a principally polarized abelian variety
splits uniquely into a direct sum of simple principally polarized abelian varieties. Further-
more the Jacobian of a smooth projective curve is indecomposable as a ppav, by Riemann’s
theorem which implies that its Theta divisor is irreducible. This decomposition changes
under blow-up of a curve C ⊂ X by the addition of an orthogonal direct summand which
is the Jacobian of C. We then conclude that the Griffiths component of X, namely the
sum in the decomposition above of all summands not isomorphic as ppav’s to Jacobians of
curves, does not change under blow-up and thus is a birational invariant (one also uses the
fact that if ϕ : X → Y is a morphism which is birational, that is, of degree 1, the morphism
ϕ∗ : H3

B(Y,Z) → H3
B(X,Z) is compatible with polarizations and thus makes H3(Y,Z) an

orthogonal direct summand of H3
B(X,Z)).

In the Jacobian J1(C) of a curve C, the image of C by the Albanese map gives an
effective 1-cycle Z whose class is the minimal class. The Matsusaka criterion [40] says the
following:

Theorem 4.4. A principally polarized abelian variety (A, θA) is a product of Jacobians
of curves if and only if it carries an effective 1-cycle Z =

∑
i niCi, ni > 0 whose class

[Z] ∈ HB
2 (A,Z) is the minimal class.

The following result proved in [63] is thus a version of Clemens-Griffiths theorem for
stable rationality.

Theorem 4.5. Let X be a smooth projective threefold. If X has a cohomological decompo-

sition of the diagonal, the minimal class
θg−1
X

(g−1)! of J
3(X) is algebraic. In particular, if X is

stably rational, the minimal class
θg−1
X

(g−1)! of J
3(X) is algebraic.

This condition says that there is a 1-cycle Z =
∑

i niCi whose class [Z] ∈ HB
2 (J3(X),Z)

is the minimal class. The difference with Clemens-Griffiths criterion is that we do not ask
it to be effective.
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Proof of Theorem 4.5. Recalling the isomorphism (4.59), or rather its dual

i : H1
B(J

3(X),Z) ∼= H3
B(X,Z)tf , (4.60)

the minimal class γ ∈ HB
2 (J3(X),Z) is characterized by the fact that∫

γ

α ∪ β = ⟨i(α), i(β)⟩X (4.61)

for any α, β ∈ H1
B(J

3(X),Z). We now assume that X has a cohomological decomposition
of the diagonal

[∆X ] = j̃∗([Z̃]) + [X × x] in H6
B(X ×X,Z) (4.62)

for some cycle Z̃ ∈ CH2(D̃ ×X). Recalling that D̃ is the desingularization of a divisor in

X, we can assume after blowing-up X that D̃ = ⊔Di, where each ji = j̃|Di
is an embedding

and that j̃(D̃) has normal crossings. We denote by Zi the restriction of Z̃ to Di ×X, and
by Wil the curve which is the intersection ji(Di) ∩ jl(Dl), that we can see as a divisor in
either surface Di or Dl. Formula (4.62) gives for any α ∈ H3

B(X,Z)tf

α =
∑
i

ji∗([Zi]
∗α).

It follows that, for any α ∈ H3
B(X,Z)tf ,

⟨α, β⟩X =
∑
il

⟨ji∗([Zi]
∗α), jl∗([Zl]

∗β)⟩X (4.63)

=
∑
i ̸=l

∫
Wil

[Zi]
∗α ∪ [Zl]

∗β +
∑
i

⟨ji∗([Zi]
∗α), ji∗([Zi]

∗β)⟩X

=
∑
i<l

∫
Wil

([Zi]
∗α ∪ [Zl]

∗β + [Zl]
∗α ∪ [Zi]

∗β) +
∑
i

∫
Di

j∗i [Di] ∪ [Zi]
∗α ∪ [Zi]

∗β

=
∑
i<l

∫
Wil

([Zi] + [Zl])
∗α ∪ ([Zi] + [Zl])

∗β

−
∑
i<l

∫
Wil

([Zi]
∗α ∪ [Zi]

∗β + [Zl]
∗α ∪ [Zl]

∗β) +
∑
i

∫
Wi

[Zi]
∗α ∪ [Zi]

∗β,

where in the last term Wi is the 1-cycle j∗iDi of Di. The conclusion of (4.63) is that we
found smooth projective curves Cs (namely theWil’s and the supports of theWi’s), integers
ns (namely the coefficients of the 1-cycle Wi) and codimension 2 cycles Z ′

s ∈ CH2(Cs ×X),
such that

⟨α, β⟩X =
∑
s

ns⟨[Z ′
s]

∗α), [Z ′
s]

∗β⟩Cs
. (4.64)

Let ϕZ′
s
: Cs → J3(X) be the associated Abel-Jacobi map. For any class η ∈ H1

B(J
3(X),Z)

the class α = i(η) satisfies by definition of the isomorphism i:

ϕ∗Z′
s
η = [Z ′

s]
∗α in H1

B(Cs,Z). (4.65)

Thus (4.64) rewrites as

⟨α, α′⟩X =
∑
s

ns

∫
Cs

ϕ∗Z′
s
η ∪ ϕ∗Z′

s
η′ (4.66)

for any η, η′ ∈ H1
B(J

3(X),Z). Comparing with (4.61), we conclude that
∑

s ns[ϕZ′
s
(Cs)] = γ

is the minimal class.
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We now give a necessary and sufficient set of conditions for a smooth projective threefold
to admit a cohomological decomposition of the diagonal. Part of these results were obtained
in [61], and they were finally completed in [63]. We assume that X has H3,0(X) = 0 and
H1

B(X,Z) = 0 because this is necessary for X to have a cohomological decomposition with
rational coefficients. These vanishing conditions allow us to speak of the ppav (J3(X), θX).

Theorem 4.6. A smooth complex projective threefold with H3,0(X) = 0 and H1
B(X,Z) = 0

admits a cohomological decomposition of the diagonal if and only if the following conditions
are satisfied:

1. H∗
B(X,Z) has no torsion.

2. H4
B(X,Z) is algebraic.

3. X admits a universal codimension 2 cycle.

4. The minimal class of (J3(X), θX) is algebraic.

Proof. We already proved that these conditions are necessary: 1 and 2 were proved to
be necessary in Theorem 2.13. 3 is necessary by Proposition 4.2 and 4 is necessary by
Proposition 4.5.

We now prove that these conditions are sufficient. If X satisfies these conditions, then
by 1, X has a Künneth decomposition of the diagonal

[∆X ] = δ6,0 + δ5,1 + δ4,2 + δ3,3 + δ2,4 + δ0,6

where δi,j ∈ Hi
B(X,Z)⊗Hj

B(X,Z) and acts as the projector on Hj
B(X,Z).

As we assumed H1
B(X,Z) = 0, δ1,5 and δ5,1 are zero. Assuming 2, the even degree

cohomology of X is algebraic, since this implies H2,0(X) = 0, so that H2
B(X,Z) is also

algebraic by Lefschetz. It follows that the terms δ6,0, δ4,2, δ2,4 can be written as
∑

i ni[Zi ×
Z ′
i], where codimZi > 0. They are thus contained in D×X for some closed proper algebraic

subset D of X. Finally the term δ0,6 is the class of X × x.
It thus remains to show that the class δ3,3 is the class of a cycle supported on D × X

for some closed proper algebraic subset D of X, and by the previous analysis of the other
Künneth terms, it suffices in fact that there is a cycle supported on D ×X for some closed
proper algebraic subset D of X whose Künneth component of type (3, 3) is δ3,3.

Let Γ =
∑

i niCi be a 1-cycle of J3(X) representing the minimal class. Let Z ∈
CH2(J3(X) × X) be a universal codimension 2 cycle and let Zi ∈ CH2(C̃i × X) be its

pull-back to C̃i ×X, where C̃i is the normalization of Ci. We consider the following cycle

T :=
∑
i

ni(Zi, Zi)∗∆C̃i
in CH3(X ×X), (4.67)

where as usual ∆C̃i
is the diagonal of C̃i and

(Zi, Zi) := pr∗13Zi · pr∗24Zi ∈ CH4(C̃i × C̃i ×X ×X).

Observe that each Zi is of dimension 2, so that the support of Zi does not dominate X
by the second projection. It follows that T is supported on D ×X for some closed proper
algebraic subset D of X. We now have:

Lemma 4.7. The (3, 3)-Künneth component of T is equal to δ3,3.

Proof. We have to show that for any α, β ∈ H3
B(X,Z)

⟨[T ]∗α, β⟩X = ⟨α, β⟩X . (4.68)
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We claim that for any curve C and any codimension 2 cycle Z in C ×X, one has, denoting
Z ′ := (Z,Z)∗∆C ,

⟨[Z ′]∗α, β⟩X = ⟨[Z]∗α, [Z]∗β⟩C . (4.69)

Assuming this equality, we get

⟨[T ]∗α, β⟩X =
∑
i

ni⟨[Zi]
∗α, [Zi]

∗β⟩C̃i

=
∑
i

ni⟨j∗i ([Z]∗α), j∗i ([Z]∗β)⟩C̃i
,

where ji : C̃i → J3(X) is the natural map. As Z is a universal cycle, one has [Z]∗ = i−1

and thus, as
∑

i niji∗([C̃i]) is the minimal class, the last term is ⟨α, β⟩X by (4.61).
It remains to prove (4.69). This follows from the fact that

[Z,Z]∗(α⊗ β) = [Z]∗α⊗ [Z]∗β in H1
B(C × C,Z), (4.70)

where α⊗ β := pr∗1α ∪ pr∗2β for both X and C.
It follows from (4.70) that

⟨[∆C ], [Z]
∗α⊗ [Z]∗β⟩C×C = ⟨[∆C ], [Z,Z]

∗(α⊗ β)⟩C×C

= ⟨[Z,Z]∗([∆C ]), α⊗ β⟩X×X = ⟨[Z ′], α⊗ β⟩X×X .

The last term is easily seen to be ⟨[Z ′]∗α, β⟩X .

The proof of Theorem 4.6 is finished.

In the case of rationally connected threefolds, we know that H2
B(X,Z) and H5

B(X,Z)
have no torsion by Theorem 1.2. We also know that H4

B(X,Z) is algebraic by Theorem 1.29.
We thus get in this case

Theorem 4.8. A smooth complex projective rationally connected threefold admits a coho-
mological decomposition of the diagonal if and only if the following conditions are satisfied:

1. H3
B(X,Z) has no torsion.

2. X admits a universal codimension 2 cycle.

3. The minimal class of (J3(X), θX) is algebraic.

It is interesting to note that 1 is the Artin-Mumford invariant, while 3 is our general-
ization of Clemens-Griffiths criterion that works for stable rationality. The condition 2 has
no obvious classical analogue but in [62], we compute it as “universal degree 3 unramified
cohomology” of X. In fact this condition is related to the integral Hodge conjecture for
X × J3(X) or rather its (3, 1)-Künneth component.

We now deduce the following consequence:

Corollary 4.9. There are rationally connected threefolds not admitting a universal codi-
mension 2 cycle.

Proof. The example is the desingularization of a very general quartic double solid with 7
nodes. It does not admit a cohomological decomposition of the diagonal by Theorem 3.6.
On the other hand, its intermediate Jacobian has dimension 3, so it is a Jacobian and the
minimal class is algebraic. Finally it has trivial Artin-Mumford invariant by work of Endrass
[21]. The condition that fails in Theorem 4.8 must thus be Condition 2.
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4.3 The case of cubic hypersurfaces

The rationality or stable rationality of cubic hypersurfaces is an almost completely open
problem. The results available are:

• A smooth plane cubic is not rational as it has H1,0 ̸= 0.

• A smooth cubic surface X over an algebraically closed field is rational: This is a
particular case of Castelnuovo theorem but it can be proved explicitly in this case: take any
two not intersecting lines ∆, ∆′ in X. Then for x ∈ ∆, x′ ∈ ∆′, the line ⟨x, x′⟩ in P3 meets
X in a third point ϕ(x, x′). This defines a birational map

ϕ : ∆×∆′ 99K X.

The inverse map is constructed as follows: start from a general point y ∈ X, and let
Qy := ⟨y,∆⟩, Q′

y := ⟨y,∆′⟩. Then Qy ∩ ∆′ = {x′}, Q′
y ∩ ∆ = {x} and ϕ(x, x′) = y. This

construction shows more generally:

• Any smooth cubic hypersurface of dimension 2m containing two m-planes P, P ′ which
do not meet is rational.

• A smooth cubic threefold is not rational. This is the celebrated Clemens-Griffiths
theorem, proved in [15] for cubics defined over C, and by Murre (see [46]) in any nonzero
characteristic different from 2.

This is essentially all that we know about cubic hypersurfaces. Let us state a few open
questions:

Question 4.10. Does there exist a smooth cubic hypersurface of odd dimension which is
rational or stably rational?

Question 4.11. Is a smooth cubic threefold stably irrational? Does there exist a stably
rational smooth cubic threefold?

Question 4.12. Is a very general smooth cubic hypersurface of even dimension ≥ 4 irra-
tional?

In this section, we are going to study the weaker question whether a smooth cubic
hypersurface has a decomposition of the diagonal. We will see that even for cubic threefolds,
this already rises serious difficulties.

4.3.1 General cubic hypersurfaces

The following construction is certainly classical. In dimension 1, it allows to construct the
group structure on a plane cubic curve. Let X be a smooth cubic hypersurface in Pn. The
variety F (X) of lines in X is smooth of dimension 2n − 6. If x ∈ X and l is a line in Pn

passing through x, then l ∩ X contains x and two residual points y, z ∈ X. Conversely,
starting from two points y, z in X, the line ly,z := ⟨y, z⟩ intersects X in a third point x ∈ X.
This shows that there is a birational map

Φ : X [2] 99K QX ,

where QX → X is the projective bundle with fiber over x the Pn−1 parameterizing lines in
Pn passing through x. The following is proved in [63], see also [23]:

Proposition 4.13. The map Φ induces an isomorphism between the blow-up of X [2] along
C(X) and the blow-up of QX along QXX .
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Here the loci C(X) and QXX are defined as follows:
- C(X) ⊂ X [2] is the locus of length 2 subschemes of X that are contained in a line

contained in X. Thus C(X) is a P2-bundle over F (X).
- The locus QXX ⊂ QX is the set of pairs (x, [l]), such that x ∈ l and the line l is

contained in X. It is thus naturally isomorphic to the universal P1-bundle over F (X).
We now explain two consequences of this proposition. The first one is due to Galkin and

Shinder [23] and gives a beautiful evidence for the link between rationality of cubic fourfolds
and K3 surfaces which has been proposed and studied in [26] and more recently explicitly
conjectured and studied in [36], [2] , [1]. Let K0(VarK) be the Grothendieck ring whose
generators are isomorphism classes of algebraic varieties defined over K, with relation

[U ] + [Z] = [X] (4.71)

whenever X = U⊔Z, with Z closed, U open. The ring structure is given by product. Denote
by L ∈ K0(VarK) the class of the affine line and ⟨L⟩ the ideal of K0(VarK) generated by L.
The following result is proved in [38].

Theorem 4.14. [38] Let K be a field of characteristic zero. The quotient-ring K0(VarK)/⟨L⟩
is naturally isomorphic to the free abelian group generated by stable birational equivalence
classes of smooth projective connected varieties over K together with its natural ring struc-
ture. In particular, if X and Y1, . . . , Ym are smooth projective connected varieties and

[X] =
∑
i

ni[Yi] in K0(VarK)/⟨L⟩

for some ni ∈ Z, then X is stably birationally equivalent to one of the Yi’s.

The class of Pn is equal to
∑n

i=0 Li, as one argue by induction using (4.71) and

Pn \ Pn−1 = An = (A1)n.

Similarly, one gets that the class of a projective bundle P(E) → X with rankE = r is given
by

[P(E)] = [Pr−1][X] = (

r−1∑
i=0

Li)[X]. (4.72)

For the blow-up X̃ of a smooth variety X along a smooth subvariety Z of codimension r,
the isomorphism X̃ \ E ∼= X \ Z gives by (4.71)

[X̃]− (

r−1∑
i=0

Li)[Z] = [X]− [Z]

or equivalently

[X̃] = [X] + (

r−1∑
i=1

Li)[Z]. (4.73)

The following result is due to Galkin and Shinder [23].

Theorem 4.15. Let X be a smooth cubic hypersurface in Pn
K . Then the following equality

holds in K0(VarK):

[X(2)]− L2[F (X)] = [X](1 + Ln−1). (4.74)

If rmcharK =, and X is rational of dimension 4, then either there is an explicit nonzero
element in K0(VarK) annihilated by L2, or the Fano variety of lines is birational to S[2],
where S is a K3 surface.
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Proof. Applying Proposition 4.13 and the projective bundle and blow-up formulas (4.72),
(4.73), we get

[X [2]] + L(1 + L+ L2)[F (X)] = [X](

n−1∑
i=0

Li) + (L+ L2)(1 + L)[F (X)]. (4.75)

Now we notice that the difference X [2]\EX is isomorphic to X(2)\X, where X ⊂ X(2) is the
diagonal and EX → X, EX ⊂ X [2], is the exceptional divisor over the diagonal. Plugging
again (4.71) and the projective bundle formula for EX in formula (4.75), we get (4.74).

We now turn to the proof of the second statement. We observe that the symmetric
product operation s(2) : [Y ] 7→ [Y (2)] satisfies the following property

s(2)([Y ] + [Y ′]) = s(2)([Y ]) + s(2)([Y ′]) + [Y ] · [Y ′], (4.76)

as this is the case for disjoint unions. We also have s(2)(L[Y ]) = L2s(2)([Y ]) as follows from
the fact that A(2) = A2 in K0(VarK).

Suppose now that a smooth cubic fourfold X is rational. Then by a sequence of smooth
blow-ups starting from X, one gets something isomorphic to a variety Y which is also
obtained from P4 by a sequence of smooth blow-ups. Let us assume for simplicity that we
blew-up only surfaces Si on the X side and Tj on the P4 side. Then in K0(VarK), we get
using (4.73)

[X] +
∑
i

L[Si] = [P4] +
∑
j

L[Tj ]. (4.77)

Taking symmetric products and applying (4.76), we get

[X(2)] +
∑
i

L2[S
(2)
i ] +

∑
i̸=i′

L2[Si][Si′ ] +
∑
i

L[X][Si]

= [(P4)(2)] +
∑
j

L2[T
(2)
j ] +

∑
j ̸=j′

L2[Tj ][Tj′ ] +
∑
j

L[P4][Tj ].

We now replace in this formula [X(2)] by its expression given in formula (4.74) and get

L2[F (X)] + [X](1 + L4) +
∑
i

L2[S
(2)
i ] +

∑
i ̸=i′

L2[Si][Si′ ] +
∑
i

L[X][Si]

= [(P4)(2)] +
∑
j

L2[T
(2)
j ] +

∑
j ̸=j′

L2[Tj ][Tj′ ] +
∑
j

L[P4][Tj ].

Using again (4.77) in the form

[X] = 1 + L+
∑
i

L[Si]−
∑
j

L[Tj ] modulo L2,

and the relation
[(P4)(2)] = [P4] + L2 modulo L3,

we get after simplification

L2([F (X)]−
∑
i<i′

[Si][Si′ ]−
∑
j

[T
(2)
j ]−

∑
j ̸=j′

[Tj ][Tj′ ]− 1 (4.78)

−
∑
i

[Si] +
∑
i,j

[Si][Tj ]−
∑
j

[Tj ] + Lα) = 0
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for some α ∈ K0(VarK). We thus conclude that either the class [F (X)] −
∑

i<i′ [Si][Si′ ] −∑
j [T

(2)
j ]−

∑
j ̸=j′ [Tj ][Tj′ ]− 1−

∑
i[Si] +

∑
i,j [Si][Tj ]−

∑
j [Tj ] +Lα is nonzero in K0(V ar)

but annihilated by L2, or the following relation holds in K0(VarK)/⟨L⟩:

[F (X)]−
∑
i<i′

[Si][Si′ ]−
∑
j

[T
(2)
j ]−

∑
j ̸=j′

[Tj ][Tj′ ]− 1 (4.79)

−
∑
i

[Si] +
∑
i,j

[Si][Tj ]−
∑
j

[Tj ] = 0.

In the latter case, as this provides an equality

[F (X)] =
∑
i<i′

[Si][Si′ ]+
∑
j

[T
(2)
j ]+

∑
j ̸=j′

[Tj ][Tj′ ]+[P4]+
∑
i

[Si×P2]−
∑
i,j

[Si][Tj ]+
∑
j

[Tj×P2]

in K0(V ar)/⟨L⟩ of combinations of classes of four-dimensional varieties, and that F (X) is
irreducible, we conclude by Theorem 4.14 that F (X) is stably birational to one of the terms
appearing on the right. Using the fact that F (X) has a unique nondegenerate holomorphic
2-form (see [9]), hence is not rationally connected, we easily conclude that F (X) is in fact

birational to [T
(2)
j ] for some smooth surface Tj with h2,0(Tj) = 1. Finally one concludes by

surface classification that Tj is birational to a K3 surface.

Theorem 4.15 does not allow to conclude that a very general smooth cubic fourfold is
not rational because multiplication by L is not injective as shown by Borisov [13]. Still it
gives a beautiful evidence for the relationship between rationality and the existence of an
associated K3 surface.

We now turn to another application of Proposition 4.13, which can be found in [63].

Theorem 4.16. Let X be a smooth cubic hypersurface. Assume that X satisfies the Hodge
conjecture for integral Hodge classes modulo 2. Then X has a Chow decomposition of the
diagonal if and only if it has a cohomological decomposition of the diagonal.

Note that the assumption is satisfied by odd dimensional cubic hypersurfaces, because
three times their even degree cohomology comes from projective space by Lefschetz theorem
on hyperplane sections, hence is algebraic. It is also true for cubic fourfolds by [60] (the
later result has been reproved recently by Mongardi and Ottem in [43]).

Sketch of proof of Theorem 4.16. First of all we show the following result, which uses our
assumption on integral Hodge classes and also the fact that the integral cohomology of X
has no torsion. We will denote by Γ ⊂ X ×X ×X [2] the graph of the natural rational map
X2 99K X [2].

Proposition 4.17. If a smooth cubic hypersurface X has a cohomological decomposition of
the diagonal, there exists a cycle W cohomologous to 0 in X [2] such that

∆X −X × x− Z = Γ∗W in CH(X ×X), (4.80)

where as usual Z is supported on D ×X, with D ⊂ X proper closed algebraic.

The difficulty to achieve (4.80) is the following: our assumption is that ∆X −X × x−Z
is cohomologous to 0, and we can also arrange to make this cycle symmetric, hence coming
from a cycle on X [2]. The point of (4.80) is that we want it to come from a cycle which is
also cohomologous to 0 on X [2].

Having Proposition 4.17, we now use Proposition 4.13 which allows us to analyze the
cycle W . In the case of the cubic threefold, the proof is very short and as follows: We know
that after blow-up, X [2] becomes isomorphic to the blow-up of a projective bundle over X
along a subvariety which is a projective bundle over the surface F (X). Both X and F (X)

46



have trivial Griffiths groups in all dimensions, hence it follows from the blow-up formulas
that X [2] also has trivial Griffiths groups. Hence the cycle W which is given by Proposition
4.80 is algebraically equivalent to 0 onX [2]. This means that the equality ∆X−X×x−Z = 0
holds modulo algebraic equivalence. We can then apply Proposition 2.24 and conclude that
X has a Chow decomposition of the diagonal.

Let us mention the following application of Theorem 4.16 (see [63] for the proof).

Proposition 4.18. A cubic fourfold X such that Hdg4(X,Z) has rank 2 and discriminant
not divisible by 4 has universally trivial CH0-group.

Here the discriminant is the discriminant of the the restricted intersection pairing ⟨ , ⟩X
on the rank 2 lattice Hdg4(X,Z). Such cubics are said special and were studied first by
Hassett [26].

4.3.2 The case of the cubic threefold

Recall from section 4.2 that a smooth projective threefoldX with h1,0(X) = h3,0(X) = 0 has
an associated principally polarized abelian variety (J3(X), θX) of dimension g = b3(X)/2.
The minimal class θg−1

X /(g − 1)! ∈ Hdg2g−2(J3(X),Z) is an integral Hodge class of degree
2g− 2 (or homology class of degree 2. For g ≥ 4, it is not known to be algebraic. Note that
Mongardi and Ottem made recent progress [43] on the similar problem for hyper-Kähler
manifolds, which in some sense are close to abelian varieties.

In the case where g = 4, 5, it is known that the generic principally polarized abelian
variety (A, θA) is a Prym variety P (C̃/C), and there is then a copy of the curve C̃ in A,
whose class is twice the minimal class. Many interesting rationally connected threefolds
appear as conic bundles over a rational surface, for which the intermediate Jacobian is a
Prym variety (see [8]). This applies particularly to cubic threefolds, whose intermediate
Jacobian is well-known to be a Prym variety, thanks to the representation of X as a conic
bundle.

Theorem 4.19. [63] A smooth cubic threefold X has a decomposition of the diagonal (or
has universally trivial CH0 group) if and only if the minimal class of J3(X) is algebraic.

Proof. By Theorem 4.16, it suffices to prove the result for “cohomological decomposition”
instead of “Chow decomposition”. We now use Theorem 4.6. It says in particular that the
algebraicity of the minimal class is a necessary condition for the existence of a cohomological
decomposition of the diagonal. It remains to show that it is also sufficient. We know that
H∗(X,Z) has no torsion and that H4(X,Z) is algebraic, being generated by the class of a
line, so the only condition to check is the existence of a universal codimension 2 cycle on X.
This follows from the following statement which is taken from [61]:

Proposition 4.20. Let X be a smooth projective threefold with h1,0(X) = h2,0(X) = 0 and
such that the minimal class of J3(X) is algebraic. Then if furthermore there exist a smooth
projective variety B and a codimension 2 cycle Z ∈ CH2(B ×X) such that

ϕZ : B → J3(X)

is surjective with rationally connected fibers, X has a universal codimension 2 cycle.

Proof. Let Γ =
∑

i niCi be a 1-cycle in the minimal class, where Ci ⊂ J3(X) are curves,
that we can even assume to be smooth. By the Graber-Harris-Starr theorem [24], the map
ϕZ with rationally connected fibers has sections over each Ci (or a general translate of
it). This provides lift si : Ci → B, and thus for each Ci, we get a codimension 2 cycle
Zi ∈ CH2(Ci ×X) with the property that

ϕZi
: Ci → J3(X) (4.81)
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is the natural inclusion of Ci into J
3(X).

Let g := dim J3(X). As a consequence of the fact that the class of Γ =
∑

i niCi is the
minimal class, we have

Γ∗g = g!J3(X). (4.82)

Here ∗ is the Pontryagin product on cycles of J3(X), which is defined by

γ ∗ γ′ = µ∗(γ × γ′),

where µ : J3(X)× J3(X) → J3(X) is the sum map.
The meaning of equation (4.82) is clear if we assume that Γ = Ci is a single curve : it

says then that the sum map induces a birational map

jg : C
(g)
i → J3(X)

is birational. In this case, constructing a universal codimension 2 cycle on J3(X) is easy:
namely, starting from Zi, we construct a codimension 2-cycle on Cg

i ×X defined as
∑g

i=1((pi, pX)∗Zi,

which is clearly symmetric, hence descend to a codimension 2 cycle Z
(g)
i on C

(g)
i ×X. One

has
ϕ
Z

(g)
i

= jg

which is birational by assumption, so that via (jg, IdX), Z
(g)
i descends to a universal codi-

mension 2 cycle on J3(X)×X.
The general case works similarly, using the curve C = ⊔iCi, the cycle Z which is Zi on

the component Ci, and viewing Γ as a 1-cycle on C.

The cubic threefold satisfies the assumptions of the proposition by work of Markushevich-
Tikhomirov [39]. Indeed they show that the Abel-Jacobi map on the family of elliptic curves
of degree 5 in X has rationally connected fibers. What they prove is that a general such
elliptic curve E ⊂ X determines a rank 2 vector bundle E on X with 6 sections. The fiber of
the Abel-Jacobi map passing through [E] identifies to P(H0(X, E)). Proposition 4.20 thus
applies and the theorem is proved.

Let us mention the following consequence: We already mentioned that twice the minimal
class is algebraic on J3(X). So if (J3(X), θX) has an odd degree isogeny to (J(C), θC) for
some genus 5 curve C, an odd multiple of the minimal class of J3(X) is algebraic, hence the
minimal class itself is algebraic. This condition happens along a sublocus of codimension ≤ 3
in the moduli space of cubic threefolds, because the locus of Jacobians in A5 has codimension
3. Playing on this observation, we get the following:

Theorem 4.21. There is a non-empty codimension ≤ 3 locus in the moduli space of cubic
threefolds parameterizing cubic threefolds with universally trivial CH0-group.

The following questions remain open:

Question 4.22. Does a general cubic threefold admit a universal codimension 2-cycle?

This problem has been rephrased in [62] as computing universal unramified degree 3
cohomology of X with torsion coefficients.

Remark 4.23. The Markushevich-Tikhomirov parameterization of J3(X) with generic fiber
isomorphic to P(H0(X, E)) does not solve this problem because the fibration into projective
spaces over a Zariski open set of J3(X) so constructed is a nontrivial Brauer-Severi variety
over C(J3(X)). It does not admit a rational section.

Question 4.24. Is the minimal class of the intermediate Jacobian J3(X) algebraic for a
general cubic threefold X? Is the minimal class of a general principally polarized abelian
variety of dimension 5 algebraic?

Note that the question whether a smooth cubic of large dimension has universally trivial
Chow group is also completely open.
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