The Hodge conjecture

Claire Voisin

Abstract This is an introduction to the Hodge conjecture, which, although intended
to a general mathematical audience, assumes some knowledge of topology and com-
plex geometry. The emphasis will be put on the importance of the notion of Hodge
structure in complex algebraic geometry.

1 Introduction

The Hodge conjecture stands between algebraic geometry and complex geom-
etry. It relates data coming from topology (a Betti cohomology class), complex
geometry (the Hodge decomposition or filtration) and algebraic geometry (the al-
gebraic subvarieties of a complex algebraic variety). We can state it very quickly
by saying that it provides a conjectural characterization of algebraic classes, that is
cohomology classes generated over Q by classes of algebraic subvarieties of a given
dimension of a complex projective manifold X, as Hodge classes, that is those ratio-
nal cohomology classes of degree 2k which admit de Rham representatives which
are closed forms of type (k, k) for the complex structure on X. The geometry behind
this condition is the fact that the integration current defined by a complex submani-
fold of dimension n — k annihilates forms of type (p,q) with (p,q) # (n—k,n—k).

Not much is known about the Hodge conjecture, apart from the Lefschetz theo-
remon (1, 1)-classes (Theorem 2) and a beautiful evidence (Theorem 6) provided by
Cattani, Deligne and Kaplan, which says roughly that Hodge classes behave in fam-
ily as if they were algebraic, that is, satisfied the Hodge conjecture. What we plan
to do is to explain the basic notions in Hodge theory (Hodge structure, coniveau)
giving a strong motivation for the Hodge conjecture (and still more for its general-
ization, the generalized Hodge conjecture, see Conjecture 3). The Hodge structures
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on rational cohomology groups are very rich objects associated to a smooth projec-
tive complex variety, and the belief is that they carry a lot of qualitative information
on the variety: Torelli theorems state that under some assumptions, the isomorphism
class of these Hodge structures determine the variety itself. In another direction, the
Hodge conjecture is part of a general picture predicting that these Hodge structures
determine the “motive” or at least the Chow groups of the variety. We also wish
to present some of the most important facts from Hodge theory allowing to prove
some conditional results or implications between various subconjectures. Some very
important cases of the Hodge conjecture are summarized under the name of stan-
dard conjectures (see [21]), the main one being the Lefschetz standard conjecture
(Conjecture 2). These instances of the Hodge conjecture concern Hodge classes of a
very special type, which satisfy extra arithmetic conditions (being absolute Hodge,
see Definition 5) satisfied by algebraic classes but not known to be satisfied by all
Hodge classes (see Conjecture 7). An example of such conditional statement under-
lining the importance of the Lefschetz standard conjecture is Theorem 7 concerning
the variational form of the Hodge conjecture which asks whether, starting from a
variety X with a Hodge class o which is algebraic, and deforming X in a family
(X;):ep in such a way that the class a remains Hodge along the deformation, the
class o also remains algebraic on X;.

This paper is organized as follows: in Section 2, we will define Hodge structures,
polarizations on them and Hodge classes. In Section 3, we will present the Hodge
conjecture, its generalized version, and the few cases in which it is known. We will
also discuss the standard conjectures. Finally we will turn in Section 4 to variational
aspects of the Hodge conjecture. Sections 3 and 4 use in an essential way the theory
of mixed Hodge structures which is summarized in Section 3.3.

This quick presentation of the Hodge conjecture does not contain many exam-
ples. It is an invitation to read the book [23] where many specific known cases of
the Hodge conjecture are presented.

2 Hodge structures, Hodge classes

2.1 Hodge decomposition

Let X be a complex manifold. The complex structure on X allows to decompose
the vector bundle of complex differential 1-forms on X as

Qc= 00y, (1)

where !2)1("0 is the vector bundle of 1-forms which are C-linear for the complex struc-
ture on Ty, locally generated by dz;, the z;’s being local holomorphic coordinates,
and !22’1 = .Q}(’O is its complex conjugate, locally generated by dz;. From (1), we
deduce a decomposition of the sheaf of C* complex differential forms of degree :
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where o7/ is the sheaf of differential forms of type (p,q), which can be written in
local holomorphic coordinates z; as

o= Y oyydyndz. 3)
|=p.l|=q
It is clear from (3) that the exterior differential d : o/ . — o/ &' satisfies d.o/l*! C
AP @ 79T There is thus no reason that the decomposition (2) induces a
decomposition on the level of de Rham cohomology, that is on the space
Ker (d : AK(X) — AM1(X))
Im (d: AF1(X) = AK(X)) |

HYX,C) =

Here A¥(X) := I'(X, </} ) is the space of C* complex differential k-forms on X.
However, when X is compact Kéhler (and a fortiori projective), the Hodge decom-
position theorem says the following:

Theorem 1 (Hodge [17]) If X is a compact Kihler manifold, one has a canonical
decomposition

Hk(Xv(C) - @p—kq:ka.q(X)a “)

where HP4(X) is the set of de Rham cohomology classes of closed differential forms
on X which are of type (p,q).

The simplest consequence of this statement is the following restriction on the topol-
ogy of compact Kihler manifolds:

Corollary 1 Ifk is odd, and X is a compact Kéihler manifold, by(X) is even.

Indeed, the definition we gave of H”%(X) clearly shows that the Hodge decomposi-
tion (4) satisfies the Hodge symmetry property:

HPA(X) = HOP(X), s)

where complex conjugation acts naturally on H*(X,C) = H*(X,R) ® C. The con-
clusion of Corollary 1 is not satisfied by the simplest example of non-Kéhler com-
pact complex surface, namely the Hopf surface S, which is the quotient of C2\ {0}
by the action of Z given by multiplication by A # 0, where |A| # 1. Indeed,
m(T) =Z hence by (T) = 1.

Note on the other hand that by the change of coefficients theorem, we have

H*(X,C) =H*(X,Q)®C.

This leads us to introduce the basic definition of a Hodge structure of weight k:

Definition 1 A rational Hodge structure of weight k is the data of a finite rank Q-
vector space L, together with a decomposition
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Lc:=LeC= @p+q:kLp’qa (6)

where the LP1 C L¢ are complex vector subspaces satisfying the Hodge symmetry
condition LP4 = L9P.

The data of the Hodge decomposition (6) is equivalent to that of the Hodge filtration
(which is a decreasing filtration on L¢)

F'L¢ == ®pigak p>rL", (7

since LP = FPLc NFiLc.

Hodge structures coming from geometry are “effective”’, meaning that LP7 = 0
for p < 0 or g < 0. However it is natural to introduce the dual (L*, (L”7)*) of a
Hodge structure (L, LP7) of weight k and to give it weight —k, so the effectivity
condition should not be part of the definition.

Morphisms of Hodge structures (L, LP9) of weight k and (L', L'"*?) of weight K’
are defined only when k' = k + 2r, as the set of morphisms ¢ : L — L' of Q-vector
spaces satisfying

¢C(Lp,q) c L/P+r,q+r'

The Tate twist L(r) of a Hodge structure of weight k is the Hodge structure L’ of
weight k — 2r which has the same underlying vector space L' = L and Hodge de-
composition L'79 = LPT47" If X is a compact Kihler manifold, Poincaré duality
provides an isomorphism of weight —k Hodge structures

HY (X, Q)" = H*" (X, Q) (n).
If X and Y are compact Kéhler manifolds and ¢ : X — Y is a holomorphic map,
9" HY(Y,Q) » H (X.Q)

is a morphism of Hodge structures since the pull-back by ¢ of a closed form of
type (p,q) on X is a closed form of type (p,q) on Y; by Poincaré duality, the Gysin
morphism

0. : HY(X,Q) — H*"?"(Y,Q), r = dimY —dimX

is also a morphism of Hodge structures.

2.2 Hodge structures and polarizations

Given a morphism of Hodge structures ¢ : L — L', it is obvious how to define
a Hodge structure on Ker ¢ and on Im ¢ since morphisms of Hodge structures are
those which are bigraded after tensoring by C. Hence rational Hodge structures form
an abelian category. However this category is not semi-simple. This phenomenon
already appears for weight 1 Hodge structures. An effective weight 1 Hodge struc-
ture on L is determined by the choice of vector subspace L!'* C L¢ which has to
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be in direct sum with its complex conjugate. Suppose now that (L, L") contains a
Hodge substructure L' C L, L'"* = L. N L'0. The only condition on the space L'°
determining the Hodge structure on L is that its intersection with L{- has dimension
%dimL' . We claim that for a general pair (L', L) of Hodge structures as above, there
is no splitting L = L' ® L” as Hodge structures. Indeed, there are countably many
choices of such splitting over Q, and for a given splitting, the condition that L” C L
is also a Hodge structure means that L''* N LY. has dimension %dim L". The complex
dimension of the algebraic subset of the Grassmannian Grass(k, 2k) parameterizing
the Hodge structures on L for which L' C L is a Hodge substructure is thus equal to
K% + (k — k' )k while the algebraic subset of the Grassmannian Grass(k, 2k) param-
eterizing the Hodge structures on L for which L is a direct sum L' & L" of Hodge
structures is a countable union of algebraic subsets of dimension k'* + (k—K)% As
K+ (k—K')k > K> + (k— k)2, the claim is proved. The phenomenon described
above does not appear in algebraic geometry where the Hodge structures we get are
polarized.

Definition 2 A polarization on a rational Hodge structure L of weight k is a nonde-
generate intersection form (, ) on L which is symmetric if k is even, skew-symmetric
if k is odd and satisfies the Hodge-Riemann bilinear relations:

(1) (&, B) =0 for a € L9, B € L4 and (p,q) # (', 4)-

(2) t(-1)P(a, @) > 0 for a € LP4, o # 0.

Admittedly, the sign rules in (2) are complicated, but they are imposed on us by
geometry. The importance of the notion comes from the following:

Lemma 1 Let L' C L a Hodge substructure of a polarized rational Hodge structure.
Then there exists a Hodge substructure L C L such that L is isomorphic to L' &L
as Hodge structure.

Proof. Indeed, let g be the intersection form giving the polarization on L. It suffices
to prove that the restricted form g|;; is nondegenerate since then the orthogonal
complement L” := L' is defined over Q, is a Hodge substructure of L by property
(1) above and satisfies L' @ L" = L. Let h(u,v) = 1*q(u,v) be the Hermitian bilinear
form on L¢ associated to g. It suffices to show that A 1L, is nondegenerate. But the

Hodge decomposition of L is orthogonal for 2 by (1) above and each hyprva is
nondegenerate by (2) above. Hence /.. is nondegenerate.

The construction of a polarization on the Hodge structure on H*(X,Q) when X is a
smooth complex projective manifold goes as follows: Let / € H*(X,Q) be the chern
class of an ample line bundle on X. Then the hard Lefschetz theorem [30, 6.2.3]
gives an isomorphism of Hodge structures

"k HY(X,Q) - H* *(X,Q), n = dimX.

We can thus assume k < n. We then consider the nondegenerate intersection pairing

(@B)i= [ I"* — o — B, e H (X, Q).
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It is nondegenerate by the hard Lefschetz theorem, does not satisfy property (2)
above, but satisfies property (1) above. We finally modify it as follows: the Hodge
structure H*(X,Q) admits the Lefschetz decomposition as a direct sum of Hodge
substructures

H*(X,Q) = @oil” — H* 2 (X, Q) prims (8)

where the primitive cohomology is defined by H*~2"(X, Q) i := Ker (1" F2+1 —:
H*(X,Q) — H¥'"*2+2(X Q)). This decomposition is orthogonal for (,);.
The polarization (,) on H*(X,Q) is the unique intersection pairing for which
the Lefschetz decomposition is orthogonal, and which is equal to (—1)"(,); on
I" — H*72"(X,Q) prim- The fact that this polarizes (up to a sign) the Hodge struc-
ture on H*(X,Q) is exactly the contents of the Hodge-Riemann bilinear relations
(see [30, 6.3.2)]).

2.3 Hodge classes and cycle classes

2.3.1 Hodge classes

Let H be a Hodge structure of even weight 2k, with Hodge decomposition H¢ =
B ptg=2kH1.

Definition 3 The Hodge classes in H are the classes in H (hence rational) which,
via the inclusion H C Hc, belong to HFEk,

We will denote Hdg?* (H) the space H N H** of Hodge classes. Note that this space
can be reduced to 0 and will be O for a general Hodge structure with given Hodge
numbers 474 = dim HP* unless h?4 = 0 for p # g, since the space H** C H¢ needs
not be defined over @, but only over R (as implied by the Hodge symmetry property,
that is condition (5)). If X is a smooth projective variety, we will denote Hdg* X)
the space Hdg? (H?**(X,Q)).

2.3.2 Cycle classes

Let X be a smooth complex projective or compact Kihler variety of (complex)

dimension n, and let Z <5 X be a closed analytic subset (which in the projective case
is the same thing according to Chow as a closed algebraic subset) of codimension
k. If Z is smooth, then Z is a codimension 2k real submanifold endowed with the
complex orientation, so it has a fundamental homology class [Z] g € Hon—2k(Z, Z)
which gives a homology class

JilZ) funa € Hon—2(X,Z) = H* (X, Z),
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where the last isomorphism is the Poincaré duality isomorphism. If Z is not smooth,
then according to Hironaka, one can construct a smooth projective variety Z with a
morphism 7 : Z—Zof degree 1. Letting j:= joT: Z — X, we can define the class
[Z] of Z by N

[Z} = f*[z]fund € HZk(X’Z>'

Lemma 2 The class of a closed analytic subset Z in a compact Kdihler manifold X
is a Hodge class.
Proof. Let n be the dimension of X. Then we have Poincaré duality

identifying the space H*X(X) with the subspace of H**(X,C) which is orthog-
onal to @4 4242k (p.q)£(n—kn—t)H4(X). Tt thus suffices to show that for f§ €
HPU(X), p+q=2n—2k,(p,q) # (n—k,n—k), one has ([Z], B)x = 0. Recall from
Section 2.1 that H”(X) consists of classes of closed forms of type (p,q). The class
B is thus represented by a closed form B which is closed of type (p,q) and in-
troducing a desingularization j: Z — X of Z, we have, by definition of the Gysin
morphism,

<[Z}’ﬁ>x = <]7*[Z}fundaB>X = <[Z}fund7]7*ﬁ>z = /Z]N*B

The last expression vanishes since the form j* B vanishes on Z for type reasons.

Important examples of Hodge classes are provided by the following lemma 3.

Lemma 3 Let H, H' be two Hodge classes of weights k, k' = k+2r. Then the Hodge
classes of the weight 2r Hodge structure Hom (H,H') are exactly the morphisms of
Hodge structures H — H'.

Here the Hodge structure on H* has been introduced previously, and the Hodge
structure on the tensor product H* ® H' = Hom (H,H’) is given by

/

(H*@H' )P = &y siy—g(H)" @ (H')" )
Proof. Indeed a morphism ¢ € Hom (H,H') = H*® H' is of type (r, r) for the tensor
product Hodge structure if and only if it satisfies ¢c € @, ) (H*)"* @ (H') "7, As
we have (H*)"* = (H~"""*)*, this is equivalent to

¢(C c EB(t,s) (Ht,S)* ® (H/)r+t,r+s — @(;75)H0m (I_It,s7 (H/)r+t,r+s)’

that is, to the fact that ¢¢ shifts the Hodge decomposition by (r,r).
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3 The Hodge and generalized Hodge conjectures

3.1 The Hodge conjecture

Conjecture 1 (Hodge 1951) Let X be a projective complex manifold. Then for any
k, the space Hdg?* (X) is generated over Q by classes |Z] of codimension k closed
algebraic subsets of X.

A codimension k cycle on X is a formal combination Z =Y, o;Z;, o; € Q. We
will call cycle classes [Z] :=Y; 04]Z;] algebraic classes, and will use the notation
H? (X, Q) for the space of algebraic classes. We have H*(X,Q),, C Hdg? (X)
and the Hodge conjecture states that H*(X,Q),, = Hdg**(X).

3.1.1 Why is the conjecture important?

There are very few morphisms in algebraic geometry so it is important to con-
sider multivalued morphisms which are given by their graphs I' C X x Y. This leads
to consider the group Z™(X x Y) of codimension m cycles in X x ¥, or better cy-
cles modulo an adequate equivalence relation ~, like rational equivalence, which
provides Chow groups, or homological equivalence. When X and Y are smooth and
projective, cycles in X x Y act on many objects, like Chow groups or cohomology.
Given an adequate equivalence relation ~ on cycles, the action of I' € Z™(X x Y)
takes the general form

I'*(a) = pri.(L-pria) € Z*m=dmY (x) )« Vo e 25(X)/ ~,

where pri, is pushforward by the first projection, pr; is pull-back by the second pro-
jection and ““-” is the intersection product. When the equivalence relation is homo-
logical equivalence, cycles Z mod. ~ are cohomology classes and the push-forward
map is the Gysin map, the intersection product is the cup-product.

The importance of the Hodge conjecture in this context is that, combined with
Lemma 3, it predicts exactly which morphisms Z* : H*(Y,Q) — H*(X,Q) can be
constructed from cycle classes in X x Y. Namely, one should get exactly the mor-
phisms of Hodge structures. The geometric importance of this prediction is obvious:
we mentioned in the introduction Torelli type questions, asking whether a variety
is determined by its Hodge structures. The Hodge conjecture predicts that if two
smooth projective varieties X, Y have isomorphic Hodge structures, they are related
by algebraic cycles in X x Y inducing isomorphisms in cohomology. In a more mo-
tivic direction, the Hodge conjecture can thus pedantically rephrased by saying that
the category of polarizable Hodge structures contains the category of cohomological
motives as a full subcategory, so that structure results for the category of polarizable
Hodge structures (like semisimplicity, see Lemma 1) also should hold for the cat-
egory of cohomological motives. This adequation of Hodge theory and algebraic
geometry fits also very well with conjectures of Bloch and Beilinson (see [6], [19],
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[32]) predicting that to a large extent, Hodge structures control Chow groups. In our
mind however, the generalized Hodge conjecture which will be explained in Section
3.3 is much more important than the Hodge conjecture itself as it says much more,
qualitatively, on the relationship between Hodge structures and algebraic cycles than
the Hodge conjecture does.

A more technical but important justification of the interest of the Hodge conjec-
ture concerns the Hodge classes which appear in the standard conjecture. Roughly
speaking, these Hodge classes are those which can be produced by linear algebra
starting from classes of algebraic cycles. The classes so obtained, which will be de-
scribed in Section 3.2, are still Hodge classes for linear algebra reasons, but it is not
known if they are algebraic. The importance of these classes also comes from the
consideration of the theory of motives.

3.1.2 Positive evidences

The only instances of the Hodge conjecture which are known for any smooth
complex projective n-fold X are first of all the two trivial cases H(X,Q) =
Hng(X,Q) = Q[X] funa> (Where X is assumed to be connected), and H(X,Q) =
Hdg*'(X,Q) = Q[point], and secondly the Lefschetz theorem on (1,1)-classes
(Theorem 2) which concerns divisor (that is degree 2) classes and its corollary which
concerns curve (that is degree 2n — 2) classes.

Theorem 2 (Degree 2) Let X be a complex projective manifold and let o € Hdg2 (X,7)
be an integral Hodge class. Then o is a combination with integral coefficients of
classes [D] € H*(X,Z) of hypersurfaces D C X.

Corollary 2 (Degree 2n —2) Let X be a complex projective n-fold and let @ €
Hdg?"~%(X) be a Hodge class. Then a is a combination with rational coefficients
of classes [C] € H""2(X,Z) of curves C C X.

Remark 1 The first three cases mentioned above (degrees 0, 2 or 2n) are the only
cases where the Hodge conjecture is true for integral Hodge classes, that is integral
cohomology classes whose image in rational cohomology is a Hodge class. This
follows from Atiyah-Hirzebruch and Kollar counterexamples [3], [20] for integral
Hodge classes.

Proof (Proof of Theorem 2). There is a beautiful description in [13] of the original
Lefschetz proof. It relies on the notion of normal functions associated to a Hodge
class. Given a Hodge class o € Hdg? (X,Z), we choose a pencil of hyperplane sec-
tions (X;),cp1 of X and assume that ¢(x, = 0. The Hodge class a lifts to a class & in
the Deligne cohomology group HZ (X, Z(1)) (see [30, 12.3.1]). Then Qx, belongs
to

Ker (H2,(X;,Z(1)) — H*(X;,Z)) = J'(X;) = Pic’(X,).

Associated to o we thus found a family of divisors 7 — Oy, € Pic’(X;). A large part
of this argument works as well for any Hodge class on a smooth projective variety X
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vanishing on the fibers X; of a pencil on X. Indeed, the Deligne cohomology group
HZ(X,Z(k)) fits in the exact sequence

0 — JX(X) — HZ(X,Z(k)) — Hdg* (X, Z) — 0

and similarly for X;. We can thus lift a Hodge class on X to a Deligne cohomology
class and restrict it to the fibers X;. The problem is that the normal function one shall
get this way will be a holomorphic section of the family of intermediate Jacobians
JK (X;);ep1> and one does not know for k > 2 what is the image of the Abel-Jacobi
map Z%( X)) hom — J(X;).

The modern proof of Theorem 2 uses the exponential exact sequence and goes
as follows:

1) The Picard group of holomorphic line bundles of an analytic space X identi-
fies to H' (X, 0%), where 0% is the sheaf of invertible holomorphic functions. The
exponential exact sequence

0526y o 1
provides the associated cohomology long exact sequence
LHY(X,0%) 2 HY(X,Z) — H*(X, 0). ..

defining c;.

2) If X is compact Kihler, the kernel of the natural map H>(X,Z) — H*(X, Ox)
appearing above is exactly the set of integral Hodge classes. This follows from the
fact that this map identifies using Hodge theory with the composite

H2(X,7) 2% H2(X,C) — HOX(X) = H2(X, Oy),
where all maps are natural and the map H?(X,C) — H%?(X) is the projection given
by Hodge decomposition. It thus follows that a class & € H?(X,7Z) which maps to 0
in H*(X, Ox) has a2 = 0 in the Hodge decomposition. But then it also has a*>® =0
since it is real, and thus it is of type (1, 1) hence a Hodge class.

3) At this point we proved that if X is compact Kihler, the set of Hodge classes of
degree 2 is equal to the set ¢ (L) where L runs through the set of holomorphic line
bundles on X. assume now that X is projective. By Serre GAGA principle [26], holo-
morphic line bundles and algebraic line bundles are the same objects on X : equiva-
lently, any holomorphic line bundle has a nonzero meromorphic section. Choosing
a nonzero meromorphic section ¢ of L, we introduce its divisor Ds which is a codi-
mension 1 cycle on X and the final step is Lelong’s formula [30, Theorem 11.33]
which says that the class [Dg] is equal to ¢1(L).

Proof (Proof of Corollary 2). We use for this the Lefschetz isomorphism

ln72 - HZ(X,Q) _>H2n72(X7Q)
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given by the choice of a very ample line bundle .Z on X with first Chern class /,
which is obviously an isomorphism of Hodge structures. A Hodge class 3 of degree
2n — 2 can thus be written as 8 = I"~2 — «, where « is a Hodge class of degree 2.
The class « is the class of a divisor D = }'; o;D;, where the D;’s are hypersurfaces in
X, and thus B = }; o;[C;] where the curve C; is the intersection of D; with a surface
LiN...NL,_» complete intersection of hypersurfaces L; in the linear system |-Z|
(hence of class /) in general position.

Apart from these four known cases, the best positive evidence in favour of the Hodge
conjecture is the fact that Hodge classes behave geometrically as if they were alge-
braic as predicted by the Hodge conjecture. The precise statement will be explained
in Section 4.2.

3.1.3 Negative evidences

Many complex geometry results have been proved in the past by analytic methods
working as well in the compact Kihler setting, for example the Hodge decomposi-
tion itself, or the study of positivity of divisors by curvature and currents methods
[12], or the proof of the existence of Hermite-Einstein metrics on stable vector bun-
dles [28]. In the case of the Hodge conjecture, it has been known for a long time
(see [35]) that in the compact Kéhler setting, there are not enough closed analytic
cycles to generate the Hodge classes: the example, due to Mumford, is a very gen-
eral complex torus of dimension at least 2 admitting a holomorphic line bundle .¥
with nontrivial Chern class which is neither positive not negative: such a torus does
not contain any hypersurface, while ¢; (.£) is a nontrivial Hodge class. However, in
this example, one can argue that the problem is a lack of effectivity (or positivity),
and that we still have a complex geometric object which is a good substitute for the
hypersurfaces, namely the line bundle itself (in the projective case, by the existence
of rational sections of line bundles, Chern classes of line bundles are combinations
of classes of hypersurfaces).

In the paper [29], I constructed examples of Hodge classes on complex tori 7,
which do not belong to the (Q-vector space generated by Chern classes of coherent
sheaves on T'. It seems that in these cases, there is no way of extending the Hodge
conjecture: there is no holomorphic object on 7" explaining the presence of a Hodge
classonT.

The second point which makes not very plausible a solution of the Hodge conjec-
ture by analytic methods is the lack of uniform solutions to the Hodge conjecture,
assuming they exist, that is the lack of bound on the cycles (supposed minimal in
some way) representing a given Hodge class. This follows from the analysis of
some of the known counterexamples to the integral Hodge conjecture. In the case of
Kollar counterexamples [20], which are just hypersurfaces X of degree d in projec-
tive space P! with the generator o of H*"~%(X,Z) not being algebraic while da
is algebraic, it was observed in [27] that the following phenomenon holds: Let U
be the Zariski open set in the space of homogeneous polynomials of degree d such
that the corresponding hypersurface is smooth. Then the (locally constant) class
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o; € H'2(X;,7) is Hodge on X; for any ¢ € U, the set of points 7 € U such that the
class o is algebraic on X; is dense in U for the usual topology, while Kollar proves
that this set is not the whole of U. This means that for a very general point 0 € U,
there is a sequence of points #, € U converging to 0 and for which the class o, is
the class of an algebraic cycle Z, on X; . Thus the cycle Z, is of the form Z} —Z,
but the degrees of the positive part Z," and the negative part Z, of Z, cannot be
bounded, although the difference Z, has class o, which is locally constant hence
bounded. Indeed, if these degrees were bounded, we could use compactness results
to make the cycles Z; and Z; converge respectively to cycles Z+ and Z~ on Xj with
[Z*]—[Z"] = a, which is not true.

3.2 The standard conjectures

The main source of construction of Hodge classes is Lemma 3. Let X be a com-
plex projective n-fold, and consider X x X. For any integer k, we have

EndH*(X,Q) = (X, Q) © H(X,Q) € (X x X, Q)

and Lemma 3 tells us that a morphism ¢ € End H*(X,Q) provides a Hodge class
on X x X by the composite map above if and only if ¢ is a morphism of Hodge
structure. In particular, the identity of H*(X,Q) is a morphism of Hodge structures,
hence provides a Hodge class & € Hdg?*(X x X, Q). The sum Y, & is the identity
of H*(X,Q), hence is the class of the diagonal Ay C X x X. Hence Y & is alge-
braic but it is not known if individually each class & is algebraic, that is, satisfies the
Hodge conjecture. The classes & are called the Kiinneth components of the diagonal
of X. The varieties for which it is known that the Kiinneth components of the diag-
onal are algebraic include the abelian varieties (that is, projective complex tori) and
smooth complete intersections in projective space, for which the non-algebraic co-
homology is concentrated in degree n. If A is an abelian variety (or complex torus),
A is an abelian group, hence we have for each / the multiplication map

w:A—A a—la.

We have pf = I*Id on H*(A,Q) and it easily follows that we can write the Kiinneth
components of A as linear combinations of the classes of the graph I; of y; for
various / (note that i = [I;]* : H*(A,Q) — H*(A,Q)).

A more subtle construction involves the properties of the Lefschetz operator.
Recall from Section 2.2 that if [ is the first Chern class of an ample line bundle .
on X, the cup-product map

"% HYX,Q) - H*" ¥(X,Q), n=dimX (10)

is an isomorphism for any k. It is clear that /" ¥ — acting on H*(X,Q) is the action
of the following cycle on X x X: let Ly,...,L,_; be general hypersurfaces in the
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linear system |.Z| (we may assume .% very ample), and let Z=L;N...NL, ;. Then
[Z] = 1" by Lelong’s theorem, and [is,Z] € H*' (X x X,Q) acts on H*(X,Q)
by 1"~ —, where iy, Z is the cycle Z supported on the diagonal Ay = X C X x X.
Next we can consider the inverse 4, ; : H*"*(X,Q) — H*(X,Q) of the Lefschetz
isomorphism (10). This is a morphism of Hodge structures, hence this provides a
Hodge class on X x X.

Conjecture 2 (Lefschetz standard conjecture) There exists a codimension k cycle Z
on X x X such that [Z]* : H"%(X,Q) — H¥(X,Q) is equals to A, j.

Again the answer is positive in the case of an abelian variety A, and this is due
to the existence of an interesting line bundle &2 on A X A, defined as u*.% where
U:A XA — Ais the sum map. The line bundle & is called the Poincaré divisor and
its class p:= ¢ (%) € Hdg?(A x A) and its powers p* € Hdg? (A x A) are algebraic
classes on A x A which allow to solve the Lefschetz conjecture in this case.

The Lefschetz standard conjecture is very important in the theory of motives (see
[1]), because of the semisimplicity Lemma 1. This lemma uses the polarization to
construct, given a polarized Hodge structure L and a Hodge substructure L' C L, a
decomposition

L=Laol". (11)

The construction of these polarizations when L = H*(X,Q) for some smooth pro-
jective variety X is quite involved, as it uses the Lefschetz decomposition in order to
modify the natural pairing into one which satisfies the polarization axioms. If now
L=H*X,Q) and L' C L is defined as the image of a morphism [Z]* for some al-
gebraic cycle Z on X x X, the Lefschetz standard conjecture is exactly what would
be needed in order to construct the orthogonal complement L” via the action of an
algebraic cycle on X x X.

The most concrete consequence of the Lefschetz standard conjecture is the fol-
lowing (cf. [21]):

Lemma 4 Let X be a smooth complex projective variety of dimension n. Assume
the Lefschetz standard conjecture holds for X and some ample class | € Hdg2 (X) in
all even degrees 2k. Then for any k, the intersection pairing between H* (X, Q)aig
and H"— % (X,Q)a1q is nondegenerate.

Proof. Indeed, if the Lefschetz conjecture holds for X in any even degree, then
the Lefschetz isomorphism (10) induces an isomorphism "~ —: H*(X,Q) 4o =
H*=2(X,Q) 4, for all k < n/2, because the inverse A, ; preserves algebraic
classes. It follows that the space H 2k X, Q)azg is stable under the Lefschetz decom-
position (8). It remains only to prove that for k < n/2 the pairing (, ); on H*(X,Q)
defined by (o, B); = ("~ — a, B)x, is nondegenerate on H* (X, Q) C H*(X,Q).
By the Hodge-Riemann bilinear relations, the Lefschetz decomposition is orthogo-
nal for this pairing and on each piece I” — H?*2"(X,R) ,in, the pairing (, ); re-
stricted to the subspace Hk”vk”(X)Ryprim C H2k’2r(X,Q)p,,~m of real classes of
Hodge type (k — r,k —r) is definite of a sign which depends only on k —r. As
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1" — H*27(X, Q) aig prim is contained in H*"*="(X)g 4, it follows that the pair-
ing (,); restricted to H>*~%"(X, Q) atg, prim remains definite, and in particular nonde-
generate. Hence (, ); is nondegenerate on H*2"(X,Q) 4.

Let us give two corollaries:

Corollary 3 (i) Let j: Y — X be a morphism, where X,Y are smooth complex
projective varieties. Assume X and Y satisfy the Lefschetz standard conjecture. Then
if Z is an algebraic cycle on Y whose class [Z) € H*(Y,Q) is equal to j*B for some
class B € H**(X,Q), there exists a codimension k cycle Z' on X such that

J1Z)=12)in H*(Y,Q). (12)

(ii) If Z is an algebraic cycle on X such that the class [Z] € H*(X,Q) is equal to
J«PB for some class B € H2k—2’(Y, Q), r =dimX —dimY, there exists a codimension
k—rcycle Z' onY such that j,[Z'] = [Z] in H*(X,Q).

Proof. (i) The class f3 gives by the Poincaré pairing on X a linear form on "~ (X, Q) s,
n = dimX, which by Lemma 4 applied to X is of the form {[Z'], )x for some codi-
mension k cycle Z' on X. We now prove that the class [Z'] satisfies (12). By Lemma

4, it suffices to show that for any cycle W on Y,

([Z)y, W]y = ([2],[W])y. (13)

The left hand side is equal to ([Z'], j.[W])x where j is the inclusion morphism of ¥
in X, and by definition of [Z'], this is equal to {f3, j.[W])x. Finally, by definition of
the Gysin morphism j,, we have (B, j.[W]))x = (j*B,[W])y = ([Z],[W])y.

(ii) is proved exactly in the same way.

The following corollary appears in [32] where it is proved that the conclusion (for
all X and Y) is essentially equivalent to the Lefschetz conjecture:

Corollary 4 (see [32]) Assume the Lefschetz conjecture. Let X be a smooth projec-
tive variety and let Y C X be a closed algebraic subset. Let Z be a codimension k
cycle on X whose cohomology class [Z) vanishes in H**(X \ Y, Q). Then there exists
an algebraic cycle Z' supported on'Y such that [Z] = [Z] in H* (X, Q).

Proof. Our assumption is that there is a homology class B € Hs, 2 (Y,Q) such
that the image of j. 8 € Hp,—o(X,Q) = H**(X,Q) is equal to [Z]. We now apply
Lemma 6, which says that if j: ¥ — X is a desingularization of Y, there exists a
class B’ € H*=2"(Y,Q) such that j.B’ = [Z], where r = dimX — dimY. We then
conclude with Corollary 3, (ii).

3.3 Mixed Hodge structures and the generalized Hodge conjecture

In [8], Deligne discovered a very important generalization of Hodge structures,
namely mixed Hodge structures. The definition is as follows:
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Definition 4 A mixed Hodge structure is the data of a finite dimensional Q-vector
space L equipped with an increasing exhaustive filtration W (the weight filtration),
together with a decreasing exhaustive filtration F on L¢ with the property that the
induced filtration on Gr{,‘,, defined by F? Gr{v = FPNW,Lc/FP "Wy Le, comes
from a Hodge structure (see (7)) of weight i on Gr{',V.

Morphisms of mixed Hodge structures are morphisms of QQ-vector spaces preserv-
ing both filtrations. The following result is crucial for geometric and topological
applications of this notion.

Lemma 5 (Deligne [8]) Morphisms of mixed Hodge structures are strict for both
filtrations.

Denoting by ¢ : L — M such a morphism, this means that
(Im¢c) NFPMc = ¢c(FPLc), (Im¢) NW;Mc = ¢(WL).

We will call the pure Hodge substructure of a mixed Hodge structure the smallest
nonzero piece W;L C L and the pure quotient the quotient L/W;L where i is maximal
such that W;L # L. they both carry a Hodge structure.

Deligne proves the following result:

Theorem 3 For any quasiprojective variety X, its homology groups and cohomol-
ogy groups carry mixed Hodge structures, which are functorial under pull-back on
cohomology and functorial under pushforward on homology.

If X is smooth, the pure Hodge substructure on H*(X,Q) has weight k (so all
weights are > k) and is equal to Tm (H*(X,Q) — H*(X,Q)) for any smooth projec-
tive compactification X of X.

If X is projective, the pure quotient Hodge structure of H Nk (X,Q) has weight k
(so all weights are < k) and is equal to Im (H*(X,Q) — H(X,Q)) for any smooth
projective desingularization X of X. The dual statement is that the pure Hodge sub-
structure of Hy(X,Q) is the image Im (Hi(X,Q) — Hy(X,Q)) for any smooth pro-
Jective desingularization X of X.

Let now X be a smooth projective variety, and Y C X be a closed algebraic subset of
X. Assume for simplicity that all the irreducible components of Y are of codimen-
sion r.

Theorem 4 Let U := X \ Y. Then the kernel
Ker (H'(X,Q) - H'(U,Q))

is a Hodge substructure Ly of H*(X,Q) which is of Hodge coniveau > r, meaning
thatL’;’q =0forp<rorg<r.

Proof. We will use the following consequence of Theorem 3 and Lemma 5 which
is of independent interest:

Lemma 6 In the situation of Theorem 4, the kernel Ker (H*(X,Q) — H*(U,Q)) is
equal to the image of the composite map
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~ ~ PD
Ju i Ho (Y, Q) = Hap (X, Q) = HY(X,Q), (14)
where j Y Xisa desingularization of Y.

Proof. This kernel is the image of the composite map

PD
H2n7k(Ya Q) — HZI’!*/C (X7 Q) = Hk (Xa Q) .

This map is a morphism of mixed Hodge structures, the right hand side being a
pure Hodge structure of weight k. Comparing weights and applying Lemma 5 and
Theorem 3, the image of this map is the same as the image of the pure Hodge sub-

structure of Hy, (¥, Q), that is Im (Ha,, (Y, Q) — Ha,—(¥,Q)), which concludes
the proof.

Of course, as Y is smooth and projective, the composite in (14) is the same as
the Gysin morphism J, : H*"2"(Y,Q) — H*(X,Q). As J, is a morphism of Hodge
structures of bidegree (r,r), its image is a substructure of H*(X,Q) which is of
Hodge coniveau > r.

The generalized Hodge conjecture due to Grothendieck [15] states the following:

Conjecture 3 Let X be a smooth complex projective variety and let L C H*(X,Q)
be a Hodge substructure of Hodge coniveau > r. Then there exists a closed algebraic
subset Y C X of codimension > r such that L C Ker (H*(X,Q) — H*(U,Q)), U :=
X\Y.

The Hodge conjecture 1 is the particular case of Conjecture 3 where k = 2r. Indeed,
a Hodge substructure of H*"(X,Q) which is of Hodge coniveau > r is made of
Hodge classes. Conjecture 3 predicts in this case that L vanishes away from a closed
algebraic subset ¥ C X of codimension r, which is the same as saying that L is
generated by classes of irreducible components of Y (see [30, 11.1.2]). Conjecture
3 corrects an overoptimistic formulation of the Hodge conjecture (see [18]), where
any rational cohomology class & of degree k with Hodge decomposition

ac = akfr,r o+ ar,k7r7

that is, satisfying o?9 =0 for p < r or g < r, is conjectured to be supported on
a codimension r closed algebraic subset. This is wrong by Theorem 4 which says
that if « is supported on a codimension 7 closed algebraic subset, then the minimal
Hodge substructure L C H*(X,Q) containing ¢ also satisfies L4 = 0 for p < r or
g < r(see[15], [31, Exercise 1 p 184]).

The generalized Hodge conjecture 3 cannot be deduced from the Hodge conjec-
ture, unless the following conjecture is answered affirmatively:

Conjecture 4 Let X be a smooth projective complex variety and let L C H*(X,Q)
be a Hodge substructure of Hodge coniveau > r (thus L(r) is effective of weight
k—2r). Then there exists a smooth projective variety Y, such that L(r) is isomorphic
to a Hodge substructure of H*=>" (Y, Q).
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We now have:

Proposition 1 Conjecture 4 combined with the Hodge conjecture implies Conjec-
ture 3.

Proof. Note that by the hard Lefschetz theorem, it suffices to prove Conjecture 3
for L C Hk(X ,Q) with k < n. Next assume Conjecture 4. Then since k < n we
can assume by the Lefschetz theorem on hyperplane section that dimY =n —r.
Now L(r) is a direct summand of H*~%"(Y,Q) and the Hodge structure isomor-
phism L(r) = L ¢ H*(X,Q) provides by Lemma 3 a Hodge class « of degree 2n
on Y x X. Assuming the Hodge conjecture, ¢ is algebraic, which provides a cy-
cleZ=Y;Z;,7Z; CY xX dimZ; = n—r, such that L = Im ([Z],. : H*">"(Y,Q) —
H*(X,Q)). But then L vanishes away from the codimension > r closed algebraic
subset Y/ := U;pry(Z;) of X.

4 Variational Hodge conjecture

4.1 The global invariant cycles theorem

The following result is due to Deligne [8]. Let ¢ : X — B be a holomorphic map
from a smooth projective variety X to a complex manifold, and let ¢° : X° — B% be
the restriction of ¢ over the open subset B of B of regular values of ¢. By definition,
¢° : X% — BY is proper with smooth fibers, hence is a topological fibration. There is
thus a monodromy representation p : 7t (B®,b) — AutH*(X;,,Q), where b € BY is a
regular value.

Theorem 5 The image of the restriction map H*(X,Q) — H*(X,,, Q) is equal to the
subspace H* (Xp, Q)P of monodromy invariant cohomology classes.

Proof (Sketch of proof). The proof of this theorem splits into two parts. First of
all, Deligne proves in [11] that the Leray spectral sequence for ¢° degenerates at
E5, a result which was also known to Blanchard [4]. This implies that the space
H*(X,,Q)P, which is also the image of H*(B?, R*¢°Q) in H*(X,,Q), is equal to the
image of the restriction map

HY(X°,Q) — H"(X,, Q). (15)

The second step uses the full strength of Theorem 3. The morphism (15) is a
morphism of mixed Hodge structures, the Hodge structure on the right being pure,
that is, equal to its minimal Hodge substructure. The mixed Hodge structure on the
left has for minimal Hodge substructure (or pure part) the image of the restriction
map H¥(X,Q) — H*(X°,Q). Comparing weights, it then follows from Lemma 5
that the two restriction maps H*(X°, Q) — H*(X,,Q) and H*(X,Q) — H*(X,,Q)
have the same image.



18 C. Voisin

4.2 The algebraicity theorem and application to the variational
Hodge conjecture

The following theorem proved in [7] is the best known evidence for the Hodge
conjecture. It says that Hodge classes behave geometrically as if they were al-
gebraic. Let ¢ : 2~ — B be a projective everywhere submersive morphism, with
%, B smooth quasi-projective. For any b € B, denote by 2}, the fiber ¢ ~!(b). Let
oc Hngk(%) be a Hodge class. The Hodge locus of « is defined as the set of
points ¢ € B, such that for some path y: [0, 1] — B with y(0) = b, y(1) =1, the class
o5 € HZk(,%”y(S>,Q) remains a Hodge class for any s € [0,1]. Here o is the class
o transported to 2(,) using the natural isomorphism H*(.2},,Q) = H*(2,),Q)
given by topological trivialization of the pulled-back family 27 — [0, 1].

Theorem 6 (Cattani, Deligne, Kaplan 1995) The Hodge locus of o is a countable
union of closed algebraic subsets of B.

Note that the local structure of this locus, say in an open ball B’ C B, as a countable
union of closed analytic subsets of B’ was understood since the developments of the
theory of variations of Hodge structures due to Griffiths [14]. The difficulty here
lies in the comparison between the analytic and the algebraic category (the basis B
is almost never projective in the above theorem).

That this is indeed the structure predicted by the Hodge conjecture for the Hodge
locus of o follows from the existence of relative Hilbert schemes (or Chow varieties)
which are projective over B and parameterize subschemes (or effective cycles) Z; C
X, of a given cohomology class. Using these relative Hilbert schemes M;, we can
construct a countable union of varieties M;; projective over B, defined by M;; =
M; x g M; parameterizing cycles Z, = Z;* — Z; in the fibers .2;. For any point 7 € B,
if the class @, on .2; is algebraic, ¢ is the class of a cycle Z,” — Z,~ parameterized
by a point in the fiber of at least one of these varieties M;;. Hence the Hodge locus
is the union of the images of M;; in B over the pairs (i, ) such that the cycles
parameterized by M;; are of class a.

Let us explain the importance of this theorem in the context of the “variational
Hodge conjecture”. Here the situation is the following: 2 is a complex manifold,
A is a complex ball centered at 0, 2~ — A is a proper submersive holomorphic map
with projective fibers 27,1 € A, and a € H**(2°,Q) is a cohomology class which
has the property that 04 := ¢ ; is a degree 2k Hodge class on Z; for any 1 € B.

Conjecture 5 (Variational Hodge conjecture) Assume that 0 satisfies the Hodge
conjecture, that is, is algebraic on Zy. Does it follow that oy is also algebraic?

Theorem 7 The variational Hodge conjecture is implied by the Lefschetz conjec-
ture.

Proof. The family of projective varieties (2} )pca is the pullback of an algebraic
family .2°%/¢ — B via a holomorphic map f : A — B. Our assumption is that f(A)
is contained in the Hodge locus By of the Hodge class o on 2. By Theorem 6,
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this Hodge locus is algebraic, and we can thus replace A by an irreducible compo-
nent B}, of By passing through 0 and containing f(A). We can assume that B}, is
smooth by desingularization. By definition of By, the class ¢ deduced by parallel
transport from the class o is Hodge on all fibers 2; of the family 25'¢ — Bl,. The
monodromy has finite orbits on the set of cohomology classes in fibers which are
Hodge everywhere (see [34, Theorem 4.1]). Replacing B, by a finite étale cover, we
can thus assume that the class @ is monodromy invariant on Bj,. Let us introduce

a smooth projective completion 22’ of 25'¢. By Theorem 5, there exists a class

B € H* (22" Q) such that B2, = 0. We now apply Corollary 3 (i) to X = 248,
Y = Z). As the class o = [3‘ 2; 18 algebraic, there exists assuming the Lefschetz

standard conjecture a cycle Z on 23" such that 2], 2, = o, hence [Z]) 4, = o,
Vt € A C B, and thus ¢ is also algebraic.

4.3 Algebraic de Rham cohomology and absolute Hodge classes

The following arithmetic counterpart of Theorem 6 is completely open (see how-
ever [33], [25] for some partial results) :

Conjecture 6 In the situation of Theorem 6, assume the family 2~ — B is defined
over a field K (in fact, we can always assume K to be a number field). Then the
Hodge locus of o is a countable union of closed algebraic subsets of B which are
defined over a finite extension of K.

Using the global invariant cycle theorem, this conjecture would allow to reduce the
Hodge conjecture to the case of varieties X defined over a number field (see [33]).
It would be disproved by the existence of a variety X not defined over a number
field, with a Hodge class « such that the pair (X, &) is rigid (meaning that under a
nontrivial deformation of X, the class & does not remain Hodge).

We next introduce the notion of absolute Hodge class. Let X be a smooth pro-
jective variety defined over C. In the following, we will write X** for the complex
manifold associated with X and cohomology on X will be coherent cohomology
with respect to the Zariski topology on X. We have a chain of isomorphisms whose
combination gives the Grothendieck comparison isomorphism [16]:

HH (X, Q% ) = HF (X, Q) = HH (X, C).

The first term is algebraic de Rham cohomology of X over C. The second term is
holomorphic de Rham cohomology of X" and the first isomorphism comes from
Serre’s GAGA theorem [26]. The second isomorphism comes from the fact that
the holomorphic de Rham complex is a resolution of the constant sheaf C on X*".
Note that the Grothendieck isomorphism gives an algebraic definition of the Hodge
filtration, namely, it induces for any p an isomorphism

HA (X, Qg %) = FPHY (X", C). (16)
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Let now 7 : C — C be a field automorphism. Clearly 7 induces an isomorphism
(which is not C-linear)

T HY(X, Qy c) 2 HE(Xe, Q) a7

where X is the complex algebraic variety whose equations are obtained by applying
7T to the coefficients of the defining equations of X. Composing this automorphism
with the Grothendieck isomorphisms

HE(X, Q% c) = H (X™,C) (18)

for X and X;, we get an isomorphism H¥(X%" C) = H*(X¢" C), o — 0. This
isomorphism is compatible with the Hodge filtrations by (16).

Definition 5 Let « be a degree 2k Hodge class on X. We say that o is an absolute
Hodge class if the class (217)k o =: o' has the property that for any field automor-
phism T of C, o, belongs to (21mt)*H* (X", Q).

Remark 2 The class o is then (2t7)* times a Hodge class on X, as it belongs to
FKH? (X3 C) since o belongs to FXH? (X", C).

We now use the existence of an algebraic cycle class Z — [Z;g] with value in alge-
braic de Rham cohomology (see [5] for an explicit construction). It is clear that if T
is a field automorphism of C, and Z is a codimension k algebraic cycle on X,

T [Z)ar = [Z:)ag in H* (X, %./C)s

where Z; is the cycle of X; obtained by applying 7 to the defining equations of the
components Z; of Z. Finally we use the comparison formula saying that, via the
Grothendieck isomorphism (18), [Z]sz = (2t7)¥[Z]. We then get:

Proposition 2 Cycle classes on smooth projective varieties are absolute Hodge.

Conjecture 6 is a weak form (see [33]) of the following conjecture 7 (which by
Proposition 2 is part of the Hodge conjecture).

Conjecture 7 Hodge classes are absolute Hodge.

Deligne [9] proves Conjecture 7 for abelian varieties. It follows from the com-
patibility properties of the Kuga-Satake construction [22] (see [10]) that it is true as
well for (powers of) hyper-Kédhler varieties.

In general, one can say from the above discussion that the Hodge conjecture has
two independent parts, each of which might be true or wrong, namely Conjecture 7
and the conjecture that absolute Hodge classes are algebraic, which is in the same
spirit as the Lefschetz standard conjecture 2 but also concerns more mysterious
classes, like Weil classes on abelian varieties with complex multiplication.

Let us conclude with an example of an absolute Hodge class which is not known
to be “motivated” in the sense of André [2]. André defines the set of motivated
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classes as the smallest set of classes on smooth projective algebraic varieties con-
taining algebraic classes, and stable under the operators A,_j inverse of the Lef-
schetz operators and under any other algebraic correspondence. Motivated classes
include classes o; € Hdg* (X;), for some Hodge class o on a smooth projective
variety X — B (where B is connected), such that for some regular value 0 € B,
oo € Hdg?* (Xp) is algebraic.

Example 1. Let X be smooth complex projective, and let by := dim H?* (X,Q).
Then the space

bog

ANH*(X,Q) C H*(X,Q)*" c H*" (X", Q)

is clearly a Hodge substructure which is of rank 1, hence generated by a Hodge class
on X"2k_ This class is clearly an absolute Hodge class. Note that one can make the
same construction with odd degree cohomology, but in this case the existence of a
polarization easily implies that the classes one gets are algebraic, or at least moti-
vated. For this reason, by specializing to Fermat hypersurfaces, the class constructed
above is motivated for all smooth hypersurfaces.
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