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Preface

These notes grew out of lectures I delivered in Philadelphia (the Rademacher
lectures) and in Princeton (the Hermann Weyl lectures). The central objects
are the diagonal of a variety X and the small diagonal in X3. Topologically, we
have the Künneth decomposition of the diagonal, which has as a consequence,
for example, the Poincaré–Hopf formula, but such a Künneth decomposition
does not exist in the context of Chow groups, unless the variety has trivial
Chow groups. The Bloch–Srinivas principle and its generalizations provide the
beginning of such a decomposition in the Chow group of X ×X, under the as-
sumption that Chow groups in small dimension are trivial (that is, parametrized
by the cohomological cycle class). The study of the diagonal thus allows us to
study Chow groups CH(X) of X seen additively, but not the ring structure of
CH(X). The latter is governed by the small diagonal, which, seen as a corre-
spondence between X ×X and X, induces the cup-product in cohomology and
the intersection product on Chow groups.

The second central topic of the book is the spread of cycles and rational
equivalence, which appeared first in Nori’s work and which has become very
important to relate Chow groups and topology in a refined way.

I first considered the small diagonal in joint work with Beauville where we
proved that the small diagonal of a K3 surface has a very special Chow-theoretic
decomposition. I then realized that this partially extends to some Calabi–Yau
varieties, and furthermore that this decomposition, when spread up over a fam-
ily, implies very special multiplicative properties of the Leray spectral sequence.

Concerning the diagonal itself, I proved recently, by a spreading argument
applied to a cohomological decomposition of the diagonal, that for varieties like
complete intersections, admitting large families of deformations with very simple
total space, the generalized Hodge conjecture predicting equality between the
Hodge coniveau and the geometric coniveau is equivalent to the generalized
Bloch conjecture saying that the Hodge coniveau governs the triviality of Chow
groups of small dimension.

This book also reflects my interest in recent years in questions involving cy-
cles with Z-coefficients rather than Q-coefficients. The diagonal decomposition
and, more generally, the spreading principle for rational equivalence, become
wrong with Z-coefficients, and this is a source of interesting torsion invariants.
I have also included a discussion of the defect of the Hodge conjecture with
integral coefficients, as the recent proof of the Bloch–Kato conjecture gave an
important new impulse to the subject.
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PREFACE

Needless to say, even though I have tried to include some background mate-
rial and also to present an overall view of some more advanced results, so that
the notes can be used by students, this book presents a very personal and very
incomplete view of the subject of algebraic cycles. In particular, a number of
topics are missing and a very geometric point of view has been adopted, which
does not reflect the general abstract theory of algebraic cycles well, particularly
algebraic K-theory and motivic cohomology. I apologize to the many people
whose work should have been quoted and discussed here, and is missing from
these notes.

Thanks. I thank the Institute for Advanced Study for inviting me to deliver
the Hermann Weyl lectures and for giving me the opportunity to write up and
publish these notes. I also thank Lie Fu for his careful reading and corrections.

Claire Voisin
Paris, 28 March 2013
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Chapter One

Introduction

These lectures are devoted to the interplay between cohomology and Chow
groups, and also to the consequences, for the topology of a family of smooth
projective varieties, of statements concerning Chow groups of the general or very
general fiber.

A crucial notion is that of the coniveau of a cohomology. A Betti cohomology
class has geometric coniveau ≥ c if it is supported on a closed algebraic subset
of codimension ≥ c. The coniveau of a class of degree k is ≤ k

2 . As a smooth
projective variety X has nonzero cohomology in degrees 0, 2, 4, . . . obtained by
taking c1(L), with L an ample line bundle on X, and its powers c1(L)i, it is
not expected that the whole cohomology of X has large coniveau. But it is
quite possible that the “transcendental” cohomology H∗B(X)⊥alg, consisting of
classes orthogonal (with respect to the Poincaré pairing) to cycle classes on X,
has large coniveau.

There is another notion of coniveau: the Hodge coniveau, which is computed
by looking at the shape of the Hodge structures on H∗B(X,Q). Classes of alge-
braic cycles are conjecturally detected by Hodge theory as Hodge classes, which
are the degree 2k rational cohomology classes of Hodge coniveau k. The gener-
alized Hodge conjecture due to Grothendieck [50] more generally identifies the
coniveau above (or geometric coniveau) to the Hodge coniveau.

The next crucial idea goes back to Mumford [71], who observed that for a
smooth projective surface S, there is a strong correlation between the struc-
ture of the group CH0(S) of 0-cycles on S modulo rational equivalence and the
spaces of holomorphic forms on S. The degree 1 holomorphic forms govern the
Albanese map, which itself provides us with a certain natural quotient of the
group CH0(S)hom of 0-cycles homologous to 0 (that is, of degree 0 if S is con-
nected), which is in fact an abelian variety. This part of CH0(S)hom is small
in different (but equivalent) senses, first of all because it is parametrized by an
algebraic group, and second because, for any ample curve C ⊂ S, the composite
map

CH0(C)hom → CH0(S)hom → Alb(S)

is surjective. Thus 0-cycles supported on a given ample curve are sufficient to
exhaust this part of CH0(S)hom.

Mumford’s theorem [71] says the following.

Theorem 1.1 (Mumford 1968). If H2,0(S) 6= 0, no curve C
j
↪→ S satisfies

the property that j∗ : CH0(C)→ CH0(S) is surjective.
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The parallel with geometric coniveau in cohomology is obvious in this case;
indeed, the assumption that H2,0(S) 6= 0 is equivalent (by the Lefschetz theorem
on (1, 1)-classes) to the fact that the cohomology H2

B(S,Q) is not supported on
a divisor of S. Thus Mumford’s theorem exactly says that if the degree 2
cohomology of S is not supported on any divisor, then its Chow group CH0(S)
is not supported on any divisor.

The converse to such a statement is the famous Bloch conjecture [13]. The
Bloch conjecture has been generalized in various forms, one involving filtra-
tions on Chow groups, the graded pieces of the filtration being governed by
the coniveau of Hodge structures of adequate degree (see [58], [89], and Sec-
tion 2.1.4). The crucial properties of this conjectural filtration are functoriality
under correspondences, finiteness, and the fact that correspondences homolo-
gous to 0 shift the filtration.

We will focus in these notes on a more specific higher-dimensional general-
ization of the Bloch conjecture, “the generalized Bloch conjecture,” which says
that if the cohomology H∗B(X,Q)⊥alg has coniveau ≥ c, then the cycle class
map cl : CHi(X)Q → H2n−2i

B (X,Q) is injective for i ≤ c− 1. In fact, if the va-
riety X has dimension > 2, there are two versions of this conjecture, according
to whether we consider the geometric or the Hodge coniveau. Of course, the
two versions are equivalent assuming the generalized Hodge conjecture. In Sec-
tion 4.3 we will prove this conjecture, following [114], for the geometric coniveau
and for very general complete intersections of ample hypersurfaces in a smooth
projective variety X with “trivial” Chow groups, that is, having the property
that the cycle class map

cl : CH∗(X)Q → H2∗
B (X,Q)

is injective (hence an isomorphism according to [67]).

A completely different approach to such statements was initiated by Kimura
[59], and it works concretely for those varieties that are dominated by products
of curves. It should be mentioned here that all we have said before works as
well in the case of motives (see Section 2.1.3). In the above-mentioned work of
Kimura, one can replace “varieties that are dominated by products of curves”
by “motives that are a direct summand of the motive of a product of curves.”
In our paper [114], we can work with a variety X endowed with the action of a
finite group G and consider the submotives of G-invariant complete intersections
obtained by considering the projectors Γπ ∈ CH(Y × Y )Q associated via the
action of G on Y to projectors π ∈ Q[G].

An important tool introduced by Bloch and Srinivas in [15] is the so-called
decomposition of the diagonal. It relates information concerning Chow groups
CHi(X), for small i, to the geometric coniveau of X. Bloch and Srinivas initially
considered the decomposition of the diagonal in its simplest form, starting from
information on CH0(X), and this has subsequently been generalized in [66], [80]
to a generalized decomposition of the diagonal. This leads to an elegant proof of
the so-called generalized Mumford–Roitman theorem, stating that if the cycle
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class map

cl : CHi(X)Q → H2n−2i
B (X,Q)

is injective for i ≤ c− 1, then the transcendental cohomology H∗B(X,Q)⊥alg has
geometric coniveau ≥ c. (The generalized Bloch conjecture is thus the converse
to this statement.)

The study of the diagonal will play a crucial role in our proof of the general-
ized Bloch conjecture for very general complete intersections. The diagonal will
appear in a rather different context in Chapter 5, where we will describe our
joint work with Beauville and further developments concerning the Chow rings
of K3 surfaces and hyper-Kähler manifolds. Here we will be concerned not with
the diagonal ∆X ⊂ X ×X but with the small diagonal ∆ ∼= X ⊂ X ×X ×X.
The reason is that if we consider ∆ as a correspondence from X × X to X,
we immediately see that it governs, among other things, the ring structure of
CH∗(X). In [11] we obtained for K3 surfaces X a decomposition of ∆ involving
the large diagonals, and a certain canonical 0-cycle o canonically attached to X.

We will show in Section 5.3 an unexpected consequence, obtained in [110], of
this study combined with the basic spreading principle described in Section 3.1,
concerning the topology of families of K3 surfaces.

In a rather different direction, in the final chapter we present recent results
concerning Chow groups and Hodge classes with integral coefficients. Playing on
the defect of the Hodge conjecture for integral Hodge classes (see [5]), we exhibit
a number of birational invariants which vanish for rational projective varieties
and are of torsion for unirational varieties. Among them is precisely the failure of
the Bloch–Srinivas diagonal decomposition with integral coefficients: in general,
under the assumption that CH0(X) is small, only a multiple of the diagonal of
X can be decomposed as a cycle in X ×X. The minimal such multiple appears
to be an interesting birational invariant of X.

In the rest of this introduction, we survey the main ideas and results pre-
sented in this monograph a little more precisely. Background material is to be
found in Chapter 2.

1.1 DECOMPOSITION OF THE DIAGONAL AND SPREAD

1.1.1 Spread

The notion of the spread of a cycle is very important in the geometric study of
algebraic cycles. The first place where it appears explicitly is Nori’s paper [76],
where it is shown that the cohomology class of the spread cycle governs many
invariants of the cycle restricted to general fibers. The idea is the following (see
also [47]): Assume that we have a family of smooth algebraic varieties, that is,
a smooth surjective morphism

π : X → B,
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with geometric generic fiber Xη and closed fiber Xs. If we have a cycle Z ∈
Zk(Xη), then we can find a finite cover Ũ → U of a Zariski open set U of B such
that Z is the restriction to the geometric generic fiber of a cycle ZŨ ∈ Z

k(XŨ ).
If we are over C, we can speak of the spread of a cycle Zs ∈ Zk(Xs), where

s ∈ B is a very general point. Indeed, we may assume that π is projective.
We know that there are countably many relative Hilbert schemes Mi → B
parametrizing all subschemes in fibers of π. Cycles Z =

∑
i niZi in the fibers of

π are similarly parametrized by countably many varieties πJ : NJ → B, where
the πJ ’s are proper, and the indices J also encode the multiplicities ni.

Let B′ ⊂ B be the complement of the union ∪J∈E ImπJ , where E is the set
of indices J for which πJ is not surjective. A point of B′ is a very general point
of B, and by construction of B′, for any s ∈ B′, and any cycle Zs ∈ Zk(Xs),
there exist an index J such that MJ → B is surjective, and a point s′ ∈ MJ

such that πJ(s′) = s, and the fiber ZMJ ,s′ at s′ of the universal cycle

ZMJ
⊂ XMJ

= X ×B MJ ,

parametrized by MJ , is the cycle Zs. By taking linear sections, we can then find
M ′J ⊂ MJ , with s′ ∈ M ′J , such that the morphism M ′J → B is dominating and
generically finite. The restriction ZM ′J of the universal cycle ZMJ

to X ×B M ′J
is then a spread of Zs.

1.1.2 Spreading out rational equivalence

Let π : X → B be a smooth projective morphism, where B is smooth irreducible
and quasi-projective, and let Z ⊂ X be a codimension k cycle. Let us denote
by Zt ⊂ Xt the restriction of Z to the fiber Xt. We refer to Chapter 2 for the
basic notions concerning rational equivalence, Chow groups, and cycle classes.

An elementary but fundamental fact is the following result, proved in Sec-
tion 3.1.

Theorem 1.2 (See Theorem 3.1). If for any t ∈ B the cycle Zt is rationally
equivalent to 0, there exist a Zariski open set U ⊂ B and a nonzero integer N
such that NZ|XU is rationally equivalent to 0, where XU := π−1(U).

Note that the set of points t ∈ B such that Zt is rationally equivalent to 0
is a countable union of closed algebraic subsets of B, so that we could in the
above statement, by a Baire category argument, make the a priori weaker (but
in fact equivalent) assumption that Zt is rationally equivalent to 0 for a very
general point of B.

This statement is what we call the spreading-out phenomenon for rational
equivalence. This phenomenon does not occur for weaker equivalence relations
such as algebraic equivalence.

An immediate but quite important corollary is the following.

Corollary 1.3. In the situation of Theorem 1.2, there exists a dense Zariski
open set U ⊂ B such that the Betti cycle class [Z] ∈ H2k

B (X ,Q) vanishes on the
open set XU .



INTRODUCTION

weyllecturesformat September 3, 2013 6x9

5

The general principle above applied to the case where the family X → B is
trivial, that is, X ∼= X × B, leads to the so-called decomposition principle due
to Bloch and Srinivas [15]. In this case, the cycle Z ⊂ B × X can be seen as
a family of cycles on X parametrized by B or as a correspondence between B
and X. Then Theorem 1.2 says that if a correspondence Z ⊂ B × X induces
the trivial map

CH0(B)→ CHk(X), b 7→ Zb,

then the cycle Z vanishes up to torsion on some open set of the form U × X,
where U is a dense Zariski open set of B.

The first instance of the diagonal decomposition principle appears in [15].
This is the case where X = Y \W , with Y smooth and projective, and W ⊂ Y
is a closed algebraic subset, B = Y , and Z is the restriction to Y × (Y \W ) of
the diagonal of Y . In this case, to say that the map

CH0(B)→ CH0(X), b 7→ Zb,

is trivial is equivalent to saying, by the localization exact sequence (2.2), that any
point of Y is rationally equivalent to a 0-cycle supported on W . The conclusion
is then the fact that the restriction of the diagonal cycle ∆ to a Zariski open set
U×(Y \W ) of Y ×Y is of torsion, for some dense Zariski open set U ⊂ Y . Using
the localization exact sequence, one concludes that a multiple of the diagonal is
rationally equivalent in Y × Y to the sum of a cycle supported on Y ×W and
a cycle supported on D× Y , where D := Y \U . Passing to cohomology, we get
the following consequence.

Corollary 1.4. If Y is smooth projective of dimension n and CH0(Y ) is
supported on W ⊂ Y , the class [∆Y ] ∈ H2n

B (Y × Y,Q) decomposes as

[∆Y ] = [Z1] + [Z2],

where the cycles Zi are cycles with Q-coefficients on Y × Y , Z1 is supported on
D × Y for some proper closed algebraic subset D $ Y , and Z2 is supported on
Y ×W .

1.1.3 Applications of Mumford-type theorems

In the paper [15] by Bloch and Srinivas, an elegant proof of Mumford’s theorem
(Theorem 1.1) is provided, together with the following important generalization.

Theorem 1.5 (Roitman 1980, Bloch and Srinivas 1983; see Theorem 3.13).
Let X be a smooth projective variety and W ⊂ X be a closed algebraic subset
of dimension ≤ k such that any point of X is rationally equivalent to a 0-cycle
supported on W . Then H0(X,ΩlX) = 0 for l > k.

This theorem, together with other very important precisions concerning the
coniveau (see Section 2.2.5) of the cohomology of X, is obtained using only the
cohomological decomposition of the diagonal of X, that is, Corollary 1.4.
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Theorem 1.2 is also the only ingredient in the proof of the generalized de-
composition of the diagonal (see [66], [80], [101, II, 10.3], and Section 3.2.1).
The Bloch–Srinivas decomposition of the diagonal described in the previous
subsection is a decomposition (up to torsion and modulo rational equivalence)
involving two pieces, one supported via the first projection over a divisor of
X, the other supported via the second projection over a subset W ⊂ X. It is
obtained under the condition that CH0(X) is supported on W . The generalized
decomposition of the diagonal subsequently obtained independently by Later-
veer and Paranjape is the following statement, where X is smooth projective of
dimension n.

Theorem 1.6 (See Theorem 3.18). Assume that for k < c, the cycle class
maps

cl : CHk(X)⊗Q→ H2n−2k
B (X,Q)

are injective. Then there exists a decomposition

m∆X = Z0 + · · ·+ Zc−1 + Z ′ ∈ CHn(X ×X), (1.1)

where m 6= 0 is an integer, Zi is supported in W ′i×Wi with dimWi = i,dimW ′i =
n − i, and Z ′ is supported in T ×X, where T ⊂ X is a closed algebraic subset
of codimension ≥ c.

Note that a version of this theorem involving the Deligne cycle class instead
of the Betti cycle class was established in [37]. We refer to Section 3.2.1 for
applications of this theorem. In fact, the main application involves only the
corresponding cohomological version of the decomposition (1.1), that is, the
generalization of Corollary 1.4, which concerned the case c = 1. It implies that
under the same assumptions, the transcendental cohomology H∗B(X,Q)⊥alg has
geometric coniveau ≥ c.

Other applications involve the decomposition (1.1) in the group CH(X ×
X)/alg of cycles modulo algebraic equivalence. This is the case of applications
to the vanishing of positive degree unramified cohomology with Q-coefficients
(and in fact with Z-coefficients (see [6], [15], [24]) thanks to the Bloch–Kato
conjecture proved by Rost and Voevodsky; see [97]).

1.1.4 Another spreading principle

Although elementary, the following spreading result proved in Section 4.3.3 is
crucial for our proof of the equivalence of the generalized Bloch and Hodge
conjectures for very general complete intersections in varieties with trivial Chow
groups (see [114] and Section 4.3). Its proof is based as usual on the countability
of the relative Hilbert schemes for a smooth projective family Y → B.

Let π : X → B be a smooth projective morphism and let (π, π) : X×BX → B
be the fibered self-product of X over B. Let Z ⊂ X ×B X be a codimension k
algebraic cycle. We denote the fibers Xb := π−1(b), Zb := Z|Xb×Xb .



INTRODUCTION

weyllecturesformat September 3, 2013 6x9

7

Theorem 1.7 (See Proposition 4.25). Assume that for a very general point
b ∈ B, there exist a closed algebraic subset Yb ⊂ Xb × Xb of codimension c, and
an algebraic cycle Z ′b ⊂ Yb × Yb with Q-coefficients, such that

[Z ′b] = [Zb] in H2k
B (Xb ×Xb,Q).

Then there exist a closed algebraic subset Y ⊂ X of codimension c, and a codi-
mension k algebraic cycle Z ′ with Q-coefficients on X ×B X , such that Z ′ is
supported on Y ×B Y, and for any b ∈ B,

[Z ′b] = [Zb] in H2k
B (Xb ×Xb,Q).

1.2 THE GENERALIZED BLOCH CONJECTURE

As we will explain in Section 3.2.1, the generalized decomposition of the diagonal
(Theorem 1.6, or rather its cohomological version) leads to the following result.

Theorem 1.8 (See Theorem 3.20). Let X be a smooth projective variety of
dimension m. Assume that the cycle class map

cl : CHi(X)Q → H2m−2i
B (X,Q)

is injective for i ≤ c − 1. Then we have Hp,q(X) = 0 for p 6= q and p < c (or
q < c).

The Hodge structures on Hk
B(X,Q)⊥alg are thus all of Hodge coniveau ≥ c;

in fact they are even of geometric coniveau ≥ c, that is, these Hodge structures
satisfy the generalized Hodge conjecture (Conjecture 2.40) for coniveau c.

The generalized Bloch conjecture is the converse to this statement (it can also
be generalized to motives). It generalizes the Bloch conjecture which concerned
the case of 0-cycles on surfaces. One way to state it is the following.

Conjecture 1.9. Assume conversely that Hp,q(X) = 0 for p 6= q and p < c
(or q < c). Then the cycle class map

cl : CHi(X)Q → H2m−2i
B (X,Q)

is injective for i ≤ c− 1.

However, as a consequence of Theorem 1.8 above, this formulation also con-
tains a positive solution to the generalized Hodge conjecture, which predicts,
under the above vanishing assumptions, that the transcendental part of the
cohomology of X is supported on a closed algebraic subset of codimension c.

A slightly restricted version of the generalized Bloch conjecture (which is
equivalent for surfaces or motives of surfaces) is thus the following (see [58]).

Conjecture 1.10. Let X be a smooth projective complex variety of dimen-
sion m. Assume that the transcendental cohomology H∗B(X,Q)⊥alg is supported
on a closed algebraic subset of codimension c. Then the cycle class map

cl : CHi(X)Q → H2m−2i
B (X,Q)
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is injective for i ≤ c− 1.

Note that Conjecture 1.11 below is also an important generalization of the
Bloch conjecture, concerning only 0-cycles and starting with rather different co-
homological assumptions. There is no direct relation between Conjectures 1.9
and 1.11 except for the fact that they coincide for varieties X with Hi,0(X) = 0
for all i > 0. Of course they both fit within the general Bloch–Beilinson conjec-
ture (Conjecture 2.19) on filtrations on Chow groups, and can be considered as
concrete consequences of them.

Conjecture 1.11. Let X be a smooth projective variety such that Hi,0(X) =

0 for i > r. Then there exists a dimension r closed algebraic subset Z
j
↪→ X

such that j∗ : CH0(Z)→ CH0(X) is surjective.

Our main result in [114] presented in Section 4.3 is obtained as a consequence
of the spreading principle, Theorem 1.7. It proves Conjecture 1.10 for very
general complete intersections in ambient varieties with “trivial Chow groups,”
assuming the Lefschetz standard conjecture. The situation is the following: X
is a smooth projective variety of dimension n that satisfies the property that
the cycle class map

cl : CHi(X)Q → H2n−2i
B (X,Q)

is injective for all i. Let Li, i = 1, . . . , r be very ample line bundles on X.
We consider smooth complete intersections Xt ⊂ X of hypersurfaces Xi ∈ |Li|.
They are parametrized by a quasi-projective base B.

Theorem 1.12 (Voisin 2011; see Theorem 4.16). Assume that for the very
general point t ∈ B, the vanishing cohomology Hn−r

B (Xt,Q)van is supported on a
codimension c closed algebraic subset of Xt. Assume also the Lefschetz standard
conjecture. Then the cycle class map

cl : CHi(Xt)Q → H2n−2r−2i
B (Xt,Q)

is injective for i ≤ c− 1.

In dimension (n− r) ≥ 4, the theorem above is conditional on the Lefschetz
standard conjecture (or more precisely on Conjecture 2.29 for codimension (n−r)
cycles). It turns out that in dimensions (n − r) ≤ 3, the precise instance of
the conjecture we need will be satisfied, so that the result is unconditional for
surfaces and threefolds.

In applications, this theorem is particularly interesting in the case where X
is the projective space Pn. In this case, the hypersurfaces Xi are characterized
by their degrees di and we may assume d1 ≤ · · · ≤ dr. When n is large com-
pared to the di’s, the Hodge coniveau (conjecturally, the geometric coniveau)
of Xt is also large due to the following result established in [48] in the case of
hypersurfaces (see [38] for the case of complete intersections), the proof of which
will be sketched in Section 4.1.



INTRODUCTION

weyllecturesformat September 3, 2013 6x9

9

Theorem (See Theorem 4.1). A smooth complete intersection Xt ⊂ Pn of
r hypersurfaces of degrees d1 ≤ · · · ≤ dr has Hodge coniveau ≥ c if and only if

n ≥
r∑
i

di + (c− 1)dr.

If we consider motives (see Section 2.1.3) and in particular those that are
obtained starting from a variety X with an action by finite group G, and looking
at invariant complete intersections Xt ⊂ X and motives associated to projectors
of G, we get many new examples where the adequate variant of Theorem 1.12
holds, because a submotive often has a larger coniveau. A typical example is
the case of Godeaux quintic surfaces, which are free quotients of quintic surfaces
in P3 invariant under a certain action of G ∼= Z/5Z. The G-invariant part of
H2,0(S) is 0 although the quotient surface S/G is of general type; the Bloch
conjecture has already been proved for the quotient surfaces S/G in [98] but the
proof we give here is much simpler and has a much wider range of applications.
In fact, a much softer version of Theorem 1.12 for surfaces is established in [109],
and it gives a proof of the Bloch conjecture for other surfaces with pg = q = 0.

In Section 3.2.3, we will also describe the ideas of Kimura, which lead to re-
sults of a similar shape, namely the implication from the generalized Hodge con-
jecture (geometric coniveau = Hodge coniveau) to the generalized Bloch conjec-
ture (the Chow groups CHi are “trivial” for i smaller than the Hodge coniveau),
but for a completely different class of varieties. More precisely, Kimura’s method
applies to all motives that are direct summands in the motive of a product of
curves.

1.3 DECOMPOSITION OF THE SMALL DIAGONAL AND

APPLICATION TO THE TOPOLOGY OF FAMILIES

In Chapter 5, we will exploit the spreading principle, Theorem 1.2(ii), or rather
its cohomological version, to exhibit a rather special phenomenon satisfied by
families of abelian varieties, K3 surfaces, and conjecturally also by families of
Calabi–Yau hypersurfaces in projective space. Let π : X → B be a smooth
projective morphism. The decomposition theorem, proved by Deligne in [30] as
a consequence of the hard Lefschetz theorem, is the following statement.

Theorem (Deligne 1968). In the derived category of sheaves of Q-vector
spaces on B, there is a decomposition

Rπ∗Q = ⊕iRiπ∗Q[−i]. (1.2)

The question we consider in Chapter 5, following [110], is the following.

Question 1.13. Given a family of smooth projective varieties π : X → B,
does there exist a decomposition as above that is multiplicative, that is, compat-
ible with the morphism µ : Rπ∗Q⊗Rπ∗Q→ Rπ∗Q given by the cup-product?
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As we will see quickly, the answer is generally negative, even for projective
bundles P(E) → B. However, it is affirmative for families of abelian varieties
(see Section 5.3) due to the group structure of the fibers.

The right formulation in order to get a larger range of families satisfying
such a property is to ask whether there exists a decomposition isomorphism
that is multiplicative over a Zariski dense open set U of the base B (or more
optimistically, that is multiplicative locally on B for the Zariski topology).

One of our main results in this chapter is the following (see [110] and Sec-
tion 5.3).

Theorem 1.14 (Voisin 2011; see Theorem 5.35).

(i) For any smooth projective family π : X → B of K3 surfaces, there exist a
nonempty Zariski open subset B0 of B and a multiplicative decomposition
isomorphism as in (5.27) for the restricted family π : X 0 → B0.

(ii) The class of the diagonal [∆X 0/B0 ] ∈ H4
B(X ×B X ,Q) belongs to the di-

rect summand H0(B0, R4(π, π)∗Q) of H4(X 0 ×B0 X 0,Q) for the induced
decomposition of R(π, π)∗Q.

(iii) For any line bundle L on X , there is a Zariski dense open set B0 ⊂ B
such that its topological first Chern class ctop

1 (L) ∈ H2
B(X ,Q) restricted to

X 0 belongs to the direct summand H0(B0, R2π∗Q).

In the second statement, (π, π) : X 0×B0 X 0 → B0 denotes the natural map.
A decomposition Rπ∗Q ∼= ⊕iRiπ∗Q[−i] induces a decomposition

R(π, π)∗Q = ⊕iRi(π, π)∗Q[−i]

by the relative Künneth isomorphism

R(π, π)∗Q ∼= Rπ∗Q⊗Rπ∗Q.

In statements (ii) and (iii), we use the fact that a decomposition isomorphism
as in (1.2) for π : X → B induces a decomposition

Hk(X ,Q) ∼= ⊕p+q=kHp(B,Rqπ∗Q)

(which is compatible with cup-product if the given decomposition isomorphism
is).

This result is in fact a formal consequence of the spreading principle (Theo-
rem 1.2) and of the following result proved in [11].

Theorem (Beauville and Voisin 2004; see Theorem 5.3). Let S be a smooth
projective K3 surface. There exists a 0-cycle o ∈ CH0(S) such that we have the
following equality:

∆ = ∆12 · o3 + (perm.)− (o1 · o2 + (perm.)) in CH4(S × S × S)Q. (1.3)
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Here ∆ ⊂ S×S×S is the small diagonal {(x, x, x), x ∈ S} and the ∆ij ’s are
the diagonals xi = xj . The class o ∈ CH0(S) is the class of any point belonging
to a rational curve in S and the oi’s are its pull-back in CH2(S × S × S)Q
via the various projections. The cycle ∆12 · o3 is thus the algebraic subset
{(x, x, o), x ∈ S} of S×S×S. The term +(perm.) means that we sum over the
permutations of {1, 2, 3}.

We will also prove in Section 5.2.1 a partial generalization of this result for
Calabi–Yau hypersurfaces.

Our topological application (Theorem 1.14 above) involves the structure of
the cup-product map

Rπ∗Q⊗Rπ∗Q→ Rπ∗Q,

which is not surprising since the small diagonal, seen as a correspondence from
S × S to itself, governs the cup-product map on cohomology, as well as the
intersection product on Chow groups. For the same reason, the decomposition
(1.3) is related to properties of the Chow ring of K3 surfaces. These applications
are described in Section 5.1. Our partial decomposition result concerning the
small diagonal of Calabi–Yau hypersurfaces (Theorem 5.21) allows the following
result to be proved in a similar way (see [110]).

Theorem (Voisin 2011; see Theorem 5.25). Let X ⊂ Pn be a Calabi–Yau
hypersurface in projective space. Let Zi, Z

′
i be positive-dimensional cycles on X

such that codimZi+codimZ ′i = n−1. Then if we have a cohomological relation∑
i

ni[Zi] ∪ [Z ′i] = 0 in H2n−2
B (X,Q),

this relation already holds at the level of Chow groups:∑
i

niZi · Z ′i = 0 in CHn−1(X)Q.

1.4 INTEGRAL COEFFICIENTS AND BIRATIONAL

INVARIANTS

Everything that has been said before was with rational coefficients. This con-
cerns Chow groups and cohomology. In fact it is known that the Hodge conjec-
ture is wrong with integral coefficients and also that the diagonal decomposition
principle (Theorem 3.10 or Corollary 3.12) is wrong with integral coefficients
(that is, with an integer N set equal to 1). But it turns out that some birational
invariants can be constructed out of this. For example, assume for simplicity
that CH0(X) is trivial. Then the smallest positive integer N such that there
is a Chow-theoretic (respectively cohomological) decomposition of N times the
diagonal in CHn(X ×X) (respectively H2n(X ×X,Z)), n = dimX, that is,

N∆X = Z1 + Z2, (respectively, N [∆X ] = [Z1] + [Z2]), (1.4)
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where Z1, Z2 are codimension n cycles in X ×X with

SuppZ1 ⊂ T ×X, T  X, Z2 = X × x

for some x ∈ X, is a birational invariant of X. In the cohomological case, on
which we will focus, we get in general a nontrivial invariant simply because, as we
will show, it annihilates the torsion in H3

B(X,Z) and, at least when dimX ≤ 3,
the torsion in the whole integral cohomology H∗B(X,Z). But we will see that it
also controls much more subtle phenomena.

The groups Z2i(X) defined as

Z2i(X) := Hdg2i(X,Z)/H2i
B (X,Z)alg

themselves are birationally invariant for i = 2, i = n−1, n = dimX, as remarked
in [93], [105]. One part of Chapter 6 is devoted to describing recent results
concerning the groups Z2i(X) for X a rationally connected smooth projective
complex variety. On the one hand, it is proved in [24] that for such an X, the
group Z4(X) is equal to the third unramified cohomology group H3

nr(X,Q/Z)
with torsion coefficients. This result, also proved in [6], is a consequence of the
Bloch–Kato conjecture, which has now been proved by Voevodsky and Rost. We
will sketch in Section 6.2.2 the basic facts from Bloch–Ogus theory (see [14])
that are needed to establish this result.

It follows then from the work of Colliot-Thélène and Ojanguren [23] that
there are rationally connected sixfolds X for which Z4(X) 6= 0. Such examples
are not known in smaller dimensions, and we proved that they do not exist in
dimension 3. We even have the following result [103].

Theorem (See Theorem 6.5). Let X be a smooth projective threefold that
is either uniruled or Calabi–Yau (that is, with trivial canonical bundle and
H1(X,OX) = 0). Then Z4(X) = 0.

The Calabi–Yau case has been extended and used by Höring and Voisin in
[53] to show the following (see also [41] for the generalization to Fano n-folds of
index n− 3, n ≥ 8).

Theorem (See Section 6.2.1). Let X be a Fano fourfold or a Fano fivefold of
index 2. Then the group Z2n−2(X) is trivial, n = dimX. Hence the cohomology
H2n−2
B (X,Z) is generated over Z by classes of curves.

It is in fact very likely that the group Z2n−2(X) is trivial for rationally
connected varieties, as follows from its invariance under deformations and also
specialization to characteristic p (see Theorem 6.10 and [112]).

The final section is devoted to the study of the existence of an integral coho-
mological decomposition of the diagonal, particularly for a rationally connected
threefold. This is in fact closely related in this case to the integral Hodge con-
jecture, in the following way: If X is a rationally connected threefold (or more
generally, any smooth projective threefold with h3,0(X) = 0), then the interme-
diate Jacobian J(X) is an abelian variety. There is a degree 4 integral Hodge
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class α ∈ Hdg4(X × J(X),Z) built using the canonical isomorphism

H1(J(X),Z) ∼= H3
B(X,Z)/torsion.

As we will show in Theorem 6.38, if X admits an integral cohomological decom-
position of the diagonal, that is, a decomposition as in (1.4) with N = 1, the
above class α is algebraic, or equivalently, there is a universal codimension 2 cy-
cle on X parametrized by J(X). The existence of such a universal codimension
2 cycle is not known in general even for rationally connected threefolds.

1.5 ORGANIZATION OF THE TEXT

Chapter 2 is introductory. We will review Chow groups, correspondences and
their cohomological and Hodge-theoretic counterpart. The emphasis will be put
on the notion of coniveau and the generalized Hodge conjecture which states
the equality of geometric and Hodge coniveau.

Chapter 3 is devoted to a description of various forms of the “decomposition
of the diagonal” and applications of it. This mainly leads to one implication that
is well understood now, namely the fact that for a smooth projective variety X,
having “trivial” Chow groups of dimension ≤ c − 1 implies having (geometric)
coniveau ≥ c. We state the converse conjecture (generalized Bloch conjecture).

In Chapter 4, we will first describe how to compute the Hodge coniveau of
complete intersections. We will then explain a strategy to attack the generalized
Hodge conjecture for complete intersections of coniveau 2. The guiding idea is
that although the powerful method of the decomposition of the diagonal suggests
that computing Chow groups of small dimension is the right way to solve the
generalized Hodge conjecture, it might be better to invert the logic and try to
compute the geometric coniveau directly. And indeed, this chapter culminates
with the proof of the fact that for very general complete intersections, assuming
Conjecture 2.29 or the Lefschetz standard conjecture, the generalized Hodge
conjecture implies the generalized Bloch conjecture; in other words, for a very
general complete intersection, the fact that its geometric coniveau is ≥ c implies
the triviality of its Chow groups of dimension ≤ c− 1.

In Chapter 5, we turn to the study of the Chow rings ofK3 surfaces and other
K-trivial varieties. This study is related to a decomposition of the small diagonal
of the triple self-product. We finally show the consequences of this study for
the topology of certain K-trivial varieties: K3 surfaces, abelian varieties, and
Calabi–Yau hypersurfaces.

The final chapter is devoted in part to the study of the groups Z2i(X) mea-
suring the failure of the Hodge conjecture with integral coefficients. Some van-
ishing and nonvanishing results are presented, together with a comparison of
the group Z4(X) with the so-called unramified cohomology of X with torsion
coefficients. We also consider various forms of the existence of an integral coho-
mological decomposition of the diagonal (see (1.1)) of a threefold X with trivial
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CH0 group. We show that an affirmative answer to this question is equivalent
to the vanishing of numerous birational invariants of X.

Convention. Most of the time, we will work over C and we will write X for
X(C). Unless otherwise specified, cohomology of X with constant coefficients
will be Betti cohomology of X(C) endowed with the Euclidean topology (only
in Chapter 6 will we discuss other cohomology theories). A general point of
X is a complex point x ∈ U(C), where U ⊂ X is a Zariski dense open set.
When we say that a property is satisfied by a general point, we thus mean that
there exists a Zariski open set U ⊂ X such that the property is satisfied for any
point of U(C). This is not always equivalent to being satisfied at the geometric
generic point (assuming X is connected), since some properties are not Zariski
open. A typical example is the following: Let φ : Y → X be a smooth projective
morphism with fiber Yt, t ∈ X. Let L be a line bundle on Y . The property that
PicYt = ZL|Yt is not Zariski open.

A very general point of X is a complex point x ∈ X ′ ⊂ X(C), where X ′ ⊂
X(C) is the complement of a countable union of proper closed algebraic subsets
of X. When we say that a property is satisfied by a very general point, we
mean that there exists a countable collection of dense Zariski open sets Ui such
that the property is satisfied by any element of ∩iUi(C). For example, in the
situation above, we find that the property PicYt = ZL|Yt is satisfied at a very
general point of X if it is satisfied at the geometric generic point of X.
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Review of Hodge theory and algebraic cycles

This chapter is introductory. We review the necessary background material used
in the rest of the notes. This includes Chow groups, correspondences and motives
on the purely algebraic side, cycle classes, and (mixed) Hodge structures on the
algebraic–topological side. The emphasis is put on the notion of Hodge versus
geometric coniveau.

2.1 CHOW GROUPS

2.1.1 Construction

We follow [43] and [101, II]. Let X be a scheme over a field K (which in practice
will always be a quasi-projective scheme, that is, a Zariski open set in a projec-
tive scheme). Let Zk(X) be the group of k-dimensional algebraic cycles of X,
that is, the free abelian group generated by the (reduced and irreducible) closed
k-dimensional subvarieties of X defined over K. If Y ⊂ X is a subscheme of
dimension ≤ k, we can associate a cycle c(Y ) ∈ Zk(X) to it as follows: Set

c(Y ) =
∑
W

nWW, (2.1)

where the sum is taken over the k-dimensional irreducible reduced components
of Y , and the multiplicity nW is equal to the length l(OY,W ) of the Artinian
ring OY,W , the localization of OY at the point W .

If φ : Y → X is a proper morphism between quasi-projective schemes, we
can define

φ∗ : Zk(Y )→ Zk(X)

by associating to a reduced irreducible subscheme Z ⊂ Y the cycle deg[K(Z) :
K(Z ′)]Z ′, Z ′ = φ(Z), if φ : Z → Z ′ is generically finite, and 0 otherwise (in the
latter case we have dimZ ′ < k). The properness is already used here in order
to guarantee that Z ′ is closed in X.

If W is a normal algebraic variety, the localized rings at the points of codi-
mension 1 of W are discrete valuation rings, so we can define the divisor div(φ)
of a nonzero rational function φ ∈ K(W )∗. This divisor div(φ) is the (w − 1)-
cycle of W , w := dimW defined as

∑
codimT=1 νT (φ)T . If W ⊂ X is a closed

subvariety and τ : W̃ → X is the normalization of W , we have the map
τ∗ : Zk(W̃ )→ Zk(X). This allows us to give the following definition.
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Definition 2.1. The subgroup Zk(X)rat of cycles rationally equivalent to
0 is the subgroup of Zk(X) generated by cycles of the form

τ∗ div(φ), dimW = k + 1, φ ∈ K(W )∗,

where τ : W̃ → W ⊂ X is the normalization of the closed (k + 1)-dimensional
subvariety W of X.

We write CHk(X) = Zk(X)/Zk(X)rat.
If X is n-dimensional and smooth, or more generally, locally factorial, then

Zn−1(X) is the group of Cartier divisors, and the group CHn−1(X) can be iden-
tified with the group Pic(X) of algebraic line bundles on X modulo isomorphism.
Indeed, this isomorphism makes the line bundle OX(D) = ⊗iI⊗−niDi

correspond
to a divisor D =

∑
i niDi, and D is rationally equivalent to D′ if and only if

there exists φ ∈ K(X) such that div(φ) = D −D′. Clearly, multiplication by φ
then induces an isomorphism

φ : OX(D) ∼= OX(D′).

Conversely, every algebraic line bundle L admits a meromorphic section, by
trivialization on a Zariski dense open set, and is thus isomorphic to a sheaf of
the form OX(D).

In general, for X reduced and irreducible of dimension n, we have a map

s : PicX → CHn−1(X)

that associates to a line bundle L the class of the cycle τ∗ div(σ), where τ : X̃ →
X is the normalization and σ is a nonzero meromorphic section of τ∗L.

2.1.2 Localization exact sequence

Let X be a quasi-projective scheme, and let F
l→ X be the inclusion of a closed

subscheme. Let j : U = X − F ↪→ X be the inclusion of the complement.
The morphism l is proper since it is a closed immersion. The morphism j is an
open immersion, and j∗ will be defined by restricting cycles to the open set U .
Thus, we have the inverse image morphism j∗ and the direct image morphism
l∗. Moreover, it is clear that j∗ ◦ l∗ = 0, since the cycles supported on F do not
intersect U .

Lemma 2.2. The following sequence, known as the localization sequence, is
exact:

CHk(F )
l∗→ CHk(X)

j∗→ CHk(U)→ 0. (2.2)

Proof. The surjectivity on the right follows from the fact that if Z ⊂ U is
a k-dimensional subvariety, then its Zariski closure Z ⊂ X is a k-dimensional
subvariety whose intersection with U is equal to Z.
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Furthermore, let Z ∈ Zk(X) be such that j∗Z ∈ Zk(U)rat. Then there exist
Wi ⊂ U, dimWi = k + 1, φi ∈ K(Wi)

∗, and integers ni, such that

Z ∩ U =
∑
i

ni(τi)∗(div(φi)), (2.3)

where τi : W̃i → U is the normalization of Wi. Then, if Wi is the closure of

Wi in X and τ i : W̃i → X is its normalization, we have φi ∈ K(Wi)
∗, and the

equality (2.3) shows that

Z −
∑
i

ni(τ i)∗(div(φi)) ∈ Zk(F ).

This proves the exactness of the sequence (2.2) in the middle, since the cycle
Z −

∑
i ni(τ i)∗(div(φi)) is rationally equivalent to Z in X. �

In [43], Fulton proposes an intersection theory,

CHk(X)× CHl(X)→ CHk+l−n(X)

for a smooth n-dimensional variety X, which is particularly well adapted to
computing the excess intersection formulas. If Z and Z ′ are two irreducible
reduced subschemes of X, of dimensions k and l, respectively, which intersect
properly and generically transversally, that is, such that dimZ ∩ Z ′ = k +
l − n, and generically along the intersection Z ∩ Z ′, Z and Z ′ are smooth
and the intersection is transverse, then one classically defines Z · Z ′ to be the
cycle associated to the scheme Z ∩ Z ′ (which in fact has all its components of
multiplicity 1 by assumption). By bilinearity, we can define the intersection
Z · Z ′ this way for any pair of cycles whose supports intersect properly and
generically transversally.

If Z and Z ′ do not intersect properly, the classical theory replaces Z by a
cycle Z̃ that is rationally equivalent to Z and intersects Z ′ properly (such a
cycle exists by “Chow’s moving lemma”), and defines Z · Z ′ to be the class of

Z̃ ∩ Z ′ in CHk+l−n(X).

Let |Z| = ∪iZi denote the support of the cycle Z =
∑
i niZi. Fulton’s theory

avoids the recourse to Chow’s moving lemma, and gives a refined intersection,
that is, a cycle

Z · Z ′ ∈ CHk+l−n(|Z| ∩ |Z ′|)

for every pair of cycles Z and Z ′, whose image in CHk+l−n(X) is Z · Z ′. Thus
it provides an exact answer to the problems of excess, that is, the “explicit”
computation of Z · Z ′ as a cycle supported on SupZ ∩ SupZ ′ when Z and Z ′

do not intersect properly.
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2.1.3 Functoriality and motives

If p : Y → X is a proper morphism of quasi-projective schemes, we have the
morphism

p∗ : Zk(Y )→ Zk(X)

defined above.

Lemma 2.3. The group morphism p∗ defined above sends Zk(Y )rat to Zk(X)rat,
and thus induces a morphism

p∗ : CHk(Y )→ CHk(X).

Proof. Let τ : W̃ → W ⊂ Y be the normalization of a closed (k + 1)-
dimensional subvariety of Y , and let φ ∈ K(W )∗. Assume first that the com-

position p ◦ τ : W̃ → X is generically finite, and let W ′ = Im p ◦ τ ⊂ X,
τ ′ : W̃ ′ → X be its normalization. We have a factorization,

τ : W̃ //

p̃
��

Y

p

��
τ ′ : W̃ ′ // X,

so that p∗ ◦ τ∗ = τ ′∗ ◦ p̃∗ : Zk(W̃ )→ Zk(X).

The function field K(W̃ ) is an algebraic extension of K(W̃ ′). Consider the
norm morphism

N : K(W̃ )∗ → K(W̃ ′)∗

relative to this field extension.

Lemma 2.4. For every nonzero rational function on W̃ , we have the equality

p̃∗(div(φ)) = div(N(φ)).

This formula and the definition of rational equivalence imply Lemma 2.3. �

We now assume that p : Y → X is a flat morphism of relative dimension
l = dimY −dimX. If Z ⊂ X is a reduced irreducible k-dimensional subscheme,
then p−1(Z) is a (k + 1)-dimensional subscheme of Y , and thus it admits an
associated cycle p∗Z ∈ Zk+l(Y ). Extending this definition by Z-linearity, we
thus obtain p∗ : Zk(X)→ Zk+l(Y ).

Lemma 2.5. The map p∗ defined above sends Zk(X)rat to Zk+l(Y )rat. Thus,
it induces a morphism

p∗ : CHk(X)→ CHk+l(Y ).

Remark 2.6. Let CHk(X) := CHn−k(X), where X is irreducible of dimen-
sion n. Then flat pull-back sends CHk(X) to CHk(Y ).
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Lemma 2.5 shows that the pull-back morphism p∗ is well defined when p is
flat, but this assumption on p is much too restrictive. A crucial point now is
the existence of a pull-back morphism

p∗ : CHk(X)→ CHk(Y )

once X is smooth. For this one uses the fact that p factors as pr2 ◦jp, where
pr2 : Y ×X → X is the second projection (which is flat), and jp is the inclusion
y 7→ (y, p(y)) of Y into Y ×X. By smoothness of X, the image of jp is a local
complete intersection in X × Y , and restriction to local complete intersection
subschemes is well defined inductively, starting from the divisor case (see [43,
6.6]). The pull-back map p∗ is then defined as the composition of pr∗2 followed
by the restriction map to Im jp = Y .

We have the following compatibility between the intersection product and
the morphisms p∗, p

∗, where X, Y are smooth and p : Y → X is a morphism.

Proposition 2.7.

(1) (Projection formula, [43, 8.1].) If p is proper, then for Z ∈ CH(Y ) and
Z ′ ∈ CH(X), we have

p∗(p
∗Z · Z ′) = Z · p∗Z ′ ∈ CH(X). (2.4)

(2) With no hypothesis of properness on p, for Z, Z ′ ∈ CH(X), we have

p∗(Z · Z ′) = p∗Z · p∗Z ′ in CH(Y ).

The following corollary is a consequence of the projection formula.

Corollary 2.8. If p : Y → X is a proper morphism with dimX = dimY ,
then

p∗ ◦ p∗Z = deg pZ

for Z ∈ CH(X), where deg p is defined to be equal to 0 if p is not dominant.

Proof. This follows from formula (2.4) with Z ′ = c(Y ) ∈ CHn(Y ), n =
dimY . Indeed, by the definition of p∗, we have p∗(c(Y )) = deg p c(X) ∈ CH(X).

�

Definition 2.9. A correspondence between two smooth varieties X and Y
is a cycle Γ ∈ CH(X × Y ). A 0-correspondence between X and Y is an element
of CHn(X × Y ), n = dimX.

If X is projective, the second projection X×Y → Y is proper. A correspon-
dence Γ ∈ CHk(X × Y ) then defines a morphism

Γ∗ : CHi(X)→ CHi+k−dimX(Y )

given by
Γ∗(Z) = pr2∗(pr∗1(Z) · Γ), Z ∈ CH(X).
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Note that if Γ is a 0-correspondence, Γ∗ : CH∗(X) → CH∗(Y ) preserves the
degree.

If Y is projective, we can also consider the morphism

Γ∗ : CH(Y )→ CH(X)

given by
Γ∗(Z) = pr1∗(pr∗2(Z) · Γ), Z ∈ CH(Y ).

Now, assume that X, Y , and W are smooth varieties, with X and Y projective,

and let Γ ∈ CHk(X × Y ), Γ′ ∈ CHk′(Y ×W ) be correspondences. We can then

define the composition Γ′ ◦ Γ ∈ CHk′′(X ×W ), where k′′ = k + k′ − dimY , by
the formula

Γ′ ◦ Γ = p13∗(p
∗
12Γ · p∗23Γ′), (2.5)

where the pij , i = 1, 2, 3 are the projections of X × Y ×W onto the product of
its ith and jth factors.

We can show that the composition of correspondences is associative. In par-
ticular, it equips the group CH(X×X) with the structure of a (noncommutative)
ring.

Finally, we have the following essential formula, which is a consequence of
the projection formula (2.4) (see [101, II, 9.2.2]).

Proposition 2.10. Let

Γ∗ : CH(X)→ CH(Y ), Γ′∗ : CH(Y )→ CH(W )

be the morphisms associated to the correspondences Γ, Γ′. Then

(Γ′ ◦ Γ)∗ = Γ′∗ ◦ Γ∗.

2.1.3.1 Motives

Here we follow [75]; the reader can find a more precise and advanced presenta-
tion in [2]. The fact that correspondences can be composed suggests consider-
ing a category of smooth projective varieties, the morphisms being correspon-
dences modulo a given equivalence relation. A better category is proposed by
Grothendieck (see [2], [75]). First of all, consider the category of effective mo-
tives: Instead of considering the smooth projective varieties X as objects, one
considers the pairs (X, p), where X is a smooth projective variety of dimension
n, and p ∈ CHn(X ×X)Q is a projector, namely

p ◦ p = p in CHn(X ×X)Q.

The morphisms between (X, p) and (Y, q) are the 0-correspondences between X
and Y of the form

q ◦ γ ◦ p, γ ∈ CHn(X × Y ), n = dimX.
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Next, general Chow motives are defined as follows: Objects are triple (X, p,m),
where X is smooth projective, p ∈ CHdimX(X×X)Q is a projector, and m is an
integer. Then the morphisms between (X, p,m) and (Y, q,m′) are the elements

of CHdimX+m′−m(X × Y )Q of the form

q ◦ γ ◦ p, γ ∈ CHdimX+m′−m(X × Y ).

Of course, one can make the theory for other equivalence relations, for ex-
ample homological equivalence, or modify it by introducing more morphisms
as in [1], where André allows further morphisms by inverting certain Lefschetz
operators. If the Hodge conjecture (or more precisely, the Lefschetz standard
conjecture) holds, this is the same set of morphisms, but his theory works un-
conditionally and the resulting category has better semisimplicity properties,
deduced from the corresponding semisimplicity properties of the category of
polarized Hodge structures (see Theorem 2.22).

Example 2.11 (Lefschetz motive). Let 0 be any point of P1. One considers
the pair (P1, p), where p is the projector given by P1 × 0. The independence
of the choice of point is due to the fact that all points on P1 are rationally
equivalent on any field, even nonalgebraically closed fields.

Note that we can consider sums and tensor products of motives. Sums are
induced (at least for the effective motives (X, p, 0)) by disjoint unions, while
tensor products are induced by the usual products. We can thus speak of the
self-product of a motive (X, p): this is the motive (X ×X, p× p).

Example 2.12 (Powers of the Lefschetz motive). The motive L⊗n is ((P1)n, pn)
where pn is the projector given by (P1)n × (0, . . . , 0), where 0 is any point of
P1. As (P1)n is birationally equivalent to Pn, L⊗n is isomorphic to the motive
(Pn, pn), where pn is the class of Pn × pt for any point of Pn.

Let us give a few more examples.

Example 2.13 (Generically finite morphisms). Let X, Y be smooth varieties
of dimension n and

φ : X → Y

be a generically finite morphism. Consider the correspondence ΓY = (φ,φ)∗∆Y

deg φ ∈
CHn(X ×X)Q, where ∆Y is the diagonal of Y .

Lemma 2.14. The correspondence ΓY is a projector, and (X,ΓY ) is isomor-
phic to Y .

Proof. We apply the definition of the composition of correspondences, the
projection formula, and the fact that φ∗∆X = deg φ∆Y . The isomorphism
between Y and (X,ΓY ) is given by the transpose of the graph of φ. �

We thus get another motive, (X,∆X − ΓY ), which is the motive of X with
the motive of Y removed.
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In the above example, (X,∆X) is the full motive of X, with projector p
induced by the diagonal of X, which acts as the identity on CH(X).

Example 2.15 (Finite group actions). Let X be a smooth projective variety
of dimension n and G a finite group acting on X. For any g ∈ G we have the
graph of g, which provides a correspondence Γg ∈ CHn(X ×X). Now let π =∑
g∈G αgg ∈ Q[G] be a projector, and consider the following correspondence:

Γπ =
1

|G|
∑
g∈G

αgΓg ∈ CHn(X ×X)Q.

The cycle Γπ is a projector due to the fact that Γg ◦ Γg′ = Γgg′ .

2.1.4 Cycle class

Assume that X is a smooth complex quasi-projective variety over C. Thus X
can also be seen as a smooth complex manifold, usually denoted by Xan to
emphasize the use of the holomorphic structural sheaf, or Xcl to emphasize the
use of the classical topology. Given a subvariety Z in X, one defines the cycle
class [Z] ∈ H2n−2k

B (X,Z) in the Betti cohomology groups of X (that is, the
cohomology of X(C) endowed with the classical topology). Let Z be a reduced
irreducible subvariety of codimension k in X. By Hironaka’s theorem, there is
a desingularization

ĩ : Z̃ −→ Z ⊂ X

of Z, and we may consider

H2n−2k,B(Z̃,Z) ∼= Z ĩ∗→ H2n−2k,B(X,Z) ∼= H2k
B (X,Z),

where the last isomorphism is given by Poincaré duality, and the first isomor-
phism comes from the fact that Z̃(C) is a connected compact complex manifold,
hence canonically oriented. The image of 1 gives a class

[Z] ∈ H2k
B (X,Z).

This is the integral Betti cycle class of Z. In many places we will use the
rational cycle class [Z] ∈ H2k

B (X,Q).
We extend the above cycle class by linearity to any cycle Z =

∑
i niZi ∈

Zk(X).

Lemma 2.16. If Z is rationally equivalent to 0, then [Z] = 0 in H2k
B (X,Z).

The map Z 7→ [Z] thus gives the “cycle class” map

cl : CHl(X)→ H2n−2l
B (X,Z).

The cycle class map is compatible with the intersection product

· : CHl(X)× CHk(X)→ CHk+l(X),
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and the cup-product

∪ : H2l
B (X,Z)×H2k

B (X,Z)→ H2k+2l
B (X,Z).

Proposition 2.17. For Z ∈ CHl(X), Z ′ ∈ CHk(X), we have

cl(Z · Z ′) = cl(Z) ∪ cl(Z ′) ∈ H2k+2l
B (X,Z).

The cycle class map satisfies the following functoriality properties.

Proposition 2.18. Let i : Y → X be a morphism between smooth varieties:

(1) If Z ∈ CHk(X), then

i∗ cl(Z) = cl(i∗Z) ∈ H2k
B (Y,Z).

(2) If i is proper and Z ∈ CHk(Y ), then

cl(i∗Z) = i∗ cl(Z) ∈ H2k−2 dimY+2 dimX
B (X,Z).

It follows that the class map is compatible with correspondences. If X and Y
are proper and smooth, and Γ ∈ CHr(X × Y ), then for every Z ∈ CHk(X), we
have

cl(Γ∗(Z)) = [Γ]∗(cl(Z)),

where [Γ]∗ : H2k
B (X,Z)→ H2l

B (Y,Z), l = r + k − dimX is defined by

[Γ]∗(α) = pr2∗(pr∗1 α ∪ [Γ])

(see [101, II, 9.2.4]).

We will also need the cycle class for cycles on smooth quasi-projective com-
plex algebraic varieties. Let Z =

∑
i niZi, Zi ⊂ X be such a cycle, with

codimZi = k. In order to define

[Z] ∈ H2k
B (X,Z),

we choose a smooth projective completion X of X. Then X is a Zariski open set
of X and the localization exact sequence (2.2) shows that there exists a cycle
Z ∈ CHk(X) such that

Z |X = Z

and that Z is well defined up to a cycle Z ′ of X supported on X \X. Looking
at the definition of the cycle class for cycles on X, we see that the class of such
a cycle Z ′ vanishes in H2k

B (X,Z) since it vanishes in H2k
B (X \ SuppZ ′,Z) and

SuppZ ′ ⊂ X \ X. We thus conclude that the class [Z]|X does not depend on

the choice of Z. For similar reasons it also does not depend on the choice of
compactification X.
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The cycle class [Z] ∈ H2k
B (X,Z) contains only a very small piece of infor-

mation on the rational equivalence class of a cycle Z on X. This is already
seen in the case of divisors, since the group CH1(X)hom is the group Pic0(X) of
topologically trivial line bundles on X, which is an abelian variety. This is still
more obvious with higher-codimensional cycles, since the group of 0-cycles can
be infinite-dimensional as a consequence of Mumford’s theorem (Theorem 1.1;
see [71]), while the cohomology class of a 0-cycle only gives its degree.

On the other hand, there is the following challenging conjecture by Bloch
and Beilinson which says that if Z ∈ CHk(X × Y )Q is a correspondence, the
morphism Z∗ : CH(X)Q → CH(Y )Q is largely controlled by [Z]. We refer to [58]
for an expanded exposition of the conjecture and to [89] for the construction of
a candidate for such a filtration.

Conjecture 2.19. For any smooth projective variety X, there exists a de-
creasing filtration F on CHi(X)Q, with the following properties:

(1) F 0 CHi(X)Q = CHi(X)Q and F 1 CHi(X)Q = CHi(X)hom,Q, the group of
cycles cohomologous to 0.

(2) The filtration F is stable under correspondences: if Z ∈ CHk(X × Y )Q,
then Z∗(F

i CHl(X)Q) ⊂ F i CHl+k−n(Y )Q, where n = dimX.

(3) The induced map Z∗ : GriF CHl(X)Q → GriF CHl+k−n(Y )Q vanishes if
[Z] = 0 in H2k(X × Y,Q).

(4) One has F k+1 CHk(X)Q = 0 for any X and k.

2.2 HODGE STRUCTURES

Definition 2.20. A weight k rational Hodge structure (L,Lp,q) consists of
the data of a Q-vector space L and a decomposition

LC := L⊗ C = ⊕p+q=kLp,q

satisfying the Hodge symmetry condition

Lp,q = Lq,p.

The Hodge filtration F ∗LC associated to such a Hodge structure is the de-
creasing filtration defined by

F pLC = ⊕i≥pLi,k−i.

If X is a smooth projective variety, the kth Betti cohomology group Hk
B(X,Q)

of X with rational coefficients carries a Hodge structure of weight k (see [101,
I, 7.1]). The corresponding Hodge filtration on Hk

B(X,C) is obtained using the
isomorphism

Hk
B(X,C) = Hk(Xcl,Ω

•
Xan

),
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where ΩiXan
is the sheaf of holomorphic i-forms on Xcl, and is induced by the

naive filtration on the complex Ω•Xan
,

F pΩ•Xan
:= Ω•≥pXan

.

Thus the Hodge filtration is easy to define. The hard part is to prove that,
letting

Hp,q(X) = F pHk
B(X,C) ∩ F qHk

B(X,C), k = p+ q,

one has the decomposition

Hk
B(X,C) = ⊕p+q=kHp,q(X).

2.2.1 Polarization

Definition 2.21. A polarization on a weight k Hodge structure (L,Lp,q)
consists of a nondegenerate intersection pairing ( , ) on L, which is skew symmet-
ric if k is odd and symmetric if k is even, and satisfies the following conditions.
Let H be the Hermitian intersection pairing on LC defined by

H(a, b) = ik(a, b),

then we have the following:

(i) (First Hodge–Riemann bilinear relations). The Hodge decomposition of L
is orthogonal with respect to H.

(ii) (Second Hodge–Riemann bilinear relations). The restriction H|Lp,q is def-
inite, of sign (−1)p.

The interest of polarized Hodge structures lies in the following semisimplicity
result.

Theorem 2.22. Let (L,Lp,q) be a rational polarized Hodge structure and
L′ ⊂ L be a sub-Hodge structure. Then L decomposes as a direct sum of Hodge
structures:

L = L′ ⊕ L′′.

Proof. The key point is to observe that the restriction of ( , ) to L′ is
nondegenerate. This follows indeed from the fact that H remains nondegenerate
on each L′

p,q
because it is definite on each Lp,q, and from the fact that the L′

p,q

are mutually perpendicular with respect to H. Having this, we observe that
because of condition (i) above, the orthogonal complement L′′ := L′

⊥
of L′ in

L is a sub-Hodge structure of L. This concludes the proof since we have just
observed that L′ and L′′ are supplementary. �

One important application is the following Corollary 2.24 for which we need
the notion of a Hodge class (that we will develop in Section 2.2.2).
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Definition 2.23. Let (L,Lp,q) be a Hodge structure of weight 2k. A Hodge
class of L is a class in L ∩ Lk,k, the intersection being taken in LC.

Corollary 2.24. Let φ : L→M be a morphism of rational Hodge structure,
where L is polarized. Then Imφ is a sub-Hodge structure of M , and L contains
a sub-Hodge structure L′ such that φ|L′ is an isomorphism onto Imφ.

In particular, if β ∈ Imφ is a Hodge class, there exists a Hodge class β′ ∈ L
such that β = φ(β′).

Proof. The first point is obvious and does not need the polarization. Let
L′′ := Kerφ. This is a sub-Hodge structure of L. By Theorem 2.22, there is a
decomposition of L into a direct sum of Hodge structures: L = L′ ⊕ L′′. It is
then clear that φ|L′ is an isomorphism of Hodge structures onto its image. �

If X is a smooth projective variety, the Hodge structures on Hk
B(X,Q) ad-

mit polarizations. This is a crucial difference between projective and Kähler
geometry (see [102]). Such polarizations are obtained as follows (see [101, I,
7.1.2]): One chooses an ample line bundle L on X and considers the class
l := c1(L) ∈ H2

B(X,Q). This class satisfies the hard Lefschetz property,

ln−k∪ : Hk
B(X,Q) ∼= H2n−k

B (X,Q) ∀ k ≤ n := dimX. (2.6)

A formal consequence of this is the Lefschetz decomposition of Hk
B(X,Q) into

a direct sum of sub-Hodge structures,

Hk
B(X,Q) = ⊕k−2r≥0l

r ∪Hk−2r
B (X,Q)prim,

where

Hk−2r
B (X,Q)prim := Ker

(
Hk−2r
B (X,Q)

ln−k+2r+1

→ H2n−k+2r+2
B (X,Q)

)
.

This decomposition is orthogonal with respect to the pairing

(a, b)l :=

∫
X

ln−k ∪ a ∪ b

on Hk
B(X,Q).

The final step is to prove that up to a sign, the pairing ( , )l polarizes each
sub-Hodge structure lr∪Hk−2r

B (X,Q)prim, and this is exactly the content of the
second Hodge-Riemann bilinear relations.

2.2.2 Hodge classes

Let (L,Lp,q) be a rational Hodge structure of weight 2k. We introduced Hodge
classes in L in Definition 2.23. Let X be a smooth projective complex variety.
Cycle classes [Z] ∈ H2k

B (X,Q) are Hodge classes on X, that is, Hodge classes
for the Hodge structure on H2k

B (X,Q) (see [101, I, 11.3]). We will denote by

Hdg2k(X) the Q-vector space of degree 2k Hodge classes on X. The Hodge
conjecture states the following.
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Conjecture 2.25. Any Hodge class α ∈ Hdg2k(X) is a linear combination
with rational coefficients of Betti cycle classes of algebraic subvarieties of X, so

α =
∑N
i=1 ai [Zi]B , ai ∈ Q.

A well-known fact is that the Hodge conjecture is true for k = 1. This is
known as the Lefschetz theorem on (1, 1)-classes (see [101, I, 11.3]). It is also
true for degree (2n−2) Hodge classes on smooth projective varieties of dimension
n, by the degree 2 case combined with the hard Lefschetz isomorphism (5.24),
which gives an isomorphism of Hodge structures

ln−2 : H2
B(X,Q) ∼= H2n−2

B (X,Q).

Indeed, this isomorphism sends cycle classes to cycle classes, by compatibility
of the cycle class map with the cup-product and the intersection product, and
induces an isomorphism

Hdg2(X) ∼= Hdg2n−2(X).

Hodge classes play a crucial role in the theory of motives because of the next
lemma. Let X,Y be projective complex manifolds with dimX = n. Suppose
that k + l = 2r is even. We apply the Künneth decomposition. Given

α ∈ Hk
B(X, Q)⊗H l

B(Y, Q) ⊂ H2r
B (X × Y,Q),

we can, by duality, see α as an element,

α̃ ∈ Hom(H2n−k
B (X, Q), H l

B(Y, Q)).

With this terminology, we have the following result (see [101, I, Lemma 11.41]).

Lemma 2.26. α is a Hodge class in X × Y if and only if α̃ is a morphism
of Hodge structures of bidegree (r − n, r − n).

2.2.3 Standard conjectures

Let X be a smooth projective variety of dimension n. The Künneth decompo-
sition of H∗B(X ×X,Q) gives

Hm
B (X ×X,Q) ∼=

⊕
p+q=m

Hp
B(X,Q)⊗Hq

B(X,Q).

Poincaré duality on X allows this to be rewritten as

Hm
B (X ×X,Q) ∼=

⊕
p+q=m

Hom(H2n−p
B (X,Q), Hq

B(X,Q)). (2.7)

There are two kinds of particularly interesting Hodge classes on X × X
obtained from Lemma 2.26:
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(a) Künneth components of the diagonal. Let m = 2n and consider for each
0 ≤ q ≤ 2n the element IdHqB(X,Q), which provides by (2.7) and Lemma 2.26
a Hodge class δq of degree 2n on X. This class is called the qth Künneth
component of the diagonal of X. The first standard conjecture (the Künneth
standard conjecture or Conjecture C in the terminology of [61]) is the following.

Conjecture 2.27. The classes δi are algebraic, that is, are classes of alge-
braic cycles on X ×X with rational coefficients.

(b) Lefschetz operators and their inverses. Let L be an ample line bundle
on X, and l := c1(L) ∈ H2

B(X,Q). For any integer k ≤ n, the hard Lefschetz
theorem [101, I, 6.2.3] says that the cup-product map

ln−k∪ : Hk
B(X,Q)→ H2n−k

B (X,Q)

is an isomorphism. This is clearly an isomorphism of Hodge structure. Its
inverse

(ln−k∪)−1 : H2n−k
B (X,Q)→ Hk

B(X,Q)

is also an isomorphism of Hodge structures, which by (2.7) and Lemma 2.26
provides a Hodge class λn−k of degree 2k on X × X. The second standard
conjecture we will consider (the Lefschetz conjecture or Conjecture B in the
terminology of [61]) is the following.

Conjecture 2.28. The classes λi are algebraic, that is, are classes of alge-
braic cycles on X ×X with rational coefficients.

The following conjecture (which could have been stated as a standard con-
jecture) is stated in [114].

Conjecture 2.29. Let X be a smooth complex algebraic variety and let Y ⊂
X be a closed algebraic subset. Let Z ⊂ X be a codimension k algebraic cycle,
and assume that the cohomology class [Z] ∈ H2k

B (X,Q) vanishes in H2k
B (X \

Y,Q). Then there exists a codimension k cycle Z ′ on X with Q-coefficients,
which is supported on Y and such that [Z ′] = [Z] in H2k

B (X,Q).

Remark 2.30. It is a nonobvious fact that, under our assumptions, there
is a rational Hodge class β on a desingularization τ : Ỹ → Y of Y , such that
(j ◦ τ)∗β = [Z], where j is the inclusion of Y in X (see the proof of Lemma 2.31
below). Thus Conjecture 2.29 is implied by the Hodge conjecture.

There is a particular numerical situation where this conjecture is proved.

Lemma 2.31 (See [114]). Conjecture 2.29 is satisfied by codimension k cycles
Z of X whose cohomology class vanishes away from a codimension (k−1) closed
algebraic subset Y ⊂ X.

In particular, Conjecture 2.29 is satisfied by codimension 2 cycles.
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Proof. Indeed, if we have a codimension k cycle Z ⊂ X, whose cohomology
class [Z] ∈ H2k

B (X,Q) vanishes on the open set X \ Y , where codimY ≥ k − 1,

then we claim that there are Hodge classes αi ∈ Hdg2k−2ci(Ỹi,Q) such that

[Z] =
∑
i

j̃i∗αi,

where j̃i : Ỹi → X are projective desingularizations of the irreducible compo-
nents Yi of Y , and ci := codimYi. Indeed, here we use the fact that the “pure
part” of the mixed Hodge structure on H2n−2k,B(Y,Q) (see Section 2.2.4 be-

low) is equal to the image of ⊕H2n−2k,B(Ỹi,Q) by Theorem 2.36. The class
[Z] comes from a class in H2n−2k,B(Y,Q), hence by Theorem 2.36 from a class

in the pure part of H2n−2k,B(Y,Q), thus from a class in ⊕H2n−2k,B(Ỹi,Q).
We now use Corollary 2.24 to conclude that it comes from a Hodge class in
⊕H2n−2k,B(Ỹi,Q). The claim is proved. As ci ≥ k − 1 for all i, the classes αi
are cycle classes on Ỹi by the Lefschetz theorem on (1, 1)-classes, which concludes
the proof. �

The following is proved in [114].

Proposition 2.32 (Voisin 2011). The Lefschetz conjecture for any X is
equivalent to the conjunction of the Künneth standard conjecture (Conjecture 2.27)
and of Conjecture 2.29 for any X.

Proof. Let us assume that the Künneth standard conjecture holds for X
and Conjecture 2.29 holds for any pair Y ⊂ X ′. Let i < n. Consider the
Künneth component δ2n−i of ∆X , so δ2n−i ∈ Hi

B(X,Q) ⊗ H2n−i
B (X,Q) is the

class of an algebraic cycle Z on X × X. Let Yi
ji
↪→ X be a smooth complete

intersection of (n − i) ample hypersurfaces in X. Then the Lefschetz theorem
on hyperplane sections (see [101, II, 1.2.2]) says that

ji∗ : Hi
B(Yi,Q)→ H2n−i

B (X,Q)

is surjective. It follows that the class of the cycle Z vanishes on X×(X \Yi). By
Conjecture 2.29, there is an n-cycle Z ′ supported on X × Yi such that the class
(id, j)∗[Z

′] is equal to [Z]. Consider the morphism of Hodge structures induced
by [Z ′]:

[Z ′]∗ : H2n−i
B (X,Q)→ Hi

B(Yi,Q).

Composing with the morphism ji∗ : Hi
B(Yi,Q) → H2n−i

B (X,Q), we get ji∗ ◦
[Z ′]∗ = IdH2n−i

B (X,Q). It follows that [Z ′]∗ is injective, and that its transpose

[Z ′]∗ : Hi
B(Yi,Q) → Hi

B(X,Q) is surjective. We now apply [19, Proposition 8]
and induction on dimension to conclude that the Lefschetz standard conjecture
holds for X.

Conversely, assume the Lefschetz standard conjecture holds for any smooth
projective variety. It obviously implies the Künneth standard conjecture. It is a
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well-known fact (see [61], [108, Theorem 4]) that the Lefschetz standard conjec-
ture for a smooth complex projective variety M implies that homological and
numerical equivalence coincide for cycles on M . Let us show that the conclusion
of Conjecture 2.29 for X, Y, Z satisfying the given assumptions is already im-
plied by the fact that homological and numerical equivalence coincide for cycles
onX and a desingularization Ỹ of Y . Set n = dimX, k = codimZ, l = codimY .
Let j̃ : Ỹ → X be a desingularization of Y . By the same arguments used in the
proof of Lemma 2.31, we have that there exists a class β ∈ H2k−2l

B (Ỹ ,Q) such
that j̃∗β = [Z]. This class β gives by intersection a linear form η on the space

H2n−2k
B (Ỹ ,Q)alg. If homological and numerical equivalence coincide for cycles

on Ỹ , there is a codimension (k− l) cycle Z ′ with Q-coefficients on Y , such that
η is given by intersecting with the class of Z ′. The class j∗[Z

′] ∈ H2k
B (X,Q) has

the property that for any codimension (n− k) cycle class γ on X,〈
j∗[Z

′], γ
〉
X

=
〈
[Z ′], j∗γ

〉
Ỹ

=
〈
β, j∗γ

〉
Ỹ

=
〈
j∗β, γ

〉
X

=
〈
[Z], γ

〉
X
.

Thus, if homological and numerical equivalence coincide for cycles on X, we
conclude that [Z] = j∗[Z

′]. �

Remark 2.33. All the (more-or-less) standard conjectures stated above are
particular instances of the Hodge conjecture (Conjecture 2.25). The reason why
they are stated separately is that the Hodge classes appearing there have a
universal character that makes them much better candidates to be classes of
algebraic cycles: they are absolute Hodge classes (see [33], [104]). This means
that they have certain special properties satisfied by cycle classes, and the most
striking one from the viewpoint adopted there is the following: Grothendieck’s
theorem [49] says that the cohomology with complex coefficients H2k

B (X,C) of a
complex algebraic variety can be computed as algebraic de Rham cohomology,
that is, via algebraic differential forms. It follows that if X is defined over a field
K ⊂ C then this cohomology group is also defined over K. This K-structure
has nothing to do with the Betti Q-structure of H2k

B (X,C). One property of
absolute Hodge classes of degree 2k is that, after multiplication by (2iπ)k, they
become defined over a finite extension of K.

2.2.4 Mixed Hodge structures

Definition 2.34. A rational (real) mixed Hodge structure of weight n is
given by a Q-vector space (R-vector space) H equipped with an increasing filtra-
tionWiH called the weight filtration, and a decreasing filtration onHC := H⊗C,
called the Hodge filtration F kHC. The induced Hodge filtration on each GrWi H
is required to equip GrWi H with a Hodge structure of weight (n+ i).

Naturally, these filtrations are also required to satisfy F iH = 0 for suffi-
ciently large i, F iH = H for sufficiently small i, and similarly WiH = 0 for
sufficiently small i, WiH = H for sufficiently large i.
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Equivalently, for each i, k we must have

GrWi HC = F k GrWi HC ⊕ Fn+i−k+1 GrWi HC,

where
F k GrWi HC = Im(F kHC ∩WiHC → GrWi HC).

Remark 2.35. Our conventions do not follow Deligne’s conventions, accord-
ing to which the GrWi -part should have weight i. Our feeling is that the mixed
Hodge structures coming from geometry (for example, Hk(X,Q), where X is an
algebraic variety) have a natural weight k indicated by geometry, which is the
one we would like to attribute to the pure part. Thus there is in these notes a
shift of the indices for the weight filtration with respect to standard terminology.

Note that with this notation, one can define the twist L′ = L(r) of a mixed
Hodge structure L. It is the mixed Hodge structure of weight (n− 2r) with the
same underlying rational vector space as L obtained by deciding that WiL

′ =
W2r+iL and F pL′C = F r+pLC.

We have the obvious notion of a morphism of mixed Hodge structures. A
morphism α of filtered vector spaces (U,F ) and (V,G) is said to be strict if

Imα ∩GpV = α(F pU).

It is an elementary fact (see [101, II, 7.3.1]) that the morphisms of rational
Hodge structures are strict for the Hodge filtration. This result extends to
mixed Hodge structures; see [31].

Theorem 2.36 (Deligne 1971). The morphisms

α : (H,W,F )→ (H ′,W ′, F ′)

of (rational or real) mixed Hodge structures are strict for the filtrations W and
F .

This result follows from the following fact, for which we refer to [31] or [101,
II, 4.3.2].

Lemma 2.37. Let (H,W,F ) be a mixed Hodge structure. There exists a
decomposition as a direct sum,

HC = ⊕p,qHp,q, (2.8)

with Hp,q ⊂ F pHC ∩Wp+q−nHC, such that under the projection Wp+q−nHC →
GrWp+q−nHC, Hp,q can be identified with

Hp,q(GrWp+q−nHC) := F p GrWp+q−nHC ∩ F q GrWp+q−nHC.

More generally, we have

WiHC = ⊕p+q≤n+iH
p,q, (2.9)

F iHC = ⊕p≥iHp,q. (2.10)

This decomposition is respected by the morphisms of mixed Hodge structures.
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Proof of Theorem 2.36. Indeed, if l′ ∈ α(HC) ∩W ′iH ′, let us write l′ =
α(l) and decompose l =

∑
lp,q as in (2.8). Then α(l) admits the decomposition

α(l) =
∑
α(lp,q) with α(lp,q) ∈ H ′p,q. But as l′ ∈ W ′iH ′C, we have α(lp,q) = 0

for p+ q > n+ i. Thus,

l′ = α

 ∑
p+q≤n+i

lp,q

 ∈ α(WiHC).

Therefore,

ImαC ∩W ′iH ′C = αC(WiHC).

It is then easy to see that this still holds when C is replaced by R or Q.
The same argument shows that α is also strict for the filtration F . �

2.2.5 Coniveau

Definition 2.38. A weight k Hodge structure (L,Lp,q) has (Hodge) coniveau
c ≤ k

2 if the Hodge decomposition of LC takes the form

LC = Lk−c,c ⊕ Lk−c−1,c+1 ⊕ · · · ⊕ Lc,k−c

with Lk−c,c 6= 0.

If L has coniveau ≥ r, we can define a Hodge structure L(r) of weight (k−2r)
with the same underlying Q-vector space as L, and Hodge decomposition

L(r)p,q = Lp+r,q+r. (2.11)

A fundamental result is the following (see [50]).

Theorem 2.39. If X is a smooth complex projective variety and Y ⊂ X is
a closed algebraic subset of codimension c, then Ker(j∗ : Hk

B(X,Q) → Hk
B(X \

Y,Q)), where j : X \ Y ↪→ X is the inclusion map, is a sub-Hodge structure of
coniveau ≥ c of Hk

B(X,Q).

Proof. Choose a desingularization τ : Ỹ → Y , and assume that Ỹ has pure
complex dimension (n− c).

We need the fact that morphisms of mixed Hodge structures are strict for
the weight filtration (see Theorem 2.36). We already know (via Poincaré duality
for open varieties) that the kernel of j∗ is the same as the image of

i∗ : H2n−k,B(Y,Q)→ H2n−k,B(X,Q)
DX∼= Hk

B(X,Q),

where DX is the Poincaré duality isomorphism. There is a mixed Hodge struc-
ture on both sides, of respective weights k − 2c, k. The composition is a mor-
phism of mixed Hodge structures of bidegree (c, c), with a pure Hodge structure
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on the right (see [31]). Thus by Theorem 2.36, its image is the same as the
image of the map

i∗ : W0H2n−k,B(Y,Q)→ H2n−k,B(X,Q) ∼= Hk
B(X,Q).

But by construction, the pure part W0H2n−k,B(Y,Q) of the mixed Hodge struc-
ture on H2n−k,B(Y,Q) coincides with the image of the map

τ∗ : H2n−k,B(Ỹ ,Q)→ H2n−k,B(Y,Q),

where on the left we have a pure Hodge structure of weight (k − 2c). That

concludes the proof, because, applying Poincaré duality on Ỹ , we proved that
Ker j∗ = Im(i ◦ τ)∗ : Hk−2c

B (Ỹ ,Q) → Hk
B(X,Q) and this morphism is a mor-

phism of Hodge structures of bidegree (c, c). �

The conjecture below, due to Grothendieck [50], proposes a characterization
of cohomology classes supported on a subvariety of codimension ≥ c (correcting
the original Hodge conjecture).

Conjecture 2.40 (Generalized Hodge conjecture, Grothendieck 1969). Let
L ⊂ Hk

B(X,Q) be a rational sub-Hodge structure of Hodge coniveau ≥ c. Then
there exists a closed algebraic subset Z ⊂ X of codimension c such that L van-
ishes under the restriction map Hk

B(X,Q)→ Hk
B(U,Q), where U := X \ Z.

Let us explain the link between the “standard” Hodge conjecture (Conjec-
ture 2.25) and the generalized Hodge conjecture.

The Hodge conjecture implies the generalized Hodge conjecture in two par-
ticular cases. The most obvious case occurs when k = 2c. In this case we have
LC = Lc,c and L consists of Hodge classes. The Hodge conjecture provides
codimension c cycles Z1, . . . , ZN of X such that

L =
〈
[Z1], . . . , [ZN ]

〉
⊗Q.

But then L vanishes on X \ (SupZ1 ∪ · · · ∪ SupZN ), as required.
The next, much more sophisticated, case is that in which k = 2c+ 1, so that

LC = Lc+1,c ⊕ Lc,c+1. (2.12)

Here we follow [83, 7.1.2]. In this case, referring to (2.11), L′ = L(c) is a
polarized Hodge structure of weight 1. We get such Hodge structures on the
first cohomology groups of curves, though not every Hodge structure of weight 1
is actually a Hodge structure of a curve. However, we have the following result.

Lemma 2.41. Any polarized Hodge structure of weight 1 arises as H1
B(A, Q)

for some abelian variety A.

The key point is the existence of polarization (arising from the intersection
form), but without polarizations, the lemma remains true with “abelian vari-
eties” replaced by “complex tori.” The lemma is a reformulation of the fact that
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the category of weight 1 rational polarized Hodge structures is the same as the
category of abelian varieties up to isogeny (see [101, I, Section 7.2.2]).

Using this lemma, we shall prove the following theorem.

Theorem 2.42 (See Peters and Steenbrink 2008, Observation 7.7). The
Hodge conjecture for degree (2k+ 2) on products C×X, where C is any smooth
projective curve, implies Conjecture 2.40 for sub-Hodge structures of H2k+1

B (X,Q)
of coniveau c, with k = 2c+ 1.

Proof. We start with a Hodge substructure L ⊂ H2c+1
B (X,Q) of coniveau

c. It is polarized, because the Hodge structure on H2c+1
B (X,Q) is polarized

(note however that the polarizations are not canonical). There exists then a po-
larized Hodge structure L′ of weight 1 and an isomorphism of Hodge structures
φ : L′ ∼= L of bidegree (c, c). By Lemma 2.41 we may assume L′ = H1

B(A, Q)
as Hodge structures. Having an abelian variety A and a morphism of Hodge
structures H1

B(A, Q) → H2c+1
B (X, Q), we can choose a curve C that is a com-

plete intersection of ample hypersurfaces in A. Then, by the Lefschetz theorem
on hyperplane sections [101, II, 1.2.2], there is a monomorphism

i∗ : H1
B(A, Q)→ H1

B(C, Q), (2.13)

which is a morphism of Hodge structures of pure weight 1. Since the category
of polarized Hodge structures of weight 1 is semisimple, (2.13) always splits, so
H1
B(A, Q) is a direct summand, as a Hodge substructure, of H1

B(C, Q). We thus
get a morphism of Hodge structures ψ : H1

B(C, Q)→ H2c+1
B (X, Q) of bidegree

(c, c). By Lemma 2.26, ψ determines a Hodge class ψ̃ of degree (2c + 2) on
C ×X. If the usual Hodge conjecture is true on C ×X, then this class is the
class of a codimension (c+ 1) cycle Z =

∑
i aiZi of C ×X:

ψ̃ = [Z] =
∑

ai[Zi], ai ∈ Q.

The resulting correspondence induces maps

H1
B(SupZ, Q)

p∗1←− H1
B(C, Q)

∑
i aip2,i∗ ↘

y[Z]∗

H2c+1
B (X, Q).

(In fact, one should desingularize the components Zi of Z and replace the sup-

port SupZ of Z by
⊔
Z̃i.) Hence Im([Z]∗) = Imψ = L vanishes away from

p2(SupZ), which is of codimension c. Thus, L satisfies the generalized Hodge
conjecture. �

The above argument shows that the usual Hodge conjecture for varieties that
are products with a curve implies the generalized Hodge conjecture for weight
n = 2c + 1 and coniveau c. In order to deduce, by a similar argument, the
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generalized Hodge conjecture from the standard Hodge conjecture, there is an
important missing point, namely, the adequate generalization of Lemma 2.41.
This leads to the following question.

Question 2.43. Given a weight k Hodge structure L ⊂ Hk
B(X, Q) of coniveau

r, so that
LC = Lk−r,r ⊕ · · · ⊕ Lr,k−r,

consider the weight (k − 2r) Hodge structure L′ = L(r) which has the same
underlying lattice as L, and Hodge decomposition

L′
p,q

= Lp+r,q+r.

Does there exist a smooth projective variety Y admitting L′ as a Hodge substruc-
ture of Hk−2r

B (Y, Q)?
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Decomposition of the diagonal

In this chapter, we explain the method initiated by Bloch and Srinivas, and later
developed independently by Lewis, Schoen, Laterveer, and Paranjape, which leads
to statements of the following type (see Theorem 3.20): if a smooth projective
variety has trivial Chow groups of k-cycles homologous to 0 for k ≤ c− 1, then
its transcendental cohomology has geometric coniveau ≥ c.

This result is a vast generalization of Mumford’s theorem (Theorem 1.1). A
major open problem is the converse of this result.

It turns out that statements of this kind are a consequence of a general spread-
ing principle for rational equivalence (see Theorem 3.1). Consider a smooth
projective family X → B and a cycle Z → B, everything defined over C; then,
if at the very general point b ∈ B, the restricted cycle Zb ⊂ Xb is rationally
equivalent to 0, there exist a dense Zariski open set U ⊂ B and an integer N
such that NZU is rationally equivalent to 0 on XU .

We will spell out the consequences of this principle, such as the generalized
decomposition of the diagonal, and explain other spreading principles that will
be used in subsequent chapters.

3.1 A GENERAL PRINCIPLE

The following result is essentially due to Bloch and Srinivas [15]. Let f : X → Y
be a smooth projective morphism, where X and Y are smooth (for simplicity),
and let Z ∈ CHk(X) be a cycle in X. Consider the following property.

(∗) There exists a subvariety X ′ ⊂ X such that for every y ∈ Y , the cycle
Zy := Z|Xy := j∗yZ ∈ CHk(Xy) vanishes in CHk(Xy − X ′y), where jy is the
inclusion of the fiber Xy = f−1(y) into X.

Theorem 3.1. If Z satisfies the property (∗), then there exist an integer
m > 0 and a cycle Z ′ supported in X ′, such that we have the equality

mZ = Z ′ + Z ′′ in CHk(X), (3.1)

where Z ′′ is a cycle supported in XY ′ := f−1(Y ′) for some proper closed alge-
braic subset Y ′ ⊂ Y .

We refer to [15] or to [101, II, 10.2.1] for the proof of this theorem. Note
that the statement given here is slightly different from the one given in [15], the
reason being that we work over C, which is very big, and contains, in particular,
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any finitely generated field over Q or the algebraic closure of such a field. The-
orem 3.1 would be (expectedly) wrong if we were working over a countable field
like Q and considering only the closed points y ∈ Y (Q). Indeed, a conjecture
of Beilinson says that looking at cycles defined over Q on a variety defined over
Q does not allow us to conclude anything about the Chow groups of the corre-
sponding variety over C, except for the small part of them which is encoded in
the (Deligne) cycle class. What makes this expectation possible is the following
basic fact.

Lemma 3.2. Let f : X → Y be a projective fibration, where X and Y are
smooth, and let Z ∈ CHk(X) be a cycle in X. Then the set of points y ∈ Y such
that the restricted cycle Zy is rationally equivalent to 0 is a countable union of
closed algebraic subsets of Y .

Assuming everything is defined over Q, this countable union could exhaust
Y (Q) without saying anything about what happens over the very general point
or the geometric generic point.

Remark 3.3. Note also that Lemma 3.2 shows that in Theorem 3.1 we could
have replaced our assumption that Zy := Z|Xy := j∗yZ ∈ CHk(Xy) vanishes in

CHk(Xy−X ′y) for all y ∈ Y by the condition that Zy := Z|Xy := j∗yZ ∈ CHk(Xy)

vanishes in CHk(Xy−X ′y) for a very general point y of Y , that is, for any point
of Y in the complement of a countable union of proper closed algebraic subsets of
Y . Indeed, by a Baire category argument and Lemma 3.2, the two assumptions
are equivalent.

We will apply this principle in Section 5.3, in the following rather simple
form: First of all we assume the variety X ′ above is empty. Second, we only
consider the cohomological version of (3.1).

Corollary 3.4. Let π : X → Y be a smooth morphism, where X and Y are
smooth, and let Z be a codimension k algebraic cycle on X. Assume that the
restrictions Z|Xy vanish in CHk(Xy) for any y ∈ Y . Then there is a nonzero
integer m and a proper closed algebraic subset Y ′ ⊂ Y such that

m[Z] = 0 in H2k
B (X \XY ′ ,Z).

Equivalently, [Z] = 0 in H2k
B (X \XY ′ ,Q).

It is important to point out that this corollary holds only for rational equiv-
alence, and not for weaker equivalence relations like algebraic equivalence which
is defined as follows.

Definition 3.5. A cycle Z ∈ Zk(X) is said to be algebraically equivalent
to 0 if there exists a smooth curve C, a 0-cycle z ∈ Z0(C) homologous to 0, and
a correspondence Γ ∈ Zk(C ×X) such that Z = Γ∗(z).

Example 3.6. A 0-cycle on a smooth projective variety X is algebraically
equivalent to 0 if and only if it is homologous to 0 (or equivalently of degree
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0 if X is connected). Indeed, such a 0-cycle is then homologous to 0 on any
curve C ⊂ X supporting it, assuming C ∩ Xi is connected for each connected
component Xi of X.

Example 3.7. A divisor D ∈ CH1(X) is algebraically equivalent to 0 if
and only if it is homologous to 0. This follows from the identification between
CH1(X) and Pic(X). The exponential exact sequence and the identification
Pic(X) = Pic(Xan) = H1(Xan,O∗Xan) imply that

Pic0(X) := Ker(c1 : H1(Xan,O∗Xan)→ H2
B(X,Z)) = CH1(X)hom

is parametrized by the abelian variety which as a complex torus is the quo-
tient H1(Xan,OXan)/H1

B(X,Z). As this abelian variety is connected, divisors
parametrized by Pic0(X) are algebraically equivalent to 0 (see [28] or [101, I,
12.1, 12.2] for more details).

If one takes a smooth projective family of curves C → Y , and a family
Z ⊂ C of 0-cycles homologous to 0 in the fibers, the cycles Zt, t ∈ Y are thus
algebraically equivalent to 0 in the closed fibers (and also in the geometric generic
fiber) by Example 3.6, but the class [Z] ∈ H2

B(C,Q) is nonzero in general, and
in fact does not vanish over any Zariski open set Y 0 of Y ; it is computed by the
theory of the class of a normal function [101, II, 8.2.2].

One way to understand why the spreading principle holds for rational equiv-
alence and not for algebraic equivalence is the following: In Corollary 3.4, if we
replace rational equivalence by algebraic equivalence, our assumption is (by a
countability argument) equivalent to the fact that the restriction of the cycle
Z to the geometric generic fiber (which is a variety Xη defined over C(Y )) is
algebraically equivalent to 0. But this does not imply that there exists a Zariski
open set Y 0 of Y such that, denoting X0 := π−1(Y 0), the restriction Z|X 0 is up
to torsion, algebraically equivalent to 0 over C, for the following reason: there
is a curve Cη defined over C(Y ) and a 0-cycle z homologous to 0 on Cη, such
that Zη is, as above, the image of z under a codimension k correspondence Γ
between Cη and Xη. This correspondence can be spread out over a finite cover
of a Zariski open set of Y , and this can be done as well for the curve Cη and
the cycle z, giving rise to families over a finite cover of a Zariski dense open set
Ỹ 0 of the base. The problem is that the spread-out curve C is not in general
isotrivial on Ỹ 0, that is, isomorphic to C0× Ỹ 0, maybe up to passing to a finite
étale cover of Ỹ 0. Even if it was isotrivial, the codimension 1 cycle z would
spread to a codimension 1 cycle Z ′ on C0 × Ỹ 0, which might not be cohomolo-
gous to 0 over any Zariski open set of Ỹ 0, if g(C0) > 0. Indeed, we only know

that it is cohomologous to 0 on the fibers of pr2 : C0 × Ỹ 0 → Ỹ 0, but when

g(C0) > 0, the Künneth decomposition of H2
B(C0× Ỹ 0,Q) involves a nontrivial

term H1
B(C0,Q)⊗H1

B(Ỹ 0,Q), which in general does not vanish on any Zariski

open set of Ỹ 0.
On the contrary, when the curve C0 is P1, we have H1

B(C0,Q) = 0, hence

H2
B(C0 × Ỹ 0,Q) = H2

B(C0,Q)⊕H2
B(Ỹ 0,Q),
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and thus a codimension 1 cycle Z ′ in C0× Ỹ 0, which is of degree 0 on the fibers
C0 × t, is homologous to (hence algebraically equivalent to) the pull-back of

a codimension 1 cycle on Ỹ 0, hence its cohomology class (and in fact also its
rational or algebraic equivalence class) vanishes over a dense Zariski open set of

Ỹ 0.
In order to state different applications of Theorem 3.1, we consider now the

case where X = X1×Y , f is the second projection, and X ′ = X ′1×Y . We then
obtain the following result.

Corollary 3.8. Let Γ ∈ CHk(X1 × Y ), and assume that for every y ∈ Y ,
the cycle Γ∗(y) ∈ CHk(X1) restricts to 0 in CHk(X1 − X ′1). Then we have a
decomposition

mZ = Z ′ + Z ′′ ∈ CHk(X1 × Y ),

where Z ′ is supported in X ′1 × Y and Z ′′ is supported in X1 × Y ′, for a proper
closed Y ′ ⊂ Y .

Remark 3.9. Our assumption is equivalent, by the localization exact se-
quence (2.2), to the fact that the cycle Γ∗(y) is rationally equivalent to a cycle
supported on X ′1.

Applying this result to the diagonal of a smooth projective variety Y , we get
the famous Bloch–Srinivas decomposition of the diagonal (see [15]).

Theorem 3.10 (Bloch and Srinivas 1983). If Y is a smooth projective variety
such that CH0(Y ) is supported on some closed algebraic subset W ⊂ Y , there is
an equality in CHd(Y × Y ), d = dimY :

N∆Y = Z1 + Z2, (3.2)

where N is a nonzero integer and Z1, Z2 are codimension d cycles with

SuppZ1 ⊂ D × Y, D  Y, SuppZ2 ⊂ Y ×W.

Remark 3.11. The meaning of the integer N appearing above is discussed
in the paper [113] (see also Section 6.3). If dimY = 3 and dimW ≤ 1, then N
annihilates, for example, the torsion in H∗B(Y,Z), hence it cannot in general be
set equal to 1.

Although the cohomological version of the statement above may seem much
weaker, it leads in practice to a number of applications. We thus state it sepa-
rately as the cohomological Bloch–Srinivas decomposition of the diagonal.

Corollary 3.12 (Cohomological decomposition of the diagonal). If Y is a
smooth projective variety such that CH0(Y ) is supported on some closed algebraic
subset W ⊂ Y , there is an equality of cycle classes in H2d

B (Y ×Y,Q), d = dimY :

N [∆Y ] = [Z1] + [Z2], (3.3)

where N is a nonzero integer and Z1, Z2 are codimension d cycles with

SuppZ1 ⊂ T × Y, T  Y, SuppZ2 ⊂ Y ×W.
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3.1.1 Mumford’s theorem

The following is a generalization of the original Mumford theorem in [71] (see
Theorem 1.1) which concerned 0-cycles and holomorphic forms on surfaces (see
also [86] for higher-dimensional generalizations). The proof we give below is due
to Bloch and Srinivas.

Theorem 3.13 (Generalized Mumford theorem). Let X be smooth projective
of dimension n. If there exists a closed algebraic subset j : X ′ ↪→ X such that
dimX ′ < r and the map

j∗ : CH0(X ′)→ CH0(X)

is surjective, then H0(X,ΩkX) = 0 for k ≥ r.

Proof. We use the decomposition (3.3). We thus have equality of the cor-
responding cohomology classes:

m[∆X ] = [Z ′] + [Z ′′] ∈ H2n
B (X ×X,Z),

where m is a nonzero integer and Z ′, Z ′′ are codimension n cycles of X × X
with

SuppZ ′ ⊂ T ×X, T  X, SuppZ ′′ ⊂ X ×X ′.

We can view these cohomology classes, or rather their Künneth components of
adequate degree, as morphisms of Hodge structures

m[∆X ]∗, [Z ′]∗, [Z ′′]∗ : Hk
B(X,Z)→ Hk

B(X,Z)

(see [101, I, 11.3.3]). Then we have the equality

m[∆X ]∗ = [Z ′]∗ + [Z ′′]∗ ∈ Hom(Hk
B(X,Z), Hk

B(X,Z)). (3.4)

Now, the morphism [∆X ]∗ is equal to the identity, by the fact that ∆X is
the diagonal. Thus, (3.4) gives

m Id = [Z ′]∗ + [Z ′′]∗ ∈ Hom(Hk
B(X,Z), Hk

B(X,Z)).

In particular, for η ∈ H0(X,ΩkX) ⊂ Hk
B(X,C), we have

mη = [Z ′]∗η + [Z ′′]∗η ∈ Hk
B(X,C). (3.5)

Now let l : T̃ → X be a desingularization of T . As the cycle Z ′′ is supported in
T ×X, it comes from a cycle Z̃ ′′ of T̃ ×X, Z ′′ = (l, Id)∗(Z̃

′′), so we get

[Z ′′] = (l, Id)∗([Z̃
′′]) in H2d

B (X ×X,Z). (3.6)

Recall that if α ∈ H2n
B (X ×X,Z), the corresponding morphism

α∗k : Hk
B(X,Z)→ Hk

B(X,Z)
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is defined by

α∗k(β) = p1∗(p
∗
2(β) ∪ α). (3.7)

Formulas (3.6) and (3.7) then show that

[Z ′′]∗ = l∗ ◦ [Z̃ ′′]∗. (3.8)

Similarly, let j̃ : X̃ ′ → X be a desingularization of X ′, and let Z̃ ′ be a cycle of
X × X̃ ′ such that (Id, j̃)∗(Z̃

′) = Z ′. Then formula (3.7) shows that

[Z ′]∗ = [Z̃ ′]∗ ◦ j̃∗. (3.9)

By equations (3.8) and (3.9), (3.5) now gives

mη = [Z̃ ′]∗ ◦ j̃∗η + l∗ ◦ [Z̃ ′′]∗η. (3.10)

But since dimX ′ < r, for k ≥ r we have

j̃∗η = 0 in H0(X̃ ′,Ωk
X̃′

).

Thus, we have [Z̃ ′]∗ ◦ j̃∗η = 0 and

mη = l∗ ◦ [Z̃ ′′]∗η. (3.11)

Moreover, since dimT < dimX, the morphism of Hodge structures l∗ is of
bidegree (s, s) with s = codimT > 0, so the intersection of its image with
H0(X,ΩkX) = Hk,0(X) is reduced to 0. Thus, the equality (3.11) implies that
η = 0 for η ∈ H0(X,ΩkX), k ≥ r. �

3.1.2 Further applications

The following result is proved in [15].

Theorem 3.14 (Bloch and Srinivas 1983). On a smooth projective variety
X with CH0(X) supported on a surface, homological equivalence and algebraic
equivalence coincide for codimension 2 cycles.

Let us make a few comments. First of all, the result is optimal, since Griffiths
proved that there exist codimension 2 cycles on certain threefolds, which are ho-
mologous to 0, no multiple of them being algebraically equivalent to 0 (see [48]).
Clemens even proved in [20] that the group CH2(X)Q/alg of cycles modulo alge-
braic equivalence tensored by Q can be infinitely generated. Next, this theorem
has two distinct parts, namely proving that under the same assumptions, the
group CH2(X)/alg is of torsion, and proving that the torsion does not appear.
The second part is much more sophisticated, as it uses the Merkurjev–Suslin
theorem and Bloch–Ogus formula for CH2(X)/alg (see Section 6.2.2). We will
content ourselves with establishing the statement with Q-coefficients.
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Proof of Theorem 3.14 with Q-coefficients. We apply Theorem 3.10.
Letting d = dimX, there is a surface W ⊂ X and an equality in CHd(X ×X):

N∆X = Z1 + Z2,

where N is a nonzero integer and Z1, Z2 are codimension d cycles with

SuppZ1 ⊂ D ×X, D  X, SuppZ2 ⊂ X ×W.

If we introduce desingularizations j̃D : D̃ → X of D ↪→ X and j̃W : W̃ → X of
W ↪→ X, the cycles Z1 and Z2 lift (maybe with Q-coefficients) to Z̃1 ⊂ D̃×X,

and Z̃2 ⊂ X × W̃ , respectively. We then have the equality

N∆X = (j̃D, IdX)∗(Z̃1) + (IdX , j̃W )∗(Z̃2) in CHd(X ×X)Q,

and deduce, by letting both sides act on CH2(X)Q, that for any codimension 2
cycle γ on X, we have

Nγ = j̃D∗(Z̃
∗
1γ) + Z̃∗2 (j̃∗W γ) in CH2(X)Q. (3.12)

Assume now that γ is cohomologous to 0 on X. Then Z̃∗1γ is a codimension 1

cycle cohomologous to 0 on D̃, hence it is algebraically equivalent to 0 by Exam-
ple 3.7. Similarly, j̃∗W γ is a codimension 2 cycle (hence a 0-cycle) cohomologous

to 0 on the surface W̃ , hence it is algebraically equivalent to 0. It follows from
(3.12) that γ is algebraically equivalent to 0. �

Let us give two further applications also proved in [15], which use only the
cohomological version of the decomposition of the diagonal (Corollary 3.12).

Theorem 3.15 (Bloch and Srinivas 1983). Let X be a smooth complex pro-
jective variety such that there exists a closed algebraic subset j : X ′ ↪→ X, of
dimension ≤ 3, such that the map

j∗ : CH0(X ′)→ CH0(X)

is surjective. Then the Hodge conjecture holds for classes of degree 4.

This result was originally proven by Conte and Murre [26] in the case where
X is a four-dimensional variety covered by rational curves. Such a variety X
satisfies the hypothesis, since every point x is contained in a rational curve Cx
whose normalization is isomorphic to P1. By the definition of rational equiva-
lence, all the points y ∈ Cx are rationally equivalent in Cx, so also in X, and
if X ′ is an ample hypersurface of X, then Cx intersects X ′ and x is rationally
equivalent in X to any point of X ′ ∩ Cx.

Proof of Theorem 3.15. Applying Corollary 3.12, we see that there ex-
ists a proper subset T ⊂ X, which we may assume to be of codimension 1, and
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n-dimensional cycles Z ′ and Z ′′ supported in T ×X and X ×X ′, respectively,
such that

m[∆X ] = [Z ′] + [Z ′′] in H2n
B (X ×X,Z) (3.13)

for some nonzero integer m. Let k : T̃ → X and j̃ : X̃ ′ → X be desingu-
larizations of T and X ′, respectively. The decomposition (3.13) then yields
the equalities of the morphisms of Hodge structure associated to the Künneth
components of type (4, 2n− 4) of these three Hodge classes:

m[∆X ]∗ = [Z ′]∗ + [Z ′′]∗ : H4
B(X,Z)→ H4

B(X,Z).

Now, let Z̃ ′ ⊂ T̃ ×X be a cycle of codimension n such that

(k, Id)∗Z̃
′ = Z ′,

and let Z̃ ′′ ⊂ X × X̃ ′ be a cycle of codimension n such that

(Id, j̃)∗Z̃
′′ = Z ′′.

We have

[Z ′] = (k, Id)∗[Z̃
′], [Z ′′] = (Id, j̃)∗[Z̃

′′] in H2n
B (X ×X,Z),

and it follows that for every α ∈ H4
B(X,Z), we have

[Z ′]∗α = k∗([Z̃
′]∗α), [Z ′′]∗α = [Z̃ ′′]∗(j̃∗α).

But as X ′ is of dimension ≤ 3, the rational Hodge conjecture holds for X̃ ′ in
every degree. (Indeed, it holds for classes of degree 2 by the Lefschetz theorem on
(1, 1)-classes, and for classes of degree 4 by the argument given in Section 2.2.2.
Moreover, the Hodge conjecture is satisfied for classes of degree 0 and 2n for
every smooth projective variety of dimension n.)

If α ∈ H4
B(X,Q) ∩ H2,2(X) is a rational Hodge class, the classes j̃∗α ∈

H4
B(X̃ ′,Q) ∩ H2,2(X̃ ′) and [Z ′]∗α ∈ H2

B(T̃ ,Q) ∩ H1,1(T̃ ) are thus classes of

algebraic cycles of X̃ ′ and T̃ , respectively. The relation

m[∆X ]∗α = mα = k∗([Z̃
′]∗α) + [Z̃ ′′]∗(j̃∗α)

and the compatibility of the cycle class map with correspondences then show
that α is also the class of an algebraic cycle with rational coefficients. �

The second application is an improvement of the generalized Mumford the-
orem (Theorem 3.13), where the Bloch–Srinivas method appears to be more
powerful than the Mumford method. It is important enough to justify a sepa-
rate statement. Using the notion of coniveau introduced in Section 2.2.5, we can
restate Theorem 3.13 by saying that if X has its group CH0(X) supported on
some X ′ ⊂ X of dimension < r, then the coniveau of the Hodge structures on
Hk
B(X,Q) is at least 1 for k ≥ r. Recall that the generalized Hodge conjecture

then predicts that Hk
B(X,Q) is supported on a proper algebraic subset of X.

This is indeed what the next theorem says.
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Theorem 3.16 (Bloch and Srinivas 1983). Let X be smooth projective of
dimension n. If there exists a closed algebraic subset j : X ′ ↪→ X such that
dimX ′ < r and the map

j∗ : CH0(X ′)→ CH0(X)

is surjective, then for k > r, the cohomology groups Hk
B(X,Q) vanish on a dense

Zariski open set of X. In other words, H∗>rB (X,Q) has geometric coniveau ≥ 1.

Proof. We start as in the proof of Theorem 3.13 and again write equality
(3.10) for any η ∈ Hk

B(X,Q):

mη = [Z̃ ′]∗ ◦ j̃∗(η) + l∗ ◦ [Z̃ ′′]∗(η),

where l : T̃ → X is a desingularization of T (which we may assume to be a

divisor of X) and j̃ : X̃ ′ → X is a desingularization of X ′.

By definition, l∗ ◦ [Z̃ ′′]∗(η) is of geometric coniveau ≥ 1. It thus suffices to

prove that [Z̃ ′]∗ ◦ j̃∗(η) is also of geometric coniveau ≥ 1 if deg η = k > r :=

dimX ′. This is because the class j̃∗(η) on X̃ ′ is of degree k > dimX, hence has

geometric coniveau ≥ 1 on X̃ ′ by the Lefschetz isomorphism (5.24),

∪lk−r : H2r−k(X̃ ′,Q) ∼= Hk(X̃ ′,Q),

where l is the class of an ample divisor on X̃ ′. �

Remark 3.17. Because the integer m cannot in general be set equal to 1
(see [113]), the proof above only works for cohomology with rational coefficients.
However, the Bloch–Kato conjecture, proved by Voevodsky ([97]) and Rost, im-
plies that the result holds also for cohomology with integral coefficients. Indeed,
the Bloch–Kato conjecture implies (see [6], [15], [24], and Section 6.2.2) that the
Bloch–Ogus sheaves of Z-modules Hk(Z) on XZar associated to the presheaves
U 7→ Hk

B(U,Z) have no torsion.

3.2 VARIETIES WITH SMALL CHOW GROUPS

3.2.1 Generalized decomposition of the diagonal

The Bloch–Srinivas decomposition of the diagonal has been generalized by Paran-
jape [80] and Laterveer [66] under triviality assumptions on Chow groups of small
dimension.

Theorem 3.18. Assume that for k < c, the cycle class maps

cl : CHk(X)⊗Q→ H2n−2k
B (X,Q)

are injective. Then there exists a decomposition

m∆X = Z0 + · · ·+ Zc−1 + Z ′ ∈ CHn(X ×X), (3.14)
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where m 6= 0 is an integer, Zi is supported in W ′i ×Wi with dimWi = i and
dimW ′i = n−i, and Z ′ is supported in T×X, where T ⊂ X is a closed algebraic
subset of codimension ≥ c.

Theorem 3.10 is in fact the case c = 1 of this theorem.

Proof of Theorem 3.18. We use induction on c. The case c = 1 has
already been considered. We may thus assume that we have a decomposition

m∆X = Z0 + · · ·+ Zc−2 + Z ′ ∈ CHn(X ×X), (3.15)

where m 6= 0 is an integer, Zi is supported in W ′i ×Wi with dimWi = i and
dimW ′i = n−i, and Z ′ is supported in T×X, where T ⊂ X is a closed algebraic
subset of codimension ≥ c−1. We may assume that T is of codimension (c−1).

Let τ : T̃ → X be a desingularization. Let Z̃ ′ ⊂ T̃ × X be a cycle such that
(τ, Id)∗Z̃

′ = Z ′. The cycle Z̃ ′ ⊂ T̃ ×X is of codimension (n− c+ 1) and induces

a morphism Z̃ ′∗ : CH0(T̃ )→ CHc−1(X). Now, we know by assumption that the

kernel of cl : CHc−1(X)→ H2n−2c+2
B (X,Z) is torsion. Thus, the map Z̃ ′∗ maps

CH0(T̃ )hom to the torsion of CHc−1(X). By a Baire countability argument, it

follows that there exists an integer M such that MZ̃ ′∗ = 0 on CH0(T̃ )hom.

For each component T̃i of T̃ , choose a point ti ∈ T̃i as above, and let Wi =
Z̃ ′∗(ti). The cycle

Z ′′ = M

(
Z̃ ′ −

∑
i

T̃i ×Wi

)
⊂ T̃ ×X

then satisfies the property that for any t ∈ T̃ , Z ′′∗ (t) = 0 in CHc−1(X). We then

apply Theorem 3.1 to conclude that there exists a cycle Z̃ ′′ ⊂ T̃ ′ × X, where
T̃ ′ ⊂ T̃ is a proper closed algebraic subset, and an integer M ′, such that

M ′M

(
Z̃ ′ −

∑
i

T̃i ×Wi

)
= Z̃ ′′ in CHn(T̃ ×X).

Setting T ′ = τ(T̃ ′) and Z ′′ = τ∗Z̃
′′, we obtain

M ′M

(
Z ′ −

∑
i

Ti ×Wi

)
= Z ′′ in CHn(X ×X),

with Z ′′ supported on T ′ ×X and codimT ′ ≥ c. Combining this equality with
(3.15), we obtain the desired decomposition. �

Theorem 3.18 can be used to give a proof of the following result due to Lewis
[67].
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Theorem 3.19 (Lewis 1995). Let X be a smooth projective complex variety
such that the cycle class map cl : CHi(X)Q → H2i(X,Q) is injective for all i ≥ 0.
Then H2i+1

B (X,Q) = 0 for all i ≥ 0 and the cycle class map cl : CHi(X)Q →
H2i
B (X,Q) is an isomorphism for all i ≥ 0.

Proof. Indeed, by Theorem 3.18, we have under these assumptions a com-
plete decomposition of the diagonal

∆X =
∑
i,j

nijWi ×Wj in CHn(X ×X)Q.

The corresponding cohomological decomposition is written as

[∆X ] =
∑
i,j

nij pr∗1[Wi] ∪ pr∗2[Wj ] in H2n
B (X ×X)Q.

For any α ∈ H∗B(X,Q) we thus get

α = [∆X ]∗α =
∑
i,j

nij
〈
α, [Wi]

〉
[Wj ],

which shows that the rational cohomology of X is generated by classes of alge-
braic cycles. �

3.2.2 Generalized Bloch conjecture

The main application of the generalized decomposition of the diagonal is the
following result.

Theorem 3.20 (Laterveer 1996, Lewis 1995, Paranjape 1994, Schoen 1993).
Let X be a smooth projective variety of dimension m. Assume that the cycle
class map

cl : CHi(X)Q → H2m−2i
B (X,Q)

is injective for i ≤ c − 1. Then we have Hp,q(X) = 0 for p 6= q and p < c (or
q < c).

More precisely, the Hodge structures on Hk
B(X,Q)⊥alg are all of Hodge coniveau

≥ c; in fact they even are of geometric coniveau ≥ c, hence they satisfy the gen-
eralized Hodge conjecture (Conjecture 2.40) for coniveau c.

Here Hk
B(X,Q)⊥alg denotes the transcendental part of the cohomology, de-

fined as the subspace of Hk
B(X,Q) consisting of classes orthogonal to all classes

of algebraic cycles (of degree 2n − k). Of course it is different from Hk
B(X,Q)

only if k is even.

Proof of Theorem 3.20. Let us write the cohomological generalized de-
composition of the diagonal of Theorem 3.18:

m[∆X ] = [Z0] + · · ·+ [Zc−1] + [Z ′] ∈ H2n(X ×X,Q).
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By hypothesis, the Zi are of the form

Zi =
∑
j

ni,jW
′
i,j ×Wi,j , (3.16)

where the Wi,j and W ′i,j are irreducible components of Wi and W ′i , respectively.

Moreover, Z ′ is supported in T × X with codimT ≥ c. Let l : T̃ → X be a
desingularization of T , and let Z̃ ′ in CHn(T̃×X) be such that (l, Id)∗(Z̃

′) = Z ′.
The above decomposition gives a decomposition of the corresponding morphisms
of Hodge structures for every k:

m[∆X ]∗ = m Id = [Z0]∗ + · · ·+ [Zk]∗ + [Z ′]∗ : Hk
B(X,Q)→ Hk

B(X,Q).

Now, by (3.16), we clearly have

[Zi]
∗(α) =

∑
j

ni,j
〈
α, [Wi,j ]

〉
[W ′i,j ], (3.17)

where 〈 , 〉 is the intersection form on H∗B(X,Q). In particular, we have

[Zi]
∗(α) = 0 ∀α ∈ Hp,q(X), p 6= q.

For α satisfying this hypothesis, we thus have

mα = [Z ′]∗(α) = l∗([Z̃
′]∗(α)) in Hp,q(X). (3.18)

Thus, if α ∈ Hp,q(X) with p 6= q, we have

mα ∈ Im l∗ ∩Hp,q(X).

Now, as we may assume codimT = c, the Gysin morphism

l∗ : Hp+q−2c
B (T̃ ,Z)→ Hp+q

B (X,Z)

is a morphism of Hodge structures of bidegree (c, c), so that

Im l∗ ∩Hp,q(X) = 0, q ≤ c− 1.

Hence we have mα = 0 for

α ∈ Hp,q(X), p 6= q, q ≤ c− 1.

This proves the first statement.
For the second statement, formula (3.17) shows more precisely that [Zi]

∗(α) =
0 for α ∈ Hk

B(X,Q)⊥alg. For such α, formula (3.18) holds and shows that
α ∈ Im l∗, which completes the proof since Im l∗ vanishes away from T and T
has codimension ≥ c. �
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The major open problem in the theory of algebraic cycles, which by the
above theorem would also solve many instances of the generalized Hodge con-
jecture, is the following conjecture which is explicitly stated in [58], relating
the Hodge coniveau and Chow groups. This converse of Theorem 3.20 is a vast
generalization of the Bloch conjecture for surfaces [13].

Conjecture 3.21. Let X be a smooth projective variety of dimension m
satisfying the condition Hp,q(X) = 0 for p 6= q and p < c (or q < c). Then for
any integer i ≤ c− 1, the cycle class map

cl : CHi(X)Q → H2m−2i
B (X,Q)

is injective.

Remark 3.22. This conjecture can be split into two parts. Indeed, as we
proved in the previous section, if the conclusion of the conjecture holds true,
then the cohomology of X (or rather its transcendental part) is supported on a
closed algebraic subset of codimension ≥ c. This is predicted by the generalized
Hodge conjecture (Conjecture 2.40).

If we assume Conjecture 2.40, the generalized Bloch conjecture can be refor-
mulated as follows, without any mention of Hodge structures.

Conjecture 3.23. If the transcendental cohomology of X is supported on
a closed algebraic subset of codimension ≥ c, then for any integer i ≤ c− 1, the
cycle class map

cl : CHi(X)Q → H2m−2i
B (X,Q)

is injective.

In the following section, we sketch the ideas of Kimura, which lead to a proof
of Conjecture 3.23 for varieties dominated by products of curves. In a rather
different geometric setting, in Section 4.3 we will prove Conjecture 3.23 for very
general complete intersections in a variety with trivial Chow groups, assuming
the Lefschetz standard conjecture.

3.2.3 Nilpotence conjecture and Kimura’s theorem

Let X be smooth projective, and Γ ⊂ X × X a correspondence. Recall that
correspondences between smooth projective varieties can be composed (Sec-
tion 2.1.3), so that the self-correspondences of X form a ring.

The following represents the starting point of Kimura’s work, and remains
completely open.

Conjecture 3.24 (Nilpotence conjecture). Suppose that Γ ∈ CH(X × X)
is homologous to 0. Then there exists a positive integer N such that Γ◦N = 0 in
CH(X ×X)Q.
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Note that this conjecture is implied by the Bloch–Beilinson conjecture (Con-
jecture 2.19). Indeed, assuming the Bloch–Beilinson filtration F exists satisfy-
ing all the properties stated in Conjecture 2.19, if Γ is cohomologous to 0, then
Γ◦N belongs to FN CH(X × X)Q. As this filtration is conjectured to satisfy
F k+1 CHk(X ×X) = 0, we must have Γ◦N = 0 for N > 2n, n := dimX.

For cycles algebraically equivalent to 0, the following result is proved inde-
pendently in [96] and [99].

Theorem 3.25 (Voevodsky 1995, Voisin 1994). The nilpotence conjecture
holds for cycles in X ×X that are algebraically equivalent to 0.

Proof. Let Γ ∈ CHd(X ×X), d = dimX be algebraically equivalent to 0.
This means that there is a curve C that we may assume to be smooth, a 0-cycle
z ∈ CH0(C) homologous to 0, and a correspondence Z ∈ CHd(C×X ×X) such
that

Γ = Z∗(z) in CHd(X ×X).

For any integer k, we can construct a correspondence Zk ∈ CHd(Ck ×X ×X)
obtained using the composition of the cycles Zt, t ∈ C, namely we define Zk by
the formula

Zk(t1, . . . , tk) = Z(t1) ◦ · · · ◦ Z(tk), t1, . . . , tk ∈ C.

By definition, we get

Γ◦k = Zk∗(z
k),

where the product zk ∈ CH0(Ck) is defined as pr∗1 z · · · · · pr∗k z.

The proof concludes with the following easy fact (see [101, II, Lemma 11.33]).

Lemma 3.26. For a 0-cycle z homologous to 0 on a smooth curve C, the
cycle zk vanishes in CH0(Ck) for k large enough.

�

Coming back to the general situation, Kimura proved in [59] the remarkable
result that Conjecture 3.24 is implied by the finite-dimensionality property for
X, a notion that we will now describe. We refer to [3] for an expanded expo-
sition of Kimura’s ideas (which seem to have been developed independently by
O’Sullivan) on the notion of finite-dimensionality and we just sketch the gen-

eral idea: For any smooth projective variety X, we have
∧N

H∗(X,Q) = 0 for
N > dimH∗(X,Q). Assume for simplicity that X has only even degree coho-

mology. Then
∧N

H∗(X,Q) identifies to the skew invariant part of H∗(XN ,Q)
under the action of the symmetric group SN , which is also the image of the
projector

α 7→ 1

N !

∑
σ∈SN

ε(σ)σ∗α
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acting on H∗(XN ,Q). Consider now the skew-symmetric motive
∧N

X :=
(XN , πskew), where

πskew :=
1

N !

∑
σ∈SN

ε(σ)Γσ ∈ CHnN (XN ×XN ), n = dimX.

(As usual we denote by Γσ the graph of σ acting on XN .) This is a motive

whose cohomology is exactly
∧N

H∗(X,Q) = 0. This motive is then expected
to be 0, in the sense that πskew = 0 in CHnN (XN ×XN )Q. Indeed, this cycle is
a projector whose class is 0, so we have

πskew = (πskew)◦k in CHnN (XN ×XN )Q,

and furthermore if the Bloch–Beilinson filtration F exists, the right-hand side
belongs to F k CHnN (XN × XN )Q for any k, hence is 0 for large k, and thus
πskew itself is expected to be 0.

In general, X will also have odd degree cohomology. In this case, the hope
is that the motive of X splits as X+ + X−, where X− has only odd degree
cohomology and X+ has only even degree cohomology (in other words, we need
projectors π+, π− ∈ CHn(X ×X)Q satisfying the condition that the action π+

∗
on cohomology is the projector on Heven(X) and the action of π− on cohomology
is the projector on Hodd(X)). For the motive X−, observe that the vanishing∧N

Hodd(X,Q), N > dimHodd(X,Q) says that the SN -invariant cohomology
of (X−)N vanishes, or that the motive SNX− := (XN , πinv ◦ (π−)N ), where
now πinv := 1

N !

∑
σ∈SN Γσ ∈ CHnN (XN ×XN ) has zero cohomology.

Kimura’s conjecture (presented in a simplified form) is the following.

Conjecture 3.27. For any smooth projective variety X, the motive of X
is finite-dimensional, which means that it decomposes as X+ +X−, where X−

has only odd degree cohomology and X+ has only even degree cohomology, and
for large N , we have

N∧
X+ = 0, SNX− = 0.

A remarkable result due to Kimura [59] is the following theorem that proves
a strengthening of the nilpotence conjecture under the assumption of finite-
dimensionality.

Theorem 3.28 (Kimura 2005). Assume the motive of X is finite-dimensional.
Then for any cycle Z ∈ CHn(X ×X)Q, Z satisfies a polynomial equation in the
ring CHn(X ×X)Q of self-correspondences of X of the form

Z◦N = αN−1Z
◦N−1 + · · ·+ α0∆X ,

where the αi’s are rational numbers that vanish if Z is cohomologous to 0. In
particular, if Z is cohomologous to 0, Z is nilpotent.
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Sketch of proof. We will just show how the proof works in a fictive case,
namely the motive of X satisfies

∧2
X = 0 and the cycle Z is the graph of a

map f : X → X with finitely many fixed points. Hence we assume that

Γ := ∆X×X − Γτ = 0 in CH2n(X ×X ×X ×X)Q, (3.19)

where Γτ is the graph of the involution τ : (x, y) 7→ (y, x) acting on X ×X. We
have ∆X×X = {(x, y, x, y), x ∈ X, y ∈ X} and Γτ = {(x, y, y, x), x ∈ X, y ∈
X}.

It follows that we also have Γ ◦ Γ(f,f) = 0 in CH2n(X ×X ×X ×X)Q. We
thus have

0 = Γ ◦ Γ(f,f) = Γ1 − Γ2 ∈ CH2n(X ×X ×X ×X)Q, (3.20)

where Γ1 = {(x, y, f(x), f(y)), x ∈ X, y ∈ X} and Γ2 = {(x, y, f(y), f(x)), x ∈
X, y ∈ X}. Intersect Γ with p∗13∆X : from(3.20) we get

0 = (Γ ◦ Γ(f,f)) · p∗13(∆X) = Γ′1 − Γ′2 in CH3n(X ×X ×X ×X)Q, (3.21)

where Γ′1 = {(x, y, x, f(y)), x ∈ X, f(x) = x, y ∈ X} and Γ′2 = {(f(y), y, f(y), f◦
f(y)), y ∈ X}. Project the relation (3.21) to X ×X via p24. We get

Γ′′1 − Γ′′2 = 0 in CHn(X ×X)Q, (3.22)

where
Γ′′1 = αΓf , α := deg(∆X · Γf ), Γ′′2 = Γf◦f = Γ◦2f .

Hence we proved that

deg(∆X · Γf )Γf + Γ◦2f = 0 in CHn(X ×X)Q,

where the number deg(∆X · Γf ) depends only on the cohomology class of Γf ,
which is what we wanted. �

The main concrete result concerning Conjecture 3.27 was established by
Kimura [59] who proved the following statement.

Theorem 3.29 (Kimura 2005). If X is dominated by a product of curves
then X satisfies the finite-dimensionality conjecture (Conjecture 3.27).

The proof of this theorem is rather tricky, and would be out of place here.
If X is a surface, it is in fact sufficient that X be rationally dominated by the
product of two curves in order to conclude the validity of Conjecture 3.24.

Next we have the following beautiful application of the finite-dimensionality
property (see [59]).

Theorem 3.30 (Kimura 2005). Conjecture 3.24 implies the Bloch conjecture
(Conjecture 1.9) for surfaces with pg = q = 0. In particular, the Bloch conjecture
is valid for surfaces with pg = q = 0 that are rationally dominated by curves.
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Proof. Let X be a surface satisfying these assumptions. By the Lefschetz
theorem on (1, 1)-classes, since pg(X) = 0, we know that

H2
B(X, Z) = 〈[Ci]〉

is generated by classes of curves. Since q = 0, the Künneth decomposition of
the diagonal takes the following simple form:

[∆] ∈ H0
B(X,Q)⊗H4

B(X,Q) ⊕ H2
B(X,Q)⊗H2

B(X,Q)⊕H4
B(X,Q)⊗H0

B(X,Q),

and as H2
B(X,Q) is generated by the classes [Ci], for any chosen point x ∈ X,

we may write

[∆X ] = [X × {x}] +
∑

nij [Ci × Cj ] + [{x} ×X]. (3.23)

Consider the 2-cycle

Γ = ∆X − (X × {x})−
∑

nijCi × Cj − ({x} ×X) (3.24)

in X×X. Then by (3.23), [Γ] = 0. The nilpotence conjecture implies that there
exists a positive integer N such that Γ◦N = 0 in CH2(X ×X)Q. Hence,

(Γ∗)
◦N = (Γ◦N )∗ : CH0(X)Q → CH0(X)Q

is 0. But Γ∗ acts as the identity on the group CH0(X)hom of 0-cycles of degree
0, since ∆X acts as the identity, but the other terms in the right-hand side of
(3.24) act trivially on CH0(X)hom. (For example, γ = X ×{x} acts trivially on
CH0(X)hom because γ∗(z) = (deg z)x.) Thus CH0(X)hom = 0. �

Remark 3.31. Looking more closely at the proof and introducing Murre’s
Chow–Künneth decomposition [74], one sees that the proof above would also
show that Conjecture 3.24 implies the Bloch conjecture (Conjecture 1.11) for
surfaces with pg = 0.

The next theorem is a direct generalization of Theorem 3.30. It proves the
Bloch conjecture (Conjecture 1.11) and Conjecture 3.21 for c = 1, under the
generalized Hodge conjecture and the nilpotence conjecture.

Theorem 3.32. Let X be a smooth projective variety with hk,0(X) = 0 for
k > r. Assume that the following conditions hold:

(i) The generalized Hodge conjecture holds for X in coniveau 1.

(ii) The Hodge conjecture is true for Y ×X with dimY ≤ dimX.

(iii) X satisfies the nilpotence conjecture (Conjecture 3.24).

Then CH0(X) is supported on a closed algebraic subset Xr ⊂ X of dimension
≤ r.
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Sketch of proof. Let us do it first for r = 0 (this is the situation of
Conjecture 3.21 with c = 1). Again we work with the diagonal ∆X ⊂ X × X
and its cohomology class

[∆X ] ∈ H0
B(X, Q)⊗H2n

B (X, Q)⊕ · · · .

We have

[∆X ] = [X × {x}] mod
⊕
k>0

Hk
B(X, Q)⊗H2n−k

B (X, Q).

The generalized Hodge conjecture and the assumption that Hk,0(X) = 0 for

k > 0 imply that there exist Y of codimension 1 and a resolution ĩ : Ỹ → Y → X,
so that

ĩ∗ : Hk−2
B (Ỹ ,Q)→ Hk

B(X,Q)

is surjective for any k > 0, as follows from Theorem 2.39. Hence

[∆X −X × {x}] ∈ Im((̃i, id)∗ : H2n−2
B (Ỹ ×X,Q)→ H2n

B (X ×X,Q)).

The Gysin morphism (̃i, id)∗ is a morphism of Hodge structures. Corollary 2.24
implies that

[∆X −X × {x}] = (̃i, id)∗β, (3.25)

for some Hodge class β on Ỹ ×X. We now finish the argument as before: The
Hodge conjecture on Ỹ ×X implies that β is the class [Z] of a cycle Z on Ỹ ×X.
Put

Γ = ∆X −X × {x} − (̃i, id)∗Z,

so that [Γ] = 0 by (3.25). It follows that Γ∗ is nilpotent, yet Γ∗ acts as the
identity on CH0(X)hom, since ((̃i, id)∗Z)∗ = 0 on CH0(X)Q (because (̃i, id)∗Z
is supported on Y × X with Y  X) and for z ∈ CH0(X)Q, (X × {x})∗(z) =
(deg z)x in CH0(X)Q. Therefore CH0(X)Q = Q and this implies that CH0(X) =
Z because CH0(X) has no torsion under our assumptions by Roitman’s theorem
(see [87]). Indeed, our assumptions imply that AlbX = 0.

For the general case (r arbitrary), we just have to add the following argu-
ment.

First of all, since we assumed that the Hodge conjecture holds for X × X,
the Künneth components of the diagonal are algebraic, so we can write

[∆X ] =
∑
i

δi in H2n
B (X ×X,Q),

with δi = [Zi], Zi ∈ CHn(X ×X)Q, and δi ∈ Hi
B(X,Q)⊗H2n−i

B (X,Q).
For i > r, we know by assumption that the Hodge coniveau of Hi

B(X,Q) is at
least 1 and thus by the same arguments as above, we conclude using assumptions
(i) and (ii) that we may assume the Zi’s are supported on Y ×X, where Y $ X
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is a proper closed algebraic subset. Next assume i ≤ r. Then 2n − i ≥ 2n − r,
and thus by the Lefschetz theorem on hyperplane sections, if we choose for Xr

a smooth complete intersection of n− r ample hypersurfaces in X, and denote
by jr : Xr → X the inclusion, then the Gysin map jr∗ : Hk−2n+2r

B (Xr,Q) →
Hk
B(X,Q) is surjective for k ≥ 2n − r. Arguing as before, we conclude that

under assumption (ii), we may assume the cycles Zi for i ≥ r are supported on
X ×Xr. In conclusion, assuming (i) and (ii), we find a decomposition of cycle
classes,

[∆X ] = [Z1] + [Z2] in H2n
B (X ×X,Q),

where Z1 ∈ CHn(X × X)Q is supported on Y × X for some proper closed
algebraic subset Y & X and Z2 ∈ CHn(X ×X)Q is supported on X ×Xr.

We then conclude using assumption (iii) that the cycle ∆X − Z1 − Z2 ∈
CHn(X × X)Q, being cohomologous to 0, is nilpotent, and as Z1∗ = 0 on
CH0(X)Q and ImZ2∗ : CH0(X)Q → CH0(X)Q is supported on Xr, this im-
plies that jr∗ : CH0(Xr)Q → CH0(X)Q is surjective. �
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Chow groups of large coniveau complete intersections

Our goal in this chapter, which is mainly based on [107] and [114], is to inves-
tigate the generalized Bloch conjecture for hypersurfaces or complete intersec-
tions in either projective space, or more generally, varieties with trivial Chow
groups. We will first recall, following Griffiths [48], how the Hodge coniveau of
such complete intersections is computed. We then turn to the study of coniveau
2 complete intersections in projective space, for which neither the generalized
Hodge conjecture nor the generalized Bloch conjecture are known to hold. We
will sketch a strategy to attack the generalized Hodge conjecture for coniveau 2,
which does not use Theorem 3.20, hence does not pass through the computa-
tions of the Chow groups CH0 and CH1. The main result proved in this chapter
is Theorem 4.16, which says that, assuming Conjecture 2.29 (or the Lefschetz
standard conjecture), for a very general complete intersection Y of very ample
hypersurfaces in a variety with trivial Chow groups, if the cohomology of Y has
geometric coniveau ≥ c, then its Chow groups CHi(Y )Q are trivial for i ≤ c− 1.
In particular, proving the generalized Hodge conjecture for such a Y is equivalent
to proving the generalized Bloch conjecture.

4.1 HODGE CONIVEAU OF COMPLETE INTERSECTIONS

Consider a smooth complete intersection X ⊂ Pn of r hypersurfaces of degree
d1 ≤ · · · ≤ dr. By the Lefschetz hyperplane section theorem (see [101, II,
1.2.2]), the only interesting Hodge structure in the cohomology of X is the
Hodge structure on Hn−r

B (X,Q), and in fact on the primitive part of it (that is,
the orthogonal of the restriction of H∗B(Pn,Q) with respect to the intersection
pairing). We will say that X has Hodge coniveau c if the Hodge structure on
Hn−r
B (X,Q)prim has coniveau c.

The Hodge coniveau of a complete intersection in projective space is com-
puted as follows (see [48] for the case of hypersurfaces, [38] for the complete
intersection case).

Theorem 4.1. X has coniveau ≥ c if and only if

n ≥
r∑
i

di + (c− 1)dr. (4.1)

Conjecture 3.21 thus predicts the following statement for complete intersec-
tions in projective space.
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Conjecture 4.2. Let X be a complete intersection X ⊂ Pn of r hypersur-
faces of degree d1 ≤ · · · ≤ dr. Then if n ≥

∑
i di+ (c−1)dr, the cycle class map

cl is injective on CHi(X)Q for i ≤ c− 1.

The generalized Hodge conjecture (Conjecture 2.40) on the other hand pre-
dicts the following.

Conjecture 4.3. Let X be a complete intersection X ⊂ Pn of r hypersur-
faces of degree d1 ≤ · · · ≤ dr. Then if n ≥

∑
i di + (c − 1)dr, the primitive

cohomology Hn−r
B (X,Q)prim is supported on a closed algebraic subset of codi-

mension ≥ c.
In the next subsection, we will recall the proof of Theorem 4.1. The rest of

the chapter will be devoted to the study of Conjectures 4.2 and 4.3. Note that
according to Theorem 3.20, Conjecture 4.2 implies Conjecture 4.3.

Our main result in this chapter is taken from [114]. It says conversely that,
assuming Conjecture 2.29, if a very general complete intersection X as above
satisfies Conjecture 4.3, then it satisfies Conjecture 4.2.

Let us conclude this section by exhibiting for every d, following [100], smooth
hypersurfaces X of degree d in Pn satisfying the conclusion of Conjecture 4.2.
The examples constructed there are as follows: We write n = cd+ s and choose
homogeneous degree d polynomials

f1 ∈ C[X0, . . . , Xd], f2, . . . , fc−1 ∈ C[Y1, . . . , Yd], fc ∈ C[Y1, . . . , Yd+s].

We set

f =f1(X0, . . . , Xd) + f2(Xd+1, . . . , X2d) + · · ·+ fc−1(X(c−2)d+1, . . . , X(c−1)d)

+ fc(X(c−1)d+1, . . . , Xcd+s). (4.2)

The hypersurface X defined by f is smooth if and only if the hypersurfaces
defined by the fi’s are smooth. The following is proved in [100].

Theorem 4.4 (Voisin 1996). Let X be as above and smooth. Then the cycle
class map cl is injective on CHi(X)Q for i ≤ c− 1.

The proof that we will give below is closer to [37], [79]. It is in fact a
consequence of the following result proved in [37].

Theorem 4.5 (Esnault, Levine, and Viehweg 1997). Let X be a smooth
hypersurface of Pn, covered by a family of projective spaces Pr. Then the groups
CHl(X)hom are torsion for l ≤ r − 1, and CHr(X)Q is generated as a group by
the classes of the Pr’s in the family.

Proof. The proof first uses the following observation.

Lemma 4.6. Let h = c1(OX(1)). Then the map

d h : CHl(X)hom → CHl−1(X)hom,

z 7→ d z · h
is equal to 0.
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Proof. Indeed, by the definition of the map j∗, when j is the inclusion of
a Cartier divisor, and by the fact that the class of X in Pic(Pn) is equal to dh,
we find that

j∗ ◦ j∗ = d h : CHl(X)hom → CHl−1(X)hom.

But as CH∗(Pn)hom = 0, the map

j∗ : CHl(X)hom → CHl(Pn)hom

is 0. �

Now let F be the considered family of r-planes contained in X. Up to
replacing F by a desingularization, we may assume that F is smooth.

Let Q = {(x, P ) ∈ X ×F | x ∈ P} be the incidence variety, and p, q the two
projections:

Q
q //

p

��

X

F.

By hypothesis, q is surjective, and up to replacing F by a subvariety, we may
assume that q is generically finite of degree N > 0. Then we know that the
image of the map

q∗ : CHl(Q)hom → CHl(X)hom

contains N CHl(X)hom, since q∗ ◦ q∗ = N · Id on CHl(X)hom.
Moreover, the projection p makes Q into a Pr-bundle on F , and q∗(OX(1)) is

a divisorOQ(1) on this projective bundle Q→ F . Writing H = c1(q∗(OX(1))) ∈
CH1(Q), we can thus apply the computation of Chow groups of a projective
bundle (see [43, 3.3], [101, II, 9.3.2]), which yields

CHl(Q) = ⊕0≤k≤r,l−r+k≥0H
kp∗ CHl−r+k(F ).

By the fact that we also have the corresponding decomposition on the cohomol-
ogy

Hm
B (Q,Z) = ⊕0≤k≤r,2k≤m[H]kp∗Hm−2k

B (F,Z), [H] ∈ H2
B(Q,Z),

for every m (see [101, I, 7.3.3]), we immediately deduce the decomposition

CHl(Q)hom = ⊕0≤k≤r,l−r+k≥0H
kp∗ CHl−r+k(F )hom.

In particular, for l < r, the map

H : CHl+1(Q)hom → CHl(Q)hom

is surjective.
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Thus, for Z ∈ CHl(X)hom, with l < r, there exist Z ′ ∈ CHl(Q)hom, Z
′′ ∈

CHl+1(Q)hom such that

NZ = q∗Z
′ ∈ CHl(X), Z ′ = HZ ′′ ∈ CHl(Q). (4.3)

Now, if Z ′′ ∈ CHl+1(Q), then by the projection formula, we have

q∗(H · Z ′′) = q∗(q
∗h · Z ′′) = h · q∗Z ′′ in CHl(X), (4.4)

where h := c1(OX(1)) ∈ CH1(X). Finally, we obtain from (4.3) and (4.4),

dN Z = d h · q∗Z ′′,

which is equal to 0 by Lemma 4.6.
For l = r, the above reasoning shows that the map

CH0(F )hom,Q ⊕ CHr+1(X)hom,Q → CHr(X)hom,Q,

(z, Z) 7→ q∗p
∗z + h · Z

is surjective. Applying Lemma 4.6, we conclude that

CH0(F )hom,Q → CHr(X)hom,Q

is surjective, as desired. �

Proof of Theorem 4.4. Using Theorem 4.5, the proof finishes by observ-
ing that a hypersurface X as above is covered by a family of linear spaces
L ∼= Pc−1 which have the property that there is a linear space L′ ⊂ Pn with

L′ ∩X = dL (4.5)

(or L′ ⊂ L ⊂ X). Having this, we know on the one hand by Theorem 4.5 that
the classes of these L’s generate CHc−1(X)Q and on the other hand, by (4.5),

their classes are all equal to hn−c

d in CHc−1(X)Q. Thus CHc−1(X)Q = Q and
CHc−1(X)hom,Q = 0.

Let us exhibit these spaces L′. We will do it for c = 2, so n = 2d+ s, s ≥ 0,
and we have to exhibit lines L in X, sweeping out X, and having the property
that for some plane P ⊂ Pn, P ∩ X = dL or L ⊂ P ⊂ X. Let P1

∼= Pd
and P2

∼= Pd−1+s ⊂ Pn, n = 2d + s be the linear subspaces of Pn defined by
Xi = 0, i > d and Xi = 0, i ≤ d, respectively. Let x ∈ X, which we write as
(x1, xc) according to the decomposition of the set of coordinates appearing in
(4.2). We may assume that both xi’s are nonzero vectors. The hypersurface
X1 ⊂ P1 defined by f1 is Fano, and it is a result due to Roitman [88] that
for any x1 ∈ X1 there exists a line ∆ in Pd passing through x1 and such that
f1|∆ = Ud, where U is a linear equation defining x1 in ∆. The line ∆ contains

the point x1. Let P ′2 := 〈x1, P2〉 ∼= Pd+s ⊂ Pn. The point x belongs to P ′2 and
again by Roitman’s result, there is a line ∆′ ⊂ P ′2 passing through x such that
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f|P ′2 = V d. Let P := 〈∆,∆′〉. Then P ∼= P3, x ∈ P and one checks that the

restriction of f to P is of the form V d +W d − Ud, for linear forms V, W, U on
P vanishing at x. Restricting to the plane P ′ ⊂ P defined by W − U = 0, we
find that f|P ′ = V d for some linear form on P ′ vanishing at x. The line L ⊂ P ′
defined by V = 0 thus satisfies the desired conclusion. �

4.1.1 Proof of Theorem 4.1 in the case of hypersurfaces

We prove Theorem 4.1 using Griffiths’ method comparing the pole order and
Hodge filtration (see [48] or [101], II, 6.1.2). Let W be a projective variety, and

X
l
↪→W a smooth hypersurface. In the following, all varieties are endowed with

the classical topology and analytic structural sheaves, so the notation ΩW below
is what we denoted ΩWan

in Section 2.2. Set

U = W −X
j
↪→W.

Recall (see [101, I, 8.2.2]) that the logarithmic de Rham complex (Ω•W (log X), d)
is the complex of free OX -modules defined as

ΩkW (log X) =

k∧
ΩX(log X),

where ΩW (log X) is the sheaf of free OW -modules generated locally by ΩW
and by df

f , where f is a local holomorphic equation for X. The differential is
the exterior differential. This complex can be viewed as a subcomplex of the
complex j∗A•U , and we have the following result (see [101, I, 8.2.3]).

Theorem 4.7. The inclusion

Ω•W (log X) ↪→ j∗A•U ,

where AkU is the sheaf of C∞ complex differential k-forms on U , is a quasi
isomorphism.

We have two morphisms of complexes: the inclusion

Ω•W ↪→ Ω•W (log X),

which in cohomology induces the restriction

Hk
B(W,C)→ Hk

B(U,C), (4.6)

and the residue
Res : Ω•W (log X)→ Ω•−1

X ,

which to α ∧ df
f associates Res(α ∧ df

f ) = 2iπα|X . The map induced by Res in
cohomology is the topological residue

Hk
B(U,C)→ Hk−1

B (X,C), (4.7)
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which we can also define as the composition

Hk
B(U,C)→ Hk+1

B (W,U,C) ∼= Hk+1(T, ∂T ) ∼= Hk−1
B (X,C),

where T is a tubular neighborhood of X in W , the first arrow is the connection
morphism in the long exact sequence of relative cohomology, the second is the
excision isomorphism, and the last is the Thom isomorphism.

The morphisms (4.6) and (4.7) are defined over Z and are compatible with
the Hodge filtrations (see Section 2.2), because the Hodge filtration on H∗B(U,C)
and H∗B(X,C) is induced by the naive filtration on the complexes Ω•W (logX)
and Ω•X , respectively. (More precisely, the morphism Res sends F pHk

B(U,C) to
F p−1Hk−1

B (X,C).)
Let us now assume that X ⊂ W is ample and that the pair satisfies the

following condition:

for every k > 0, i > 0, j ≥ 0, we have Hi(W,ΩjW (kX)) = 0. (4.8)

These hypotheses are satisfied by Bott’s vanishing theorem if W is the projective
space Pn. Under these hypotheses, we have the following result.

Theorem 4.8 (Griffiths 1969). For every integer p such that 1 ≤ p ≤ n =
dimW , the image of the natural map

H0(W,KW (pX))→ Hn
B(U,C), (4.9)

which to a section α (viewed as a meromorphic form on W of degree n, and
therefore closed, holomorphic on U , and having a pole of order p along X)
associates its de Rham cohomology class, is equal to Fn−p+1Hn

B(U,C).

We refer to [48], [101, II, 6.1.2] for the proof of this result.
Now assume that W is the projective space Pn, and that X is a smooth

hypersurface of degree d, with equation f = 0. We know that KPn = OPn(−n−
1), a generator of H0(Pn,KPn(n+ 1)) being given by

Ω =
∑
i

(−1)iXidX0 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXn

= X0 · · ·Xn

∑
i

(−1)i
dX0

X0
∧ · · · ∧ d̂Xi

Xi
∧ · · · ∧ dXn

Xn
,

where the Xi’s are homogeneous coordinates on Pn. As OPn(X) = OPn(d),
Theorem 4.8 shows that for every p such that 1 ≤ p ≤ n, we have a surjective
map

αp : H0 (Pn,OPn (pd− n− 1))→Fn−p+1Hn
B(U,C)

∼=Fn−pHn−1
B (X,C)prim,

which to a polynomial P associates the residue of the class of the meromorphic
form PΩ

fp .
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In particular, if n ≥ dc, we find that H0(Pn,OPn(pd − n − 1)) = 0 for
p ≤ c, hence that Fn−cHn−1

B (X,C)prim = 0. This proves the “if” part in
Theorem 4.1 for hypersurfaces, because the vanishing of Fn−cHn−1

B (X,C)prim

is equivalent to the fact that the coniveau of the weight (n−1) Hodge structure
on Hn−1

B (X,C)prim is ≥ c. We refer to [101, II, 6.1.3] for the “only if” part.

4.1.2 Complete intersections

In order to get Theorem 4.1 for complete intersections, we reduce to the case of
hypersurfaces by the following trick due to Terasoma (see [38], [94]).

Let L1, . . . , Lr be ample hypersurfaces on W , with W smooth projective of
dimension n. Let E := L1 ⊕ · · · ⊕ Lr and WE := P(E), which is equipped with
the line bundle

OWE
(1) := OP(E)(1)

satisfying the property that π∗OWE
(1) = E , where π : WE →W is the structural

map (so we follow the Grothendieck convention here). Given hypersurfaces
Xi ∈ |Li| defined by equations fi ∈ H0(W,Li), we get a section τ := (f1, . . . , fr)
of E . Identifying H0(W, E) to H0(WE ,OWE

(1)), we thus get a hypersurface

XE ⊂WE , XE ∈ |OWE
(1)|,

defined by an equation f ∈ H0(WE ,OWE
(1)). The hypersurface XE is ample

since the vector bundle E is ample on W . Furthermore XE is smooth if and
only if X := ∩iXi is a smooth complete intersection.

The canonical bundle of WE is computed by the formula (which is a conse-
quence of the relative Euler exact sequence)

KWE
= OWE

(−r) + π∗ det E + π∗KW .

We have det E = ⊗iLi.
When W = Pn, which we assume from now on, the line bundles Li are of

the form O(di), di > 0 and the vanishing conditions (4.8) are satisfied by the
line bundle OWE

(1), as a consequence of Bott’s vanishing theorem on Pn.
Let Ω be a trivializing section of the line bundleKWE

⊗OWE
(r)⊗π∗O(−

∑
i di+

n + 1). Theorem 4.8 shows that for every p such that 1 ≤ p ≤ n + r − 1, we
have a surjective map

αp : H0
(
WE ,OWE

(p− r)⊗ π∗O
(∑

i

di − n− 1
))

→ Fn+r−pHn+r−1
B (U,C) ∼= Fn+r−2Hn+r−1

B (XE ,C)van,

which to a section P associates the residue of the class of the meromorphic form
PΩ
fp .

We thus deduce that for the hypersurface XE we have

Fn+r−p−1Hn+r−2
B (XE ,C)van = 0 (4.10)



62

weyllecturesformat September 3, 2013 6x9

CHAPTER 4

if H0(WE ,OWE
(p− r)⊗ π∗O(

∑
i di − n− 1)) = 0.

We now compute

H0

(
WE ,OWE

(p− r)⊗ π∗O

(∑
i

di − n− 1

))

= H0

(
Pn,

(
Sp−r(⊕iOPn(di))

)
⊗O

(∑
i

di − n− 1

))
, (4.11)

where Si denotes the ith symmetric power of the considered vector bundle.
Combining (4.10) and (4.11) we conclude that

Fn+r−p−1Hn+r−2
B (XE ,C)van = 0 if

∑
i

di + (p− r) Sup{di} − n− 1 < 0.

To conclude the proof of Theorem 4.1 (or rather of the “if” part) for complete
intersections, it just remains to show the following.

Proposition 4.9 (Esnault, Nori, and Srinivas 1992; Terasoma 1990). The
hypersurface XE ⊂WE contains the Pr−1-bundle P(E|X). Let

k : P(E|X) ↪→ XE , π0 : P(E|X)→ X

be the natural maps. Then the morphism

k∗ ◦ π∗0 : Hn−r
B (X,Q)prim → Hn+r−2

B (XE ,Q)van

is an isomorphism of Hodge structures of bidegree (r − 1, r − 1).

Proof. The morphism above is obviously a morphism of Hodge struc-
tures. It suffices thus to prove that it induces an isomorphism between these
groups. It is not hard to see that it sends the primitive part Hn−r

B (X,Q)prim

to the vanishing part Hn+r−2
B (XE ,Q)van. To see that it induces an isomor-

phism between both, we introduce the open set V := W \X and observe that
π : U = WE \XE → V = W \X is an affine bundle (with fiber Pr−1 \ {fw = 0}
over w ∈W \X). It follows that π∗ induces an isomorphism

π∗ : Hn
B(V,Q) ∼= Hn

B(U,Q).

Let us denote by j the inclusion of X into W , and by jE the inclusion of XE

into WE . The result is then obtained by comparing the relative exact sequences
of the pairs (WE , U) and (W,V ); we have the following commutative diagram
of exact sequences:

H∗B(W,Z) //

��

H∗B(V,Z) //

'
��

H∗−2r+1
B (X,Z)

��

j∗ // H∗+1
B (W,Z) . . .

��
H∗B(WE ,Z) // H∗B(U,Z) // H∗−1

B (XE ,Z)
jE∗ // H∗+1

B (WE ,Z) . . . .

(4.12)
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Here we identified by the Thom isomorphism the relative cohomology group
H∗+1
B (WE , U,Z) to H∗−1

B (XE ,Z) and the relative cohomology H∗+1
B (W,V,Z) to

H∗−2r+1
B (X,Z). The vertical maps are pull-back maps π∗, except for the third

one, which can be shown to be k∗ ◦ π∗0 .
As we already noted, the second pull-back map π∗ is an isomorphism in all

degrees. Furthermore, by definition of vanishing cohomology, the kernels of the
maps j∗ and jE∗ are H∗−2r+1

B (X,Z)van and H∗−2r+1
B (XE ,Z)van, respectively.

Thus our diagram becomes the following exact diagram:

0 // H∗B(W,Z)/ Im j∗ //

��

H∗B(V,Z) //

'
��

H∗−2r+1
B (X,Z)van

��

// 0

0 // H∗B(WE ,Z)/ Im jE∗ // H∗B(U,Z) // H∗−1
B (XE ,Z)van

// 0.

(4.13)

We now consider what happens for ∗ = n+ r − 1. Then we claim that the two
groups Hn+r−1

B (W,Z)/ Im j∗ and Hn+r−1
B (WE ,Z)/ Im jE∗ are naturally isomor-

phic via the map π∗. Indeed, we recall that XE is a hypersurface in the ample
linear system |OWE

(1)|. Using the Lefschetz theorem on hyperplane sections
(see [101, II, 1.2.2]), it follows that

Im jE∗ : Hn+r−3
B (XE ,Z)→ Hn+r−1

B (WE ,Z)

is equal to

Im l∪ : Hn+r−3
B (WE ,Z)→ Hn+r−1

B (WE ,Z),

where l := c1(OWE
(1)). We now use the fact that WE is a Pr−1-bundle over W ,

so that its cohomology is described as

H∗B(WE ,Z) = ⊕i≤r−1l
i ∪ π∗H∗−2i

B (W,Z)

so that

H∗B(WE ,Z)/ Im l∪ ∼= H∗B(W,Z)/ Im cr∪,

where c is the constant term of the Chern polynomial satisfied by l:

lr = −
∑
i≤r−1

(−1)r−ili ∪ π∗cr−i(E).

On the other hand, the class of X in W is equal to cr(E). It thus follows that

Im cr∪ : Hn−r−1
B (W,Z)→ Hn+r−1

B (W,Z) (4.14)

is contained in

Im j∗ : Hn−r−1
B (X,Z)→ Hn+r−1

B (W,Z). (4.15)
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If we now recall that E is a direct sum of ample line bundles on W , we have that
X is a complete intersection of ample hypersurfaces in W , hence the restriction
map

j∗ : Hn−r−1
B (W,Z)→ Hn−r−1

B (X,Z)

is surjective by the Lefschetz theorem on hyperplane sections and (4.15) is in
fact equal to (4.14), which concludes the proof of the claim.

We then conclude from diagram (4.13) and the last claim that

Hn−r
B (X,Z)van

k∗◦π∗0∼= Hn+r−2
B (XE ,Z)van.

�

4.1.3 Coniveau 1 and further examples

For c = 1, the estimate in Theorem 4.1 is obvious, as coniveau(X) ≥ 1 is equiva-
lent to Hn−r,0(X) = H0(X,KX) = 0, that is, X is a Fano complete intersection.
In this case, the generalized Hodge–Grothendieck conjecture (Conjecture 2.40)
for the coniveau 1 Hodge structure on Hn−r(X,Q)prim is known to be true. Let
us give two proofs of this.

First of all, we can do it explicitly using the correspondence between X and
its Fano variety of lines F . Denoting by

P
q→ X

p ↓
F

the incidence correspondence, where p is the tautological P1-bundle on F , one
can show (see, for example, [92]) that taking an (n−r−2)-dimensional complete
intersection Fn−r−2 ⊂ F and restricting P to it, the resulting morphism of
Hodge structures

q′∗ ◦ p′
∗

: Hn−r−2
B (Fn−r−2,Q)→ Hn−r

B (X,Q)

is surjective, where P ′ = p−1(Fn−r−2) and p′, q′ are the restrictions of p, q to
P ′. It follows that Hn−r

B (X,Q) vanishes on the complement of the (singular)
hypersurface q(P ′) ⊂ X.

The second proof is by a direct application of Theorem 3.16. Indeed, Fano
varieties are rationally connected (see [65]), hence have trivial CH0 group. The-
orem 3.16 then says that their cohomology of positive degree is supported on a
proper closed algebraic subset.

4.2 CONIVEAU 2 COMPLETE INTERSECTIONS

4.2.1 A conjecture on effective cones

Let Y be smooth projective; for any integer k, denote by H2k
B (Y,R)alg the

subspace of H2k
B (Y,R) generated over R by cycle classes and by E2k(Y ) ⊂
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H2k
B (Y,R)alg the effective cone, that is, the convex cone generated by classes of

subvarieties Z ⊂ Y of codimension k.
Cones of effective cycles have been very much studied in codimension 1

or in dimension 1 (see [16]), but essentially nothing is known in intermediate
(co)dimensions. Let us say that an algebraic cohomology class is big if it belongs
to the interior of the effective cone. Note the following easy lemma (see [107]).

Lemma 4.10. Let h ∈ H2(Y,R) be the first Chern class of an ample line
bundle on Y . A class α ∈ H2k

B (Y,R)alg is big if and only if, for some ε > 0,
α− εhk ∈ E2k(Y ).

Proof. Indeed, the “only if” is obvious, because if α is in the interior of
E2k(Y ), a small deformation α − εhk also belongs to E2k(Y ). In the other
direction, it suffices to prove that hk belongs to the interior of the effective cone.
This is true because for any variety Z ⊂ Y of codimension k, there is an integer
NZ such that NZh

k−Z is effective. Thus both hk− 1
NZ

[Z] and hk+ 1
NZ

[Z] belong

to the cone E2k(Y ). As the classes [Z] generate the vector space H2k
B (Y,R)alg,

we can choose a basis [Zi] of H2k
B (Y,R)alg, and letting ε = Inf{ 1

NZi
}, we get

that the open neighborhood{
hk +

∑
i

εi[Zi], |εi| < ε

}

of hk in H2k
B (Y,R)alg is contained in E2k(Y ). The proof is finished. �

In [81], it is shown that when dimW = 1, and W ⊂ V is moving and has
ample normal bundle, its class [W ] is big. In [107] we give an example that works
in any dimension ≥ 4 and in codimension 2, showing that in higher dimensions,
a moving variety W ⊂ V with ample normal bundle may not have a big class.
Here, by moving we mean that a generic deformation of W in V may be imposed
to pass through a generic point of V .

Definition 4.11. A smooth k-dimensional subvariety V ⊂ Y , is very moving
if it has the following property: through a general point y ∈ Y , and given a
general vector subspace W ⊂ TY,y of rank k, there is a deformation V ′ ⊂ Y of
V in Y that is smooth and passes through y with tangent space equal to W at
y.

We make the following conjecture for very moving subvarieties.

Conjecture 4.12. Let Y be smooth and projective and let V ⊂ Y be a very
moving subvariety. Then the class [V ] of V in Y is big.

4.2.2 On the generalized Hodge conjecture for coniveau 2 complete
intersections

Let X ⊂ Pn be a generic complete intersection of multidegree d1 ≤ · · · ≤ dr. So
X has dimension (n − r) and the interesting cohomology of X is supported in
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degree (n−r). Let F be the variety of lines contained in X. Then by genericity,
F is smooth of dimension (2n − 2 −

∑
i di − r). Note that if n ≥

∑
i di, the

morphism
P ∗ : Hn−r

B (X,Q)→ Hn−r−2
B (F,Q)

induced by the universal P1-bundle P ⊂ F ×X is injective (see Section 4.1.3).
For a generic section G ∈ H0(X,OX(n−

∑
i di− 1)) with zero set XG ⊂ X,

consider the subvariety FG ⊂ F of the variety of lines contained in XG. Again by
genericity, FG is smooth of dimension (n−r−2). The following result is obtained
in [107] by studying the deformations of FG in F induced by deformations of G.

Proposition 4.13. When n ≥
∑
i di + dr, that is, when X has Hodge

coniveau ≥ 2, the subvariety FG ⊂ F is very moving in the sense of Defini-
tion 4.11.

Following [107], let us now deduce from this proposition the following result.

Theorem 4.14 (Voisin 2010). If the very moving varieties FG satisfy Conjec-
ture 4.12, that is, [FG] is big, then the generalized Hodge conjecture for coniveau
2 is satisfied by X.

Proof. Assume that [FG] is big. Then it follows by Lemma 4.10 that for
some positive large integer N and for some effective cycle E of codimension
(n−

∑
i di) on F , one has

N [FG] = ln−
∑
i di + [E], (4.16)

where l is the restriction to F of the first Chern class of the Plücker line bundle
on the Grassmannian G(1, n). (Here we could work as well with real coefficients,
but as we actually want to do geometry on E, it is better if E is a true cycle.)
For a ∈ Hn−r

B (X,Q)prim, let η = p∗q
∗a ∈ Hn−r−2

B (F,Q). We use the fact,
essentially due to Shimada [92] (see also [107, Lemma 1.1]), that η is primitive
with respect to l and furthermore vanishes on FG, with dimFG = n− r − 2.

Let us now assume that a ∈ Hp,q(X)prim and integrate (−1)k(k−1)/2ip−qη ∪
η, k = p+ q − 2 = n− r − 2 over both sides in (4.16). We thus get

0 =

∫
F

(−1)k(k−1)/2ip−qln−
∑
i di ∪ η ∪ η +

∫
E

(−1)k(k−1)/2ip−qη ∪ η.

As η is primitive with respect to l, and nonzero if a is nonzero, by the second
Hodge–Riemann bilinear relations (see [101], I, 6.3.2), we have∫

F

(−1)k(k−1)/2ip−qln−
∑
i di ∪ η ∪ η > 0.

It thus follows that ∫
E

(−1)k(k−1)/2ip−qη ∪ η < 0. (4.17)
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Let Ẽ = tẼj be a desingularization of the support of E =
∑
jmjEj , mj > 0.

Thus we have ∑
j

mj

∫
Ẽj

(−1)k(k−1)/2ip−qη ∪ η < 0.

It thus follows from (4.17) that there exists at least one Ej such that∫
Ẽj

(−1)k(k−1)/2ip−qη ∪ η < 0. (4.18)

Choose an ample divisor Hj on each Ẽj . By the second Hodge–Riemann bilinear
relations, inequality (4.18) implies that η|Ẽj is not primitive with respect to the

polarization given by Hj , that is, η ∪ [Hj ] 6= 0 and in particular,

η|Hj 6= 0.

In conclusion, we have proved that the composed map

Hn−r
B (X,Q)prim

p∗q
∗

→ Hn−r−2
B (F,Q)→

⊕
Hn−r−2
B (Hj ,Q)

is injective, where the second map is given by pull-back to Hj via the composed

map Hj ↪→ Ẽj → F . If we dualize this, recalling that dimHj = n − r − 3, we
conclude that ⊕

Hn−r−4
B (Hj ,Q)→ Hn−r

B (X,Q)prim

is surjective, where we consider the pull-backs of the incidence diagrams to Hj ,

Pj
qj→ X

pj ↓
Hj

and the map is the sum of the maps qj∗p
∗
j , followed by orthogonal projection

onto primitive cohomology. As for n − r even and n − r ≥ 3, the image of∑
j qj∗p

∗
j also contains the class h(n−r)/2 (up to adding to the Hj , if necessary,

the class of a linear section of F ), it follows immediately that the map∑
j

qj∗p
∗
j :
⊕

Hn−r−4
B (Hj ,Q)→ Hn−r

B (X,Q)

is also surjective, if n − r ≥ 3 (the case n − r = 2 is trivial). This implies that
Hn−r
B (X,Q) is supported on the (n− r − 2)-dimensional variety ∪jqj(Pj), that

is, it vanishes on X \ ∪jqj(Pj). The result is proved. �

4.3 EQUIVALENCE OF GENERALIZED BLOCH AND HODGE

CONJECTURES FOR GENERAL COMPLETE

INTERSECTIONS

Our main result in this section concerns very general complete intersections Xb

in a variety X with trivial Chow groups, with the following meaning.
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Definition 4.15. A smooth complex algebraic variety (not necessarily pro-
jective) is said to have trivial Chow groups if it satisfies the property that the
cycle class map

cl : CH∗(X)Q → H2∗
B (X,Q)

is injective.

Smooth projective varieties with trivial Chow groups include all smooth toric
varieties, for example, the projective space, and varieties admitting a stratifica-
tion by affine spaces, like the Grassmannians.

For such Xb’s we will prove the generalized Bloch conjecture as formulated
in Remark 3.22. The statement is that if the transcendental cohomology of a
smooth projective variety Y has geometric coniveau c, then the cycle class map is
injective on cycles of Y of dimension ≤ c− 1. The generalized Bloch conjecture
(Conjecture 3.21) states that if the cohomology of Y has Hodge coniveau c
modulo classes of algebraic cycles, then the cycle class map is injective on cycles
of Y of dimension ≤ c − 1. Thus the two statements differ by the generalized
Hodge conjecture (Conjecture 2.40).

In Section 4.3.4 we will prove the following result (see [114]).

Theorem 4.16 (Voisin 2011). Assume the “standard” conjecture (Conjec-
ture 2.29) holds for degree (2n − 2r) cycle classes. Let X be a smooth complex
projective variety with trivial Chow groups. Let L1, . . . , Lr, r ≤ n := dimX be
very ample line bundles on X. Assume that for a very general complete inter-
section Xb = X1 ∩ · · · ∩Xr of hypersurfaces Xi ∈ |Li|, the Hodge structure on
Hn−r(Xb,Q)prim is supported on a closed algebraic subset Yb ⊂ Xb of codimen-
sion ≥ c. Then for the general such Xb (hence in fact for all), the cycle map
cl : CHi(Xb)Q → H2n−2r−2i(Xb,Q) is injective for any i < c.

Remark 4.17. The conclusion would also apply in the more general situation
where we have a very ample vector bundle E of rank r on X, and the Xb’s are
zero sets of sections of E. In fact, by Terasoma’s trick described in Section 4.1.2,
one can always reduce to the hypersurface case by working on the projective
bundle P(E), so this generalization is almost immediate.

There are two cases where Conjecture 2.29 will be automatically satisfied,
namely when the fibers Xb are either surfaces or threefolds. Furthermore, in
the surface case, due to the Lefschetz theorem on (1, 1)-classes, the geometric
coniveau is equal to the Hodge coniveau. In the surface case, Theorem 4.16
proves the Bloch conjecture (Conjecture 3.21) for complete intersection surfaces
inside a variety with trivial Chow groups and also a variant of it for complete
intersection surfaces with group action (see Section 4.3.5.1).

4.3.1 Varieties with trivial Chow groups

We start by stating, mostly without proofs, a number of easy results concerning
smooth quasi-projective complex varieties X with trivial Chow groups. The
missing proofs can be found in [114].
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Lemma 4.18. Let X be a smooth complex variety with trivial Chow groups.
Then any projective bundle p : P(E)→ X, where E is a locally free sheaf on X,
has trivial Chow groups.

Lemma 4.19. Let X be a smooth complex algebraic variety with trivial Chow
groups and let Y ⊂ X be a smooth closed subvariety with trivial Chow groups.
Then the blow-up X̃Y → X of X along Y has trivial Chow groups.

Lemma 4.20. Assume Conjecture 2.29. Let X be a smooth projective variety
with trivial Chow groups. Then any Zariski open set U ⊂ X has trivial Chow
groups.

Proof. Write U = X \ Y . Let Z be a codimension k cycle on U with
vanishing cohomology class. Then Z is the restriction to U of a cycle Z on X,
which has the property that

[Z]|U = 0 in H∗B(U,Q).

Conjecture 2.29 says that there is a cycle Z ′ supported on Y such that [Z] = [Z ′]
in H2k(X,Q). The cycle Z − Z ′ is thus cohomologous to 0 on X. As X has
trivial Chow groups, Z − Z ′ is rationally equivalent to 0 on X modulo torsion,
and so is its restriction to U , which is equal to Z. �

Let us conclude with two more properties.

Lemma 4.21. Let φ : X → X ′ be a projective surjective morphism, where X
and X ′ are smooth complex algebraic varieties. If X has trivial Chow groups,
so does X ′.

Proposition 4.22. Let X be a smooth projective variety with trivial Chow
groups. Then X ×X has trivial Chow groups.

Proof. This uses the fact (proved in Section 3.2.1) that a variety with trivial
Chow groups has a complete decomposition of the diagonal as a combination of
products of algebraic cycles (see [66], [80], [101, II, 10.3.1]):

∆X =
∑
i,j

nijZi × Zj in CHn(X ×X)Q,

where nij ∈ Q, and dimZi + dimZj = n = dimX when nij 6= 0. It follows
that the variety Z := X × X also admits such a decomposition, since ∆Z =
p∗13∆X · p∗24∆X in CH2n(Z × Z), where pij is the projection of Z × Z = X4 to
the product X ×X of the ith and jth summand.

But this in turn implies that the cycle class map cl : CH∗(Z)Q → H2∗
B (Z,Q)

is injective. Indeed, write

∆Z =
∑
i,j

mijWi ×Wj in CH2n(Z × Z).
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Then any cycle γ ∈ CH(Z)Q satisfies

γ = ∆Z∗γ =
∑
i,j

mij deg(γ ·Wi)Wj in CH(Z)Q.

It immediately follows that if γ is homologous to 0, it vanishes in CH(Z)Q. �

The same proof also shows the following result, as noted by Lie Fu (oral
communication).

Proposition 4.23. Let X, Y be smooth projective varieties with trivial Chow
groups. Then X × Y has trivial Chow groups.

4.3.2 A consequence of Conjecture 2.29

We first observe in this section that assuming the Lefschetz standard conjecture,
or more precisely Conjecture 2.29, the generalized Hodge conjecture for sub-
Hodge structures on X can be rephrased by saying that a certain class on X×X
is supported on a product Y × Y . This will be quite important for the rest of
the proof.

Let X be a smooth complex projective variety of dimension n, and let L
be a sub-Hodge structure of Hn

B(X,Q)prim, where the subscript “prim” stands
for “primitive with respect to a given polarization on X.” We know then by
the second Hodge–Riemann bilinear relations [101, I, 6.3.2] that the intersection
form 〈 , 〉 restricted to L is nondegenerate. Let πL : Hn

B(X,Q) → L be the
orthogonal projector onto L. We assume that πL is algebraic, that is, there is
an n-cycle ∆L ⊂ X ×X, such that

[∆L]∗ = πL : Hn
B(X,Q)→ L ⊂ Hn

B(X,Q),

[∆L]∗ = 0 : Hi
B(X,Q)→ Hi

B(X,Q), i 6= n.

Lemma 4.24. Assume that there exists a closed algebraic subset Y ⊂ X such
that L vanishes under the restriction map Hn

B(X,Q) → Hn
B(X \ Y,Q). Then

if Conjecture 2.29 holds, there is a cycle Z ′L with Q-coefficients supported on
Y × Y such that

[Z ′L] = [∆L] in H2n
B (X ×X,Q).

Proof. Indeed, because πL is the orthogonal projector on L, the class [∆L]
belongs to L ⊗ L ⊂ H2n

B (X × X,Q). As L vanishes in Hn
B(X \ Y,Q), the

class [∆L] ∈ L ⊗ L vanishes in H2n
B (X × X \ (Y × Y ),Q). Conjecture 2.29

then guarantees the existence of a cycle Z ′L supported on Y × Y such that
[Z ′L] = [∆L] in H2n

B (X ×X,Q). �
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4.3.3 A spreading result

Let π : X → B be a smooth projective morphism and let (π, π) : X ×B X → B
be the fibered self-product of X over B. Let Z ⊂ X ×B X be a codimension
k algebraic cycle. We denote by Xb and Zb the fibers, so Xb = π−1(b), Zb =
Z|Xb×Xb .

Proposition 4.25. Assume that for a very general point b ∈ B, there exist
a closed algebraic subset Yb ⊂ Xb ×Xb of codimension c, and an algebraic cycle
Z ′b ⊂ Yb × Yb with Q-coefficients, such that

[Z ′b] = [Zb] in H2k
B (Xb ×Xb,Q).

Then there exist a closed algebraic subset Y ⊂ X of codimension c, and a codi-
mension k algebraic cycle Z ′ with Q-coefficients on X ×B X , which is supported
on Y ×B Y and such that for any b ∈ B,

[Z ′b] = [Zb] in H2k
B (Xb ×Xb,Q). (4.19)

Remark 4.26. This proposition is a crucial observation of the paper [114].
The key point is the fact that we do not need to make any base change for
this specific problem. This will be crucial because the total space of the family
X ×B X is very easy to describe, while it can become very complicated after
an arbitrary base change. The idea of spreading out cycles has become very
important in the theory of algebraic cycles since Nori’s paper [76] (see [47],
[89]). For most problems however, we usually need to work over a generically
finite extension of the base, due to the fact that cycles existing at the general
point will exist on the total space of the family only after a base change.

Proof of Proposition 4.25. There are countably many algebraic vari-
eties Mi → B parametrizing data (b, Yb, Z

′
b) as above, and we can assume that

each Mi parametrizes universal objects

Yi →Mi, Yi ⊂ XMi
, Z ′i ⊂ Yi ×Mi

Yi, (4.20)

satisfying the property that for m ∈Mi, with pr1(m) = b ∈ B,

[Z ′i,b] = [Zi,b] in H2k
B (Xb ×Xb,Q).

By assumption, a very general point of B belongs to the union of the images
of the first projections Mi → B. By a Baire category argument, we conclude
that one of the morphisms Mi → B is dominating. Taking a subvariety of Mi if
necessary, we may assume that φi : Mi → B is generically finite. We may also
assume that it is proper and carries the families Yi → Mi, Yi ⊂ XMi

, Z ′i ⊂
Yi ×Mi

Yi. Denote by ri : XMi
→ X the proper generically finite morphism

induced by φi. Let

Y := ri(Yi) ⊂ X .
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Note that because ri is generically finite, codimY ≥ c. Let r′i : Yi → Y be the
restriction of ri to Yi and let Z ′ := (r′i, r

′
i)∗(Z ′i), which is a codimension k cycle

in X ×B X supported in

(r′i, r
′
i)(Yi ×Mi

Yi) ⊂ Y ×B Y.

It is obvious that for any b ∈ B,

[Z ′b] = N [Zb] in H2k
B (Xb ×Xb,Q),

whereN is the degree of ri. Finally, since we work with cycles withQ-coefficients,
we can replace Z ′ by 1

NZ
′ in order to achieve the desired equality (4.19). �

4.3.4 Proof of Theorem 4.16

We will start with a few preparatory lemmas. Consider a smooth projective
variety X of dimension n with trivial Chow groups. Let Li, i = 1, . . . , r be very
ample line bundles on X. Let j : Xb ↪→ X be a very general complete inter-
section of hypersurfaces in |Li|, i = 1, . . . , r. Then Xb is smooth of dimension
(n− r), and the Lefschetz theorem on hyperplane sections implies that

H∗B(Xb,Q) = Hn−r
B (Xb,Q)van ⊕H∗B(X,Q)|Xb , (4.21)

where the vanishing cohomology Lb := Hn−r(Xb,Q)van is defined as Ker(j∗ :
Hn−r
B (Xb,Q) → Hn+r

B (X,Q)) and the direct sum above is orthogonal with
respect to Poincaré duality on Xb. Indeed, for k < n − r the restriction map
Hk
B(X,Q) → Hk

B(Xb,Q) is surjective, and choosing an ample line bundle H
on X with first Chern class h, the hard Lefschetz theorem on Xb says that
∪hs|Xb : Hn−r−s

B (Xb,Q) → Hn−r+s
B (Xb,Q) is surjective for s ≥ 0. We thus

deduce that the restriction map Hk
B(X,Q) → Hk

B(Xb,Q) is also surjective for
k > n− r. Note that

Hn−r
B (Xb,Q)van ⊂ Hn−r

B (Xb,Q)prim,

where “prim” stands for “primitive with respect to a very ample line bundle
coming from X,” and thus, by the second Hodge–Riemann bilinear relations, the
intersection form 〈 , 〉 on Hn−r

B (Xb,Q) remains nondegenerate after restriction
to Lb.

Since X has trivial Chow groups, we know that H∗B(X,Q) is generated by
classes of algebraic cycles (see Theorem 3.19) and so is the restrictionH∗B(X,Q)|Xb .
This implies the following.

Lemma 4.27. The orthogonal projector πLb on Lb is algebraic.

Proof. In fact, we can construct an almost canonical algebraic cycle ∆b,van

with Q-coefficients on Xb ×Xb whose class [∆b,van] is equal to πLb . More pre-
cisely, the cycle is canonically determined by the choice of the ample line bundle
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H on X. For this, we choose a basis of ⊕i≤n−rH2i
B (X,Q). As we know that X

has trivial Chow groups, this basis consists of classes [zi,j ] of algebraic cycles
zi,j on X, with codim zi,j = i ≤ n − r. We note that by the hard Lefschetz
theorem applied to Xb, the classes [h]n−r−i ∪ [zi,j ]|Xb , together with the classes
[zi,j ]|Xb , form a basis of H∗B(X,Q)|Xb . Here [h] ∈ H2

B(Xb,Q) is the topological
first Chern class of H|Xb . The intersection form on H∗B(Xb,Q) is nondegener-
ate when restricted to H∗B(X,Q)|Xb , and Lb is the orthogonal complement of
H∗B(X,Q)|Xb with respect to the intersection pairing on H∗B(Xb,Q). We thus
have the decomposition of IdH∗B(Xb,Q) as the sum of two orthogonal projectors:

πLb + πH∗B(X,Q)|Xb
= IdH∗B(Xb,Q) .

But the orthogonal projector πH∗B(X,Q)|Xb
is given by the class of an algebraic

cycle on Xb×Xb, which is in fact almost canonical. Indeed, it suffices to choose
an orthogonal basis ei of H∗B(X,Q)|Xb for the intersection form on H∗B(Xb,Q),
satisfying 〈ei, ei〉 = εi ∈ Q∗; then the class πH∗B(X,Q)|Xb

is equal to∑
i

ε−1
i ei ⊗ ei ∈ H∗(Xb,Q)⊗H∗(Xb,Q) ∼= End(H∗(Xb,Q)).

Each class ei comes from a canonically defined class ẽi ∈ H∗(X,Q) using the
basis ([zi,j|Xb ], h

n−r−i[zi,j|Xb ]) constructed above. Furthermore, as X has trivial
Chow groups, the cycles zi,j , h

n−r−izi,j ∈ CH(X)Q are determined by their
cohomology classes, hence the classes ẽi ∈ H∗(X,Q) lift canonically to cycles
Zi ∈ CH(X)Q. We thus conclude that πH∗B(X,Q)|Xb

is the class of the cycle∑
i ε
−1
i pr∗1 Zi|Xb · pr∗2 Zi|Xb on Xb × Xb, where pri, i = 1, 2 are the projectors

from Xb ×Xb to its summands.

As IdH∗B(Xb,Q) corresponds to the class of the diagonal of Xb, we find that

πLb =

[
∆Xb −

∑
i

ε−1
i pr∗1 Zi|Xb · pr∗2 Zi|Xb

]
∈ H2n−2r(Xb ×Xb,Q)

which concludes the proof, with

∆b,van = ∆Xb −
∑
i

ε−1
i pr∗1 Zi|Xb · pr∗2 Zi|Xb ∈ CHn−r(Xb ×Xb)Q.

�

We now assume that there is a closed algebraic subset Yb ⊂ Xb of codi-
mension c such that the sub-Hodge structure Lb vanishes on Xb \ Yb. Then,
under Conjecture 2.29, Lemma 4.24 tells us that there is an algebraic cycle Zb
supported on Yb × Yb such that [Zb] = [∆b,van]. We now put this information in
family.
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Notation 4.28. Let X be a smooth projective with trivial Chow groups.
Let Pi := P(H0(X,Li)). Let B ⊂

∏
i Pi be the open set parametrizing smooth

complete intersections and let

X ⊂ B ×X, π : X → B

be the universal family. We will denote by Xb ⊂ X the fiber π−1(b) for b ∈ B.

We will apply Proposition 4.25 to

Dvan ∈ CHn−r(X ×B X )Q, (4.22)

the corrected relative diagonal with fiber over b ∈ B, the ∆b,van introduced at
the end of the proof of Lemma 4.27. (Note that Dvan is not in fact canonically
defined even if its restriction to Xb ×Xb is canonically defined, because it may
be modified by adding cycles which are restrictions to X of cycles in CH>0(B)⊗
CH(X) ⊂ CH(B ×X).)

We then get the following lemma.

Lemma 4.29. Assume that for a general point b ∈ B, there is a codimension
c closed algebraic subset Yb ⊂ Xb such that Lb = Hn−r

B (Xb,Q)van vanishes on
Xb \ Yb. If furthermore Conjecture 2.29 holds, there exist a closed algebraic
subset Y ⊂ X of codimension c, and a codimension (n − r) algebraic cycle Z ′
on X ×B X with Q-coefficients, which is supported on Y ×B Y and such that for
any b ∈ B,

[Z ′b] = [∆b,van] in H2n−2r
B (Xb ×Xb,Q).

Proof. This is a direct application of Proposition 4.25, because we know
from Lemma 4.24 that under Conjecture 2.29, our assumption implies that there
exists for a very general point b ∈ B an algebraic cycle Z ′b ⊂ Yb × Yb such that
[Z ′b] = [∆b,van] in H2n−2r(Xb ×Xb,Q). �

Next, we have the following lemma.

Lemma 4.30. With Notation 4.28, let α ∈ H2n−2r
B (X ×B X ,Q) be a coho-

mology class whose restriction to the fibers Xb ×Xb is 0. Then we can write

α = α1 + α2,

where α1 is the restriction to X ×B X of a class β1 ∈ H2n−2r
B (X × X ,Q), and

α2 is the restriction to X ×B X of a class β2 ∈ H2n−2r
B (X ×X,Q).

More precisely we can take β1 ∈ ⊕i<n−rHi(X,Q)⊗L1H2n−2r−i(X ,Q), and
β2 ∈ ⊕i<n−rL1H2n−2r−i(X ,Q)⊗Hi(X,Q), where L stands for the Leray filtra-
tion on H∗(X ,Q) with respect to the morphism π : X → B.

Proof. Consider the smooth proper morphism

(π, π) : X ×B X → B.
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The relative Künneth decomposition gives

Rk(π, π)∗Q =
⊕
i+j=k

Hi
Q ⊗H

j
Q,

where Hi
Q := Riπ∗Q. The Leray spectral sequence of (π, π), which degenerates

at E2 (see [30]), gives the Leray filtration L on H2n−2r
B (X ×BX ,Q) with graded

pieces

GrlLH
2n−2r
B (X ×B X ,Q) = H l

B(B,R2n−2r−l(π, π)∗Q)

=
⊕

i+j=2n−2r−l

H l
B(B,Hi

Q ⊗H
j
Q).

Our assumption on α exactly says that it vanishes in the first quotient

H0(B,R2n−2r(π, π)∗Q)

for the Leray filtration, or equivalently, α ∈ L1H2n−2r
B (X ×B X ,Q). Consider

now the other graded pieces

H l
B(B,Hi

Q ⊗H
j
Q), l > 0, i+ j = 2n− 2r − l.

Since l > 0, and i+ j = 2n− 2r − l, we have either i < n− r or j < n− r. Let
us consider the case where i < n − r. Then, the Lefschetz hyperplane section
theorem tells us that the sheaf Hi

Q is the constant sheaf with stalk Hi
B(X,Q).

Thus we find that H l
B(B,Hi

Q ⊗ Hj
Q) = Hi

B(X,Q) ⊗ H l
B(B,Hj

Q), which is a

Leray graded piece of Hi
B(X,Q)⊗H l+j

B (X ). Similarly analyzing the case where
j < n− r, we conclude that the natural map⊕
i<n−r

Hi
B(X,Q)⊗ L1H2n−2r−i

B (X ,Q)⊕
⊕
j<n−r

L1H2n−2r−j
B (X ,Q)⊗Hj

B(X,Q)

→ L1H2n−2r
B (X ×B X ,Q)

is surjective. This proves the existence of the classes β1, β2. �

In the case where X has trivial Chow groups, we get extra information.

Lemma 4.31. With the same notation as above, assume that X has trivial
Chow groups and that α is the class of an algebraic cycle on X ×B X . Then
we can choose the βi’s to be the restriction of classes of algebraic cycles on
B ×X ×X.

Proof. It suffices to show that we can choose the βi’s to be the classes of
algebraic cycles on X×X . Indeed, these classes will lift to classes on B×X×X
for the following reason: X is a Zariski open set in the natural fibration

f : P→ X, P ⊂
∏
i

Pi ×X,



76

weyllecturesformat September 3, 2013 6x9

CHAPTER 4

P := {(σ1, . . . , σr, x), σi(x) = 0 ∀ 1 ≤ i ≤ r}.
This is a fibration into products of projective spaces, because we assumed the
Li’s are globally generated. It follows that X × X is also a Zariski open set in
the corresponding fibration X × P→ X ×X into products of projective spaces.
The restriction map

CH

(
X ×X ×

∏
i

Pi

)
→ CH(X × P)

is then surjective, by the computation of the Chow groups of a projective bundle
fibration ([101, II, 9.3.2]) and the restriction map CH(X ×P)→ CH(X ×X ) to
the Zariski open set X ×X is also surjective by the localization exact sequence
(2.2). Hence the composition CH(X×X×

∏
i Pi)→ CH(X×X ), and a fortiori

the restriction map CH(X ×X ×B)→ CH(X ×X ), are surjective.
It remains to show that if α is algebraic, we can choose the βi’s to be the

restrictions of classes of algebraic cycles on X ×X .
By the proof of Lemma 4.30 we have

α = β1|X×BX + β2|X×BX , (4.23)

where β1 ∈ H∗<n−rB (X,Q)⊗L1H∗B(X ,Q) and β2 ∈ L1H∗B(X ,Q)⊗H∗<n−rB (X,Q).
We know that the cohomology of X is generated by classes of algebraic cycles
[zi,j ] ∈ H2i

B (X,Q). Let us choose a basis [zi,j ], 2i < n − r of H∗<n−rB (X,Q).
Then we can choose cycle classes [zi,j ]

∗ ∈ H2n−2r−2i
B (X,Q) in such a way that

the restricted classes [zi,j ]
∗
|Xb form the dual basis of H∗>n−rB (Xb,Q) for the in-

tersection pairing on Xb. Observe that for every i such that 2i < n − r, the
cycle classes ∑

j

p∗1,X [zi,j ] ∪ p∗2,X [zi,j ]
∗ ∈ H2n−2r(X ×B X ,Q),

seen as cohomological relative self-correspondences of X over B, provide (maybe
up to shrinking B) projectors

π2i : Rπ∗Q→ Rπ∗Q,

which act as the identity on the cohomology R2iπ∗Q, for 2i < n− r. Similarly
the cycle classes∑

j

p∗1,X [zi,j ]
∗ ∪ p∗2,X [zi,j ] ∈ H2n−2r(X ×B X ,Q)

give projectors π2n−2r−2i of Rπ∗Q acting as the identity on R2n−2r−2iπ∗Q for
2i < n − r. Furthermore, these projectors satisfy the condition that πk ◦ πl =
πl ◦ πk = 0 for k 6= l. It follows that denoting

πn−r := Id−
∑

2i<n−r
π2i −

∑
2i<n−r

π2n−2r−2i,
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we get a decomposition in the derived category of B,

Rπ∗Q ∼= ⊕iRiπ∗Q[−i], (4.24)

which in turn induces a similar decomposition by the relative Künneth decom-
position

R(π, π)∗Q ∼= ⊕iRi(π, π)∗Q[−i] = ⊕p+q=i(Rpπ∗Q⊗Rqπ∗Q)[−i]. (4.25)

Taking cohomology on both sides, we get a decomposition

Hk(X ×B X ,Q) ∼= ⊕i+p+q=kHi(B,Rpπ∗Q⊗Rqπ∗Q). (4.26)

This is nothing but an explicit form of the Deligne decomposition already men-
tioned, except that it is clear now that the projector to each summand is induced
by an algebraic relative self-correspondence of X ×BX , hence sends a cycle class
to a cycle class.

Applying (4.26) to our class α and recalling that α belongs to L1H∗(X ×B
X ,Q), we get that

α =
∑

i>0,i+p+q=2n−2r

αi,p,q, (4.27)

with αi,p,q ∈ Hi(B,Rpπ∗Q ⊗ Rqπ∗Q) being a cycle class on X ×B X . It now
suffices to show that each αi,p,q lifts to a cycle class either on X × X or on
X ×X.

We have i + p + q = 2n − 2r with i > 0 so either p < n − r or q < n − r.
Assume p < n− r; then p has to be even, p = 2m. The sheaf R2mπ∗Q is trivial,
with basis given by the pull-back to X of the classes [z2m,j ]. We can thus write

αi,2m,2n−2r−2m−i =
∑
i>0,j

p∗1,X [z2m,j ] ∪ pr∗2 γi,2m,j , (4.28)

where γi,2m,j ∈ Hi(B,R2n−2r−2m−iπ∗Q) is a cohomology class on X . Here
π′2 : X ×B X → X is the second projection

The class αi,2m,2n−2r−2m−i being algebraic, so is the class π′2∗(p
∗
1,X [z2m,j ]

∗∪
αi,2m,2n−2r−2m−i) for any j. However, we have the equality

γi,2m,j = π′2∗(p
∗
1,X [z2m,j ]

∗ ∪ αi,2m,2n−2r−2m−i), (4.29)

which follows from (4.28), from the projection formula and from the fact that

π′2∗(p
∗
1,X [z2m,j ]

∗ ∪ p∗1,X [z2m,k]) = 0 in H0(X ,Q) for j 6= k,

π′2∗(p
∗
1,X [z2m,j ]

∗ ∪ p∗1,X [z2m,k]) = 1 in H0(X ,Q) for j = k.

Formula (4.29) obviously implies that the γi,2m,j ’s are algebraic, hence that
αi,2m,2n−2r−2m−i is algebraic by (4.28). �
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Proof of Theorem 4.16. We keep Notation 4.28 and assume now that
the vanishing cohomology Hn−r

B (Xb,Q)van is supported on a codimension c
closed algebraic subset Yb ⊂ Xb for any b ∈ B. Consider the corrected diagonal
Dvan introduced in (4.22), which is a codimension (n− r) cycle of X ×B X with
Q-coefficients.

By Lemma 4.29, it follows that there exist a codimension c closed algebraic
subset Y ⊂ X and a codimension (n−r) cycle Z on X ×BX with Q-coefficients,
which is supported on Y ×B Y and such that

[Zb] = [Dvan,b] = [∆b,van] ∀ b ∈ B.

Thus the class [Z]−[∆b,van] ∈ H2n−2r
B (X×BX ,Q) vanishes on the fibersXb×Xb.

Using Lemmas 4.30 and 4.31, we conclude that there is a cycle Γ ∈ CHn−r(B×
X ×X)Q such that

[Z] = [Dvan] + [Γ|X×BX ] in H2n−2r
B (X ×B X ,Q). (4.30)

Lemma 4.32. Assume Conjecture 2.29. If X has trivial Chow groups, the
cycle class map

CH∗(X ×B X )Q → H2∗
B (X ×B X ,Q)

is injective (in other words, X ×B X has trivial Chow groups).

Proof. Consider the blow-up X̃ ×X ofX×X along the diagonal. Applying

Proposition 4.22 and Lemma 4.19, X̃ ×X has trivial Chow groups. A point of

X̃ ×X parametrizes a couple (x, y) of points of X, together with a subscheme
z of length 2 of X, with associated cycle x + y. We thus have the following

natural variety of
∏
i Pi × X̃ ×X:

Q = {(σ1, . . . , σr, x, y, z), σi ∈ Pi, σi|z = 0, ∀ i = 1, . . . , r}.

As the Li’s are assumed to be very ample, the map Q → X̃ ×X is a fibration

with fiber over (x, y, z) ∈ X̃ ×X a product of projective spaces Pi,z of codimen-
sion 2 in Pi. By Lemma 4.18, Q also has trivial Chow groups. Let Q0 ⊂ Q be
the inverse image of B under the projection Q →

∏
i Pi. Then Q0 is Zariski

open in Q, so by Lemma 4.20 (for which we need Conjecture 2.29), the cycle
class map is also injective on cycles of Q0. Finally, Q0 maps naturally onto
X ×B X via the map ∏

i

Pi × X̃ ×X →
∏
i

Pi ×X ×X.

The morphism Q0 → X ×B X being projective and dominant, we conclude by
Lemma 4.21 that the cycle class map is injective on cycles of X ×B X . �
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The proof of Theorem 4.16 is then finished as follows. From the equality
(4.30) of cohomology classes, we deduce by Lemma 4.32 the following equality
of cycles:

Z = Dvan + Γ|X×BX in CHn−r(X ×B X )Q. (4.31)

We now fix b and restrict this equality to Xb ×Xb. Then we find

Zb = ∆b,van + Γ′|Xb×Xb in CHn−r(Xb ×Xb)Q,

where Γ′ ∈ CH(X ×X)Q is the restriction of Γ to b×X ×X.
Recalling that ∆b,van = ∆Xb + Γ′′|Xb×Xb for some codimension (n− r) cycle

with Q-coefficients Γ′′ on X ×X, we conclude that

∆Xb = Zb + Γ1|Xb×Xb , (4.32)

where Γ1 ∈ CHn−r(X ×X,Q) and the cycle Zb is by construction supported on
Yb × Yb, with Yb ⊂ Xb of codimension ≥ c for general b.

Let z ∈ CHi(Xb)Q, with i < c. Then (Zb)∗z = 0 since we may find a cycle
rationally equivalent to z in Xb and disjoint from Yb. Applying both sides of
(4.32) to z thus gives

z = (Γ1|Xb×Xb)∗z in CHi(Xb)Q. (4.33)

But it is obvious that

(Γ1|Xb×Xb)∗ : CH(Xb)Q → CH(Xb)Q

factors through jb∗ : CH(Xb)Q → CH(X)Q. Now, if z is homologous to 0 on
Xb, jb∗(z) is homologous to 0 on X, and thus it is rationally equivalent to 0
on X because X has trivial Chow groups. It follows from (4.33) that z = 0
in CHi(Xb)Q. Hence we proved that the cycle class map with Q-coefficients is
injective on CHi(Xb)Q for i < c, which concludes the proof of the theorem. �

4.3.5 Further applications

4.3.5.1 Complete intersections with group action

Theorem 4.16 applies to general complete intersections in projective space. The
relation (4.1) gives the Hodge coniveau for them, hence conjecturally the geomet-
ric coniveau c, according to the generalized Hodge conjecture (Conjecture 2.40).
Hence solving the generalized Bloch conjecture for them is equivalent to solving
a strong form of the generalized Hodge conjecture, implied by the generalized
Hodge conjecture together with the standard Lefschetz conjecture.

There are interesting variants coming from the study of complete intersec-
tions Xb of r hypersurfaces in projective space Pn, or in any ambient variety X
with trivial Chow groups, invariant under a finite group action. Let G act on
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Xb, and let π ∈ Q[G] be a projector, that is, π2 = π. This projector gives (see
Example 3.6) an algebraic cycle Γπ ∈ CHn−r(Xb ×Xb)Q, which is a projector,
that is,

Γπ ◦ Γπ = Γπ.

Then consider the sub-Hodge structure

Lπ := Im([Γπ]∗ : Hn−r(Xb,Q)prim → Hn−r(Xb,Q)prim).

In general, it has a larger coniveau than Xb. For example, if Xb is a quintic
surface in P3, defined by an invariant polynomial under the linearized group
action of G ∼= Z/5Z with generator g on P3 given by

g∗Xi = ζiXi, i = 0, . . . , 3,

where ζ is a nontrivial fifth root of unity, then the G-invariant cohomology
H2(S,Q)inv has no (2, 0)-part, hence is of coniveau 1, while H2,0(S) 6= 0 so the
coniveau of H2(S,Q)prim is 0. The quotient surface S/G is a quintic Godeaux
surface (see [98]).

Coming back to the general situation, note that if π =
∑
g∈G αgg, the Hodge

structure Lπ is the image of the projector [Γπ]∗ = 1
|G|
∑
g∈G αgg

∗ acting on L.

On the other hand, Xb equipped with the projector Γπ is a motive and the
generalized Bloch conjecture (Conjecture 3.21) extended to motives predicts
the following.

Conjecture 4.33. Assume Lπ has coniveau ≥ c. Then the cycle class map
is injective on

CHi(Xb)
π
Q := Im(Γπ∗ : CHi(Xb)Q → CHi(Xb)Q)

for i < c.

If π = 1
|G|
∑
g∈G g is the projector onto the invariant part, this conjecture

is essentially equivalent to the previous one by considering Xb/G or a desin-
gularization of it. Even in this case, one needs to make assumptions on the
linearized group action in order to apply the same strategy as in the proof of
Theorem 4.16. The case of more general projectors cannot be reduced to the
previous case.

In order to apply a strategy similar to the one applied for the proof of
Theorem 4.16, we need some assumptions. Indeed, if the group G is too big,
like the automorphisms group of the Fermat hypersurface, there are too few
invariant complete intersections to play on the geometry of the universal family
X → B of G-invariant complete intersections.

In any case, what we get by mimicking the proof of Theorem 4.16 is the
following (see [114]): X is, as before, a smooth projective variety of dimension n
with trivial Chow groups and G is a finite group acting on X. We fix a projector
π ∈ Q[G]. We study complete intersections Xb ⊂ X of r G-invariant ample
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hypersurfaces Xi ∈ |Li|G: Let G act via the character χi on the considered
component of |Li|G. The basis B parametrizing such complete intersections is
thus a Zariski open set in

∏
i P(H0(X,Li)

χi). As before we denote by X → B
the universal G-invariant complete intersection.

Theorem 4.34 (Voisin 2011). Assume the following conditions:

(i) The variety X ×B X has trivial Chow groups.

(ii) The Hodge structure on Hn−r
B (Xb,Q)πvan is supported on a closed algebraic

subset Yb ⊂ Xb of codimension c. (According to Conjecture 2.40, this
should be satisfied if the Hodge coniveau of Hn−r

B (Xb,Q)πvan is ≥ c.)

(iii) Conjecture 2.29 holds for codimension (n− r) cycles.

Then the cycle class map cl : CHi(Xb)
π
Q → H2n−2r−2i

B (Xb,Q)π is injective for
i < c and for any b ∈ B.

Remark 4.35. In the case where the Xb are surfaces with H2,0(Xb)
π = 0,

by the Lefschetz theorem on (1, 1)-classes, assumptions (ii) (for coniveau 1) and
(iii) above are automatically satisfied. We thus get an alternative proof of the
main theorem of [98], where the Bloch conjecture is proved for general Godeaux
surfaces (quotients of quintic surfaces by a free action of Z/5Z, or quotients of
complete intersections of four quadrics in P6 by a free action of Z/8Z).

In the case of threefolds Xb of Hodge coniveau 1, we can also conclude that
CH0(Xb)

π
0 = 0 if assumption (i) above is satisfied and the generalized Hodge

conjecture is satisfied by the coniveau 1 Hodge structure on H3(Xb,Q)π. Indeed,
we used Conjecture 2.29 in the proof in two places: The first place is in the proof
of Lemma 4.24, which says that if a certain Hodge structure L ⊂ H∗B(Xb,Q)
is supported on a codimension c closed algebraic subset Yb, the corresponding
projector has a class that comes from the class of a cycle supported in Yb × Yb.
This will be satisfied if dimXb = 3, and L ⊂ H3

B(X,Q)χ is supported on Yb
because we know then that the degree 6 Hodge class of the projector πL is
supported on the codimension 2 closed algebraic subset Yb × Yb (or rather a
desingularization of it), so that we can apply Lemma 2.31. The second place
is in the proof of Lemma 4.32. However, in the threefold case, it is possible to
prove it directly without using Conjecture 2.29 (see [114]).

In this way, the second result of [98] (quintic hypersurfaces with involutions)
and the main application of [82] (three-dimensional complete intersections in
weighted projective space) are re-proved; in both cases we are reduced to proving
the generalized Hodge conjecture for the coniveau 1 Hodge structure on their
cohomology of degree 3.

4.3.5.2 Application to self-products

Let Y be a smooth projective variety. There is a natural surjective map

CH0(Y )⊗ CH0(Y )→ CH0(Y × Y ),
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sending (z, z′) to pr∗1 z · pr∗2 z
′. More generally one can study the product map

CH0(Y )⊗m → CH0(Y m)

that is defined similarly, and is compatible with the action of the symmetric
group Sm on both sides.

This study was undertaken in [59], [99] and a variant of it (where the em-
phasis is on cycles of given codimension, instead of cycles of given dimension)
is developed in [60].

Note that if we fix a point o ∈ Y , we always have an injection

CH0(Y )→ CH0(Y × Y ), z 7→ z × o = pr∗1 z · pr∗2 o,

because the composition of this map with pr1∗ : CH0(Y × Y )→ CH0(Y ) is the
identity. We can argue similarly after exchanging factors. The conclusion of
this is that the interesting map is the following:

CH0(Y )hom ⊗ CH0(Y )hom → CH0(Y × Y )hom. (4.34)

This map is rather mysterious. It is proved in [99] that if Y is a surface and
this map, or only the symmetric part of it, is trivial, then the surface Y (which
necessarily has h2,0(Y ) = 0) satisfies the Bloch conjecture.

Let us spell out what predicts the generalized Bloch conjecture (adapted to
motives) for the map (4.34), or rather its antisymmetric or symmetric versions.

We start with the following lemma.

Lemma 4.36. Let H be a Hodge structure of weight m. Then for k > hm,0 :=
dimHm,0, the Hodge structure of weight km on

∧k
L has coniveau ≥ 1. In

particular, if hm,0 = 1, the Hodge structure of weight 2m on
∧2

H has coniveau
≥ 1.

Proof. Indeed, the (km, 0)-component of the Hodge structure on
∧k

H is

equal to
∧k

Hm,0, hence it is 0 for k > hm,0. �

Let Y be a smooth projective variety. Assume that Hi,0(Y ) = 0 for i 6= 0, m
(this will be the case if Y is an m-dimensional complete intersection of ample
hypersurfaces in a projective variety with trivial Chow groups). Conjecture 3.21
(or rather its generalization to motives), together with Lemma 4.36, predicts the
following (see below for more detail).

Conjecture 4.37. Assume Y satisfies the above assumption and has hm,0(Y ) =
1. Then, for any z, z′ ∈ CH0(Y ) with deg z = deg z′ = 0, one has z×z′−z′×z =
0 in CH0(Y × Y ) for m even and z× z′+ z′× z = 0 in CH0(Y × Y ) for m odd.

Indeed, the transcendental cohomology of the skew-symmetric motive (see

Section 3.2.3)
∧2

X if m is even and of the symmetric motive S2X if m is odd
has Hodge coniveau ≥ 1. The case m = 2 is particularly interesting, as noted
in [99]. In this case, we have the following statement.
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Lemma 4.38. Let (H,Hp,q) be a weight 2 Hodge structure of K3 type, namely

h2,0 = 1. Then the Hodge structures on
∧2k

H all have niveau ≤ 2 (that is,
coniveau ≥ k − 1).

Proof. Write H = H2,0
⊕
H1,1

⊕
H0,2. Then

k∧
H = H2,0⊗

k−1∧
H1,1

⊕(
k∧
H1,1 ⊕H2,0 ⊗H0,2 ⊗

k−2∧
H1,1

)⊕ k−1∧
H1,1⊗H0,2

is the Hodge decomposition of
∧k

H, whose first nonzero term is of type (k +
1, k − 1). �

When k > dimH, we of course have that the Hodge structure on
∧k

H is
trivial. Applying these observations to the case where H = H2

B(S,Q), where S
is an algebraic K3 surface, we find that Conjecture 3.21 (or rather, its extension
to motives) predicts the following (see [99]).

Conjecture 4.39.

(i) Let S be an algebraic K3 surface. Then for any k ≥ 2, and i ≤ k − 2,
the projector πalt =

∑
σ∈Sk(−1)ε(σ)σ ∈ CH2k(Sk × Sk) composed with

the Chow–Künneth projector π⊗k2 (see [74]) acts as 0 on CHi(S
k)Q for

i ≤ k − 2.

(ii) For k > b2(S), this projector is identically 0.

Note that (ii) above is essentially Kimura’s finite-dimensionality conjecture
[59] and applies to any regular surface. One may wonder whether it could be
attacked by the methods used for the proof of Theorem 4.16 for the case of
quartic K3 surfaces. The question would be essentially to study whether the
fibered product X 2k/B of the universal such K3 surface has trivial Chow groups.
For small k this is easy, but we would need to know this in the range k ≥ 22 in
order to prove the Kimura conjecture. This seems to be very hard.

The fact that this is true for small k (see below) shows that Conjecture 4.39
is implied by the generalized Hodge conjecture for the self-products Sk and the
coniveau (k − 1) Hodge structures

∧k
H2
B(S,Q) ⊂ H2k

B (Sk,Q).

Example 4.40 (Abelian varieties). Conjecture 4.37 also works with varieties
replaced by motives. Consider, for example, an abelian variety A of dimension
g. The Künneth standard conjecture (Conjecture 2.27) holds for them, and a
stronger version of it, namely, there is a decomposition of the diagonal of A as
a sum of projectors πi in CH(A × A)Q, where the class of pi is the Künneth
component δi (see [74]). Consider the motive Mg(A) := (A, πg). It has hi,0 = 0
for i 6= g and hg,0 = hg,0(A) = 1.

What is thus predicted in this case is the fact that the morphism

CH0(Mg(A))⊗ CH0(Mg(A))→ CH0(Mg(A)⊗Mg(A))
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is (−1)g-symmetric. This is indeed true using the Beauville decomposition [8]
which is also used in [35] to construct the projectors πi. This decomposition is
a splitting of the Chow groups of any abelian variety (in our case A and A×A)
into a sum of eigenspaces under the action of homotheties

µi : A→ A, a 7→ ia.

The Chow group CH0(Mg(A)) is identified (by the construction of πg) to the
subgroup of CH0(A)Q where µi acts by multiplication by ig. It is also generated
by products D1 · · · · ·Dg, where the Di’s are divisors homologous to 0 on A (see
[8], [12]). We now follow [99]: It follows from the above that the image of the
morphism

CH0(Mg(A))⊗ CH0(Mg(A))→ CH0(Mg(A)⊗Mg(A))

consists of 0-cycles generated by products of divisors,

pr∗1 D1 · · · · · pr∗1 Dg · pr∗2 D
′
1 · · · · · pr∗2 D

′
g, (4.35)

where the Di’s and D′i’s are divisors homologous to 0 on A. We want to show
that the involution τ : A×A→ A×A, (a, b) 7→ (b, a) acts by (−1)g on products
(4.35). Consider the map

σ : A×A→ A×A, (a, b) 7→ (a+ b, a− b).

This is an isogeny of A × A, since σ ◦ σ = 2 IdA×A. It follows that it induces
an isomorphism (in fact a homothety) at the level of Chow groups with Q-
coefficients. On the other hand, σ ◦ τ ◦ σ = (2 IdA,−2 IdA). It thus suffices to
show that (2 IdA,−2 IdA) acts by (−1)g on products (4.35), which is obvious
because − IdA acts by − Id on Pic0(A).

Let us state explicitly what the arguments of the proof of Theorem 4.16 give
in the case of general Calabi–Yau complete intersections and for k = 2. Let
Xb be a smooth Calabi–Yau complete intersection of dimension m in projective
space Pn. Let ∆b,van ∈ CHm(Xb×Xb)Q be the corrected diagonal, whose action
on H∗B(Xb,Q) is the projection on Hm

B (Xb,Q)van. On Xb×Xb×Xb×Xb, there
is the induced 2m-cycle

∆b,van,2 := p∗13∆b,van · p∗24∆b,van,

where pij is the projection from X4
b to the product X2

b of its ith and jth factor.
The action on ∆b,van,2 seen as a self-correspondence of X2

b on H∗(X2
b ,Q) is the

orthogonal projector on

p∗1H
m
B (Xb,Q)van ⊗ p∗2Hm

B (Xb,Q)van ⊂ H2m
B (Xb ×Xb,Q).

If instead of ∆b,van,2, we consider

∆τ
b,van,2 := p∗14∆b,van · p∗23∆b,van,
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then the action on ∆b,van,2 seen as a self-correspondence of X2
b on H∗B(X2

b ,Q)
is the composition of the previous projector with the permutation

τ∗ : Hm
B (Xb,Q)van ⊗Hm

B (Xb,Q)van → Hm
B (Xb,Q)van ⊗Hm

B (Xb,Q)van

exchanging summands. Note that the inclusion

Hm
B (Xb,Q)van ⊗Hm

B (Xb,Q)van ⊂ H2m
B (Xb ×Xb,Q)

sends the anti-invariant part on the left to the anti-invariant part under τ on
the right if m is even, and to the invariant part under τ on the right if m is
odd. This is due to the fact that the cup-product on cohomology is graded
commutative.

Hence we conclude that

∆]
b,van,2 := ∆b,van,2 −∆τ

b,van,2

acts on H∗B(X2
b ,Q) as twice the projector onto

∧2
Hm
B (Xb × Xb,Q)van if m is

even, and that
∆inv
b,van,2 := ∆b,van,2 + ∆τ

b,van,2

acts on H∗B(X2
b ,Q) as twice the projector onto

∧2
Hm
B (Xb × Xb,Q)van if m is

odd.
In both cases, using Lemma 4.36, we get that this is twice the orthogonal

projector associated to a sub-Hodge structure of coniveau ≥ 1.
Restricting to the case of Calabi–Yau hypersurfaces in Pn (so m = n − 1),

an easy adaptation of the proof of Theorem 4.16 now gives the following result.

Theorem 4.41. Assume Conjecture 2.29 is true and the generalized Hodge
conjecture holds for the coniveau 1 Hodge structure on

∧2
Hn−1
B (Xb×Xb,Q)van ⊂

H2n−2
B (Xb×Xb,Q), where Xb is a very general Calabi–Yau hypersurface in pro-

jective space. Then the general such Xb has the following properties:

(i) If n − 1 is even, for any two 0-cycle z, z′ of degree 0 on Xb, we have
z × z′ − z′ × z = 0 in CH0(X ×X).

(ii) If n − 1 is odd, for any two 0-cycle z, z′ of degree 0 on Xb, we have
z × z′ + z′ × z = 0 in CH0(X ×X).

Note that the proof has to be adapted, because we are interested in the
self-correspondence ∆]

b,van,2 or ∆inv
b,van,2 of Xb×Xb, which is a cycle in X4

b . This
means that we have to work with cycles on the fourth fibered self-product of
the universal family X → B. We refer to [114] for the extra arguments needed.

4.4 FURTHER APPLICATIONS TO THE BLOCH

CONJECTURE ON 0-CYCLES ON SURFACES

As we have already mentioned in the previous section, the results obtained by
this method are unconditional in the surface case. Furthermore, they can be
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improved to get further cases of the Bloch conjecture for 0-cycles on surfaces,
or of the nilpotence conjecture for self-correspondences of surfaces. These im-
provements have been worked out in [109] which we follow closely.

Let S → B be a smooth projective morphism with two-dimensional con-
nected fibers, where B is quasi-projective. Let Γ ∈ CH2(S ×B S)Q be a relative
0-self-correspondence. Let Γt := Γ|St×St be the restricted cycle, with cohomol-
ogy class [Γt] ∈ H4(St × St,Q). We have the actions

Γt∗ : CH0(St)Q → CH0(St)Q, [Γt]
∗ : Hi,0(St)→ Hi,0(St).

Theorem 4.42 (Voisin 2012). Assume the following:

(1) The fibers St satisfy h1,0(St) = 0 and [Γt]
∗ : H2,0(St)→ H2,0(St) is equal

to 0.

(2) A smooth projective (equivalently any smooth projective) completion S ×B S
of the fibered self-product S ×B S is rationally connected.

Then Γt∗ : CH0(St)hom → CH0(St)hom is nilpotent for any t ∈ B.

We refer to [109] for geometric applications of this statement. They include
a proof of the Bloch conjecture for Catanese surfaces (and, as a by-product, for
determinantal Barlow surfaces).

Sketch of proof of Theorem 4.42. We first construct a cycle

Γ′ ∈ CH2(S ×B S)Q

with the properties that Γ′t is cohomologous to 0 in St×St and that Γ′t acts as Γt
on CH0(St)hom. The existence of Γ′ follows from the assumption thatH1,0(St) =
0 and [Γt]

∗ = 0 on H2,0(St), which says equivalently that the cohomology class
of Γt belongs to pr∗1 H

4(St)⊕ pr∗2 H
4(St)⊕ pr∗1 NS(St)Q ⊗NS(St)Q.

As Γ′t∗ = Γtt∗ on CH0(St)hom, it suffices to prove the conclusion for Γ′. The
same arguments as in the proof of Theorem 4.16 then show that there exist
codimension 2 algebraic cycles Z ′1, Z ′2 with Q-coefficients on S such that

[Γ′ −Z − p∗1Z ′1 − p∗2Z ′2] = 0 in H4(S ×B S,Q).

We now claim that under assumption (2) the following hold:

(i) The cycle Γ−Z − p∗1Z ′1− p∗2Z ′2 is algebraically equivalent to 0 on S ×B S.

(ii) The restriction to the fibers St × St of the codimension 2 cycle Z ′ =
Γ′−Z−p∗1Z ′1−p∗2Z ′2 is a nilpotent element (with respect to the composition
of self-correspondences) of CH2(St × St)Q.

This is clearly sufficient to conclude the proof of Theorem 4.42 since the cycle
Z ′t acts as Γ′t on CH0(St).
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To prove the claim, we work with a smooth projective completion S ×B S.

Let D := S ×B S \ S ×B S be the divisor at infinity. Let D̃
j→ S ×B S be a

desingularization of D. The codimension 2 cycle Z ′ extends to a cycle Z ′ over
S ×B S. We know that

[Z ′]|S×BS = 0 in H4(S ×B S,Q)

and this implies, by Corollary 2.24, that there is a degree 2 Hodge class α on D̃
such that

j∗α = [Z ′] in H4(S ×B S,Q).

By the Lefschetz theorem on (1, 1)-classes, α is the class of a codimension 1

cycle Z ′′ of D̃ and we conclude that

[Z ′ − j∗Z ′′] = 0 in H4(S ×B S,Q).

Replacing Z ′ by Z ′−j∗Z ′′, we have thus proved that the codimension 2 cycle
Z ′ which is cohomologous to 0 on S ×B S extends to a cycle Z ′ on S ×B S which
is also cohomologous to 0.

We use now assumption (2) which says that the variety S ×B S is rationally
connected. It then has trivial CH0, and so any codimension 2 cycle homologous
to 0 on S ×B S is algebraically equivalent to 0 by Theorem 3.14. We thus
conclude that Z ′ is algebraically equivalent to 0 on S ×B S, hence that Z ′ =
(Z ′)|S×BS is algebraically equivalent to 0 on S ×B S.

Statement (ii) is a direct consequence of (i), using the nilpotence theorem
(Theorem 3.25). �
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Chapter Five

On the Chow ring of K3 surfaces and hyper-Kähler

manifolds

This chapter is devoted to a completely different application of Theorem 3.1.
We will consider varieties whose Chow ring has rather special properties. This
includes abelian varieties, K3 surfaces, and Calabi–Yau hypersurfaces in pro-
jective space. For K3 surfaces S, it was discovered in [11] that they have a
canonical 0-cycle o of degree 1 with the property that the product of two divisors
of S is a multiple of o in CH0(S). In [110], we extended this result to Calabi–
Yau hypersurfaces in projective space. Another feature is a decomposition in
CH(X × X × X)Q of the small diagonal ∆ ⊂ X × X × X that was estab-
lished for K3 surfaces in [11], and is partially extended in [110] to Calabi–Yau
hypersurfaces. Finally, we use this decomposition and the spreading principle
(Theorem 3.1) to show, following [110], that for families π : X → B of smooth
projective K3 surfaces, there is a decomposition isomorphism

Rπ∗Q ∼= ⊕Riπ∗Q[−i]

that is multiplicative (that is, compatible with the cup-product on both sides) over
a nonempty Zariski dense open set of B. Numerous examples show that this
statement, which is also true for families of abelian varieties, is rarely satisfied.

5.1 TAUTOLOGICAL RING OF A K3 SURFACE

The following theorem is proved in [11].

Theorem 5.1 (Beauville and Voisin 2004). Let S be a K3 surface, Di ∈
CH1(S) be divisors on S and nij be integers. Then if the 0-cycle

∑
i,j nijDiDj ∈

CH0(S) is cohomologous to 0 on S, it is equal to 0 in CH0(S).

Proof. It suffices to prove that there is a 0-cycle o of degree 1, with the
property that for any two line bundles L, L′ on S,

L · L′ = deg(L · L′) o in CH0(S). (5.1)

The cycle o is defined to be the class of any point of S contained in a
(singular) rational curve C ⊂ S. We claim that this cycle does not depend on
the choice of rational curve. This follows from the fact that there are rational
curves C0 in any ample linear system on S. If C, C ′ are two rational curves on
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S, then any point in the intersection of C and C0 is rationally equivalent to any
point supported on C or on C0, and also to any point supported on C ′ if C ′∩C0

is nonempty. As C0 is ample, the intersections C0 ∩ C, C0 ∩ C ′ are nonempty,
and this concludes the proof of the claim.

The proof of (5.1) is obtained by reducing to the case where L and L′ are
ample line bundles. Then there are rational curves C, C ′ in |L| and |L′|. The
intersection L · L′ = C · C ′ is then by definition proportional to o. �

The cycle o has the following quite remarkable property (which makes it
intrinsically defined).

Proposition 5.2 (Beauville and Voisin 2004). We have the following equal-
ity:

c2(TS) = 24 o in CH0(S).

Proposition 5.2 is a consequence of the following result from [11], which will
be proved in Section 5.2. Let ∆ = {(x, x, x), x ∈ S} be the small diagonal in
S × S × S.

Theorem 5.3 (Beauville and Voisin 2004). We have the following equality
in CH4(S × S × S)Q:

∆ = ∆12 · o3 + (perm.)− (o1 · o2 + (perm.)). (5.2)

Here ∆ ⊂ S × S × S is the small diagonal {(x, x, x), x ∈ S}. The class
o ∈ CH0(S) is the class of any point as above and the oi’s are its pull-back in
CH2(S×S×S)Q via the various projections. The cycle ∆12 ·o3 is then the class
of the algebraic subset {(x, x, o), x ∈ S} of S × S × S. The terms “+(perm.)”
mean that we symmetrize the given expression in the indices 1, 2, 3. As our
cycles ∆12 · o3 and o1 · o2 × S are invariant under the transposition exchanging
1 and 2, there are only three terms of each sort in these sums.

Proof of Proposition 5.2. Let us restrict equality (5.2) to

(jS , Id)(S × S) ⊂ S × S × S,

where jS : S → S × S is the inclusion of the diagonal. We get the following
equality in CH4(S × S)Q:

(jS , Id)∗∆ = (∆12 · o3)|(jS ,Id)(S×S) + (∆13 · o2)|(jS ,Id)(S×S)

+ (o1 ·∆23)|(jS ,Id)(S×S) − (o1 · o2)|(jS ,Id)(S×S)

− (o1 · o3)|(jS ,Id)(S×S) − (o2 · o3)|(jS ,Id)(S×S). (5.3)

The left-hand side is clearly equal to the self-intersection ∆2
S ∈ CH4(S × S)Q,

that is, to jS∗c2(TS). The right-hand side is equal to

c2 × o+ (o, o) + (o, o)− (o, o)− (o, o) = c2 × o.
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Hence we obtain the equality

jS∗c2(TS) = c2 × o in CH0(S × S)Q.

Applying the second projection to this equality, we conclude that

c2(TS) = deg(c2(TS)) o = 24 o in CH0(S)Q,

and the equality is in fact also true in CH0(S) since CH0(S) has no torsion by
Roitman’s theorem [87]. �

Remark 5.4. Theorem 5.3 also implies Theorem 5.1 because we can see the
small diagonal ∆ as a correspondence between S × S and S. Then we have

∆∗

∑
i,j

nij pr∗1 Di · pr∗2 Dj

 =
∑
i,j

nijDi ·Dj in CH0(S)Q,

and the left-hand side is computed using formula (5.2). The conclusion is that
the cycle

∑
i,j nijDiDj is a multiple of o in CH0(S)Q and thus it is trivial if

it is homologous to 0. However, one should be warned that Theorem 5.1 is in
fact used in the proof of Theorem 5.3 (see below) so that it cannot be seen as a
consequence of it.

We conclude with another remarkable property of the cycle o.

Lemma 5.5. Let jS : S ↪→ S × S be the diagonal inclusion. Then for any
line bundle L ∈ PicS, we have

jS∗L = L× o+ o× L in CH1(S × S). (5.4)

Proof. Both sides are Z-linear in L. We use the fact that PicS is generated
by OS(C), where C is a (singular) rational curve in S. For the normalization

C̃ ∼= P1 of C, we have

∆C̃ = C̃ × o1 + o1 × C̃ in CH1(C̃ × C̃) (5.5)

for any point o1 of C̃. Let n : C̃ → S be the natural map. By definition of o, we
have n∗o1 = o in CH0(S), and applying (n, n)∗ to (5.5) thus gives the desired
result. �

5.1.1 Other hyper-Kähler manifolds

Recall that (irreducible) hyper-Kähler manifolds are simply connected projective
complex varieties with H2,0(X) = Cη, where η is an everywhere-nondegenerate
holomorphic 2-form on X. One famous series of examples is constructed in [7]:
one considers the Hilbert scheme S[n] of length n subschemes of an algebraic
K3 surface S. Such hyper-Kähler varieties admit projective deformations that
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are not obtained by the same construction, but they are not well understood
except in a few cases, namely the four different families of hyper-Kähler fourfolds
constructed in the papers [10], [29], [55], [77]. The varieties constructed by
Beauville and Donagi are obtained as Fano varieties of lines of smooth cubic
fourfolds in P5.

In [9], Beauville conjectured that a result similar to Theorem 5.1 holds for
algebraic hyper-Kähler varieties.

Conjecture 5.6 (Beauville 2007). Let Y be an algebraic hyper-Kähler va-
riety. Then any polynomial cohomological relation

P ([c1(Li)]) = 0 in H∗(Y,Q), Li ∈ PicY

already holds at the level of Chow groups:

P (c1(Li)) = 0 in CH(Y )Q.

Beauville proved this conjecture in [9] in the case of the second and third
punctual Hilbert scheme of an algebraic K3 surface.

In the paper [106], we stated the following more general conjecture concern-
ing the Chow ring of an (irreducible algebraic) hyper-Kähler variety. Namely,
a synthesis of Theorem 5.1 and Proposition 5.2 is the statement that any poly-
nomial relation between the cohomology classes [c2(TS)], [c1(Li)] in H∗(S,Q)
already holds between the cycles c2(TS), c1(Li) in CH(S).

Conjecture 5.7 (Voisin 2008). Let Y be an algebraic hyper-Kähler variety.
Then any polynomial cohomological relation

P ([c1(Lj)], [ci(TY )]) = 0 in H2k(Y,Q), Lj ∈ PicY

already holds at the level of Chow groups:

P (c1(Lj), ci(TY )) = 0 in CHk(Y )Q.

The following results are proved in [106].

Theorem 5.8 (Voisin 2008).

(1) Conjecture 5.7 holds for Y = S[n], where S[n] is the Hilbert scheme of
length n subschemes of an algebraic K3 surface S, in the range n ≤
2b2(S)tr + 4.

(2) Conjecture 5.7 is true for any k when Y is the Fano variety of lines of a
cubic fourfold.

We will not comment on the proof of (2). Let us just say that the result in
(2) was partially extended by Ferretti in [40] to the case of O’Grady fourfolds
(see [77]).

In item (1) above, the number b2(S)tr is equal to b2(S) − ρ(S) = 22 −
ρ(S), where ρ(S) is the Picard number of S. In particular, we have b2(S)tr ≥
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2h2,0(S) = 2 and the conjecture is true for Y = S[n], where S is any K3 surface
and n ≤ 8. More importantly, the method of proof for (1) shows Theorem 5.10
below.

The next theorem is conditional on the following conjecture, involving only
the usual products Sm of S.

Conjecture 5.9 (Voisin 2008). Let S be an algebraic K3 surface. For any
integer m, let P ∈ CH(Sm)Q be a polynomial expression in

pr∗i c1(Ls), Ls ∈ PicS, pr∗j o, pr∗kl ∆S ,

where the pri and prkl are the projections from Sm to S and S×S, respectively.

Then if [P ] = 0 in H∗(Sm,Q), we have P = 0 in CH(Sm)Q.

Note that by Theorems 5.1 and 5.3, we may assume in the above Conjec-
ture 5.9 that the polynomial P involves only monomials

Π(i,j,k,l)∈{1,...,m}4 pr∗i c1(Ls) · pr∗j o · pr∗kl ∆S

with four different indices i, j, k, l. Indeed, relation (5.2) can be written as a
relation of the form

p∗12∆S · p∗23∆S = P (p∗ij∆S , p
∗
ko) in CH4(S × S × S)Q,

where the polynomial P involves only monomials where the three indices i, j, k
are distinct. Similarly, relation (5.4) can be written as

∆S · p∗2L = P ′(p∗iL, p
∗
jo) in CH3(S × S)Q,

where the polynomial P ′ involves only monomials where the two indices i, j are
distinct. Note also that Conjecture 5.9 is very strong because for K3 surfaces
it implies Kimura’s finite-dimensionality conjecture (Conjecture 3.27). Indeed,

for a K3 surface S, we have dimH∗(S,Q) = 24, so
∧25

H∗(S,Q) = 0. This also
says that the cycle

Γalt ∈ CH50(S50)Q,

which is the skew-symmetric projector defining the motive
∧25

S (see Sec-
tion 3.2.3), that is,

Γalt =
1

25!

∑
σ∈S25

ε(σ)Γσ,

is cohomologous to 0. On the other hand, each Γσ, being the graph of a permu-
tation, can be expressed as a product of diagonals pr∗ij ∆S . So Conjecture 5.9

would imply that Γalt is rationally equivalent to 0 in S50, hence that
∧25

S = 0.

Theorem 5.10. Conjecture 5.7 is implied by Conjecture 5.9.
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It could be the case that the converse is also true, and this might be proved
by looking more closely at the proof of Theorem 5.10 (and more precisely Propo-
sition 5.14) below.

Let us give an idea of the proof of these theorems. It mainly uses the in-
ductive method of [36] and the result of [27] computing (additively) the Chow
groups of CH(S[m])Q in terms of Chow groups of strata of S(m) (see below).

This inductive method necessitates proving a more general statement (The-
orem 5.11), as follows.

There are two natural vector bundles on S[n], namely O[n] on the one hand,
which is defined as R0p∗OΣn , where

Σn ⊂ S[n] × S, p = pr1 : Σn→S[n]

is the incidence subscheme, and on the other hand the tangent bundle Tn of S[n].
It is not clear that the Chern classes of O[n] can be expressed as polynomials in
c1(O[n]) and the Chern classes of Tn.

Theorem 5.11 (Voisin 2008). Let n ≤ 2b2(S)tr + 4, and let P ∈ CH(S[n])Q
be any polynomial expression in the variables

c1(L), L ∈ PicS ⊂ PicS[n], ci(O[n]), cj(Tn) ∈ CH(S[n])Q.

Then if P is cohomologous to 0, we have P = 0 in CH(S[n])Q.

This implies Theorem 5.8 for the nth Hilbert scheme of K3 surface S with
n ≤ 2b2(S)tr + 4, because we have c1(O[n]) = −δ, where 2δ ≡ E is the class of

the exceptional divisor of the resolution S[n] → S(n), and it is well known that
PicS[n] is generated by PicS and δ.

The proof of this theorem uses the following proposition.

Proposition 5.12. Let P ∈ CH(Sm)Q be a polynomial expression in the
variables

pr∗i

(
1

24
c2(T )

)
= pr∗i o, pr∗j c1(Ls), Ls ∈ PicS, pr∗kl ∆S , k 6= l,

where ∆S ⊂ S×S is the diagonal. Assume that one of the following assumptions
is satisfied:

(1) m ≤ 2b2(S)tr + 1.

(2) P is invariant under the action of the symmetric group Sm−2 acting on
the first m− 2 indices.

Then if P is cohomologous to 0, it is equal to 0 in CH(Sm)Q.

Using the results of [11] described in the previous sections (Theorem 5.1 and
Proposition 5.2), this proposition is a consequence of the following lemma (see
[106] for the proof).
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Lemma 5.13. The polynomial relations [P ] = 0 in the cohomology ring
H∗(Sm), satisfying one of the above assumptions on m, P , are all generated
(as elements of the ring of all polynomial expressions in the variables above) by
the following polynomial relations, the list of which will be denoted by (∗):

(1) [pr∗i (c1(L)) · pr∗i o] = 0, L ∈ PicS, [pr∗i (o) · pr∗i (o)] = 0.

(2) [pr∗i (c1(L)2 − [c1(L)]2o)] = 0, L ∈ PicS.

(3) [pr∗ij(∆S · p∗1o− (o, o))] = 0, where p1 here is the first projection of S × S
to S, and (o, o) = p∗1o · p∗2o.

(4) [pr∗ij(∆S .p
∗
1c1(L) − c1(L) × o − o × c1(L))] = 0, L ∈ PicS, where p1 here

is the first projection of S × S to S, and c1(L)× o = p∗1c1(L) · p∗2o.

(5) [pr∗ijk(∆− p∗12∆S · p∗3o− p∗1o · p∗23∆S − p∗13∆S · p∗2o+ p∗12(o, o) + p∗23(o, o) +
p∗13(o, o))] = 0.

(6) [pr∗ij ∆S ]2 = 24 pr∗ij(o, o) = 24 pr∗i o · pr∗j o.

In (5) above, ∆ is, as before, the small diagonal of S3, and the pi and pij
are the various projections from S3 to S and S × S, respectively. Note that ∆
can be expressed as p∗12∆S · p∗23∆S . Furthermore we have

pr∗ij ◦p∗1 = pr∗i , pr∗ijk ◦p∗12 = pr∗ij , pr∗ijk ◦p∗i = pr∗i .

Thus all the relations in (∗) are actually polynomial expressions in the variables

[pr∗i o], [pr∗j c1(L)], L ∈ PicS, [pr∗kl ∆S ], k 6= l.

Proof of Proposition 5.12. Using Lemma 5.13, we conclude that under
one of the assumptions of Proposition 5.12 on m, P , all polynomial relations
[P ] = 0 in the variables pr∗i o, pr∗j c1(L), L ∈ PicS, pr∗kl ∆S , k 6= l that hold in
H∗(Sm,Q) also hold in CH(Sm)Q, because we know by Theorem 5.1, Proposi-
tion 5.2, and Theorem 5.3 that the cohomological relations listed in (∗) hold in
CH(Sm)Q. In fact (apart from the relations (1) and (3) above, which obviously
hold in CH(Sm)Q), these relations are pulled back, via the maps pri, prij , and
prijk, from relations in CH(S)Q, CH(S2)Q, and CH(S3)Q, respectively, which
are established there.

Similarly, for any m, the same conclusion holds for polynomial relations
invariant under Sm−2.

This concludes the proof of Proposition 5.12. �

In order to sketch the proof of Theorem 5.11, let us introduce the following
notation: Let

µ = {µ1, . . . , µm}, m = m(µ),
∑
i

|µi| = n
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be a partition of {1, . . . , n}. Such a partition determines a partial diagonal

Sµ ∼= Sm ⊂ Sn,

defined by the conditions

x = (x1, . . . , xn) ∈ Sµ ⇔ xi = xj if i, j ∈ µl for some l.

Consider the quotient map

qµ : Sm ∼= Sµ → S(n),

and denote by Eµ the following fibered product:

Eµ := Sµ ×S(n) S[n] ⊂ Sm × S[n].

We view Eµ as a correspondence between Sm and S[n] and as usual we will
denote by E∗µ : CH(S[n])Q → CH(Sm)Q the map

α 7→ pr1∗(pr∗2(α) · Eµ).

Let us denote by Sµ the subgroup of Sm permuting only the indices i, j for
which the cardinalities of µi, µj are equal. The group Sµ can be seen as the
quotient of the global stabilizer of Sµ in Sn by its pointwise stabilizer. In this
way the action of Sµ on Sµ ∼= Sm is induced by the action of Sn on Sn.

We have the following result.

Proposition 5.14. Let P ∈ CH(S[n])Q be a polynomial expression in the
variables ci(O[n]), cj(Tn). Then for any µ as above, E∗µ(P ) ∈ CH(Sm) is a
polynomial expression in pr∗s o, pr∗lk ∆S. Furthermore, E∗µ(P ) is invariant under
the group Sµ.

Note that the last statement is obvious, since Sµ leaves invariant the corre-
spondence Eµ ⊂ Sµ × S[n].

The proof of this proposition is rather painful and we refer to [106] for the
detail. It is here that we use the Ellingsrud–Göttsche–Lehn method.

Admitting this proposition, we give now the proofs of the theorems, following
[106].

Proof of Theorem 5.11. From the work of de Cataldo and Migliorini
[27], we know that the map

(E∗µ)µ∈Part({1,...,n}) : CH(S[n])Q →
⊕
µ

CH(Sm(µ))Q

is injective. Now let P ∈ CH(S[n])Q be a polynomial expression in c1(L), L ∈
PicS ⊂ PicS[n], ci(O[n]), cj(Tn) ∈ CH(S[n])Q. Note first that for L ∈ PicS,

and for each µ, the restriction of pr∗2 L to Eµ ⊂ Sµ×S[n] is a pull-back pr∗1 Lµ|Eµ ,



96

weyllecturesformat September 3, 2013 6x9

CHAPTER 5

where Lµ ∈ PicSµ = PicSm is equal to L⊗|µ1|� · · ·�L⊗|µm|. This follows from
the fact that L is the pull-back of a line bundle on S(n). Note that Lµ is invariant
under Sµ.

Thus it follows from Proposition 5.14 and the projection formula that for
each partition µ, E∗µ(P ) is a polynomial expression in pr∗i c1(L), pr∗k o, pr∗lm ∆
which is invariant under the group Sµ.

Now, if P is cohomologous to 0, each E∗µ(P ) is cohomologous to 0. Let
us now verify that the assumptions of Proposition 5.12 are satisfied. Recall
that we assume n ≤ 2b2(S)tr + 4. If m(µ) ≤ 2b2(S)tr + 1, Proposition 5.12
applies. Otherwise, m(µ) ≥ 2b2(S)tr +2 and, as n ≤ 2b2(S)tr +4, it follows that
the partition µ contains at most two sets of cardinality ≥ 2. Thus the group
Sµ contains in this case a group conjugate to Sm(µ)−2. Proposition 5.12 thus
applies, and gives E∗µ(P ) = 0 in CH(Sµ)Q for all µ.

It follows that P = 0 by the result of de Cataldo and Migliorini. This
concludes the proof of Theorem 5.11. �

To conclude, let us note that Proposition 5.14 and the end of the proof of
Theorem 5.11 also prove Theorem 5.10.

5.2 A DECOMPOSITION OF THE SMALL DIAGONAL

In this section we give the proof of Theorem 5.3. We first recall its statement.

Theorem 5.15 (Beauville and Voisin 2004). We have equality of cycles in
CH4(S × S × S)Q:

∆ = ∆12 · o3 + (perm.)− (o1 · o2 + (perm.)). (5.6)

Remark 5.16. This decomposition is very particular. Even for curves (say
general curves of genus g ≥ 3 and for cycles modulo algebraic equivalence), a
similar decomposition of the small diagonal does not exist. This follows from
Ceresa’s result [18] as explained in [11]. Note that for curves, and for cycles
modulo algebraic equivalence, there are relations established by Colombo and
van Geemen [25] in CH1(Ck)Q involving the various diagonals, that is, 1-cycles
of the form (up to permutation of factors) {(x, . . . , x, o, . . . , o), x ∈ C} with r
terms x and k − r terms o, where o is a fixed point, but the integer k depends
on the gonality of the curve.

The proof of Theorem 5.15 will use the analogous result for elliptic curves.

Proposition 5.17. Let E be an elliptic curve and let l be a divisor of degree
d on E:

(i) For any x ∈ E, we have the following equality in CH0(E × E):

d2(x, x) = d(x× l + l × x)− l × l. (5.7)
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(ii) We have the following equality of cycles in CH2(E × E × E)Q:

d2∆ = d[∆12 × l3 + (perm.)]− (l1 × l2 × E + (perm.)), (5.8)

where again ∆ ⊂ E × E × E is the small diagonal, and l1 × l2 × E :=
pr∗1 l · pr∗2 l etc.

Proof. (i) Indeed, both cycles in (5.7) are symmetric with respect to the
involution ι exchanging factors of E×E. Hence (up to torsion) they come from
cycles in CH0(E × E/ι). The group CH0(E × E/ι) is representable, because
the quotient E × E/ι = E(2) is a P1-bundle over E. In other words, the Chow
group CH0(E(2)) is an extension of Z by the Albanese variety of S(2)E. In order
to check (5.7) (at least up to torsion), it thus suffices to verify that both sides
have the same degree and that their difference has a trivial Albanese invariant,
which is elementary. This proves a priori the result only up to torsion, but as
Roitman’s theorem [87] says that the Albanese map is injective on the torsion
of CH0, the result is actually true in CH0(E × E).

(ii) We use (i) and apply Corollary 3.8 to the small diagonal of E seen as a
correspondence between E and E × E. We thus deduce that there are points
pi of E and cycles Zi ∈ CH1(E × E)Q such that the following equality holds in
CH2(E × E × E)Q:

d2∆ = d[∆12 × l3 + (perm.)]− (l1 × l2 × E + (perm.)) +
∑
i

pi × Zi. (5.9)

Using the fact that the 1-cycle d2∆−d[∆12×l3+(perm.)]+(l1×l2×E+(perm.))
is invariant under the symmetric group S3, we conclude that the 1-cycle

∑
i pi×

Zi in CH2(E × E × E)Q is also invariant under the group S3. It follows that
it is cohomologous to 0 and Abel–Jacobi equivalent to 0. But the Deligne cycle
class (with value in Deligne cohomology H4

D(E × E × E,Q(2))) is injective on

the invariant part CH2(E ×E ×E)S3

Q , because E(3) is a P2-bundle over E. �

Note that from Proposition 5.17(i) we can deduce the following property
satisfied by the cycle o (which is a weak version of Theorem 5.15).

Corollary 5.18. For any 0-cycle z ∈ CH0(S), one has

iS∗(z) = z × o+ o× z − deg z (o, o) in CH0(S × S),

where iS : S → S × S is the inclusion of the diagonal of S × S.

Proof. It suffices to prove the result when z is a point of S. We know that S
is swept out by (singular) elliptic curves, that is, curves C whose normalization
E is a smooth elliptic curve. A general point x of S belongs to a smooth point of
such a curve C, and we will denote by x̃ the corresponding point of E. Denoting
by j̃ : E → S the natural map, so that x = j̃(x̃), we now choose for the line
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bundle l on E any line bundle of the form j̃∗L, where L ∈ PicS has nonzero
degree d on C. We apply (5.7) on E and then apply j̃∗. We then get

d2(x, x) = d(x× L · C + L · C × x)− (j̃, j̃)∗(j̃
∗L× j̃∗L) in CH0(S × S).

We know by Theorem 5.1 that L · C = d o in CH0(S). It follows also that

j̃∗(j̃
∗L) = d o in CH0(S).

Hence we conclude that

d2(x, x) = d2(x× o+ o× x)− d2(o, o) in CH0(S × S),

which proves the result since CH0(S×S) has no torsion by Roitman’s theorem.
�

Proof of Theorem 5.15. We know that S is swept out by a one-parameter
family of elliptic curves; thus there is a smooth surface Σ that admits an elliptic
fibration

p : Σ→ B

and a generically finite dominating morphism

q : Σ→ S.

In fact, we can even assume that all fibers Σb are reduced irreducible, if S has
the property that PicS is generated by the class of an ample line bundle L on
S. In that case, there is a one-parameter family of elliptic curves in |L| and all
of them are irreducible and reduced. Once we have the result for S satisfying
this property, the result for any S follows by specialization.

We set d := deg q∗L|Σb . We apply Proposition 5.17(ii) to the elliptic curve
Σb endowed with the line bundle Lb. This gives us for the general point b ∈ B a
formula for the small diagonal of Σb in CH1(Σb×Σb×Σb)Q. We view Σb×Σb×Σb
as the fiber of the map

p3 : Σ×B Σ×B Σ→ B,

and observe that the small diagonal ∆Σ of Σ is contained in Σ×B Σ×B Σ and
that its restriction to the general fiber Σb×Σb×Σb is equal to the small diagonal
of Σb. We thus conclude from Corollary 3.8 that there are finitely many points
bi ∈ B and 2-cycles Zi ⊂ Σbi × Σbi × Σbi with Q-coefficients such that the
following equation holds in CH2(Σ×B Σ×B Σ)Q:

d2∆Σ = d[∆rel
12 · pr∗3(q∗L) + (perm.)]− (pr∗1 q

∗L · pr∗2 q
∗L+ (perm.))

+
∑
i

Zi, (5.10)

where ∆rel
12 is defined as the inverse image pr−1

12 (∆Σ/B) ⊂ Σ ×B Σ ×B Σ of the
relative diagonal of Σ over B.
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Furthermore, we observe that up to changing the base B, we may assume
there is an involution ι : Σ→ Σ, with the properties that

ι∗(q∗L) = q∗L, p ◦ ι = p

acting on each smooth fiber Σb in such a way that Σb/ι ∼= P1. Then the cycle

d2∆Σ − d[∆rel
12 · pr∗3(q∗L) + (perm.)] + (pr∗1 q

∗L · pr∗2 q
∗L+ (perm.))

∈ CH2(Σ×B Σ×B Σ)Q

being invariant under ι, we can assume by averaging that each cycle Zi is in-
variant under ι.

We now push-forward this equality to S × S × S via the composition of the
inclusion

k : Σ×B Σ×B Σ ↪→ Σ× Σ× Σ

and the map
(q, q, q) : Σ× Σ× Σ→ S × S × S.

Let N := deg q. Then we clearly have

(q, q, q)∗∆
Σ = N∆. (5.11)

Next we have the following lemma.

Lemma 5.19. The following equality holds in CH2(S × S × S)Q:

((q, q, q) ◦ k)∗(pr∗i q
∗L · pr∗j q

∗L) = Nd2 pr∗ij o× o+Nd pr∗i o× pr∗j L× pr∗l L

+Nd pr∗j o× pr∗i L× pr∗l L, (5.12)

where {i, j, l} = {1, 2, 3}. Furthermore,

((q, q, q) ◦ k)∗(∆
rel
12 · pr∗3(q∗L)) = Nd∆12 · pr∗3 o+N pr∗1 L× o2 × pr∗3 L

+N pr∗1 o · pr∗2 L · pr∗3 L

∈ CH2(S × S × S)Q. (5.13)

Proof. We may assume that i = 1, j = 2. Let P = P(H0(S,L)) = Pr. The
curve B is a curve of degree N in P . The cycle ((q, q, q)◦k)∗(pr∗1 q

∗L ·pr∗2 q
∗L) ∈

CH2(S × S × S) is N times the cycle

((q′, q′, q′) ◦ k′)∗(pr∗1 q
∗L · pr∗2 q

∗L) ∈ CH2(S × S × S),

where B is replaced by a pencil P1 ⊂ P ,

q′ : Σ′ → S, p′ : Σ′ → P1

are obtained by blowing up S at the base points of the pencil, and k′ is the
inclusion of Σ′×P1 Σ′×P1 Σ′ in Σ′×Σ′×Σ′. But the small diagonal of P1×P1×P1

has its class equal to ∑
i 6=j

π∗iH · π∗jH, H := OP1(1),
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where πj : P1 × P1 × P1 → P1 is the jth projection. Hence the class of Σ′ ×P1

Σ′×P1 Σ′ in Σ′×Σ′×Σ′ is equal to
∑
i 6=j p

′∗
iH ·p′

∗
jH, where p′l = πl ◦ (p′, p′, p′).

Our cycle in (5.12) is thus equal to

N(q′, q′, q′)∗

∑
i6=j

p′i
∗
H · p′j

∗
H

 · pr∗1 q
∗L · pr∗2 q

∗L

 ,
which by the projection formula is also equal to

N pr∗1 L · pr∗2 L ·

(q′, q′, q′)∗

∑
i 6=j

p′i
∗
H · p′j

∗
H

 .

As q′∗H = L, this is clearly equal to

N pr∗1 L · pr∗2 L ·

∑
i 6=j

pr∗i L · pr∗j L

 .

For {i, j} = {1, 2} we get Nd2o1 × o2 × S using (5.1). For the same reason the
two other terms give Ndo1 × L× L and NdL× o2 × L. This proves (5.12).

Formula (5.13) is proved in a similar way, using Lemma 5.5. �

We now deduce from (5.10), (5.11), and (5.12), by applying (q, q, q)∗ ◦ k∗,
the following equality in CH2(S × S × S)Q:

Nd2∆ = d[Nd∆12 · pr∗3 o+N pr∗1 L · pr∗2 o · pr∗3 L+N pr∗1 o · pr∗2 L · pr∗3 L]

− [Nd2o× o× S −Ndo× L× L−NdL× o× L+ (perm.)]

+
∑
i

Zi, (5.14)

where the Zi are 2-cycles supported on products of curves Ci × Ci × Ci, where
the Ci ∈ |L| are elliptic, and the Zi are invariant under the symmetric group
S3 and the action of the involution ι.

We have now, denoting by n : C̃i → Ci the normalization of Ci, the following
lemma.

Lemma 5.20. 2-cycles in C̃i × C̃i × C̃i, which are invariant under the sym-
metric group S3 and the action of the involution ι, are generated over Q by∑
j(n ◦ prj)

∗L|Ci and by the big diagonal
∑
k,l pr∗kl ∆C̃i

.

This is elementary as C̃i is either elliptic or rational, and n∗(L|Ci) generates

over Q the invariant part under ι of Pic C̃i.
Using (5.1) and Lemmas 5.5 and 5.20, we conclude that the cycles Zi are

rationally equivalent in S × S × S to pr∗1 L · pr∗2 o · pr∗3 L+ (perm.).
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We thus deduce from (5.14) an equality

∆−(∆12 ·pr∗3 o+(perm.))+o×o×S+(perm.) = µ(pr∗1 L ·pr∗2 o ·pr∗3 L+(perm.))

in CH2(S × S × S)Q, where µ ∈ Q.
Comparing cohomology classes, we find that µ = 0 which concludes the proof

of Theorem 5.15. �

5.2.1 Calabi–Yau hypersurfaces

In the case of smooth Calabi–Yau hypersurfaces X in projective space Pn, that
is, hypersurfaces of degree (n+ 1) in Pn, we have the following result proved in
[110], which partially generalizes Theorem 5.15 and provides some information
on the Chow ring of X. Denote by o ∈ CH0(X)Q the class of the degree 1 0-

cycle hn−1

n+1 , where h := c1(OX(1)) ∈ CH1(X). Again we denote by ∆ the small

diagonal of X in X3.

Theorem 5.21 (Voisin 2011). The following relation is satisfied in the group
CH2n−2(X ×X ×X)Q:

∆ = ∆12 · o3 + (perm.) + Z + Γ′, (5.15)

where Z is the restriction to X ×X ×X of a cycle on Pn × Pn × Pn, and Γ′ is
a multiple of the following effective cycle of dimension (n− 1):

Γ := ∪l∈F (X)P1
l × P1

l × P1
l .

Here F (X) is the variety of lines contained in X. It is of dimension n − 4
for general X. For a point l ∈ F (X), P1

l ⊂ X denotes the corresponding line.
This result has been generalized by Lie Fu [42] to Calabi–Yau varieties ob-

tained as zero sets of transverse sections of very ample vector bundles on pro-
jective space, under the assumption that a certain number computed from the
Chern classes of this vector bundle does not vanish (this is satisfied by complete
intersections, that is, in the case where the vector bundle is split). In particu-
lar, the main consequence below (Theorem 5.25) also holds for them. It would
be very interesting to understand the class of Calabi–Yau varieties satisfying
conclusions analogous to Theorem 5.21 and Theorem 5.25.

Remark 5.22. Note that Theorem 5.21 gives an alternative proof of Theo-
rem 5.3 for quartic K3 surfaces S in P3 (in dimension 2, the cycle Γ above is
empty for general S, and the result for general S implies the result for any S).
Similarly, the results of Lie Fu re-prove Theorem 5.3 for complete intersection
K3 surfaces.

Proof of Theorem 5.21. Observe first of all that it suffices to prove the
following equality of (n− 1)-cycles on X3

0 , where X3
0 := X3 \∆:

Γ|X3
0

= (n+ 1)![∆12|X3
0
· o3 + (perm.)] + Z in CH2n−2(X3

0 )Q, (5.16)
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where Z is the restriction to X3
0 of a cycle on (Pn)3. Indeed, by the localization

exact sequence (2.2), (5.16) implies the equality

N∆ = ∆12 · o3 + (perm.) + Z + Γ′ in CH2n−2(X ×X ×X)Q, (5.17)

for some integer N . Projecting to X2 and taking cohomology classes, then we
easily conclude that N = 1. (We use here the fact that X has some transcen-
dental cohomology, so that the cohomology class of the diagonal of X does not
vanish on products U × U , where U ⊂ X is Zariski open.)

In order to prove (5.16), we do the following: First of all we compute the
class in CHn−1(X3

0 ) of the (2n− 2)-dimensional subvariety

X3
0,col,sch ⊂ X3

0 ,

parametrizing 3-uples of collinear points satisfying the following property.

Let P1
x1x2x3

:= 〈x1, x2, x3〉 be the line generated by the xi’s. Then the sub-
scheme x1 + x2 + x3 of P1

x1x2x3
⊂ Pn is contained in X.

We will denote by
X3

0,col ⊂ X3
0 ,

the (2n − 2)-dimensional subvariety parametrizing 3-uples of collinear points.
Obviously X3

0,col,sch ⊂ X3
0,col. We will see that it is in fact one irreducible

component of it.
Next we observe that there is a natural morphism φ : X3

0,col → G(2, n + 1)
to the Grassmannian of lines in Pn, which to (x1, x2, x3) associates the line
P1
x1x2x3

. This morphism is well defined on X3
0,col because at least two of the

points xi are distinct, so that this line is unique. The morphism φ corresponds
to a tautological rank 2 vector bundle E on X3

0,col, with fiber H0(OP1
x1x2x3

(1))

over the point (x1, x2, x3).
We then observe that Γ ⊂ X3

0,col,sch is defined by the condition that the line

P1
x1x2x3

is contained in X. In other words, the equation f defining X has to
vanish on the line P1

x1x2x3
. This equation can be seen globally as giving a section

σ,
σ((x1, x2, x3)) = f|P1

x1x2x3
,

of the vector bundle Sn+1E .
This section σ is not transverse (in fact the rank of Sn+1E is n + 2, while

the codimension of Γ is n − 1), but the reason for this is very simple: indeed,
at a point (x1, x2, x3) of X3

0,col,sch, the equation f vanishes by definition on the

length 3 subscheme x1 + x2 + x3 of P1
x1x2x3

. Another way to express this is to
say that σ is in fact a section of the rank (n− 1) bundle

F ⊂ Sn+1E , (5.18)

where F(x1,x2,x3) consists of degree (n + 1) polynomials vanishing on the sub-
scheme x1 + x2 + x3 of P1

x1x2x3
.
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The section σ of F is transverse and thus we conclude that we have the
equality

Γ|X3
0

= j∗(cn−1(F)) in CH2n−2(X3
0 )Q, (5.19)

where j is the inclusion of X3
0,col,sch in X3

0 .
We now observe that the vector bundles E and F come from vector bundles

on the variety (Pn)3
0,col parametrizing 3-uples of collinear points in Pn, at least

two of them being distinct.
The variety (Pn)3

0,col is smooth irreducible of dimension 2n + 1 (hence of

codimension (n − 1) in (Pn)3), being Zariski open in a (P1 × P1 × P1)-bundle
over the Grassmannian G(2, n+ 1). We have now the following lemma.

Lemma 5.23. The intersection (Pn)3
0,col ∩X3

0 is reduced, of pure dimension
(2n− 2). It decomposes as

(Pn)3
0,col ∩X3

0 = X3
0,col,sch ∪∆0,12 ∪∆0,13 ∪∆0,23, (5.20)

where ∆0,ij ⊂ X3
0 is defined as ∆ij \∆ with ∆ij the big diagonal xi = xj.

Proof. The set-theoretic equality in (5.20) is obvious. The fact that each
component on the right has dimension 2n − 2 and thus is a component of the
right dimension of this intersection is also obvious. Hence the only point to
check is the fact that these intersections are transverse at the generic point of
each component in the right-hand side. The generic point of the irreducible
variety X3

0,col,sch parametrizes a triple of distinct collinear points that are on

a line ∆ not tangent to X. At such a triple, the intersection (Pn)3
0,col ∩ X3

0 is

smooth of dimension 2n−2 because (Pn)3
0,col is the triple self-product P×G(2,n+1)

P×G(2,n+1)P of the tautological P1-bundle P over the Grassmannian G(2, n+1),
and the intersection with X3

0 is defined by the three equations

p ◦ pr∗1 f, p ◦ pr∗2 f, p ◦ pr∗3 f,

where the pri’s are the projections P 3/G(2,n+1) → P and p : P → Pn is the
natural map. These three equations are independent since they are independent
after restriction to P1

x1x2x3
×P1

x1x2x3
×P1

x1x2x3
⊂ (Pn)3

0,col at the point (x1, x2, x3)

because P1
x1x2x3

is not tangent to X.
Similarly, the generic point of the irreducible variety ∆0,12 ⊂ X3

0,col parametrizes

a triple (x, x, y) with the property that x 6= y and the line P1
xy := 〈x, y〉 is not

tangent to X. Again, the intersection (Pn)3
0,col ∩ X3

0 is smooth of dimension

2n− 2 near (x, x, y) because the restrictions to P1
xy×P1

xy×P1
xy of the equations

p ◦ pr∗1 f, p ◦ pr∗2 f, p ◦ pr∗3 f,

defining X3 are independent. �
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Combining (5.20), (5.19), and the fact that the vector bundle F already
exists on (Pn)3

0,col, we find that

Γ|X3
0

= J∗(cn−1(F|(Pn)3
0,col∩X

3
0
))−

∑
i 6=j

Jij∗cn−1(F|∆0,ij
) in CH2n−2(X3

0 )Q,

where J : (Pn)3
0,col ∩X3

0 ↪→ X3
0 is the inclusion and similarly for J0ij : ∆0,ij ↪→

X3
0 . This provides us with the formula

Γ|X3
0

= (K∗cn−1(F))|X3
0
−
∑
i 6=j

Jij∗cn−1(F|∆0,ij
) in CH2n−2(X3

0 )Q, (5.21)

where K : (Pn)3
0,col ↪→ (Pn)3

0 is the inclusion map.

The first term comes from CH((Pn)3
0), and this only contributes to the

term Z in Theorem 5.21, so to conclude, we only have to compute the terms
Jij∗cn−1(F|∆0,ij

). This is however very easy, because the vector bundles E and
F are very simple on ∆0,ij : Assume for simplicity i = 1, j = 2. Points of ∆0,ij

are points (x, x, y), x 6= y ∈ X. The line φ((x, x, y)) is the line P1
xy = 〈x, y〉, and

it follows that

E|∆0,12
= pr∗2OX(1)⊕ pr∗3OX(1). (5.22)

The projective bundle P(E|∆0,12
) has two sections on ∆12 which give two divisors

D2 ∈ |OP(E)(1)⊗ pr∗3OX(−1)|, D3 ∈ |OP(E)(1)⊗ pr∗2OX(−1)|.

The length 3 subscheme 2D2 + D3 ⊂ P(E|∆0,1,2
) with fiber 2x + y over the

point (x, x, y) is thus the zero set of a section α of the line bundle OP(E)(3) ⊗
pr∗3OX(−2)⊗ pr∗2OX(−1). We thus conclude that the vector bundle F|∆0,12

is
isomorphic to

pr∗3OX(2)⊗ pr∗2OX(1)⊗ Sn−2E|∆0,12
.

Combining with (5.22), we conclude that cn−1(F|∆0,ij
) can be expressed as a

polynomial of degree (n− 1) in h2 = c1(pr∗2OX(1)) and h3 = c1(pr∗3OX(1)) on
∆0,12. The proof of (5.16) is completed by the following lemma.

Lemma 5.24. Let ∆X ⊂ X × X be the diagonal. Then the codimension n
cycles

pr∗1 c1(OX(1)) ·∆X , pr∗2 c1(OX(1)) ·∆X

of X ×X are restrictions to X ×X of cycles in CHn(Pn × Pn)Q.

Proof. Indeed, let jX : X ↪→ Pn be the inclusion of X in Pn, and jX,1, and
jX,2 the corresponding inclusions of X ×X in Pn×X and X ×Pn, respectively.
Then as X is a degree (n+ 1) hypersurface, we have

(n+ 1) pr∗1 c1(OX(1)) = j∗X,1 ◦ jX,1∗ : CH(X ×X)→ CH(X ×X),
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and similarly for the second inclusion. On the other hand, jX,1∗(∆X) ⊂ Pn×X
is obviously the (transpose of the) graph of the inclusion of X in Pn, hence its
class is the restriction to Pn×X of the diagonal of Pn×Pn. We argue similarly
for the second inclusion. �

It follows from this lemma that a monomial of degree n− 1 in

h2 = c1(pr∗2OX(1)) and h3 = c1(pr∗3OX(1))

on ∆0,12, seen as a cycle in X ×X ×X, will be the restriction to X ×X ×X
of a cycle with Q-coefficients, unless it is proportional to hn−1

3 . Recalling that
c1(OX(1))n−1 = (n+ 1)o ∈ CH0(X), we finally proved that modulo restrictions
of cycles coming from Pn × Pn × Pn, the term J12∗cn−1(F|∆0,12

) is a multiple of

∆12×o3 in CH2n−2(X×X×X)Q. The precise coefficient is in fact given by the
argument above. Indeed, we just saw that modulo restrictions of cycles coming
from Pn × Pn × Pn, the term J12∗cn−1(F|∆0,12

) is equal to

µ∆12 · pr∗3(c1(OX(1))n−1) = µ(n+ 1)∆X × o3, (5.23)

with c1(OX(1))n−1 = (n + 1)o in CH0(X), and where the coefficient µ is the
coefficient of hn−1

3 in the polynomial in h2, h3 computing cn−1(F|∆0,12
).

Now we use the isomorphism

F|∆0,12
∼= pr∗3OX(2)⊗ pr∗2OX(1)⊗ Sn−2E|∆0,12

,

where E|∆0,12
∼= pr∗2OX(1)⊕ pr∗3OX(1) according to (5.22). Hence we conclude

that the coefficient µ is equal to n!, and this concludes the proof of (5.16), using
(5.23) and (5.21). �

We have the following consequence of Theorem 5.21, which is a generalization
of Theorem 5.1 to Calabi–Yau hypersurfaces.

Theorem 5.25 (Voisin 2011). Let X ⊂ Pn be a smooth Calabi–Yau hyper-
surface. Let z, z′ be cycles on X such that

codim z > 0, codim z′ > 0, codim z + codim z′ = n− 1.

Then z · z′ is proportional to o in CH0(X). Equivalently, let zi, z
′
i, i = 1, . . . , N

be cycles on X such that codim zi > 0, codim z′i > 0, for all i, codim zi +
codim z′i = n− 1. Then if we have a cohomological relation∑

i

ni[zi] ∪ [z′i] = 0 in H2n−2(X,Q),

this relation already holds at the level of Chow groups:∑
i

nizi · z′i = 0 in CHn−1(X)Q.
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The two statements are equivalent since o = hn−1

n+1 . As already mentioned,
this result holds more generally for Calabi–Yau complete intersections in pro-
jective space, as proved by Lie Fu [42].

Proof of Theorem 5.25. Indeed, let us view formula (5.15) as an equal-
ity of correspondences between X × X and X. The left-hand side applied to
z × z′ is

∆∗(z × z′) = z · z′ in CH(X)Q.

The right-hand side is a sum Z∗(z × z′) + Γ∗(z × z′). But we observe that as Z
is the restriction of a cycle Z ′ ∈ CH2n−2(Pn×Pn×Pn)Q, the 0-cycle Z∗(z× z′)
is equal to

j∗(Z ′
∗
((j, j)∗(z × z′))) ∈ CHn−1(X)Q.

Thus the 0-cycle Z∗(z × z′) belongs to

Im(j∗ : CHn−1(Pn)Q → CH0(X)Q) = Qo.

Consider now the term Γ∗(z × z′): Let Γ0 ⊂ X be the locus swept out
by lines. We observe that for any line ∆ ⊂ X, any point on ∆ is rationally
equivalent to the 0-cycle h ·∆, which is in fact proportional to o, since

(n+ 1)h ·∆ = j∗ ◦ j∗(∆) in CH(X)

and j∗(∆) = c1(OPn(1))n−1 in CHn−1(Pn). Hence all points of Γ0 are rationally
equivalent to o in X. It follows that the 0-cycle Γ∗(z · z′), which is supported
on Γ0, is proportional to o. �

5.3 DELIGNE’S DECOMPOSITION THEOREM FOR FAMILIES

OF K3 SURFACES

5.3.1 Deligne’s decomposition theorem

Let φ : X → Y be a submersive and proper morphism of complex varieties.
Recall that the morphism φ is projective if there exists a holomorphic embedding

i : X ↪→ Y × Pn

such that φ = pr1 ◦i. Giving such an embedding provides a class ω ∈ H2(X,Z)
defined by

ω = (pr2 ◦i)∗c1(OPn(1)).

As pr2 ◦i|Xt is a holomorphic immersion on each fiber Xt of φ, the restriction

ωt := ω|Xt ∈ H
2(Xt,Z)

is a Kähler class, and the morphism

ωt∪ : Hk(Xt,Q)→ Hk+2(Xt,Q)
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is a Lefschetz operator on H∗(Xt,Q). Moreover, as ω is closed, it induces as
above a morphism of local systems

L := ω∪ : R∗φ∗Q→ R∗+2φ∗Q,

which is equal to Lt = ωt∪ on the stalk at the point t. The operator L is called
the relative Lefschetz operator. If n = dimXt is the relative dimension of φ, we
know that Lt satisfies the hard Lefschetz theorem, that is,

Ln−kt : Hk(Xt,Q)→ H2n−k(Xt,Q) (5.24)

is an isomorphism for k ≤ n.
One deduces formally from the Lefschetz isomorphisms the Lefschetz decom-

position

Hk(Xt,Q) = ⊕2r≤kL
rHk−2r(Xt,Q)prim for k ≤ n, (5.25)

where

Hk−2r(Xt,Q)prim

:= Ker
(
Ln−k+2r+1 : Hk−2r (Xt,Q)prim → H2n−k+2r+2 (Xt,Q)

)
.

The corresponding decomposition for k ≥ n is obtained by applying the isomor-
phism (5.24).

The relative Lefschetz operator thus gives relative Lefschetz isomorphisms

Ln−k : Rkφ∗Q ∼= R2n−kφ∗Q

and a relative Lefschetz decomposition

Rkφ∗Q = ⊕2r≤kL
rRk−2rφ∗Qprim, k ≤ n.

The relative Lefschetz operator L as well as its powers Lk induce endomor-
phisms (of degree 2k) of the Leray spectral sequence of φ, that is, morphisms Lkr
of the complexes (Ep,qr , dr) (of degree 2k on the second index), and the morphism
H∗(X,Q) → H∗+2k(X,Q) induced by Lk is compatible with the Leray filtra-
tion on H∗(X,Q) and with each Lk∞ on GrLH

∗(X,Q). Finally, the Lefschetz
isomorphism (5.24) shows that

Ln−k2 : H l(Y,Rkφ∗Q)→ H l(Y,R2n−kφ∗Q) (5.26)

is an isomorphism for k ≤ n.
Let us recall the proof of the following theorem, proved in [30].

Theorem 5.26 (Deligne 1968). If φ : X → Y is a submersive projective
morphism, then the Leray spectral sequence of φ degenerates at E2.
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Proof. Let us first show that d2 = 0. For this, note that if q ≥ n, we have
the following commutative diagram:

Ep,2n−q2 = Hp(Y,R2n−qφ∗Q)
Lq−n2 //

d2

��

Ep,q2 = Hp(Y,Rqφ∗Q)

d2

��
Ep+2,2n−q−1

2 = Hp+2(Y,R2n−q+1φ∗Q) // Ep+2,q−1
2 = Hp+2(Y,Rq−1φ∗Q),

where the upper horizontal arrow is an isomorphism. Thus it suffices to show
that d2 = 0 on Ep,q2 with q ≤ n. We have the decomposition

Ep,q2 = ⊕2r≤qL
r
2H

p(Y,Rq−2rφ∗Qprim)

induced by the relative Lefschetz decomposition, and it suffices to show that
d2 = 0 on Lr2H

p(Y,Rq−2rφ∗Qprim). As Lr2 commutes with d2, it suffices to show

that d2 = 0 on Hp(Y,Rq−2rφ∗Qprim) ⊂ Ep,q−2r
2 .

Setting k = q − 2r, we have the following commutative diagram:

Ln−k+1
2 : Hp(Y,Rkφ∗Qprim) //

d2

��

Hp(Y,R2n−k+2φ∗Q)

d2

��
Ln−k+1

2 : Hp+2(Y,Rk−1φ∗Qprim) // Hp+2(Y,R2n−k+1φ∗Q).

The upper arrow is 0 by definition of the primitive cohomology, while the lower
arrow is the isomorphism (5.26). Thus, the first arrow d2 is 0.

To show that the arrows dr, r > 2 are also zero, we proceed in exactly the
same way, using the morphisms of spectral sequences Lkr and noting that if
ds = 0 for 2 ≤ s < r, then Ep,qr = Ep,q2 , so that we can use the Lefschetz
decomposition as above on Ep,qr . �

As explained in [30], the proof above has the following much stronger con-
sequence.

Theorem 5.27 (Deligne 1968). In the derived category of sheaves of Q-vector
spaces on B, there is a decomposition

Rπ∗Q = ⊕iRiπ∗Q[−i]. (5.27)

Proof. We simply observe that the arguments given for the degeneracy at
E2 of the Leray spectral sequence of π relative to the constant sheaf Q or R also
prove the degeneracy at E2 of the Leray spectral sequence of π relative to the
locally constant sheaves π−1((Rkπ∗Q)∗).

We deduce from this that the natural map

Hk(X,π−1((Rkπ∗Q)∗))→ H0(B,Rkπ∗(π
−1((Rkπ∗Q)∗)))
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is surjective. The right-hand side is equal to H0(B,Rkπ∗Q ⊗ (Rkπ∗Q)∗) and
thus contains the identity βk of Rkπ∗Q. There is thus a class

αk ∈ Hk(X,π−1((Rkπ∗Q)∗)) = Hk(B, (Rkπ∗Q)∗ ⊗Rπ∗Q)

that induces βk.
We view αk as giving a morphism

Rkπ∗Q[−k]→ Rπ∗Q.

This morphism by definition induces the identity on cohomology of degree k
and 0 otherwise. The direct sum of the morphisms αk thus provides the desired
quasi isomorphism. �

5.3.2 Multiplicative decomposition isomorphisms

Note that both sides of (5.27) carry a cup-product. On the right, we put the
direct sum of the relative cup-product maps µi,j : Riπ∗Q⊗Rjπ∗Q→ Ri+jπ∗Q.
On the left, one needs to choose an explicit representation of Rπ∗Q by a complex
C∗, together with an explicit morphism of complexes µ : C∗ ⊗ C∗ → C∗ which
induces the cup-product in cohomology. When passing to coefficients R or C, one
can take C∗ = π∗A∗X , where A∗X is the sheaf of C∞ real or complex differential
forms on X and for µ the wedge product of forms. For rational coefficients, the
explicit construction of the cup-product at the level of complexes (for example,
Čech complexes) is more painful (see [45, 6.3]). The resulting cup-product
morphism µ will be canonical only in the derived category. The rest of this
chapter is devoted to the study of the following question.

Question 5.28. Given a family of smooth projective varieties π : X →
B, does there exist a decomposition as in (5.27) that is multiplicative, that is,
compatible with the morphism

µ : Rπ∗Q⊗Rπ∗Q→ Rπ∗Q

given by cup-product?

Note that a multiplicative decomposition isomorphism for the morphism
π : X → B induces a bigrading of the cohomology algebra H∗(X ,Q). Indeed,
the induced decompositions

Hk(X ,Q) ∼=
⊕
p+q=k

Hp(B,Rqπ∗Q)

are then compatible with the cup-product on H∗(X ,Q).
In fact, we will rather consider the following variant: For which class of

varietiesX does there exist a multiplicative decomposition isomorphism as above
for any family of deformations of X?

The simplest example is that of projective bundles π : P(E) → B, where E
is a locally free sheaf on B.
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Lemma 5.29 (See Voisin 2012 [110]). Assume that ctop
1 (E) = 0 in H2(B,Q).

Then, if there exists a multiplicative decomposition isomorphism for π : P(E)→
B, one has ctop

i (E) = 0 in H2i(B,Q) for all i > 0.

Proof. Let h = ctop
1 (OP(E)(1)) ∈ H2(P(E),Q). It is standard that

H2(P(E),Q) = π∗H2(B,Q)⊕Qh,

where π∗H2(B,Q) identifies canonically with the deepest term H2(B,R0π∗Q) in
the Leray spectral sequence. A multiplicative decomposition isomorphism as in
(5.27) induces, by taking cohomology, another decomposition of H2(P(E),Q)
as π∗H2(B,Q) ⊕ Qh′, where h′ = h + π∗α, for some α ∈ H2(B,Q). In
this multiplicative decomposition, h′ will generate a summand isomorphic to
H0(B,R2π∗Q). Let r = rank E . As ctop

1 (E) = 0, one has π∗h
r = 0 in H2(B,Q).

As (h′)r = 0 in H0(B,R2rπ∗Q), and (h′)r belongs, by multiplicativity, to a di-
rect summand naturally isomorphic (by restriction to fibers) toH0(B,R2rπ∗Q) =
0, one must also have (h′)r = 0 in H2r(P(E),Q). On the other hand, (h′)r =
hr + rhr−1π∗α+ · · ·+ π∗αr, and it follows that

π∗(h
′)r = 0 = π∗h

r + rα in H2(B,Q).

Thus α = 0, h′ = h, and hr = 0 in H2r(P(E),Q). The definition of Chern classes
and the fact that hr = 0 shows then that ctop

i (E) = 0 for all i > 0. �

In this example, the obstructions to the existence of a multiplicative decom-
position isomorphism are given by cycle classes ctop

i (E) on the base B. They
vanish on dense Zariski open sets of B, and this suggests studying the following
variant of Question 5.28.

Question 5.30. Given a family of smooth projective varieties π : X → B,
does there exist a Zariski dense open set B0 of B, and a multiplicative decom-
position isomorphism as in (5.27) for the restricted family X 0 → B0?

We will give a simple example where Question 5.30 has a negative answer.
It is based on the following criterion (Proposition 5.31): Let π : X → B be a
projective family of smooth complex varieties without irregularity, parametrized
by a complex quasi-projective variety B. Let Li, i = 1, . . . ,m be line bundles
on X and li := ctop

1 (Li) ∈ H2(X ,Q).

Proposition 5.31. Assume that there is a multiplicative decomposition iso-
morphism

Rπ∗Q = ⊕iRiπ∗Q[−i].

Then for any fiberwise cohomological relation

P (li,b) = 0 in H2r(Xb,Q) ∀ b ∈ B,
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where P is a homogeneous polynomial of degree r in m variables with rational
coefficients, the class P (li) ∈ H2r(X ,Q) vanishes locally over B in the Zariski
topology, that is, B is covered by Zariski open sets B0 ⊂ B, such that

P (li)|X 0 = 0 in H2r(X 0,Q),

where X 0 = π−1(B0).

Proof. We will assume for simplicity that B is smooth although a closer
look at the proof shows that this assumption is not necessary. The multiplicative
decomposition isomorphism induces, by taking cohomology and using the fact
that the fibers have no degree 1 rational cohomology, a decomposition

H2(X ,Q) = H0(B,R2π∗Q)⊕ π∗H2(B,Q), (5.28)

which is compatible with cup-product, so that the cup-product map on the first
term factors through the map induced by cup-product:

µr : H0(B,R2π∗Q)⊗r → H0(B,R2rπ∗Q).

We write in this decomposition li = l′i + π∗ki, where

ki ∈ H2(B,R0π∗Q) = H2(B,Q)
π∗∼= π∗H2(B,Q).

We claim that the ki are divisor classes on B. Indeed, take any line bundle L on
X . Let l = ctop

1 (L) ∈ H2(X ,Q) and decompose as above l = l′ + π∗k, where l′

has the same image as l in H0(B,R2π∗Q) and k belongs to H2(B,Q). Denoting
by n the dimension of the fibers, we get

lnli =

(∑
p

(
n

p

)
l′
p
π∗kn−p

)
(l′i + π∗ki)

=
∑
p

(
n

p

)
l′
p
π∗kn−pl′i +

∑
p

(
n

p

)
l′
p
π∗kn−pπ∗ki. (5.29)

Recall now that the decomposition is multiplicative. The class l′
n
l′i thus belongs

to a direct summand of H2n+2(X ,Q) isomorphic to H0(B,R2n+2π∗Q) = 0.
Hence it follows that it is identically 0. Applying π∗ to (5.29), we then get

π∗(l
nli) = degXb(l

′n)ki + ndegXb(l
′n−1

l′i)k

= degXb(l
n)ki + ndegXb(l

n−1li)k. (5.30)

Observe that the term on the left is a divisor class on B. If the fiberwise self-
intersection degXb(li

n) is nonzero, we can take L = Li and (5.30) shows that
ki is a divisor class on B as claimed. If it is 0, choose a line bundle L on S
such that the fiberwise intersection numbers degXb(l

n−1li) and degXb(l
n) do not
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vanish (such an L exists because the morphism π is projective). Then, applying
(5.30) to both pairs (L,L) and (L,Li) shows that both k and degXb(l

n)ki +
n degXb(l

n−1li)k are divisor classes on B, so that ki is also a divisor class on B.
As divisor classes are locally trivial on B for the Zariski topology, we thus

have that, locally on B for the Zariski topology, ki = 0 and thus li belongs to
the first summand H0(B,R2π∗Q) in (5.28). Let B0 be a Zariski open set where
this is the case and let X 0 = π−1(B0). It then follows by multiplicativity that
any polynomial expression P (li)|X 0 belongs to a direct summand of H2r(X 0,Q)
isomorphic by the natural projection to H0(B0, R2rπ∗Q).

Consider now our fiberwise cohomological polynomial relation P (li,b) = 0 in
H2r(Xb,Q), for b ∈ B. It says equivalently that P (li) vanishes inH0(B0, R2rπ∗Q).
It follows then from the previous statement that it vanishes in H2r(X 0,Q). �

We consider now a smooth projective surface S, and set

X = S̃ × S∆, B = S, π = pr2 ◦τ,

where τ : S̃ × S∆ → S is the blow-up of the diagonal.

Proposition 5.32. Assume that h1,0(S) = 0, h2,0(S) 6= 0. Then for the
morphism π : X → B above, there is no multiplicative decomposition isomor-
phism over any Zariski dense open set of B = S.

Proof. Let H be an ample line bundle on S, and d := deg c1(H)2. On X,
we have then two line bundles, namely L := τ∗(pr∗1 H) and L′ = OX(E), where
E is the exceptional divisor of τ . On the fibers of π, we have the relation

deg c1(L)2 = −ddeg c1(E)2.

If there existed a multiplicative decomposition isomorphism over a Zariski dense
open set of B = S, we would have by Proposition 5.31, using the fact that the
fibers of π are regular surfaces, a Zariski dense open set U ⊂ S and the relation

ctop
1 (L)2 = −dctop

1 (E)2 (5.31)

in H4(XU ,Q). If we apply τ∗ to this relation, we now get

pr∗1 c
top
1 (H)2 = −d[∆] (5.32)

in H4(S × U,Q).
This relation implies that the class pr∗1 c

top
1 (H)2 +d[∆] ∈ H4(S×S,Q) comes

from a class γ ∈ H2(S × D̃,Q), where D := S \ U and D̃ is a desingularization

of D. Denoting by j̃ : D̃ → S the natural map, we then conclude that for any
class α ∈ H2(S,Q),

dα ∈ H2(S,Q) = j̃∗(γ∗α)

is supported on D. This contradicts the assumption h2,0(S) 6= 0. �



CHOW RING OF K3 SURFACES

weyllecturesformat September 3, 2013 6x9

113

5.3.3 Families of abelian varieties

In the abelian case, the existence of a multiplicative decomposition isomorphism
is essentially due to Deninger and Murre [35]. The proof below will be based on
the following lemma, applied to the category of sheaves of Q-vector spaces on
B.

Let A be an abelian category in which morphisms are Q-vector spaces, and
let D(A) be the corresponding derived category of left bounded complexes. Let
M ∈ D(A) be an object with bounded cohomology such that EndM is finite-
dimensional. Assume M admits a morphism φ : M →M such that

Hi(φ) : Hi(M)→ Hi(M)

is equal to λi IdHi(M), where all the λi ∈ Q are distinct.

Lemma 5.33. The morphism φ induces a canonical decomposition

M ∼= ⊕iHi(M)[−i], (5.33)

characterized by the following properties:

(1) The induced map on cohomology is the identity map.

(2) One has

φ ◦ πi = λiπi : M →M, (5.34)

where πi corresponds via the isomorphism (5.33) to the ith projector pri.

Proof. Using the arguments of [30], we first prove that M is decomposed,
namely there is an isomorphism

f : M ∼= ⊕iHi(M)[−i].

For this, given an object K ∈ ObA, we consider the left exact functor T from
A to the category of Q-vector spaces defined by T (N) = HomA(K,N), and for
any integer i the induced functor, denoted by Ti, N 7→ HomD(A)(K[−i], N) on

Db(A). For any N ∈ Db(A), there is the hypercohomology spectral sequence
with E2-term,

Ep,q2 = RpTi(H
q(N)) = Extp+iA (K,Hq(N))⇒ Rp+qTi(N).

Under our assumptions, this spectral sequence for N = M degenerates at E2.
Indeed, the morphism φ acts then on the above spectral sequence starting from
E2. The differential d2 : Ep,q2 → Ep+2,q−1

2 ,

Extp+iA (K,Hq(M))⇒ Extp+2+i
A (K,Hq−1(M)) (5.35)

commutes with the action of φ. On the other hand, φ acts as λq Id on the left-
hand side and as λq−1 Id on the right-hand side of (5.35). Thus we conclude
that d2 = 0 and similarly that all dr, r ≥ 2 are 0.
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Now we take K = Hi(M). We conclude, from the degeneracy at E2 of the
above spectral sequence, that the map

HomD(A) (Hi(M)[−i],M)→ HomA(Hi(M), Hi(M)) = E−i,i2

is surjective, so that there is a morphism

fi : Hi(M)[−i]→M

inducing the identity on degree i cohomology. The direct sum f =
∑
fi is a

quasi isomorphism that gives the desired splitting.
The morphism φ can thus be seen as a morphism of the split object⊕iHi(M)[−i].

Such a morphism is given by a block upper-triangular matrix

φj,i ∈ Exti−jA (Hi(M), Hj(M)), i ≥ j,

with λi Id on the ith diagonal block. Let ψ be the endomorphism of EndM
given by left multiplication by φ. By the above description of φ we have∏

i,Hi(M) 6=0

(ψ − λi IdEndM ) = 0, (5.36)

which shows that the endomorphism ψ is diagonalizable. More precisely, as ψ
is block upper triangular in an adequately ordered decomposition

EndM = ⊕i≥j Exti−jA (Hi(M), Hj(M)),

with term λj Id on the block diagonals Exti−jA (Hi(M), Hj(M)), hence in par-
ticular on EndA Hj(M), we conclude that there exists π′i ∈ EndM such that
π′i acts as the identity on Hi(M), and φ ◦ π′i = λiπ

′
i.

Let ρi := π′i ◦fi : Hi(M)[−i]→M . Then ρ :=
∑

ρi gives another decompo-
sition ⊕iHi(M)[−i] ∼= M and we have φ ◦ ρi = λiρi, which gives φ ◦ πi = λiπi,
where πi = ρ ◦ pri ◦ρ−1.

The uniqueness of the πi satisfying properties (1) and (2) is obvious, since

these properties force the equality πi =
∏
j 6=i(φ−λj IdM )∏
j 6=i λi−λj

. �

Corollary 5.34. For any family π : A → B of abelian varieties (or
complex tori), there is a multiplicative decomposition isomorphism Rπ∗Q =
⊕iRiπ∗Q[−i].

Proof. Choose an integer n 6= ±1 and consider the multiplication map

µn : A → A, a 7→ na.

We then get morphisms µ∗n : Rπ∗Q→ Rπ∗Q with the property that the induced
morphism on each Riπ∗Q = Hi(Rπ∗Q) is multiplication by ni. Now we use
Lemma 5.33 to deduce from such a morphism a canonical splitting

Rπ∗Q ∼= ⊕iRiπ∗Q[−i], (5.37)
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characterized by the properties that the induced map on cohomology is the
identity map, and

µ∗n ◦ πi = niπi : Rπ∗Q→ Rπ∗Q, (5.38)

where πi is the endomorphism of Rπ∗Q that identifies to the ith projector pri via
the isomorphism (5.37). On the other hand, the morphism µ : Rπ∗Q⊗Rπ∗Q→
Rπ∗Q given by cup-product is compatible with µ∗n in the sense that

µ ◦ (µ∗n ⊗ µ∗n) = µ∗n ◦ µ : Rπ∗Q⊗Rπ∗Q→ Rπ∗Q.

Combining this last equation with (5.38), we find that

µ ◦ (µ∗n ⊗ µ∗n) ◦ (πi ⊗ πj) = ni+jµ ◦ (πi ⊗ πj)
= µ∗n ◦ µ ◦ (πi ⊗ πj) : Rπ∗Q⊗Rπ∗Q→ Rπ∗Q,

from which it follows, again applying (5.38), that µ ◦ (πi ⊗ πj) factors through
Ri+jπ∗[−i − j], or equivalently that in the splitting (5.37), the cup-product
morphism µ maps Riπ∗Q[−i]⊗Rjπ∗Q[−j] to the summand Ri+jπ∗[−i− j]. �

5.3.4 A multiplicative decomposition theorem for families of K3
surfaces

The following is one of the main results of [110]. It provides an unexpected
application of Theorem 5.3.

Theorem 5.35 (Voisin 2011).

(i) For any smooth projective family π : X → B of K3 surfaces, there exist a
nonempty Zariski open subset B0 of B, and a multiplicative decomposition
isomorphism as in (5.27) for the restricted family π : X 0 → B0.

(ii) Furthermore, the class of the diagonal [∆X0/B0 ] ∈ H4(X×BX,Q) belongs
to the direct summand H0(B0, R4(π, π)∗Q) of H4(X0×B0 X0,Q), for the
induced decomposition of R(π, π)∗Q.

(iii) For any algebraic line bundle L on X , there is a dense Zariski open set B0

of B such that the topological Chern class ctop
1 (L) ∈ H2(X ,Q) restricted to

X 0 belongs to the direct summand H0(B0, R2π∗Q) of H2(X 0,Q) induced
by this decomposition.

In the second statement, (π, π) : X0×B0 X0 → B0 denotes the natural map.
A decomposition Rπ∗Q ∼= ⊕iRiπ∗Q[−i] induces a decomposition

R(π, π)∗Q = ⊕iRi(π, π)∗Q[−i]

by the relative Künneth isomorphism

R(π, π)∗Q ∼= Rπ∗Q⊗Rπ∗Q.

Theorem 5.35(i) is definitely wrong if we do not restrict to a Zariski open
set (see [110] for an example).
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Remark 5.36. It follows from Proposition 5.31 that in Theorem 5.35, state-
ment (iii) is in fact a consequence of statement (i).

Proof of Theorem 5.35. We use the existence of the canonical 0-cycle
ot ∈ CH0(Xt) (see Section 5.1). This cycle may not be spread-up on the total
space X → B, but this can be done on a generically finite proper cover r :
B′ → B, thus providing a cycle oX′ ∈ CH2(X ′), where X ′ = X ×B B′, with
oX′|X′t = ot in CH0(X ′t). The cycle

1

deg r
r′∗oX′ =: oX ∈ CH2(X)Q,

where r′ : X ′ = X×BB′ → X is the first projection, then has the property that
oX|Xt = ot in CH0(Xt)Q. In particular it has degree 1.

The cohomology classes

pr∗1[oX ] =: [Z1], pr∗2[oX ] =: [Z2] ∈ H4(X ×B X,Q)

of the two codimension 2 cycles pr∗1 oX and pr∗2 oX , where

pri : X ×B X → B

are the two projections, provide morphisms in the derived category:

P1 : Rπ∗Q→ Rπ∗Q, P2 : Rπ∗Q→ Rπ∗Q,
P1 := pr2∗ ◦(pr∗1[oX ]∪) ◦ pr∗1, P2 := pr2∗ ◦(pr∗2[oX ]∪) ◦ pr∗1 . (5.39)

Lemma 5.37.

(i) The morphisms P1, P2 are projectors of Rπ∗Q.

(ii) P1 ◦ P2 = P2 ◦ P1 = 0 over a Zariski dense open set of B.

Proof. (i) We compute P1 ◦ P1. From (5.39), (2.5), and the projection
formula (2.4), we get that P1 ◦ P1 is the morphism Rπ∗ → Rπ∗ induced by the
cycle class

p13∗(p
∗
12[o1

X ] ∪ p∗23[o1
X ]) ∈ H4(X ×B X,Q), (5.40)

where the pij are the various projections from X ×B X ×B X to X ×B X. We
now use the facts that p∗12[o1

X ] = p∗1[oX ] and p∗23[o1
X ] = p∗2[oX ], where the pi’s

are the various projections from X ×B X ×B X to X, so that (5.40) is equal to

p13∗(p
∗
1[oX ] ∪ p∗2[oX ]). (5.41)

Using the projection formula, this class is equal to

pr∗1[oX ] ∪ pr∗2(π∗[oX ]) = pr∗1[oX ] ∪ pr∗2(1B) = pr∗1[oX ].
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This completes the proof for P1 and the proof for P2 is exactly similar.
(ii) We compute P1 ◦ P2: From (5.39) and (2.5), we get that P1 ◦ P2 is the

morphism Rπ∗ → Rπ∗ induced by the cycle class

p13∗(p
∗
12[o2

X ] ∪ p∗23[o1
X ]) ∈ H4(X ×B X,Q), (5.42)

where the pij are the various projections from X ×B X ×B X to X ×B X. We
now use the facts that p∗12[o2

X ] = p∗2[oX ] and p∗23[o1
X ] = p∗2[oX ], where the pi’s

are the various projections from X ×B X ×B X to X, so that (5.42) is equal to

p13∗(p
∗
2[oX ] ∪ p∗2[oX ]). (5.43)

But the class p∗2[oX ]∪ p∗2[oX ] = p∗2([oX · oX ]) vanishes over a Zariski dense open
set of B since the cycle oX · oX has codimension 4 in X. This shows that
P1 ◦ P2 = 0 over a Zariski dense open set of B and the proof for P2 ◦ P1 works
in the same way. �

Using Lemma 5.37, we get (up to passing to a Zariski dense open set of B)
a third projector

P := Id−P1 − P2

acting on Rπ∗Q and commuting with the other two.
It is well known (see [74]) that the actions of these three projectors are

P1∗ = 0 on R2π∗Q, R4π∗Q, P1∗ = Id on R0π∗Q;

P2∗ = 0 on R2π∗Q, R0π∗Q, P2∗ = Id on R4π∗Q;

P∗ = Id on R2π∗Q, P∗ = 0 on R0π∗Q, R4π∗Q.

As a consequence, we get (for example, using Lemma 5.33) a decomposition

Rπ∗Q ∼= ⊕Riπ∗Q[−i], (5.44)

where the corresponding projectors π0, π2, and π4 of Rπ∗Q identify to P1, P ,
and P2, respectively.

We now prove the following result.

Proposition 5.38. Assume that the cohomology class of the relative small
diagonal ∆ ⊂ X ×B X ×B X satisfies the equality

[∆] = p∗1[oX ] ∪ p∗23[∆X ] + (perm.)− (p∗1[oX ] ∪ p∗2[oX ] + (perm.)), (5.45)

where the pij’s and pi’s are as above and ∆X is the relative diagonal X ⊂
X×BX; then, over some Zariski dense open set B0 ⊂ B, we have the following:

(i) The decomposition (5.44) is multiplicative.

(ii) The class of the diagonal [∆X ] ∈ H4(X ×B X,Q) belongs to the direct
summand H0(B,R4(π, π)∗Q) induced by the decomposition (5.44).
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Admitting Proposition 5.38, the end of the proof of Theorem 5.35 is as
follows: By Theorem 5.3, we know that the relation

∆t = p∗1oXt · p∗23∆Xt + (perm.)− (p∗1oXt · p∗2oXt + (perm.))

holds in CH2(Xt,Q) for any t ∈ B. By Corollary 1.3, we conclude that there
exists a Zariski dense open set B0 of B such that (5.45) holds in H8(X×BX×B
X,Q). Proposition 5.38 thus implies Theorem 5.35. �

Proof of Proposition 5.38. (i) We want to show that

πk ◦ ∪ ◦ (πi ⊗ πj) : Rπ∗Q⊗Rπ∗Q→ Rπ∗Q

vanishes for k 6= i+ j. We note that

∪ : Rπ∗Q⊗Rπ∗Q→ Rπ∗Q

is induced, via the relative Künneth decomposition

Rπ∗Q⊗Rπ∗Q ∼= R(π, π)∗Q,

by the class [∆] of the small relative diagonal in X ×BX ×BX , seen as a relative
correspondence between X ×B X and X , while P1 = π0, P2 = π4, P = π2 are
induced by the cycle classes [Z1], [Z2], [Z] ∈ H4(X ×BX ,Q), where Z := ∆X ⊂
X ×B X . It thus suffices to show that the cycle classes

[Z2 ◦∆ ◦ (Z1 ×B Z1)], [Z ◦∆ ◦ (Z1 ×B Z1)],

[Z1 ◦∆ ◦ (Z ×B Z)], [Z ◦∆ ◦ (Z ×B Z)],

[Z1 ◦∆ ◦ (Z2 ×B Z2)], [Z ◦∆ ◦ (Z2 ×B Z2)], [Z2 ◦∆ ◦ (Z2 ×B Z2)],

[Z1 ◦∆ ◦ (Z1 ×B Z2)], [Z ◦∆ ◦ (Z1 ×B Z2)],

[Z1 ◦∆ ◦ (Z ×B Z2)], [Z ◦∆ ◦ (Z ×B Z2)], [Z2 ◦∆ ◦ (Z ×B Z2)],

[Z1 ◦∆ ◦ (Z1 ×B Z)], [Z2 ◦∆ ◦ (Z1 ×B Z)]

vanish in H8(X ×B X ×B X ,Q) over a dense Zariski open set of B. Here, all
the compositions of correspondences are over B.

Equivalently, it suffices to prove the following equality of cycle classes in
H8(X 0 ×B X 0 ×B X 0,Q), X 0 = π−1(B0) for a Zariski dense open set B0 of B:

[∆] = [Z1 ◦∆ ◦ (Z1 ×B Z1)] + [Z2 ◦∆ ◦ (Z ×B Z)]

+ [Z ◦∆ ◦ (Z1 ×B Z)] + [Z ◦∆ ◦ (Z ×B Z1)]

+ [Z2 ◦∆ ◦ (Z1 ×B Z2)] + [Z2 ◦∆ ◦ (Z2 ×B Z1)]. (5.46)

Replacing Z by ∆X − Z1 − Z2, we get

Z ×B Z = ∆X ×B ∆X −∆X ×B Z1 −∆X ×B Z2 − Z1 ×B ∆X

− Z2 ×B ∆X + Z1 ×B Z1 + Z2 ×B Z2 + Z1 ×B Z2 + Z2 ×B Z1,
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and thus (5.46) becomes

[∆] = [Z1 ◦∆ ◦ (Z1 ×B Z1)] + [Z2 ◦∆ ◦ (∆X ×B ∆X)]− [Z2 ◦∆ ◦ (∆X ×B Z1)]

− [Z2 ◦∆ ◦ (∆X ×B Z2)]− [Z2 ◦∆ ◦ (Z1 ×B ∆X )]− [Z2 ◦∆ ◦ (Z2 ×B ∆X )]

+ [Z2 ◦∆ ◦ (Z1 ×B Z1)] + [Z2 ◦∆ ◦ (Z2 ×B Z2)] + [Z2 ◦∆ ◦ (Z1 ×B Z2)]

+ [Z2 ◦∆ ◦ (Z2 ×B Z1)] + [Z ◦∆ ◦ (Z1 ×B ∆X )]− [Z ◦∆ ◦ (Z1 ×B Z1)]

− [Z ◦∆ ◦ (Z1 ×B Z2)] + [Z ◦∆ ◦ (∆X ×B Z1)]− [Z ◦∆ ◦ (Z1 ×B Z1)]

− [Z ◦∆ ◦ (Z2 ×B Z1)] + [Z2 ◦∆ ◦ (Z1 ×B Z2)] + [Z2 ◦∆ ◦ (Z2 ×B Z1)].
(5.47)

We now have the following lemma.

Lemma 5.39. We have the following equalities of cycles in CH4(X ×B X ×B
X )Q (or relative correspondences between X ×B X and X ):

∆ ◦ (Z1 ×B Z1) = p∗1oX · p∗2oX , (5.48)

∆ ◦ (∆X ×B ∆X ) = ∆, (5.49)

∆ ◦ (∆X ×B Z1) = p∗13∆X · p∗2oX , (5.50)

∆ ◦ (∆X ×B Z2) = p∗1oX · p∗3oX , (5.51)

∆ ◦ (Z1 ×B ∆X ) = p∗1oX · p∗23∆X , (5.52)

∆ ◦ (Z2 ×B ∆X ) = p∗2oX · p∗3oX , (5.53)

∆ ◦ (Z2 ×B Z2) = p∗3(oX · oX ), (5.54)

∆ ◦ (Z1 ×B Z2) = p∗1oX · p∗3oX , (5.55)

∆ ◦ (Z2 ×B Z1) = p∗2oX · p∗3oX , (5.56)

where the pi’s, for i = 1, 2, 3, are the projections from X ×B X ×B X to X and
the pij’s are the projections from X ×B X ×B X to X ×B X .

Proof. Equation (5.49) is obvious. Equations (5.48), (5.54), (5.55), (5.56)
are all similar. We will only prove (5.55). The cycle Z2 is X ×B oX ⊂ X ×B X ,
and similarly Z1 = oX ×B X ⊂ X ×B X , hence Z1 ×B Z2 is the cycle

{(oXb , x, y, oXb), x ∈ Xb, y ∈ Xb, b ∈ B} ⊂ X ×B X ×B X ×B X . (5.57)

(It turns out that in this case, we do not have to take care with the ordering we
take for the last inclusion.) Composing over B with ∆ ⊂ X ×B X ×B X is done
by taking the pull-back of (5.57) under p1234 : X 5/B → X 4/B , intersecting with
p∗345∆, and projecting the resulting cycle to X 3/B via p125. The resulting cycle
is obviously

{(oXb , x, oXb), x ∈ Xb, b ∈ B} ⊂ X ×B X ×B X ,

which proves (5.55).
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For the remaining formulas, which are all of the same shape, let us just prove
(5.50). Recall that Z1 = oX ×B X ⊂ X ×B X . Thus ∆X ×B Z1 is the cycle

{(x, x, oXb , y), x ∈ Xb, y ∈ Xb, b ∈ B} ⊂ X ×B X ×B X ×B X .

But we have to see this cycle as a relative self-correspondence of X ×B X , for
which the right ordering is

{(x, oXb , x, y), x ∈ Xb, y ∈ Xb, b ∈ B} ⊂ X ×B X ×B X ×B X . (5.58)

Composing over B with ∆ ⊂ X×BX ×BX is again done by taking the pull-back
of (5.58) by p1234 : X 5/B → X 4/B , intersecting with p∗345∆, and projecting the
resulting cycle to X 3/B via p125. Since ∆ = {(z, z, z), z ∈ X}, the considered
intersection is {(x, oXb , x, x, x), x ∈ Xb, b ∈ B}, and thus the projection via p125

is {(x, oXb , x), x ∈ Xb, b ∈ B}, thus proving (5.50). �

Using Lemma 5.39 and the fact that the cycle p∗3(oX ·oX ) vanishes, for reasons
of dimension, over a dense Zariski open set of B, then after passing to a Zariski
open set of B if necessary, (5.47) becomes

[∆] = [Z1 ◦ (p∗1oX · p∗2oX )] + [Z2 ◦∆]− [Z2 ◦ (p∗13∆X · p∗2oX )]

− [Z2 ◦ (p∗1oX · p∗3oX )]− [Z2 ◦ (p∗1oX · p∗23∆X )]− [Z2 ◦ (p∗2oX · p∗3oX )]

+ [Z2 ◦ (p∗1oX · p∗2oX )] + [Z2 ◦ (p∗1oX · p∗3oX )] + [Z2 ◦ (p∗2oX · p∗3oX )]

+ [Z ◦ (p∗1oX · p∗23∆X )]− [Z ◦ (p∗1oX · p∗2oX )]− [Z ◦ (p∗1oX · p∗3oX )]

+ [Z ◦ (p∗13∆X · p∗2oX )]− [Z ◦ (p∗1oX · p∗2oX )]− [Z ◦ (p∗2oX · p∗3oX )]

+ [Z2 ◦ (p∗1oX · p∗3oX )] + [Z2 ◦ (p∗2oX · p∗3oX )], (5.59)

which can be rewritten as

[∆] = [Z1 ◦ (p∗1oX · p∗2oX )] + [Z2 ◦∆]− [Z2 ◦ (p∗13∆X · p∗2oX )]

− [Z2 ◦ (p∗1oX · p∗23∆X )] + [Z2 ◦ (p∗1oX · p∗3oX )] + [Z2 ◦ (p∗2oX · p∗3oX )]

+ [Z2 ◦ (p∗1oX · p∗2oX )] + [Z ◦ (p∗1oX · p∗23∆X )]− [Z ◦ (p∗1oX · p∗3oX )]

+ [Z ◦ (p∗13∆X · p∗2oX )]− 2[Z ◦ (p∗1oX · p∗2oX )]. (5.60)

To conclude, we use the following lemma.

Lemma 5.40. Up to passing to a dense Zariski open set of B, we have the
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following equalities in CH4(X ×B X ×B X )Q:

Z1 ◦ (p∗1oX · p∗2oX ) = p∗1oX · p∗2oX , (5.61)

Z2 ◦∆ = p∗12∆X · p∗3oX , (5.62)

Z2 ◦ (p∗13∆X · p∗2oX ) = p∗2oX · p∗3oX , (5.63)

Z2 ◦ (p∗2oX · p∗3oX ) = p∗2oX · p∗3oX , (5.64)

Z2 ◦ (p∗1oX · p∗23∆X ) = p∗1oX · p∗3oX , (5.65)

Z2 ◦ (p∗1oX · p∗2oX ) = 0, (5.66)

Z2 ◦ (p∗1oX · p∗3oX ) = p∗1oX · p∗3oX , (5.67)

Z ◦ (p∗1oX · p∗3oX ) = 0, (5.68)

Z ◦ (p∗1oX · p∗23∆X ) = p∗1oX · p∗23∆X − p∗1oX · p∗2oX − p∗1oX · p∗3oX , (5.69)

Z ◦ (p∗13∆X · p∗2oX ) = p∗13∆X · p∗2oX − p∗1oX · p∗2oX − p∗2oX · p∗3oX , (5.70)

Z ◦ (p∗1oX · p∗2oX ) = 0. (5.71)

Proof. The proof of (5.63) is explicit, recalling that Z2 = {(x, oXb), x ∈
Xb, b ∈ B} and that p∗13∆X · p∗2oX = {(y, oXb , y), y ∈ Xb, b ∈ B}. We then find
that Z2 ◦ (p∗13∆X · p∗2oX ) is the cycle

p124(p∗13∆X · p∗2oX · p∗34(Z2)) = p124({(y, oXb , y, oXb), y ∈ Xb, b ∈ B})
= {(y, oXb , oXb), y ∈ Xb, b ∈ B},

which proves (5.63). The proofs of the remaining equations from (5.61) to (5.67)
work similarly.

For the other proofs, we recall that

Z = ∆X − Z1 − Z2 ⊂ X ×B X .

Thus, since ∆X acts as the identity, we get

Z ◦ (p∗1oX · p∗23∆X ) = p∗1oX · p∗23∆X −Z1 ◦ (p∗1oX · p∗23∆X )−Z2 ◦ (p∗1oX · p∗23∆X ).

We then compute the terms Z1 ◦ (p∗1oX ·p∗23∆X ) explicitly as before, which gives
(5.69).

The other proofs are similar. �

Using the cohomological version of Lemma 5.40, (5.60) becomes

[∆] = [p∗1oX · p∗2oX ] + [p∗12∆X · p∗3oX ]− [p∗2oX · p∗3oX ]

− [p∗1oX · p∗3oX ] + [p∗1oX · p∗3oX ] + [p∗2oX · p∗3oX ]

+ [p∗1oX · p∗23∆X − p∗1oX · p∗2oX − p∗1oX · p∗3oX ]

+ [p∗13∆X · p∗2oX − p∗1oX · p∗2oX − p∗2oX · p∗3oX ]. (5.72)

This last equality is now satisfied by assumption (compare with (5.45)) and this
concludes the proof of formula (5.46). Thus Proposition 5.38(i) is proved.
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(ii) We just have to prove that

P1 ⊗ P1([∆X ]) = P2 ⊗ P2([∆X ]) = 0,

P1 ⊗ P ([∆X ]) = P2 ⊗ P ([∆X ]) = 0 in H4(X ×B X ,Q). (5.73)

Indeed, the relative Künneth decomposition gives

R(π, π)∗Q = Rπ∗Q⊗Rπ∗Q

and the decomposition (5.44) induces a decomposition of the above tensor prod-
uct on the right:

Rπ∗Q⊗Rπ∗Q = ⊕k,lRkπ∗Q⊗Rlπ∗Q[−k − l], (5.74)

where the decomposition is induced by the various tensor products of P1, P2, P .
Taking cohomology in (5.74) gives

H4(X ×B X ,Q) = ⊕s+k+l=4H
s(B,Rkπ∗Q⊗Rlπ∗Q).

The term H0(R4(π, π)∗Q) is then exactly the term in the above decomposition
of H4(X ×B X ,Q) that is annihilated by the four projectors P1 ⊗ P1, P1 ⊗ P ,
P2 ⊗ P , P2 ⊗ P2 and those obtained by changing the order of factors, whose
vanishing will be deduced from the others by symmetry.

The proof of (5.73) is elementary. Indeed, consider for example the term
P1 ⊗ P1, which is given by the cohomology class of the cycle

Z := pr∗1 oX · pr∗2 oX ⊂ X ×B X ×B X ×B X ,

which we see as a relative self-correspondence of X ×B X We have

Z∗(∆X ) = p34∗(p
∗
12∆X · Z).

But the cycle on the right is trivially rationally equivalent to 0 on fibers Xt×Xt.
It thus follows from Corollary 1.3 that for some dense Zariski open set B0 of B,

[Z]∗([∆X ]) = 0 in H4(X 0 ×B0 X 0,Q).

The other vanishing statements are proved similarly. �
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Integral coefficients

Up to now, we have been working with rational coefficients, and indeed most con-
jectures and statements made previously become wrong when passing to Chow
groups or Betti cohomology with integral coefficients. There are two examples
of this fact: First of all, it has been well known since the work of Atiyah and
Hirzebruch [5] that the Hodge conjecture is not true for integral Hodge classes.
Second, Theorem 3.1 and all its more precise forms concerning the decompo-
sition of the diagonal are in fact decomposition results for a multiple of the
considered cycle, or in other words, they provide a decomposition of the cycle
itself only with Q-coefficients. What we discuss in this chapter is a number of
birational invariants that can be defined using Z-coefficients instead. Of course,
the important question is whether these birational invariants can be nonzero for
rationally connected or even unirational varieties.

6.1 INTEGRAL HODGE CLASSES AND BIRATIONAL

INVARIANTS

6.1.1 Atiyah–Hirzebruch–Totaro topological obstruction.

Atiyah and Hirzebruch [5] found counterexamples to the Hodge conjecture (Con-
jecture 2.25) stated for degree 2k integral Hodge classes (as opposed to rational
Hodge classes) when k ≥ 2 . In degree 2, the most optimistic statements are
true, due to the Lefschetz theorem on (1, 1)-classes.

In [95], Totaro revisited the examples of Atiyah and Hirzebruch and re-
formulated more directly the obstructions they had found, using the complex
cobordism graded ring MU∗(X) of X. Let us first describe this ring that is
defined for all differentiable compact manifolds: Given such an X, we consider
first of all the objects that are triples (V, f, ε), where V is a differentiable com-
pact manifold, f : V → X is a differentiable map, and ε is a class of a stable
complex structure on the virtual normal bundle f∗TX −TV . Here f∗TX −TV is
an element of the K0 group of real vector bundles on V , and choosing a stable
complex structure on it means we choose an element of the K0 group of complex
vector bundles on V that sends (via the natural forgetful map) to f∗TX−TV +T ,
where T is the trivial real vector bundle of rank 1 or 0.

One now makes the following construction, which is a slight variant of the
Thom construction of the absolute complex cobordism ring MU∗ = MU∗(point).
Let us consider the free abelian group generated by such triples, and take its
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quotient by the complex cobordism relations; namely, for each differentiable
compact manifold with boundary M , differentiable map φ : M → X, and stable
complex structure ε on the virtual normal bundle f∗TX − TM , we observe that
the restriction of TM to the boundary of M is naturally isomorphic to T∂M ⊕T ,
where T is trivial of rank 1. Thus the stable complex structure ε on the virtual
normal bundle f∗TX − TM induces a stable complex structure ε0 on the virtual
normal bundle f∗0TX − T∂M , where f0 is the restriction of f to ∂M .

We take the quotient of the free abelian group by the relations generated by

(∂M, f0, ε0) = 0,

(V1 t V2, f1 t f2, ε1 t ε2) = (V1, f1, ε1) + (V2, f2, ε2).

The result will be denoted by MU∗(X). Here the grading is given by ∗ =
dimX − dimV . The product structure is given by the fibered product over X.

Note that MU∗(X) is naturally an MU∗-module, since elements of MU∗ are
generated by data (W, ε0), where W is differentiable compact and ε0 is a stable
complex structure on TW (here the map to a point is necessarily constant).
Then for (V, f, ε) and (W, ε0) as above, we can consider the product (V ×W, f ◦
pr1, ε+ ε0).

Denote by MU∗(X) ⊗
MU∗

Z its tensor product with Z over MU∗ (which maps

by the degree to Z = H0(point,Z)). Thus, in MU∗(X) ⊗
MU∗

Z, one kills all the

products (V ×W, f ◦ pr1, ε1 + ε2), where ε2 is a stable complex structure on W ,
with dimW > 0. Since, for such products, we have

(f ◦ pr1)∗(1V×W ) = 0,

there is a natural map,

MU∗(X) ⊗
MU∗

Z→ H∗(X,Z),

(V, f, ε) 7→ f∗1V .

(Here we note that, as we have a stable complex structure on the virtual normal
bundle of f , the Gysin image f∗1V is well defined. If X is oriented, V is
also naturally oriented because the virtual normal bundle of f has a stable
complex structure, and then f∗(1V ) is the Poincaré dual cohomology class of
the homology class f∗([V ]fund).)

Coming back to the case where X is a complex projective (or more generally
compact complex) manifold, Totaro [95] observed that the cycle class map

Zk(X)→ H2k(X,Z), Z 7→ [Z],

where the left-hand side is the free abelian group generated by subvarieties (or
irreducible closed analytic subsets) of codimension k of X, is the composite of
two maps

Zk(X)→
(

MU∗(X) ⊗
MU∗

Z
)2k

→ H2k(X,Z). (6.1)
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Here the second map was introduced above, and the first map is defined using
the construction of the complex cobordism ring; indeed, for any inclusion of
a (maybe singular) codimension k closed algebraic subset Z ⊂ X, there is a
desingularization

τ : Z̃ → X,

and we have

[Z] = τ∗1Z̃ .

On the other hand, the virtual normal bundle of τ has an obvious stable complex
structure.

By the factorization (6.1), a torsion class in H2k(X,Z) that is not in the
image of (

MU∗(X) ⊗
MU∗

Z
)2k

→ H2k(X,Z)

cannot be algebraic. On the other hand, as it sends to 0 in H2k(X,C), it is ob-
viously an integral Hodge class. This is a supplementary topological obstruction
for an integral Hodge class to be algebraic. These obstructions are of torsion,
as the map (MU∗(X) ⊗

MU∗
Z)2k → H2k(X,Z) becomes an isomorphism when

tensored by Q. In fact they essentially concern torsion classes, as explained by
Totaro, as the map (

MU∗(X) ⊗
MU∗

Z
)2k

→ H2k(X,Z)

is an isomorphism if H∗(X,Z) has no torsion. The Atiyah–Hirzebruch example
[5] shows that these obstructions are effective.

6.1.2 Kollár’s example

We start this section by describing a method due to Kollár [63], which produces
examples of smooth projective complex varietiesX, together with an even degree
integral cohomology class α, which is not algebraic, that is, which is not the
cohomology class of an algebraic cycle of X, while a nonzero multiple of α is
algebraic. This is another sort of counterexample to the Hodge conjecture over
the integers, since the class α is of course a Hodge class.

The examples are as follows: Consider a smooth hypersurface X ⊂ Pn+1 of
degree d. For l < n, the Lefschetz theorem on hyperplane sections says that the
restriction map

H l(Pn+1,Z)→ H l(X,Z)

is an isomorphism. Since the left-hand side is isomorphic to ZHk for l = 2k < n,
where H is the cohomology class of a hyperplane, and is 0 for l odd or l > n, we
conclude by Poincaré duality on X that for 2k > n, we have H2k(X,Z) = Zα,
where α is determined by the condition 〈α, hn−k〉 = 1, with the notation h =
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H|X = c1(OX(1)). Note that the class d ·α is equal to hk (both have intersection

number d with hn−k), hence is algebraic.
In the sequel, we consider for simplicity the case where n = 3, k = 2. Then

d · α is the class of a plane section of X.

Theorem 6.1 (Kollár 1990). Assume that for some integer p coprime to 6,
p3 divides d. Then for very general X, any curve C ⊂ X has degree divisible by
p. Hence the class α is not algebraic.

Recall that “very general” means that the defining equation for X has to
be chosen away from a specified union of countably many Zariski closed proper
subsets of the parameter space.

Proof of Theorem 6.1. Let d = p3s, and let Y ⊂ P4 be a degree s
smooth hypersurface. Let φ0, . . . , φ4 be sections of OP4(p) without common
zeros. They provide a map

φ : Y → P4,

which for a generic choice of the φi’s satisfies the following properties:

(1) φ is generically of degree 1 onto its image, which is a hypersurface X0 ⊂ P4

of degree p3s = d.

(2) φ is two-to-one generically over a surface in X0, three-to-one generically
over a curve in X0, at most finitely many points of X0 have more than 3
preimages, and no point has more than 4 preimages.

Now let X ⊂ P4 be a smooth hypersurface that is very general in moduli. Let
C ⊂ X be a reduced curve. The idea is to degenerate the pair (X,C), C ⊂ X to
a pair (X0, C0), C0 ⊂ X0, where X0 was defined above. This is possible because
the point parametrizing X is very general, and because there are only countably
many relative Hilbert schemes over the moduli space of X, parametrizing curves
in the fibers Xt. Thus a curve C ⊂ X, with X very general in moduli, must
correspond to a point of a relative Hilbert scheme that dominates the moduli
space of X.

By flatness, the curve C0 has the same degree as C. Recall the normalization
map

φ : Y → X0.

By property (2) above, there exists a 1-cycle z̃0 in Y such that φ∗(z̃0) = 6z0,
where z0 is the cycle associated to C0. It follows that

6 deg z0 = deg φ∗(z̃0).

On the other hand, the right-hand side is equal to the degree of the line bundle
φ∗OX0

(1) computed on the cycle z̃0. Since φ∗OX0
(1) is equal toOY (p), it follows

that this degree is divisible by p. Hence we find that 6 degC = 6 degC0 =
6 deg z0 is divisible by p, and since p is coprime to 6, it follows that degC is also
divisible by p. �
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Remark 6.2. The argument above works only for very general X, which
could a priori exclude all varieties X defined over a number field K. However
Hassett and Tschinkel gave an alternative argument (replacing the degeneration
above by specialization to an adequate closed fiber of a projective model of
X defined over SpecOK), showing that there exist varieties X satisfying the
conclusions of Theorem 6.1 and defined over a number field.

As remarked in [93], Kollár’s example, which is not topological, exhibits the
following phenomenon that illustrates the complexity of the Hodge conjecture.
We can have a family X → B of smooth projective complex manifolds, and a
locally constant integral Hodge class αt ∈ H4(Xt,Z), with the property that on
a dense (for the Euclidean topology) subset Balg ⊂ B, which is a countable union
of closed proper algebraic subsets of B, the class αt is algebraic, that is, is an
integral combination [Zt] =

∑
i ni[Zi,t] of classes of codimension 2 subvarieties,

but on its complementary set, which is a countable intersection of dense open
subsets, the class αt is not algebraic.

Indeed, it is shown in [93] that there exists a countable union of proper
algebraic subsets, which is dense for the usual topology in the parameter space
of all smooth hypersurfaces of degree d in P4, consisting of points parametrizing
hypersurfaces X for which the class α is algebraic. For this, it suffices to prove
that the set of smooth surfaces of degree d in P3 carrying an algebraic class
λ ∈ H2(S,Z)∩H1,1(S), satisfying the property that 〈λ, c1(OS(1))〉S is coprime
to d, is dense in the space of all surfaces of degree d in P3. Indeed, for any X
containing such a surface, the class α is algebraic on X.

Now this fact follows from the density criterion for the Noether–Lefschetz
locus explained in [101, II, 5.3.4], and from the fact that rational classes ν ∈
H2(S,Q), such that a multiple bν is integral and satisfies 〈bν, c1(OS(1))〉S = a
with a coprime to d, are dense in H2(S,Q).

6.2 RATIONALLY CONNECTED VARIETIES AND THE

RATIONALITY PROBLEM

A long-standing problem in algebraic geometry is the characterization of rational
varieties, namely those smooth projective X that are birationally equivalent to
Pn, n = dimX.

Beautiful obstructions to rationality, very efficient in dimension 3, even for
unirational varieties (for which there exists a surjective rational map φ : Pn 99K
X), have been demonstrated in the papers [4], [21], [57].

In higher dimensions, the criteria above, and especially those of [4] and [21]
are less useful. In [93] and [105], we observed that if X is a smooth projective
variety that is birational to Pn, then the Hodge conjecture holds for integral
Hodge classes on X of degree (2n− 2) and 4. This is optimal, because in other
degrees 2i (different from 0, 2, and 2n, where the groups are always 0), we can
blow up a copy of Kollár’s example embedded in some projective space to get
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rational varieties X with nonalgebraic integral Hodge classes of degree 2i. In
fact, we have the following lemma (see [105]).

Lemma 6.3. The groups

Z4(X) := Hdg4(X,Z)/Hdg4(X,Z)alg,

Z2n−2(X) := Hdg2n−2(X,Z)/Hdg2n−2(X,Z)alg, (6.2)

where the lower index “ alg” means that we consider the group of integral Hodge
classes which are algebraic, are both birational invariants of the complex projec-
tive variety X of dimension n.

Proof. This follows from the resolution of singularities and the invariance
under blow-ups, which is a consequence of the computation of the cohomology
and the Chow groups of a blown-up variety (see [68] or [101, I, 7.3.3; II, 9.3.3]).
For the degree 4 case, the new degree 4 integral Hodge classes appearing under
blow-up come from degree 2 (or degree 0) integral Hodge classes on the center of
the blow-up. Hence they are algebraic by the Lefschetz theorem on (1, 1)-classes.
For the other case, the new degree (2n − 2) integral Hodge classes appearing
under blow-up of a connected smooth subvariety are multiples of the class of a
line in a fiber of the blowing-down map, hence they are also algebraic. �

Note the following two facts concerning rational Hodge classes of degree 4
and 2n− 2:

(1) The Hodge conjecture is true for rational Hodge classes of degree 2n − 2
on smooth projective varieties of dimension n (see Section 2.2.2).

(2) The Hodge conjecture is true for rational Hodge classes of degree 4 on
smooth projective varieties that have their CH0 group supported on a
closed algebraic subset of dimension ≤ 3 (see Section 3.1.2).

Thus it seems natural to consider in these situations the problem for integral
Hodge classes. The Kollár examples lead, by taking products with Pr, to other
examples of nonalgebraic integral Hodge classes of degree 4 or 2n− 2, showing
that we have to restrict strongly the considered class of varieties.

Rationally connected varieties, for which there passes a rational curve through
any two points, have been the subject of intensive work since the seminal pa-
per by Kollár, Miyaoka, and Mori [65]. Still they remain very mysterious from
several points of view. They are as close as possible to unirational varieties (no
example is known to be not unirational), and this is a birationally and defor-
mation invariant class. In view of the birational invariance explained above, it
is thus natural to consider the problem of integral Hodge classes for them.

Question 6.4. Let X be a smooth rationally connected variety of dimension
n. Is the Hodge conjecture true for integral Hodge classes of degree 4 or 2n− 2
on X?
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It is tempting to believe that the answer should be yes for degree (2n − 2)
classes and we will give one theoretical argument in favor of this in Section 6.2.1.
On the other hand we will show in Section 6.2.2, following [24], that the answer
is negative in degree 4 for X of dimension ≥ 6.

6.2.1 The group Z2n−2(X)

For n = 3, we will have the equality 4 = 2n− 2, hence there is only one degree
to consider. In [103], we solved Question 6.4 in dimension 3, proving more
generally the following result.

Theorem 6.5 (Voisin 2006). Let X be a uniruled threefold, or a Calabi–
Yau threefold, namely a threefold with trivial canonical bundle and vanishing
irregularity. Then the Hodge conjecture is satisfied by integral Hodge classes of
degree 4 on X, that is, integral Hodge classes of degree 4 are generated by classes
of curves in X.

Sketch of proof. The Hodge conjecture is satisfied by integral Hodge
classes of degree 2. This is the Lefschetz theorem on (1, 1)-classes. Let α ∈
H4(X,Z) and let j : Σ ↪→ X be the inclusion of a smooth ample surface into X.
The Lefschetz theorem on hyperplane restriction says that the Gysin map

j∗ : H2(Σ,Z)→ H4(X,Z)

is surjective. Assume for simplicity that H2(X,OX) = 0 and that X is uniruled.
Then there is no H3,1-part in the Hodge decomposition of H4(X,C) and thus
we want to show that any integral degree 4 cohomology class is algebraic, that
is, is a combination with integral coefficients of classes of curves in X. The
key point (in the case where X is uniruled with H2(X,OX) = 0) is then the
following.

Proposition 6.6. If Σ is chosen ample enough (that is, Σ belongs to the
linear system associated to a sufficiently high power of an ample line bundle on
X) and satisfies the condition that

Σ2 c1(KX) < 0,

then H2(Σ,Z) is generated over Z by classes that become algebraic on Σt, where
Σt is a small deformation of Σ in X.

Note that if X is uniruled, after performing a birational transformation of
X, we can construct a smooth projective variety X ′ with an ample line bundle L
such that c1(L)2 · c1(KX′) < 0. Thus, up to replacing X by X ′, we may assume
surfaces Σ as above exist.

If now α ∈ H2(Σ,Z) becomes algebraic under a small deformation of Σ in
X, this means that for a deformation jt : Σt ↪→ X, the class αt deduced from α
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by flat transport satisfies αt = [Zt] ∈ H2(Σt,Z), for some divisor Zt ∈ CH1(Σt),
and thus

j∗α = jt∗αt = jt∗[Zt] = [jt∗(Zt)] ∈ H4(X,Z).

Thus it follows from the surjectivity of j∗ and from Proposition 6.6 thatH4(X,Z)
is generated by classes of 1-cycles on X.

The proof of Proposition 6.6 uses the study of infinitesimal variations of
Hodge structures. Using the Lefschetz theorem on (1, 1)-classes, one has equiv-
alently to prove that H2(Σ,Z) is generated over Z by classes that become of
type (1, 1) under a small deformation of Σ in X. Thus, this is mainly a question
of showing that the spaces

H1,1(Σ)R := H1,1(Σ) ∩H2(Σ,R)

“move enough” with Σ ⊂ X inside H2(Σ,R) so as to fill in an open subset
V = ∪t∈UH1,1(Σt) ∩ H2(Σt,R) ⊂ H2(Σ,R). Here U is a simply connected
open set of the space of smooth deformations of Σ in X, and we freely use the
canonical identification H2(Σt,R) ∼= H2(Σ,R) given by parallel transport.

As this open subset V is a cone, it will then be clear that integral points in
this cone will generate over Z the whole lattice H2(Σ,Z).

The study of the deformations of the subspace H1,1(Σ)R ⊂ H2(Σ,R) is
done using Griffiths machinery of infinitesimal variations of Hodge structures
for hypersurfaces (see [48], [101, II, 6.2]). �

Remark 6.7. It would be tempting to weaken the assumptions in Theo-
rem 6.5 and to ask whether a smooth projective threefold X with trivial CH0

group (or CH0 group supported on a surface) satisfies the condition Z4(X) = 0.
This is essentially disproved in [24] (except that we do not know that the ex-
ample we have indeed satisfies the conclusion that CH0(X) is trivial). In fact,
following Kollár, we produce an example of a smooth projective threefold X
satisfying Hi(X,OX) = 0, i > 0 and with nontrivial Z4(X). By the Bloch con-
jecture (Conjecture 3.21) (and Roitman’s theorem [87]), this X should satisfy
CH0(X) = Z.

Remark 6.8. Another question is whether in dimension 3, the assumptions
on X are optimal in Theorem 6.5. In [24], examples of threefolds X with Kodaira
dimension 1 and Z4(X) 6= 0 are exhibited. A remaining question would be
whether in Theorem 6.5 the assumption that X has trivial canonical bundle
could be replaced by the condition that X has Kodaira dimension 0. In other
words, is it true that a smooth projective threefold X with κ(X) = 0 has
Z4(X) = 0?

In dimension ≥ 4, Question 6.4 has been studied in [53]. We prove the
following result.

Theorem 6.9 (Höring and Voisin 2010). Let X be a Fano fourfold or a Fano
fivefold of index 2. Then X satisfies Z2n−2(X) = 0.
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For the proof, we first extend the Calabi–Yau case in Theorem 6.5 allowing
X to have isolated canonical singularities. We then prove that a Fano fourfold
contains an anticanonical divisor with isolated canonical singularities. The case
of a Fano fivefold of index 2 works similarly: if −KX = 2H, where H ∈ PicX,
is an ample line bundle, we show that there is a complete intersection of two
members of |H| which is a threefold with isolated canonical singularities, and of
course with trivial canonical bundle.

To conclude this section, let us prove the following result.

Theorem 6.10 (See Voisin 2013 [112]). The group Z2n−2(X) is locally de-
formation invariant for rationally connected n-folds. In particular its order is a
deformation invariant.

Let us first explain the meaning of the statement. Consider a smooth
projective morphism π : X → B between connected quasi-projective com-
plex varieties, with n-dimensional fibers. Recall from [65] that if one fiber
Xb := π−1(b) is rationally connected, so is every fiber, so that in particu-
lar, H2n−2(Xb,Z) = Hdg2n−2(Xb,Z) for any b ∈ B. Let us endow every-
thing with the usual topology. Then the sheaf R2n−2π∗Z is locally constant
on B. On any Euclidean open set U ⊂ B where it is trivial, the group
Z2n−2(Xb), b ∈ U is the finite quotient of the constant group H2n−2(Xb,Z) by
its subgroup H2n−2(Xb,Z)alg. To say that Z2n−2(Xb) is locally constant means
that on open sets U as above, the subgroup H2n−2(Xb,Z)alg of the constant
group H2n−2(Xb,Z) does not depend on b.

Proof of Theorem 6.10. We first observe that, due to the fact that rel-
ative Hilbert schemes parametrizing curves in the fibers of B are a countable
union of varieties which are projective over B, given a simply connected open
set U ⊂ B (in the classical topology of B) and a class α ∈ Γ(U,R2n−2π∗Z) such
that αt is algebraic for t ∈ V , where V is a smaller nonempty open set V ⊂ U ,
then αt is algebraic for any t ∈ U .

To prove the deformation invariance, we only need to use the above obser-
vation to prove that for U as above, t ∈ U ⊂ B, and for a curve C ⊂ Xt with
cohomology class [C] ∈ H2n−2(Xt,Z). Then the class [C]s is algebraic for s in
U .

By the results of [65], there are rational curves Ri ⊂ Xt with ample normal
bundle which meet C transversally at distinct points, and with arbitrary tangent
directions at these points. We can choose an arbitrarily large number D of such
curves with generically chosen tangent directions at the attachment points. We
then know by [65] that the curve C ′ = C ∪i≤D Ri is smoothable and that the
result is a smooth unobstructed curve C ′′ ⊂ Xt, that is, H1(C ′′, NC′/Xt) = 0.
This curve C ′′ then deforms with Xt (see [62], [64, II.1]) in the sense that the
morphism from the deformation of the pair (C ′′, Xt) to B is smooth. So for
s ∈ U , there is a curve C ′′s ⊂ Xs which is a deformation of C ′′ ⊂ Xt. The class



132

weyllecturesformat September 3, 2013 6x9

CHAPTER 6

[C ′′s ] = [C ′′]s is thus algebraic on Xs. On the other hand, we have

[C ′′] = [C ′] = [C] +
∑
i

[Ri].

As the Ri’s are rational curves with positive normal bundle, they are also un-
obstructed, so that the classes [Ri]s also are algebraic on Xs. Thus [C]s =
[C ′′]s −

∑
i[Ri]s is algebraic on Xs. The lemma, hence also the theorem, is

proved. �

The same proof applies to prove invariance of the group Z2n−2(X) for X a
rationally connected variety defined over a number field K, under specialization
(in an adequate sense) to a point p of SpecOK such that Xp is smooth, where
X is a projective model of X over SpecOK . We refer to [112] for this result and
the following Theorem 6.11 (which strongly suggests, in fact, the vanishing of
Z2n−2(X) for X a rationally connected variety over C).

Theorem 6.11. Assume the Tate conjecture is true for divisor classes on
varieties over a finite field (see [69]). Then the group Z2n−2(X) vanishes for
any rationally connected n-fold over C.

6.2.2 The group Z4(X) and unramified cohomology

Let X be a smooth projective complex variety. We will denote by Xcl the set
X(C) endowed with its classical (or Euclidean) topology, and by XZar the set
X(C) endowed with its Zariski topology.

Let

π : Xcl → XZar

be the identity of X(C). This is a continuous map since a Zariski open set is
open in the classical topology, and Bloch–Ogus theory [14] is the study of the
Leray spectral sequence associated to this map and any constant sheaf with
stalk A on Xcl. In applications, the abelian group A will be one of the groups
Z, Q, or Q/Z.

We are thus led to introduce, on XZar, the sheaves

Hi(A) := Riπ∗A.

By definition, Hi(A) is thus the sheaf associated to the presheaf U 7→ Hi
B(U,A)

on XZar.
The Leray spectral sequence for π and A has terms

Ep,q2 = Hp(XZar,Hq(A)).

Unramified cohomology of X with value in A is defined by the formula (see
[23])

Hi
nr(X,A) = H0(XZar,HiX(A)).
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The main result of the paper by Bloch and Ogus [14] is the following Gersten–
Quillen resolution for the sheaves HiX(A). For any closed subvariety D ⊂ X,
let iD : D → X be the inclusion map and Hi(C(D), A) the constant sheaf on D
with stalk

lim
→

U⊂D
nonempty Zariski open

Hi(U(C), A)

at any point of D. When D′ ⊂ D has codimension 1, there is a map induced by
the topological residue (on the normalization of D) (see [101, II, 6.1.1]):

ResD,D′ : Hi(C(D), A)→ Hi−1(C(D′), A).

For r ≥ 0, let X(r) be the set of irreducible closed algebraic subsets of
codimension r in X.

Theorem 6.12 (Bloch and Ogus 1974, Theorem 4.2). For any A, and any
integer i ≥ 1, there is an exact sequence of sheaves on XZar

0→ HiX(A)→ iX∗H
i(C(X), A)

∂→
⊕

D∈X(1)

iD∗H
i−1(C(D), A)

∂→

· · · ∂→
⊕

D∈X(i)

iD∗AD → 0.

Here the components of the maps ∂ are induced by the maps ResD,D′ when
D′ ⊂ D (and are 0 otherwise). The sheaf AD on DZar identifies, of course, to
the constant sheaf with stalk H0(C(D), A).

Let us state a few consequences proved in [14]. First of all, denoting by
CHk(X)/alg the group of codimension k cycles of X modulo algebraic equiva-
lence, we get the Bloch–Ogus formula.

Corollary 6.13 (Bloch and Ogus 1974, Corollary 7.4). If X is a smooth
complex projective variety, there is a canonical isomorphism

CHk(X)/alg = Hk(XZar,Hk(Z)). (6.3)

Proof. Indeed, the Bloch–Ogus resolution is acyclic, because a constant
sheaf on an irreducible variety (equipped with the Zariski topology) is flasque
hence acyclic (see [52, II, Exercise 1.16]), and this applies to the constant sheaves
Hi(C(D), A). It is thus possible to compute Hk(XZar,Hk(Z)) by taking global
sections in the above resolution, which gives

Hk(XZar,Hk(Z)) = Coker
(
∂ : ⊕D∈X(k−1)H1(C(W ),Z) −→ ⊕D∈X(k)Z

)
.

The group ⊕D∈X(k)Z is the group of codimension k cycles on X, and to con-
clude, one has to check that the image of the map ∂ above is the group of cycles
algebraically equivalent to 0. This follows from the fact that on a smooth projec-
tive variety W̃ , a divisor D is cohomologous to 0 (hence algebraically equivalent
to 0 by Example 3.7) if and only if there exists a degree 1 cohomology class

α ∈ H1(W̃ \ SuppD,Z) such that Resα = D. �
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By Theorem 6.12, the sheaf Hi(A) has an acyclic resolution of length ≤ i.
We thus get the following vanishing result.

Corollary 6.14. For X smooth, A an abelian group, and r > i, one has

Hr(XZar,HiX(A)) = 0. (6.4)

Concerning the structure of the sheaves Hi(Z), we have the following result,
which is a consequence of the Bloch–Kato conjecture recently proved by Rost and
Voevodsky (we refer to [6], [15], [24] for more explanations concerning the way
the very important result below is deduced from the Bloch–Kato conjecture).

Theorem 6.15. The sheaves Hi(Z) of Z-modules on XZar have no torsion.

The following corollary gives an equivalent formulation of this theorem, by
considering the long exact sequence associated to the short exact sequence of
sheaves on Xcl,

0→ Z→Q→ Q/Z→ 0

on Xcl, and the associated long exact sequence of sheaves on XZar,

· · · → Hi(Q)→ Hi(Q/Z)→ Hi+1(Z)→Hi+1(Q)→ · · · .

Corollary 6.16. For any integer i, there is a short exact sequence of
sheaves on ZZar,

0→ Hi(Z)→ Hi(Q)→ Hi(Q/Z)→ 0.

Unramified cohomology with torsion coefficients (that is, A = Z/nZ or A =
Q/Z) plays an important role in the study of the Lüroth problem, that is,
the study of unirational varieties that are not rational (see, for example, the
papers [4], [23], and [84]). To start with, we have the following result concerning
the invariant used by Artin and Mumford, which is the torsion in the group
H3
B(X,Z).

Proposition 6.17. Let X be a rationally connected variety. Then the tor-
sion in the group H3

B(X,Z) is naturally isomorphic to the unramified cohomology
group H2

nr(X,Q/Z).

Proof. We consider the Bloch–Ogus spectral sequence for X and for in-
tegral coefficients, and compute its terms in degree 3. By Corollary 6.14,
there are only two possibly nonzero E2-terms, namely H1(XZar,H2(Z)) and
H0(XZar,H3(Z)). Because X is rationally connected, it has trivial CH0 group
and it follows from the Bloch–Srinivas decomposition of the diagonal (Theo-
rem 3.10) and from functoriality of unramified cohomology under correspon-
dences that H0(XZar,H3(Z)) is of torsion. By Theorem 6.15, the unramified
cohomology group H0(XZar,H3(Z)) vanishes identically, and we conclude that
the only nonzero E2-term isH1(XZar,H2(Z)). Because no nonzero differential dr
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can start fromH1(XZar,H2(Z)) by Corollary 6.14, or arrives inH1(XZar,H2(Z))
for degree reasons, we conclude that

H3(X,Z) ∼= H1(XZar,H2(Z)).

It thus follows that Tors(H3(X,Z)) ∼= Tors(H1(XZar,H2(Z))), and the second
term is computed writing the exact sequence

0→ H2(Z)→ H2(Q)→ H2(Q/Z)→ 0

of Corollary 6.16. Taking the associated long exact sequence, we get

Tors(H1(XZar,H2(Z))) ∼= H0(XZar,H2(Q/Z))/ Im(H0(XZar,H2(Q))).

On the other hand, we have H0(XZar,H2(Q)) = 0 by the same argument as
before, involving Bloch–Srinivas decomposition of the diagonal. �

Going further, in the paper [23], the authors exhibit unirational sixfolds
with vanishing group H2

nr(X,Q/Z) but nonvanishing group H3
nr(X,Q/Z). Their

example is reinterpreted in the recent paper [24] using the groups Z4(X) intro-
duced in (6.2). More precisely, in the paper [24] we give the following compar-
ison result between Z4(X) and H3

nr(X,Q/Z) (a similar result was in fact also
established in [6]).

Theorem 6.18 (Colliot-Thélène and Voisin 2010).

(1) For any smooth projective X, there is an exact sequence

0→ H3
nr(X,Z)⊗Q/Z→ H3

nr(X,Q/Z)→ Tors(Z4(X))→ 0.

(2) If CH0(X) is supported on a closed algebraic subset of dimension ≤ 3,
then Tors(Z4(X)) = Z4(X). If CH0(X) is supported on a closed algebraic
subset of dimension ≤ 2, then H3

nr(X,Z) = 0.

(3) In particular, if X is rationally connected (so that CH0(X) = Z), we have

H3
nr(X,Q/Z) ∼= Z4(X).

As a consequence, we get a negative answer to Question 6.4 for degree 4
integral Hodge classes on certain rationally connected varieties (and even uni-
rational varieties) of dimension at least 6.

Theorem 6.19. The Colliot-Thélène–Ojanguren varieties X constructed in
[23], which are unirational sixfolds, hence rationally connected, have Z4(X) 6= 0.

Indeed, as proved in [23], these varieties have a nontrivial unramified coho-
mology group H3

nr(X,Q/Z).
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Sketch of proof of Theorem 6.18. Assuming that the Hodge conjec-
ture is satisfied for degree 2i rational Hodge classes on X, the group Z2i(X) is
of torsion. The fact that the Hodge conjecture is satisfied for degree 4 rational
Hodge classes on X if X has the property that CH0(X) is supported on a closed
algebraic subset of dimension ≤ 3, is from Theorem 3.15 (see [15]). This proves
the first part of statement (2). The second part of statement (2) is proved by
applying the Bloch–Srinivas decomposition of the diagonal (Theorem 3.10) and
letting both sides act on unramified cohomology (see [24, Appendix]). It thus
follows that H3

nr(X,Z) is of torsion. As it has no torsion by Theorem 6.15, it is
in fact 0.

We now prove statement (1). We observe first of all that the torsion of the
group Z2i(X) = Hdg2i(X,Z)/H2i(X,Z)alg is always isomorphic to the torsion
of the group H2i(X,Z)/H2i(X,Z)alg. We examine now the Bloch–Ogus spectral
sequence of X with coefficients in Z. The E2-terms in degree 4 are

H2(XZar,H2(Z)) = E2,2
2 , H1(XZar,H3(Z)) = E1,3

2 , H0(XZar, H4(Z)) = E0,4
2 .

No nonzero differential dr, r ≥ 2 starts from one of the groups H2(XZar,H2(Z))
or H1(XZar,H3(Z)) due to Corollary 6.14. No nonzero differential dr, r ≥ 2
arrives at H1(XZar,H3(Z)) or H0(XZar, H4(Z)) for degree reasons. Thus we
have

E2,2
2 � E2,2

∞ , E1,3
2 = E1,3

∞ , E0,4
2 ⊂ E0,4

∞ .

It follows that there is a natural composed map

H2(XZar,H2(Z))→ E2,2
∞ ⊂ H4(X,Z),

whose image is the deepest level N2H4(X,Z) of the Leray–Bloch–Ogus filtra-
tion (which is in fact the coniveau filtration). This map identifies to the cycle
class map (see [14]), so that its cokernel H4(X,Z)/N2H4(X,Z) is the group
H4(X,Z)/H4(X,Z)alg. This group has a filtration induced by the Leray spec-
tral sequence, and the graded pieces are

E1,3
∞ = H1(XZar,H3(Z)), E0,4

∞ ⊂ H0(XZar, H4(Z)).

By Theorem 6.15, the group H0(XZar, H4(Z)) has no torsion, hence it follows
finally that we have an isomorphism,

Tors(H4(X,Z)/H4(X,Z)alg) = Tors(H1(XZar,H3(Z))).

The group on the left identifies to the group Tors(Z4(X)) by the observation
above, while the group on the right is analyzed by the exact sequence of sheaves
on XZar given in Corollary 6.16:

0→ H3(Z)→ H3(Q)→ H3(Q/Z)→ 0.

The induced long exact sequence immediately gives

Tors(H1(XZar,H3(Z))) ∼= H0(X,H3(Q/Z))/ Im(H0(X,H3(Q))),

which finishes the proof. �
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In the paper [111], we give a similar cycle-theoretic interpretation of the
group H4

nr(X,Q/Z) (Theorem 6.22 below). For this we need to introduce some
notation.

Let X be a smooth complex projective variety and k, l be integers. We have
the subgroup N lHk

B(X,Z) ⊂ Hk
B(X,Z) of “coniveau l cohomology,” defined as

N lHk
B(X,Z) = Ker

(
Hk
B(X,Z)→ lim

→
codimW=l

Hk
B(X \W,Z)

)
,

where the W ⊂ X considered here are the closed algebraic subsets of X of
codimension l. Introducing a resolution of singularities W̃ of W and its natural
morphism τW : W̃ → X to X, we have

N lHk
B(X,Q) =

∑
codimW=l

Im
(
τW∗ : Hk−2l

B (W̃ ,Q)→ Hk(X,Q)
)
,

as explained in the proof of Theorem 2.39.
From now on, we restrict to the case k = 2l + 1. For any W ⊂ X, τW :

W̃ → X as above, the Gysin morphism τW∗ : H1
B(W̃ ,Z) → H2l+1

B (X,Z) is a
morphism of Hodge structures (of bidegree (l, l)), which induces a morphism
between the intermediate Jacobians (see [101, I, 12.2]),

τW∗ : Pic0(W̃ ) = J1(W̃ )→ J2l+1(X)

:=
H2l+1
B (X,C)

F lH2l+1
B (X,C)⊕H2l+1

B (X,Z)/torsion
.

This map τW∗ is compatible in an obvious way with the Abel–Jacobi maps φW
and φX , defined, respectively, on codimension 1 and codimension (l + 1) cycles

of W̃ and X which are homologous to 0.
The Deligne cycle class map

cll+1
D : CHl+1(X)→ H2l+2

D (X,Z(l + 1))

restricts to the Abel–Jacobi map φlX on the subgroup of cycles homologous to
0 (see [101, I, 12.3.3]), and in particular on the subgroup of cycles algebraically
equivalent to 0.

If Z ∈ CHl(X) is algebraically equivalent to 0, there exist subvarieties

Wi ⊂ X of codimension l and cycles Zi ⊂ W̃i homologous to 0 such that
Z =

∑
i τWi∗Zi in CHl+1(X). It follows from the previous considerations that

cll+1
D induces a morphism

cll+1
D,tr : CHl(X)/alg→ H2l+2

D (X,Z(l + 1))tr :=
H2l+2
D (X,Z(l + 1))〈

τW∗J1(W̃ ), codimW = l
〉 .

Let T l+1(X) := Tors(Ker cll+1
D,tr).
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Lemma 6.20. This group identifies to the image of the subgroup Tors(Ker cll+1
D )

in CHl+1(X)/alg.

Proof. This follows from the fact that the groups of cycles algebraically
equivalent to 0 modulo rational equivalence are divisible. This implies that the
natural map Tors(CHi(X)) → Tors(CHi(X)/alg) is surjective for any i. We

then use the fact that for the W̃ ’s introduced above, the map

CH1(W̃ )alg
∼= Pic0(W̃ )→ J1(W̃ )

is an isomorphism, where CH1(W̃ )alg ⊂ CH1(W̃ ) is the subgroup of cycles
algebraically equivalent to 0. �

We have the following lemma.

Lemma 6.21. The group T 3(X) is a birational invariant of X.

Proof. It suffices to check invariance under blow-up. The Manin formulas
(see [68], [101, II, 9.3.3]) for groups of cycles modulo rational or algebraic equiv-
alence and for Deligne cohomology of a blow-up imply that it suffices to prove
that the groups T i(Y ) are trivial for i ≤ 2 and Y smooth projective. However
this is an immediate consequence of the definition, of Lemma 6.20, and of the
fact that the Deligne cycle class map clD : CHi(X) → H2i

D (X,Z(i)) is injective
on torsion cycles of codimension i ≤ 2 (see [73]). �

The following interpretation of degree 4 unramified cohomology with finite
coefficients is proved in [111].

Theorem 6.22 (Voisin 2011). Assume that the group H5
B(X,Z)/N2H5

B(X,Z)
has no torsion. Then the quotient of H4

nr(X,Q/Z) by H4
nr(X,Z)⊗Q/Z identifies

to the group T 3(X).
Equivalently, there is an exact sequence

0→ H4
nr(X,Z)⊗Q/Z→ H4

nr(X,Q/Z)

→ Tors(CH3(X)/alg)
cl3D,tr→ H6

D(X,Z(3))tr.

One can of course add that for a variety X with CH0(X) supported on a
three-dimensional closed algebraic subset X ′ ⊂ X (for example, a rationally
connected variety), the group H4

nr(X,Z)⊗Q/Z on the left is 0, so that the exact
sequence above then gives rise to an isomorphism

H4
nr(X,Q/Z) ∼= Ker

(
Tors(CH3(X)/alg)

cl3D,tr→ H6
D(X,Z(3))tr

)
.

Indeed, the vanishing of H4
nr(X,Z) follows as before from the fact that this group

has no torsion by Theorem 6.15, while under the assumptions made on X, and
by the Bloch–Srinivas decomposition, it is annihilated by an integer N .
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6.3 INTEGRAL DECOMPOSITION OF THE DIAGONAL AND

THE STRUCTURE OF THE ABEL–JACOBI MAP

6.3.1 Structure of the Abel–Jacobi map and birational invariants

Recall the diagonal decomposition principle (Theorem 3.10) which says that if
Y is a smooth variety such that CH0(Y ) = Z, there is an equality in CHd(Y ×
Y ), d = dimY :

N∆Y = Z1 + Z2, (6.5)

where N is a nonzero integer and Z1, Z2 are codimension d cycles with

SuppZ1 ⊂ D × Y, D  Y, Z2 = N(Y × pt).

Note that the integer N appearing above cannot in general be set equal to
1, and one purpose of this concluding section is to investigate the significance
of this invariant, at least if we work on the level of cycles modulo homological
equivalence. We will say that Y admits a cohomological decomposition of the
diagonal as in (6.5) if there is an equality of cycle classes,

N [∆Y ] = [Z1] + [Z2], (6.6)

in H2d(Y × Y,Z), with SuppZ1 ⊂ D × Y and Z2 = N(Y × pt). We will say
that Y admits an integral cohomological decomposition of the diagonal if there
is such a decomposition with N = 1.

Remark 6.23. The minimal positive integers N such that a decomposition
as above exists in either the Chow-theoretic or the cohomological setting are
birational invariants of Y . Indeed, if we have a birational morphism

φ : X → Y,

which is an isomorphism onto its image away from a divisor E ⊂ X, then we
have in CHd(X ×X),

∆X = φ∗(∆Y ) + Z,

where Z is a cycle supported on E ×E. As the term Z is absorbed in the term
Z1 of a diagonal decomposition for X, the same integers N work for X and Y .

Recall that the existence of a cohomological decomposition of the diagonal
in the form (6.6) has strong consequences (see [15] and Sections 3.1.1 and 3.1.2):

(1) This implies the generalized Mumford theorem which says in this case that
Hi(Y,OY ) = 0 for i ≥ 1. In particular the Hodge structures on H2(Y,Q),
hence on its Poincaré dual H2d−2(Y,Q), are trivial.

(2) The group Z4(Y ) := Hdg4(Y )/Hdg4(Y )alg is of torsion (annihilated by
the integer N above).
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(3) The intermediate Jacobian J3(Y ) defined by

J(Y ) := H3(Y,C)/(F 2H3(Y )⊕H3(Y,Z)) (6.7)

is an abelian variety because H3(Y,OY ) = 0 (see [48], [101, I, 12.2.2]) and
the Abel–Jacobi map CH2(Y )hom → J3(Y ) is surjective with finite kernel
(annihilated by the integer N above).

Regarding the last point, much more is true assuming the existence of a Chow-
theoretic decomposition of the diagonal; see [15].

Theorem 6.24 (Bloch and Srinivas 1983; see also Murre 1983/1985). If Y is
a smooth complex projective variety such that CH0(Y ) = Z, then the Abel–Jacobi
map induces an isomorphism,

AJY : CH2(Y )hom = CH2(Y )alg
∼= J(Y ). (6.8)

Remark 6.25. In fact, the conclusion holds if we only assume that CH0(Y )
is supported on a curve.

This theorem is proved by delicate arguments from algebraic K-theory in-
volving the Merkurjev–Suslin theorem (the degree 2 case of the Bloch–Kato
conjecture), Gersten–Quillen resolution in K-theory, and Bloch–Ogus theory
[14]. The fact that under the above assumptions CH2(Y )hom = CH2(Y )alg is
Theorem 3.14, and the fact that the Abel–Jacobi map is surjective with a torsion
kernel is an immediate application of the Bloch–Srinivas decomposition of the
diagonal. The fact that the Abel–Jacobi map is injective on torsion codimension
2 cycles in CH2(Y ) is true without any assumptions on Y and this is the hardest
part, for which we refer to [73].

The group on the left in (6.8) a priori does not have the structure of an
algebraic variety, unlike the group on the right which is an abelian variety.
However it makes sense to say that AJY is algebraic, with the meaning that for
any smooth algebraic variety B, and any codimension 2 cycle Z ∈ CH2(B×Y ),
with Zb ∈ CH2(Y )hom for any b ∈ B, the induced map

φZ : B → J(Y ), b 7→ AJY (Zb)

is a morphism of algebraic varieties. In fact, it is possible to construct abstractly
the abelian variety J(Y ) (when the Abel–Jacobi map is surjective) as the uni-
versal target of morphisms φZ : B → A with value in an abelian variety, induced
by an algebraic cycle Z ∈ CH2(B × Y ), and factoring set-theoretically via the
induced morphism B → CH2(Y ). We refer to [73] for this construction which
generalizes Serre’s construction of the Albanese variety of a smooth projective
variety X as the target of the universal morphism to an abelian variety (see
[91]).
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Consider the case of a uniruled threefold Y with CH0(Y ) = Z. Then we
also have Theorem 6.5 saying that the integral degree 4 cohomology H4(Y,Z)
is generated over Z by classes of curves, and thus the birational invariant

Z4(Y ) :=
Hdg4(Y,Z)〈

[Z], Z ⊂ Y, codimZ = 2
〉

introduced in (6.2) is trivial in this case.
The conclusion of the above-mentioned Theorems 6.5 and 6.24 is that for a

uniruled threefold with CH0 = Z, all the interesting (and birationally invariant)
phenomena concerning codimension 2 cycles, namely the kernel of the Abel–
Jacobi map (Mumford [71]), the Griffiths group (Griffiths [48]) and the group
Z4(X) versus degree 3 unramified cohomology with torsion coefficients (Soulé
and Voisin [93], Colliot-Thélène and Voisin [24]) are trivial. In the rationally
connected case, the only interesting cohomological or Chow-theoretic invariant
could be the Artin–Mumford invariant (or degree 2 unramified cohomology with
torsion coefficients; see [23]), which is also equal to the Brauer group since
H2(Y,OY ) = 0.

Still the geometric structure of the Abel–Jacobi map on families of 1-cycles
on such threefolds is mysterious, in contrast to what happens in the curve case,
where Abel’s theorem shows that the Abel–Jacobi map on the family of effective
0-cycles of large degree has fibers isomorphic to projective spaces.

There are for example two natural questions (Questions 6.26 and 6.29) left
open by Theorem 6.24.

Question 6.26. Let Y be a smooth projective threefold, such that AJY :
CH1(Y )alg → J(Y ) is surjective. Is there a codimension 2 cycle Z ∈ CH2(J(Y )×
Y ) with Zb ∈ CH2(Y )hom for b ∈ J(Y ), such that the induced morphism

φZ : J(Y )→ J(Y ), φZ(b) := AJY (Zb)

is the identity?

Note that the surjectivity assumption is conjecturally implied by the vanish-
ing H3(Y,OY ) = 0, via the generalized Hodge conjecture (Conjecture 2.40) or
by the Hodge conjecture for degree 4 rational Hodge classes on Y × J(Y ) (see
the proof of Theorem 2.42).

Stated in words, this question asks for the existence of a universal codi-
mension 2 cycle on J(Y ) × Y . The analogous question for codimension 1 cy-
cles is well known to have an affirmative answer; this is the universal divisor
L ∈ Pic(X) × Pic0(X), which is itself induced by pull-back via the Albanese
map albX : X → Alb(X) of the Poincaré divisor P ∈ Pic(Alb(X) × Pic0(X))
(see [72, pp. 74–82]). (Here we use the fact that the abelian varieties Alb(X)
and Pic0(X) are dual abelian varieties.)

Remark 6.27. One can more precisely introduce a birational invariant of Y
defined as the gcd of the nonzero integers N for which there exist a variety B
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and a cycle Z ∈ CH2(B × Y ) as above, with deg φZ = N . Question 6.26 can
then be reformulated by asking whether this invariant is equal to 1.

Remark 6.28. Question 6.26 has a positive answer if the Hodge conjec-
ture is satisfied by degree 4 integral Hodge classes on Y × J(Y ). Indeed, the
isomorphism H1(J(C),Z) ∼= H3(Y,Z) is an isomorphism of Hodge structures
which provides a degree 4 integral Hodge class α on J(Y )× Y (see the proof of
Theorem 2.42 or [101, I, Lemma 11.41]). A codimension 2 algebraic cycle Z on
J(Y )× Y with [Z] = α would provide a solution to Question 6.26.

The following question is an important variant of the previous one, which
appears to be much more natural from a geometric point of view.

Question 6.29. Is the following property (∗) satisfied by Y ?

(∗) There exist a smooth projective variety B and a codimension 2 cycle
Z ∈ CH2(B × Y ), with Zb ∈ CH2(Y )hom for any b ∈ B, such that the induced
morphism φZ : B → J(Y ) is surjective with rationally connected general fiber.

This question has been solved by Iliev and Markushevich and by Marku-
shevich and Tikhomirov ([54], [70]; see also [51] for similar results obtained
independently) in the case where Y is a smooth cubic threefold in P4. Their
work solves Question 6.29 since they construct a family M1,5 of curves in Y (a
completion of the family of elliptic curves of degree 5), which they show to be
zero sets of sections of associated rank 2 vector bundles on Y and they prove
that the moduli space ME of these vector bundles is birationally equivalent via
the Abel–Jacobi map to J(Y ). The dominant rational map M1,5 99K ME has
rationally connected fibers and it follows that the universal family of curves in
Y parametrized by M1,5 provides the desired codimension 2 cycle.

Note that this does not answer Question 6.26 since the rationally connected
fibration M1,5 99K ME could have no section. This difficulty is related to the
non-existence of an universal vector bundle on the product ME × Y . Question
6.26 is to our knowledge still open even for the cubic threefold.

The answer to Question 6.29 is also affirmative for the intersection X of
two quadrics in P5 (see [85]): in this case the family of lines in X is a surface
isomorphic via a choice of base point to the intermediate Jacobian J(X).

Obviously a positive answer to Question 6.26 implies a positive answer to
Question 6.29, as we can then just take B = J(X). We will provide a more
precise relation between these two questions in Section 6.3.2.1. However, it
seems that Question 6.29 is more natural, especially if we go to the following
stronger version (Question 6.30).

Here we choose an integral cohomology class α ∈ H4(Y,Z). Assuming
CH0(Y ) is supported on a curve, the Hodge structure on H4(Y,Q) is triv-
ial and thus α is a Hodge class. Introduce the torsor J(Y )α defined as fol-
lows: The Deligne cohomology group H4

D(Y,Z(2)) is defined as the cohomology
H4(X,ZD(2)) of the Deligne complex

0→ Z→ OX → ΩX → 0,
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where Z is put in degree 0. The group H4
D(Y,Z(2)) is an extension,

0→ J(Y )→ H4
D(Y,Z(2))

o→ Hdg4(Y,Z)→ 0, (6.9)

where o is the natural map from Deligne to Betti cohomology induced by the
morphism of complexes ZD(2)→ Z (see [101, I, Corollary 12.27]). Define

J(Y )α := o−1(α). (6.10)

By definition, the Deligne cycle class map (see [39], [101, I, 12.3.3]), restricted
to codimension 2 cycles of class α, takes values in J(Y )α. Furthermore, for any
family of 1-cycles Z ∈ CH2(B × Y ) of class [Zb] = α, b ∈ B, parametrized by
an algebraic variety B, the map φZ induced by the Abel–Jacobi map (or rather
the Deligne cycle class map) of Y , that is,

φZ : B → J(Y )α, φZ(b) = AJY (Zb),

is a morphism of complex algebraic varieties (note again that the twisted com-
plex torus J(Y )α is algebraic because H3,0(Y ) = 0; see [101, I, 12.2.2]). The
following question makes sense for any smooth projective threefold Y satisfying
the conditions H2(Y,OY ) = H3(Y,OY ) = 0.

Question 6.30. Is the following property (∗∗) satisfied by Y ?

(∗∗) For any degree 4 integral cohomology class α on Y , there is a “natu-
rally defined” (up to birational transformations) smooth projective variety Bα,
together with a codimension 2 cycle Zα ∈ CH2(Bα × Y ), with [Zα,b] = α in
H4(Y,Z) for any b ∈ B, such that the morphism φZα : Bα → J(Y )α is surjec-
tive with rationally connected general fiber.

By “naturally defined,” we have in mind that Bα should be determined by α
by some natural geometric construction (for example, if α is sufficiently positive,
a distinguished component of the Hilbert scheme of curves of class α and given
genus, or a moduli space of vector bundles with c2 = α), which would imply
that Bα is defined over the same definition field as Y .

This question is solved affirmatively by Castravet in [17] when Y is the
complete intersection of two quadrics. It is also solved affirmatively in [113] for
cubic threefolds.

We now explain the importance of Question 6.30 in relation to the Hodge
conjecture with integral coefficients for degree 4 Hodge classes (that is, the study
of the group Z4 introduced in (6.2)). The important point here is that we want
to consider fourfolds fibered over curves, or families of threefolds Yt parametrized
by a curve Γ. The generic fiber of this fibration is a threefold Y defined over
C(Γ). Property (∗∗) essentially says that property (∗), being satisfied over the
definition field, which is in this case C(Γ), holds in family. When we work
in families, the necessity to look at all torsors J(Y )α, and not only at J(Y ),
becomes obvious. For fixed Y the twisted Jacobians are all isomorphic (maybe
not canonically) and if we can choose a cycle zα in each given class α (for
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example if Y is uniruled so that Z4(Y ) = 0), we can use translations by the
zα to reduce the problem to the case where α = 0; this is a priori not true in
families, for example because there might not be any codimension 2 cycle of
relative class α on the total space of the family.

We have the following application (Theorem 6.31) of property (∗∗) to the
Hodge conjecture for degree 4 integral Hodge classes on fourfolds fibered over
curves. Let X be a smooth projective fourfold, and let f : X → Γ be a
surjective morphism to a smooth curve Γ, whose general fiber Xt satisfies
H3(Xt,OXt) = H2(Xt,OXt) = 0. As already mentioned, for Xt, t ∈ Γ, the
intermediate Jacobian J(Xt) is an abelian variety, as a consequence of the van-
ishing H3(Xt,OXt) = 0. For any class

α ∈ H4(Xt,Z) = Hdg4(Xt,Z),

we introduced above a torsor J(Xt)α under J(Xt), which is an algebraic variety
noncanonically isomorphic to J(Xt).

Using the obvious extension of the formulas (6.7), (6.10) in the relative set-
ting, the construction of J(Xt), J(Xt)α can be done in family on the Zariski
open set Γ0 ⊂ Γ, over which f is smooth. There is thus a family of abelian
varieties J → Γ0, and for any global section α of the locally constant system
R4f∗Z on Γ0, we get the twisted family Jα → Γ0. The construction of these
families in the analytic setting (that is, as (twisted) families of complex tori) fol-
lows from Hodge theory (see [101, II, 7.1.1]) and from their explicit set-theoretic
description given by formulas (6.7), (6.10). The fact that the resulting families
are algebraic can be proved using the results of [73], when one knows that the
Abel–Jacobi map is surjective. Indeed, we already mentioned that under this
assumption the intermediate Jacobian is the universal abelian quotient of CH2,
and thus can be constructed algebraically in the same way as the Albanese
variety.

Given a smooth algebraic variety B, a morphism g : B → Γ and a codimen-
sion 2 cycle Z ⊂ B ×Γ X of relative class [Zb] = αg(b) ∈ H4(Xt,Z), the relative
Abel–Jacobi map (or rather Deligne cycle class map) gives a morphism

φZ : B0 → Jα, b 7→ AJY (Zb)

over Γ0, where B0 := g−1(Γ0). Again, the proof that φZ is holomorphic is quite
easy (see [101, II, 7.2.1]), while the algebraicity is more delicate.

The following result, which illustrates the importance of condition (∗∗) as
opposed to condition (∗), appears in [24]. As before, we assume that X is a
smooth projective fourfold, and that f : X → Γ is a surjective morphism to a
smooth curve whose general fiber Xt satisfies H3(Xt,OXt) = H2(Xt,OXt) = 0.

Theorem 6.31 (Colliot-Thélène and Voisin 2010). Assume f : X → Γ
satisfies the following assumptions:

(1) The smooth fibers Xt have no torsion in H3
B(Xt,Z).
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(2) The singular fibers of f are reduced with at worst ordinary quadratic sin-
gularities.

(3) For any section α of R4f∗Z on Γ0, there exist a variety gα : Bα → Γ and
a codimension 2 cycle Zα ⊂ Bα ×Γ X of relative class g∗αα, such that the
morphism φZα : B → Jα is surjective with rationally connected general
fiber.

Then the Hodge conjecture is true for integral Hodge classes of degree 4 on X.

Proof. An integral Hodge class α̃ ∈ Hdg4(X,Z) ⊂ H4(X,Z) induces a
section α of the constant system R4f∗Z which admits a lift to a section of the
family of twisted Jacobians Jα over Γ0. This lift is obtained as follows: The
class α̃ being a Hodge class on X admits a lift β in the Deligne cohomology
group H4

D(X,Z(2)) by the exact sequence (6.9) for X. Then our section σ is
obtained by restricting β to the smooth fibers of f : σ(t) := β|Xt . A crucial
point is the fact that this lift is an algebraic section Γ → Jα of the structural
map Jα → Γ0.

Recall that we have by hypothesis the morphism

φZα : Bα → Jα,

which is algebraic, surjective, with rationally connected general fiber. We can
now replace σ(Γ) by a 1-cycle Σ =

∑
i niΣi rationally equivalent to it in Jα,

in such a way that the fibers of φZα are rationally connected over the general
points of each component Σi of Supp Σ.

According to [46], the morphism φZα admits a lifting over each Σi, which
provides curves Σ′i ⊂ Bα.

Recall next that there is a codimension 2 cycle Zα ⊂ Bα ×Γ X of relative
class α parametrized by a smooth projective variety Bα. We can restrict this
cycle to each Σ′i, getting codimension 2 cycles Zα,i ∈ CH2(Σ′i ×Γ X). Consider
the 1-cycle

Z :=
∑
i

nipi∗Zα,i ∈ CH2(Γ×Γ X) = CH2(X),

where pi is the restriction to Σ′i of p : Bα → Γ. Recalling that Σ is rationally
equivalent to σ(Γ) in Jα, we find that the “normal function νZ associated to
Z” (see [101, II, 7.2.1]), defined by

νZ(t) = AJXt(Z|Xt),

is equal to σ. We then deduce from [48] (see also [101, II, 8.2.2]), using the Leray
spectral sequence of fU : XU → U and assumption (1), that the cohomology
classes [Z] ∈ H4(X,Z) of Z and α̃ coincide on any open set of the form XU ,
where U ⊂ Γ0 is an affine open subset of Γ over which f is smooth.

On the other hand, the kernel of the restriction map H4(X,Z)→ H4(XU ,Z)
is generated by the groups it∗H4(Xt,Z), where t ∈ Γ \ U , and it : Xt → X is
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the inclusion map. We conclude using assumption (2) and the fact that the
general fiber of f has H2(Xt,OXt) = 0, which imply that all fibers Xt (singular
or not) have their degree 4 integral homology generated by homology classes of
algebraic cycles; indeed, it follows from this and the previous conclusion that
[Z]− α̃ is algebraic, so that α̃ is also algebraic. �

In [113] we extend the results of [54] and answer Question 6.30 affirmatively
for cubic threefolds. More precisely, Iliev and Markushevich provide a naturally
defined parametrization with rationally connected fibers of the twisted interme-
diate Jacobian J(Y )α, where Y is a cubic threefold and α has degree −1 or
1 modulo 3, using the family of smooth elliptic quintic curves. We provide a
similar parametrization of J(Y )α, where α has degree 0 modulo 3, using the
universal family of degree 6 elliptic curves. Since there is a canonical 1-cycle of
degree 3 on Y , these results are sufficient to answer Question 6.30 for all α.

Combining this result with Theorem 6.31, we get the following corollary.

Corollary 6.32 (Voisin 2010; Voisin 2013 [113]). Let f : X → Γ be a
fibration over a curve with general fiber either a smooth cubic threefold or a
complete intersection of two quadrics in P5. If the fibers of f have at worst
ordinary quadratic singularities, then the Hodge conjecture holds for degree 4
integral Hodge classes on X. In other words, the group Z4(X) is trivial.

Remark 6.33. The difficulty here is to prove the result for integral Hodge
classes. Indeed, the fact that degree 4 rational Hodge classes are algebraic for X
as above can be proved by using either the results of [26] or Bloch and Srinivas
[15] (see Section 3.1.2), since such an X is swept out by rational curves, hence
has its CH0 group supported on a three-dimensional closed algebraic subset, or
by using the method of Zucker [115], who uses the theory of normal functions,
which we have essentially followed here.

Corollary 6.32 in the case of a fourfold X fibered by complete intersections
of two quadrics in P5 has been re-proved by Colliot-Thélène [22] without any
assumptions on singular fibers. Note however that many such fourfolds X are
rational over the base (that is, birational to Γ×P3); this is the case for example
if there is a section of the family of lines in the fibers of f , for which it suffices
to have a Hodge class of degree 4 on X whose restriction to the fibers of f has
degree 1. When X is rational over the base, the vanishing of Z4(X) is immediate
because the group Z4(X) of (6.2) is a birational invariant of X (see Lemma 6.3).

6.3.2 Decomposition of the diagonal and structure of the
Abel–Jacobi map

6.3.2.1 Relation between Questions 6.26 and 6.29

Following [113], we establish here the following relation between Questions 6.26
and 6.29.
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Theorem 6.34 (Voisin 2010). Assume that Question 6.29 concerning the
existence of parametrizations of J(Y ) with rationally connected fibers has an af-
firmative answer for Y and that the intermediate Jacobian of Y admits a 1-cycle
Γ such that Γ∗g = g! J(Y ), g = dim J(Y ). Then Question 6.26 concerning the
existence of a universal codimension 2 cycle in J(Y )×Y also has an affirmative
answer for Y .

Here we use the Pontryagin product ∗ on cycles of J(Y ) defined by

z1 ∗ z2 = µ∗(z1 × z2),

where µ : J(Y ) × J(Y ) → J(Y ) is the sum map (see [101, II, 11.3.1]). The

condition Γ∗g = g! J(Y ) is satisfied if the class of Γ is equal to [Θ]g−1

(g−1)! , for some

principal polarization Θ. This is the case if J(Y ) is a Jacobian. It is however a
weaker assumption (see Remark 6.37 below).

Proof of Theorem 6.34. There exist by assumption a variety B, and a
codimension 2 cycle Z ∈ CH2(B × Y ) which is cohomologous to 0 on fibers
b× Y , such that the morphism

φZ : B → J(Y )

induced by the Abel–Jacobi map of Y is surjective with rationally connected
general fibers. Consider the 1-cycle Γ of J(Y ). We may assume by a moving
lemma, up to changing the representative of Γ modulo homological equivalence,
that Γ =

∑
i niΓi where, for each component Γi of the support of Γ, the general

fiber of φZ over Γi is rationally connected. We may furthermore assume that
the Γi’s are smooth. According to [46], the inclusion ji : Γi ↪→ J(Y ) then has a
lift σi : Γi → B. Denote by Zi ⊂ Γi × Y the codimension 2 cycle (σi, IdY )∗Z.
Then the morphism φi : Γi → J(Y ) induced by the Abel–Jacobi map is equal
to ji.

For each g-uple of components (Γi1 , . . . ,Γig ) of Supp Γ, consider Γi1 × · · · ×
Γig , and the codimension 2 cycle

Zi1,...,ig := (pr1, IdY )∗Zi1 + · · ·+ (prg, IdY )∗Zig ∈ CH2(Γ1 × · · · × Γg × Y ).

The codimension 2 cycle

Z :=
∑

i1,...,ig

ni1 · · ·nigZi1,...,ig ∈ CH2((tΓi)
g × Y ), (6.11)

where tΓi is the disjoint union of the Γi’s (hence, in particular, is smooth),
is invariant under the symmetric group Sg acting on the factor (tΓi)

g in the
product (tΓi)

g × Y . The part of Z dominating at least one component of
(tΓi)

g (which is the only part of Z we are interested in) is then the pull-back
of a codimension 2 cycle Zsym on (tΓi)

(g) × Y . Consider now the sum map

σ : (tΓi)
(g) → J(Y ).
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Let ZJ := (σ, Id)∗(Zsym) ∈ CH2(J(Y ) × Y ). The proof concludes with the
following lemma.

Lemma 6.35. The Abel–Jacobi map,

φZJ : J(Y )→ J(Y ),

is equal to IdJ(Y ).

Proof. Instead of the symmetric product (tΓi)
(g) and the descended cycle

Zsym, consider the product (tΓi)
g, the cycle Z, and the sum map

σ′ : (tΓi)
g → J(Y ).

Then we have (σ′, Id)∗(Z) = g!(σ, Id)∗(Zsym) in CH2(J(Y )×Y ), so that writing
Z ′J := (σ′, Id)∗Z, it suffices to prove that φZ′J : J(Y ) → J(Y ) is equal to
g! IdJ(Y ).

This is done as follows: Let j ∈ J(Y ) be a general point, and let {x1, . . . , xN}
be the fiber of σ′ over j. Thus each xl parametrizes a g-uple (il1, . . . , i

l
g) of

components of Supp Γ, and points γli1 , . . . , γ
l
ig

of Γi1 , . . . ,Γig , respectively, such
that ∑

1≤k≤g

γlik = j. (6.12)

On the other hand, recall that

γlik = AJY (Zilk,γlik
). (6.13)

It follows from (6.12) and (6.13) that for each l ∈ {1, . . . , N}, we have

AJY

( ∑
1≤k≤g

Zlik,γlik

)
= AJY (Zil1,...,ilg,(γli1 ,...,γ

l
ig

)) = j. (6.14)

Recall now that Γ =
∑
i niΓi and that (Γ)∗g = g!J(Y ), which is equivalent to

the equality

σ′∗

( ∑
i1,...,ig

ni1 · · ·nigΓi1 × · · · × Γig

)
= g!J(Y ).

This exactly says that
∑

1≤l≤N
∑
il1,...,i

l
g
nil1 · · ·nilg = g!, which together with

(6.11) and (6.14) proves the desired equality φZ′J = g! IdJ(Y ). �

The proof of Theorem 6.34 is now complete. �
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Remark 6.36. When NS(J(Y )) = ZΘ, the existence of a 1-cycle Γ in J(Y )
such that Γ∗g = g! J(Y ), g = dim J(Y ) is equivalent to the existence of a 1-

cycle Γ of class [Θ]g−1

(g−1)! . The question of whether the intermediate Jacobian of

Y admits a 1-cycle Γ of class [Θ]g−1

(g−1)! is unknown even for the cubic threefold.

However it has a positive answer for g ≤ 3 because any principally polarized
abelian variety (ppav) of dimension ≤ 3 is the Jacobian of a curve.

Remark 6.37. Totaro asked for examples of principally polarized abelian

varieties (ppav’s) (A,Θ) of dimension g, such that the minimal class [Θ]g−1

(g−1)!

is algebraic, but which are not Jacobians. Such examples exist and can be
constructed as follows: For g = 4 or 5, it is known that any ppav (A,Θ) of

dimension g is a Prym variety. This implies that the class 2 [Θ]g−1

(g−1)! is algebraic

for them. We now start from a general Jacobian (J,ΘJ) of dimension g = 4 or
5 (so NS(J) = Z), and consider ppav’s (A,ΘA) which are isogenous to J , the
degree of the isogeny A → J being odd. For such an abelian variety, an odd

multiple of [ΘA]g−1

(g−1)! is algebraic, since [ΘJ ]g−1

(g−1)! is algebraic. On the other hand,

2 [ΘA]g−1

(g−1)! is algebraic, as already noted. It follows that [ΘA]g−1

(g−1)! is algebraic.

But the general such ppav is not a Jacobian. Indeed, they form a dense set in
the moduli space of g-dimensional ppav’s, while for g ≥ 4, the Schottky locus
parametrizing Jacobians is a proper closed algebraic subset of Ag.

6.3.2.2 Decomposition of the diagonal modulo homological equivalence

This section is devoted to the study of Question 6.26 or condition (∗) of Question
6.29.

Assume Y is a smooth projective threefold such that CH0(Y ) = Z. The
cohomological version of the Bloch–Srinivas decomposition of the diagonal (3.2)
says that there exists a nonzero integer N such that, denoting by ∆Y ⊂ Y × Y
the diagonal,

N [∆Y ] = [Z] + [Z ′] in H6
B(Y × Y,Z), (6.15)

where Z ′ = N(X × x), and the support of Z is contained in D × Y , D & Y .
We wish to study the invariant of Y defined as the gcd of the nonzero integers

N appearing above. This is a birational invariant of Y by Remark 6.23. The
results below relate the triviality of this invariant, that is, the existence of an
integral cohomological decomposition of the diagonal, to condition (∗) (among
other things). They can be found in [113].

Theorem 6.38 (Voisin 2010). Let Y be a smooth projective threefold. As-
sume Y admits a cohomological decomposition of the diagonal as in (6.15). Then
we have the following conditions:

(i) The integer N annihilates the torsion of Hp(Y,Z) for any p.



150

weyllecturesformat September 3, 2013 6x9

CHAPTER 6

(ii) The integer N annihilates Z4(Y ).

(iii) Hi(Y,OY ) = 0 for all i > 0 and there exists a codimension 2 cycle Z ∈
CH2(J(Y )× Y ) such that φZ is equal to N IdJ(Y ).

Corollary 6.39. If Y admits an integral cohomological decomposition of
the diagonal, then we have the following conditions:

(i) Hp(Y,Z) is without torsion for any p.

(ii) Z4(Y ) = 0.

(iii) There exists a universal codimension 2 cycle in J(Y )× Y .

Remark 6.40. That the integral decomposition of the diagonal as in (6.15),
with N = 1, and in the Chow group CH(Y × Y ) implies that H3(Y,Z) has no
torsion was observed by Colliot-Thélène. Note that when H2(Y,OY ) = 0, the
torsion of H3(Y,Z) is the Brauer group of Y .

Proof of Theorem 6.38. There exist by assumption a proper algebraic
subset D & Y , which one may assume to be of pure dimension 2, and a cycle
Z ∈ CH3(Y × Y ) with support contained in D × Y such that

N [∆Y ] = [Z] + [Z ′] in H6(Y × Y,Z), (6.16)

where Z ′ = NY × pt.
Codimension 3 cycles z of Y × Y act on Hp(Y,Z) for any p and on the

intermediate Jacobian of Y , and this action, which we will denote

z∗ : Hp(Y,Z)→ Hp(Y,Z), z∗ : J(Y )→ J(Y ),

depends only on the cohomology class of z. As the diagonal of Y acts by the
identity map on Hp(Y,Z) for p > 0 and on J(Y ), one concludes that

N IdHp(Y,Z) = Z ′
∗

+ Z∗ : Hp(Y,Z)→ Hp(Y,Z) for p > 0, (6.17)

N IdJ(Y ) = Z ′
∗

+ Z∗ : J(Y )→ J(Y ). (6.18)

It is clear that Z ′
∗

acts trivially on H∗>0(Y,Z) and on J(Y ) since Z ′ is supported
over a point in Y . We thus conclude that

N IdJ(Y ) = Z∗ : J(Y )→ J(Y ),

N IdH∗>0(Y,Z) = Z∗ : H∗>0(Y,Z)→ H∗>0(Y,Z). (6.19)

Let τ : D̃ → Y be a desingularization of D and iD̃ = iD ◦ τ : D̃ → Y . The part

of the cycle Z that dominates D can be lifted to a cycle Z̃ in D̃ × Y , and the
remaining part acts trivially on Hp(Y,Z) for p ≤ 3 for reasons of codimension.
Thus the map Z∗ acting on Hp(Y,Z) for p ≤ 3 can be written as

Z∗ = iD̃∗ ◦ Z̃
∗. (6.20)
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We note now that the action of Z̃∗ on cohomology sends Hp(Y,Z), p ≤ 3

to Hp−2(D̃,Z), p ≤ 3. The last groups have no torsion. It follows that Z̃∗

annihilates the torsion of Hp(Y,Z), p ≤ 3. Formula (6.19) then implies that the
torsion of Hp(Y,Z) is annihilated by N Id for 1 ≤ p ≤ 3. As there is no torsion
in H0(Y,Z), this concludes the case p ≤ 3.

To deal with the torsion of Hp(Y,Z) with p ≥ 4, we rather use the ac-
tions Z∗, Z

′
∗ of Z, Z ′ on Hp(Y,Z), p = 4, 5. This action again factors through

Z̃∗, Z̃ ′∗. Now, Z̃∗ factors through the restriction map

Hp(Y,Z)→ Hp(D̃,Z),

while Z̃ ′∗ obviously annihilatesH∗<6(Y,Z). We can restrict to the range 3 < p <

6 since H6(Y,Z) has no torsion. On the other hand, since dim D̃ ≤ 2, Hp(D̃,Z)
has no torsion for p = 4, 5. It follows that we also have Z∗(H

p(Y,Z)tors) = 0
for p = 4, 5, and since Z∗ acts as N Id = Z∗ on these groups, we conclude that
N Hp(Y,Z)tors = 0 for p = 4, 5. This proves (i).

(ii) Let us consider again the action Z∗ = N Id on the cohomology H4(Y,Z).
Observe again that the part of Z not dominating D has a trivial action on
H4(Y,Z), while the dominating part lifts as above to a cycle Z̃ in D̃×Y . Then

we find that N IdH4(Y,Z) factors as Z̃∗ ◦ i∗D̃, hence through the restriction map

i∗
D̃

: H4(Y,Z) → H4(D̃,Z). As dim D̃ = 2, the group on the right is generated

by classes of algebraic cycles, and thus (N (H4(Y,Z))) is generated by classes of
algebraic cycles on Y . Hence we have N Z4(Y ) = 0.

(iii) The vanishing Hi(Y,OY ) = 0 for all i > 0 is a consequence due to Bloch
and Srinivas of the decomposition (6.15) of the diagonal (see Theorem 3.16).

It is well known, and this is a consequence of the Lefschetz theorem on (1, 1)-

classes applied to Pic0(D̃)× D̃ (see Remark 6.28), that there exists a universal

divisor D ∈ Pic(Pic0(D̃)× D̃) such that the induced morphism φD : Pic0(D̃)→
Pic0(D̃) is the identity. On the other hand, we have the morphism

Z̃∗ : J(Y )→ J1(D̃) = Pic0(D̃),

which is a morphism of abelian varieties.
Let us consider the cycle

Z := (IdJ(Y ), iD̃)∗ ◦ (Z̃∗, IdD̃)∗(D) ∈ CH2(J(Y )× Y ).

Then φZ : J(Y )→ J(Y ) is equal to

iD̃∗ ◦ φD ◦ Z̃
∗ : J(Y )→ J1(D̃)→ J1(D̃)→ J(Y ).

As φD is the identity map acting on Pic0(D̃) and iD̃∗◦Z̃
∗ is equal to N Id acting

on J(Y ) according to (6.19) and (6.20), one concludes that the endomorphism
φZ of J(X) is equal to N IdJ(Y ). �

A partial converse to Theorem 6.38 is as follows (see [113]).
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Theorem 6.41 (Voisin 2010). Assume the smooth projective threefold Y
satisfies the following conditions:

(i) Hi(Y,OY ) = 0 for i > 0.

(ii) Z4(Y ) = 0.

(iii) Hp(Y,Z) has no torsion for any integer p.

(iv) The intermediate Jacobian of Y admits a 1-cycle Γ of class [Θ]g−1

(g−1)! , g =

dim J(Y ).

Then if there exists a universal codimension 2 cycle on J(Y )× Y , Y admits an
integral cohomological decomposition of the diagonal as in (6.15).

By Theorem 6.5 which guarantees condition (ii), we conclude that for ratio-
nally connected threefolds Y with no torsion in H∗(Y,Z) (or equivalently with
no torsion in H3(Y,Z) since a rationally connected variety X has trivial fun-
damental group, hence no torsion in H2n−1(X,Z), n = dimX) and satisfying
condition (iv), the existence of a universal codimension 2 cycle in J(Y ) × Y is
equivalent to the fact that Y admits an integral cohomological decomposition
of the diagonal as in (6.15).

Remark 6.42. Under condition (iv) above, we have seen that the existence
of a universal codimension 2 cycle is equivalent to the existence of a parametriza-
tion with rationally connected fibers of the intermediate Jacobian by a family
of algebraic cycles (Theorem 6.34).

Remark 6.43. Nothing is known on condition (iv) above, but it is satisfied if
dim J(Y ) ≤ 3. It is also satisfied by threefolds satisfying the Clemens–Griffiths
criterion for rationality (see [21]), that is, the intermediate Jacobian J(Y ) is
isomorphic as a principally polarized abelian variety to a direct sum of Jacobians
of curves.

Proof of Theorem 6.41. When the integral cohomology of Y has no tor-
sion, the class of the diagonal [∆Y ] ∈ H6(Y × Y,Z) has an integral Künneth
decomposition,

[∆Y ] = δ6,0 + δ5,1 + δ4,2 + δ3,3 + δ2,4 + δ1,5 + δ0,6,

where δi,j ∈ Hi(Y,Z) ⊗ Hj(Y,Z). The class δ0,6 is the class of Y × y for any
point y of Y . By assumption we have the vanishing

H1(Y,OY ) = 0, H2(Y,OY ) = 0. (6.21)

The first condition implies that the groups H1(Y,Q) and H5(Y,Q) are trivial,
hence the groups H1(Y,Z) and H5(Y,Z) must be trivial since they have no
torsion by assumption. It follows that δ5,1 = δ1,5 = 0.
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Next, the second condition implies that the Hodge structure on H2(Y,Q),
hence also on H4(Y,Q) by duality, is trivial. Hence H4(Y,Z) and H2(Y,Z) are
generated by Hodge classes, and because we assumed Z4(Y ) = 0, it follows that
H4(Y,Z) and H2(Y,Z) are generated by cycle classes. From this, one concludes
that δ4,2 and δ2,4 are represented by algebraic cycles whose support does not
dominate Y by the first projection. The same is true for δ6,0, which is the class
of y × Y . The existence of a decomposition as in (6.16) with N = 1 is thus
equivalent to the fact that there exists a cycle Z ⊂ Y ×Y such that the support
of Z is contained in D × Y , with D & Y , and Z∗ : H3(Y,Z) → H3(Y,Z) is
the identity map. This last condition is indeed equivalent to the fact that the
component of type (3, 3) of [Z] is equal to δ3,3.

Now let Γ =
∑
i niΓi be a 1-cycle of J(Y ) of class [Θ]g−1

(g−1)! , where σi : Γi →
J(Y ) are smooth curves. By assumption (iv), there exists a codimension 2 cycle
Z ∈ CH2(J(Y ) × Y ) which is homologous to 0 on the fibers b × Y , such that
φZ : J(Y )→ J(Y ) is equal to the identity. Then for each i, (σi, Id)∗Z provides
a codimension 2 cycle Zi ∈ CH2(Γi × Y ) of 1-cycles homologous to 0 in Y ,
parametrized by Γi, such that φZi : Γi → J(Y ) identifies to the inclusion σi of
Γi in J(Y ).

Let us consider the cycle Z ∈ CH3(Y × Y ) defined by

Z =
∑
i

niZi ◦ tZi.

The proof that the cycle Z satisfies the desired property is then given in the
following lemma. �

Lemma 6.44. The map Z∗ : H3(Y,Z)→ H3(Y,Z) is the identity map.

Proof. We have
Z∗ =

∑
i

ni
tZi
∗ ◦ Z∗i .

Let us study the composite map

tZ∗i ◦ Z∗i : H3(Y,Z)→ H1(Γi,Z)→ H3(Y,Z).

Recalling that Zi ∈ CH2(Γi×Y ) is the restriction to σi(Γi) of Z ∈ CH2(J(Y )×
Y ), one finds that this composite map can also be written as

tZ∗i ◦ Z∗i = tZ∗ ◦ ([σ(Γi)]∪) ◦ Z∗,

where [σ(Γi)]∪ is the morphism of cup-product with the class [σ(Γi)]. One uses
for this the fact that the composition

σi∗ ◦ σ∗i : H1(J(Y ),Z)→ H2g−1(J(B),Z), g = dim J(B)

is equal to [σ(Γi)]∪.
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We thus obtain

Z∗ = tZ∗ ◦

(∑
i

ni[σ(Γi)]∪

)
◦ Z∗.

But we know that the map φZ : J(Y )→ J(Y ) is the identity, which is equivalent
to saying that Z∗ is equal to the canonical isomorphism

H3(Y,Z) ∼= H1(J(Y ),Z)

(which uses the fact that H3(Y,Z) is torsion free) and that tZ∗ is the dual
canonical isomorphism

H2g−1(J(Y ),Z) ∼= H3(Y,Z).

Finally, the map
∑
i ni[σ(Γi)]∪ : H1(J(Y ),Z)→ H2g−1(J(Y ),Z) is equal to the

cup-product map with the class [Θ]g−1

(g−1)! . We have thus identified Z∗ : H3(Y,Z)→
H3(Y,Z) to the composite map

H3(Y,Z) ∼= H1(J(Y ),Z)
[Θ]g−1

(g−1)!
∪

→ H2g−1(J(Y ),Z) ∼= H3(Y,Z),

where the last isomorphism is the Poincaré dual of the first, and using the
definition of the polarization Θ on J(Y ) (as given by Poincaré duality on Y :
H3(Y,Z) ∼= H3(Y,Z)∗) we find that this composite map is the identity. �
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