Irreducible Specht modules for Hecke algebras of type A - revisited

(joint work with Sinéad Lyle)

Set-up

\mathbb{F}
\mathfrak{S}_{n}
λ
field
symmetric group on $\{1, \ldots, n\}$
partition of n

$$
\begin{aligned}
& \text { i.e. } \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{i} \in \mathbb{Z}_{\geqslant 0} \\
& \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots, \quad \lambda_{1}+\lambda_{2}+\cdots=n . \quad \text { (Write } \lambda \vdash n \text {.) }
\end{aligned}
$$

S^{λ}
Specht module for $\mathbb{F} \mathfrak{S}_{n}$

- $\operatorname{char}(\mathbb{F})=\infty \quad \leadsto \quad S^{\lambda}$ is irreducible; $\quad \operatorname{Irr}\left(\mathbb{F} \Im_{n}\right)=\left\{S^{\lambda} \mid \lambda \vdash n\right\}$.
- $\operatorname{char}(\mathbb{F})=p<\infty \quad \leadsto S^{\lambda}$ is a p-modular reduction of an irreducible in infinite characteristic, and is not necessarily irreducible.

Main question: For which λ, \mathbb{F} is the Specht module S^{λ} irreducible?
Fact: Every field is a splitting field for \mathfrak{S}_{n}.

Set-up

\mathbb{F}

field
symmetric group on $\{1, \ldots, n\}$
partition of n

$$
\begin{aligned}
& \text { i.e. } \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{i} \in \mathbb{Z}_{\geqslant 0} \\
& \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots, \quad \lambda_{1}+\lambda_{2}+\cdots=n . \quad \text { (Write } \lambda \vdash n \text {.) }
\end{aligned}
$$

S^{λ}
Specht module for $\mathbb{F} \mathfrak{S}_{n}$

- $\operatorname{char}(\mathbb{F})=\infty \quad \sim \quad S^{\lambda}$ is irreducible; $\quad \operatorname{Irr}\left(\mathbb{F} \Im_{n}\right)=\left\{S^{\lambda} \mid \lambda \vdash n\right\}$.
- $\operatorname{char}(\mathbb{F})=p<\infty \quad \leadsto S^{\lambda}$ is a p-modular reduction of an irreducible in infinite characteristic, and is not necessarily irreducible.

Main question: For which λ, p is the Specht module S^{λ} irreducible?

More general set-up

\mathbb{F}	field
q	element of \mathbb{F}^{\times}
$\mathcal{H}_{n}=\mathcal{H}_{\mathbb{F}, q}\left(\mathfrak{S}_{n}\right)$	Iwahori-Hecke algebra of \Im_{n} over \mathbb{F}, parameter q
e	minimal such that $1+q+q^{2}+\cdots+q^{e-1}=0$ in \mathbb{F} (or $\left.e=\infty\right)$
λ	partition of n
S^{λ}	Specht module for \mathcal{H}_{n}
$\bullet e=\infty \quad \sim$	S^{λ} is irreducible; $\quad \operatorname{Irr}\left(\mathcal{H}_{n}\right)=\left\{S^{\lambda} \mid \lambda \vdash n\right\}$.
- $e<\infty \sim$	S^{λ} is not necessarily irreducible.

Main question: For which λ, \mathbb{F}, q is the Specht module S^{λ} irreducible?
In fact, the reducibility of S^{λ} depends only on $\lambda, p=\operatorname{char}(\mathbb{F})$ and e.

More general set-up

\underline{F}	field
q	element of \mathbb{F}^{\times}
$\mathcal{H}_{n}=\mathcal{H}_{\mathbb{F}, q}\left(\mathfrak{S}_{n}\right)$	Iwahori-Hecke algebra of \mathfrak{S}_{n} over \mathbb{F}, parameter q
e	minimal such that $1+q+q^{2}+\cdots+q^{e-1}=0$ in $\mathbb{F}($ or $e=\infty)$
λ	partition of n
S^{λ}	Specht module for \mathcal{H}_{n}
- $e=\infty \sim$	S^{λ} is irreducible; $\quad \operatorname{Irr}\left(\mathcal{H}_{n}\right)=\left\{S^{\lambda} \mid \lambda+n\right\}$.
$\bullet e<\infty$	S^{λ} is not necessarily irreducible.

Main question: For which λ, p, e is the Specht module S^{λ} irreducible?
This question is now answered in almost all cases.

Irreducible \mathcal{H}_{n}-modules

Suppose $\lambda \vdash n$.
λ is e-regular $\Leftrightarrow \nexists \quad \lambda_{i}=\lambda_{i+1}=\cdots=\lambda_{i+e-1}>0$. (Write $\lambda \vdash_{e} n$.)
If $\lambda \vdash_{e} n$, then S^{λ} has an irreducible cosocle D^{λ};

$$
\operatorname{Irr}\left(\mathcal{H}_{n}\right)=\left\{D^{\lambda} \mid \lambda \vdash_{e} n\right\} .
$$

So: if $\lambda \vdash_{e} n$ and S^{λ} is irreducible, then we have $S^{\lambda}=D^{\lambda}$.

Some combinatorics

Young diagram of a partition: array of boxes in the plane:

$$
\lambda=(7,6,3) \quad \leadsto \quad[\lambda]=
$$

Hook length of box b : number of boxes directly to the right of or directly above b, including b itself.

Some combinatorics

Young diagram of a partition: array of boxes in the plane:

$$
\lambda=(7,6,3) \quad \leadsto \quad[\lambda]=
$$

Hook length of box b : number of boxes directly to the right of or directly above b, including b itself.

Some combinatorics

Young diagram of a partition: array of boxes in the plane:

$$
\lambda=(7,6,3) \quad \leadsto \quad[\lambda]=
$$

Hook length of box b : number of boxes directly to the right of or directly above b, including b itself.

3	2	1				
7	6	5	3	2	1	
9	8	7	5	4	3	1

(e,p)-power diagram: fill each box with $v_{e, p}(h)$, where
$h=$ hook length of the box

$$
v_{e, p}(h)= \begin{cases}1+v_{p}(h / e) & (e \mid h) \\ 0 & (e \nmid h) .\end{cases}
$$

3	2	1				
7	6	5	3	2	1	
9	8	7	5	4	3	1

$e=2, p=3$

0	1	0				
0	2	0	0	1	0	
0	1	0	0	1	0	0

Carter Condition for λ : the entries of the (e, p)-power diagram are constant in each column.

Theorem (James-Mathas). Suppose $\lambda \vdash_{e} n$. Then S^{λ} is irreducible if and only if λ satisfies the Carter Condition.

Proof. Jantzen-Schaper formula.
$\lambda=(7,6,3), e=2$

3	2	1				
7	6	5	3	2	1	
9	8	7	5	4	3	1

$p=3$

0	1	0						
0	2	0	0	1	0			
0	1	0	0	1	0	0		

Carter Condition for λ : the entries of the (e, p)-power diagram are constant in each column.

Theorem (James-Mathas). Suppose $\lambda \vdash_{e} n$. Then S^{λ} is irreducible if and only if λ satisfies the Carter Condition.

Proof. Jantzen-Schaper formula.
$\lambda=(7,6,3), e=2$

3	2	1				
7	6	5	3	2	1	
9	8	7	5	4	3	1

$p=2$

0	1	0						
0	1	0	0	1	0			
0	3	0	0	2	0	0		

Carter Condition for λ : the entries of the (e, p)-power diagram are constant in each column.

Theorem (James-Mathas). Suppose $\lambda \vdash_{e} n$. Then S^{λ} is irreducible if and only if λ satisfies the Carter Condition.

Proof. Jantzen-Schaper formula.
$\lambda=(7,6,3), e=2$

3	2	1				
7	6	5	3	2	1	
9	8	7	5	4	3	1

$p>3$ (including $p=\infty$)

0	1	0				
0	1	0	0	1	0	
0	1	0	0	1	0	0

So the Main Question is answered for e-regular partitions.

Lemma. Let λ^{\prime} denote the conjugate (or transpose) partition to λ. Then S^{λ} is irreducible if and only if $S^{\lambda^{\prime}}$ is.

So the Main Question is answered for e-regular partitions.

Lemma. Let λ^{\prime} denote the conjugate (or transpose) partition to λ. Then S^{λ} is irreducible if and only if $S^{\lambda^{\prime}}$ is.

So the Main Question is answered also for e-restricted partitions (i.e. conjugates of e-regular partitions): need entries of the (e, p)-power diagram constant on each row.

So consider partitions which are neither e-regular nor e-restricted. At this point, the cases $e=2$ and $e>2$ diverge \ldots

The case $e>2$

Generalised Carter Condition for λ : for every non-zero entry of the (e, p)power diagram, either all entries in the same row are equal, or all entries in the same column are equal.

Theorem (F, Lyle, James-Lyle-Mathas 2006). Suppose e >2. Then S^{λ} is irreducible if and only if λ satisfies GCC.

Ingredients for the proof

Lemma (Brundan-Kleshchev). Suppose $\lambda \vdash n$, and μ is a partition obtained by removing all removable boxes of some fixed residue from $[\lambda]$. Then

$$
S^{\mu} \text { reducible } \Rightarrow S^{\lambda} \text { reducible. }
$$

(Residue of box in i th row and j th column: $j-i(\bmod e)$.)

Ingredients for the proof

Lemma (Brundan-Kleshchev). Suppose $\lambda \vdash n$, and μ is a partition obtained by removing all removable boxes of some fixed residue from $[\lambda]$. Then

$$
S^{\mu} \text { reducible } \Rightarrow S^{\lambda} \text { reducible. }
$$

Theorem (Carter-Payne(-Lyle)). Suppose $\lambda \vdash n$ and μ is obtained by replacing some box with a lower box of the same residue. Then

$$
\operatorname{Hom}_{\mathcal{H}_{n}}\left(S^{\mu}, S^{\lambda}\right) \neq 0 .
$$

Theorem (F-Lyle, Lyle-Mathas). Let $\bar{\lambda}$ be obtained by removing the first column from [λ]. If $\lambda, \mu \vdash n$ and $\bar{\lambda}, \bar{\mu} \vdash m$, then

$$
\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{\mathcal{H}_{n}}\left(S^{\mu}, S^{\lambda}\right)=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{\mathcal{H}_{m}}\left(S^{\bar{\mu}}, S^{\bar{\lambda}}\right)
$$

Theorem (Turner, James-Lyle-Mathas). [Description of decomposition numbers for Rouquier blocks.]

The case $e=2$

From now on, assume $e=2$ (i.e. $q=-1$). The situation here is very different: GCC is neither necessary nor sufficient.
Example. Suppose $p=\infty$, and λ is a rectangular partition, i.e. $\lambda=\left(a^{b}\right)$, some a, b. Then S^{λ} is irreducible.

The symmetric group case is known:

Theorem (James-Mathas). Suppose e $=p=2$, and λ is neither 2-regular nor 2 -restricted. Then S^{λ} is irreducible $\Leftrightarrow \lambda=\left(2^{2}\right)$.

Proof. Explicit construction of homomorphisms from permutation modules to Specht modules.

Some computations in the case $p=\infty$

When $p=\infty$, the decomposition numbers for \mathcal{H}_{n} can be computed via the LLT algorithm. In particular, the reducibility of any Specht module can be checked.

2004: computations by (F-)Mathas ...
Suppose λ is neither 2-regular nor 2-restricted. Say that λ is an $F M$ partition if:

- \exists ! b such that $\lambda_{b}-\lambda_{b+1} \geqslant 2$;
- for any a with $\lambda_{a}=\lambda_{a+1}>0$, we have $a \leqslant b-1 \leqslant \lambda_{a}$;
- $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{c}$, where c is maximal such that $\lambda_{b+c}>0$;
- all addable boxes of $[\lambda]$, except possibly the highest and lowest, have the same residue;
- if $c>0$ then all addable boxes of [λ] have the same residue.

Conjecture ($\mathrm{F}(-\mathrm{Mathas}$)). Suppose $e=2, p=\infty, \lambda$ is neither 2 -regular nor 2restricted. Then S^{λ} is irreducible if and only if either λ or λ^{\prime} is an FM-partition.

Verified for $n \leqslant 45$.

For the prime characteristic case:

Conjecture (F). Suppose $e=2$ and $p<\infty$. Then there are only finitely many partitions λ such that λ is neither 2 -regular nor 2 -restricted and S^{λ} is irreducible.

True for $p=2$ (only one λ), almost proved for $p=3$ (ten different $\lambda \mathrm{s}$).

Main result

Theorem (F-Lyle). Suppose $e=2$, and λ satisfies the following condition: there exist $a<b$ such that $\lambda_{a}-\lambda_{a+1} \geqslant 2$ and $\lambda_{b}=\lambda_{b+1}>0$. Then S^{λ} is reducible.

Method of proof

First, assume $p=\infty$: a Specht module in prime characteristic is a modular reduction of a Specht module in infinite characteristic.
Induction on n, using the Brundan-Kleshchev lemma from before. For the difficult cases, two main techniques:

1. Fock space calculations
2. Homomorphisms

Fock space calculations

$\mathcal{U} \quad$ quantum algebra $\mathcal{U}_{v}\left(\widehat{\mathfrak{s f}}_{2}\right)$ over $\mathbb{Q}(v)$
$\mathcal{F} \quad$ Fock space: \mathcal{U}-module with $\mathbb{Q}(v)$-basis $\{s(\lambda)\}$ indexed by partitions
$M \quad$ submodule generated by $s(\varnothing)$
M has a canonical basis $\{G(\mu)\}$ indexed by all 2-regular partitions.

Theorem (Ariki). Write $G(\mu)=\sum_{\lambda} d_{\lambda \mu}(v) s(\lambda)$. Then if $e=2$ and $p=\infty$,

$$
\left[S^{\lambda}: D^{\mu}\right]=d_{\lambda \mu}(1)
$$

Fact: $d_{\lambda \mu}(v)$ is a polynomial with non-negative integer coefficients.

So: if S^{λ} is irreducible, then we must have

$$
\begin{aligned}
& d_{\lambda v}(v)=v^{a} \\
& d_{\lambda \mu}(v)=0
\end{aligned}
$$

(for some particular v) (for all other μ).
M possesses a bar involution $m \mapsto \bar{m}$.

Fact: Each $G(\mu)$ is bar-invariant. Moreover, any bar-invariant element of M can be written in the form $\sum_{\mu} \alpha_{\mu}(v) G(\mu)$, with $\alpha_{\mu}(v) \in \mathbb{Q}\left(v+v^{-1}\right)$.

Corollary. Suppose $X, Y \in M$ are bar-invariant, and

$$
X=\sum_{\lambda} a_{\lambda}(v) s(\lambda), \quad Y=\sum_{\lambda} b_{\lambda}(v) s(\lambda),
$$

and that for some particular λ we have $a_{\lambda}(v)=v^{s}, b_{\lambda}(v)=v^{t}, s \neq t$. Then (for $e=2, p=\infty) S^{\lambda}$ is reducible.

Technique: Construct X and Y, using known $G(\mu)$ and applying Chevalley generators of \mathcal{U}.

Homomorphisms

James's regularisation theorem: slide all boxes of $[\lambda]$ south-east as far as possible, to get regularisation $\lambda^{\text {reg }}$. Then $\left[S^{\lambda}: D^{\lambda^{\text {reg }}}\right]=1$.

So if S^{λ} is irreducible, then $S^{\lambda} \cong D^{\lambda^{\text {reg }}}$.

$$
\lambda=\left(4^{2}, 2^{3}\right) \quad \lambda^{\mathrm{reg}}=(6,4,3,1)
$$

Permutation modules

For each λ, have a module M^{λ} (q-analogue of permutation module).
Aim: Construct non-zero homomorphisms $M^{\mu} \rightarrow S^{\lambda}$.
Why? We have $\left[M^{\mu}: D^{\nu}\right]=0$ unless $v \triangleq \mu$ (dominance order on partitions).
So if we have $\operatorname{Hom}_{\mathcal{H}_{n}}\left(M^{\mu}, S^{\lambda}\right) \neq 0$ and $\lambda^{\text {reg }} \not \subset \mu$, then S^{λ} is reducible.
How do we construct homomorphisms $M^{\mu} \rightarrow S^{\lambda}$?

- We have $S^{\lambda} \leqslant M^{\lambda}$, and we know $\operatorname{Hom}_{\mathcal{H}_{n}}\left(M^{\mu}, M^{\lambda}\right)$ explcitly: it has a basis $\left\{\Theta_{T}\right\}$ indexed by row-standard μ-tableaux of type λ.
- Suppose $\theta=\sum_{T} d_{T} \Theta_{T}$. Lyle (2006) gives a method to determine whether $\operatorname{Im}(\theta) \leqslant S^{\lambda}$.

Lemma (F). Suppose ξ, v are partitions. Put $l=$ length(v), and suppose $\xi_{l-1} \geqslant l$. Then

$$
\operatorname{Hom}_{\mathcal{H}_{n}}\left(M^{\mu}, S^{\lambda}\right) \neq 0,
$$

where

$$
\begin{aligned}
& \lambda_{i}=\xi_{i}+2 v_{i}, \\
& \mu_{i}=\xi_{i}^{\prime}+2 v_{i} .
\end{aligned}
$$

Proof. We know that $\operatorname{Hom}_{\mathbb{Q} \varsigma_{|v|}}\left(M^{v}, S^{v}\right) \neq 0$; Lyle's method enables us to use a non-zero homomorphism here to construct a non-zero homomorphism $M^{\mu} \rightarrow S^{\lambda}$.

Example: $\lambda=\left(4^{2}, 2^{2}\right)$
Put $\xi=\left(2^{4}\right), v=\left(1^{2}\right)$. Then $\mu=\left(6^{2}\right)$, while $\lambda^{\text {reg }}=(5,4,2,1) \not{ }^{\prime} \neq \mu$.
$\mathbb{Q} \mathbb{S}_{2}$-homomorphism from M^{v} to S^{v} given by $\Theta_{T_{1}}-\Theta_{T_{2}}$, where

$$
T_{1}=\frac{1}{2}, \quad T_{2}=\frac{2}{1}
$$

\mathcal{H}_{12}-homomorphism from M^{μ} to S^{λ} given by $\Theta_{U_{1}}-\Theta_{U_{2}}$, where

Example: $\lambda=\left(4^{2}, 2^{2}\right)$
Put $\xi=\left(2^{4}\right), v=\left(1^{2}\right)$. Then $\mu=\left(6^{2}\right)$, while $\lambda^{\text {reg }}=(5,4,2,1) \not{ }^{\prime} \neq \mu$.
$\mathbb{Q} \mathbb{S}_{2}$-homomorphism from M^{v} to S^{v} given by $\Theta_{T_{1}}-\Theta_{T_{2}}$, where

$$
T_{1}=\frac{1}{2}, \quad T_{2}=\frac{2}{1}
$$

\mathcal{H}_{12}-homomorphism from M^{μ} to S^{λ} given by $\Theta_{U_{1}}-\Theta_{U_{2}}$, where

$$
U_{1}=\begin{array}{|l|l|l|l|l|l}
1 & 1 & 1 & 2 & 3 & 4 \\
\hline 1 & 2 & 2 & 2 & 3 & 4
\end{array}, \quad U_{2}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 2 & 2 & 3 & 4 \\
\hline 1 & 1 & 1 & 2 & 3 & 4 \\
\hline
\end{array} .
$$

References

New

1. F \& Lyle, 'Some reducible Specht modules for Iwahori-Hecke algebras of type A with $q=-1^{\prime}$, arXiv:0806.1774, to appear in J. Algebra.

Old

2. Lyle, 'Some reducible Specht modules', J. Algebra 2003.
3. F, ‘Reducible Specht modules', J. Algebra 2004.
4. F, 'Irreducible Specht modules for Hecke algebras of type A^{\prime}, Adv. Math. 2005.
5. James, Lyle \& Mathas, 'Rouquier blocks', Math. Z. 2006.
6. Lyle, 'Some q-analogues of the Carter-Payne Theorem', J. reine angew. Math. 2007.
