Irreducible Specht modules for Hecke algebras of type *A* – revisited

(joint work with Sinéad Lyle)

Set-up

$$\begin{split} \mathbb{F} & \text{field} \\ \mathfrak{S}_n & \text{symmetric group on } \{1, \dots, n\} \\ \lambda & \text{partition of } n \\ & \text{i.e. } \lambda = (\lambda_1, \lambda_2, \dots), \lambda_i \in \mathbb{Z}_{\geq 0} \\ & \lambda_1 \geq \lambda_2 \geq \dots, \quad \lambda_1 + \lambda_2 + \dots = n. \end{split} (\text{Write } \lambda \vdash n.) \\ S^{\lambda} & \text{Specht module for } \mathbb{F}\mathfrak{S}_n \end{aligned}$$

- char(\mathbb{F}) = ∞ \longrightarrow S^{λ} is irreducible; $Irr(\mathbb{F}\mathfrak{S}_n) = \{S^{\lambda} \mid \lambda \vdash n\}.$
- char(\mathbb{F}) = $p < \infty \rightarrow S^{\lambda}$ is a *p*-modular reduction of an irreducible in infinite characteristic, and is not necessarily irreducible.

Main question: For which λ , \mathbb{F} is the Specht module S^{λ} irreducible?

Fact: Every field is a splitting field for \mathfrak{S}_n .

Set-up

$$\begin{split} \mathbb{F} & \text{field} \\ \mathfrak{S}_n & \text{symmetric group on } \{1, \dots, n\} \\ \lambda & \text{partition of } n \\ & \text{i.e. } \lambda = (\lambda_1, \lambda_2, \dots), \lambda_i \in \mathbb{Z}_{\geq 0} \\ & \lambda_1 \geq \lambda_2 \geq \dots, \quad \lambda_1 + \lambda_2 + \dots = n. \end{split} (\text{Write } \lambda \vdash n.) \\ S^{\lambda} & \text{Specht module for } \mathbb{F}\mathfrak{S}_n \end{aligned}$$

- char(\mathbb{F}) = ∞ \longrightarrow S^{λ} is irreducible; $Irr(\mathbb{F}\mathfrak{S}_n) = \{S^{\lambda} \mid \lambda \vdash n\}.$
- char(\mathbb{F}) = $p < \infty \longrightarrow S^{\lambda}$ is a *p*-modular reduction of an irreducible in infinite characteristic, and is not necessarily irreducible.

Main question: For which λ , p is the Specht module S^{λ} irreducible?

More general set-up

 $\begin{array}{ll} \mathbb{F} & \text{field} \\ q & \text{element of } \mathbb{F}^{\times} \\ \mathcal{H}_n = \mathcal{H}_{\mathbb{F},q}(\mathfrak{S}_n) \text{ Iwahori-Hecke algebra of } \mathfrak{S}_n \text{ over } \mathbb{F}, \text{ parameter } q \\ e & \text{minimal such that } 1 + q + q^2 + \dots + q^{e-1} = 0 \text{ in } \mathbb{F} \text{ (or } e = \infty) \\ \lambda & \text{partition of } n \\ S^{\lambda} & \text{Specht module for } \mathcal{H}_n \\ \bullet e = \infty & \longrightarrow & S^{\lambda} \text{ is irreducible; } \quad \operatorname{Irr}(\mathcal{H}_n) = \{S^{\lambda} \mid \lambda \vdash n\}. \\ \bullet e < \infty & \longrightarrow & S^{\lambda} \text{ is not necessarily irreducible.} \end{array}$

Main question: For which λ , \mathbb{F} , q is the Specht module S^{λ} irreducible?

In fact, the reducibility of S^{λ} depends only on λ , $p = char(\mathbb{F})$ and e.

More general set-up

 $\begin{array}{ll} \mathbb{F} & \text{field} \\ q & \text{element of } \mathbb{F}^{\times} \\ \mathcal{H}_n = \mathcal{H}_{\mathbb{F},q}(\mathfrak{S}_n) \text{ Iwahori-Hecke algebra of } \mathfrak{S}_n \text{ over } \mathbb{F}, \text{ parameter } q \\ e & \text{minimal such that } 1 + q + q^2 + \dots + q^{e-1} = 0 \text{ in } \mathbb{F} \text{ (or } e = \infty) \\ \lambda & \text{partition of } n \\ S^{\lambda} & \text{Specht module for } \mathcal{H}_n \\ \bullet e = \infty & \longrightarrow & S^{\lambda} \text{ is irreducible; } \quad \operatorname{Irr}(\mathcal{H}_n) = \{S^{\lambda} \mid \lambda \vdash n\}. \\ \bullet e < \infty & \longrightarrow & S^{\lambda} \text{ is not necessarily irreducible.} \end{array}$

Main question: For which λ , p, e is the Specht module S^{λ} irreducible?

This question is now answered in almost all cases.

Irreducible \mathcal{H}_n -modules

Suppose $\lambda \vdash n$.

 $\lambda \text{ is } e\text{-regular} \iff \nexists \quad \lambda_i = \lambda_{i+1} = \dots = \lambda_{i+e-1} > 0. \quad (\text{Write } \lambda \vdash_e n.)$ If $\lambda \vdash_e n$, then S^{λ} has an irreducible cosocle D^{λ} ; $\operatorname{Irr}(\mathcal{H}_n) = \{D^{\lambda} \mid \lambda \vdash_e n\}.$

So: if $\lambda \vdash_e n$ and S^{λ} is irreducible, then we have $S^{\lambda} = D^{\lambda}$.

Some combinatorics

Young diagram of a partition: array of boxes in the plane:

Hook length of box *b*: number of boxes directly to the right of or directly above *b*, including *b* itself.

Some combinatorics

Young diagram of a partition: array of boxes in the plane:

Hook length of box *b*: number of boxes directly to the right of or directly above *b*, including *b* itself.

Some combinatorics

Young diagram of a partition: array of boxes in the plane:

Hook length of box *b*: number of boxes directly to the right of or directly above *b*, including *b* itself.

3	2	1				
7	6	5	3	2	1	
9	8	7	5	4	3	1

(*e*, *p*)-*power diagram*: fill each box with $v_{e,p}(h)$, where

h = hook length of the box $v_{e,p}(h) = \begin{cases} 1 + v_p(h/e) & (e \mid h) \\ 0 & (e \nmid h). \end{cases}$

3	2	1				_
7	6	5	3	2	1	
9	8	7	5	4	3	1

$$e = 2, p = 3$$

0	1	0				
0	2	0	0	1	0	
0	1	0	0	1	0	0

Carter Condition for λ : the entries of the (*e*, *p*)-power diagram are constant in each column.

Theorem (James–Mathas). Suppose $\lambda \vdash_e n$. Then S^{λ} is irreducible if and only if λ satisfies the Carter Condition.

Proof. Jantzen–Schaper formula.

 $\lambda = (7, 6, 3), e = 2$

p = 3

Carter Condition for λ : the entries of the (*e*, *p*)-power diagram are constant in each column.

Theorem (James–Mathas). Suppose $\lambda \vdash_e n$. Then S^{λ} is irreducible if and only if λ satisfies the Carter Condition.

Proof. Jantzen–Schaper formula.

 $\lambda = (7, 6, 3), e = 2$

p = 2

Carter Condition for λ : the entries of the (*e*, *p*)-power diagram are constant in each column.

Theorem (James–Mathas). Suppose $\lambda \vdash_e n$. Then S^{λ} is irreducible if and only if λ satisfies the Carter Condition.

Proof. Jantzen–Schaper formula.

 $\lambda = (7, 6, 3), e = 2$ p > 3 (including $p = \infty$) $\left(\right)$ ()() $\mathbf{0}$ ()()() So the Main Question is answered for *e*-regular partitions.

Lemma. Let λ' denote the conjugate (or transpose) partition to λ . Then S^{λ} is irreducible if and only if $S^{\lambda'}$ is.

So the Main Question is answered for *e*-regular partitions.

Lemma. Let λ' denote the conjugate (or transpose) partition to λ . Then S^{λ} is irreducible if and only if $S^{\lambda'}$ is.

So the Main Question is answered also for *e-restricted* partitions (i.e. conjugates of *e*-regular partitions): need entries of the (*e*, *p*)-power diagram constant on each *row*.

So consider partitions which are neither *e*-regular nor *e*-restricted. At this point, the cases e = 2 and e > 2 diverge . . .

The case *e* > 2

Generalised Carter Condition for λ : for every *non-zero* entry of the (*e*, *p*)-power diagram, either all entries in the same row are equal, or all entries in the same column are equal.

Theorem (F, Lyle, James–Lyle–Mathas 2006). Suppose e > 2. Then S^{λ} is *irreducible if and only if* λ *satisfies GCC.*

$$\lambda = (13, 8, 2^4, 1^5), e = 3, p = 2$$

Ingredients for the proof

Lemma (Brundan–Kleshchev). Suppose $\lambda \vdash n$, and μ is a partition obtained by removing all removable boxes of some fixed residue from $[\lambda]$. Then S^{μ} reducible $\Rightarrow S^{\lambda}$ reducible.

(*Residue* of box in *i*th row and *j*th column: $j - i \pmod{e}$.)

Ingredients for the proof

Lemma (Brundan–Kleshchev). Suppose $\lambda \vdash n$, and μ is a partition obtained by removing all removable boxes of some fixed residue from $[\lambda]$. Then S^{μ} reducible $\Rightarrow S^{\lambda}$ reducible.

Theorem (Carter–Payne(–Lyle)). Suppose $\lambda \vdash n$ and μ is obtained by replacing some box with a lower box of the same residue. Then

 $\operatorname{Hom}_{\mathcal{H}_n}(S^{\mu},S^{\lambda})\neq 0.$

Theorem (F–Lyle, Lyle–Mathas). Let $\overline{\lambda}$ be obtained by removing the first column from $[\lambda]$. If $\lambda, \mu \vdash n$ and $\overline{\lambda}, \overline{\mu} \vdash m$, then $\dim_{\mathbb{F}} \operatorname{Hom}_{\mathcal{H}_n}(S^{\mu}, S^{\lambda}) = \dim_{\mathbb{F}} \operatorname{Hom}_{\mathcal{H}_m}(S^{\overline{\mu}}, S^{\overline{\lambda}}).$

Theorem (Turner, James–Lyle–Mathas). [*Description of decomposition numbers for* Rouquier blocks.]

The case e = 2

From now on, assume e = 2 (i.e. q = -1). The situation here is very different: GCC is neither necessary nor sufficient.

Example. Suppose $p = \infty$, and λ is a *rectangular* partition, i.e. $\lambda = (a^b)$, some *a*, *b*. Then S^{λ} is irreducible.

The symmetric group case is known:

Theorem (James–Mathas). *Suppose* e = p = 2, and λ is neither 2-regular nor 2-restricted. Then S^{λ} is irreducible $\Leftrightarrow \lambda = (2^2)$.

Proof. Explicit construction of homomorphisms from permutation modules to Specht modules. □

Some computations in the case $p = \infty$

When $p = \infty$, the decomposition numbers for \mathcal{H}_n can be computed via the LLT algorithm. In particular, the reducibility of any Specht module can be checked.

2004: computations by (F–)Mathas . . .

Suppose λ is neither 2-regular nor 2-restricted. Say that λ is an *FM*-*partition* if:

- $\exists ! b \text{ such that } \lambda_b \lambda_{b+1} \ge 2;$
- for any *a* with $\lambda_a = \lambda_{a+1} > 0$, we have $a \le b 1 \le \lambda_a$;
- $\lambda_1 > \lambda_2 > \cdots > \lambda_c$, where *c* is maximal such that $\lambda_{b+c} > 0$;
- all addable boxes of $[\lambda]$, except possibly the highest and lowest, have the same residue;
- if c > 0 then all addable boxes of $[\lambda]$ have the same residue.

Conjecture (F(–Mathas)). *Suppose* e = 2, $p = \infty$, λ *is neither* 2-*regular nor* 2-*restricted. Then* S^{λ} *is irreducible if and only if either* λ *or* λ' *is an* FM-*partition.*

Verified for $n \leq 45$.

For the prime characteristic case:

Conjecture (F). Suppose e = 2 and $p < \infty$. Then there are only finitely many partitions λ such that λ is neither 2-regular nor 2-restricted and S^{λ} is irreducible.

True for p = 2 (only one λ), almost proved for p = 3 (ten different λ s).

Main result

Theorem (F–Lyle). Suppose e = 2, and λ satisfies the following condition: there exist a < b such that $\lambda_a - \lambda_{a+1} \ge 2$ and $\lambda_b = \lambda_{b+1} > 0$. Then S^{λ} is reducible.

Method of proof

First, assume $p = \infty$: a Specht module in prime characteristic is a modular reduction of a Specht module in infinite characteristic.

Induction on *n*, using the Brundan–Kleshchev lemma from before. For the difficult cases, two main techniques:

- 1. Fock space calculations
- 2. Homomorphisms

Fock space calculations

- \mathcal{U} quantum algebra $\mathcal{U}_{v}(\widehat{\mathfrak{sl}}_{2})$ over $\mathbb{Q}(v)$
- \mathcal{F} Fock space: \mathcal{U} -module with $\mathbb{Q}(v)$ -basis { $s(\lambda)$ } indexed by partitions
- *M* submodule generated by $s(\emptyset)$

M has a *canonical basis* $\{G(\mu)\}$ indexed by all 2-regular partitions.

Theorem (Ariki). Write $G(\mu) = \sum_{\lambda} d_{\lambda\mu}(v) s(\lambda)$. Then if e = 2 and $p = \infty$, $[S^{\lambda} : D^{\mu}] = d_{\lambda\mu}(1).$

Fact: $d_{\lambda\mu}(v)$ is a polynomial with *non-negative integer* coefficients.

So: if S^{λ} is irreducible, then we must have

$$d_{\lambda
u}(v) = v^a$$

 $d_{\lambda \mu}(v) = 0$

(for some particular v) (for all other μ). *M* possesses a *bar involution* $m \mapsto \overline{m}$.

Fact: Each $G(\mu)$ is bar-invariant. Moreover, any bar-invariant element of M can be written in the form $\sum_{\mu} \alpha_{\mu}(v)G(\mu)$, with $\alpha_{\mu}(v) \in \mathbb{Q}(v + v^{-1})$.

Corollary. Suppose $X, Y \in M$ are bar-invariant, and

$$X = \sum_{\lambda} a_{\lambda}(v) s(\lambda), \qquad Y = \sum_{\lambda} b_{\lambda}(v) s(\lambda),$$

and that for some particular λ we have $a_{\lambda}(v) = v^{s}$, $b_{\lambda}(v) = v^{t}$, $s \neq t$. Then (for $e = 2, p = \infty$) S^{λ} is reducible.

Technique: Construct *X* and *Y*, using known $G(\mu)$ and applying Chevalley generators of \mathcal{U} .

Homomorphisms

James's regularisation theorem: slide all boxes of $[\lambda]$ south-east as far as possible, to get *regularisation* λ^{reg} . Then $[S^{\lambda} : D^{\lambda^{\text{reg}}}] = 1$.

So if S^{λ} is irreducible, then $S^{\lambda} \cong D^{\lambda^{reg}}$.

$$\lambda = (4^2, 2^3)$$
 $\lambda^{\text{reg}} = (6, 4, 3, 1)$

Permutation modules

For each λ , have a module M^{λ} (*q*-analogue of *permutation module*).

Aim: Construct non-zero homomorphisms $M^{\mu} \rightarrow S^{\lambda}$.

Why? We have $[M^{\mu} : D^{\nu}] = 0$ unless $\nu \ge \mu$ (dominance order on partitions).

So if we have $\operatorname{Hom}_{\mathcal{H}_n}(M^{\mu}, S^{\lambda}) \neq 0$ and $\lambda^{\operatorname{reg}} \not\geq \mu$, then S^{λ} is reducible.

How do we construct homomorphisms $M^{\mu} \rightarrow S^{\lambda}$?

- We have $S^{\lambda} \leq M^{\lambda}$, and we know $\operatorname{Hom}_{\mathcal{H}_n}(M^{\mu}, M^{\lambda})$ explcitly: it has a basis $\{\Theta_T\}$ indexed by *row-standard* μ -*tableaux of type* λ .
- Suppose $\theta = \sum_T d_T \Theta_T$. Lyle (2006) gives a method to determine whether $\text{Im}(\theta) \leq S^{\lambda}$.

Lemma (F). Suppose ξ, v are partitions. Put l = length(v), and suppose $\xi_{l-1} \ge l$. Then $\text{Hom}_{\mathcal{H}_n}(M^{\mu}, S^{\lambda}) \ne 0$,

where

$$\lambda_i = \xi_i + 2\nu_i,$$

$$\mu_i = \xi'_i + 2\nu_i.$$

Proof. We know that $\operatorname{Hom}_{\mathbb{Q}\mathfrak{S}_{|\nu|}}(M^{\nu}, S^{\nu}) \neq 0$; Lyle's method enables us to use a non-zero homomorphism here to construct a non-zero homomorphism $M^{\mu} \to S^{\lambda}$.

Example: $\lambda = (4^2, 2^2)$

Put $\xi = (2^4)$, $\nu = (1^2)$. Then $\mu = (6^2)$, while $\lambda^{\text{reg}} = (5, 4, 2, 1) \not \ge \mu$.

 $\mathbb{Q}\mathfrak{S}_2$ -homomorphism from M^{ν} to S^{ν} given by $\Theta_{T_1} - \Theta_{T_2}$, where

$$T_1 = \frac{1}{2}, \qquad T_2 = \frac{2}{1}$$

 $\mathcal{H}_{12}\text{-homomorphism from } M^{\mu} \text{ to } S^{\lambda} \text{ given by } \Theta_{U_1} - \Theta_{U_2}, \text{ where}$ $U_1 = \begin{bmatrix} 1 & 1 & 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & \end{pmatrix}, \quad U_2 = \begin{bmatrix} 2 & 2 & 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & \end{pmatrix}.$

Example: $\lambda = (4^2, 2^2)$

Put $\xi = (2^4)$, $\nu = (1^2)$. Then $\mu = (6^2)$, while $\lambda^{\text{reg}} = (5, 4, 2, 1) \not \ge \mu$.

 $\mathbb{Q}\mathfrak{S}_2$ -homomorphism from M^{ν} to S^{ν} given by $\Theta_{T_1} - \Theta_{T_2}$, where

$$T_1 = \frac{1}{2}, \qquad T_2 = \frac{2}{1}.$$

 \mathcal{H}_{12} -homomorphism from M^{μ} to S^{λ} given by $\Theta_{U_1} - \Theta_{U_2}$, where

$$U_1 = \begin{bmatrix} 1 & 1 & 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 2 & 3 & 4 \end{bmatrix}, \qquad \qquad U_2 = \begin{bmatrix} 1 & 2 & 2 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 & 3 & 4 \end{bmatrix}$$

References

New

1. F & Lyle, 'Some reducible Specht modules for Iwahori–Hecke algebras of type A with q = -1', arXiv:0806.1774, to appear in J. Algebra.

Old

- 2. Lyle, 'Some reducible Specht modules', J. Algebra 2003.
- 3. F, 'Reducible Specht modules', J. Algebra 2004.
- 4. F, 'Irreducible Specht modules for Hecke algebras of type *A*', Adv. Math. 2005.
- 5. James, Lyle & Mathas, 'Rouquier blocks', Math. Z. 2006.
- 6. Lyle, 'Some *q*-analogues of the Carter–Payne Theorem', J. reine angew. Math. 2007.