
Irreducible Specht modules for
Hecke algebras of type A – revisited

(joint work with Sinéad Lyle)
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Set-up

F field
Sn symmetric group on {1, . . . ,n}
λ partition of n

i.e. λ = (λ1, λ2, . . . ), λi ∈ Z>0
λ1 > λ2 > . . . , λ1 + λ2 + · · · = n. (Write λ ` n.)

Sλ Specht module for FSn

• char(F) = ∞ { Sλ is irreducible; Irr(FSn) = {Sλ | λ ` n}.
• char(F) = p < ∞ { Sλ is a p-modular reduction of an irreducible

in infinite characteristic, and is not necessarily irreducible.

Main question: For whichλ,F is the Specht module Sλ irreducible?

Fact: Every field is a splitting field for Sn.
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Set-up

F field
Sn symmetric group on {1, . . . ,n}
λ partition of n

i.e. λ = (λ1, λ2, . . . ), λi ∈ Z>0
λ1 > λ2 > . . . , λ1 + λ2 + · · · = n. (Write λ ` n.)

Sλ Specht module for FSn

• char(F) = ∞ { Sλ is irreducible; Irr(FSn) = {Sλ | λ ` n}.
• char(F) = p < ∞ { Sλ is a p-modular reduction of an irreducible

in infinite characteristic, and is not necessarily irreducible.

Main question: For whichλ, p is the Specht module Sλ irreducible?
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More general set-up

F field
q element of F×
Hn = HF,q(Sn) Iwahori–Hecke algebra of Sn over F, parameter q
e minimal such that 1 + q + q2 + · · · + qe−1 = 0 in F (or e = ∞)
λ partition of n
Sλ Specht module forHn

• e = ∞ { Sλ is irreducible; Irr(Hn) = {Sλ | λ ` n}.
• e < ∞ { Sλ is not necessarily irreducible.

Main question: For which λ,F, q is the Specht module Sλ irreducible?

In fact, the reducibility of Sλ depends only on λ, p = char(F) and e.
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More general set-up

F field
q element of F×
Hn = HF,q(Sn) Iwahori–Hecke algebra of Sn over F, parameter q
e minimal such that 1 + q + q2 + · · · + qe−1 = 0 in F (or e = ∞)
λ partition of n
Sλ Specht module forHn

• e = ∞ { Sλ is irreducible; Irr(Hn) = {Sλ | λ ` n}.
• e < ∞ { Sλ is not necessarily irreducible.

Main question: For which λ, p, e is the Specht module Sλ irreducible?

This question is now answered in almost all cases.
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IrreducibleHn-modules

Suppose λ ` n.

λ is e-regular ⇔ @ λi = λi+1 = · · · = λi+e−1 > 0. (Write λ `e n.)

If λ `e n, then Sλ has an irreducible cosocle Dλ;

Irr(Hn) = {Dλ | λ `e n}.

So: if λ `e n and Sλ is irreducible, then we have Sλ = Dλ.
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Some combinatorics

Young diagram of a partition: array of boxes in the plane:

λ = (7, 6, 3) { [λ] =

Hook length of box b: number of boxes directly to the right of or directly
above b, including b itself.

×

×

× × × × ×
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Some combinatorics

Young diagram of a partition: array of boxes in the plane:

λ = (7, 6, 3) { [λ] =

Hook length of box b: number of boxes directly to the right of or directly
above b, including b itself.
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Some combinatorics

Young diagram of a partition: array of boxes in the plane:

λ = (7, 6, 3) { [λ] =

Hook length of box b: number of boxes directly to the right of or directly
above b, including b itself.

3 2 1

7 6 5 3 2 1

9 8 7 5 4 3 1
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(e, p)-power diagram: fill each box with νe,p(h), where

h = hook length of the box

νe,p(h) =
{

1 + νp(h/e) (e | h)
0 (e - h).

3 2 1

7 6 5 3 2 1

9 8 7 5 4 3 1

e = 2, p = 3

0 1 0

0 2 0 0 1 0

0 1 0 0 1 0 0
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Carter Condition for λ: the entries of the (e, p)-power diagram are con-
stant in each column.

Theorem (James–Mathas). Suppose λ `e n. Then Sλ is irreducible if and only
if λ satisfies the Carter Condition.

Proof. Jantzen–Schaper formula. �

λ = (7, 6, 3), e = 2

3 2 1

7 6 5 3 2 1

9 8 7 5 4 3 1
p = 3

0 1 0

0 2 0 0 1 0

0 1 0 0 1 0 0
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Carter Condition for λ: the entries of the (e, p)-power diagram are con-
stant in each column.

Theorem (James–Mathas). Suppose λ `e n. Then Sλ is irreducible if and only
if λ satisfies the Carter Condition.

Proof. Jantzen–Schaper formula. �

λ = (7, 6, 3), e = 2

3 2 1

7 6 5 3 2 1

9 8 7 5 4 3 1
p = 2

0 1 0

0 1 0 0 1 0

0 3 0 0 2 0 0
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Carter Condition for λ: the entries of the (e, p)-power diagram are con-
stant in each column.

Theorem (James–Mathas). Suppose λ `e n. Then Sλ is irreducible if and only
if λ satisfies the Carter Condition.

Proof. Jantzen–Schaper formula. �

λ = (7, 6, 3), e = 2

3 2 1

7 6 5 3 2 1

9 8 7 5 4 3 1
p > 3 (including p = ∞)

0 1 0

0 1 0 0 1 0

0 1 0 0 1 0 0
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So the Main Question is answered for e-regular partitions.

Lemma. Let λ′ denote the conjugate (or transpose) partition to λ. Then Sλ is
irreducible if and only if Sλ′ is.
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So the Main Question is answered for e-regular partitions.

Lemma. Let λ′ denote the conjugate (or transpose) partition to λ. Then Sλ is
irreducible if and only if Sλ′ is.

So the Main Question is answered also for e-restricted partitions (i.e. con-
jugates of e-regular partitions): need entries of the (e, p)-power diagram
constant on each row.

So consider partitions which are neither e-regular nor e-restricted. At
this point, the cases e = 2 and e > 2 diverge . . .
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The case e > 2

Generalised Carter Condition for λ: for every non-zero entry of the (e, p)-
power diagram, either all entries in the same row are equal, or all entries
in the same column are equal.

Theorem (F, Lyle, James–Lyle–Mathas 2006). Suppose e > 2. Then Sλ is
irreducible if and only if λ satisfies GCC.

λ = (13, 8, 24, 15), e = 3, p = 2

·

·

1
·

·

· ·

· ·

1 1
· ·

· · 2 · · 1 · ·
· · 2 · · 1 · · · · 1 · ·
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Ingredients for the proof

Lemma (Brundan–Kleshchev). Suppose λ ` n, and µ is a partition obtained
by removing all removable boxes of some fixed residue from [λ]. Then

Sµ reducible⇒ Sλ reducible.

(Residue of box in ith row and jth column: j − i (mod e).)
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Ingredients for the proof

Lemma (Brundan–Kleshchev). Suppose λ ` n, and µ is a partition obtained
by removing all removable boxes of some fixed residue from [λ]. Then

Sµ reducible⇒ Sλ reducible.

Theorem (Carter–Payne(–Lyle)). Suppose λ ` n and µ is obtained by replac-
ing some box with a lower box of the same residue. Then

HomHn(S
µ,Sλ) , 0.

Theorem (F–Lyle, Lyle–Mathas). Let λ̄ be obtained by removing the first
column from [λ]. If λ, µ ` n and λ̄, µ̄ ` m, then

dimFHomHn(S
µ,Sλ) = dimFHomHm(Sµ̄,Sλ̄).

Theorem (Turner, James–Lyle–Mathas). [Description of decomposition num-
bers for Rouquier blocks.]
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The case e = 2

From now on, assume e = 2 (i.e. q = −1). The situation here is very
different: GCC is neither necessary nor sufficient.

Example. Suppose p = ∞, and λ is a rectangular partition, i.e. λ = (ab),
some a, b. Then Sλ is irreducible.

The symmetric group case is known:

Theorem (James–Mathas). Suppose e = p = 2, and λ is neither 2-regular nor
2-restricted. Then Sλ is irreducible⇔ λ = (22).

Proof. Explicit construction of homomorphisms from permutation mod-
ules to Specht modules. �
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Some computations in the case p = ∞

When p = ∞, the decomposition numbers forHn can be computed via
the LLT algorithm. In particular, the reducibility of any Specht module
can be checked.

2004: computations by (F–)Mathas . . .

Suppose λ is neither 2-regular nor 2-restricted. Say that λ is an FM-
partition if:
• ∃! b such that λb − λb+1 > 2;
• for any a with λa = λa+1 > 0, we have a 6 b − 1 6 λa;
• λ1 > λ2 > · · · > λc, where c is maximal such that λb+c > 0;
• all addable boxes of [λ], except possibly the highest and lowest, have

the same residue;
• if c > 0 then all addable boxes of [λ] have the same residue.
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Conjecture (F(–Mathas)). Suppose e = 2, p = ∞, λ is neither 2-regular nor 2-
restricted. Then Sλ is irreducible if and only if either λ or λ′ is an FM-partition.

Verified for n 6 45.

For the prime characteristic case:

Conjecture (F). Suppose e = 2 and p < ∞. Then there are only finitely
many partitions λ such that λ is neither 2-regular nor 2-restricted and Sλ is
irreducible.

True for p = 2 (only one λ), almost proved for p = 3 (ten different λs).
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Main result

Theorem (F–Lyle). Suppose e = 2, and λ satisfies the following condition:
there exist a < b such that λa − λa+1 > 2 and λb = λb+1 > 0. Then Sλ is
reducible.
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Method of proof

First, assume p = ∞: a Specht module in prime characteristic is a
modular reduction of a Specht module in infinite characteristic.

Induction on n, using the Brundan–Kleshchev lemma from before. For
the difficult cases, two main techniques:
1. Fock space calculations
2. Homomorphisms

Fock space calculations

U quantum algebraUv(ŝl2) over Q(v)

F Fock space: U-module with Q(v)-basis {s(λ)} indexed by partitions
M submodule generated by s(∅)
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M has a canonical basis {G(µ)} indexed by all 2-regular partitions.

Theorem (Ariki). Write G(µ) =
∑
λ dλµ(v)s(λ). Then if e = 2 and p = ∞,

[Sλ : Dµ] = dλµ(1).

Fact: dλµ(v) is a polynomial with non-negative integer coefficients.

So: if Sλ is irreducible, then we must have
dλν(v) = va (for some particular ν)
dλµ(v) = 0 (for all other µ).
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M possesses a bar involution m 7→ m.

Fact: Each G(µ) is bar-invariant. Moreover, any bar-invariant element of
M can be written in the form

∑
µ αµ(v)G(µ), with αµ(v) ∈ Q(v + v−1).

Corollary. Suppose X,Y ∈M are bar-invariant, and

X =
∑
λ

aλ(v)s(λ), Y =
∑
λ

bλ(v)s(λ),

and that for some particular λ we have aλ(v) = vs, bλ(v) = vt, s , t. Then (for
e = 2, p = ∞) Sλ is reducible.

Technique: Construct X and Y, using known G(µ) and applying Cheval-
ley generators ofU.
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Homomorphisms

James’s regularisation theorem: slide all boxes of [λ] south-east as far
as possible, to get regularisation λreg. Then [Sλ : Dλreg

] = 1.

So if Sλ is irreducible, then Sλ � Dλreg
.

λ = (42, 23) λreg = (6, 4, 3, 1)
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Permutation modules

For each λ, have a module Mλ (q-analogue of permutation module).

Aim: Construct non-zero homomorphisms Mµ
→ Sλ.

Why? We have [Mµ : Dν] = 0 unless ν Q µ (dominance order on
partitions).

So if we have HomHn(M
µ,Sλ) , 0 and λreg S µ, then Sλ is reducible.

How do we construct homomorphisms Mµ
→ Sλ?

•We have Sλ 6 Mλ, and we know HomHn(M
µ,Mλ) explcitly: it has a

basis {ΘT} indexed by row-standard µ-tableaux of type λ.
• Suppose θ =

∑
T dTΘT. Lyle (2006) gives a method to determine

whether Im(θ) 6 Sλ.

19



Lemma (F). Suppose ξ, ν are partitions. Put l = length(ν), and suppose
ξl−1 > l. Then

HomHn(M
µ,Sλ) , 0,

where
λi = ξi + 2νi,
µi = ξ

′

i + 2νi.

Proof. We know that HomQS|ν|(M
ν,Sν) , 0; Lyle’s method enables us to

use a non-zero homomorphism here to construct a non-zero homomor-
phism Mµ

→ Sλ. �
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Example: λ = (42, 22)

Put ξ = (24), ν = (12). Then µ = (62), while λreg = (5, 4, 2, 1) S µ.

QS2-homomorphism from Mν to Sν given by ΘT1 −ΘT2, where

T1 =
1
2 , T2 =

2
1 .

H12-homomorphism from Mµ to Sλ given by ΘU1 −ΘU2, where

U1 =
1 1
2 2

1 2 3 4
1 2 3 4 , U2 =

2 2
1 1

1 2 3 4
1 2 3 4 .

21



Example: λ = (42, 22)

Put ξ = (24), ν = (12). Then µ = (62), while λreg = (5, 4, 2, 1) S µ.

QS2-homomorphism from Mν to Sν given by ΘT1 −ΘT2, where

T1 =
1
2 , T2 =

2
1 .

H12-homomorphism from Mµ to Sλ given by ΘU1 −ΘU2, where

U1 =
1 1 1 2 3 4
1 2 2 2 3 4 , U2 =

1 2 2 2 3 4
1 1 1 2 3 4 .
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