
Complex reflection groups
and cyclotomic Hecke algebras

Gunter Malle

TU Kaiserslautern

October 2008

Gunter Malle (TU Kaiserslautern) Complex reflection groups and cyclotomic Hecke algebras October 2008 1 / 56



Why should I care?

Complex reflection groups

have a rich and beautiful theory

come up in many different contexts
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Complex reflection groups

k: a subfield of C
V : a finite dimensional k-vector space

s ∈ GL(V ) is a complex reflection ⇐⇒: codim ker(s − 1) = 1

i.e., s fixes the hyperplane Hs := ker(s − 1) pointwise.

W ≤ GL(V ) is a complex reflection group (crg) ⇐⇒:
W is finite, generated by reflections.
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Examples

• W ≤ GLn(Q) a Weyl group =⇒ W is a crg.

• W ≤ GLn(R) a (finite) Coxeter group =⇒ W is a crg.

• 1 6= ζ ∈ k with ζd = 1 =⇒ W = 〈ζ〉 ≤ k× = GL1(k) is a crg.

• The group

W :=

〈(
1 0
0 ζ3

)
,

√
−3

3

(
−ζ3 ζ2

3

2ζ2
3 1

)〉
≤ GL2(Q(ζ3)),

with ζ3 := exp(2πi/3), is a crg of order 72, denoted G5.
(G5 has no faithful real reflection representation)
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Invariants

S(V ): the symmetric algebra of V

So for any basis {v1, . . . , vn} of V have S(V ) ∼= k[v1, . . . , vn].

If W ≤ GL(V ) then W acts on S(V ). Consider invariants

S(V )W := {f ∈ S(V ) | w .f = f for all w ∈W }.

Theorem (Shephard–Todd (1954), Chevalley (1955))

Let W ≤ GL(V ) be finite. Then the following are equivalent:

(i) W is generated by reflections

(ii) the ring S(V )W of invariants is a polynomial ring
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Generators of S(V )W

Assume that S(V )W is a polynomial ring. There exist n = dim V
algebraically independent elements f1, . . . , fn ∈ S(V ) with

S(V )W = k[f1, . . . , fn].

The fi can be chosen to be homogeneous with respect to the natural
grading of S(V ).

The (fi )i are not uniquely determined, but their degrees di = deg fi are.

These are the degrees of the reflection group W .

Clearly |W | = d1 · · · dn.

Furthermore,
∑n

i=1(di − 1) = N := number of reflections in W .
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Examples

• W = Sn in its natural permutation representation on V = kn.
Invariants are generated by the elementary symmetric functions

fj :=
∑

i1<...<ij

vi1 · · · vij (1 ≤ j ≤ n)

with degrees 1, 2, . . . , n, and d1 · · · dn = n! = |Sn|.
• W = 〈ζ〉 ≤ GL1(k) with ζ = exp(2πi/d).

Here S(V ) = k[v ], S(V )W = k[vd ]
=⇒ fundamental invariant is vd , of degree d , and d = |W |.

• Recall G5 =

〈(
1 0
0 ζ3

)
,
√
−3
3

(
−ζ3 ζ2

3

2ζ2
3 1

)〉
, ζ3 = exp(2πi/3).

Here S(V ) = k[v1, v2], and S(V )W = k[f1, f2] with

f1 := v6
1 + 20v3

1 v3
2 − 8v6

2 , f2 := 3v3
1 v9

2 + 3v6
1 v6

2 + v9
1 v3

2 + v12
2 ,

with degrees d1 = 6, d2 = 12, d1d2 = 72 = |W |.
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Parabolic subgroups

W ≤ GL(V ) a crg.

For U ≤ V a subspace, the fixator

CW (U) := {w ∈W | w .v = v for all v ∈ U}

is called a parabolic subgroup of W .

Theorem (Steinberg (1964), Lehrer (2004))

Let W be a crg. Every parabolic subgroup of W is generated by the
reflections it contains. In particular, it is also a crg.

Examples

For Coxeter groups, these are just the conjugates of the standard parabolic
subgroups.
For G5, there are two non-conjugate parabolic subgroups of order 3.
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Regular elements

A vector v ∈ V is regular :⇐⇒ v is not contained in any reflecting
hyperplane, i.e., v is not stabilized by any reflection.

An element w ∈W is d-regular :⇐⇒ w has a regular eigenvector for an
eigenvalue ζ which is a primitive dth root of unity.

Denote by V (w , ζ) the ζ-eigenspace of w in V .

Theorem (Springer (1974))

Let w ∈W be d-regular. Then CW (w) is a crg on V (w , ζ), with set of
degrees

{di | d divides di}.

Idea of proof: show that CW (w) has polynomial invariants on V (w , ζ).
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Examples

• W = Sn in its natural permutation representation on V = kn.
Assume that d |n.
Then the product of n/d disjoint d-cycles is d-regular, with
centralizer Cd oSn/d , with degrees

{di | d divides di} = {d , 2d , . . . , d · n/d = n}.

• W = W (F4), a Weyl group. There exist 3-regular elements in W .
The degrees of W (F4) are 2, 6, 8, 12, so the centralizer has degrees
6, 12: It is the complex reflection group G5.

So, even if W is a Weyl group, CW (w) may be a truly complex reflection
group.
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Eigenspaces

Let W ≤ GL(V ) a crg.

Recall: for ζ ∈ k×, w ∈W ,

V (w , ζ) := {v ∈ V | w .v = ζv}

is the eigenspace of W with respect to the eigenvalue ζ.

Have a kind of Sylow theorem for eigenspaces:

Theorem (Springer (1974))

Let W be a crg, ζ a primitive dth root of unity.

(a) maxw∈W dim V (w , ζ) = #{i | d divides di} =: a(d).

(b) For all w ∈W there exists w ′ ∈W such that V (w , ζ) ⊆ V (w ′, ζ)
and dim V (w ′, ζ) = a(d).

(c) The maximal ζ-eigenspaces are conjugate under W .
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Further examples of crg

Examples

• Sn acts naturally on V = kn =
⊕

kvi .
Fix d ≥ 2. In each coordinate have the reflection vi 7→ ζdvi .
Obtain the wreath product Cd oSn, generated by reflections.
This is called G (d , 1, n).
For each divisor e of d , there is a normal reflection subgroup
G (d , e, n) of G (d , 1, n) of index e.

• Let G ≤ SL2(C) finite, g ∈ G . Let ζ be an eigenvalue of g
=⇒ ζ−1g is a reflection.
So, if G = 〈g1, . . . , gr 〉, obtain crg 〈ζ−1

1 g1, . . . , ζ
−1
r gr 〉.

For example, G5
∼= SL2(3)× C3.

(If G is irreducible, then G/Z (G ) ∈ {Dn,A4,S4,A5}.)
• If g ∈ SL3(C) is an involution, then −g is a reflection.

(A5, PSL2(7) and 3.A6 have faithful 3-dimensional representations
and are generated by involutions.)
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The classification
Any crg is a direct product of irreducible crg.

Theorem (Shephard–Todd (1954))

Let W ≤ GL(V ) be an irreducible crg. Then one of the following holds:

(i) W is imprimitive and W = G (de, e, n) for some n, d , e ≥ 1, de ≥ 2,

(ii) W ∼= Sn (∼= G (1, 1, n)), n ≥ 2, and dim V = n − 1, or

(iii) W is one of 34 exceptional groups G4, . . . ,G37, and dim V ≤ 8.

For example, in dimension 2 the dihedral groups lead to G (de, e, 2),
while the groups A4,S4,A5 lead to 4, 8, resp. 7 exceptional crg.

We have

• G (1, 1, n) = Sn, G (2, 1, n) = W (Bn), G (2, 2, n) = W (Dn),

• G (6, 6, 2) = W (G2), G28 = W (F4), G35,36,37 = W (E6,7,8),

• (Coxeter groups) G (e, e, 2) = W (I2(e)), G23,30 = W (H3,4).
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Consequences of the classification

How many reflections are needed to generate a crg?

Clear: at least dim V generators are necessary.

Proposition

Let W ≤ GL(V ) be an irreducible crg. Then W can be generated by at
most dim V + 1 reflections.

A crg is called well-generated if dim V reflections suffice.

In particular any Coxeter group is well-generated.

Steinberg: Any irreducible crg contains a well-generated irreducible crg.

Proposition

Let W ≤ GL(V ) be an irreducible crg. Then W has at most three classes
of reflecting hyperplanes (two if W is well-generated).
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Field of definition

Let W ≤ GL(V ) a crg. Over which field(s) can the representations of W
be realized?

Let kW := Q(trV (w) | w ∈W ), the character field of W on V .

Theorem (Benard (1976), Bessis (1997))

The field kW is a splitting field for W ,
i.e., any (irreducible) representation of W can be realized over kW .

Examples

• For all Weyl groups W , we have kW = Q.

• For W = W (H4), we have kW = Q(
√

5).

• For W = G5, we have kW = Q(
√
−3).
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Field of definition, II

How can we characterize kW in terms of W ?

For well-generated groups, this is possible using only the degrees:

Theorem (M. (1999))

Let W be a well-generated irreducible crg, with degrees d1 ≤ . . . ≤ dn,
ζ = exp(2πi/dn),

G := setwise stabilizer of (ζdj−1 | 1 ≤ j ≤ n) in Gal(Q(ζ)/Q).

Then kW = Q(ζ)G .

For Weyl groups, the ζdj−1 are the eigenvalues of the Coxeter element

=⇒ kW is determined by the cofficients of the characteristic polynomial of
a Coxeter element.
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Automorphisms

Let φ ∈ NGL(V )(W ).

Then φ stabilizes the set of reflections, of reflecting hyperplanes,...

For some applications (for example in twisted groups of Lie type), replace
the crg by the coset Wφ.

Similar results as for W hold.
For example, the homogeneous fundamental invariants fi of W can be
chosen to be eigenvectors of φ, with eigenvalues εi , say.

Then the (di , εi )i are uniquely determined.

There exist twisted regular elements, which satisfy Springer theory,
a twisted version of the Sylow theorems holds.
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Automorphisms, II

The automorphisms of irreducible crg can be classified. In all but one case,
they come from embeddings into larger reflection groups.

Theorem (M. (2006))

Let W ≤ GL(V ) a crg, φ ∈ NGL(V )(W ) of finite order,

kφ := Q(trV (wφ) | w ∈W ).

Then every φ-stable irreducible character of W has an extension to 〈W , φ〉
afforded by a representation defined over kφ.

Example

The crg G5 is normal in G14. This induces non-trivial automorphism of G5.
(It can also be seen from the graph automorphism of W (F4).)
Here kW = Q(ζ3), kφ = Q(ζ3,

√
2).
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Good presentations

Proposition (Coxeter, ...)

All crg have good, Coxeter-like presentations, where

• the generators are reflections,

• the relations are homogeneous, each involving at most three
generators (two if W is well-generated).

These can be visualized by diagrams.

Examples

For G19 : s©2 n©3 t

©5 u

i.e., s2 = 1, t3 = 1, u5 = 1, stu = tus = ust
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Good presentations, II

If W is truly complex, then the good presentations satisfy at least one of

• there occur reflections of order > 2, or

• there are homogeneous relations involving > 2 reflections at a time
(non-symmetric)

Furthermore, not all parabolic subgroups can be seen from the
presentation, in general.
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Cyclotomic Hecke algebras

Preliminary definition (as for Iwahori–Hecke algebras):

Let W ≤ GL(V ) be a crg, with good presentation

W = 〈S | R〉

(where S ⊆W are reflections and R consists of homogeneous relations).

The cyclotomic Hecke algebra H(W ,u) attached to W and
indeterminates u = (us,j | s ∈ S , 1 ≤ j ≤ o(s)) is the free associative
algebra over Z[u,u−1] on generators {s | s ∈ S} and relations

• (s− us,1) · · · (s− us,o(s)) = 0 for s ∈ S ,

• the homogeneous relations from R.

Problem: W may have several good presentations. Which shall we take?
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Example

The 3-dimensional primitive reflection group G24
∼= PSL2(7)× C2 can be

generated by three reflections of order 2. It has (at least) three good
presentations on three reflections:

G24 =〈r , s, t | r2 = s2 = t2 = 1,

rsrs = srsr , rtr = trt, stst = tsts, srstrst = rstrstr〉,
=〈r , s, t | r2 = s2 = t2 = 1,

rsr = srs, rtr = trt, stst = tsts, tsrtsrtsr = stsrtsrts〉,
=〈r , s, t | r2 = s2 = t2 = 1,

rsr = srs, rtr = trt, stst = tsts, strstrstrs = trstrstrst〉.

Are the corresponding cyclotomic Hecke algebras isomorphic?
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The braid group

Let V = Cn, W ≤ GL(V ) a crg.
To each reflection s ∈W is associated its reflecting hyperplane Hs . Let

V reg := V \
⋃

s∈W refl.

Hs .

Theorem of Steinberg:
V reg −→ V reg/W

is an unramified covering, with Galois group W .

The braid group of W is the fundamental group

BW := π1(V
reg/W , x0).

Example

For W = Sn in its natural reflection representation, BW is the Artin braid
group on n strings.
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The center of BW

The covering V reg → V reg/W induces an exact sequence

1 −→ PW := π1(V
reg, x0) −→ BW −→W −→ 1.

PW is the pure braid group associated to W .

Let π ∈ PW be the class of the path

[0, 1] −→ V reg, t 7→ exp(2πit) x0,

(turning once around each hyperplane).

Theorem (Broué–M.–Rouquier (1998), Bessis (2001,2007))

Let W be irreducible, W 6= G31. The center of PW is generated by π.
Moreover, the exact sequence above restricts to an exact sequence

1 −→ Z (PW ) = 〈π〉 −→ Z (BW ) −→ Z (W ) −→ 1.

Here Z (BW ) = 〈β〉 with β : t 7→ exp(2πit/|Z (W )|) x0.
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Presentations of the braid group

H reflecting hyperplane =⇒ fixator CW (H) is generated by reflections.
Write dH := |CW (H)|.
Distinguished reflection: The generator sH of CW (H) with non-trivial
eigenvalue exp(2πi/dH).
Braid reflections: Suitable lifts sH ∈ BW of distinguished sH ∈W .

Theorem (Brieskorn, Deligne (1972), Broué–M.–Rouquier (1998),
Bessis (2007))

Assume W irreducible. BW can be generated by at most dim V + 1 braid
reflections, and has a presentation by homogeneous positive braid relations
in these braid reflections.
Adding the relations sdH

H yields a good presentation of W .

Examples

For G24 all three presentations in the previous example come from the braid
group.

Gunter Malle (TU Kaiserslautern) Complex reflection groups and cyclotomic Hecke algebras October 2008 25 / 56



Springer theory in braid groups

Recall π, the generator of Z (PW ).

An element w ∈ BW with wd = π is called a dth root of π.

Recall: d is regular if there exists w ∈W with regular ζd -eigenvector.

Theorem (Bessis (2007))

Let W ≤ GL(V ) be well-generated.

(a) There exist dth roots of π if and only if d is regular.

(b) In this case, all dth roots of π are conjugate.

(c) Let w ∈ BW be a dth root of π, and w its image in W . Then w is
d-regular, and

CBW
(w) ∼= BW ′ , where W ′ := CW (w),

that is, the centralizer of w in the braid group is isomorphic to the
braid group of the centralizer of w.
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Cyclotomic Hecke algebras, II

Let u = (us,j | s ∈W dist. reflection, 1 ≤ j ≤ o(s)) be a W -invariant set
of indeterminates, A := Z[u,u−1].

The (generic) cyclotomic Hecke algebra attached to W is the quotient

H(W ,u) = A[BW ]/
(
(s− us,1) . . . (s− us,o(s)) | s braid-reflection

)
of the group algebra A[BW ] of the braid group.

This is independent of a choice of presentation!

Examples

• For W a Coxeter group we obtain the usual generic multiparameter
Iwahori–Hecke algebra.

• For W = G5,

H(W ,u) = 〈s, t | stst = tsts,
3∏

j=1

(s− us,j) =
3∏

j=1

(t− ut,j) = 0〉.
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Hecke algebras as deformations

From the theorem on presentations of braid groups we get:

Corollary

Under the specialization

us,j 7→ exp(2πij/o(s)), s ∈W dist. refl., 1 ≤ j ≤ o(s),

H(W ,u) becomes isomorphic to the group algebra C[W ] of W .

Structure of H(W ,u) (well-known for Coxeter groups (Tits)):

Theorem (Tits, Broué–M. (1993), Ariki–Koike (1993), Ariki (1995))

H(W ,u) is free as a module over A of rank |W | (for almost all types).

How do we find an A-basis of H(W ,u)?
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Lifting reduced expressions

Choose presentation
BW = 〈S | R〉

of the braid group, so that

W = 〈S | R, order relations〉

is a presentation of W , where S = images in W of the s ∈ S.
Write Ts for the image of s in H(W ,u).

For w ∈W , choose reduced expression

w = s1 · · · sr with si ∈ S

and let

w := s1 · · · sr ∈ BW , Tw := Ts1 · · ·Tsr ∈ H(W ,u).

Hope: {Tw | w ∈W } is an A-basis of H(W ,u).
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Bases of H(W ,u)

For Coxeter groups w ∈ BW is independent of the choice of reduced
expression of w ∈W , and there is a natural presentation for BW .

Problem: for crg in general, w depends on the choice of presentation and
on the choice of reduced expression.

Examples

For W = G (4, 2, 2) = 〈s, t, u | s2 = t2 = u2 = 1, stu = tus = ust〉, the
expressions sut = uts are reduced, but TsTuTt 6= TuTtTs .

Proposition (Bremke–M. (1997))

For W = G (d , 1, n), {Tw | w ∈W } is an A-basis of H(W ,u) for any
choice of reduced expressions for the w ∈W.

For exceptional types, still open how to find a nice basis of H(W ,u).
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Tits deformation theorem

Recall: have semisimple specialization C[W ] of H(W ,u).

Then Tits’ deformation theorem shows:

Corollary

Assume that H(W ,u) is free over A of rank |W |.
Then over a suitable extension field K of Frac(A) we have

H(W ,u)⊗A K ∼= K [W ].

In particular, there is a 1-1 correspondence Irr(H(W ,u))←→ Irr(W ).
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Splitting fields

Which extension field suffices?
kW = character field of W . Let µ(kW ) = group of roots of unity in kW .

Theorem (M. (1998))

H(W ,u) is split over KW := kW (v), where v = (vs,j) with

v
|µ(kW )|
s,j = exp(−2πij/o(s)) us,j .

Example (Benson–Curtis (1972), Lusztig)

For W a Weyl group, |µ(kW )| = |µ(Q)| = 2
=⇒ splitting field for Iwahori–Hecke algebras is obtained by extracting
square roots of the indeterminates.

Thus, over KW , the specialization vs,j 7→ 1 induces a natural bijection

Irr(H(W ,u)) −→ Irr(W ), χv 7→ χ.
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Character values
How do we determine a splitting field?
Springer’s trick: Find character values on central elements of H(W ,u).

The element β ∈ BW is central, so acts by a scalar in each irreducible
representation X : H(W ,u) −→ GLm(KW ), with character χv.

If β = s1 · · · sl , for braid reflections si , then

det X (β) =
l∏

i=1

det X (si ) is known.

But χv(β) = m · (det X (β))1/m.

This gives an explicit formula

χv(β) = χ(β) · (monomial in roots of the us,j).

Use this to show that certain irrationalities occur.
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Automorphisms

Can we lift automorphisms from the reflection group to the Hecke algebra?

Let φ ∈ NGL(V )(W ) =⇒ φ acts on V , on V reg, on V reg/W .

If there is a φ-invariant base point x0

=⇒ φ also acts on the braid group BW = π1(V
reg/W , x0).

x ∈ V reg is φ-invariant ⇐⇒ x is a 1-regular vector for φ.

Proposition (M. (2006))

Let W ≤ GL(V ) be a crg. In each coset of W · Z (GL(V )) in NGL(V )(W )
there exists a 1-regular element.

Thus, we may lift automorphisms φ of W to automorphisms σφ of the
braid group (in general not in a unique way).
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Automorphisms, II

In order for the automorphism σφ to descend to the cyclotomic Hecke
algebra, need compatible parameters:

Assume that the parameters u are also φ-invariant
=⇒ the automorphism σφ of BW induces an automorphism of H(W ,u),
defining an extended cyclotomic Hecke algebra H(W ,u).〈σφ〉.

Similar statements as before hold for rationality:

Proposition (Digne–Michel (1985), M. (2006))

With the above notation, every σφ-stable irreducible character of H(W ,u)
has an extension to H(W ,u).〈σφ〉 realizable over

Kφ := kφ((exp(−2πij/o(s)) us,j)
1/|µ(kφ)| | s ∈W , 1 ≤ j ≤ o(s)).
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Symmetrizing forms

We expect cyclotomic Hecke algebras to carry a natural trace form:
There should exist an A-linear form

tu : H(W ,u) −→ A

with the following properties:

• the bilinear form H×H → A, (h1, h2) 7→ tu(h1h2), is symmetric and
non-degenerate,

• tu specializes to the canonical trace form on the group algebra of W ,

• tu(b
−1)∨ = tu(bπ)

tu(π) for all b ∈ BW ,

• tu restricted to a parabolic subalgebra has the same properties on
that subalgebra.

Rouquier: if it exists, such a tu is uniquely determined.
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Symmetrizing forms, II

For Coxeter groups, such a form can be obtained by setting

tu(Tw) :=

{
1 w = 1,

0 else,

for w ∈W (with lifted elements Tw as above).

Problem: for crg, the Tw are not well-defined.

Theorem (Bremke–M. (1997), M.–Mathas (1998))

The algebra H(W ,u) is symmetric over A (for almost all types).

For example for G (d , 1, n), tu vanishes on Tw for all reduced expressions of
all 1 6= w ∈W .

For the proof, take above definition for some basis and check properties.
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Schur elements

Let tu denote the canonical symmetrizing form on H(W ,u).

Write

tu =
∑

χ∈Irr(W )

1

Sχ
χv,

with Schur elements Sχ ∈ KW .

Fact: The Sχ are integral over A.

Theorem (Geck–Iancu–M. (2000), M. (1997,2000))

The Schur elements are explicitly known for all types (assuming the
existence of the symmetrizing form tu).

For infinite series, determine weights of a Markov trace on H(W ,u).
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Constructing representations

For exceptional types, solve linear system of equations

∑
χ

χv(Tw)
1

Sχ
= tu(Tw) =

{
1 w = 1,

0 else,
(w ∈W ).

How do we know χv(Tw) on sufficiently many elements?

Construct representations explicitly.

For small dimensions (m ≤ 6): take matrices with indeterminate entries,
plug into relations, solve non-linear system.

Induction: may assume matrices known for some maximal parabolic
subalgebra.
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W -graphs

For Coxeter groups W , Lusztig introduced the notion of a W-graph for a
representation of H(W ,u):
a combinatorial encoding of a representation via a labelled graph, with

• vertices = certain subsets of the set of (standard) generators

• edges = labelled by elements from KW

Gyoja (1984): W -graphs exist for all representations of Weyl groups.

Suitable generalization makes sense for cyclotomic Hecke algebras as well.

Proposition (M.–Michel (2008))

Models for the irreducible representations of all but five exceptional crg are
known.

Use W -graphs, but also Hensel-lifting and Padé-approximation.
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Example

For W = G5, with parameters (u, v ,w , x , y , z), one Schur element is

− (uy + vx)(vy + ux)(y − z)(uvxy + w2z2)(x − z)(v − w)(u − w)

uvw4xyz4
.

In fact, the Schur elements always have total degree 0 and are of the form

Sχ = m · P1

P2
,

where

• m is an integer in kW ,

• P1 is a product of cyclotomic polynomials over kW , evaluated at
monomials in the vs,j ,

• P2 is a monomial in the vs,j .
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The spetsial specialization

We are interested in 1-parameter specializations of H(W ,u) through
which the specialization to C[W ] factors.

For Iwahori–Hecke algebras, the specialization where

(s− q)(s + 1) = 0

(for all distinguished s) is particularly important.

For cyclotomic Hecke algebras, we may have reflections of order o(s) > 2.
So consider the spetsial specialization H(W , q) where

(s− q)(so(s)−1 + so(s)−2 + . . . + 1) = 0.

By the above, the spetsial algebra H(W , q) is split semisimple over
kW (y), where y |µ(kW )| = q.
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Families of characters

What about Kazhdan–Lusztig theory for spetsial Hecke algebras:
Kazhdan–Lusztig basis, left and 2-sided cells, cell representations?

Kazhdan–Lusztig’s combinatorial approach seems not possible.

Theorem (Gyoja (1996), Rouquier (1999))

Let W be a Weyl group. Then two characters of W lie in the same 2-sided
cell if and only if they lie in the same block of H(W , q)⊗A R, where

R := integral closure of Z[q, q−1, (1 + qZ[q])−1] in kW (y).

Characters inside a fixed 2-sided cell are called a family of Irr(W ).

For a crg W , take the above result as definition of families in Irr(W ).
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Families and Schur elements

How to determine the families?

Recall the form of Schur elements: after the spetsial specialization

Sχ = mχ yaχ Fχ,

where mχ ∈ kW is integral, aχ ∈ Z, Fχ ∈ 1 + ykW [y ].

The central element Tπ has to act by the same scalar in all irreducible
representations of a fixed block.
The explicit knowledge of this scalar gives:

2aχ + deg Fχ

is constant on families.

Gunter Malle (TU Kaiserslautern) Complex reflection groups and cyclotomic Hecke algebras October 2008 44 / 56



Bad primes

Geck–Rouquier (1997): {χ} is a 1-element family ⇐⇒ Sχ ∈ R×.

So: {χ} is a 1-element family⇐⇒ mχ ∈ O×W (OW ring of integers of kW ).

A prime p is bad for W if there exists a Schur element Sχ whose leading
coefficient mχ lies in some prime ideal of OW above p.

Only divisors of |W | can be bad.

Examples

• For Weyl groups, these are the usual bad primes.

• For W = G5 have Schur elements

2 q−8(q4 + 1)(q2 + q + 1)2, 3 q−1(q2 + 1)2(q2 + q + 1),

so 2, 3 are bad primes. As |W | = 2332, these are the only ones.
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Families, II

Theorem (Broué–Kim(2002), M.–Rouquier(2003), Chlouveraki(2008))

The families of all spetsial cyclotomic Hecke algebras are known.

In fact, Chlouveraki gives an algorithm to determine the families for all
1-parameter specializations of cyclotomic Hecke algebras only using
properties of Schur elements.

Example

For W = G5 there are six families, with 1, 2, 2, 3, 5, resp. 8 characters.

Corollary

Both aχ and deg Fχ are individually constant on families.
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Fake degrees

The symmetric algebra S(V ), the invariants S(V )W are naturally graded.

S(V )W+ := the invariants of degree at least 1.

S(V )W := S(V ) /
(
S(V )W+

)
the coinvariant algebra.

Theorem (Chevalley (1955))

The graded W -module S(V )W affords the regular representation of W .

The Poincaré polynomial of W is the graded dimension∑
j

dim S(V )jW qj =
n∏

j=1

qdj − 1

q − 1
.

For χ ∈ Irr(W ) the fake degree is the graded multiplicity

Rχ :=
∑

j

〈χ,S(V )jW 〉 q
j .
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Semipalindromicity

Observation: often, the fake degrees are (semi-)palindromic, that is

Rχ(t) = tmRχ̄(t−1) (some m ≥ 0).

This is not true, for example, for two characters of W (E7), and four of
W (E8).

Theorem (M. (1999))

Rχ is semi-palindromic if and only if the character χq of H(W , q) can be
realized over kW (q). More precisely,

Rχ(t) = tmRδ(χ)(t
−1)

for some explicit permutation δ coming from the Gal(kW (y)/kW (q))-
action on Irr(H(W , q)).
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Rationality of the reflection representation

The spetsial algebra ‘knows about’ W being well-generated!

For χ ∈ Irr(W ) let Dχ := S1/Sχ, the generic degree of χ.

χ ∈ Irr(W ) is special if Rχ and Dχ have the same order of zero at y = 0.

Proposition (M. (2000))

The following are equivalent:

(i) W is well-generated.

(ii) The reflection character of W is special.

(iii) The reflection representation of H(W , q) can be realized over kW (q).

For example, for Coxeter groups the reflection representation of H(W , q)
is always rational.
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Finite reductive groups

Let G be a simple algebraic group defined over Fq with corresponding
Frobenius map F : G→ G, G := GF , a finite group of Lie type.
Let W the Weyl group of G.

Lusztig: Ordinary representation theory of G can be described in
combinatorial terms only depending on W (actually: on H(W , q)):

• The Rχ are degrees of almost characters

• The Dχ = S1/Sχ are degrees of unipotent characters

• The base change matrix between these two is block-diagonal, where
the blocks are just the families in Irr(W )

• This Fourier matrix can be obtained from the quantum double of a
small finite group Cm

2 , S3, S4, or S5.

• This also determines the Frobenius eigenvalues of unipotent
characters.

Many of the above notions are available for arbitary crg W !
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Spetsial reflection groups

Recall the generic degrees Dχ = S1/Sχ, for χ ∈ Irr(W ).

Proposition (M. (2000))

Let W be a crg. The following are equivalent:

(i) S1 =
∏

i (q
di − 1)/(q − 1), the Poincaré-polynomial of W .

(ii) Dχ ∈ kW (q) for all χ ∈ Irr(W ) (rationality).

(iii) Dχ ∈ kW [y ] for all χ ∈ Irr(W ) (integrality).

(iv) Dχ/Rχ has no pole at y = 0, for all χ ∈ Irr(W ).

(v) For each family F ⊂ Irr(W ), the kW -subspace of kW (y) spanned by
{Dχ | χ ∈ F} is the same as the one spanned by {Rχ | χ ∈ F}.

A crg satisfying the above equivalent conditions is called spetsial.
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The irreducible spetsial groups are

Sn, G (d , 1, n), G (e, e, n) and

group 4 5 6 7 8 9 10 11 12 13 14 15 16
dim 2 2 2 2 2 2 2 2 2 2 2 2 2

spetsial ∗ ∗ ∗ ∗

group 17 18 19 20 21 22 23 24 25 26 27
dim 2 2 2 2 2 2 3 3 3 3 3

spetsial H3 ∗ ∗ ∗ ∗

group 28 29 30 31 32 33 34 35 36 37
dim 4 4 4 4 4 5 6 6 7 8

spetsial F4 ∗ H4 ∗ ∗ ∗ E6 E7 E8

All of them are well-generated.
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Towards spetses

Spetses is a Greek island in the Aegean sea, lieu of a conference in 1993.

Theorem (M. (1996), Broué–M.–Michel (2009))

Let W be a spetsial crg. Then the fake degrees {Rχ}, the generic degrees
{Dχ}, the families F , can be extended in a well-defined manner to a
collection of combinatorial objects:

• unipotent degrees

• Fourier matrices

• Frobenius eigenvalues

satisfying similar properties as the corresponding objects occurring in the
representation theory of finite groups of Lie type:

• there are Harish-Chandra theories

• . . .

All equivalent properties of spetsial crg are required for this to work.
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Fusion data

For a family F ⊂ Irr(W ), let Ω be the diagonal matrix of Frobenius
eigenvalues on F , S the Fourier matrix. Then

• S is symmetric,

• S4 = 1, [S2,Ω] = 1, (ΩS)3 = 1.
(i.e., S ,Ω give an SL2(Z)-representation),

• Cuntz (2006): for a suitable index i0, all entries of S in that row are
non-zero, and ∑

l

SilSjlSkl

Si0l
∈ Z for all i , j , k

(Verlinde formula).
They define structure constants of a Z-based algebra, a generali-
zation of fusion algebras where the structure constants are not
necessarily positive.
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Unipotent characters for crg G4 (∼= SL2(3))

χ Dχ Rχ Frχ Family

φ1,0 1 1 1 1

φ2,1
3−

√
−3

6 qΦ′
3Φ4Φ

′′
6 qΦ4 1 2

φ2,3
3+

√
−3

6 qΦ′′
3Φ4Φ

′
6 q3Φ4 1 2

Z3 : 2
√
−3
3 qΦ1Φ2Φ4 0 ζ2

3 2
φ3,2 q2Φ3Φ6 q2Φ3Φ6 1 3

φ1,4
−
√
−3

6 q4Φ′′
3Φ4Φ

′′
6 q4 1 4

φ1,8

√
−3
6 q4Φ′

3Φ4Φ
′
6 q8 1 4

φ2,5
1
2q4Φ2

2Φ6 q5Φ4 1 4

Z3 : 11
√
−3
3 q4Φ1Φ2Φ4 0 ζ2

3 4
G4

1
2q4Φ2

1Φ3 0 −1 4

Φ′
3,Φ

′′
3 (resp. Φ′

6,Φ
′′
6) are factors of Φ3 (resp Φ6) in Q(ζ3).
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The Fourier matrix for G4

F 1 2 2 2 3 4 4 4 4 4

1 1 . . . . . . . . .

2 . 3−
√
−3

6
3+
√
−3

6

√
−3
3 . . . . . .

2 . 3+
√
−3

6
3−
√
−3

6 −
√
−3
3 . . . . . .

2 .
√
−3
3 −

√
−3
3

√
−3
3 . . . . . .

3 . . . . 1 . . . . .

4 . . . . . −
√
−3
6

√
−3
6

1
2

√
−3
3

1
2

4 . . . . .
√
−3
6 −

√
−3
6

1
2 −

√
−3
3

1
2

4 . . . . . 1
2

1
2

1
2 . − 1

2

4 . . . . .
√
−3
3 −

√
−3
3 .

√
−3
3 .

4 . . . . . 1
2

1
2 − 1

2 . 1
2
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