Examen du 19 Juin 2015

Durée: 2 heures

Les documents, calculettes, portables... ne sont pas autorisés.

Les 3 énoncés sont indépendants.

Les réponses devront être justifiées (sauf pour la question de cours I.1°/).

I (11 pts sur 25)

- 1^{0} / (Question de cours) Soient \mathcal{E} un espace affine euclidien, et f une isométrie de \mathcal{E} .
- i) Remplir les blancs dans l'énoncé suivant : "Il existe un unique couple (\overrightarrow{u},g) vérifiant les propriétés suivantes : $\overrightarrow{u} \in \dots, g$ est une isométrie telle que, et $f = t_{\overrightarrow{u}} \circ g$."
- ii) On suppose que $\dim(\mathcal{E}) = 3$, et on note \mathcal{F} l'ensemble des points fixes de f. Sous chacune des 9 hypothèses suivantes, dire si \mathcal{F} est non vide, et donner dans ce cas la dimension de \mathcal{F} .
- (a) f est l'identité;
- (b) f est une translation de vecteur non nul;
- (c) f est une rotation d'angle non nul;
- (d) f est un vissage de vecteur de glissement non nul;
- (e) f est une réflexion (c-à-d. la symétrie orthogonale par rapport à un plan);
- (f) f est la symétrie orthogonale par rapport à une droite.
- (g) f est la symétrie par rapport à un point;
- (h) f est une réflexion glissée, de vecteur de glissement non nul;
- (i) f est une rotation-réflexion (c-à-d. la composée d'une rotation d'angle non nul par une réflexion par rapport à un plan \mathcal{P} orthogonal à l'axe \mathcal{D} de la rotation).

On mettra les réponses sous la forme d'un tableau à 9 lignes (a) à (i) et 3 colonnes (hypothèse sur f, \mathcal{F} vide ou pas, dim \mathcal{F}).

 $\mathbf{2}^0$ / On considère l'isométrie f de \mathbb{R}^3 définie par

$$f\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} y+1\\-z+2\\x-1\end{array}\right)$$

Montrer que f est une rotation-réflexion et calculer l'angle $\pm \theta$ de la rotation correspondante.

 $\mathbf{3}^0$ / Soient \mathcal{D} et \mathcal{P} l'axe et le plan attachés à f. Donner un vecteur directeur de \mathcal{D} , les coordonnées du point $\mathcal{D} \cap \mathcal{P}$ et une équation de \mathcal{P} .

T. S. V. P.

On se place dans l'espace affine $\mathcal{E} = \mathbb{R}^3$. Les coordonnées (x, y, z) sont relative à son repère cartésien usuel, tandis que $t \in \mathbb{R}$ désigne un paramètre. On considère les sous-ensembles $\mathcal{F}_t, \mathcal{G}_t$ de \mathcal{E} définis respectivement par les couples d'équations

$$(\mathcal{F}_t) \begin{cases} x+y-z=1\\ y-tz=0 \end{cases} \qquad (\mathcal{G}_t) \begin{cases} 2x-z=0\\ tx+ty-\frac{1}{2}z=2t \end{cases}$$

- $\mathbf{1}^0/$ i) Montrer que pour toute valeur du paramère t, \mathcal{F}_t et \mathcal{G}_t sont des droites affines, et qu'elles sont toujours distinctes.
 - ii) Donner un vecteur directeur $\overrightarrow{u_t}$, resp. $\overrightarrow{v_t}$, de la droite \mathcal{F}_t , resp. \mathcal{G}_t .
- 2^{0} / Montrer qu'il existe une unique valeur t_{0} du paramètre, que l'on déterminera, telle que les droites $\mathcal{F}_{t_{0}}$ et $\mathcal{G}_{t_{0}}$ soient parallèles.
- $\mathbf{3}^0$ / Montrer qu'il existe une unique valeur t_1 du paramètre, que l'on déterminera, telle que les droites \mathcal{F}_{t_1} et \mathcal{G}_{t_1} soient concourantes.
- $\mathbf{4}^0$ / (Cette question ne nécessite pas de calculs.) On suppose désormais que t est différent de t_0 et de t_1 . Soit M un point de \mathbb{R}^3 n'appartenant ni à \mathcal{F}_t ni à \mathcal{G}_t .
- i) Donner la dimension des sous-espaces affines $\langle M, \mathcal{F}_t \rangle$ et $\langle M, \mathcal{G}_t \rangle$, et montrer que leur intersection est une droite $\mathcal{D}_{M,t}$.
- ii) Montrer que $\mathcal{D}_{M,t}$ est la seule droite \mathcal{D} issue de M et vérifiant l'une des propriétés suivantes : (a) \mathcal{D} rencontre \mathcal{F}_t et \mathcal{G}_t ; (b) \mathcal{D} rencontre \mathcal{F}_t et est parallèle à \mathcal{G}_t ; (c) \mathcal{D} rencontre \mathcal{G}_t et est parallèle à \mathcal{F}_t .
- $\mathbf{5}^0$ / On suppose ici que t=3, et que M est le point O=(0,0,0). Donner un vecteur directeur de la droite $\mathcal{D}_{O,3}$. Laquelle des propriétés (a), (b), (c) vérifie-t-elle ?

 ${f 1^o}/$ On considère quatre points M_1,M_2,M_3 et M_4 d'un espace affine réel ${\cal E}$ vérifiant

$$\lambda_1 \overrightarrow{M_4 M_1} + \lambda_2 \overrightarrow{M_4 M_2} + \lambda_3 \overrightarrow{M_4 M_3} = \overrightarrow{0},$$

- où $\lambda_1, \lambda_2, \lambda_3$ sont trois nombres réels non nuls tels que $\lambda_1 + \lambda_2 + \lambda_3 = 0$. Montrer que les points M_1, M_2 et M_3 sont alignés.
- **2º**/ Maintenant, \mathcal{E} est un plan, dont on note $\mathcal{R} = (A, B, C)$ un repère affine. Soient p, q, r trois nombres réels non nuls et distincts deux à deux, et P, Q, R trois points de \mathcal{E} tels que

$$r\overrightarrow{PB} = q\overrightarrow{PC} \quad p\overrightarrow{QC} = r\overrightarrow{QA} \quad q\overrightarrow{RA} = p\overrightarrow{RB}.$$

- i) Soit O un point de \mathcal{E} . Calculer $(q-r)\overrightarrow{OP}$ en fonction de \overrightarrow{OB} et \overrightarrow{OC} .
- ii) Montrer que $p(q-r)\overrightarrow{OP} + q(r-p)\overrightarrow{OQ} + r(p-q)\overrightarrow{OR} = \overrightarrow{0}$.
- iii) Déduire du $1^o/$ que les points P,Q,R sont alignés.
- $3^{\rm o}/$ On se propose de retrouver ce résultat par des calculs barycentriques.
 - i) Calculer les coordonnées barycentriques des points P, Q, R dans le repère \mathcal{R} .
 - ii) En déduire que P,Q,R sont alignés.

Esquisse de corrigé

- **I.** 1/i) $\overrightarrow{u} \in Ker(\overrightarrow{f} Id_E)$, g est une isométrie telle que $Fix(g) \neq \emptyset$. ii) (a) : dim $\mathcal{F} = 3$; (b, d, h) : $\mathcal{F} = \emptyset$; (c, f) : dim $\mathcal{F} = 1$; (e) : dim $\mathcal{F} = 2$; (g, i) dim $\mathcal{F} = 0$.
- $2/\overrightarrow{f}$ est une isométrie indirecte, qui s'écrit $diag(-1, R_{\theta})$ dans une BON convenable. C'est donc une rotation-réflexion vectorielle, avec $-1+2cos\theta=Tr(\overrightarrow{f})=0$, soit $\theta\equiv\pm\frac{\pi}{3}(2\pi)$, qui est non nul. Donc f est une rotation-réflexion affine. (Autre méthode : étudier Fix(f).)
- 3/ Comme $\theta \not\equiv \pi$, l'axe $\overrightarrow{\mathcal{D}}$ de la rotation vectorielle est $Ker(\overrightarrow{f} + Id_E) = \mathbb{R}.(1, -1, -1)$. Le point $\mathcal{D} \cap \mathcal{P}$ est le point fixe Q = (2, 1, 1) de f. Donc $\mathcal{D} = Q + \overrightarrow{\mathcal{D}}$ et \mathcal{P} est le plan orthogonal à $\overrightarrow{\mathcal{D}}$ passant par Q, dont une équation est x y z = 0.
- II. 1/i) C'est que dans chacun des deux cas, et pour tout t, les deux formes linéaires sont linéraiement indépendantes. Le point (1,0,0) appartient à \mathcal{F}_t , mais pas à \mathcal{G}_t , donc les droites sont toujours distinctes. ii) $\overrightarrow{u_t} = (1-t,t,1), \ \overrightarrow{v_t} = (t,1-t,2t)$.
- 2/ Ces vecteurs sont colinéaires \Leftrightarrow les 3 mineurs d'ordre 2 de la matrice $(1-t,t,1\ //\ t,1-t,2t)$ sont nuls $\Leftrightarrow t=\frac{1}{2}:=t_0$.
- $3/\mathcal{F}_t \cap \mathcal{G}_t \neq \emptyset \Leftrightarrow$ l'application linéaire $A: \mathbb{R}^3 \to \mathbb{R}^4$ définie par les 4 formes linéaires admet Y:=(1,0,0,2t) dans son image. En échelonnant simultanément la matrice A et le vecteur Y, on voit que c'est le cas si et slt si $t=1:=t_1$. Autre méthode : considérer la matrice $B=(A,Y)\in Mat_{4,4}$. Pour $t\neq \frac{1}{2}$, son mineur NW d'ordre 3 est non nul, donc $Y\in Im(A)\Leftrightarrow det(B)=0$. Or det(B)=(2t-1)(1-t). Enfin, $t=\frac{1}{2}$ est exclu, car $\mathcal{F}_{\frac{1}{2}}$ et $\mathcal{G}_{\frac{1}{2}}$, parallèles et distinctes, ne se rencontrent pas. [Ce n'était pas demandé, mais on peut vérifier que $\mathcal{F}_1\cap\mathcal{G}_1=(1,2,2)$.]
- 4/ (On utilise à plusieurs reprises le fait que deux droites de \mathbb{R}^3 sont coplanaires si et seulement si elles sont parallèles ou concourantes.) i) Comme $M \notin \mathcal{F}_t, \mathcal{G}_t$, ce sont des plans. Ces plans sont distincts (sinon, \mathcal{F}_t et \mathcal{G}_t seraient coplanaires, donc $t = t_0$ ou t_1) et non parallèlles (sinon, ils seraient confondus, puisqu'ils ont un point M commun). Donc leur intersection est une droite $\mathcal{D}_{M,t}$, qui passe par M. ii) La réunion de (a), (b, (c) équivaut à dire que \mathcal{D} et \mathcal{F}_t d'une part, et \mathcal{D} et \mathcal{G}_t d'autre part, sont coplanaires (noter que \mathcal{D} ne peut être simultanément parallèle aux deux droites, car $t \neq t_0$). Pour \mathcal{D} issue de M, cela équivaut à dire que \mathcal{D} appartient aux deux plans $< M, \mathcal{F}_t >$ et $< M, \mathcal{G}_t >$.
- 5/<O, $\mathcal{F}_3>$, resp. <O, $\mathcal{G}_3>$, a pour équation y-3z=0, resp. 2x-z=0, donc $\mathcal{D}_{\mathrm{O},3}$ est portée par (1,6,2), qui n'est colinéaire ni à $\overrightarrow{u_3}$ ni à $\overrightarrow{v_3}$. Donc elle vérifie (a).
- III. 1/ Comme $\lambda_3 = -\lambda_1 \lambda_2$, la relation et Chasles entraı̂nent que $\lambda_1 \overrightarrow{M_3 M_1} + \lambda_2 \overrightarrow{M_3 M_2} = 0$. 2/ i) Par Chasles, $(q - r)\overrightarrow{OP} = q\overrightarrow{OC} - r\overrightarrow{OB}$. - ii) De même, $(r - p)\overrightarrow{OQ} = r\overrightarrow{OA} - p\overrightarrow{OC}$,
- et $(p-q)\overrightarrow{OR} = p\overrightarrow{OB} q\overrightarrow{OA}$. En multipliant par p,q,r et en additionnant, on trouve $\overrightarrow{0}$.

 iii) Les coefficients sont non nuls et de somme nulle. On peut donc appliquer le 1/.
- 3/ i) De 2/i), on tire $P = (0, \frac{-r}{q-r}, \frac{q}{q-r})$. De même, $Q = (\frac{r}{r-p}, 0, \frac{-p}{r-p})$ et $R = (\frac{-q}{p-q}, \frac{p}{p-q}, 0)$.
- ii) Au facteur $((q-r)(r-p)(p-q))^{-1}$ près, la matrice correspondante a pour déterminant det(0,-r,q//r,0,-p//-q,p,0)=0. On applique le critère d'alignement en coordonnées barycentriques.