Examen du 6 Janvier 2015

Durée: 2 heures

Les documents, calculatrices, portables ... ne sont pas autorisés. Les 3 énoncés sont indépendants. Les réponses devront être justifiées.

Barême approximatif (sur 75 points) : I = 21 pts, II = 33 pts, III = 21 pts.

Ι

- ${f 1^o}/$ Soient G un groupe fini, de centre Z. On suppose que G/Z est un groupe cyclique. Montrer que G est un groupe abélien.
- 2° / Soient p un nombre premier, et G un groupe d'ordre p^2 . Montrer que G est un groupe abélien. (On rappelle que tout p-groupe non trivial admet un centre non trivial.)
- 3° / Soit G un groupe non abélien d'ordre p^3 .
- i) Montrer que le centre Z de G est isomorphe à $\mathbb{Z}/p\mathbb{Z}$, et que G/Z est isomorphe à $(\mathbb{Z}/p\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$.
 - ii) Soit H un sous-groupe de G d'ordre p^2 . Montrer que H contient Z.
 - iii) Déterminer le nombre de sous-groupes de G d'ordre p^2 .
- $\mathbf{4}^{\mathbf{o}}/$ Soit G un groupe fini tel que le groupe Aut(G) soit cyclique. Montrer que G est un groupe abélien.

\mathbf{II}

Soit G un groupe non abélien d'ordre $231 = 3 \times 7 \times 11$.

- $\mathbf{1}^0$ / Montrer que G contient un unique sous-groupe H_7 d'ordre 7, et un unique sous-groupe H_{11} d'ordre 11.
- 2^{0} / Montrer que $H := H_{7}H_{11}$ est un sous-groupe de G, distingué dans G, et cyclique.
- $\mathbf{3}^0$ / Soit x un élément de G d'ordre 77. Montrer que x appartient à H, et calculer le nombre d'éléments de G d'ordre 77.
- $\mathbf{4}^0$ / Déterminer le nombre de 3-Sylows de G. Si K est l'un d'eux, montrer que G est isomorphe à un produit semi-direct, non direct, $H \rtimes_{\tau} K$ de H par K.
- $\mathbf{5}^{o}/\mathrm{i}$) Montrer qu'il n'existe pas de morphisme non trivial de K dans le groupe $Aut(H_{11})$.
 - ii) Montrer que $H_{11}K$ est un sous-groupe de G isomorphe au produit direct $H_{11} \times K$.
- $\mathbf{6}^{o}/\mathrm{i}$) Calculer le nombre d'éléments de G d'ordre 33.
 - ii) Calculer le nombre d'éléments de G d'ordre 21.

T.S.V.P

III

- Soit G un groupe d'ordre $5! = 8 \times 3 \times 5$. On suppose que G est un groupe simple, c-à-d. que $\{e\}$ et G sont les seuls sous-groupes distingués de G.
- $\mathbf{1}^{\mathbf{o}}/$ Soit $\phi: G \to \Gamma$ un morphisme de G dans un autre groupe Γ . Montrer que ϕ est ou bien trivial $(\phi(G) = \{e\})$, ou bien injectif.
- $2^{\circ}/i$) Déterminer le nombre de 5-Sylows de G.
- ii) En déduire qu'il existe un morphisme non trivial f de G dans le groupe symétrique S_6 .
- 3° / Soit G' := f(G) l'image de G dans \mathcal{S}_6 .
- i) Montrer que $G' \simeq G$, et que G' est contenu dans le sous-groupe \mathcal{A}_6 de \mathcal{S}_6 . (On pourra considérer la restriction à G' du morphisme de signature $\epsilon : \mathcal{S}_6 \to \{\pm 1\}$.)
- ii) En faisant agir G' à gauche sur l'ensemble \mathcal{A}_6/G' , montrer que G' est un sous-groupe distingué de \mathcal{A}_6 .
- 4º/ En déduire qu'il n'existe en fait aucun groupe simple d'ordre 5!.

Corrigé

- I. 1°/ (Comme $Z \triangleleft G$, G/Z est bien un groupe.) Soient \overline{x} un générateur de ce groupe cyclique, n son ordre, et x un relevé de \overline{x} à G. Alors, $\{x^i, i=0,...,n-1\}$ forme un système de représentants des classes à gauche modulo Z, et G est la réunion (disjointe) des x^iZ . Soient alors $y=x^iz$, $y'=x^{i'}z'$ ($z,z'\in Z$) deux éléments quelconques de G. Comme z et z' sont centraux, $yy'=x^ix^{i'}zz'=x^{i'+i}z'z=y'y$, et G est bien abélien.
- 2^{o} / Le centre Z de G est non trivial, donc d'ordre p^{2} (auquel cas G = Z est abélien), ou d'ordre p, auquel cas G/Z est un groupe d'ordre p, donc cyclique, et par 1/, G est abélien (finalement, Z est toujours d'ordre p^{2}).
- $3^o/$ i) Ce centre Z ne peut être d'ordre p^2 , sans quoi G/Z, d'ordre p, serait cyclique, et G serait abélien. Donc Z, non trivial, est d'ordre p (et donc isomorphe à $\mathbb{Z}/p\mathbb{Z}$). Par conséquent G/Z est d'ordre p^2 , donc isomorphe soit à $\mathbb{Z}/p^2\mathbb{Z}$, soit à $(\mathbb{Z}/p) \times (\mathbb{Z}/p)$. Le premier cas, cyclique, donne un groupe G abélien, donc on est forcément dans le 2e cas. ii) Comme Z est d'ordre premier, $H \cap Z = \{e\}$ ou Z. Dans le premier cas, ZH aurait $p \times p^2$ éléments, donc coïnciderait avec G; mais Z est central et H, d'ordre p^2 , est abélien, donc G = ZH serait abélien. Ainsi, $H \cap Z = Z$, et Z < H. iii) Les sous-groupes d'ordre p^2 contiennent Z, et sont donc en bijection avec les sous-groupes de $G/Z = (\mathbb{Z}/p) \times (\mathbb{Z}/p)$ d'ordre $p^2/|Z| = p$. Deux tels sous-groupes distincts ne se rencontrent qu'en (0,0). Or les éléments $\neq (0,0)$ de $(\mathbb{Z}/p) \times (\mathbb{Z}/p)$, qui sont au nombre de $p^2 1$, sont tous d'ordre p; chacun engendre donc un tel sous-groupe. Comme un groupe d'ordre p admet p-1 générateurs, il y a $(p^2-1)/(p-1) = p+1$ sous-groupes d'ordre p de $(\mathbb{Z}/p) \times (\mathbb{Z}/p)$, donc p+1 sous-groupes d'ordre p^2 de G.
- $4^o/$ Pour tout $g \in G$, soit $\sigma_g : x \mapsto gxg^{-1}$ l'automorphise de conjugaison par g du groupe G, et soit $\sigma : G \to Aut(G)$ l'application $g \mapsto \sigma(g) := \sigma_g$. Alors, σ est un morphisme de groupes $(\sigma_{gg'} = \sigma_g \circ \sigma_{g'})$. L'image $\sigma(G) := Int(G)$ de σ est donc un sous-groupe de Aut(G). Comme ce dernier est cyclique, Int(G) est aussi un groupe cyclique. Par ailleurs, $Ker(\sigma) = \{g \in G, \forall x \in G, gx = xg\}$ est le centre Z de G. Ainsi, $G/Z = G/Ker(\sigma) \simeq Im(\sigma) = Int(G)$ est un groupe cyclique, donc G est abélien par 1/.
- II. $1^o/$ (Dans ce qui suit, on note n_p le nb de p-Sylows de G, et ν_ℓ le nb d'élts de G d'ordre ℓ .) Comme (7, |G|/7) = 1, les ss-groupes d'ordre 7 de G sont ses 7-Sylows. De $n_7|33$ et $n_7 \equiv 1 \mod 7$, on tire $n_7 = 1$, donc G n'a qu'un ss-groupe d'ordre 7. De même, $n_{11} = 1$. $2^o/$ Comme il n'y a qu'un 7-, resp. 11-Sylow H_7 , resp. H_{11} , ils sont distingués dans G. De $H_7 \triangleleft G$, on déduit que $H := H_7 H_{11}$ est un sous-groupe de G, et comme H_{11} est aussi distingué dans G, $H_7 H_{11}$ est isomorphe au produit direct $H_7 \times H_{11}$, donc à $(\mathbb{Z}/7) \times (\mathbb{Z}/11)$, donc à $\mathbb{Z}/77\mathbb{Z}$ (lemme chinois). Ainsi, H est bien un groupe cyclique, d'ordre 77. Enfin, pour tout $g \in G$, on a $gHg^{-1} = gH_7g^{-1}gH_{11}g^{-1} = H_7H_{11}$, et $H \triangleleft G$.
- $3^o/$ Comme x est d'ordre 7×11 , x^{11} est d'ordre 7 et engendre l'unique sous-groupe H_7 d'ordre 7 de G, donc $x^{11} \in H_7$. De même, $x^7 \in H_{11}$. Par Bezout, il existe des entiers rationnels a, b tels que 11a + 7b = 1. Donc $x = (x^{11})^a.(x^7)^b \in H_7H_{11} = H$. Par conséquent, les éléments d'ordre 77 de G sont les générateurs du groupe cyclique H, d'ordre 7×11 ; ils s'identifient aux entiers $x \in [0, 76]$ premiers à 77, c-à-d. non multiples de 7 ou de 11. Il y en a $\nu_{77} = 77 11 7 + 1 = (7 1) \times (11 1) = 60$.

 $4^o/$ S'il n'y avait qu'un 3-Sylow H_3 , il serait distingué dans G, tout comme les autres p-Sylows H_7 et H_{11} , et G serait isomorphe au produit direct $H_3 \times H_7 \times H_{11}$ (cf. §8.4 du poly), donc ici abélien $(H_3 \simeq \mathbb{Z}/3\mathbb{Z})$, en contradiction avec l'hypothèse. Par conséquent, $n_3 \neq 1$. Les relations $n_3|77$ et $n_3 \equiv 1$ mod. 3 imposent alors que $n_3 = 7$. Pour tout 3-Sylow K de G, $H \cap K = \{e\}$ (car |K| = 3 est premier à 77), et |H|.|K| = |G|, donc G = HK. Mais $H \triangleleft G$, et K n'est pas distingué dans G, donc $G = H \rtimes_{\tau} K$ est un produit semi-direct, non direct, de H par K (τ est l'action de K sur H par conjugaison).

 $5^{\circ}/$ i) Le groupe $Aut(H_{11}) \simeq Aut(\mathbb{Z}/11\mathbb{Z})$ est d'ordre 10, donc l'image de tout élément de K est d'ordre 1 = pgcd(3, 10), c-à-d. est l'élément neutre $id_{H_{11}}$ de $Aut(H_{11})$, et le morphisme est trivial. - ii) Puisque $H_{11} \triangleleft G$ et $H_{11} \cap K = \{e\}$, on sait déja que $H_{11}K$ est un sous-groupe de G, isomorphe à un produit semi-direct $H_{11} \rtimes_{\tau} K$. Il s'agit de montrer que le produit est direct, autrement dit que tout élément k de K commute avec tout élément k de k commute avec tout élément k de k commute avec tout élément k de k commute k est un automorphisme de k commute k est un automorphisme de k de k dans de k de k dans de k de k dans de k de k

6°/ i) Soient $K_1, ..., K_7$ les 3-Sylows de G. Par 5/, chacun des groupes $H_{11}K_i$ est cyclique d'ordre 33. De plus, pour tout $i \neq j$, $H_{11}K_i \cap H_{11}K_j = H_{11}$, car ces groupes étant abéliens, toute relation $hk_i = h'k_j$ entraı̂ne $h^{11}k_i^{11} = h'^{11}k_j^{11}$, d'où $k_i^{-1} = k_j^{-1} = e$. Par le même raisonnement qu'en 3/, on voit que les éléments d'ordre 33 de G s'identifient aux générateurs de ces sous-groupes. Chacun en a $(11-1)\times(3-1)=20$, et ils sont distincts, puisqu'ils n'appartiennent pas à H_{11} . Finalement, $\nu_{33}=7\times20=140$. - ii) En reprenant ce qu'on a dit au début du 5/(ii), on voit que H_7K est un sous-groupe de G isomorphe à un produit semi-direct $H_7 \rtimes_\tau K$, mais cette fois-ci non direct, sans quoi G serait un groupe abélien. Le raisonnement de 3/ montre qu'un élément d'ordre 21 de G appartient à l'un des H_7K_i . Mais aucun de ces produits semi-directs n'a d'élément d'ordre 21. Donc $\nu_{21}=0$. Autre méthode : $\nu_1=1, \nu_3=7\times(3-1)=14, \nu_7=6, \nu_{11}=10, \nu_{33}=140, \nu_{77}=60$ (et $\nu_{231}=0$), donc $\nu_{21}=|G|-1-14-6-10-140-60=0$.

III. $1^{\circ}/Ker(\phi) \triangleleft G$, donc est égal à $G \iff \phi(G) = \{e\}$ ou à $\{e\} \iff \phi$ est injectif).

 $2^{o}/$ i) Comme G est simple, il ne peut avoir un seul 5-Sylow, et les relations $n_{5}|24, n_{5} \equiv 1 \mod 5$ entraînent que l'ensemble X des 5-Sylows de G a $n_{5} = 6$ éléments. - ii) Le groupe G agit par conjugaison sur X, d'où un morphisme f de G dans le groupe $\mathcal{S}_{X} \simeq \mathcal{S}_{6}$ des permutations de X. Comme G agit transitivement sur X, f ne peut être trivial.

3°/ i) Comme f n'est pas trivial, il est injectif et $G' \simeq G$ est encore un groupe simple d'ordre 5!. La restriction ϵ' de ϵ à G' est un morphisme de G' vers un groupe à 2 éléments. Comme 5! > 2, il ne peut être injectif, donc il est trivial et $G' = Ker(\epsilon') < Ker(\epsilon) = \mathcal{A}_6$.

- ii) L'action de G' sur l'ensemble \mathcal{A}_6/G' , qui a 6!/2.5! = 3 éléments, est donnée par $(g', aG') \mapsto g'aG'$ et fournit un morphisme ϕ de G' dans \mathcal{S}_3 . Comme 5! > 3!, ce morphisme est trivial. Ainsi, pour tout $g' \in G'$, $a \in \mathcal{A}_6$, on a g'aG' = aG', d'où $a^{-1}g'a \in G'$ et $G' \triangleleft \mathcal{A}_6$.

4°/ Le groupe \mathcal{A}_6 est simple (cf. §8.5 du poly). Il ne peut donc admettre de sous-groupe distingué G' d'ordre 5! < 6!/2 (et > 1), et l'hypothèse de l'énoncé n'est jamais satisfaite.