Examen du 15 Décembre 2011

Durée: 3 heures

L'usage du polycopié du cours et des feuilles d'exercices est autorisé. Les 3 énoncés sont indépendants. Dans chacun, K désigne un corps de caractéristique $\neq 2$. On accompagnera la rédaction du problème I.2°/ d'une figure.

Ι

Soient Δ une droite projective sur le corps K, et φ une homographie de Δ . On dit que φ est une *involution* si $\varphi \circ \varphi = id_{\Delta}$, mais $\varphi \neq id_{\Delta}$. Pour tout point P de Δ , d'image $\varphi(P) = P'$, on a alors $\varphi(P') = P$, et on dit que les points P et P' sont échangés par l'involution φ .

- $\mathbf{1}^o/$ i) Soit f une homographie de $\mathbb{P}_1(K) \simeq K \cup \{\infty\}$ telle que $f(0) = \infty$ et $f(\infty) = 0$. Montrer qu'il existe $\alpha \in K^{\times}$ tel que $f(z) = \frac{\alpha}{z}$, et que f est une involution. Que peut-on dire du couple de points $\{1,\alpha\}$?
- ii) Soit φ une homographie d'une droite projective Δ , et P_1, P_2 deux points distincts de Δ . On suppose que $\varphi(P_1) = P_2$ et $\varphi(P_2) = P_1$. Montrer que φ est une involution de Δ .
- iii) Soient P_1, P_2, Q_1, Q_2 quatre points distincts de Δ . Montrer qu'il existe une unique involution φ de Δ telle que $\varphi(P_1) = P_2$ et $\varphi(Q_1) = Q_2$.
- iv) Soient P_1, P_2, Q_1, Q_2 quatre points distincts de Δ . Déduire de (iii) l'égalité des birapports $[P_1, P_2, Q_1, Q_2] = [P_2, P_1, Q_2, Q_1]$.
- 2^{o} / On suppose désormais que Δ est une droite du plan projectif, dans lequel on a tracé un quadrilatère (= un repère projectif) ABCD, dont Δ coupe les côtés et diagonales en six points distincts $X_1 \in (AB), Y_1 \in (AD), Z_1 \in (DB), X_2 \in (CD), Y_2 \in (CB), Z_2 \in (CA)$.

Soit φ l'unique involution de Δ qui échange X_1 avec X_2 , et Y_1 avec Y_2 (voir la question 1^o /iii). On se propose de montrer que φ échange Z_1 avec Z_2 .

- i) Montrer que $\varphi(Z_1) = Z_2$ si et seulement si $[Y_1, Y_2, X_1, Z_1] = [Y_2, Y_1, X_2, Z_2]$.
- ii) Montrer que $[Y_1, Y_2, X_1, Z_1] = [Y_1, F, A, D]$, où $F = (BY_2) \cap (AD)$.
- iii) Montrer que $[Y_2, Y_1, X_2, Z_2] = [F, Y_1, D, A]$, et conclure.
- 3^{o} / On interprète dans cette question le plan ambiant comme le complété projectif de l'espace vectoriel euclidien \mathbb{R}^{2} , et Δ comme sa droite à l'infini. On suppose que $(DC) \perp (AB)$ et que $(BC) \perp (AD)$.
- i) Montrer que la relation d'orthogonalité entre les droites du plan euclidien définit une involution φ de la droite à l'infini Δ , qui échange X_1 avec X_2 , et Y_1 avec Y_2 .
- ii) D'après le $2^o/$, on a donc $\varphi(Z_1)=Z_2$. En déduire que $(AC)\perp(BD)$. Quel énoncé classique sur les hauteurs du triangle ABD a-t-on ainsi retrouvé ?

 \mathbf{II}

Soit Γ la quadrique de l'espace projectif $\mathbf{P}_3(K)$ définie par la forme quadratique en quatre variables $q(X_0, X_1, X_2, X_3) = X_0 X_1 - X_2 X_3$.

- $\mathbf{1}^0$ i) Calculer le rang de q. En déduire que Γ n'a pas de point singulier.
 - ii) Donner une équation du plan tangent $\Pi := T_{P_0}(\Gamma)$ à Γ au point $P_0 = (0:1:0:2)$.

- iii) Montrer par le calcul que $\Pi \cap \Gamma$ est la réunion de deux droites D_1, D'_1 concourantes, et donner un système d'équations pour chacune de ces droites.
- iv) Soit D_2 la droite définie par le système d'équations $\{X_1 = 0, X_3 = 0\}$, qui est contenue dans Γ . Montrer que D_2 ne rencontre pas l'une des droites $\{D_1, D_1'\}$, mais rencontre l'autre droite en un point Q_0 que l'on déterminera.

Dans les questions suivantes, les calculs ne sont plus nécessaires. On utilisera simplement le fait que Γ est une quadrique lisse et qu'elle contient deux droites D_1, D_2 non concourantes.

- $2^0/$ i) Dire brièvement pourquoi un sous-espace vectoriel de K^4 totalement isotrope pour q est de dimension ≤ 2 . En déduire qu'aucun plan (projectif) de $\mathbf{P}_3(K)$ n'est contenu dans Γ .
- ii) Soit Π un plan de $\mathbf{P}_3(K)$. Montrer que $C = \Gamma \cap \Pi$ est une conique de Π , et que si C contient une droite, alors C est la réunion de deux droites (éventuellement confondues).
- iii) Soient P un point de Γ , et D une droite passant par P. Montrer que si D est contenue dans Γ , alors elle est contenue dans le plan tangent $T_P(\Gamma)$ à Γ en P. En déduire que Γ contient au plus deux droites passant par P.
- 3^0 On va ici construire une droite D_3 contenue dans Γ et ne rencontrant ni D_1 ni D_2 .
- i) Soit P_1 un point de D_1 . Montrer qu'il existe un point P_2 de D_2 , unique, tel que la droite (P_1P_2) soit contenue dans Γ .
- ii) Soit P un point de Γ hors de D_1, D_2 et de (P_1P_2) . Montrer qu'il existe un point P' de (P_1P_2) unique tel que $(PP') \subset \Gamma$, et que $D_3 := (PP')$ répond à la question.

III

Soit X une matrice carrée d'ordre $n \geq 2$, et soit k un entier compris entre 1 et n-1. On désigne par $\mathcal{S}(k,n)$ l'ensemble des parties à k éléments de l'ensemble [1,...,n]. Pour tout $I \in \mathcal{S}(k,n)$, on note $I^{\sharp} \in \mathcal{S}(n-k,n)$ le complémentaire de I dans [1,...,n]. Si I,J sont tous les deux dans $\mathcal{S}(k,n)$ (ou tous les deux dans $\mathcal{S}(n-k,n)$), on note $X_{I,J}$ le déterminant mineur de X dont les lignes sont indexées par I, et les colonnes par J. On fixe $J = [1,...,k] \in \mathcal{S}(k,n)$, d'où $J^{\sharp} = [k+1,...,n] \in \mathcal{S}(n-k,n)$, et on se propose d'établir la formule

$$det(X) = \Sigma_{I \in \mathcal{S}(k,n)} \varepsilon_I X_{I,[1,\dots,k]} X_{I^\sharp,[k+1,\dots,n]},$$

où $\varepsilon_I = \pm 1$, suivant une règle que l'on déterminera.

- $\mathbf{1}^0$ / On suppose que k=1. Quelle règle classique la formule recherchée exprime-t-elle alors? Donner dans ce cas, et sans justification, la règle de calcul des ε_I .
- $\mathbf{2}^0$ / Soient $v_1, ..., v_n$ les vecteurs colonnes de X, vus comme des vecteurs de $V := K^n$ relativement à la base canonique $\{e_1, ..., e_n\}$. Donner les coordonnées de $v_1 \wedge ... \wedge v_k$ (resp. de $v_{k+1} \wedge ... \wedge v_n$) dans la base canonique $\{e_I, I \in \mathcal{S}(k, n)\}$ de $\wedge^k V$ (resp. la base canonique $\{e_{I'}, I' \in \mathcal{S}(n-k, n)\}$ de $\wedge^{n-k}(V)$).
- $\mathbf{3}^0$ / On rappelle que $(v_1 \wedge ... \wedge v_k) \wedge (v_{k+1} \wedge ... \wedge v_n) = v_1 \wedge ... \wedge v_n$ dans $\wedge V$. Conclure.

Corrigé

I-1°/ i) L'homographie f est de la forme $f(z) = \frac{az+b}{cz+d}$, et les conditions $f(0) = \infty, f(\infty) = 0$ imposent d = 0, a = 0, d'où $bc \neq 0$, et $f(z) = \frac{\alpha}{z}$, avec $\alpha = \frac{b}{c} \in K^{\times}$. Alors, f(f(z)) = z, donc f est une involution, qui échange les points (éventuellement confondus) $\{1, \alpha\}$. — ii) Soit $h : \Delta \to \mathbb{P}_1(K)$ une homographie telle que $h(P_1) = \infty, h(P_2) = 0$. Alors, l'homographie $f = h \circ \phi \circ h^{-1}$ de $\mathbb{P}_1(K)$ échange 0 et ∞ , donc est une involution d'après (i). Idem donc pour φ , qui lui est conjuguée — iii) Soit $h : \Delta \to \mathbb{P}_1(K)$ l'unique homographie telle que $h(P_1) = \infty, h(P_2) = 0, h(Q_1) = 1$, et soit $\beta \neq 0, 1, \infty$ le nombre $h(Q_2)$. En conjuguant par h, on voit que l'existence et l'unicité de φ équivaut à l'existence et l'unicité d'une homographie f de $\mathbb{P}_1(K)$ échangeant 0 avec ∞ , et 1 avec β . La première condition équivaut à imposer $f(z) = \frac{\alpha}{z}$ pour un $\alpha \in K^{\times}$, et la seconde est alors réalisée si et seulement si $\alpha = \beta$. Il y a donc une unique telle f, donc une unique involution φ de Δ répondant à la question. — iv) $[P_1, P_2, Q_1, Q_2] = [\varphi(P_1), \varphi(P_2), \varphi(Q_1), \varphi(Q_2)]$.

 $2^o/$ i) La définition du birapport et son invariance sous arphi montrent que $arphi(Z_1) \,=\, Z_2 \,\Leftrightarrow\,$ $[Y_1,Y_2,X_1,Z_1] = [\varphi(Y_1),\varphi(Y_2),\varphi(X_1),Z_2], \text{ qui \'equivaut \`a } [Y_1,Y_2,X_1,Z_1] = [Y_2,Y_1,X_2,Z_2].$ - ii) La perspective de centre B de la droite Δ vers la droite (AD) est une homographie qui envoie Y_1 sur Y_1 , Y_2 sur F, X_1 sur A et Z_1 sur D. – iii) La perspective de centre C de la droite Δ vers la droite (AD) est une homographie qui envoie Y_2 sur $F,\,Y_1$ sur $Y_1,\,X_2$ sur D et Z_2 sur A. En appliquant 1/iv, on obtient $[Y_1, Y_2, X_1, Z_1] = [Y_2, Y_1, X_2, Z_2]$, d'où $\varphi(Z_1) = Z_2$. $3^{o}/i$) [Dans l'énoncé, il fallait lire : l'espace affine (au lieu de : vectoriel) euclidien \mathbb{R}^{2} .] Dans le repère orthogonal usuel de \mathbb{R}^2 , une droite D_m de pente $m \in K$ (resp. $m = \infty$) admet pour projectivisée une droite d'équation Y = mX + bT (resp. X + bT = 0), qui coupe la droite à l'infini $\Delta: (T=0)$ au point $P_m=(1:m:0)$ (resp. (0:1:0)). Comme D_m et $D_{m'}$ sont perpendiculaires si et slt si mm' = -1 (avec la convention $0.\infty = \infty.0 = -1$), la relation d'orthogonalité revient à dire que les points P_m et $P_{m'}$ sont échangés par l'application $\varphi(m) = \frac{-1}{m}$, qui est bien une homographie involutive de la droite projective $\Delta \simeq \mathbb{P}_1(\mathbb{R})$. Ici, $(AB) \cap \Delta = X_1$ et $(DC) \cap \Delta = X_2$ seront donc échangés par φ ; de même pour $(BC) \cap \Delta = Y_2$ et $(AD) \cap \Delta = Y_1$. – ii) Par conséquent, $Z_1 = (DB) \cap \Delta$ et $Z_2 = (CA) \cap \Delta$ sont échangés par φ , et les droites (DB) et (CA) sont perpendiculaires. Autrement dit, les trois hauteurs du triangle ABD sont concourantes (en son orthocentre C).

II-1°/i) La matrice représentative de la forme bilinéaire b attachée à q est $\frac{1}{2}$ $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$,

dont le déterminant est non nul. Donc q est de rang 4. Comme b est non dégénérée, la quadrique Γ est lisse. – ii) L'équation du plan tangent est $\Sigma_{i=0,\dots,3} \frac{\partial q}{\partial x_i}(0,1,0,2).X_i=0$, c'est-à-dire $b\left((0,1,0,2),(X_0,X_1,X_2,X_3)\right)=0$, soit ici : $X_0-2X_2=0$. – iii) $\Pi\cap\Gamma$ est défini par le système $X_0-2X_2=0,X_0X_1-X_2X_3=0$, qui équivaut au système $X_0=2X_2,X_2(2X_1-X_3)=0$, dont le lieu des zéros dans \mathbb{P}_3 est la réunion des droites $D_1':\{X_0-2X_2=0,2X_1-X_3=0\}$ et $D_1:\{X_0=0,X_2=0\}$, qui concourent au point P_0 . – iv) Les 4 équations définissant $D_1\cap D_2$ n'ayant que (0,0,0,0) comme solution, $D_1\cap D_2=\emptyset$. Celles qui définissent $D_1'\cap D_2$ ont pour solution $(2x,0,x,0),x\in K$, qui correspond au point $Q_0=(2:0:1:0)$ de $\mathbb{P}_3(K)$.

 $2^o/$ i) Si $W \subset K^4$ est totalement isotrope, $W \subset W^{\perp}$. Comme b est non dégénérée, $dimW + dimW^{\perp} = 4$, donc $dim(W) \leq 2$. Un plan projectif $\Pi = \mathbb{P}(W)$ correspond à un sous-espace

vectoriel W de dimension 3 de K^4 , et est contenu dans Γ si et slt si W est totalement isotrope pour q, ce que sa dimension interdit. - ii) Comme Γ n'est pas la réunion de deux plans, la restriction de q à W est non nulle, et est donc une forme quadratique (en 3 variables), qui définit une conique $\Gamma \cap \Pi = C$ du plan projectif Π . La classification des coniques montre que si C contient une droite D, c'est la réunion de deux droites (ou une droite double) de Π . - iii) Soit V (resp. L) le plan (resp. la droite) de K^4 telle que $D = \mathbb{P}(V)$ (resp. $P = \mathbb{P}(L)$). Alors, $T_P(\Gamma)$ est le plan projectif attaché à l'orthogonal L^\perp de L relativement à b. Comme $D \subset \Gamma$, $V = V^\perp$ est totalement isotrope maximal, et comme $L \subset V$, on a $V^\perp \subset L^\perp$. Ainsi, $D = \mathbb{P}(V^\perp)$ est contenu dans $\mathbb{P}(L^\perp) = T_P(\Gamma)$. Enfin, si Γ contenait 3 droites passant par P, elle seraient contenues dans l'intersection de Γ avec le plan $\Pi = T_P(\Gamma)$, ce qui contredit (ii).

 $3^o/$ i) Pour tout point $P_2 \neq P_1$ de Γ , la droite (P_1P_2) est contenue dans Γ si et seulement P_2 appartient au plan tangent $\Pi_1 = T_{P_1}(\Gamma)$ (on a vu le sens direct au 2/iii; inversement, si $P_2 \in T_{P_1}(\Gamma)$, alors, $b(P_1, P_2) = 0$, et comme $q(P_1) = q(P_2) = 0$, tous les points de (P_1P_2) annulent q). Par ailleurs, Π_1 , qui contient D_1 d'après 2/iii, ne contient pas D_2 , sans quoi les droites D_1 et D_2 seraient coplanaires, donc concourantes. Donc le plan Π_1 et la droite D_2 de $\mathbb{P}_3(K)$ se rencontrent en un point $P_2 := T_{P_1}(\Gamma) \cap D_2$, qui est l'unique solution à la question. – ii) De même, pour tout point $P' \neq P$ de Γ , la droite (PP') est contenue dans Γ si et seulement P' appartient au plan tangent $T_P(\Gamma)$. Ce plan ne peut pas passer par le point P_1 , sans quoi $(P_1P), (P_1P_2), D_1$ seraient trois droites issues de P_1 , distinctes au vu des hypothèses sur P, et contenues dans Γ , en contradiction avec 2/iii. Il ne peut de même pas passer par P_2 . Donc $T_P(\Gamma) \cap (P_1P_2)$ est un point P', distinct de P_1 et P_2 , et c'est l'unique point de (P_1P_2) tel que $(PP') \subset \Gamma$. Il reste à voir que $D_3 := (PP')$ ne rencontre pas D_1 (répéter l'argument pour D_2). Puisque $P' \neq P_1$, les droites distinctes D_3, D_1 et (P_1P_2) seraient dans le cas contraire situées dans un même plan, en contradiction avec 2/ii.

III-1°/ Pour k=1, la formule exprime le développement du déterminant suivant la première colonne de X. Les parties $I \in \mathcal{S}(1,n)$ sont les indices i=1,...,n, et la règle de signes est $\varepsilon_i = (-1)^{i+1}$.

 $2^o/$ D'après le cours, IV, §2, Théorème 2, les $k\text{-formes}\ e_I^*=e_{i_1}^*\wedge\ldots\wedge e_{i_k}^*, I=(i_1<\ldots< i_k)\in\mathcal{S}(k,n)$ forment la base duale de la base $\{e_I=e_{i_1}\wedge\ldots\wedge e_{i_k}\}$ de \wedge^kV . Comme $v_j=\Sigma_{i=1,\ldots,n}x_{ij}e_i$ pour tout $j=1,\ldots,n,$ la coordonnée de $v_1\wedge\ldots\wedge v_k$ sur e_I est, pour tout $I\in\mathcal{S}(k,n)$, donnée par $e_{i_1}^*\wedge\ldots\wedge e_{i_k}^*(v_1\wedge\ldots\wedge v_k):=\det(e_{i_\ell}^*(v_j);1\leq\ell,j\leq k)=\det(x_{i_\ell,j},1\leq\ell,j\leq k)$ e $k)=X_{I,[1,\ldots,k]}$. Ainsi, $v_1\wedge\ldots\wedge v_k=\Sigma_{I\in\mathcal{S}(k,n)}$ $X_{I,[1,\ldots,k]}e_I$. De même, $v_{k+1}\wedge\ldots\wedge v_n=\Sigma_{I'\in\mathcal{S}(n-k,n)}$ $X_{I',[k+1,\ldots,n]}e_{I'}$.

 $\begin{array}{lll} 3^o/ & (v_1 \wedge \ldots \wedge v_k) \wedge (v_{k+1} \wedge \ldots \wedge v_n) = \sum_{I \in \mathcal{S}(k,n), I' \in \mathcal{S}(n-k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sum_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[1,\ldots,k]} X_{I',[k+1,\ldots,n]} e_I \wedge e_{I'} = \sup_{I \in \mathcal{S}(k,n)} X_{I,[k+1,\ldots,k]} X_{I',[k+1,\ldots,k]} e_{I',[k+1,\ldots,k]} e_{I',[k+1,\ldots,k]}$