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On a formula of Shimura and Taniyama :
a Note on the Note [BM].

Abstract : in a recent work with David Masser, we proved a formula concerning the order
of certain subgroups of torsion points of complex abelian varieties (see the “Proposition”
of [BM], §3). We here show that this proposition holds in any characteristic, and for all

simple abelian varieties X whose endomorphism ring is a maximal order.

Updated abstract : 1 recently realized that the formula in question is established in the
same degree of generality in the classical work [ST], see §7.2, Proposition 10. Furthermore,
various methods of proof later appear in the literature, albeit in special cases: see [W], [G]
and the Remark below. The present argument is still different, and it seems not totally

useless to make it available here.

1. Introduction

Let k£ be an algebraically closed field of arbitray characteristic, and let X be an
arbitrary abelian variety defined over k. Denote by A = End(X) the ring of endomorphisms
of X over k, put A = A® Q, and write d (resp. g) for the rank of A over Z (resp. the
dimension of X). For any left ideal I of A (by which we mean, as in [CR], line before
(26.13), a full left ideal: one such that I ® Q = A), the abstract group A/I is finite, of
order [A : I], while the “I-torsion of X”

X[I] .= NperKera

is a finite subgroup scheme of X, whose order will be denoted by #X[I]. This coincides
with the order of the abstract group X[I|(k) := {z € X(k),Va € I,ax = 0} when k has

characteristic 0, but must in general be viewed as the rank of the finite k-algebra Ox/z).

(New) Proposition: Assume that A is a simple Q-algebra, and that A = End(X) is a
mazximal order in A. For any (full) left ideal I of A, one has

#X[I] = [A : 1?9/,

In the situation of [BM], take X = XZF, where X, is simple of dimension gy and

O = EndXy is a maximal order of Z-rank dy. Then, A = Maty(O) is a maximal order
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in a simple algebra A. For a finite ¢ € Hom(XE, X}V), represented by a matrix B in
Matnr(O), let I be the left ideal of A generated by the various LL-matrices extracted
from B. Then, Ker¢ = X[I], while A/I ~ (OY/ONB)L. From the NP above, we get
deg ¢ = #Kerg = [OL : ON B|E-200L/doL* — [OL JON B]290/d0  Therefore, the Proposition
of [BM], §3, also holds in finite characteristic, under the general form alluded to after its
enunciation. Along the lines of [BM] (whose §2 was already set in a general framework),
this provides an extension to all characteristics of Theorem 5.1 of [LR2], where the authors
compared their newly defined O-heights with degrees in the context of complex abelian

varieties.

Remark : the formula above is easily seen to be the same as [ST], §7.2, Prop. 10 (bearing
in mind that at that time, “principal” meant “maximal order”, and that the notion of
I-transform takes into account degrees of inseparability). The formula was reproved in
[W], Theorem 3.15 () under the assumption that the base field k is finite, building on
Serre’s point of view on [-transforms (see [S], beginning of §2, as well as the appendix to
[C]). The formula is also proven in [G], at least in the commutative case, but now in the

setting of group schemes.

In fact, we shall establish the following (apparent) generalization of the New Proposi-
tion. For all positive integers n, consider A™ as a free left A-module, which we identify with
Hom(X™,X). In other words, we view the elements A = (A, ..., A,) of A™ as row vectors
(on which the matrix ring M, (A) acts on the right), while the elements (z1,...,z,)" of
X" are viewed as column vectors (on which End(X"™) ~ M,,(A) acts on the left). A
lattice I in A™ is a left A-submodule of A™ such that I ® Q = A™. For such a lattice,
X" := NyerKer(A: X™ — X) is a finite subgroup scheme of X™, which satisfies:

(Lattice) Proposition: Same assumptions as in NP. For any n > 0 and any lattice I in
A", one has: #X"[I] = [A" : T]?9/4.

This can actually be viewed as a corollary of the NP, applied to the abelian variety
X = X", and to the left ideal I of A := End(X") = Mat,,(A) formed by the matrices
all of whose rows lie in I. Indeed, X[I] = X"[I], [A : I] = [A" : I]* and § := dimX =

ng, d := rkzA = n2d. The NP then implies #X"[T] = #X[I] = [A : []28/4 = [A" : I]20/9,

(1) Notice a misprint in this reference : the reduced norm should be raised to the power
m = 2g/ed, where d = [A : Z] = €24.



2. Restating the Proposition

The notation X™[I] does not make it clear that the ambiant free module A™ in which
I lives is already identified to Hom (X", X). For instance, a change of basis of A would
provide an isomorphic, but different, subscheme X™[I]. More generally, the following state-
ment shows that its isomorphism class, hence its order, depends only on the isomorphism
class of the finite (left) A-module A™/I (by a finite A-module, we mean one of finite car-

dinality)

Lemma 0: let I C A"™ and U C A™ be two lattices such that the (finite) A-modules
A"/T and A™ /U are isomorphic. Then, the finite group schemes X™[I| and X™[U] are

1somorphic.

Proof : wlog, assume n = m+m’ with m’ > 0, and consider U’ = U ® A™ in A" @A™ =
A™. Clearly, A" /U ~ A" /U’ and X™[U] ~ X"[U’]. So, we may assume that n = m. The
isomorphism between A™/I and A™/U, and its inverse, are then given by two elements
B,C in Mat,,(A) satisfying IB ¢ U,UC C I, and BC = 1,, mod I, CB = 1,, mod
U, where the tilde has the same meaning as some lines above. Consider the isogenies
Bz, zn)t = Clag, e zn)t v (Y1y s Yn)t — B(Y1, -, yn)t of X™. Then, 3 maps
X™]I] into X™[U], v maps X"[U] into X™[I], and v( (resp. (7) induces the identity on
X", (resp. on X™[U]). They therefore induce isomorphisms between these subgroups

schemes.

Conversely, let F' be a finite A-module. Looking at sets of generators of F, we may
write it, in many ways, as a quotient A™/I, where I is a lattice in A", but by Lemma 0,
the resulting finite group schemes X™[I] will be all isomorphic. Their order #X"[I] may
therefore be denoted by d(F'). Similarly, the indices [A™ : I] are all equal to the cardinality
|F'| of F; we may therefore set i(F) := [A™ : I]29/¢. We must now prove

(*) Proposition : for all finite A-modules F, the quantities just defined above satisfy
d(F) = i(F). (%)

As in Lemmas 4 and 5 of [BM], from which these notations are borrowed (with a slighlty
different meaning), the proof will consist in a reduction to the case F' = A/A~y, reminiscent

of the reduction to diagonal matrices which these lemmas enable (see also [LR1]).

We close these preparations by collecting the results on A-modules (always on the left

in what follows) and on finite group schemes which will be needed for the proof.
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MO 1: maximal orders are hereditary, hence any lattice in A™ is a direct factor of a free
A-module. [Cf. [CR], Prop. 26.12 (ii).]

MO 2: for any maximal two sided ideal p of A, A/ is a simple artinian ring [cf. [CR], Ex.
26.4]. In particular, there exists a unique isomorphism class of simple A /p-modules (equiv-
alently, of simple A-modules annihilated by p); we shall denote by S(p) a representative
of this class. [See [CR], Ex. 3.2 and 3 for a description of these rings.]

MO 3: norm-form principle for the simple algebra A; cf. [M], p. 179, Lemma.

GS 1: if 0 = A — B — C — 0 is an exact sequence of finite commutative group schemes
over k, then #B = #A x #C. | See [MG], Ex. 4.4, or [M], p. 121, Thm. 2.]
GS 2: let f € A = End(X) be an isogeny of the abelian variety X, set X[5] := X[AfJ],
and let I be a left submodule of A. Then, the restriction 8 of 3 to X[I3] induces an exact
sequence 0 — X|[3] — X[If] — X[I] — 0 of subgroup schemes of X. Indeed, the isogeny
$: X — X is epimorphic, so that 3 : X[I] — X[I], which is deduced from 3 by the base
extension X[I] — X, is again epimorphic, while Ker(3) coincides with Ker(3), since they
are both defined by base extension to the zero section. Conclude by [M], p. 118, Cor. 1.
We shall need GS2 only when [ is a full ideal, i.e. when the involved subgroup schemes

are finite. In this case, we deduce from GS1 that #X[I5] = #X[I] x #X[3].

3. Proof of the (*) Proposition

Step 1
We first show how to reduce the claim (*) to the case of a simple finite left A-module
F. Let
0—-F—-F—-G—0

be an exact sequence of finite left A-modules. Then |F| = |E|.|G| (hence i(F) = i(E)i(G)),
and it suffices to check that the LHS of () shares the same multiplicative property.

Write F' as a quotient A™/I of a free left module by a left sub-module I. Then,
E = J/I for a left sub-module J D I, and G = A™/J. Since A is hereditary, J is by MO1
a direct factor of a free A-module N ~ A™, and there exists a A-module J' C A" with
n+n' = m such that N = J @ J. Let M be the big A" ® A" = A™ in which J & J’
naturally lives, and let B € Mat,,,(A) be the matrix whose rows form a basis of N in
terms of a basis of M; in other words, N = M B, where we write the elements of M = A™
as row vectors. For rank reasons, B is invertible in Mat,,,,,(A) and the endomorphism
B:X™ — X" (21,....;xm) — B(x1,...,x,)" attached to B is an isogeny of X™.

The inclusions of left A-modules I®J' ¢ J®J = MB C A ® A" = M (which
are all lattices in M) ensures the existence of a lattice U := (I J')B~! in M such that
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UB =1&J. Now, in view of GS2, the isogeny  of X" induces on X" [Uf] an exact

sequence of finite subgroup schemes of X:
0— X"[p] — X™[UP] - X™[U] — 0.

By definition, the first term is the group scheme X™[J & J'] ~ X"[J] x X" [J’], hence
has order equal to d(G).d(F"), where we set F = A" /J'; the second one is X™[I & J'] ~
X" x X™'[J], whose order is d(F).d(F'); and since A"/U = M/U ~ MB/UB =
JaJ)/dIaJ) ~J/I =E, the third one has order d(F). By GS1, we therefore have:
d(F)d(F'") = d(E)d(G)d(F"), i.e. d(F) = d(E)d(G), as was to be checked.

Step 2

Let now F' be a simple finite left A-module. By [CR], proof of (26.19), there exists a
maximal two-sided ideal p of A such that pF' = 0. We can therefore view F' as a simple
left module over the ring A/p. But this is a simple artinian ring, which by MO2 admits
a unique isomorphism class, say F' = S(gp), of simple left modules. In particular, if ¢ is
any left A-module admitting a descending chain of submodules whose successive quotients
are annihilated by g, then, it admits a (Jordan-Holder, see [CR], Prop. 3.9]) composition
series whose quotients are all isomorphic to S(p) (as modules over A, or over A/p, cela
revient au méme). We are going to check (x) not on F' itself, but on a conveniently chosen
module ® of this type. By the multiplicativity of both sides of (%) in exact sequences from
Step 1, this is will ensure that F itself satisfies ().

The ® we choose is A/p°", where h is the class number of the number field K = Z(A),
and e is the unique integer such that the prime ideal P = RNp of R = Oy satisfies AP = p°
(cf. [CR], Exercise 26.5; as in [CR], I here denote by R the ring of integers of the center K
of the simple Q-algebra A). In particular, p°" is a principal two-sided ideal Ay, with v € R,
and ® = A/A~y. On the other hand, ® admits the descending chain {p*/p°",i =0, ..., eh},
whose quotients p’/p'*! are anihilated by p. Refining this filtration gives a composition

series with (say ¢) simple factors, all isomorphic to S(p) = F. In particular,

and it remains to check (%) on ® = A/A~.

Step 3
For this principal ideal case I = A7y, we appeal as in [LR1,2] and [BM] to the standard

MO 3 : the function o € A — [A : Aa] extends to a norm form on A with degree of
homogeneity equal to d, while by [M], p. 175, the function a € A — deg(a) = #X|q]
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extends to a norm form on A of degree of homogeneity equal to 2g. Since A is a simple
algebra, we obtain
#X[a] = [A: Aa]?9/1

for all o € A.

Applying this to our &« = v € R, we finally deduce that ® does satisfy d(®) = i(P),
and the proof of () is completed. (See “Question” after the references for another possible

way of applying MO3.)
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Question on non maximal orders

Is it true that for any (non necessarily maximal) order A = End(X) in a simple

Q-algebra A, any n > 0, and any lattice I in A™, one would always have
[A™ . T]29/4 < X™[1] 7

(Probably, a divisibility relation would then always occur.)

If so, a much simpler proof of the LP could be given, as follows: if A is a maximal
order, I will admit by MO1 a supplement I' C A™ such that N := I®T is a free submodule
of rank m = n+n’ of M := A" ® A" = A™. Write N = M B for some B € Mat,, m(A) in
a manner similar to Step 1, and interpret B as an isogeny (3 of X™. Clearly, we then have
#XM[B] = #X"[I] x #X™ [I], while [A" : A™B] = [A™ : I] x [A" : I']. Now, repeating
the NP = LP trick, we have [A™ : A™BJ?9/% = [Matpm(A) : Mat,,(A)B]?9/4m =
[End(X™) : End(Xm)ﬁ]ng/dmz, which, by the (easy) Step 3, applied to X™, is equal to
#X™[3]. Consequently,

[A™ 2974 5 [A™ 12974 = X7 [T] x #X7 [1].

If the inequalities (?) hold for the two lattices I and I’, this relation will force both to

become equalities !

See [BM] and [LR2| for counterexamples to the equality in the non maximal case.
Note, however, that since the deduction of Theorem 5.1 of [LR2] from the method of [BM],
§5, uses the duality Theorem 7.1 of [LR2], it is not clear whether Inequality (7) would

imply a similar “height > degree” inequality in [LR2] for non maximal orders (recall that

Afin() = (degd)™").



