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On a formula of Shimura and Taniyama :

a Note on the Note [BM].

Abstract : in a recent work with David Masser, we proved a formula concerning the order
of certain subgroups of torsion points of complex abelian varieties (see the “Proposition”
of [BM], §3). We here show that this proposition holds in any characteristic, and for all
simple abelian varieties X whose endomorphism ring is a maximal order.

Updated abstract : I recently realized that the formula in question is established in the
same degree of generality in the classical work [ST], see §7.2, Proposition 10. Furthermore,
various methods of proof later appear in the literature, albeit in special cases: see [W], [G]
and the Remark below. The present argument is still different, and it seems not totally
useless to make it available here.

———

1. Introduction

Let k be an algebraically closed field of arbitray characteristic, and let X be an
arbitrary abelian variety defined over k. Denote by Λ = End(X) the ring of endomorphisms
of X over k, put A = Λ ⊗Q, and write d (resp. g) for the rank of Λ over Z (resp. the
dimension of X). For any left ideal I of Λ (by which we mean, as in [CR], line before
(26.13), a full left ideal: one such that I ⊗ Q = A), the abstract group Λ/I is finite, of
order [Λ : I], while the “I-torsion of X”

X[I] := ∩α∈IKerα

is a finite subgroup scheme of X, whose order will be denoted by #X[I]. This coincides
with the order of the abstract group X[I](k) := {x ∈ X(k),∀α ∈ I, αx = 0} when k has
characteristic 0, but must in general be viewed as the rank of the finite k-algebra OX[I].

(New) Proposition: Assume that A is a simple Q-algebra, and that Λ = End(X) is a
maximal order in A. For any (full) left ideal I of Λ, one has

#X[I] = [Λ : I]2g/d.

In the situation of [BM], take X = XL
0 , where X0 is simple of dimension g0 and

O = EndX0 is a maximal order of Z-rank d0. Then, Λ = MatLL(O) is a maximal order
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in a simple algebra A. For a finite φ ∈ Hom(XL
0 , XN

0 ), represented by a matrix B in
MatNL(O), let I be the left ideal of Λ generated by the various LL-matrices extracted
from B. Then, Kerφ = X[I], while Λ/I ' (OL/ONB)L. From the NP above, we get
deg φ = #Kerφ = [OL : ONB]L.2g0L/d0L2

= [OL/ONB]2g0/d0 . Therefore, the Proposition
of [BM], §3, also holds in finite characteristic, under the general form alluded to after its
enunciation. Along the lines of [BM] (whose §2 was already set in a general framework),
this provides an extension to all characteristics of Theorem 5.1 of [LR2], where the authors
compared their newly defined O-heights with degrees in the context of complex abelian
varieties.

Remark : the formula above is easily seen to be the same as [ST], §7.2, Prop. 10 (bearing
in mind that at that time, “principal” meant “maximal order”, and that the notion of
I-transform takes into account degrees of inseparability). The formula was reproved in
[W], Theorem 3.15 (1) under the assumption that the base field k is finite, building on
Serre’s point of view on I-transforms (see [S], beginning of §2, as well as the appendix to
[C]). The formula is also proven in [G], at least in the commutative case, but now in the
setting of group schemes.

In fact, we shall establish the following (apparent) generalization of the New Proposi-
tion. For all positive integers n, consider Λn as a free left Λ-module, which we identify with
Hom(Xn, X). In other words, we view the elements λ = (λ1, ..., λn) of Λn as row vectors
(on which the matrix ring Mnn(Λ) acts on the right), while the elements (x1, ..., xn)t of
Xn are viewed as column vectors (on which End(Xn) ' Mnn(Λ) acts on the left). A
lattice I in Λn is a left Λ-submodule of Λn such that I ⊗ Q = An. For such a lattice,
Xn[I] := ∩λ∈IKer(λ : Xn → X) is a finite subgroup scheme of Xn, which satisfies:

(Lattice) Proposition: Same assumptions as in NP. For any n > 0 and any lattice I in
Λn, one has: #Xn[I] = [Λn : I]2g/d.

This can actually be viewed as a corollary of the NP, applied to the abelian variety
X̃ = Xn, and to the left ideal Ĩ of Λ̃ := End(Xn) = Matnn(Λ) formed by the matrices
all of whose rows lie in I. Indeed, X̃[Ĩ] = Xn[I], [Λ̃ : Ĩ] = [Λn : I]n and g̃ := dimX̃ =
ng , d̃ := rkZΛ̃ = n2d. The NP then implies #Xn[I] = #X̃[Ĩ] = [Λ̃ : Ĩ]2g̃/d̃ = [Λn : I]2g/d.

(1) Notice a misprint in this reference : the reduced norm should be raised to the power
m = 2g/eδ, where d = [Λ : Z] = e2δ.
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2. Restating the Proposition

The notation Xn[I] does not make it clear that the ambiant free module Λn in which
I lives is already identified to Hom(Xn, X). For instance, a change of basis of Λn would
provide an isomorphic, but different, subscheme Xn[I]. More generally, the following state-
ment shows that its isomorphism class, hence its order, depends only on the isomorphism
class of the finite (left) Λ-module Λn/I (by a finite Λ-module, we mean one of finite car-
dinality)

Lemma 0: let I ⊂ Λn and U ⊂ Λm be two lattices such that the (finite) Λ-modules
Λn/I and Λm/U are isomorphic. Then, the finite group schemes Xn[I] and Xm[U] are
isomorphic.

Proof : wlog, assume n = m+m′ with m′ ≥ 0, and consider U′ = U ⊕Λm′
in Λm⊕Λm′

=
Λn. Clearly, Λm/U ' Λn/U′ and Xm[U] ' Xn[U′]. So, we may assume that n = m. The
isomorphism between Λn/I and Λn/U, and its inverse, are then given by two elements
B,C in Matnn(Λ) satisfying IB ⊂ U,UC ⊂ I, and BC ≡ 1n mod Ĩ, CB ≡ 1n mod
Ũ , where the tilde has the same meaning as some lines above. Consider the isogenies
β : (x1, ..., xn)t 7→ C(x1, ..., xn)t , γ : (y1, ..., yn)t 7→ B(y1, ..., yn)t of Xn. Then, β maps
Xn[I] into Xn[U], γ maps Xn[U] into Xn[I], and γβ (resp. βγ) induces the identity on
Xn[I], (resp. on Xn[U]). They therefore induce isomorphisms between these subgroups
schemes.

Conversely, let F be a finite Λ-module. Looking at sets of generators of F , we may
write it, in many ways, as a quotient Λn/I, where I is a lattice in Λn, but by Lemma 0,
the resulting finite group schemes Xn[I] will be all isomorphic. Their order #Xn[I] may
therefore be denoted by d(F ). Similarly, the indices [Λn : I] are all equal to the cardinality
|F | of F ; we may therefore set i(F ) := [Λn : I]2g/d. We must now prove

(*) Proposition : for all finite Λ-modules F , the quantities just defined above satisfy

d(F ) = i(F ). (∗)

As in Lemmas 4 and 5 of [BM], from which these notations are borrowed (with a slighlty
different meaning), the proof will consist in a reduction to the case F = Λ/Λγ, reminiscent
of the reduction to diagonal matrices which these lemmas enable (see also [LR1]).

We close these preparations by collecting the results on Λ-modules (always on the left
in what follows) and on finite group schemes which will be needed for the proof.
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MO 1: maximal orders are hereditary, hence any lattice in Λn is a direct factor of a free
Λ-module. [Cf. [CR], Prop. 26.12 (ii).]
MO 2: for any maximal two sided ideal ℘ of Λ, Λ/℘ is a simple artinian ring [cf. [CR], Ex.
26.4]. In particular, there exists a unique isomorphism class of simple Λ/℘-modules (equiv-
alently, of simple Λ-modules annihilated by ℘); we shall denote by S(℘) a representative
of this class. [See [CR], Ex. 3.2 and 3 for a description of these rings.]
MO 3: norm-form principle for the simple algebra A; cf. [M], p. 179, Lemma.

GS 1: if 0 → A → B → C → 0 is an exact sequence of finite commutative group schemes
over k, then #B = #A×#C. [ See [MG], Ex. 4.4, or [M], p. 121, Thm. 2.]
GS 2: let β ∈ Λ = End(X) be an isogeny of the abelian variety X, set X[β] := X[Λβ],
and let I be a left submodule of Λ. Then, the restriction β of β to X[Iβ] induces an exact
sequence 0 → X[β] → X[Iβ] → X[I] → 0 of subgroup schemes of X. Indeed, the isogeny
β : X → X is epimorphic, so that β : X[Iβ] → X[I], which is deduced from β by the base
extension X[I] → X, is again epimorphic, while Ker(β) coincides with Ker(β), since they
are both defined by base extension to the zero section. Conclude by [M], p. 118, Cor. 1.

We shall need GS2 only when I is a full ideal, i.e. when the involved subgroup schemes
are finite. In this case, we deduce from GS1 that #X[Iβ] = #X[I]×#X[β].

3. Proof of the (*) Proposition

Step 1

We first show how to reduce the claim (*) to the case of a simple finite left Λ-module
F . Let

0 → E → F → G → 0

be an exact sequence of finite left Λ-modules. Then |F | = |E|.|G| (hence i(F ) = i(E)i(G)),
and it suffices to check that the LHS of (∗) shares the same multiplicative property.

Write F as a quotient Λn/I of a free left module by a left sub-module I. Then,
E = J/I for a left sub-module J ⊃ I, and G = Λn/J. Since Λ is hereditary, J is by MO1

a direct factor of a free Λ-module N ' Λm, and there exists a Λ-module J′ ⊂ Λn′
with

n + n′ = m such that N = J ⊕ J′. Let M be the big Λn ⊕ Λn′
= Λm in which J ⊕ J′

naturally lives, and let B ∈ Matmm(Λ) be the matrix whose rows form a basis of N in
terms of a basis of M ; in other words, N = MB, where we write the elements of M = Λm

as row vectors. For rank reasons, B is invertible in Matmm(A) and the endomorphism
β : Xm → Xm : (x1, ..., xm)t 7→ B(x1, ..., xm)t attached to B is an isogeny of Xm.

The inclusions of left Λ-modules I ⊕ J′ ⊂ J ⊕ J′ = MB ⊂ Λn ⊕ Λn′
= M (which

are all lattices in M) ensures the existence of a lattice U := (I ⊕ J′)B−1 in M such that
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UB = I ⊕ J′. Now, in view of GS2, the isogeny β of Xm induces on Xm[Uβ] an exact
sequence of finite subgroup schemes of Xm:

0 → Xm[β] → Xm[Uβ] → Xm[U] → 0.

By definition, the first term is the group scheme Xm[J ⊕ J′] ' Xn[J] × Xn′
[J′], hence

has order equal to d(G).d(F ′), where we set F ′ = Λn′
/J′; the second one is Xm[I⊕ J′] '

Xn[I] × Xn′
[J′], whose order is d(F ).d(F ′); and since Λm/U = M/U ' MB/UB =

(J ⊕ J′)/(I ⊕ J′) ' J/I = E, the third one has order d(E). By GS1, we therefore have:
d(F )d(F ′) = d(E)d(G)d(F ′), i.e. d(F ) = d(E)d(G), as was to be checked.

Step 2

Let now F be a simple finite left Λ-module. By [CR], proof of (26.19), there exists a
maximal two-sided ideal ℘ of Λ such that ℘F = 0. We can therefore view F as a simple
left module over the ring Λ/℘. But this is a simple artinian ring, which by MO2 admits
a unique isomorphism class, say F = S(℘), of simple left modules. In particular, if Φ is
any left Λ-module admitting a descending chain of submodules whose successive quotients
are annihilated by ℘, then, it admits a (Jordan-Hölder, see [CR], Prop. 3.9]) composition
series whose quotients are all isomorphic to S(℘) (as modules over Λ, or over Λ/℘, cela
revient au même). We are going to check (∗) not on F itself, but on a conveniently chosen
module Φ of this type. By the multiplicativity of both sides of (∗) in exact sequences from
Step 1, this is will ensure that F itself satisfies (∗).

The Φ we choose is Λ/℘eh, where h is the class number of the number field K = Z(A),
and e is the unique integer such that the prime ideal P = R∩℘ of R = OK satisfies ΛP = ℘e

(cf. [CR], Exercise 26.5; as in [CR], I here denote by R the ring of integers of the center K

of the simple Q-algebra A). In particular, ℘eh is a principal two-sided ideal Λγ, with γ ∈ R,
and Φ = Λ/Λγ. On the other hand, Φ admits the descending chain {℘i/℘eh, i = 0, ..., eh},
whose quotients ℘i/℘i+1 are anihilated by ℘. Refining this filtration gives a composition
series with (say `) simple factors, all isomorphic to S(℘) = F . In particular,

i(Φ) = i(F )` , d(Φ) = d(F )`,

and it remains to check (∗) on Φ = Λ/Λγ.

Step 3

For this principal ideal case I = Λγ, we appeal as in [LR1,2] and [BM] to the standard

MO 3 : the function α ∈ Λ 7→ [Λ : Λα] extends to a norm form on A with degree of
homogeneity equal to d, while by [M], p. 175, the function α ∈ Λ 7→ deg(α) := #X[α]
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extends to a norm form on A of degree of homogeneity equal to 2g. Since A is a simple
algebra, we obtain

#X[α] = [Λ : Λα]2g/d

for all α ∈ Λ.

Applying this to our α = γ ∈ R, we finally deduce that Φ does satisfy d(Φ) = i(Φ),
and the proof of (∗) is completed. (See “Question” after the references for another possible
way of applying MO3.)
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[LR 2] C. Liebendörfer and G. Rémond: Hauteurs de sous-espaces sur les corps non com-

mutatifs; Math. Zeitschrift, 255, 2007, 549-577.
[M] D. Mumford: Abelian varieties, Tata/Oxford UP, 1970.
[S] J-P. Serre: Complex multiplication; in Oeuvres, vol. II, 455-459.
[ST] G. Shimura and Y. Taniyama: Complex multiplication of abelian varieties ...; Publ.

MS Japan, 6, 1961. Reprinted in G. Shimura: Abelian varieties with CM and modular
functions, Princeton UP, 1998.

[W] W. Waterhouse: Abelian varieties over finite fields; Ann. ENS, 2, 1969, 521-560.

6



Question on non maximal orders

Is it true that for any (non necessarily maximal) order Λ = End(X) in a simple
Q-algebra A, any n > 0, and any lattice I in Λn, one would always have

[Λn : I]2g/d ≤ Xn[I] ?

(Probably, a divisibility relation would then always occur.)

If so, a much simpler proof of the LP could be given, as follows: if Λ is a maximal
order, I will admit by MO1 a supplement I′ ⊂ Λn′

such that N := I⊕I′ is a free submodule
of rank m = n+n′ of M := Λn⊕Λn′

= Λm. Write N = MB for some B ∈ Matm,m(Λ) in
a manner similar to Step 1, and interpret B as an isogeny β of Xm. Clearly, we then have
#Xm[β] = #Xn[I] ×#Xn′

[I′], while [Λm : ΛmB] = [Λn : I] × [Λn′
: I′]. Now, repeating

the NP ⇒ LP trick, we have [Λm : ΛmB]2g/d = [Matmm(Λ) : Matmm(Λ)B]2g/dm =
[End(Xm) : End(Xm)β]2gm/dm2

, which, by the (easy) Step 3, applied to Xm, is equal to
#Xm[β]. Consequently,

[Λn : I]2g/d × [Λn′
: I′]2g/d = #Xn[I]×#Xn′

[I′].

If the inequalities (?) hold for the two lattices I and I′, this relation will force both to
become equalities !

See [BM] and [LR2] for counterexamples to the equality in the non maximal case.
Note, however, that since the deduction of Theorem 5.1 of [LR2] from the method of [BM],
§5, uses the duality Theorem 7.1 of [LR2], it is not clear whether Inequality (?) would
imply a similar “height ≥ degree” inequality in [LR2] for non maximal orders (recall that
∆fin(φ) = (degφ)−1).
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