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Abstract : The intrinsic differential Galois group is a twisted form of the standard differential Galois

group, defined over the base differential field. We exhibit several constraints for the inverse problem of

differential Galois theory to have a solution in this intrinsic setting, and show by explicit computations

that they are sufficient in a (very) special situation. (1)

1. The intrinsic differential Galois group.

Let (K, ∂) be a differential field of characteristic 0 with algebraically closed constant

field C, let DK be the ring of differential operators K[∂] and let DK be the tannakian

category formed by the left DK-modules M , whose underlying K-vector space V has finite

dimension. Fix an object M in DK (reference to M will often be omitted in the notations).

Let ω be a fiber functor of DK over C (cf. [Br], 1.1.5), and let Gω(M), or Gω for

short, be the quotient of the C-proalgebraic group Aut⊗(ω) cut out by M ; the C-points

of Gω form the usual differential Galois group of the Picard-Vessiot extension L = LM,ω

of K defined by M at ω. By extension of scalars from C to K, we obtain a K-group

GωK := Gω(M)⊗C K. (In [B], these groups were respectively denoted by GC and GK .)

If we replace ω by the the forgetful fiber functor M → V of DK , we obtain instead of

Gω an algebraic group GK(M) = GK over K: the stabilizer in GL(V ) of all the objects

of DK which occur as subquotients in sums of tensor powers involving M and its dual.

This group, first considered in [K1] for arithmetic purposes, can be called the intrinsic

differential Galois group of M (as in [A1]), or the Katz group (as in [P]). When K = C(B)

is the function field of an algebraic variety B (cf. [K1], [A2]), it may also be viewed as

the Galois group based at the generic point of B, and called the generic differential Galois

group of M . (In [B] and [P], it is denoted by G′K .)

(1) 2000 Mathematics Subject Classification: Primary 12 H 05 ; Secondary: 20 G 15. The paper is in

final form and no version of it will be published elsewhere.
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We now recall the existence of an algebraic variety PK,ω = PK,ω(M) over K, whose

field of K-rational functions is isomorphic to the Picard-Vessiot extension LM,ω, and which

is, in a compatible way, both a left torsor under GK and a right torsor under GωK . In

particular, GK and GωK become isomorphic over the algebraic closure K of K: more

precisely, the bitorsor structure on PK,ω shows that GK is an inner K-form of GωK (cf.

[K1], 4.1, [Br], 5.2). Since the connected component of the identity (GK)0 of GK is defined

over K, it too is a K-form of the connected component of the identity (Gω)0⊗CK = (GωK)0

of GωK , though usually not an inner one anymore (see §3 below for several examples).

Let ΓK = Gal(K/K) be the absolute Galois group of our base field K, and fix a K-

group G with uninteresting K-structure (for instance, K-split, as is GωK). The isomorphism

classes of the K-torsors over G (resp. the K-forms of G) are parametrized by the pointed

set H1(ΓK , G(K)) (resp. H1(ΓK , AutK(G))), where AutK(G) denotes the group of K-

automorphisms of G. The classes of inner forms of G lie in the image of H1(ΓK , G(K))

under its natural (usually not injective) map Int to H1(ΓK , AutK(G)), cf [Sp], 12.3.7. The

knowledge of GK(M) is therefore a priori finer than that of Gω(M), but less precise than

that of PK,ω. One of the problems we raise here is where in between it really lies: cf.

end of §3. Another problem we address is whether each ‘reasonable’ K-form of a given

K-group G takes the shape of a GK(M) for some M : cf. §2, and some explicit examples

in §3. In neither cases do we get definitive answers, and the paper should just be viewed

as a random approach to a better formulation of these problems.

Of course, such questions are of interest only if K is not algebraically closed, and for

a given M ∈ DK , the algebraic closure K ′ := K ′M,ω of K in the Picard-Vessiot extension

LM,ω plays a role in our study. Denoting by ω′ a fiber functor over C extending ω to DK′ ,

we recall that L/K ′ is a regular Picard-Vessiot extension, whose standard differential Galois

group is the group of C-points of the connected C-group Gω
′
(M⊗KK ′) ' (Gω(M))0, while

on the level of intrinsic groups (now over K ′), we have in view of [K 1], Prop. 4.3,

GK
′
(M ⊗K K ′) = (GK(M))0 ⊗K K ′.

Thus, the (classical) Galois extension K ′/K has intrinsic Galois group XK := GK/(GK)0;

this amounts to endowing the finite group Xω := Gω/(Gω)0 ' ΓK/ΓK′ ' Gal(K ′/K)

with the structure of ΓK-group given by conjugation by the elements of ΓK .

Finally, two points on terminology:

- K-split (2) group G: although the intrinsic Galois groups GK(M) come equipped

(2) i.e. groupe déployé sur K . We shall also encounter split extensions (extensions scindées), but

fortunately no splitting field of a polynomial (corps de décomposition) or of an algebra (corps neutralisant).

2



with a connexion, this expression is here not used in the sense of Pillay’s paper [P] in

these Proceedings, but in the usual sense of algebraic groups over fields of characteristic 0,

namely: a K-group is K-split if its connected component of the identity contains a maximal

torus T which is defined over K (there always is one) and whose group of characters over

K generates the K-algebra K[T ]. Any K-group G is split over K, and a minimal subfield

of K over which G is split will be called a minimal splitting field for G.

- constant K-group G: this just means that G is obtained from a C-group by extension

of scalars from C to K (typical example: G = GωK). Since C is algebraically closed, a

constant K-group is trivially split over K. A constant finite group X (typical example:

Xω := Gω/(Gω)0) is the finite ΓK-group corresponding to the trivial action of ΓK on X.

2. The intrinsic inverse problem.

Let (K, ∂) be a differential field as in §1, let G be a K-algebraic group, and let

R : G → GL(V ) be a faithful K-rational representation on a K-vector space V of finite

dimension. In [B], I raised the following ‘intrinsic’ version of the inverse problem of dif-

ferential Galois theory: given G and R, can one find a structure of DK-module M on V

and a K-isomorphism i : GK(M)→ G such that R ◦ i is the natural inclusion of GK(M)

in GL(V )? If it has a positive answer, we say that G is realizable (see [M-S], 2.3, in the

standard case), and that the corresponding solutions M realize (G,R), or less precisely,

G. But this formulation of the problem is too naive. It immediately follows from the

discussion of §1 that

a realizable K-group admits a constant group among its inner K-forms.

The first constraints listed below for a K-group G to be realizable are mere variations on

this theme.

1st constraint: a realizable K-group G must be isoconstant, i.e. isomorphic over K to a

constant group. Indeed, an intrinsic differential Galois group GK(M) is a K-form of the

constant group GωK(M).

Of course, this condition is automatically fulfilled if G is a reductive group (cf. [B]),

but it is a non trivial one if G is unipotent. For instance, on using the correspondence

between unipotent algebraic groups and nilpotent Lie algebras in characteristic 0, the

family of nilpotent Lie algebras given in [Bbk], Ex. 18, §4, yields a counterexample.

2nd constraint: if G is commutative, it must be isomorphic over K to a constant group.

Equivalently, its maximal K-torus must be split over K.

This is clear: a commutative group has only one inner K-form.
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3rd constraint: we have just seen that a realizable K-group G which is non split over

K cannot be connected if its connected component of the identity is commutative. In

fact, the same conclusion holds true without the latter assumption as soon as the base

differential field K is of cohomological dimension cd(K) ≤ 1 (cf. [S], II.3), as is the field

of meromorphic functions on a compact Riemann surface B. More precisely:

Proposition 1: let G be a realizable K-group. Assume that cd(K) ≤ 1, or alternatively

that G0 is commutative. Then, the degree over K of one of the minimal splitting fields for

G divides the number [G : G0] of connected components of G⊗K K.

Proof: let M ∈ DK be a differential equation such that G = GK(M), and let L = LM,ω

be the corresponding Picard-Vessiot extension of K. We shall show that in both cases

under review, the K-group GK = GK(M) is split over the algebraic closure K ′ of K in

L. Therefore, for one (‘the’, in the second case) minimal splitting field F for G, [F : K]

divides [K ′ : K] = [G : G0].

Since the condition on cd(K) is stable under finite extensions, and sinceGK
′
(M⊗KK ′)

' (GK(M))0 ⊗K K ′, we may assume without loss of generality that K ′ = K, i.e. that

GK is connected. In the second case, we are already done. In the first case, we apply

Steinberg’s theorem (cf. [S], III.2.3, [M-S], 2.2): all torsors under a connected group over

such a field K are trivial. Choosing a K-rational point on the bitorsor PK,ω now yields a

K-isomorphism between GK and GωK . Thus GK is constant, hence split over K.

Remark 1: here is a more conceptual proof of Proposition 1. Since ΓK acts trivially on

Xω = Gω/(Gω)0, the elements of H1(K,Xω) identify with certain equivalence classes in

Hom(ΓK , X
ω), and we deduce from the exact sequence of pointed sets

{1} = H1(K, (Gω)0)→ H1(K,Gω)→ H1(K,Xω)

that the class of the GωK-torsor PK,ω, hence of the associated inner form of GωK , dies over

a Galois extension of K whose degree divides the order of Xω.

In fact, the exact sequence above gives a bijection β between the pointed setsH1(K,Gω)

and H1(K,Xω), cf. [S], III.2.4, cor. 3, so that a more methodological way to formulate

the inverse problem is as follows (we assume cd(K) ≤ 1). Let G be a C-group, and let X be

its group of connected components. For any ξ ∈ H1(K,X ), let Gξ = Int(ξ′) be the inner

form of G ⊗C K defined by the inverse image ξ′ = β−1(ξ) of ξ in H1(K,G). Under which

conditions on ξ is Gξ realizable? In this point of view, the description given in §1 of the

K-structure of XK can be viewed as a constraint on Int(ξ). On denoting centers by Z,

and on applying [S], §5, Prop. 42, the only freedom left to ξ then lies in H1(K,Z(X )), or

more precisely, in the quotient of this group by the image of H1(K,Z(G)).
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4th constraint: this does not concern the realizable group G itself, but the differential

equations which realize it (in some faithful representation). We assume that K is the field

of meromorphic functions on a compact Riemann surface B and denote by K̂s the formal

completion of K at a point s ∈ B.

Proposition 2: let G be a realizable K-group, and let s be a point in B such that G⊗K K̂s

is not split over K̂s. Then, any M ∈ DK realizing G must have a singularity at s.

Proof (cf. [K1], 4.1): otherwise, the torsor PK,ω(M) has a K̂s-rational point (Cauchy’s

theorem), and GK becomes isomorphic to the constant group GωK over K̂s.

Remark 2: when stating an inverse problem, one usually fixes a set of points S on the base

B, and insists that the realization M be smooth away from S . Proposition 2 shows that

the minimal number of singularities needed to solve the intrinsic inverse problem may be

larger than the corresponding one (cf. [M-S]) in the standard case. In fact, S will now

depend on the K-structure of G, and it may be useful to view the differential Galois groups

as group schemes over B \ S, as in [A2].

5th constraint: the last condition I want to list concerns G0. Although it definitely plays

a role (cf. §3, Remark 3), I apologize for stating it vaguely. Suppose that for some finite

extension K ′ of K, G0 ⊗K K ′ has been realized by an object M ′ in DK′ , and that we

know that G can only be realized through the differential equation M over K deduced

from M ′ by restriction of scalars from K ′ to K, i.e. (cf. [K2], 2.7, [A1], II.1.3) that the

C-representation of Gω given by M is necessarily induced from the representation given

by M ′ of its normal subgroup (Gω)0. The following result then provides a condition on

G0.

Proposition 3: let K ′ be a finite extension of K, let M ′ ∈ DK′ , and let M = ResK′/KM
′.

Then, GK(M)0 is contained in the K-group ResK′/K(GK
′
(M ′)).

Proof: since M ′ is a subobject of M⊗KK ′ in DK′ , GK
′
(M ′) is a quotient of GK

′
(M⊗K ′),

and we get a K ′-morphism from (GK(M))0 ⊗K K ′ to GK
′
(M ′), hence (cf. [Sp], 12.4.2) a

K-morphism ψ : (GK(M))0 → ResK′/KG
K′

(M ′). Looking at the corresponding maps on

the usual Galois groups attached to ω, ω′ as in §1, we deduce that ψ is injective. See also

[A1] II.1.3, where the isomorphism in the last formula should be replaced by an inclusion.

Going back to Remark 1, notice that since AutK(G) acts on the connected component

of the identity G0, the cocycle ξ′ also provides a K-form G0ξ of G0. This gives another

interpretation of the group (Gξ)0 with which Proposition 3 is concerned. When G0 is

abelian, this form can be directly described through the natural action of X on G0, cf. §3.
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We now turn to examples, and check that the simplest possible groups which satisfy

the above conditions can indeed be realized as intrinsic Galois groups.

3. Examples in dimension 1.

We limit our description to the C1-field K = C(z), with ∂ = d/dz = ′, to K-groups G

of dimension 1 and to faithful representations R into GL2(K). We leave the case G0 = Ga

to the reader. Then, G0 is a one-dimensional torus T , i.e. the split torus Gm or the circle

group SO(q) attached to a non-degenerate binary quadratic form q over K. Recall that

these anisotropic forms of Gm are parametrized by H1(K,AutK(Gm)) = H1(K, {±1}) =

Hom(ΓK , {±1} = K∗/(K∗)2: to a non square φ ∈ K∗, one associates the quadratic form

q(x, y) = x2−φy2. The minimal splitting field for T = SO(q) is the quadratic field K(
√
φ).

We further make the simplest possible assumption taking care of the 3rd constraint

simultaneously for all T ’s, namely that X = G/G0 has order 2. The only ΓK-structure X

can be endowed with is then the trivial one. In other words, the K-groups G we consider

are extensions of the constant group X := Z/2Z by the K-torus T . We start by listing all

possible such groups.

Let τ be the homomorphism from G/G0 = Z/2Z to Aut(G0) = {±1} induced by

conjugation. If Im(τ) = {1}, G is commutative, and by the 2nd constraint, T must be

split. In other words, G must be then the constant group Gm × Z/2Z. We know that

any differential system over K with standard Galois group C∗ × Z/2Z will realize G, say(
y′1
y′2

)
=

(
1
2z 0
0 1

)(
y1
y2

)
, and (G,R) can easily be realized too. Thus, we assume from

now on that τ is an isomorphism, i.e. that G is not commutative. Notice that when T is

isotropic, this forces the restriction of R to T to be isomorphic to the standard diagonal

representation of Gm into SL2. Since H2({±1},Gm) has two elements, two kinds of

groups may then occur:

- if the extension splits, G is the semi-direct product T ×τ Z/2Z . This is the dihedral

group OT attached to T (i.e. when T = SO(q), the orthogonal group O(q)), and R is

isomorphic to its standard representation.

- otherwise, G contains only one element of order 2, and is the unique extension NT

of Z/2Z by T which is not a split extension, while R(G) is the normalizer in SL2 of its

Cartan subgroup R(T ). (If we replace T by a cyclic group of order 4, this would give the

quaternionic group.)

Here, then, are the images under R of the groups G we are concerned with. The first

line indicates the connected component G0 = T of G; the first column gives the possible
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split forms G ⊗C K for G, the second one their inner forms. The reason why these inner

forms are precisely parametrized by the (outer) forms of G0 ⊗C K on the first line, i.e.

by φ ∈ K∗/(K∗)2, was hinted at after Proposition 3: the hypothesis made on τ gives

an identification of Z/2Z = G/G0 with {±1} = Aut(G0), which is compatible with the

natural maps H1(K,G) → H1(K,AutK(G0)) (given by inner automophisms of G) and

β : H1(K,G)→ H1(K,G/G0) (as in Remark 1).

Gm = {
(
x 0
0 y

)
, xy = 1} ; SO(q) = {

(
x φy
y x

)
, x2 − φy2 = 1}

———————–

NGm = {
(
x 0
0 y

)
,

(
0 x
−y 0

)
, xy = 1};NSO(q) = {

(
x φy
y x

)
, i

(
x φy
−y −x

)
, x2−φy2 = 1}

OGm = {
(
x 0
0 y

)
,

(
0 x
y 0

)
, xy = 1} ;O(q) = {

(
x φy
y x

)
,

(
x φy
−y −x

)
, x2−φy2 = 1}.

Realizing O(q) : let φ, with ord∞φ ∈ {−1, 0}, be a non square element of K∗, so that

d := 1
2
φ′

φ is not a logarithmic derivative in K∗, and let M be the DK-module structure on

V = Ke1 ⊕Ke2 given by:

∂e1 =
1

φ
e2 ; ∂e2 = −e1 +

1

2

φ′

φ
e2.

In other words, we are considering the differential equation y′′ + 1
2
φ′

φ y
′ + 1

φy = 0. Let us

show that its intrinsic Galois group GK = GK(M) is O(q), for some quadratic form q

associated to φ. We recall that GK(M) is the stabilizer of all the objects of the full tensor

category generated by M in DK :

i) since the wronskian equation w′ + dw = 0 is not trivial, but its symmetric square

is, GK is not connected and its intersection with SL2 has index 2 in GK ;

ii) the K-line generated by the tensor Q = φe21 + e22 in Sym2(V ) is stable under ∂.

Indeed,

∂Q = φ′e21 + 2φe1∂e1 + 2e2∂e2 = φ′e21 +
φ′

φ
e22 =

φ′

φ
Q.

(In fact, 1
φQ is an horizontal tensor.) Therefore, GK is contained in GmO(q), where

q = φu2 + v2 denotes a quadratic form in the class of x2 − φy2. In view of (i), GK must

then be contained in O(q), but not in SO(q).
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iii) GK is not finite, say because M has an irregular singularity at ∞. Hence, GK has

dimension at least 1, and in view of (ii), must coincide with O(q).

The main point in this proof is that in (ii), the tensor Q is not pure, yielding a non-split

form of the dihedral group OGm. Of course, the standard differential Galois group Gω

then has no choice but to coincide with the group OGm over C. For instance, if φ = z, a

basis of solutions of the differential equation is given by {e2i
√
z, e−2i

√
z}, and it is easy to

check directly that Aut∂(K < e2i
√
z > /K) = C∗ ×τ Z/2Z.

Realizing NSO(q) : this group can be realized by the tensor product of the previous

DK-module M with the rank one equation (Λ2M)−1/2, i.e. restricting for simplicity to

the case φ = z, by the diffential equation with basis of solutions z−1/4e±2i
√
z. Let us

give another realization, involving only regular singularities. Let M be the DK-module

structure on V = Ke1 ⊕Ke2 given by:

∂e1 =
1

4z
e1 −

1

z − 1
e2 ; ∂e2 =

1

z(z − 1)
e1 −

1

4z
e2.

In other words, we are considering the differential system

(
y′1
y′2

)
=

(− 1
4z − 1

z(z−1)
1
z−1

1
4z

)(
y1
y2

)
.

Let us show that its intrinsic Galois group GK = GK(M) is NSO(q), with q in the class

of x2 − zy2:

i) the wronskian is now trivial, so that GK lies in SL2;

ii) the K-line generated by the tensor Q = e21 + ze22 in Sym2(V ) is stable under ∂.

Indeed,

∂Q = 2(
1

4z
e21 −

1

z − 1
e1e2) + e22 + 2z(

1

z(z − 1)
e1e2 −

1

4z
e22) =

1

2z
(e21 + ze22).

Therefore, GK is contained in GmO(q), and in view of (i), in GmO(q) ∩ SL2 = NSO(q).

(This reflects the existence a horizontal tensor on this line, namely 1√
z
Q, once the scalars

have been extended to the splitting field for SO(q).)

iii) here, M is fuchsian. But the local monodromy around 1 has infinite order, so GK

has dimension at least 1, while the local monodromies around 0 and ∞ have finite order.

Therefore, GK is not commutative, hence cannot lie in SO(q), and in view of (ii), must

coincide with NSO(q). (In particular, the standard Galois group Gω of M is NGm.)

Not realizing OGm, nor NGm, through R : as already pointed out, the restriction

of the representation R to the connected component G0 of such a group G is the direct

sum of a character of Gm and of its inverse, while R(G) permutes the corresponding

lines. So, if M realizes (G,R), there exists a quadratic extension K ′/K with Galois group
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Gω(M)/(Gω(M))0 such that M⊗KK ′ is a direct sum of two dual (and non trivial) objects

M ′, M ′′ of rank 1 in DK′ . These spaces cannot be defined over K, since G stabilizes no

K-line. They are therefore conjugate under Gal(K ′/K), and their product in Sym2M is

an object S of DK , which contains no non-zero pure K-tensor. Not being isotropic, the

stabilizer of S cannot contain R(G), which is therefore not realizable.

Remark 3: here is a tentative argument to discard these split groups from the list of

‘reasonable’K-groups in the intrinsic inverse problem: sinceM ′ andM ′′ are not isomorphic

over K ′, we deduce from [K2], 2.7.4, that M is induced from M ′, i.e. isomorphic to

ResK′/KM
′. By Proposition 3 of §2, G0 should then be contained in ResK′/KGm/K′ , but

not in the K-split subgroup Gm/K given by the homotheties (again because M ⊗K K ′ is

not isotypical). By [Sp], 12.4.7.(2), G0 must then be isomorphic to the non split K-form of

Gm/K corresponding to the quadratic extension K ′/K, and G cannot be realized. In spite

of its incomplete formulation, one can thus consider that OGm and NGm violate the last

constraint of §2, and do not provide a negative answer to the intrinsic inverse problem.

In conclusion, we point out that although we have yet to meet a group admitting

both split and non split realizations (3), the above examples do show that GK(M) is a

sharper invariant than Gω(M) in the classification of differential equations: let just φ run

through K∗/(K∗)2. Of course, such possibilities do not occur over base fields of the type

K = C((z)), so that in general, higher dimensional examples will be needed to shed light

on the link between the finite group Gal(K ′/K), and the K-structures of GK and (GK)0 .

Acknowledgements: I thank Z. Hajto and T. Crespo for allowing a discrepancy between the

titles of my talk (4) and paper (and for the very nice atmosphere of the Bȩdlewo conference),

F. Ulmer for having offered me the opportunity to present the above examples at a Rennes,

1996, conference, M. Singer and A. Pillay for their insistence on my writing them down,

and Y. André and J. Oesterlé for several enclearing discussions on these topics.

Added in proof: in the style of §2, Remark 1, here is a cohomological explanation for the

non realizability of the split groups G = OGm, G = NGm of §3 as intrinsic Galois groups

(and more precisely, for the non occurence of Gm/K as their connected component of the

identity). Recall the bijection

β : H1(K,G)→ H1(K,G/G0).

(3) See however the final comment below on the occurence of constant forms. I thank J. Hartmann for

her remarks on these points.
(4) ‘Blended extensions and differential Galois groups’: see ‘Unipotent radicals of differential Galois

groups’, Math. Ann., 321, 2001, 645-666; and ‘Extensions panachées et dualité’, Prépubl. Institut de

Mathématiques de Jussieu, 287, 2001.
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Since the group G0 = Gm is its own centralizer in both G’s, a cocycle ξ′ ∈ H1(K,G),

mapping in H1(K,Aut(G0)) to the class of its trivial outer form, must come from the

trivial class β(ξ′) = ξ ∈ H1(K,G/G0) = H1(K,S2); but the rank 2 K-algebra which such

a ξ parametrizes is not a field, and can therefore not be realized as an intermediate

Picard-Vessiot extension K ′/K.

More generally, let K be a differential field with cd(K) ≤ 1, let X be a finite quotient of

its absolute Galois group ΓK , and let G be a C-group with group of connected components

G/G0 ' X . Then, the constant form G = G⊗CK of G is realizable if and only if the center

Z(G) of G maps onto the (necessarily abelian) group X - in which case no other K-form of

G will be realizable - , while the constant form G0⊗K of G0 occurs in a realizable K-form

of G if and only if the centralizer of G0 in G maps onto X .
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D. Bertrand
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