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1. Motivation : the MM-ML-AO-ZP conjectures

Mordell-Lang : let A be an abelian variety over a number-field k,
let A be a subgroup of finite rank of A(k), and let X be an
irreducible closed subvariety of A of codimension d > 1. Assume
that X N A is Zariski dense in X. Then, X is a translate of a
proper abelian subvariety of A. Cf. D. Roessler's talk.

Manin-Mumford : restrict to rank(A) =0, i.e. A = Ayor, translate
~> a component of an algebraic subgroup.

André-Oort : let S be a Shimura variety over k, let A be a set of
special points of S, and let X be an irreducible closed subvariety of
S of codimension d > 1. Assume that X N A is Zariski dense in X.
Then, X is a subvariety of Hodge type (~ a component of a Hecke
transform of a proper Shimura subvariety of S). Cf. J. Pila’s talk.
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1. Motivation : the MM-ML-AO-ZP conjectures

Generalizations :

e in MM-ML, replace A by a torus T = G, or by Ax T, or even
by an arbitrary
semi-abelian variety G € Ext(A, T)

e Bombieri-Masser-Zannier | Zilber : unlikely intersections / CIT
(cf. J. Kirby's talk) : e.g. in MM, replace Gior by
Gl<dl = UG’ dim G’ < d.
e Relative Manin-Mumford (RMM): replace G/k by
a semi-abelian scheme G /S over a variety S/k.

e Pink’s general conjecture : in AO, replace S by

a mixed Shimura variety,
e.g. those parametrizing one-motives (= points on semi-abelian
varieties ) + unlikely intersections + relative Manin-Mumford...
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1. Motivation : the MM-ML-AO-ZP conjectures

What is a semi-abelian variety 7
e Chevalley's theorem : any connected commutative algebraic
group G with no G,-subgroup :

0—T —GC-5A—0,
Assume T ~ GJ, split. For r =1, add a zero section ~+ a line
bundle, algebraically equivalent to 0 (Weil-Rosenlicht), so
parametrized by
g € Pic®(A/k) = A(k) =~ Extaig gr/k(A, Gm).

e Generalized jacobians : let C/k be a proper smooth curve. Pinch
it at two points (g1, g2) to get a singular curve C’, with
normalization v : C — C’, hence

0— G — Pic®(C'/k) — Pic®(C/k) — 0

—

Then, Pic®(C'/k) = G, for g = ¢o(q1 — q2) € Pic%(C/k)
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1. Motivation : the MM-ML-AO-ZP conjectures

The Poincaré bi-extension P

Put all the G,'s together ~» P = the Poincaré bundle minus zero
section, plus a rigidification, cf. drawing on black (or white) board.

P expresses the biduality A ~ A, via a canonical P, 4 ~ Py p.

P e G=G, P 5 P
! ™| @ !
p € A AxA > (q,p)

Plgxa = Gg,  Playo = Gm X A (in particular, “1" € Pyy).
For ¢ : A’ — A wth transpose ¢* = ¢ : A — A/, Pao(p) = Pg/ﬁ(q),p’

Compare (V x V) 5 (A, v) — A(v) = “v'(\) — (v, \) € V x I/
For ¢ : V! — V, with transpose @ , A(¢(v')) = $(N\)(V').
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1. Motivation : the MM-ML-AO-ZP conjectures

Ribet points (work from the 80's by Breen and Ribet)

Analogues of Lagrangian subspaces : apart from A x 0 and 0 x A,
unexpected abelian subvarieties B C A x A such that P|g is a
trivial Gp,-torsor can arise. Indeed, for any antisymmetric

p:A— A p=—p with graph B' = (id, $)(A),
Pla ~ (id,0)*P ~ ($,id)"P ~ (id, $)*P ~ —P|g € Pic®(B'),
so P, restricted to the graph B of 2, admits a canonical section
o:B—Plg.

For any g € A and antisymmetric @, the point R = o(q,2¢(q)) of
Pgxa = Gq, with m(R) = p = 2¢(q), is called the Ribet point of
Gq attached to . Ditto for R" ~ R “isogeneous to" R.
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1. Motivation : the MM-ML-AO-ZP conjectures

Ribet's initial construction (JNT 25, 1987, 133-151 and 152-161) :
Given an isogeny ¢ : A — Aand g € A, consider the extension
G = Gq € Ext(A,Gp,), parametrized by q € A
and its pullback
©*'G = Gé(q) = G’ € Ext(A,Gp,) ~ A, parametrized by ¢(q) € A.

Ry — q
0 — Gn — G = A — 0 [p(q) € A
| Ly Ly )
0 — G, — G 5 A — 0 [q € A

Ri —  ¢(q)
Choose a point Ry € G’ above g. Then, Ry = ¢(Ry) € G above
©(q). The dual of the one-motive {Ry € Gé(q)} is {R> € Gg}, with
R> = Ry € P above (gq,$(q)). The Ribet point is
R = R1 — Ry € Gg, lying above p = (¢ —$)(q).
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2. Kummer theory

Aim : MM and reducing ML to M (= Mordell)
For P € X(k) N A, study the Galois orbit [',.7P C X(k) N A.
[k(%P) k] < 8GJ[Y).
Should be large if P is far from a special subvariety of G.
We say that P is non-degenerate if Z.P is Zariski-dense in G.
e Toruscase G = T = (Gp)" : for a = (e, ...,cr) € T(k),
a non — deg. < [k(a% ck] >> 0"

e Abelian case G = A : r ~» 2g. Setting F := k(A[{]),

p non — deg. & [F(%p) : F] >> (%,
e G = Gq € Ext(A,Gp), g non-tor. : P non-deg. < p = 7(P)
non-deg. We expect ¢?8611 and do get it, except is P is a Ribet
point R, in which case we have our first counter-example :

[F(3R) : F] << (€
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2. Kummer theory

However, one does not need a big power of ¢ (this is already
apparent in Hindry 1988), and indeed, ML (hence MM) holds true
for any semi-abelian variety G/k.

Still, the reason for the Galois-degeneracy of Ribet points is worth
studying. We will now restrict to an elliptic curve

A=E~E o~ fecO=EndE)p~3=—p.

k = a number field, with absolute Galois group ', = Gal(k/k).

¢ = a prime number, larger than a “constant” ¢(G, k, P) depending
only on the indicated data.

* The case of the multiplicative group G,

i) Gm[¢] := e = {¢-th roots of unity} ~ Fg, on which Iy acts by

the cyclotomic character x; : [y — GL1(F;) =F} : 7.¢ = CX"(V
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2. Kummer theory

ii) Let & € Gp(k). The £-th roots of o provide an “affine” repre-
sentation of Iy :

1 1 m
vt fat = &a(7) € pe i 1(¢Pa) = (7)™
The corresponding vectorial representation is given by

Molf] = {x € Gp(k),x* €< a >}/ < a>={(fa?, ( :7 ) € F3};

m
4

0— pg— Mall] = Fp =0  ~  My[l] € Exty,jr,j(1, pe)

k(Ceya?) 1
pal) = < xe(?) &a(7) > k(T@) €a + Gal(k(Ge, 07)/k(Ce)) — pe
’ : 7 xe : Gal(k(¢e)/k) — F; = GLyf
k
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2. Kummer theory

* The general case (with A = E for simplicity).
For P € Gq(k), with 7(P) = p € E(k), the picture becomes :

0 0
1 l

0 — w — Ggf] =~ E[f] — 0
| ! L

0 — w — Mp[l] T M[(] — 0
! 1
Fp = I
1 l

0 0 ,

“blending” M,[¢] € Ext(1, E[{]) and Gg4[¢] € Ext(E[{], jt¢) (notice
Gqlf] € Ext(1, E[f]). The corresponding Galois representations are :
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Fp P e Gk),n(P)=p,G = Gq

|
Foq N Fp = k(G[(],1P)
/!
Fy F Foq = k(G[{), +p)
N /! Fq = k(G[{]) = k(E[4], §q)
F Fo = k(E[4], 1p)
|
k F = k([E[])

) Tp 1 Gal(Fp/Fpq) — pe =~ Ty
) t¢q: Gal(Fy/F) — E[(] ~F?
’ €p: Gal(Fp/F) — E[] ~F}
PE - Ga/(F/k) — GLQ(Fg)
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2. Kummer theory

Theorem (Jacquinot-Ribet, 1984)

Let G = G, with a non-torsion q € E(k), and let P € G(k), with a

non-torsion p = w(P) € E(k).

i) Assume that p and q are linearly independent over O. Then,

Gal(Fp/F) =~ 1y x (E[f] x E[4]).

ii) Assume that q = Bp in E(k)/Etor, with 8 € Og, 3 # —3. Then,
Gal(Fp/F) ~ uy x E[/].

i) Assume that g = 3p with 3 = —[3. Then,

either P £ R = Gal(Fp/F) ~ g x E[/].,

or P ~ R = Gal(Fr/F) ~ E[4].
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2. Kummer theory

Proof : for X, X" in up = “Lie" Gal(Fp/F), with coefficients
(ty,x) € Im(*&q,&p) C E[0] x E[(], t € Fy =~ py,

0 fy t 0 0 t(X,X)
X=[0 0 x |,X, wehave[X,X]=] 0 0 0 ,
0 0 O 00 0

where t(X, X') = < y|x' > — < y/|x >
Polarization ¢, = ¢, : E ~ E (symmetric) ~» antisymmetric Weil
pairing < | > and %; also, 3 = 3 (Rosati involution on EndE = O).

Since < | > is non-degenerate, this settles Case (i) :
Gal(Fp/Fpq) ~ Im(1p) = F; = Gal(Fp/F) = Heisenberg group.
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2. Kummer theory

Case (ii) , with g = Bp : for any x, x" in E[{], occurring in matrices

X, X" and such that < x|x’ > 0, we get :

t(X,X') = <Bx|x¥ >— < pxX|x>=<Bx|]x >— < X|Bx >
= <Bx|X' >4+ <Bx, X' >=<(B+P)x|x ># 0

since 3+ 3 is a non-zero integer. Again, Im(7p) = Fy.

Case (iii) : now, 3+ 3 =0 = Gal(Fp/F) is abelian. The two
cases are distinguished by the possibility to lift 5 ~ ¢ : E[¢] — E[{]
to a Ik -equivariant self-duality

® : Mp[(] ~ Mp[(]

Then, P ~ R < Mp[{] is antisymmetrically self-dual < 7p = 0.
Holds over any tannakian category, cf. DB. ArXiv 1011.4685.
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3. Lehmer's problem on heights

Unlikely intersections (or Bogomolov, cf. E. Breuillard’s talk) ~~
upper bounds for normalized heights h. Conclude with lower bound
of Lehmer type : h(P) >> [Q(P) : Q]_%, where “?"" should

measure how far P € G(Q) is from a special subvariety of G.
From G = T or A, expect :

P non — deg. = h(P) >> [Q(P) : Q]_ﬁ
For G = Gq € Ext(A,Gn), g non-tor., P ~ R gives our second
counter-example. Qualitatively, this is reflected by

Let R be a Ribet point in Gg(k). For any place v.e My of k, R lies
in the maximal compact subgroup of the topological group G(k,).

Contrasts with Kronecker's theorem : let o € G, (k) such that for
any place v € My, a lies in the maximal compact subgroup of the
topological group Gp(k,) = (ky)*. Then, « is a root of unity.
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3. Lehmer's problem on heights

Normalized heights and Lehmer bounds.
[n] g-equivariant compactification G of G, D € Pic(G/k) s
[n]*D ~ n"D = hp(nP) = n*hp(P) = hp(:P) = A hp(P)
So, the following bounds would be best possible : A
e Toruscase G =T : for P = (o, ...,ar) € T(Q) : h linear
P non — deg. = h(P) >> [Q(P): Q] ?
e Abelian case G = A : r ~ g =dimA: h quadratic
P non — deg. = h(P) >> [Q(P) : Q] & ?
e G = Gy € Ext(A,Gp), g non-tor. : h=haonr+ hy, so
h(ip) = glz%A(p) + 2 hin(P)
True, 1 >> (Ezg)_ﬁ, but hji,(R) = 0, and & << (£2g+1)_ﬁ.

D. Bertrand (IMJ) Counterexamples with semi-abelian varieties.



3. Lehmer's problem on heights

Proof (of Thm. ~ hj;,(R) =0, cf. DB, Duke MJ 1995.)
By the product formula, the (absolute, logarithmic) normalized
height on G, (k) is
h(@) = Tvenm, 558 [0og(laly)].
For G = G4 and v € My, there is a unique extension of fog]|.|, to

A=A 6k) SR

0 — k —  G(k,) - Ak,) — O
| Logl.|v L(Av, ) |
0 — R — RxAKk,) — Ak) — 0

Then, ker(\,) = maximal compact subgroup of G(k,), while

~ kv

hiin(P) = Tverm T2l (A (P)|
Similar extension of fog|.|, to L, : P(k,) — R. One then checks
that L, (R) = 0, while L, |g, = A%
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4. Lindemann-Weierstrass

Aim : determine “algebraic locus” in Pila-Wilkie thanks to lower
bounds, a la Ax-Schanuel, for functional transcendence degrees
(= MM and RMM via Zannier's strategy).

S = (pointed) algebraic curve over C ~ K = C(S).
A/S abelian scheme, LA/S = relative tangent bundle.
Ao = K/C-trace of A = maximal constant part.
Exponential morphism over S":

0 — My — LA ZP4 pan __,
For u € LA(K), extended to a section of LA/S, set p = expa(u)
€ A(S?"). Then, tr.deg.K(p)/K) should measure how far u is
from a “special" Lie subalgebra of LA, modulo Ma+ constants.

Theorem (DB - A. Pillay, 2008)

Let u € LA(K) be non-degenerate, i.e. s.t. for any proper abelian
subvar/ety Hof A u¢ LH(K) + LAo(C), and let p = expa(u).
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4. Lindemann-Weierstrass

Semi-constant semi-abelian varieties

m:G/S — A/S semi-abelian scheme of constant toric rank.
LG/S = relative tangent bundle, exponential morphism over 52
But now, the K/C-trace Gy and K /C-image G° can be very
different. Let G*¢ := m~1(Ap) be the “semi-constant part” of G.
Then, LG 5 U+ P = expg(U) € G satisfies :

e if G*° is defined over C (< G* = Gp), we still have :
U e LG(K) non — deg. = tr.deg.K(P)/K = dimG.

e while Gg € G*¢ provides our third counter-example :

- E = Ey x S constant elliptic scheme, g € E(K) non-constant,
G = Gq € Exts(E,Gp); then, Gog = Gpy;
-U e LG(K), 0 # n(U) = u € LEy(C); then, U is non-deg., but

tr.deg. (K(P)/K)=1<2.
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4. Lindemann-Weierstrass

In the fully constant case (Ax) : g € E(C), Gy = G, so

Unon —deg. = U ¢ LGnp(K) + LGy(C) = (V) ¢ LEy(C)
No semi-constant nor Ribet-type degeneracy to be considered.
In general, set g = expg(v),v € LE~LE,G = Gg. If E has CM,
then E = Ey x S, so for g non-constant, U € LG(K) gives a Ribet
point expg(U) = R only if v = Bu € LE(K) \ LEg(C). Then,
g ¢ E(K), G is transcendental over K and we will be forced to
consider a general Schanuel-André problem (still open).
The results above come from the study of the (model-theoretic)
Manin kernels A?, Gf = DAG groups. In fact,

G = Gy = K(G*) = K = tr.deg.K(G*, P)/K(G*)) = dimG.
Otherwise, K C K(G*); determining when

tr.deg.K(G*, P)/K(G*, p)) =1 or 0

is still an open question in this case (counter-ex. included).
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5. Relative Manin-Mumford

CIT : X C G irreducible of codimension d, with X N G[<9 Zariski
dense in X = X C strict algebraic subgroup of G ?

RMM : let S/C be an irreducible variety, let G/S be a semi-abelian
scheme, and let Gior = Uses(c)(Gs)tor- Let X C G, irreducible and
of codimension > 1, such that X N Gy, is Zariski-dense in X.Then,
X C strict subgroup scheme of G/S 7

In particular, if Sis a curve, and P : S — G is a section of G/S
which does not factor through any proper closed subgroup scheme
of G/S, then its image P(S) := X should contain only finitely
many points of G;,,. Our fourth counter-example will concern a
semi-abelian scheme G/S, and | hasten to say that

* RMM should hold true for any abelian scheme;

* apart from this counter-example and its isogeny class, RMM does
hold true for any semi-abelian surface scheme over a curve S/k

Cf. current work of D. Masser, U. Zannier, A. Pillay, D.B.
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5. Relative Manin-Mumford

Theorem

Let Eg be a CM elliptic curve, and let ¢ : Ey — Eg be an anti-
symmetric isogeny. There exists an open subset S of Ey with the
following property. Let E = Eg x S, let G/S € Exts(E,G,/s) be
the restriction to S of the universal semi-abelian scheme P/ Ey, and
let R : S — G be the universal Ribet section

S>s=q— R(q) =0(q,2¢(q)) € Gs = Gq.
Then, X = R(S) satisfies :
i) 1(X)% = E, so X lies in no strict subgroup scheme of G/S;
ii) for any s = q € S such that w(R(s)) := p(s) = 2¢0(q) € (Es)tor
~ (Eo)tor, R(S) is a torsion point of the fiber Gs = G4 of G/S.

The proof uses the construction of o via Cartier duality (cf. DB,
ArXiv 1104.5178v1). Viewing GA/S as a generalized jacobian, B.
Edixhoven has shown that s € Eg[] = R(s) € G4[¢?].
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5. Relative Manin-Mumford

For any section P : S — G such that p := 7o P = 2, but not
isogeneous to R, the curve X = P(S) meets finitely many points of
Gior (i-e. satisfies RMM).

Proof : set P—R=1f:S — Gp,. Then, (f,2¢)(S) gives a curve in
the (constant, split) semi-abelian variety G, x Ey. Apply old MM !

e For the other cases, compute the “algebraic locus” in Pila-Wilkie
via logarithms of K-rational points. (Recall that K = C(S).)

The Lie algebras of the universal vectorial extensions E ~"E, G of
E, G = Gg, carry canonical connections. Lift the K-rational points
q,p,Pto g, peLE(K),PeG(K). Let
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5. Relative Manin-Mumford

Theorem

Let G = G, with a non-constant q € E(K), let P € G(K), with a

non-torsion p = 7(P) € E(K), and set Fp = F(i, 7, U).

i) If p and q are linearly independent over O mod. Ey(C), then,
deg.tr.(Fp/F) =5

ii) Assume that q = Bp in E(K)/Eo(C), with 3 € O,3 # —f3, or

that g = Bp + po with 3 = —f3 and a non-torsion py € Eo(C), or

that p € Eo(C). Then,

tr.deg.(Fp/F) =3
i) Assume that q = Bp in E(K), with 3 = —3. Then,
either P 4 R = tr.deg.(Fp/F) =3,
or P~ R = tr.deg.(Fp/F) = 2.

Cf. DB, Newton 2006 & [BMPZ], 2011. Implies RMM for P-¢ R:
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5. Relative Manin-Mumford

G € Ext(E,Gp,) leads to an exact sequence of Z-local systems
0—-MNg,=7Z—TMNg—MNg—0,

equivalently, to a representation p¢ : m1(S, s0) — Glogt+1=3(Z),

pG € Extr,(pe, 1), and Mp := {logG(Z.P)} ~ pp € Extr, (1, pg).

0 0
! !

0 — Z — Mg = Ng — 0
[ ! |

0—>Z—>ﬂpi>ﬂp—>0
! !
7Z = Z
! !
0 0

)

N, = {loge(Z.p)},N¢g ~ M. In Picard-Vessiot terms (= proof 1) :
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5. Relative Manin-Mumford

Fr P € G(k),w(P) = p. G = Gq
T V:/Og“flvaz/og~f),l~l:/ogal5
qu )
/! N Fp = k(i1 v, U)
Fq Foo Fpq = F(01, 7)
N Fa = K((LG)") = F(¥)
A Fo = F(2)
T ~
: F = K((LE))

Lt (q) ) 7p : Galyg(Fp/Fpq) — C
“q(v) P(v P
_ t¢, : Galy(Fy/F) — C2 ~ (LE)
pp(7) ( 0 pe(v) &) ) ; é:: Ga/aa(F:/F) 2 = (LEY?
pe < Galgp(F/K) — SL3(C)
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6. Pink’s general conjecture

In “amplitude” 0, R. Pink's general conjecture reads : let S be a
mixed Shimura variety over C, let A be a set of special points of S,
and let X be an irreducible closed subvariety of S of codimension

d > 1. Assume that X N A is Zariski dense in X. Then, X is a
special subvariety (= of Hodge type) of S.

In this context, the counterexample to RMM turns into a :
Pro-example : given a totally imaginary quadratic integer 3, and
g > 1, there is a mixed Shimura variety S() with a natural
embedding i : X — S(3) of the image X = R(S) of the Ribet
section, such that

The algebraic subvariety i(X) of the mixed Shimura variety S(/3)
passes through a Zariski-dense set of special points of S(3) - and is
indeed a special subvariety of S([3).
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6. Pink’s general conjecture

Construction of S(3) (cf. ArXiv 1104.5178) :

Start with a component Sy of the pure Shimura variety
parametrizing ppav's (A, ¢) of dimension g with 5 € End(A) (if

g =1, 5 is a point {Ep}). Let A be the universal abelian scheme
over So. Then, §; = A X s, A is a mixed Shimura variety
parametrizing (g, p)'s on Ax A, {A} € Sp. Set

S1(8) =1{A,q,p =26¢(q)}, and let @ : P — S; be the Poincaré
bi-extension, viewed as the universal extension G of A by G,,, over
its parameter space A. Then,

S(B) == 1(S:(8))
is a mixed Shimura variety parametrizing points P on fibers Gg of G
such that m(P) = 26¢(q). In particular, for g =1, X = R(S) has

~

a canonical embedding i into S(3) above the injection S — Ey.
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6. Pink’s general conjecture

Now ,

e a special point of S(/3) represents a couple (P € Gg) such that
the underlying A has CM, G, is an isotrivial extension, and P is a
torsion point on G,. For s = g € (Eo)to,, these conditions are all
satisfied by R(q), so i(X) contains infinitely many special points.

e the same study as in the two “multiple choice” theorems shows
that the generic Mumford-Tate groups of the special subvarieties of
S(3) are characterized by the condition £ =0 or 7 = 0. So, i(X) is
a subvariety of Hodge type of S(03).

Conclusion : the problem comes from the existence of a two-step
filtration in the unipotent radical of the generic Mumford-Tate

group of the mixed Shimura varieties parametrizing one-motives.
No such phenomenon will occur for the study of abelian schemes.
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6. Pink’s general conjecture

Et pour finir :
Joyeux anniversaire,

Anand !
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