Counterexamples with semi-abelian varieties.

D. Bertrand (IMJ)

Recent Developments in Model Theory

Oléron, June 5-11, 2011

- 1. Motivation : the MM-ML-AO-ZP conjectures
 2. Kummer theory
 - Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 Pink's general conjecture

1. Motivation: the MM-ML-AO-ZP conjectures

Mordell-Lang: let A be an abelian variety over a number-field k, let Δ be a subgroup of finite rank of A(k), and let X be an irreducible closed subvariety of A of codimension $d \geq 1$. Assume that $X \cap \Delta$ is Zariski dense in X. Then, X is a translate of a proper abelian subvariety of A. Cf. D. Roessler's talk.

Manin-Mumford : restrict to rank(Δ) = 0, i.e. Δ = A_{tor} , translate \rightarrow a component of an algebraic subgroup.

André-Oort: let S be a Shimura variety over k, let Δ be a set of special points of S, and let X be an irreducible closed subvariety of S of codimension $d \geq 1$. Assume that $X \cap \Delta$ is Zariski dense in X. Then, X is a subvariety of Hodge type (\sim a component of a Hecke transform of a proper Shimura subvariety of S). Cf. J. Pila's talk.

6. Pink's general conjecture

Generalizations:

ullet in MM-ML, replace A by a torus $T=\mathbb{G}_m^r$, or by $A\times T$, or even by an arbitrary

semi-abelian variety $G \in Ext(A, T)$

- Bombieri-Masser-Zannier / Zilber : unlikely intersections / CIT (cf. J. Kirby's talk) : e.g. in MM, replace G_{tor} by $G^{[< d]} = \cup G'$, dim G' < d.
- Relative Manin-Mumford (RMM): replace G/k by a semi-abelian scheme G/S over a variety S/k.
- Pink's general conjecture: in AO, replace S by a mixed Shimura variety,

e.g. those parametrizing one-motives (= points on semi-abelian varieties) + unlikely intersections + relative Manin-Mumford...

6. Pink's general conjecture

What is a semi-abelian variety?

 \bullet Chevalley's theorem : any connected commutative algebraic group G with no $\mathbb{G}_a\text{-subgroup}$:

$$0 \longrightarrow T \longrightarrow G \xrightarrow{\pi} A \longrightarrow 0$$
,

Assume $T\simeq \mathbb{G}_m^r$ split. For r=1, add a zero section \leadsto a line bundle, algebraically equivalent to 0 (Weil-Rosenlicht), so parametrized by

$$q \in Pic^{0}(A/k) = \hat{A}(k) \simeq Ext_{alg.gr/k}(A, \mathbb{G}_{m}).$$

• Generalized jacobians : let C/k be a proper smooth curve. Pinch it at two points (q_1,q_2) to get a singular curve C', with normalization $\nu:C\to C'$, hence

$$0 o \mathbb{G}_m o Pic^0(C'/k) o Pic^0(C/k) o 0$$

Then,
$$Pic^0(C'/k) = G_q$$
 for $q = \phi_{\Theta}(q_1 - q_2) \in \widehat{Pic^0(C/k)}$

- 1. Motivation : the MM-ML-AO-ZP conjectures
 2. Kummer theory
 - 3. Lehmer's problem on heights
 4. Lindemann-Weierstrass
 5. Relative Manin-Mumford
 6. Pink's general conjecture

The Poincaré bi-extension ${\cal P}$

Put all the G_q 's together $\rightsquigarrow \mathcal{P} =$ the Poincaré bundle minus zero section, plus a rigidification, cf. drawing on black (or white) board.

 $\mathcal P$ expresses the biduality $\hat{\hat{A}}\simeq A,$ via a canonical $\hat{\mathcal P}_{p,q}\simeq \mathcal P_{q,p}.$

$$\mathcal{P}|_{q\times A} = G_q, \quad \mathcal{P}|_{\hat{A}\times 0} = \mathbb{G}_m \times \hat{A} \text{ (in particular, "1" } \in \mathcal{P}_{0,0}).$$
 For $\varphi: A' \to A$ wth transpose $\varphi^* = \hat{\varphi}: \hat{A} \to \hat{A}', \ \mathcal{P}_{q,\varphi(p')} \simeq \mathcal{P}'_{\hat{\varphi}(q),p'}$ Compare $(\hat{V} \times V) \ni (\lambda, v) \to \lambda(v) = \text{"v"}(\lambda) \leftarrow (\text{"v"}, \lambda) \in \hat{V} \times \hat{V}$ For $\varphi: V' \to V$, with transpose $\hat{\varphi}$, $\lambda(\varphi(v')) = \hat{\varphi}(\lambda)(v')$.

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

Ribet points (work from the 80's by Breen and Ribet)

Analogues of Lagrangian subspaces : apart from $\hat{A} \times 0$ and $0 \times A$, unexpected abelian subvarieties $B \subset \hat{A} \times A$ such that $\mathcal{P}|_B$ is a trivial \mathbb{G}_m -torsor can arise. Indeed, for any antisymmetric

$$\varphi: \hat{A} \to A, \hat{\varphi} = -\varphi, \text{ with graph } B' = (id, \phi)(\hat{A}),$$

$$\mathcal{P}|_{\mathcal{B}'} \simeq (id, \varphi)^* \mathcal{P} \simeq (\hat{\varphi}, id)^* \hat{\mathcal{P}} \simeq (id, \hat{\varphi})^* \mathcal{P} \simeq -\mathcal{P}|_{\mathcal{B}'} \in \textit{Pic}^0(\mathcal{B}'),$$

so \mathcal{P} , restricted to the graph B of 2φ , admits a canonical section

$$\sigma: B \to \mathcal{P}|_{\mathcal{B}}$$
.

For any $q \in \hat{A}$ and antisymmetric φ , the point $R = \sigma(q, 2\varphi(q))$ of $\mathcal{P}_{q \times A} = G_q$, with $\pi(R) = p = 2\varphi(q)$, is called the **Ribet point** of G_q attached to φ . Ditto for $R' \sim R$ "isogeneous to" R.

1. Motivation : the MM-ML-AO-ZP conjectures
2. Kummer theory

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 Pink's general conjecture
- Ribet's initial construction (JNT 25, 1987, 133-151 and 152-161) : Given an isogeny $\varphi: \hat{A} \to A$ and $q \in \hat{A}$, consider the extension $G = G_q \in Ext(A, \mathbb{G}_m)$, parametrized by $q \in \hat{A}$ and its pullback

$$\varphi^*G \stackrel{\cdot}{=} G'_{\hat{\varphi}(q)} = G' \in \textit{Ext}(\hat{A}, \mathbb{G}_m) \simeq \textit{A} \text{, parametrized by } \hat{\varphi}(q) \in \textit{A}.$$

Choose a point $R_0 \in G'$ above q. Then, $R_1 = \varphi(R_0) \in G$ above $\varphi(q)$. The dual of the one-motive $\{R_0 \in G'_{\hat{\varphi}(q)}\}$ is $\{R_2 \in G_q\}$, with $R_2 = R_0 \in \mathcal{P}$ above $(q, \hat{\varphi}(q))$. The Ribet point is $R = R_1 - R_2 \in G_q$, lying above $p = (\varphi - \varphi)(q)$.

- Motivation: the MM-ML-AO-ZP conjectures
 Kummer theory
 Lehmer's problem on heights
 - 4. Lindemann-Weierstrass
 5. Relative Manin-Mumford
 - 6. Pink's general conjecture

2. Kummer theory

Aim: MM and reducing ML to M (= Mordell)

For $P \in X(k) \cap \Delta$, study the Galois orbit $\Gamma_k \cdot \frac{1}{\ell} P \subset X(\overline{k}) \cap \Delta$.

$$[k(\frac{1}{\ell}P):k] \leq \sharp G[\ell].$$

Should be large if P is far from a special subvariety of G. We say that P is non-degenerate if $\mathbb{Z}.P$ is Zariski-dense in G.

- Torus case $G = T = (\mathbb{G}_m)^r$: for $\alpha = (\alpha_1, ..., \alpha_r) \in T(k)$, $\alpha \text{ non } -\deg. \Leftrightarrow [k(\alpha^{\frac{1}{\ell}}:k] >> \ell^r]$
- Abelian case $G = A : r \rightsquigarrow 2g$. Setting $F := k(A[\ell])$, $p \text{ non } -\deg. \Leftrightarrow [F(\frac{1}{\ell}p) : F] >> \ell^{2g}$.
- $G = G_q \in Ext(A, \mathbb{G}_m), q$ non-tor. : P non-deg. $\Leftrightarrow p = \pi(P)$ non-deg. We expect ℓ^{2g+1} , and do get it, *except* is P is a Ribet point R, in which case we have our **first counter-example** :

$$[F(\frac{1}{\ell}R):F] << \ell^{2g}$$

However, one does not need a big power of ℓ (this is already apparent in Hindry 1988), and indeed, ML (hence MM) holds true for any semi-abelian variety G/k.

Still, the reason for the Galois-degeneracy of Ribet points is worth studying. We will now restrict to an elliptic curve

$$A = E \simeq \hat{E}, \varphi \leadsto \beta \in \mathcal{O} = End(E), \hat{\varphi} \leadsto \overline{\beta} = -\beta.$$

k= a number field, with absolute Galois group $\Gamma_k=Gal(\bar{k}/k)$. $\ell=$ a prime number, larger than a "constant" c(G,k,P) depending only on the indicated data.

- * The case of the multiplicative group \mathbb{G}_m :
- i) $\mathbb{G}_m[\ell] := \mu_\ell = \{\ell\text{-th roots of unity}\} \simeq \mathbb{F}_\ell$, on which Γ_k acts by the cyclotomic character $\chi_\ell : \Gamma_k \to GL_1(\mathbb{F}_\ell) = \mathbb{F}_\ell^* : \gamma \cdot \zeta_\ell = \zeta_\ell^{\chi_\ell(\gamma)}$.

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture
- ii) Let $\alpha \in \mathbb{G}_m(k)$. The ℓ -th roots of α provide an "affine" representation of Γ_k :

$$\gamma.\alpha^{\frac{1}{\ell}}/\alpha^{\frac{1}{\ell}} = \xi_{\alpha}(\gamma) \in \mu_{\ell} ; \ \gamma.(\zeta_{\ell}^{n}\alpha^{\frac{m}{\ell}}) = \zeta_{\ell}^{\chi_{\ell}(\gamma)n}\xi_{\alpha}(\gamma)^{m}\alpha^{\frac{m}{\ell}}$$

The corresponding vectorial representation is given by

$$M_{\alpha}[\ell] := \{ x \in \mathbb{G}_{m}(\bar{k}), x^{\ell} \in <\alpha > \} / <\alpha > = \{ \zeta_{\ell}^{n} \alpha^{\frac{m}{\ell}}, \binom{n}{m} \in \mathbb{F}_{\ell}^{2} \};$$

$$0 \to \mu_{\ell} \to M_{\alpha}[\ell] \to \mathbb{F}_{\ell} \to 0 \quad \leadsto \quad M_{\alpha}[\ell] \in Ext_{\mathbb{F}_{\ell}[\Gamma_{k}]}(\mathbf{1}, \mu_{\ell})$$

$$\rho_{\alpha}(\gamma) = \begin{pmatrix} \chi_{\ell}(\gamma) & \xi_{\alpha}(\gamma) \\ 0 & 1 \end{pmatrix} \xrightarrow{k(\zeta_{\ell}, \alpha^{\frac{1}{\ell}})} \xi_{\alpha} : \operatorname{Gal}(k(\zeta_{\ell}, \alpha^{\frac{1}{\ell}})/k(\zeta_{\ell})) \hookrightarrow \mu_{\ell} : K(\zeta_{\ell}) \\ \chi_{\ell} : \operatorname{Gal}(k(\zeta_{\ell})/k) \hookrightarrow \mathbb{F}_{\ell}^{*} = \operatorname{GL}_{1}(k(\zeta_{\ell})/k) : K(\zeta_{\ell}) : K(\zeta$$

- * The general case (with A = E for simplicity).

For $P \in G_q(k)$, with $\pi(P) = p \in E(k)$, the picture becomes :

"blending" $M_p[\ell] \in Ext(1, E[\ell])$ and $G_q[\ell] \in Ext(E[\ell], \mu_\ell)$ (notice $\widehat{G_q[\ell]} \in Ext(1, \hat{E}[\ell])$. The corresponding Galois representations are :

- 1. Motivation: the MM-ML-AO-ZP conjectures 2. Kummer theory
 - 3. Lehmer's problem on heights 4. Lindemann-Weierstrass 5. Relative Manin-Mumford 6. Pink's general conjecture

$$P \in G(k), \pi(P) = p, G = G_q$$

$$F_P = k(G[\ell], \frac{1}{\ell}P)$$

$$F_{pq} = k(G[\ell], \frac{1}{\ell}p)$$

$$F_q = k(G[\ell]) = k(E[\ell], \frac{1}{\ell}q)$$

$$F_p = k(E[\ell], \frac{1}{\ell}p)$$

$$F = k([E[\ell])$$

$$\rho_{P}(\gamma) = \begin{pmatrix} \chi_{\ell}(\gamma) & {}^{t}\xi_{q}(\gamma) & \tau_{P}(\gamma) \\ 0 & \rho_{E}(\gamma) & \xi_{p}(\gamma) \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{matrix} \tau_{P} : \mathsf{Gal}(F_{P}/F_{pq}) \hookrightarrow \mu_{\ell} \simeq \mathbb{F}_{\ell} \\ {}^{t}\xi_{q} : \mathsf{Gal}(F_{q}/F) \hookrightarrow \hat{E}[\ell] \simeq \mathbb{F}_{\ell}^{2} \\ \xi_{p} : \mathsf{Gal}(F_{p}/F) \hookrightarrow E[\ell] \simeq \mathbb{F}_{\ell}^{2} \\ \rho_{E} : \mathsf{Gal}(F/k) \hookrightarrow \mathsf{GL}_{2}(\mathbb{F}_{\ell}) \end{matrix}$$

$$\begin{split} \tau_P : \textit{Gal}(F_P/F_{pq}) &\hookrightarrow \mu_\ell \simeq \mathbb{F}_\ell \\ {}^t\xi_q : \textit{Gal}(F_q/F) &\hookrightarrow \hat{E}[\ell] \simeq \mathbb{F}_\ell^2 \\ \xi_p : \textit{Gal}(F_p/F) &\hookrightarrow E[\ell] \simeq \mathbb{F}_\ell^2 \\ \rho_E : \textit{Gal}(F/k) &\hookrightarrow \textit{GL}_2(\mathbb{F}_\ell) \end{split}$$

- 2. Kummer theory
 3. Lehmer's problem on heights
 - Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

Theorem (Jacquinot-Ribet, 1984)

Let $G = G_q$ with a non-torsion $q \in \hat{E}(k)$, and let $P \in G(k)$, with a non-torsion $p = \pi(P) \in E(k)$.

i) Assume that p and q are linearly independent over \mathcal{O} . Then,

$$Gal(F_P/F) \simeq \mu_\ell \rtimes (\hat{E}[\ell] \times E[\ell]).$$

- ii) Assume that $q = \beta p$ in $E(k)/E_{tor}$, with $\beta \in \mathcal{O}_{\mathbb{Q}}, \overline{\beta} \neq -\beta$. Then, $Gal(F_P/F) \simeq \mu_{\ell} \rtimes E[\ell]$.
- iii) Assume that $q = \beta p$ with $\overline{\beta} = -\beta$. Then, either $P \not\sim R \Rightarrow Gal(F_P/F) \simeq \mu_\ell \times E[\ell]$., or $P \sim R \Rightarrow Gal(F_R/F) \simeq E[\ell]$.

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

Proof : for X, X' in $\mathfrak{u}_P = \text{``Lie''} \, \text{Gal}(F_P/F)$, with coefficients $({}^t y, x) \in \text{Im}({}^t \xi_q, \xi_p) \subset \hat{E}[\ell] \times E[\ell], \ t \in \mathbb{F}_\ell \simeq \mu_\ell$,

$$X = \left(\begin{array}{ccc} 0 & {}^t y & t \\ 0 & 0 & x \\ 0 & 0 & 0 \end{array}\right), X', \text{ we have } [X, X'] = \left(\begin{array}{ccc} 0 & 0 & t(X, X') \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right),$$

where
$$t(X, X') = \langle y | x' \rangle - \langle y' | x \rangle$$

Polarization $\phi_L = \hat{\phi}_L : \hat{E} \simeq E$ (symmetric) \leadsto antisymmetric Weil pairing < |> and t ; also, $\hat{\beta} = \bar{\beta}$ (Rosati involution on $EndE = \mathcal{O}$).

Since < | > is non-degenerate, this settles Case (i) :

 $Gal(F_P/F_{pq}) \simeq Im(\tau_P) = \mathbb{F}_{\ell} \Rightarrow Gal(F_P/F) = \text{Heisenberg group}.$

Case (ii) , with $q=\beta p$: for any x,x' in $E[\ell]$, occurring in matrices X,X' and such that $< x|x'> \neq 0$, we get :

$$t(X, X') = \langle \beta x | x' \rangle - \langle \beta x' | x \rangle = \langle \beta x | x' \rangle - \langle x' | \overline{\beta} x \rangle$$

= $\langle \beta x | x' \rangle + \langle \overline{\beta} x, x' \rangle = \langle (\beta + \overline{\beta}) x | x' \rangle \neq 0$

since $\beta + \overline{\beta}$ is a non-zero integer. Again, $\mathit{Im}(\tau_P) = \mathbb{F}_\ell$.

Case (iii) : now, $\beta + \bar{\beta} = 0 \Rightarrow Gal(F_P/F)$ is abelian. The two cases are distinguished by the possibility to lift $\beta \sim \varphi : \hat{E}[\ell] \to E[\ell]$ to a Γ_k -equivariant self-duality

$$\Phi: \widehat{M_P}[\ell] \simeq M_P[\ell]$$

Then, $P \sim R \Leftrightarrow M_P[\ell]$ is antisymmetrically self-dual $\Leftrightarrow \tau_P = 0$. Holds over any tannakian category, cf. DB. ArXiv 1011.4685.

- Motivation: the MM-ML-AO-ZP conjectures
 Kummer theory
 Lehmer's problem on heights
 - 4. Lindemann-Weierstrass
 5. Relative Manin-Mumford
 - b. Pink s general conjecture

3. Lehmer's problem on heights

- 3. Lehmer's problem on heights Relative Manin-Mumford 6. Pink's general conjecture
- Unlikely intersections (or Bogomolov, cf. E. Breuillard's talk) ↔ upper bounds for normalized heights \hat{h} . Conclude with lower bound of Lehmer type: $\hat{h}(P) >> [\mathbb{Q}(P):\mathbb{Q}]^{-\frac{1}{2}}$, where "?" should measure how far $P \in G(\bar{\mathbb{Q}})$ is from a special subvariety of G. From G = T or A, expect :

$$P \text{ non - deg. } \Rightarrow \hat{h}(P) >> [\mathbb{Q}(P) : \mathbb{Q}]^{-\frac{1}{\dim G}}$$

For $G = G_q \in Ext(A, \mathbb{G}_m)$, q non-tor., $P \sim R$ gives our **second** counter-example. Qualitatively, this is reflected by

$\mathsf{Theorem}$

Let R be a Ribet point in $G_a(k)$. For any place $v \in \mathcal{M}_k$ of k, R lies in the maximal compact subgroup of the topological group $G(k_v)$.

Contrasts with Kronecker's theorem : let $\alpha \in \mathbb{G}_m(k)$ such that for any place $v \in \mathcal{M}_k$, α lies in the maximal compact subgroup of the topological group $\mathbb{G}_m(k_v) = (k_v)^*$. Then, α is a root of unity.

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

Normalized heights and Lehmer bounds.

 $[n]_G$ -equivariant compactification \bar{G} of G, $D \in Pic(\bar{G}/k)$ s.t.

$$[n]^*D \sim n^{\kappa}D \Rightarrow \hat{h}_D(nP) = n^{\kappa}\hat{h}_D(P) \Rightarrow \hat{h}_D(\frac{1}{\ell}P) = \frac{1}{\ell^{\kappa}}\hat{h}_D(P)$$

So, the following bounds would be best possible :

• Torus case G = T: for $P = (\alpha_1, ..., \alpha_r) \in T(\bar{\mathbb{Q}})$: \hat{h} linear

$$P \text{ non } -\deg. \Rightarrow \hat{h}(P) >> [\mathbb{Q}(P):\mathbb{Q}]^{-\frac{1}{r}}$$
?

• Abelian case $G = A : r \leadsto g = \dim A : \hat{h}$ quadratic

$$P \text{ non } - \deg. \Rightarrow \hat{h}(P) >> [\mathbb{Q}(P) : \mathbb{Q}]^{-\frac{1}{g}}$$
?

ullet $G=G_q\in Ext(A,\mathbb{G}_m), q$ non-tor. $: \hat{h}=\hat{h}_A\circ\pi+\hat{h}_{lin}$ so

$$\hat{h}(rac{1}{\ell}P) = rac{1}{\ell^2}\hat{h}_A(p) + rac{1}{\ell}\hat{h}_{lin}(P)$$

True, $\frac{1}{\ell} >> (\ell^{2g})^{-\frac{1}{g+1}}$, but $\hat{h}_{lin}(R) = 0$, and $\frac{1}{\ell^2} << (\ell^{2g+1})^{-\frac{1}{g+1}}$.

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

Proof (of Thm. $\sim h_{lin}(R)=0$, cf. DB, Duke MJ 1995.) By the product formula, the (absolute, logarithmic) normalized height on $\mathbb{G}_m(k)$ is

$$\hat{h}(\alpha) = \sum_{v \in \mathcal{M}_k} \frac{[k_v : \mathbb{Q}_p]}{[k : \mathbb{Q}]} |log(|\alpha|_v)|.$$

For $G = G_q$ and $v \in \mathcal{M}_k$, there is a unique extension of $log|.|_v$ to

$$\lambda_{\nu} = \lambda_{\nu}^{(q)} : G(k_{\nu}) \to \mathbb{R} :$$

Then, $ker(\lambda_{\nu}) = maximal compact subgroup of <math>G(k_{\nu})$, while

$$\hat{h}_{lin}(P) = \sum_{v \in \mathcal{M}_k} \frac{[k_v : \mathbb{Q}_P]}{[k : \mathbb{Q}]} \ |\lambda_v(P)|$$

Similar extension of $log|.|_{v}$ to $\mathbb{L}_{v}: \mathcal{P}(k_{v}) \to \mathbb{R}$. One then checks that $\mathbb{L}_{v}(R) = 0$, while $\mathbb{L}_{v}|_{G_{q}} = \lambda_{v}^{(q)}$.

- 1. Motivation : the MM-ML-AO-ZP conjectures 2. Kummer theory
 - Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

4. Lindemann-Weierstrass

Aim: determine "algebraic locus" in Pila-Wilkie thanks to lower bounds, à la Ax-Schanuel, for functional transcendence degrees (⇒ MM and RMM via Zannier's strategy).

S =(pointed) algebraic curve over $\mathbb{C} \longrightarrow \mathcal{K} = \mathbb{C}(S)$.

A/S abelian scheme, LA/S = relative tangent bundle.

 $A_0 = K/\mathbb{C}\text{-trace of } A = \text{maximal constant part}.$

Exponential morphism over S^{an} :

$$0 \longrightarrow \Pi_A \longrightarrow LA^{an} \stackrel{exp_A}{\longrightarrow} A^{an} \longrightarrow 0$$
.

For $u \in LA(K)$, extended to a section of LA/S, set $p = exp_A(u) \in A(S^{an})$. Then, tr.deg.K(p)/K) should measure how far u is from a "special" Lie subalgebra of LA, modulo $\Pi_A + constants$.

Theorem (DB-A. Pillay, 2008)

Let $u \in LA(K)$ be non-degenerate, i.e. s.t. for any proper abelian subvariety H of A, $u \notin LH(K) + LA_0(\mathbb{C})$, and let $p = \exp_A(u)$. Then, tr.deg.(K(p)/K) = dim(A)

Semi-constant semi-abelian varieties

 $\pi:G/S \to A/S$ semi-abelian scheme of constant toric rank. LG/S= relative tangent bundle, exponential morphism over S^{an} : But now, the K/\mathbb{C} -trace G_0 and K/\mathbb{C} -image G^0 can be very different. Let $G^{sc}:=\pi^{-1}(A_0)$ be the "semi-constant part" of G. Then, $LG\ni U\mapsto P=\exp_G(U)\in G$ satisfies:

- if G^{sc} is defined over \mathbb{C} ($\Leftrightarrow G^{sc} = G_0$), we still have : $U \in LG(K) \text{ non } -\deg. \Rightarrow tr.deg.K(P)/K = dimG.$
- while $G_0 \subsetneq G^{sc}$ provides our **third counter-example** :
- $E = E_0 \times S$ constant elliptic scheme, $q \in \hat{E}(K)$ non-constant, $G = G_q \in Ext_S(E, \mathbb{G}_m)$; then, $G_0 = \mathbb{G}_m$;
- $U \in LG(K)$, $0 \neq \pi(U) = u \in LE_0(\mathbb{C})$; then, U is non-deg., but tr.deg.(K(P)/K) = 1 < 2.

In the fully constant case (Ax) :
$$q \in \hat{E}_0(\mathbb{C}), G_0 = G$$
, so

$$U \text{ non } - \deg. \implies U \notin L\mathbb{G}_m(K) + LG_0(\mathbb{C}) \Rightarrow \pi(U) \notin LE_0(\mathbb{C})$$

No semi-constant nor Ribet-type degeneracy to be considered.

In general, set $q = exp_{\hat{E}}(v), v \in L\hat{E} \simeq LE, G = G_q$. If E has CM, then $E = E_0 \times S$, so for q non-constant, $U \in LG(K)$ gives a Ribet point $exp_G(U) = R$ only if $v = \beta u \in LE(K) \setminus LE_0(\mathbb{C})$. Then, $q \notin \hat{E}(K)$, G is transcendental over K and we will be forced to consider a general Schanuel-André problem (still open).

The results above come from the study of the (model-theoretic) Manin kernels A^{\sharp} , $G^{\sharp} = \mathsf{DAG}$ groups. In fact,

$$G^{sc} = G_0 \Rightarrow \bar{K}(G^{\sharp}) = \bar{K} \Rightarrow tr.deg.K(G^{\sharp}, P)/K(G^{\sharp})) = dimG.$$

Otherwise, $\bar{K} \subsetneq \bar{K}(G^{\sharp})$; determining when

$$tr.deg.K(G^{\sharp},P)/K(G^{\sharp},p)) = 1 \text{ or } 0$$

is still an open question in this case (counter-ex. included).

- - Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

5. Relative Manin-Mumford

CIT : $X \subset G$ irreducible of codimension d, with $X \cap G^{[< d]}$ Zariski dense in $X \Rightarrow X \subset$ strict algebraic subgroup of G?

RMM : let S/\mathbb{C} be an irreducible variety, let G/S be a semi-abelian scheme, and let $G_{tor} = \cup_{s \in S(\mathbb{C})} (G_s)_{tor}$. Let $X \subset G$, irreducible and of codimension ≥ 1 , such that $X \cap G_{tor}$ is Zariski-dense in X. Then, $X \subset$ strict subgroup scheme of G/S?

In particular, if S is a curve, and $P: S \to G$ is a section of G/S which does not factor through any proper closed subgroup scheme of G/S, then its image P(S) := X should contain only finitely many points of G_{tor} . Our **fourth counter-example** will concern a semi-abelian scheme G/S, and I hasten to say that

- * RMM should hold true for any abelian scheme;
- \ast apart from this counter-example and its isogeny class, RMM does hold true for any semi-abelian surface scheme over a curve S/k
- Cf. current work of D. Masser, U. Zannier, A. Pillay, D.B.

6. Pink's general conjecture

Theorem

Let E_0 be a CM elliptic curve, and let $\varphi: \hat{E}_0 \to E_0$ be an antisymmetric isogeny. There exists an open subset S of \hat{E}_0 with the following property. Let $E = E_0 \times S$, let $G/S \in Ext_S(E, \mathbb{G}_{m/S})$ be the restriction to S of the universal semi-abelian scheme \mathcal{P}/\hat{E}_0 , and let $R: S \to G$ be the universal Ribet section

$$S \ni s = q \mapsto R(q) = \sigma(q, 2\varphi(q)) \in G_s = G_q.$$

Then, X = R(S) satisfies :

- i) $\pi(X)^{Zar} = E$, so X lies in no strict subgroup scheme of G/S; ii) for any $s = q \in S$ such that $\pi(R(s)) := p(s) = 2\varphi(q) \in (E_s)_{tor} \simeq (E_0)_{tor}$, R(s) is a torsion point of the fiber $G_s = G_q$ of G/S.
- The proof uses the construction of σ via Cartier duality (cf. DB, ArXiv 1104.5178v1). Viewing G/S as a generalized jacobian, B. Edixhoven has shown that $s \in \hat{E}_0[\ell] \Rightarrow R(s) \in G_q[\ell^2]$.

6. Pink's general conjecture

Corollary

For any section $P: S \to G$ such that $p:=\pi \circ P=2\varphi$, but not isogeneous to R, the curve X=P(S) meets finitely many points of G_{tor} (i.e. satisfies RMM).

Proof : set $P-R=f:S\to \mathbb{G}_m$. Then, $(f,2\varphi)(S)$ gives a curve in the (constant, split) semi-abelian variety $\mathbb{G}_m\times E_0$. Apply old MM!

ullet For the other cases, compute the "algebraic locus" in Pila-Wilkie via logarithms of K-rational points. (Recall that $K=\mathbb{C}(S)$.)

The Lie algebras of the universal vectorial extensions $\tilde{E} \simeq \tilde{E}$, \tilde{G} of E, $G = G_q$, carry canonical connections. Lift the K-rational points q, p, P to \tilde{q} , $\tilde{p} \in L\tilde{E}(K)$, $\tilde{P} \in \tilde{G}(K)$. Let

$$\tilde{v} = log_{\tilde{E}}\tilde{q}, \tilde{u} = log_{\tilde{E}}\tilde{p}, \tilde{U} = log_{\tilde{G}}\tilde{P},$$

and set
$$\mathbb{C} \otimes \Pi_E = (L\tilde{E})^{\partial}, F = K((L\tilde{E})^{\partial}).$$

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 Pink's general conjecture
- **Theorem**

Let $G = G_q$ with a non-constant $q \in \hat{E}(K)$, let $P \in G(K)$, with a non-torsion $p = \pi(P) \in E(K)$, and set $F_P = F(\tilde{u}, \tilde{v}, \tilde{U})$.

i) If p and q are linearly independent over $\mathcal O$ mod. $E_0(\mathbb C)$, then,

$$deg.tr.(F_P/F) = 5$$

ii) Assume that $q = \beta p$ in $E(K)/E_0(\mathbb{C})$, with $\beta \in \mathcal{O}, \overline{\beta} \neq -\beta$, or that $q = \beta p + p_0$ with $\overline{\beta} = -\beta$ and a non-torsion $p_0 \in E_0(\mathbb{C})$, or that $p \in E_0(\mathbb{C})$. Then,

$$tr.deg.(F_P/F) = 3$$

iii) Assume that $q = \beta p$ in E(K), with $\overline{\beta} = -\beta$. Then, either $P \not\sim R \Rightarrow tr.deg.(F_P/F) = 3$, or $P \sim R \Rightarrow tr.deg.(F_P/F) = 2$.

Cf. DB, Newton 2006 & [BMPZ], 2011. Implies RMM for P / R

- Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

 $G \in \mathit{Ext}(E,\mathbb{G}_m)$ leads to an exact sequence of \mathbb{Z} -local systems

$$0 \to \Pi_{\mathbb{G}_{\textbf{\textit{m}}}} = \mathbb{Z} \to \Pi_{\textbf{\textit{G}}} \to \Pi_{\textbf{\textit{E}}} \to 0,$$

equivalently, to a representation $\rho_G: \pi_1(S, s_0) \to GL_{2g+1=3}(\mathbb{Z})$, $\rho_G \in Ext_{\pi_1}(\rho_E, \mathbf{1})$, and $\Pi_P := \{log_G(\mathbb{Z}.P)\} \leadsto \rho_P \in Ext_{\pi_1}(\mathbf{1}, \rho_G)$.

 $\Pi_p = \{log_E(\mathbb{Z}.p)\}, \Pi_G \simeq \hat{\Pi}_q$. In Picard-Vessiot terms (= proof!):

1. Motivation: the MM-ML-AO-ZP conjectures 2. Kummer theory

3. Lehmer's problem on heights 4. Lindemann-Weierstrass 5. Relative Manin-Mumford 6. Pink's general conjecture

$$F_{P} \qquad \qquad P \in G(k), \pi(P) = p, G = G_{q}$$

$$\uparrow \qquad \qquad \tilde{v} = \log_{\tilde{E}} \tilde{q}, \tilde{u} = \log_{\tilde{E}} \tilde{p}, \tilde{U} = \log_{\tilde{G}} \tilde{P}$$

$$F_{pq} \qquad \qquad F_{p} \qquad \qquad F_{p} \qquad \qquad F_{pq} = F(\tilde{u}, \tilde{v})$$

$$F_{q} = K((L\tilde{G})^{\partial}) = F(\tilde{v})$$

$$F_{q} = K((L\tilde{G})^{\partial}) = F(\tilde{v})$$

$$F_{p} = F(\tilde{u})$$

$$\uparrow \qquad \qquad \qquad F_{p} = F(\tilde{u})$$

$$\uparrow \qquad \qquad \qquad F_{p} = Gal_{\partial}(F_{p}/F_{pq}) \hookrightarrow \mathbb{C}$$

$$\rho_{P}(\gamma) = \begin{pmatrix} 1 & {}^{t}\xi_{q}(\gamma) & \tau_{P}(\gamma) \\ 0 & \rho_{E}(\gamma) & \xi_{p}(\gamma) \\ 0 & 0 & 1 \end{pmatrix} \qquad , \qquad {}^{t}\xi_{q} : Gal_{\partial}(F_{q}/F) \hookrightarrow \mathbb{C}^{2} \simeq (L\tilde{E})^{\partial}$$

$$\xi_{p} : Gal_{\partial}(F_{p}/F) \hookrightarrow \mathbb{C}^{2} \simeq (L\tilde{E})^{\partial}$$

$$P \in G(k), \pi(P) = p, G = G_q$$

$$\tilde{v} = \log_{\tilde{E}} \tilde{q}, \tilde{u} = \log_{\tilde{E}} \tilde{p}, \tilde{U} = \log_{\tilde{G}} \tilde{P}$$

$$F_P = k(\tilde{u}, \tilde{v}, \tilde{U})$$

$$F_{pq} = F(\tilde{u}, \tilde{v})$$

$$F_q = K((L\tilde{G})^{\partial}) = F(\tilde{v})$$

$$F_p = F(\tilde{u})$$

$$F = K((L\tilde{E})^{\partial})$$

$$\tau_P : Gal_{\partial}(F_P/F_{pq}) \hookrightarrow \mathbb{C}$$

$${}^t\xi_q : Gal_{\partial}(F_q/F) \hookrightarrow \mathbb{C}^2 \simeq (L\tilde{E})^{\partial}$$

 $\rho_E : Gal_{\partial}(F/K) \hookrightarrow SL_2(\mathbb{C})$

- Motivation: the MM-ML-AO-ZP conjectures
 Kummer theory
 Lehmer's problem on heights
 - 4. Lindemann-Weierstrass
 5. Relative Manin-Mumford
 - 6. Pink's general conjecture

6. Pink's general conjecture

In "amplitude" 0, R. Pink's general conjecture reads : let $\bf S$ be a mixed Shimura variety over $\mathbb C$, let Δ be a set of special points of $\bf S$, and let X be an irreducible closed subvariety of $\bf S$ of codimension $d \geq 1$. Assume that $X \cap \Delta$ is Zariski dense in X. Then, X is a special subvariety (= of Hodge type) of $\bf S$.

In this context, the counterexample to RMM turns into a : **Pro-example** : given a totally imaginary quadratic integer β , and $g \ge 1$, there is a mixed Shimura variety $S(\beta)$ with a natural embedding $i: X \to S(\beta)$ of the image X = R(S) of the Ribet section, such that

Theorem

The algebraic subvariety i(X) of the mixed Shimura variety $S(\beta)$ passes through a Zariski-dense set of special points of $S(\beta)$ - and is indeed a special subvariety of $S(\beta)$.

Construction of $S(\beta)$ (cf. ArXiv 1104.5178) :

6. Pink's general conjecture

Start with a component S_0 of the pure Shimura variety parametrizing ppav's (A,ϕ) of dimension g with $\beta\in End(A)$ (if g=1, S_0 is a point $\{E_0\}$). Let $\mathcal A$ be the universal abelian scheme over S_0 . Then, $S_1=\hat{\mathcal A}\times_{S_0}\mathcal A$ is a mixed Shimura variety parametrizing (q,p)'s on $\hat{\mathcal A}\times \mathcal A,\{A\}\in S_0$. Set $S_1(\beta)=\{A,q,p=2\beta\phi(q)\}$, and let $\varpi:\mathcal P\to S_1$ be the Poincaré bi-extension, viewed as the universal extension $\mathcal G$ of $\mathcal A$ by $\mathbb G_m$, over its parameter space $\hat{\mathcal A}$. Then,

$$S(\beta) = \varpi^{-1}(S_1(\beta))$$

is a mixed Shimura variety parametrizing points P on fibers G_q of \mathcal{G} such that $\pi(P)=2\beta\phi(q)$. In particular, for $g=1,\ X=R(S)$ has a canonical embedding i into $S(\beta)$ above the injection $S\hookrightarrow \hat{\mathcal{E}}_0$.

Motivation : the MM-ML-AO-ZP conjectures
 2. Kummer theory
 3. Lehmer's problem on heights
 4. Lindemann-Weierstrass
 5. Relative Manin-Mumford
 6. Pink's general conjecture

Now,

- a special point of $S(\beta)$ represents a couple $(P \in G_q)$ such that the underlying A has CM, G_q is an isotrivial extension, and P is a torsion point on G_q . For $s = q \in (\hat{E}_0)_{tor}$, these conditions are all satisfied by R(q), so i(X) contains infinitely many special points.
- the same study as in the two "multiple choice" theorems shows that the generic Mumford-Tate groups of the special subvarieties of $S(\beta)$ are characterized by the condition $\xi=0$ or $\tau=0$. So, i(X) is a subvariety of Hodge type of $S(\beta)$.

Conclusion: the problem comes from the existence of a two-step filtration in the unipotent radical of the generic Mumford-Tate group of the mixed Shimura varieties parametrizing one-motives. No such phenomenon will occur for the study of abelian schemes.

- 1. Motivation : the MM-ML-AO-ZP conjectures
 2. Kummer theory
 - Lehmer's problem on heights
 Lindemann-Weierstrass
 Relative Manin-Mumford
 - 6. Pink's general conjecture

Et pour finir :

Joyeux anniversaire,

Anand!