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Abstract. In the first four sections of this paper, we describe Yves André’s
beautiful new proof [2] , [3] of the theorem of Siegel-Shidlovsky on values of
FE-fonctions. Our last two sections are devoted to the generalized relation of
Fuchs on exponents (cf. [4], [5]), which plays the role of a multiplicity estimate
in André’s method.

Résumé. Récemment, Yves André a obtenu une démonstration du théoreme
de Siegel et Shidlovsky, comme sous-produit de sa théorie de Gevrey arith-
métique. On décrit cette preuve, d'une facture toute nouvelle en transcen-
dance, ainsi que la généralisation au cas irrégulier de la relation de Fuchs, qui

joue dans sa méthode le role du lemme de Shidlovsky.

1 Introduction.

Let Q be an algebraic closure of Q. By an E-function, we shall mean in the

present note a power series
e
F = Ymzo—2" € Q[2]]
m!

satisfying the following conditions (which, as far as (ii) and (iii) are concerned,
are slightly stricter than Siegel’s, cf. [3]):

i) F is a solution of a differential equation with coefficients in Q(z) (in par-
ticular, the a,’s generate a number field); we shall denote by Dp € Q(2)[d/dz]
the monic operator of minimal order such that Dr(F) = 0, and by ng the
order of Dp.



ii) for each archimedean absolute value |.| on @, the sequence {|a,,|;m > 0}
is bounded from above by a geometric progression (in particular, F' defines an
entire function F(z) for each complex embedding of Q);

iii) there exists a sequence {d,,; m > 0} of positive integers, bounded from
above by a geometric progression, such that d,,a, is an algebraic integer for
all 0 <r <m.

As is well-known (cf. [11]), we then have

Theorem 0 (Siegel-Shidlovsky). Let F = Y(Fy,...,F,) be a vector of
E-functions, and let A be an n X n matriz with coefficients in Q(z) such that
4F = AF. Fiz a complex embedding of Q, and a point a # 0 € Q away from
the poles of A. Then,

tr.deg.(Q(Fi(a), ..., F(a)/Q) = tr.deg.(Q(z)(Fi, ..., F,)/Q(2)).

The differential assumption on F' makes Condition (i) above redundant.
Note also that the set of poles of A may be strictly smaller than the union of
the sets of singularities of the differential operators D, = 1,...,n. But the
requirement that « is not a pole of A is crucial: the conclusion of Theorem 0
ceases to hold if Fy, ..., F, is replaced by (z — a)Fi,...,(z — a)F,.

The new proof devised by Y. André of Theorem 0 relies on three ingredients.
The most important one, which looks deceptively simple, reads as follows.

Theorem 1 (André). Let F be an E-function, and let Dy € Q(2)[d/dz]
be the (monic) differential operator of minimal order such that Dp(F) = 0.
Then, the differential equation Dp(y) = 0 admits a basis of analytic solutions
at any point o € P1(C), a0 # 0, 00.

(Such a point @ may well be a singularity of the differential operator Dy and
Theorem 1 says in this case that it must be an apparent singularity.) Denoting
by n = ng the order of D = Dp, and by ord, the order function on the local
ring Q|[z — ], we may then consider the n successive maxima {e2_,,...,e5}
of ord, on the C-vector space of solutions of Dy = 0 which are analytic at «,
and, inspired by Weierstrass points on curves, define the defect of D at a by

the formula
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(By Cauchy’s theorem, d,(D) = 0 if « is an ordinary point of D; it is positive
if o is an apparent singularity). With these notations, Theorem 1 implies :

Corollary 1 (André). If an E-function F belongs to Q|[z]] and if a €
Pl(Q)? « 7é 07 o0, then

da(Dp) > np . ordy(F).

The rationality assumptions on « and on F' in this corollary are crucial for its
proof. As explained at the end of this section, its conclusion encompasses a

extrapolation process of an entirely new nature in transcendence theory.

A standard feature in transcendence proofs, the second ingredient is a mul-
tiplicity estimate. A convenient way to describe it here consists in setting, for
any differential operator D € C(z)[d/dz], of order n, and any a € P1(C) :

=U,...,

wa(ef =) — 5 i (Bnd(D)),

where {e§,...,e%_;} are the exponents of D at «, and irr*(End(D)) is Mal-
grange’s irregularity of End(C(z)[d/dz]/C(z)[d/dz]D) at «. These notions
are explicited in Section 5, but for the moment, it suffices to know that the
do(D)’s reduce to the defects defined above when « is an ordinary point or an
apparent singularity of D, and that they satisfy the following generalization of
Fuchs’ global relation on exponents :

Theorem 2 (cf. [4], [5] and §6 below). For any D € C(z)[d/dz], the
(finite) sum of all the non-zero defects of D satisfies:

X do(D) = —n(n —1).

a€P1(C)

Since ordinary points and apparent singularities provide non negative con-
tributions to this sum, we derive from Theorems 1 and 2 :

Corollary 2 (André). For any E-function F and any o € P1(Q),a #
07 m?
(SQ(DF) S — 50<DF) — 5oo(DF) — TLF(TLF - 1)

The third ingredient of André’s proof is the transcendence method itsef.
Under the assumption that Theorem 1 does not hold, an auxiliary E-function



F € Q[z]] can be built up with a high order T of vanishing at the point oo = 1.
A interesting feature here is that this construction does not appeal to Siegel’s
lemma: just like Mahler’s method (cf. [13]), it relies solely on linear algebra.
But an even more remarkable feature is that the full construction occurs at
the point «, and requires extrapolations neither at 0 (or other points) nor
on higher derivatives at a. Rather, the extrapolation is done on the other
solutions of the differential equation Dp satisfied by the auxiliary function.
Indeed, Corollary 1 implies that d,(Dr) > ng T. But Corollary 2 gives an
upper bound of the type 0,(Dr) < ng T for T sufficiently large, whence the
searched for contradiction.

2 An illustration of the method

As a warm-up, let us show how Theorem 1 immediately implies the following
consequence of Theorem 0 . The proof provides a simple illustration of André’s
extrapolation process.

Corollary 0 (Lindemann-Weierstrass). Let (31, ..., 3, be complex algebraic
numbers, linearly independent over Q. Then, €, ... e’ are algebraically

independent over Q.

Proof : as is well known, it suffices to derive a contradiction from the assump-
tion that
Y€ 4 . 4 e =0,

where ~1,...,7, are non-zero complex algebraic integers, and «aq,...,q, are
distinct complex algebraic integers.
As an auxiliary function, choose (with Lindemann !)

F(z) = I,(1]e** + ... 4+ 77e"7),

where o runs through all the complex embeddings of the field generated by the
a;,7;’s. Then, F'= ¥,,50%% 2™ with coefficients a,, € Z, and since F' is a sum
of exponential functions, it defines an F-function; furthermore, the minimal
monic differential operator Dp annihilating F' has constant coefficients (and
positive order, because F' # 0). Now, I claim that

F(z) b,

(I)(Z) = 1—. = Zmzo%zm




also defines an E-function. Indeed, F'(1) = 0 by assumption, so that & is
an entire function of exponential growth; since the coefficients b, are rational
numbers, this does imply that for each archimedean absolute value |.| on @,
the sequence {|b,,|;: m > 0} grows at most geometrically. Furthemore, the
by = ZTZOMmT—!!a,, all belong to Z, and Condition (iii) is satisfied. Finally,
consider the monic differential operator

Dy = ! 1ODFO(Z —-1)= DF(i + L) € Q(z)[d/dz]

zZ— dz z-—1

(where the third term means that d/dz is replaced by d/dz+ -1 in the expres-
sion of D as a polynomial in d/dz). The C-linear map £ : y — (z—1)y gives a
bijection between the solution spaces of the differential equations Dgy = 0 and
Dry = 0, so that Dg is indeed the minimal differential operator annihilating
.

Theorem 1 now implies to all the solutions of Dgy = 0 are analytic at 1.
In view of the bijection &, we infer that all the solutions of Dpy = vanish at 1.
Since D has constant coefficients, this contradicts Cauchy’s theorem (which

here plays the role of Corollary 2 ) 1.

The latter argument on & is the proof of the derivation

Theorem 1 = Corollary 1 : under the hypotheses of Corollary 1, let T" be the
order of F at a, and let ®(z) = F(z2)/(a — z)T. Because of the Q-rationality
assumptions on F' and «, one checks as above that ® defines an E-function,
and the map £ : y — (2 — a)Ty shows that all the solutions of Dy near «
are analytic functions, of order > T'. Thus « is an apparent singularity, with
minimal exponent e > T. Now, the exponents {eg,...,e,,_1} of Dp at «
are distinct, since no logarithmic solution occur. Hence, ¢; > T + ¢ for all
i=0,...,np— 1, and 0,(DFr) > ngT.

3 From G-functions to F-functions.

Let £ be the formal Laplace transform on the ring Q][2]], sending F =
Ym>0bm2™ to LF = Zmzobm% (when F' defines an entire functions of ex-

! In [3], André gives yet another proof of Lindemann-Weierstrass, as a direct consequence
of Chudnovsky’s theorem on G-functions (see Section 3 below), and contrasts it with the
proof of Bézivin and Robba [6], which relied on the Borel-Polya-Dwork-Bertrandias ratio-
nality criterion.



ponential growth, £F is the Taylor expansion at 0 of [ F(u)e *"du). A
G-function (again in a stricter sense than Siegel’s, now because of Condi-
tion (i)) may then be defined as a power series f(2) = X,,>0a,2™ such that
f(z) = 1LF (1) for some E-function F, i.e. such that :

i) f is a solution of a differential equation with coefficients in Q(z) (the
relation between Dy and the annihilator Dy of f in Q(z)[d/dz] is described
below);

ii) for each archimedean absolute value |.| on @, the sequence {|a,,|;m > 0}
is bounded from above by a geometric progression ;

iii) there exists a sequence {d,,; m > 0} of positive integers, bounded from
above by a geometric progression, such that d,,a, is an algebraic integer for
all 0 <7 < m (see also [12]).

A fundamental theorem of Chudnovsky [9] asserts that the operator Dy is
then an G-operator, i.e. that the resolvent

R(z,t) = Zm>oR;nl(!t)(Z - )"

of the associated system satisfies Galockin’s property : there exists a non-zero
polynomial ¢(t) and a sequence {D,,;m > 0} of positive integers, bounded

from above by a geometric progression, such that for all » = 0,...,m, the

m Rr(t)

entries of the matrices D,,q(t)™ =%

are polynomials with algebraic integers
as coefficients, all of whose archimedean values grow at most geometrically with
m. The first inequality in Theorem IV.5.2 of [1] then implies that D satisfies
the condition introduced by Bombieri in [7], X, on generic radii of convergence,
hence is a fuchsian operator with quasiunipotent local monodromy at each of
its singularities, in view of a classical result of Katz. The following consequence

will suffice for the proof of Theorem 1 .

Proposition 1 (cf. [2], §3). Let f be an G-function, and let Dy €
Q(2)[d/dz] be the (monic) differential operator of minimal order such that
D¢(f) =0. Then, the differential equation D¢(y) = 0 admits a reqular singu-
larity at 0.

This result truly pertains to number theory. We now describe André’s
purely formal derivation
Proposition 1 = Theorem 1 : let F' be an E-function, and let 0 = d/dz. Then
L(zF) = —0(LF), L(O(F)) = 2LF — F(0) , and more generality, for any
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element A, of order § (in 9) in the ring D = Q[z,d] of differential operators
with polynomial coefficients,

LIA(F)) = F(A) (LF) +pr(2),

where pr € Q[z] is a polynomial of degree at most § — 1 , and where F :
z+— — 0, 0+ z denotes the Fourier transform on the ring D, with inverse
Fl:i2—0,0— —z Now,

LZ’A(F) = (—0)’ LIA(F)) = (-0)°F(A) (LF)

so that F~'(V)(F) = 0, for any V € D annihilating LF.

Set f(z) = L(LF)(1), and let V be any non-zero Q|z]-multiple, lying in
the ring D, of the annihilator D11y of 1f(1). Then, V(LF) = 0. On the
other hand, V is equivalent to the pull-back under the inversion z — i of the
annihilator Dy of f. Since f is a G-function, we thus deduce from Proposition
that V admits a regular singularity at co. In particular, writing 0 (resp. v) for
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condition of Fuchs at oo reads :
deg(C;) —i < deg(C,) — v.

Therefore, the only polynomial C; of degree ¢ is C,,, and F (V) is a differential
operator (of order ¢ in ), whose highest coefficient is a monomial in z (of
degree v). Consequently, F~'(V) has no singularity outside {0 , oo}.
Finally, the annihilator Dy of F is a right divisor of F '(V) in the ring
Q(2)[0]. Since all solutions of Dp(y) = 0 are solutions of F*(V)(y) = 0,
this implies that Dp has at worst apparent singularities outside {0 , oo}, as

claimed by Theorem 1.

4 Siegel-Shidlovsky

We can now turn to the promised proof ([3], §2) of Theorem 0 , which, thanks
to standard reductions (cf [11], Lemma 5.3, and Siegel’s trick), is equivalent to
the following assertion : assume that the E-functions Fi, ..., F), are linearly
independent over Q(z), and let K be a number field containing their Taylor
coefficients at 0 and the coefficients of the rational functions entries of the



matrix A; then the dimension v of the K-vector space generated by their
values (relatively to the given complex embeding of Q) at o = 1 satisfies

v>n/k,

where £k = [K : Q).

By definition, v is the dimension of the smallest K-subspace W of K™
such that W(C) 3 F(1). View K" as the space of initial condition of the
differential system dY /dz = AY at its ordinary point o = 1, and let Y, ..., Y,

be a basis of its solutions in (K[[z — 1]])™ whose values at v = 1 generate WW.

)

In particular, F' belongs to the C-vector space these generate in (C[[z — 1]])™.

Let now T' be a sufficiently large parameter. By linear algebra, there exist
a non zero linear form P = (Py,...,P,) € ((K[z])")* , whose entries are
polynomials of degrees at most T such that

Vi=1,...,v : ordlﬁ’.?jZT.

This implies that PF = Yie1. P F; has order at least T at z = 1. As
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where o runs through all complex embedings of K. Then, F'is an E-function,
which belongs to Q[[z]], and which still vanish to an order > T at 1, so that
the annihilator Dp of F'in Q(z)d/dz satisfies

0n(Dp) > npT

in view of Corollary 1.

Following a method introduced by Chudnovsky [8] for Fuchsian operators
(see [4] in case of irregular singularities), we now bound from below the defects
of D at 0 and at oo. By differential Galois theory, a basis of solutions of
Dp(y) = 0 is given by functions of the form II,P?.Y,, where each Y, runs
through a subset of the space the solutions of the differential system dY /dz =
A°Y . Therefore, np is bounded in terms of n and &, and there exists positive
integers ¢o(A, k), ¢ (A, k), depending only on A and &, such that

50(Dr) > —co(A k), Guo(Dr) > —np[ : Qlsupi_y._deg(P) — colA, 1),



Corollary 2 now implies :
KV
(51(DF) S nF?T + Co + Coo-

Hence
| < ot b
n npT

)

and the proof of our assertion follows on taking 7" sufficiently large with respect
to A and K.

[To justify the sketch of proof at the end of §1 , recall that the effect of Siegel’s
trick (cf. [11], pp. 217 and 231) is to replace n (resp. v) by the values at
sufficiently large integers of the Hilbert function of P,_; (resp. of a proper

subvariety of P,,_1), so that ® can be made smaller than 1.]

This concludes our report on André’s proof. Note that Siegel-Shidlovsky
is only one of the corollaries of his arithmetic Gevrey theory. For other ap-
plications (g-analogues, Euler-type series, ...) and for the theory itself, please

consult the original papers [2], [3].

5 Exponents.

In this section and the last one, we give the proof of Theorem 2. This cor-
responds to a joint work with G. Laumon, which was summarized (under a
slightly different viewpoint) in [5], and which sharpens a previous joint work
with F. Beukers [4].

Since exponents are a local notion, we first define them over the ring
F[d/dz] of differential operators with coefficients in the fraction field F =
C((z)) of the local ring A = C[[z]] of formal power series with coefficients in
an algebraically closed field C' of characteristic zero. We denote by v = ord,
the extension to the algebraic closure F' of the standard valuation on F', and
we set @ = zd/dz. Any element D of F[d/dz], of order n, admits a non zero
left A-multiple D € A[d/dz] such that

E = an" —+ bn_lenil + ..+ bo, infi:() n’U(bl) == 0,

.....

and up to a constant multiple, the indicial polynomial P = Pp of D is given
by
Pp(X) =0,(0) X" 4+ ...+ bp(0).

9



We say that D admits a regular singularity (or : is Fuchsian) at 0 if its de-
gree is n, ie. if v(b,) = 0. The exponents of D at 0 are then the n roots
eo(D),...,en—1(D) of the indicial equation P(X) = 0. In case 0 is ordinary,
PX)=X(X—-1)...(X — (n—1)), while as explained above, e;(D) > i for
alli =0...,n—1,if 0 is an apparent singularity; in both of these cases, the
exponents provide all the values assumed by v on the set of solutions of Dy = 0

in A[[z]].

The general definition of exponenents is based on a splitting of D which
often requires an extension of scalars to F, i.e. to C'((t)) with t¥ = z for some
integer N (one can in fact take N = ppcm(1,...,n)), and the introduction of
‘Puiseux polynomials in 1 with no constant term’, i.e. elements of 1C[1] C F.
Since zd% = %t%,
such extensions, and the definition of exponents in the fuchsian case can be
extended to the full ring F'[f] in a uniform way. For any D = D(#) € F[f] and

any w € I, set

the degree of the indicial equation Pp is invariant under

D* =Dl +w) = e~/ ZoDoel “% € F[h).

The classical theorem of Poincaré-Hukuhara-Turritin-Levelt then asserts :

Proposition 2 (cf. [14]). for any monic D € Flf], there exists a unique
set {wy,...,ws} of distinct Puiseux polynomials in % with no constant terms
and a unique set {D1, ..., D,} of monic fuchsian operators in F|0] such that

D is the least common left multiple of {D7“*,..., D;*} in the ring F[0).

Note in particular that ¥, _sord(D;) = ord(D). If n; = ord(D,),j =
1,...,s, we now define the exponents of D at 0 as the collection
{e;(D;);i=0,...,n; —1;j=1,...,s}

of all the exponents of all the D;’s. By the unicity of the maximal right fuchsian
factor of an operator ([14], 2.4.2), these may also be described as the roots of
the indicial polynomials of the operators D“i;j = 1,...,s. Thus, D always
has n = ord(D) exponents. We also write

’iTT’O(ETLdD) = - Elgj;,,gkgsnjnkv(wj — wk) = -2 21§k<j§5njnkv<wj' — wk).

For our needs, the latter expression, which vanishes if D is fuchsian (or, more
generally, if and only if the decomposition above involves a single w;) can be
taken as the definition of the irregularity of End(F[d/dz]/F[d/dz|D) at 0..
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The following effective version of the Hensel-Sibuya lemma (cf. [14]) is the
key to the proof of Theorem 2.

Lemma 1. Let ©, 05 be fuchsian operators of order ni,ny. For any not
zero w € %C’[%], the exponents of D = ©,07% consist of the ny + ny numbers :
{€i(©1),i=0,...,nm =1 ; €(O2) —mu(w) ,i=0,...,n9 — 1}.

Proof : for such D, one has s = 2 with w; = w,wy = 0. Using the second

description of exponents given above, we get :
Ppe(X) = Po,(X) , Pp(X) = Po, (X + njv(w)),

and the lemma follows.
[For instance, the exponents of D = 6(0 — w) are {0, —v(w)} : here, D; = 0
since D¥ = (0 4+ w)0, hence ey(D1) = 0, and Dy = 6§ — b for some b € A with
b(0) = —v(w) (indeed, Dy = 0 admits a solution in F' with order v(w) at 0),
hence eo(Ds) = —v(w).]

6 The global relation.

To complete the derivation : Proposition 2 + Lemma 1 = Theorem 2, some
more local analysis is needed. Let D = 6" + b, 10" 1 + ... + by € C((2))[6].
Performing an eventual ramified covering, we deduce from Proposition 2 a (non

canonical) decomposition
D =D';*0oD' 7 0. .oD'[** € C((z7))[6],
where each
Dy =0" 4bjn 10"+ +big, (j=1,...,5)

is C((2%))-equivalent to D;, hence fuchsian at 0. Looking at the trace of its
indicial equation, we get Yo, n,—16i(D}) = —Reszzobj,nj,l%, and we derive

.....

d
Yi=0 nj*16i<D/‘> = _R63z=obn71fz-
z

=1,..., s~1=0,..., i
On the other hand, iterating Lemmma 1, we get :

\V/] = ]_, ceey S,Vi = 0, cee, Ny — 1: SZ(D;) = ei(Dj) + ZlSij_lnkv(wj - wk),
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hence on adding up and recalling the definition of irr®(End(D)):

1 d
Sict..ny-164(D)) = irt®(End(D)) = —Reszzobn_lf.

77777777

Let now D = (d/dz)" + a,_1(d/dx)" ' + ...+ ag € C(z)[d/dx]. Localizing
at a point a € P1(C),a # oo with local parameter z = = — «, we write :
2"D = 0" + b, 10"+ ...+ by € C((2))]0], with b,_1 = za,_1 — %, and
the local formula above yields :

da(D) = —Resqaa,_1dx.

Localizing at o = oo with local parameter z = 1, we write (—1)"2"D =

0" + b,_10" 1 + ...+ by, with —b,_; = za,_1 — @, and the local defect
becomes

doo(D) = —ReSootp_1dx —n(n — 1).

The residue formula completes the proof of Theorem 2.
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