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In a current work with A. Pillay [3], we use a result of Ching-Li Chai
[5] about Manin’s theorem of the kernel. In [5], Chai gave two proofs of his
result. His second proof, based on Hodge theory, concerns a special case, say
(∗), which is sufficient to establish Manin’s theorem, and sufficient for [3] as
well; I describe it in detail in Section 4 below, and give a dual presentation
in Section 5. The first proof of [5] concerns a more general situation, but
contains a gap. We here show that Chai’s general result is nevertheless
valid: this is deduced in Section 3 from Y. André’s work [1] on mixed Hodge
structures.

As pointed out by C. Simpson, it is possible to present these arguments
in a unified way. See Remark 3.2 below for a brief sketch1.

1 Setting

Let S be a smooth affine curve over C, with field of rational functions
K = C(S). A D-module will here means a vector bundle over S with an
(integrable) connection. We denote by 1 the D-module (OS, d). Let further
π : A → S be an abelian scheme over S, and let H1

dR(A/S) be the D-module
formed by the de Rham cohomology of A/S, with its Gauss-Manin connec-
tion ∇A/S. In his proof [13] of the Mordell conjecture over K, Y. Manin
constructs a map

MK : A(S) → Ext1D−mod.(H
1
dR(A/S),1),

1I thank Y. André, C-L. Chai, C. Simpson and C. Voisin for their comments on this
Note, and N. Katz for having shown me Deligne’s counterexample [10].
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and shows that its kernel is reduced to the divisible hull of the group of
constant sections of the constant “part” of A. This aspect of Manin’s theorem
of the kernel is all right. But he needs to study a more elaborate map, and R.
Coleman found a gap in his proof at this point (cf. [6], Remark after Prop.
2.1.2, and [13], middle of p. 214). In [6], Coleman provides a correction, and
a full proof of the Mordell conjecture/Manin theorem.

Another way to correct Manin’s proof was found by C-L. Chai [5]. For
any D-submodule M of H1

dR(A/S), let i∗M be the canonical map

i∗M : Ext1D−mod.(H
1
dR(A/S),1) → Ext1D−mod.(M,1)

given by pull-back. In the special case where

Case (∗) : M = MΩ is the D-submodule of H1
dR(A/S) generated by the space

Ω1
A/S of invariant 1-forms,

we simply denote this map by i∗ = i∗MΩ
. Coleman noticed that the whole of

Manin’s proof is all right if MΩ fills up H1
dR(A/S), and that in order to correct

it in general, it suffices to show that i∗ is injective on the image of MK . To
prove this, we may, and from now on, will assume that the abelian variety
AK is geometrically simple. Chai’s result then is the following generalization
of the above assertion on MΩ.

Theorem 1.1. (Chai [5]) Let M be any non-zero D-submodule of H1
dR(A/S).

Then, i∗M is injective on the image of MK.

Let s be a point in S(C) and let

HA,s := H1
B(Aan

s , Q)

be the Q-vector space formed by the Betti cohomology of the fiber As.
Via the local system R1πan

∗ Q, HA,s provides a representation of the fun-
damental group π1(S

an, s). The first proof in [5] relies on the assumption
that this representation is irreducible (over Q) if A/S is not isoconstant.
Deligne proves this in [8] under a set of hypotheses on the division alge-
bra Q ⊗ End(A/S), but has also shown that it is false in general: for
an 8-dimensional counterexample, see [11], p. 338, and his recent letter
to Katz [10]. His example also witnesses that MΩ can be strictly con-
tained in H1

dR(A/S). And Y. André has shown me examples of the lat-
ter phenomenon in all even dimensions g = 2k ≥ 4: take a non constant
abelian variety with Q⊗End(A/S) = a CM field of degree g, with CM type
(r1 = s1 = 1, r2 = ... = rk = 2, s2 = ... = sk = 0).
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2 Chai’s method in the general case

In spite of this problem, let us now recall Chai’s method, since the proof of
Section 3 relies on similar arguments (a variation of the “Bashmakov-Ribet”
method in the study of `-adic representations).

We must first recall what MK is. For the sake of brevity, I’ll use the
view point of smooth one-motives, as defined in [9], and briefly2 studied in
[4], Facts 2.2.2.1 and 2.2.2.2 :

• Let Ã/S be the universal vectorial extension of A/S, and let LÃ be the pull-
back by the 0-section of its relative tangent bundle. Thus, LÃ := TdR(A) '
dual of H1

dR(A/S) (cf. [7]) is the de Rham realization of the pure S-one-
motive associated to A. Its Betti realization R1π∗Q is the QS-dual of the
local system R1π∗Q (I drop the an exponents). The adjoint ∇∗

A/S of ∇A/S

provides TdR(A) with a structure of D-module, whose space of horizontal
sections is locally generated over CS by a QS-local system TB(A) ' R1π∗Q
(we will need to specify this isomorphism only for the last method, cf. p.10).

• A section y ∈ A(S) defines a smooth one-motive My ∈ ExtS−1−mot.(Z, A),
with no W−2 part, and with W−1(My) = A. Its de Rham realization TdR(My)
defines an element in ExtD−mod.(1, TdR(A)), and the extension

MK(y) := H1
dR(My) ∈ Ext1D−mod.(H

1
dR(A/S),1)

can simply be described as the dual of TdR(My). In particular, the local
system of solutions of MK(y) has a QS-structure H1

B(My), dual to the Betti
realization TB(My) ∈ Ext1loc.syst(QS, TB(A)) of My. The sections of the latter
are the various continuous determinations of the logarithms of the division
points of al multiples of y.

For other descriptions of MK(y), see [6], based on [12], a letter of Katz
to Ogus (which I have not seen), and [1], based on [15].

• Fix a point s in S. The fiber HA,y,s of H1
B(My) at s defines a Q-representation

0 → Q → HA,y,s → HA,s → 0

of π1(S, s). Dually, the fiber TA,y,s of TB(My) at s (resp. TA,s ' H∗
A,s of

TB(A)) define Q-representations

0 → TA,s → TA,y,s → Q → 0.

2 perhaps too briefly. But the situation should change at some point, hopefully thanks
to [2] and its authors.
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Here, Q is the trivial representation. Since all our differential equations are
fuchsian at the missing points of S, these extensions of monodromy repre-
sentations split if and only if MK(y) splits.

Chai’s first proof [5] now goes as follows (up to a duality). We consider
the following algebraic groups over Q:

- G̃ ⊂ GL(TA,y,s) is the Q-Zariski closure of the image of π1 acting on
TA,y,s; this group depends on y;

- G ⊂ GL(TA,s) is the Q-Zariski closure of the image of π1 acting on TA,s;
the (connected component G0 of the) group G is a reductive group ([8]);

- N = kernel of the natural map G̃ → G; the construction below shows
that N is abelian, hence acted upon naturally by G̃/N = G.

Fixing a point λ̃ ∈ TA,y,s above 1 ∈ Q, and considering gλ̃ − λ̃, we obtain a
cocycle ξy ∈ H1(G̃, TA,s), whose restriction to N

ξ(y) : N → TA,s

is a G-equivariant injective morphism between vectorial groups over Q. So,
N identifies with a Q[G]-submodule of TA,s. Since G is reductive, N =
0 if and only if the above representations splits (indeed, TA,y,s becomes a
representation of G if N = 0), i.e. by fuchsianity if and only if MK(y) = 0.

Let now M be a non-zero D-submodule of H1
dR(A/S). and assume that

i∗M(MK(y)) = 0. Equivalently, let M ′ be a strict D-submodule of TdR(A),
and assume that the quotient TdR(My)/M

′ splits as a D-module extension
of 1 by TdR(A)/M ′. Since the CS-local system TM ′ of horizontal vectors of
M ′ need not be generated by its intersection with the QS-structure TB(A),
we must now extend the scalar to C. We do so and consider the projection
of N to (TA,s ⊗ C)/(TM ′)s. Since TdR(My)/M

′ splits, one easily checks that
this projection vanishes. So, N ⊗ C ⊂ (TM ′)s does not fill up TA,s ⊗ C, and
N must be a strict Q[G]-submodule of TA,s.

If TA,s is an irreducible Q[G]−module (equivalently, if HA,s is an irre-
ducible Q-representation of π1(S, s)), this implies that N = 0, henceMK(y) =
0, as was to be shown.

Remark 2.1.- We can summarize the method as follows. The semi-simplicity
of TA,s allows us to speak of the smallest π1-submodule N of TA,s such that
the quotient TA,y,s/N is a trivial extension of Q by TA,s/N (notice that this
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N is automatically defined over Q). We have proved that N = N and the
question reduces to showing that N is either {0} or the full TA,s.

Remark 2.2.- Dually, we can consider the largest π1-submodule P of HA,s

such that the extension HA,s,y of HA,s by Q splits over P (again because of
semi-simplicity, and again defined over Q). This P is the orthogonal of N ,
and the question reduces to showing that P is either the full HA,s or {0}.

3 André’s normality theorem

This concerns the monodromy group of smooth one-motives over S. We use
the notation A, y,My, ... of the previous paragraph, and for any s ∈ S, we
denote by MTA,s ⊂ GL(TA,s) (resp. MTA,y,s ⊂ GL(TA,y,s)) the Mumford-
Tate group of the Hodge structure (resp. mixed HS) attached to A (resp.
My). These are connected algebraic groups over Q. The following facts will
be crucial.

• ([1], Lemma 4) : there is a meager subset of S whose complement S0 is
pathwise connected, and such that MTA,y,s (hence MTA,s) is locally constant
over S0.

• ([1], Theorem 1) Let G̃0
s be the connected component of the group called G̃

in the previous paragraph (which was the Q-Zariski closure of the monodromy
group of TB(My), based at s). Then, for any s ∈ S0, G̃0

s is a normal subgroup
of MTA,y,s.

Actually, [1] further shows that G̃0
s is contained in the derived group

of MTA,y,s, but we will not need this sharpening. In the (more classical)
analogous statements at the level G and MTA,s, it is precisely this sharpening
which is responsible for Deligne’s counterexamples to irreducibility, as was
pointed out to me by Chai. For another view-point, see [16].

After extension to a finite cover of S, we may assume that G, hence G̃
are already connected. We make this assumption from now on, and proceed
to prove Chai’s complete theorem along the lines of Proposition 1 of [1].

We fix a base point s in S0, yielding the algebraic groups

- G̃ as above, normal in M̃T := MTA,y,s;
- G as above, normal in MT := MTA,s;
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- N as above, contained in the kernel

NT = {g ∈ M̃T , g(TA,y,s) ⊂ W−1(TA,y,s) = TA,s}
of the natural map M̃T → MT . Fixing a point λ̃ ∈ TA,y,s above 1 ∈ Q,
and considering gλ̃ − λ̃, we obtain a cocycle Ξy ∈ H1(M̃T , TA,s), whose
restriction Ξ(y) : NT → TA,s to NT shows that NT is abelian (and is
a Q[MT ]-submodule of TA,s). Notice for later use that the restriction of
Ξy, Ξ(y), to G̃, N, coincide with the maps ξy, ξ(y), of the previous paragraph.

By André’s theorem, G̃ is normal in M̃T . We will now show that N
too is normal in M̃T . Extending the scalars to C, it suffices to show that
NC is normal in M̃T C. Since GC is reductive and NC is abelian, NC is
the unipotent radical of G̃C, i.e. the (unique) maximal connected unipotent
normal subgroup of G̃C. Therefore, NC is fixed under any automorphism of
GC, and in particular, under all outer automorphisms Int(g), g ∈ M̃T (C) of
G̃C that the normality of G̃ in M̃T provides. So, NC is indeed normal in
M̃T C. And since the abelian group NT acts trivially on its subgroup N , the
action of M̃T on N by conjugation induces an action of M̃T/NT = MT .

We now see that the Q-morphism

ξ(y) = (Ξy)|N : N → TA,s.

is equivariant not only under G, but also under the full action of MT . So, N
identifies with a MT -submodule of TA,s. Now, TA,s is irreducible as a Q[MT ]-
module, since our choice of s forces EndMT (TA,s) = End(As) = End(A/S),
and we conclude that either N = 0 (implying MK(y) = 0 as before), or that
N = TA,s. As we already saw, the latter case prevents the existence of any
non-zero D-submodule M such that i∗M(MK(y)) = 0, unless MK(y) = 0.

Remark 3.1.- In a connected algebraic group G over a perfect fied k, there
is a unique unipotent radical Ru(G), defined over k. Checking the normality
of N = Ru(G̃) in M̃T therefore did not require extending the scalars to C.

Remark 3.2.- As noticed by C. Simpson [14], one can hide the role of
normality in this proof by working directly on the modules themselves. In
the notations of Remark 2.2, the question reduces to showing that P is the
fiber at s of a sub-VHS of the variation of pure Hodge structures R1π∗Q. As
in [1], this follows from the theorem of the fixed part of [15], but no explicit
appeal to Mumford-Tate groups is required. This approach provides a proof
of the theorem closer in spirit to the “second proof” of Chai, which we now
describe.
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4 Chai’s proof in Case (∗)
From now on, we assume that M = MΩ is the D-submodule of H1

dR(A/S)
generated by Ω1

A/S. In the last paragraph of [5], Chai gives the following
Hodge theoretic argument to check his result in this special case.

Fixing a point s in S, we recall the notations H1
B(As, Q) := HA,s, HA,y,s of

§2, and here denote by G the Q-Zariski closure of the image of π1(S, s) acting
on HA,s. This is the same algebraic group as before, but we are looking at
it via the contragredient of its initial representation TA,s. Actually, in this
paragraph, only the group GR deduced from G by extension of scalars to R
will play a role. It has a real representation HA,s ⊗ R, which we extend by
C-linearity to the complex representation HA,y ⊗ C. We further denote by
HM ⊂ R1π∗C the CS-local system of horizontal sections of the D-module M .
Its fiber HM,s ⊂ HA,s ⊗ C at s is a complex representation of GR. In other
words, the injection is : HM,s ↪→ HA,s ⊗ C is a GR-morphism.

The local system R1π∗R is a variation of real Hodge structures, with re-
spect to which we can consider the complex conjugate HM of HM in R1π∗C.
Then, HM is again a CS-local system, and its fiber HM,s ⊂ HA,s⊗C provide
another complex subrepresentation of GR, whose underlying C-vector space
is the complex conjugate of HM,s in HA,s ⊗ C with respect to HA,s ⊗ R; in
other words, the C-linear injection is : HM,s ↪→ HA,s ⊗ C is a GR-morphism.
Denoting by c the antilinear involution of HA,s ⊗C given by complex conju-
gation with respect to HA,s ⊗ R, we have is = c ◦ is ◦ c.

Since M contains Ω1
A/S, HM,s contains H1,0(As, C) = F 1(HA,s⊗C), hence

as C-vector spaces:
HM,s + HM,s = HA,s ⊗ C.

This is compatible with the action of GR, since both factors on the left side are
subrepresentations of the right side. Therefore, the complex representation
HA,s ⊗ C is a quotient of HM,s ⊕ HM,s. Since GR is a reductive group, we
derive a C[GR]-section js : HA,s ⊗ C ↪→ HM,s ⊕HM,s of the addition map.

We now consider the S-one-motive My, recall the notation HA,y,s of §2,
denote here by G̃ the Q-Zariski closure of the image of π1(S, s) acting on
HA,y,s (same algebraic group as in §2, but viewed via the representation
contragredient to TA,y,s), and consider the extension of real representations
0 → R → HA,y,s ⊗ R → HA,s ⊗ R → 0 of G̃R, and its complexification

0 → C → HA,y,s ⊗ C → HA,s ⊗ C → 0,
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for which we denote by C complex conjugation with respect to HA,y,s ⊗ R.
The hypothesis i∗(MK(y)) = 0 forces a splitting of the pull-back

0 → C → i∗s(HA,y,s ⊗ C) → HM,s → 0

of HA,y,s ⊗ C under is : HM,s ↪→ HA,s ⊗ C, and we denote by

σs : HM,s → i∗s(HA,y,s ⊗ C) ⊂ HA,y,s ⊗ C

a C-linear G̃R-section. Similarly, we consider the pull-back

0 → C → i
∗
s(HA,y,s ⊗ C) → HM,s → 0

of HA,y,s ⊗ C under is, and claim that this extension splits. Indeed,

σs := C ◦ σs ◦ c : HM,s → HA,y,s ⊗ C.

is a C-linear section of i
∗
s(HA,y,s), since the action of GR (resp. G̃R) commutes

with c (resp. C).

Finally, recall the section js : HA,s ⊗ C → HM,s ⊕ HM,s of the addition
map, and consider the C[GR]-morphism

φ : HA,s ⊗ C → HA,y,s ⊗ C : λ 7→ φ(λ) := (σs + σs)(js(λ)).

This is a section of the extension HA,y,s ⊗ C, whose vanishing implies, by
fuchsianity, the vanishing of MK(y), as required.

Remark 4.1. - (cf. [5]) Simpson has pointed out that the CS-local system
HM underlies a variation of complex Hodge structures, complex conjugate
to that of HM .

Remark 4.2. - The rational structure HA,s plays no role in this proof, which
relies only on the real Hodge structure of HA,s⊗R and on the semisimplicity
of the complex representation HA,s⊗C. Furthermore, the hypothesis Ω1 ⊂ M
can be weakened, since we merely used its corollary HM,s +HM,s = HA,s⊗C.
Assuming rk(M) > dim(A/S), however, would not suffice (consider an A/S
of RM type).
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5 Same proof, viewed dually

In this paragraph, we again assume that M = MΩ, and translate the previous
proof, viewed dually, into a statement on periods. So, we go back to the
covariant view-point TA,s, TA,y,s used in §§ 2 and 3, and in particular, to the
de Rham realization TdR(A) = LÃ given by the relative Lie algebra of the
universal extension Ã/S of A/S. Thus, the S-one-motive My gives rise to
an extension

TdR(My) := M′
K(y) ∈ Ext1D−mod.(1, LÃ),

dual to MK(y), and as mentioned at the end of §2, Chai’s general theorem
reads as follows: let M ′ be a strict D–submodule of LÃ; if the pushout

p∗(M′
K(y)) = M′

K(y)/M ′ ∈ Ext1D−mod.(1, LÃ/M ′)

of M′
K(y) by the projection p : LÃ → LÃ/M ′ splits, then M′

K(y) too splits.
We now prove this under the assumption dual to M = MΩ.

To make the translation, recall that Ã/S is an extension of A/S by a
vectorial S-group WA/S, whose associated vector bundle is canonically dual
to R1π∗OA/S. The dual of the condition M = MΩ then becomes: let M ′ be

the maximal D-submodule of LÃ contained in WA/S. We assume this from
now on and proceed to prove that p∗(M′

K(y)) = 0 ⇒M′
K(y) = 0.

Actually, it suffices to repeat almost all of §2, p. 4, where we defined the
group N and deduced from the reductivity of the group G that

N = {0} ⇔MK(y) = 0,

or equivalently, by duality,M′
K(y) = 0. Recall that N is naturally embedded,

via ξ(y), in the Q-structure TA,s. With the specificity of our M ′ now in mind,
the last but one paragraph reads as follows.

Let TM ′ ⊂ TB(A) ⊗ CS be the local system of horizontal sections of
M ′, and let (TM ′)s ⊂ TA,s ⊗ C be its fiber above s. Since the extension
p∗(TdR(My)) of 1 by TdR(A)/M ′ splits, the image of N under the projection
to (TA,s ⊗ C)/(TM ′)s vanishes, and N ⊗ C ⊂ (TM ′)s. Since M ′ ⊂ WA/S, we
therefore get

N ⊂ TA,s ∩ (WA/S)s ⊂ TA,s ⊗ C = (LÃ)s.

We will now show that TA,s ∩ (WA/S)s = {0}, hence N = 0 and M′
K(y) = 0.
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In order to compute this intersection, we must identify the subgroup TA,s

of (LÃ)s, or more precisely, describe the isomorphism ιQ : R1π∗Q ' TB(A) ⊂
TdR(A) mentioned anonymously on p. 3. The Betti realization R1π∗Q of A/S
is generated over QS by the kernel of the exact sequence of San-sheaves given
by the exponential map :

0 → R1π∗Z → LAan → Aan → 0,

where LA denotes the relative Lie algebra of the abelian scheme A/S. It is
a variation of Q-Hodge structures of weight −1, whose Hodge filtration is
given by the kernel F 0

B of the natural map R1π∗Z ⊗ OSan → LAan. The de
Rham realization TdR(A) = LÃ of A/S lies in the exact sequence

0 → WA/S → LÃ → LA → 0,

whose Hodge filtration F 0
dR is given by WA/S. The canonical isomorphism

ι : R1π∗Z⊗OSan ' LÃan

described at the level of fibers in [9], 10.1.8, respects these Hodge filtrations.
We set TB(A) := ι(R1π∗Q⊗ 1) ⊂ LÃan , and this defines ιQ. By [9], 10.1.9,
TB(A)Z = ι(R1π∗Z⊗ 1) is the kernel of the exponential map on Ã:

0 → TB(A)Z → LÃan → Ãan → 0.

So, TB(A) ⊂ TdR(A) is indeed horizontal for ∇∗
A/S, as claimed in §2.

Now, R1π∗Q injects in LAan, while ι(F 0
B) = F 0

dR. So, TB(A) ∩WA/S =
ι(R1π∗Q)) ∩ ι(F 0

B) = {0}, and we do have, on the fiber above any s ∈ S:

TA,s ∩ (WA/S)s = {0}.

Remark 5.1.- One can summarize the argument by saying that the periods
of Ã project bijectively onto the periods of A.

Remark 5.2.- In the final step, one can replace R1π∗Q by R1π∗R. The
argument then becomes the exact dual of Chai’s proof from §4.
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