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Abstract: we discuss functional and number theoretic extensions of Schanuel’s conjecture,

with special emphasis on the study of elliptic integrals of the third kind.

Schanuel’s conjecture [La] on the layman’s exponential function can be viewed as a

measure of the defect between an algebraic and a linear dimension. Its functional analogue,

be it in Ax’s original setting [Ax1] , Coleman’s [Co], or Zilber’s geometric interpretation

[Zi], certainly gives ground to this view-point.

The same remark applies to the elliptic version of the conjecture, and to its functional

analogue, as studied by Brownawell and Kubota [BK], and by J. Kirby [K1]. Here, the

elliptic curve under consideration is constant. In the same spirit, we discuss in the first

section of this note Ax’s general theorem [Ax2] on the exponential map on a constant semi-

abelian variety G, where transcendence degrees are controlled by the (linear) dimension

of a certain “hull”. We obtain a similar statement for the universal vectorial extension

of G, and refer to the recent work of J. Kirby [K2, K3] for further generalizations of

Ax’s theorem, involving arbitrary differential fields, multiplicative parametrizations, and

uniformity questions.

The näıve number-theoretic analogues of these functional results, however, are clearly

false. The first counterexample which comes to mind is provided by periods: Riemann-

Legendre relations are quadratic, and cannot be tracked back to hulls of the above type.

Furthermore, the theory of mixed motives shows that path integrals have as many reasons

to be called periods as closed circuit ones, and we shall show in §2 that they too may

obey non-linear constraints. The hopefully correct generalization of Schanuel’s conjecture

in this context, which is due to André [A2, A3], requires the introduction of a (motivic)

Galois group.

In this theory, duality plays a crucial role. Going back to function fields, this makes

the hypothesis of constancy of the ambient group sound rather unnatural. For instance, the
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dual of the one-motive attached to a non constant point on a constant elliptic curve is a non

constant semi-abelian surface. And as soon as we allow for such variations, the functional

statements cease to hold. Actually, the picture becomes closer to the number theoretic one,

at least if we restrict to the “logarithmic” side of the conjecture: transcendence degrees

are then controlled by a (linear differential) Galois group, which - not a surprise to model

theorists - Manin’s kernel theorem can help to compute. This was already noticed in [A1]

and [B3] for pencils of abelian varieties (i.e. families of abelian integrals of the second

kind), and the third part of the paper extends this approach to pencils of semi-abelian

surfaces (elliptic integrals of the 3rd kind).

In fact, the hulls of §1 too can be interpreted as differential Galois groups (now in

Kolchin’s sense), if we restrict to the “exponential” side of the conjecture. But the speci-

ficity of Schanuel’s conjecture lies precisely in its blending of exponentials and logarithms,

and although we do not investigate this further here, it is likely that a similar blend of

Galois groups, possibly with D-structures as in Pillay’s theory [Pi], is required. The author

can only thank (resp. apologize to) the organisors of the Newton conference for helping

him to realize (resp. becoming aware so late of) the relevance of model theory to this circle

of problems. He also thanks D. Masser, J. Kirby and Z. Chatzidakis for their comments

on an earlier version of the paper.

§1. Constant semi-abelian varieties.

Let (F, ∂) be a differential field of characteristic 0. To give a common framework to

the first and third parts of this study, we assume that (F, ∂) is differentially embedded in

the field of meromorphic functions over a non empty domain U of the complex plane, and

set OF = F ∩OU (see below for a more algebraic presentation). We further assume that F

contains a not necessarily differential subfield K of transcendence degree 1 over F ∂ = C.

Let G be a commutative algebraic group defined over C, and let expG : TG(C) →
G(C) be the exponential map on its Lie algebra, identified with its tangent space TG

at the origin. Since expG is analytic, it extends to a homomorphism from TG(OF ) to

G(OF ), whose kernel is easily checked to coincide with that of expG. Passing to quotients,

we derive an injective homomorphism: expG : TG(OF )/TG(C) → G(OF )/G(C). Notice

that the periods of expG are lost in the process.

Suppose now that G is a semi-abelian variety. By rigidity, any algebraic subgroup H of

G/F is then defined over C, and H(F )/H(C) embeds into G(F )/G(C). To a given point

y ∈ G(F ), we can therefore attach, without specifying fields of definitions, the smallest

algebraic subgroup H of G such that y ∈ H(F ) mod G(C). Its connected component
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though the origin is a semi-abelian subvariety Gy of G, which may be called the relative

hull of the point y. For instance, the relative hull of a constant point y ∈ G(C) is trivial; if

G = Gs
m is a torus, a point y = (y1, ..., ys) ∈ G(F ) admits G as relative hull iff the classes

of y1, ..., ys in F ∗/C∗ are multiplicatively independent.

The following statement is a direct consequence of Ax’s Theorem 3 in [Ax2]. I thank

D. Masser for having drawn my attention to this reference. In fact, J. Kirby has recently

reproved and extended this theorem in the setting of general differential fields F and

general uniformizations. Furthermore, his results involve uniformity statements, a subject

we shall not touch upon here. We refer to [K2], [K3] for more comments on these points.

Proposition 1.a ([Ax2], [K3]): let G be a semi-abelian variety defined over C, let x

be a point in TG(OF ), let y = expG(x), and let Gy be the relative hull of y. Then,

tr.deg.(K(x, y)/K) ≥ dim(Gy).

Proof of 1.a: if x is constant, the lower bound is trivial; otherwise, we deduce from [Ax2],

Theorem 3, that tr.deg.(C(x, y)/C) ≥ dim(Gy) + 1, where 1 stands for the rank of a

jacobian matrix. Since K/C has transcendence degree 1, the claim easily follows.

In [Ax2], Ax assumes that the ambient group G admits no non trivial vectorial sub-

group, but his argument readily extends to all G’s admitting no non trivial vectorial

quotient. For later applications, it seems more convenient to state the corresponding result

in terms of universal extensions, as follows.

Let G̃ be the universal extension of G. If G is an extension of an abelian variety A by

a torus T , this is the pull-back to G of the universal (vectorial) extension Ã of A, which in

turn is an extension of A by the dual V ' G
dim(A)
a of H1(A,OA), viewed as a vector group

[NB : This should not be confused with the prolongation τ(A) of the standard D-group

structure attached to A, which is an extension by TA, here split since A descends to C,

cf. [Bu], III, and [Ma]. Recall that H1(A,OA) is the tangent space of the dual of A, cf.

[Mu], p. 130)]. In particular, the dimension of G̃ is equal to 2dim(A) +dim(T ). Following

a suggestion of Z. Chatzidakis, we may also describe G̃ as the “largest” vectorial extension

of G admitting no epimorphism to the additive group Ga. The above Proposition can then

be sharpened into

Proposition 1.b: let G be a semi-abelian variety defined over C, let x be a point in

TG(OF ), let y = expG(x), let Gy be the relative hull of y and let G̃y be the universal

vectorial extension of Gy. Furthermore, let x̃ be a lift of x to TG̃(OF ) and let ỹ = expG̃(x̃).

Then,

tr.deg.(K(x̃, ỹ)/K) ≥ dim(G̃y).
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In particular, the equality holds true in either of the following situations:

i) the logarithmic case, where ỹ is defined over K;

ii) the exponential case, where x̃ is defined over K.

The denomination for these cases come from the classical Schanuel conjecture, where

they respectively concern (i) Schneider’s problem on the algebraic independence of Q-

linearly independent logarithms of algebraic numbers, and (ii) the Lindemann-Weiestrass

theorem on the algebraic independence of the exponentials of Q-linearly independent alge-

braic numbers. That the general inequality implies equalities in these special cases can be

seen as follows : if x̃ ∈ TG̃(K), then, up to translations by a period and by a K-rational

point of TV , it lies in the vector space TG̃y. Since expG̃ induces the identity on the vec-

tor group TV ' V , ỹ = expG̃(x̃) then differs from an element of Gy(F ) by a K-rational

point. Its coordinates therefore generate over K a field of transcendence degree at most

(and hence equal to) dim(G̃y). The argument can be reversed when we start with a point

ỹ ∈ G̃(K). See Remark 1 below for a more intrinsic reformulation of these equalities.

Proof of 1.b : once again, we may assume that x is not constant, and must then prove

that tr.deg.(C(x̃, ỹ)/C) ≥ dim(G̃y) + 1. Since expGy is the restriction of expG to TGy,

and since two lifts of x to TG̃ differ by an element of TV ' V , where expG̃ reduces to the

identity, we may also assume that x̃ lies in TG̃y, and eventually, that Gy = G. In this case,

any algebraic subgroup G′/C of G̃ projecting onto Gy coincides with G̃ (in other words,

G̃ is an essential extension of G): indeed, the quotient G̃/G′ of the universal extension G̃

would otherwise be a non trivial vector group. In particular, G̃y = G̃.

Let then X be the C-algebraic group TG̃ × G̃, let A be the analytic subgroup of

X made up by the graph of expG̃, let K be the analytic curve defined by the image of

{x̃, ỹ}, viewed as a map from the complex domain U to X(C). Up to translation by a

constant point, we may assume that K passes through the origin, and denote by V its

Zariski closure in X over C, so that tr.deg.(C(x̃, ỹ)/C) = dimV. According to [Ax2],

Theorem 1, there exists an analytic subgroup B of X containing both A and V such that

dimB− dimV ≤ dimA− dimK. We shall prove that B = X, and consequently, that

tr.deg.(C(x̃, ỹ)/C) = dimV ≥ dimX− dimA + dimK,

which is equal to 2dimG̃− dimG̃+ 1 = dimG̃+ 1 = dimG̃y + 1, as required.

Since V is a connected algebraic variety passing through the origin, the abstract group

it generates in X is an algebraic subgroup g(V) of X = TG̃× G̃. Since V contains K, and

since Gy = G, the image G′ ⊂ G̃ of g(V) under the second projection projects onto G, and

therefore coincides with G̃. Let T ′ ⊂ TG̃ be the image of g(V) under the first projection.

4



We can now view g(V) as an algebraic subgroup of T ′ × G̃ with surjective images under

the two projections. As is well known, any such subgroup of the product T ′ × G̃ induces

an isomorphism from a quotient of G̃ to a quotient of T ′. More precisely, on setting

H = g(V) ∩ (0 × G̃), and H ′ = g(V) ∩ (T ′ × 0), we get an algebraic group isomorphism

G̃/H ' T ′/H ′. But if these quotients are not trivial, the second one will admit Ga among

its quotients, and the first one, hence G̃ itself, will share the same property. Again, since

G̃ is a universal extension of a semi-abelian variety, this is impossible. Consequently,

G̃/H = 0, and g(V), hence B, contains 0 × G̃. Finally, B, which contains A, projects

onto TG̃ by the first projection. Hence, B does coincide with TG̃× G̃ = X. (Notice that

contrary to Kirby’s general setting [K3], the algebraic groups TG̃ and G̃ do not play a

symmetric role in this proof; it is likely, however, that Proposition 1.b could be reached

by the method of [K3], §5.1.)

Propositions 1.a and b are better expressed in terms of the logarithmic derivative map

∂LogG : G(F ) → TG(F ) of the standard D-group structure attached to G/C, cf. [Bu],

[Pi], [Ma] - and [BC] for a historical perspective. To make the translation, view y as a

section of the constant group scheme GU = G×U over U , and the C-vector space Ω1G of

invariant differentials on G as a subspace of H0(GU ,Ω
1
GU

). Since (exp∗G)0 is the identity,

the requirement y = expG(x) becomes: for any ω ∈ Ω1G , there exists an exact differential

dxω ∈ dOF such the differential form y∗(ω)− dxω on U kills the vector field ∂ :

(x, y) ∈ (TG×G)(OF ) and y∗(ω)(∂) = ∂xω,

or more generally, on denoting by ∂LogG the standard logarithmic derivative on the con-

stant group G : (x, y) ∈ (TG × G)(F ) and ∂x = ∂LogG(y). Indeed, the assignment

ω 7→ xω is a linear form on Ω1G with values in F , defined up to linear forms on Ω1G with

values in F ∂ = C, i.e. as an element x = x(y) of TG(F )/TG(C), and the assignment

y 7→ x(y) : G(F )/G(C) → TG(F )/TG(C) inverts on its image the map expG defined

above. Keeping in mind that these quotients do not affect fields of definitions over C, and

that all these notations should be indexed by ∂, we may then write x = LogG(y), or more

graphically

xω(y) =

∫ y

ω.

These notations remain meaningful for any closed, possibly singular, differential form ω

on G, and can be extended to G̃. Proposition 1.b then reads: let y ∈ G(F ), let ỹ be a lift

of y to G̃(F ), and let x̃ = LogG̃(ỹ). Then tr.deg.(K(ỹ, x̃)/K) ≥ dim(G̃y).

Remark 1 : we here assume that K is an algebraically closed differential subfield of (F, ∂),

and consider the two special cases of Proposition 1.b.

5



i) In the “exponential” one, x̃ is a K-rational point of TG̃, and as explained above,

we may assume wlog that it lies in TG̃y. Set ã = ∂x̃. Up to constants, ỹ = expG̃(x̃)

is then a solution of the differential equation ∂LogG̃(ỹ) = ã, ã ∈ TG̃y(K), to which

Kolchin’s differential Galois theory can be applied: indeed, G̃y being here constant, the

differential extension K(ỹ)/K is a strongly normal one, cf. [Pi], 3.2 and 3.8. In particular,

its differential Galois group is an algebraic subgroup of G̃y. Since its dimension is given

by tr.deg.K(ỹ)/K, the proposition reduces in this case to the relation

Aut∂(K(ỹ)/K) = G̃y(C) .

ii) In the “logarithmic” one, ỹ is a K-rational point of G, which may be assumed

wlog to lie in G̃y. Set b̃ = ∂LogG̃(ỹ). Up to constants, x̃ = LogG̃(ỹ) is then a solution of

the inhomogeneous linear equation ∂x̃ = b̃, b̃ ∈ TG̃y(K), to which the standard Picard-

Vessiot theory can be applied. In particular, its differential Galois group is a vectorial

subgroup of TG̃y. Since its dimension is given by tr.deg.K(x̃)/K, the proposition now

reduces to the relation

Aut∂(K(x̃)/K) = TG̃y(C) .

When G is a split product A × T , this can be checked directly, as a slight amendment of

the proof of Thm. 3 of [A1] shows(1). For a general study of split products, see [K3].

We now come back to the mixed case, and give a concrete translation of Proposition

1 (see Prop. 5 below for an even more concrete one). Let A be an abelian variety over C,

of dimension g, the elements of whose dual Â = Pic0(A) ' Ext1(A,Gm) we identify with

the linear equivalence classes of residue divisors of differentials of the third kind on A. Let

ω1, ..., ωg be a basis of Ω1
A over C, let η1, ..., ηg be differential of the second kind on A/C

whose cohomology classes generate a complement of Ω1
A in HdR(A/C) := H1

dR(A/C), and

let ξq1 , ..., ξqr be differentials of the third kind on A/C, with residue divisors equivalent to

q1, ..., qr in Â(C). Denote by G the extension of A by the torus T = Gr
m parametrized in

Ext(A, T ) ' Âr by q1, ..., qr. Also, consider another torus T ′ = Gr′

m.

Proposition 2: In the above notations, assume that q1, ..., qr ∈ Â(C) are linearly in-

dependant over Z. Let y be a point of A(F ) whose relative hull Ay fills up A, and let

y′ = (y′1, ..., y
′
r′) be a point in T ′(F ), whose relative hull T ′y′ fills up T ′. Then,

(1) In its appeal to Manin’s theorem, the only property requested on the point y ∈ G(K)

is that its class modulo the constant sections of (the constant part of) G generate Gy; but

this is precisely the definition of our relative hull. See also Footnote 4 below.
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tr.deg.KK(y, y′,
∫ y

ωi,
∫ y

ηi,
∫ y

ξqj ,
∫ y′k dt

t , i = 1, ..., g, j = 1, ...r, k = 1, ..., r′) ≥ 2g+r+r′.

Proof : let us first deal with the case r′ = 0. By Hilbert’s Theorem 90 (see [Se]), there exists

a C-rational section s of the projection p : G→ A and elements Ξ1, ...,Ξr complementing

{p∗(ω1), ..., p∗(ωg)} into a basis of Ω1
G such that s∗(Ξj) = ξqj for all j. Then y := s(y) lies

in G(F ), projects to y = p(y) in A(F ), and satisfies
∫ y

Ξj =
∫ y

ξqj ,
∫ y

p∗(ωi) =
∫ y

ωi, so

that the field of definition over K of {y,x = LogG(y)} coincides with K(y,
∫ y

ωi,
∫ y

ξqj ).

Similarly (now by the very definition of the universal extension), the ηi’s are pull-backs

under a rational section of invariant forms η̃i on Ã, and the same argument provides a lift

ỹ of y to G̃ such that K(ỹ, LogG̃ỹ) = K(y,
∫ y

ωi,
∫ y

ξqj ,
∫ y

ηi). According to Proposition

1.b, its transcendence degree over K is bounded from below by dim(G̃y). Now, the semi-

abelian subvariety Gy of G projects onto Ay, which fills up A by hypothesis, and is thus

an extension of A by a torus Gs
m, parametrized some points w1, ..., ws in Â(C). But

(say by [B1], Prop. 1), such a semi-abelian variety can embed in G iff there exists an

isogeny α ∈ End(A) such that α∗(q1), ..., α∗(qr) lie in the subgroup of Â(C) generated by

w1, ..., ws. Since the former are linearly independent over Z, this forces s = r, so that the

relative hull of y fills up G, whose universal extension has dimension 2g + r. (In other

words, the hypothesis on the points qi means that G is an essential extension of A.)

For the general case, we introduce the semi-abelian variety G×T ′. A similar argument,

combined with the hypothesis on y′, shows that the relative hull of the point (y, y′) isG×T ′,
whence the required lower bound.

The point we made in the introduction about the limits of the functional setting is best

illustrated by the following “counterexample” to Proposition 2, with r = 1 (and r′ = 0).

We say that an isogeny f : A → Â is antisymmetric if its transpose f̂ : A → Â satisfies

f + f̂ = 0. Instead of the expected lower bound 2g + r + r′ = 2g + 1, we have:

Proposition 3 : Assume that the abelian variety A/C admits an antisymmetric isogeny f

to Â, and let y ∈ A(K) be such that Ay = A. There exists a differential of the third kind ξq

on A/K, whose residue divisor lies in the equivalence class of the point q = f(y) ∈ Â(K)

such that tr.deg.KK(
∫ y

ωi,
∫ y

ηi,
∫ y

ξq, i = 1, ..., g) = 2g.

Proof : in view of Proposition 1.b, the first 2g integrals generate over K = K(y) a field

of transcendence degree 2g. As shown by the computational proof given in §2 in the case

g = 1, the last one can be made to lie in this field (for general g, use the fact that the

restriction of the Poincaré bundle to the graph of f is isotrivial).

Remark 2 : in Proposition 3, q is non-torsion, but also non constant. In the setting of

Proposition 1, this would correspond to a “semi-constant” semi-abelian variety, i.e. a non
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isoconstant extension G of the constant abelian variety A by the (constant) torus Gm.

It would be interesting to construct the corresponding differential equation ∂LogG̃ỹ = ∂x̃

with the help of a D-group structure on G̃, viewed as an extension, in the category of

D-groups, of the standard D-group structure of A by that of Gm ×Gg
a; see [Pi], [Ma] -

and Remark 3.ii below for a slightly different suggestion.

§2. Arithmetic interlude.

We now turn to the number theoretic (i.e. honest) extension of Schanuel’s conjecture

to the semi-abelian variety G/C. In this case, x lies in TG(C), y = expG(x) in G(C), and

we want to bound from below the transcendence degree over Q of the field k(x̃, expG̃(x̃)),

where k = Q(G) denotes the field of definition of G (hence of its universal extension G̃).

We shall give a pedestrian approach to the strategy proposed by Y. André in [A3], §23,

and take advantage of this walk to write down the full period matrix of the “simplest

interesting” one-motive. (For a general introduction to one-motives, see [D1].)

The conjecture should cover Schanuel’s, and in particular imply the transcendency of

π, so that we cannot mod out by the periods of expG. Therefore, the lower bound must

depend on x, rather than on y(2). The multiplicative and elliptic cases of the conjecture, as

well as Wüstholz’s theorem on linear forms in abelian integrals, suggest the introduction

of the Lie hull of x, denoted by Gx and defined as smallest algebraic subgroup H of G such

that x ∈ TH(C). Again, there is no need to specify fields of definitions, since all algebraic

subgroups of the semi-abelian variety G are defined on a finite extension of k. However, a

statement of the type

tr.deg.(Q(G, x̃, ỹ)/Q) ≥ dim(G̃x) (??)

is usually false. For instance, let G = Gm × E, where E/Q is an elliptic curve with

complex multiplications, and let ω1, η1 be a period and corresponding quasiperiod of E.

The point x = (2πi, ω1) ∈ TG(C) lifts in TG̃ to a point x̃ of the kernel of expG̃, which may

be represented by the vector (2πi, η1, ω1). By the CM hypothesis and Legendre relation

(2) An alternative solution consists in replacing the base field Q by the field of all periods

of G̃, as in [B2], Conjecture 2, and [Bn1]. This makes specific cases of the conjecture more

difficult to check, but the Lie hull Gx can then be replaced by the hull of y, defined as

the connected component Gy of the Zariski closure of Zy in G. Notice that the inclusion

Gy ⊂ Gx is often strict. No distinction between the two hulls needed to be made in the

relative situation of §1, where we modded out by the (constant) periods of expG.
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(or Γ-function identities), η1ω1/π is an algebraic number, so that Q(x̃, ỹ) = Q(ω1, π) has

transcendence degree (at most) 2 . On the other hand, the Lie hull of x is G itself, and its

universal vectorial extension G̃x has dimension 3.

Counterexamples not involving vectorial extensions also abound. For instance, con-

sider an abelian 4-fold G of primitive CM type, whose periods satisfy a Shimura relation (cf.

[A3], §24.4), and let x = (ω1, ..., ω4) 6= 0 be such a period. Then, tr.deg.(Q(x, y)/Q) ≤ 3,

although Gx = G has dimension 4. But more to the point for our study, we shall now

construct a counterexample involving a point y of infinite order on G (and for which

Gx = Gy = G).

In the next paragraphs until Conjecture 1, we restrict to the logarithmic case of

Schanuel’s conjecture, i.e. assume that G and ỹ are defined over a subfield k of Q. Let

thus E be an elliptic curve defined over the number field k by a Weiestrass equation

Y 2 = 4X3 − g2X − g3. Let ℘, ζ, σ be the standard Weierstrass functions attached to this

model, and let ω1, ω2, η1, η2 be the periods and quasi-periods of ℘ and ζ. In particular, expE

is represented by (℘, ℘′), quae functions of the variable z defined by dz = exp∗E(dX/Y ),

and dζ = −exp∗E(XdX/Y ). We also fix two complex numbers u, v, and assume that their

images p, q under expE are non torsion points of E(k). We do not require that p and q be

linearly independent over End(E). Denote by G the extension of E by Gm parametrized

by (−q)− (0).

Let us now puncture the curve E at the two points 0 and −q, and pinch it at two

other k-rational points p1, p0 whose difference in the group E is p. The one-motive M0 =

M(E,−q, p, p0) attached by [De1] to the resulting open singular curve can be described

as follows : there is a unique function f0 ∈ k(E) with value 1 at p0 and divisor (−q +

p)− (p)− (−q) + (0), and by a well-known description of the set G(k) ([Mu], p. 227), this

defines a point y0 in G(k) lying above p, hence a one-motive M0 : Z→ G : 1 7→ y0.

The de Rham realization HdR(M0/k) of M0 is the k-vector space generated by the

differential of a rational function f on E such that f(p1) differs from f(p0) (say, by 1), the

dfk ω = dX/Y , the cohomology class of the dsk η = XdX/Y , and the dtk ξ = 1
2
Y−Y (q)
X−X(q)

dX
Y .

The residue divisor of ξ is −(0) + (−q), and its pullback under expE is the logarithmic

differential of the function

fv(z) =
σ(v + z)

σ(v)σ(z)
e−ζ(v)z,

whose quasi-periods are given by eλi(v), with

λi(v) = ηiv − ζ(v)ωi, for i = 1, 2.
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The Betti realization of M0 is the dual of the Q-vector space HB(M0,Q) generated

by a small loop around the hole −q, the two standard loops on the elliptic curve E, and a

“loop” from p0 to p1 on the pinched curve. Integrating the above differential forms along

these loops, we obtain the period matrix of M0. Not warranting signs, it may be written

as

Π(u, v, `0) :=


2πi λ1(v) λ2(v) g(u, v)− ζ(v)u+ `0
0 η1 η2 ζ(u)
0 ω1 ω2 u
0 0 0 1

 ,

where

g(u, v) = `n
σ(u+ v)

σ(u)σ(v)

and e`0 = γ0 ∈ k∗ can easily be computed in terms p0, p1, q, using the triple addition

formula for the σ-function ([WW], XX, ex. 20; NB : we modified η in its cohomology class

so as to delete an additive k-rational factor from its last period
∫ p1
p0
η). It is fun to compute

the matrix of cofactors of Π(u, v, `0), although the result is not a surprise: dividing by 2πi,

we get

Π′(v, u, `0) =


1 0 0 0
v ω2 ω1 0
ζ(v) η2 η1 0

g(v, u)− ζ(u)v + `0 λ2(u) λ1(u) 2πi


which after some rearrangement, is the period matrix of the Cartier dual of M0, given by

a point y′0, lying above −q, on the extension of Ê by Gm parametrized by p ∈ Pic0Ê ' E.

Let now y be an arbitrary point on G(k) projecting onto p, i.e. of the form y0γ for

some γ ∈ Gm, let M(y) be the corresponding one-motive, and let ỹ be a lift of y to G̃(k).

A logarithm x̃ of ỹ in TG̃(C) is given by the last column (without its bottom entry) of

the period matrix Π(u, v, `), where e` = γ0γ ∈ k∗, and where ζ(u) should be replaced by

ζ(u) + β for some β ∈ k depending on ỹ, so that k(x̃, ỹ) coincides with the field

k(x̃) = k(u, ζ(u), g(u, v)− ζ(v)u+ `).

Since q has infinite order, the extension G is not isotrivial, and since p too is non torsion,

the Lie hull Gx of the projection x of x̃ to TG fills up G. Therefore, G̃x has dimension 3,

and if the statement (??) was correct, the three numbers u, ζ(u), g(u, v)− ζ(v)u+ ` would

be algebraically independent for any logarithm ` of an algebraic number, and elliptic

logarithms u, v of non-torsion points on E(Q).

We can at last describe our counterexample. Assume that g3 = 0, i.e. that E has

complex multiplication by i. (Any CM field would work, modulo a finer choice of the dsk
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η.) Then, for any α ∈ End(E) = Z⊕Zi with norm N(α) = αα, the functions ζ(αz)−αζ(z)

and the square of σ(αz)/σ(z)N(α) lie in the field k(℘(z), ℘′(z)). Suppose now that v = iu,

the important point being that α = i is totally imaginary. Then, ζ(v) = −iζ(u), and

σ(u + v)/σ(u)σ(v) = −iσ((1 + i)u)/σ(u)2 is the square root γ′ of an element of k∗, since

N(1 + i) = 2. Choosing γ = (γ0γ
′)−1 and ` = −g(u, iu) = −`n(γ′), and slightly extending

k, we get a point x̃ ∈ TG̃(C) with ỹ = expG̃(x̃) ∈ G̃(k) and k(x̃) = k(u, ζ(u)). But this

has transcendence degree at most 2 (in fact 2, according to a theorem of Chudnovsky),

not 3 !

This example, which translates word for word to the semi-constant situation of Propo-

sition 3, is not mysterious. The one-motive M = M(y) it corresponds to was discovered

by Ribet in his study of Galois representations (cf [JR]), and is known to have a de-

generate Mumford-Tate group. In general, this group MT (M) is the semi-stabilizer in

GLQ(HB(M,Q)) of all Hodge cycles occuring in the tensor constructions on HB(M,Q)

and its dual (cf. [De2], p. 43, and [Br]). In the present case (cf. [B4], or more generally

[Bn2]), its unipotent radical has

(i) dimension 5 if the points p and q are linearly independent over End(E);

(ii) dimension 3 if there exists α ∈ End(E)⊗Q such that p = αq and α 6= −α is not

antisymmetric (an automatic condition if E has no CM);

(iii) dimension 3 if p = αq with α = −α, and y is not a Ribet point;

(iv) dimension 2 in the remaining case.

According to a conjecture of Grothendieck(3), the transcendence degree of the full

field of periods of M should be equal to the dimension of MT (M), and an elementary

dimension count as in [A3], 23.2.1 (see also the proof of Prop. 1.i above) then implies, still

assuming that k is a number field:

Proposition 4.a: recall the notations above, and assume that tr.deg.(k(Π(u, v, `))/k) =

dimMT (M). Then, the field k(u, ζ(u), g(u, v) − ζ(v)u + `) has transcendence degree 3 in

Cases (i,ii, iii). In Case (iv), it coincides with the field k(u, ζ(u), 2cπi) for some rational

number c, and has transcendence degree 3 if c 6= 0, and 2 otherwise.

Proof: let us only treat the last two CM cases, again with v = iu. Then, the maximal reduc-

tive quotient of MT (M) has dimension 2, while k(Π(u, v, `)) = k(2πi, ω1, u, ζ(u), ˜̀), where

(3) cf. [A3], 23.1.4, 23.3.2. This conjecture actually relates transcendence degrees to

motivic Galois groups; in view of [De2] and [Br], Mumford-Tate groups are an acceptable

substitute in the case of one-motives.

11



˜̀ := g(u, iu) + ` is a logarithm of an algebraic number γ̃. In Case (iii), dim(MT (M)) = 5;

by the Grothendieck conjecture, we have 5 algebraically independent numbers, any 3 of

which must be algebraically independent. In Case (iv), dim(MT (M)) = 4, but γ̃ is a

root of unity and k(Π(u, v, `)) reduces to k(2πi, ω1, u, ζ(u)). We then have 4 algebraically

independent numbers, any 3, or 2, of which must be algebraically independent. Note that

in this last case, the transcendence degree of k(x̃) depends on the choice of the logarithm

x of the point y, although the Lie hull of x always fills up G.

We now drop the assumption that k ⊂ C is a number field. The dimension count

becomes hopeless, but as suggested in [A3], 23.2.2, a finer approach to the study of any

specific period is provided by the MT (M)-torsor of all isomorphisms between HB(M)∗ and

HdR(M) which, up to homotheties, preserve the cohomology classes of Hodge cycles. The

period matrix represents such an isomorphism. For y ∈ G(C), the choice of a logarithm

x = LogG(y) of y determines a loop γx in HB(M), which projects to a generator of

HB(M)/HB(G), and which satisfies g.γx − γx ∈ HB(G) for all g ∈ MT (M). Define the

Mumford-Tate orbit MTx of x as the the Zariski closure in HB(G) of the orbit of γx under

this affine action of MT (M).

Conjecture 1 (following André, [A3], 23.4.1): let G be a semi-abelian variety defined

over C, let G̃ be its universal extension, let x be a point in TG(C), let y = expG(x), and

let MTx be the Mumford-Tate orbit of x. Let further x̃ be a lift of x to TG̃(C) and let

ỹ = expG̃(x̃). Then,

tr.deg.(Q(G, x̃, ỹ)/Q) ≥ dim(MTx).

A “justification” of the conjecture is given in the proof of Theorem 1 below. Notice

that for any semi-abelian variety G, HdR(G) is canonically isomorphic to Ω1
G̃

, so that

dimHB(G) = dimG̃, and that for any x ∈ TG(C), MTx is necessarily contained in the

Betti homology of the Lie hull Gx of x. In particular, dimMTx ≤ dimG̃x. As shown by

the last case of Prop. 4.a), the inequality may be strict. However, if G is isogenous to a

split product A × T as in [K2], and if y generates a Zariski dense subgroup of Gx (i.e. if

Gy = Gx), we deduce from [A1], Prop. 1, that the Mumford-Tate orbit MTx coincides with

HB(Gx), and Conjecture 1 does imply that tr.deg.QQ(G, x̃, ỹ) ≥ dim(G̃x) in this special

case.

As a companion to Prop. 4.a, now restricted to Cases (i) and (ii) of its discussion,

here is another consequence of Conjecture 1.

Proposition 4.b : let E be an elliptic curve with complex invariants g2, g3, and let u, v, ` be

complex numbers such that expE(u), expE(v) are not related by an antisymmetric relation

12



over End(E). Assume that Conjecture 1 holds true.Then,

tr.deg.(Q(g2, g3, u, ζ(u), g(u, v)− ζ(v)u+ `, ℘(u), e`)/Q) ≥ 3;

in particular, if g2, g3 and ℘(u) are algebraic, the numbers u, ζ(u) and `n(σ(u)) are alge-

braically independent; so are the numbers u, ζ(u) and σ(u).

Proof : let γx be a loop complementing HB(G) in HB(M). In all cases except (iv) (and

even in Case (iv), if we avoid a specific line in the choice of γx), the orbit of γx under

the affine action of the unipotent radical of MT (M) already fills up HB(G), so that the

general inequality is clear. The other assertions, which could be checked by dimension

count, concern Case (ii), with v = u. For the first one, recall that σ(2u)/σ(u)4 = −℘′(u),

and choose −` as a logarithm of this algebraic number. For the last one, choose ` =

−g(u, u). Notice that in order to reach the values of the σ function, we must here consider

a transcendental point y on a semiabelian variety G defined over Q.

In the same spirit, but back into the functional context of Section 1, here is an appli-

cation of Prop. 2. We recall that F is a differential field with constant field C, and that

K is a subfield of F of transcendence degree 1 over C.

Proposition 5 : let E be an elliptic curve with complex invariants g2, g3 and period lattice

Ω, let v1, ..., vn be complex numbers not lying Ω ⊗Q, and let x1, ..., xn (resp. x′1, ..., x
′
r′)

be elements of F linearly independent over End(E) (resp. Z) modulo C. Then,

tr.degKK(xi, x
′
j , ζ(xi), ℘(xi), σ(vi + xi)/σ(xi)σ(vi), e

x′
j ; 1 ≤ i ≤ n, 1 ≤ j ≤ r′) ≥ 3n+ r′.

Proof : for each i = 1, ..., n, let Gi be the extension of E by Gm parametrized by the

divisor (expE(−vi)) − (0). Then, G = G1 × ... × Gn is an extension of En by Gr
m,

with r = n, parametrized by Z-linearly independent points q1, ..., qn of (Ê)n(C): indeed,

their collection can be represented by a diagonal matrix, none of whose diagonal entry is

torsion. By hypothesis, the relative hull of the point y = (expE(x1), ..., expE(xn)) (resp.

y′ = (ex
′
1 , ..., ex

′
r′ )) fills up En (resp. Gr′

m). The result follows from Proposition 2, combined

with the above computations, on choosing `i = −g(xi, vi) for i = 1, ..., n.

Remark 3 : i) the “reason” for the validity of Proposition 1 is that the situation it concerns

is akin to Case (i) above: in the notations of Prop. 2, the points qi which parametrize the

extension G are constant (since G is constant), while the relative hull Gy of y takes into

account only the non-constant “parts” pj of the points expE(xj). No linear relation over

End(A), antisymmetric or not, can then relate the pj ’s to the qi’s.
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ii) But for the very same reason, we can no longer take vi = xi in Prop. 5, and

contrary to [BK], the result falls short of the study of the elements σ(xi) themselves. To

reach them, “semi-constant” semi-abelian varieties as in Remark 2 seem required. Here,

though, is another suggestion: since σ′

σ = ζ, the couples (x = LogE(y), z) ∈ F × F ∗ such

that σ(x) = z are solutions of the system ∂z
z = ty∗ω(∂), ∂t = y∗(η)(∂). This may be

related to the Manin kernel of the split product of Ẽ by Gm, its subgroup Ga×Gm being

now endowed with a non standard D-group structure, as in [Pi], end of §2.

§3 . Non-isoconstant semi-abelian surfaces

From now on, K = C(S) is the field of rational functions on a smooth projective

curve S over C, t is a non-constant element of K, and ∂ is the rational vector field d/dt

on S. More seriously, we only consider the “logarithmic case” of Schanuel’s conjecture, i.e.

assume that G and ỹ are defined over K. But we now allow G to be non constant. We

start by recalling from [De] and [A1] the general setting of smooth one-motives attached

to such datas. This reduces transcendence problems to the computation of an orbit under

a Picard-Vessiot group. We then restrict to an elliptic pencil (punctured and pinched

as in §2, now along rational sections), describe, in the style of Manin’s paper [Mn], the

corresponding extensions of its Picard-Fuchs equation, compute their Galois groups with

the help of [B5], and apply the result to Schanuel’s conjecture.

Let thus A be an abelian scheme over a non empty Zariski open subset U of S, let G be

an extension of A by a constant torus TU of relative dimension r over U , let y be a section of

G over U , and let f :M→ U be the smooth one-motive over U attached to the morphism

1 7→ y from the constant group scheme ZU to G. We denote by A/K,G/K, y ∈ G(K),M/K

the abelian and semi-abelian varieties, point and one-motive over K these datas define at

the generic point of S.

The first relative de Rham cohomology sheaf of M/U is a locally free OU -module

equipped with a connexion ∇, which, restricted to the generic point and contracted with

d/dt, defines a differential operator D on the K-vector space HdR(M/K). The quotient

HdR(G/K) of HdR(M/K) by its (trivial rank one) D-submodule HdR(Z/K) = (K, ∂) is

itself an extension of the (trivial) D-module HdR(T/K) ' (K, ∂)r by HdR(A/K).

The first relative Betti homology R1f∗Z := HB(M/U) is a constant sheaf over U ,

whose dual generates over C the local system of horizontal vectors of ∇. In an analytic

neighbourhood U of a point u0 of U , and relatively to a basis of HdR(M) respecting the

above filtrations, its local sections provide a fundamental matrix of solutions for D of the
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shape 
Ir Λ1(t) Λ2(t) Γ(t)
0 H1(t) H2(t) Z(t)
0 Ω1(t) Ω2(t) U(t)
0 0 0 1

 ,

whose entries generate over K a Picard-Vessiot extension F = Fu0
, for which we set

OF = F ∩ OU . Its last column (without its bottom entry) represents a logarithm x̃ =

LogG̃(ỹ) ∈ TG̃(OF ) of a K-rational point ỹ lifting y to the universal extension G̃ of G.

The field of definition K(x̃) = K(x̃, ỹ) of x̃ depends only on the image x of x̃ in TG.

Let now PV (M) = Aut∂(F/K) be the differential Galois group of the D-module

HdR(M/K). For each g in PV (M), g.x̃ − x̃ lies in HB(G/U) ⊗ C, and depends only on

x. We may therefore define the Picard-Vessiot orbit PVx of x as the Zariski closure of the

orbit of x̃ in HB(G/U) under this affine action of PV (M).

Theorem 1 : let G be a semi-abelian variety defined over K, let G̃ be its universal

extension, let x be a point in TG(OU ) such that y = expG(x) lies in G(K), and let PVx be

the Picard-Vessiot orbit of x. Let further x̃ be a lift of x to TG̃(OU ) such that ỹ = expG̃(x̃)

lies in G̃(K). Then,

tr.deg.(K(x̃)/K) = dim(PVx).

Proof : as explained in [Ka], Prop. 2.3.1 and Remark 2.3.3, this is a tautology once one is

reminded that a fundamental matrix for D is a generic point of a K-torsor under PV (M).

We should point out that by exactly the same argument, the Grothendieck conjecture

implies the “logarithmic case” of Conjecture 1, in the form: if G and ỹ are defined over Q,

then tr.deg.(Q(x̃)/Q) = dim(MTx).

In [A1], Y. André shows that PV (M) is a normal subgroup of the derived group

DMT (Mu0) of the Mumford-Tate group of the fiber Mu0 ofM above a sufficiently general

point u0 ∈ U , and gives non-obvious examples where the inclusion PV (M) ⊂ DMT (Mu0)

is strict. On the other hand, as soon as M admits a special fiber Mu1 with an abelian

Mumford-Tate group, Prop. 2 of [A1] shows that the two groups coincide. Now, at least

theoretically, the main theorem of [Bn 2] provides a complete description of MT (Mu0).

Combined with Theorem 1, this gives a satisfactory answer to the logarithmic case of

Schanuel’s problem over function fields, under the proviso that M varies enough in its

pencil to ensure both very small and rather large Mumford-Tate groups above various

points of the base.
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To dispense with this hypothesis, a more direct approach consists in computing the

Picard-Vessiot group itself. Manin’s kernel theorem provides such a possibility when the

abelian variety A is not isoconstant; for abelian integrals of the second kind(4), this was

already noticed in [A1], Theorem 3 (and less generally in [B3], Thm. 5). We now extend

this method to the study of elliptic integrals of the 3rd kind, where in parallel with §2, the

description of the D-module HdR(M/K) can be made quite concrete, as follows.

Let E be an elliptic curve defined over the function field K = C(S) by the Weiestrass

equation Y 2 = 4X3 − g2(t)X − g3(t). In the standard non-canonical way (cf. [Mn]),

extend the derivation ∂ to the field K(E) and to its space of differentials by setting ∂x =

0, ∂(f(x, y)dx) = ∂f(x, y)dx. Let p(t), q(t) be two non torsion points on E(K)), possibly

linearly dependent over End(E), and consider the differential of the third kind ξ(t) =
1

4πi
Y−Y (q)
X−X(q)

dX
Y . Since the residues of ξ are the constant functions ±1/2πi of K, the classical

formula

∀ s(t) ∈ E(K), ∂(Ress(t)ξ(t)) = Ress(t)∂ξ(t)

implies that ∂ξ(t) is a differential of the second kind on E/K. By Gauss, its cohomology

class is killed by a 2nd order fuchsian differential operator Lξ, and a basis of local solutions

of (Lξ ◦ ∂)y = 0 in an analytic neighbourhood U of a point u0 of U is given by the periods

λ1(t) =
∫
γ1
ξ(t), λ2(t) of ξ(t) over loops γ1, γ2 of the fiber Et, and the constant function

1, corresponding to the integral of ξ on a loop around −q. Now, the integral
∫ p1
p0
ξ(t) of

ξ between two sections p0, p1 differing by p in E(K) is a locally analytic function Γ(t),

well defined up to the addition of a Z-linear combination of the previous periods, so that

(Lξ ◦∂)(Γ(t)) := fp;p0(t) is a uniform function on a Zariski open subset of S, with moderate

growth at infinity, hence a rational function on S. In brief,
∫ p1
p0
ξ(t) provides the fourth

solution to the 4-th order linear differential operator (∂− ∂fp;p0
fp;p0

) ◦Lξ ◦∂ ∈ K[∂]. (Manin’s

paper dealt with the adjoint of the 3rd order operator Lξ ◦ ∂ .)

From now on, we assume that the j-invariant of E is not constant. Then, Lξ is equiv-

alent to the standard irreducible Picard-Fuchs equation LE/K attached to the differential

dX/Y on E, and the 4-th order operator can be written in the form

Lp,q;p0 = ∂p,p0 ◦ LE/K ◦ ∂q,

where ∂p,p0 and ∂q are equivalent to ∂. In other words, the section p (resp. q) provides

a element Np (resp. Nq) of the group Ext(HdR(E/K),1) of extensions of the D-module

(4) i.e. when G = A. Actually, in this case, even the hypothesis on non-isoconstancy can

be dispensed with. See [Ch], bottom of p. 388 and Footnote 1 above - as well as [AV] for

an early application to transcendence ! -. However, we do use it, at least formally, in the

proof which follows.
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HdR(E/K) ' K[∂]/K[∂]LE/K by the trivial D-module 1 = K[∂]/K[∂]∂ (resp. of the

group Ext(1, HdR(E/K)) and the choice of p0 then provides a blended extension (in the

sense of [B5], Remark 6, and [Ha]) of Np by Nq. Now comes the main point: since p and

q are non-torsion points on the non isoconstant curve E, Manin’s theorem (cf. [Mn], [Ch],

or [B3], Lemma 8) implies that both extensions Np and Nq are unsplit; moreover, Nq and

the adjoint Np of Np are linearly independent over C in Ext(1, HdR(E/K)) if p and q

are linearly independent over End(E). We can then appeal to the purely group theoretic

arguments of [B5] to compute the Picard-Vessiot group of Lp,q;p0 , as follows.

This PV group is an extension of that of LE/K , which is SL2(C) since LE/K is irre-

ducible and (antisymmetrically) self-adjoint, by its unipotent radical, which, on denoting

the solution space of LE/K by V ' HB(Eu0
)⊗C and in view of [B5], Thm 3, is isomorphic

to

(i) an extension of V × V by C if p and q are linearly independent over EndE;

(ii) the Heisenberg group H on V otherwise, i.e. the extension of V by C given by

the law (c, v).(c′, v′) = (c + c′+ < v|v′ >, v + v′), where < | > denotes the canonical

antisymetric bilinear form induced on V by the intersection product.

Indeed, the other possibilities mentioned in [B5] (viz. that it becomes abelian, and reduces

either to V × C or to V, as in Cases (iii) and (iv) of §2 above) can occur only if the

middle operator is symetrically self-adjoint, and the irreducibility of LE/K prevents this.

Now, in both Cases (i) and (ii), the Picard-Vessiot orbit of the 4-th solution
∫ p1
p0
ξ(t) has

dimension 3. We therefore deduce from Theorem 1 and the computations of §2 that for

any choice `(t), u(t), v(t) of analytic functions such that e` ∈ K∗, and expE(u), expE(v)

are non-torsion points on E(K), the functions u(t), ζ(u(t)), g(u(t), v(t)) − ζ(v(t))u(t) +

`(t) are algebraically independent over K; in particular, u(t), ζ(u(t)) and `nσ(u(t)) are

algebraically independent. More generally, we obtain the following theorem, which extends

Thm 5 of [B3] to the study of `nσ (but still misses the σ-function itself).

Theorem 2 : let g2(t), g3(t) be algebraic functions such that g32/g
2
3 is not constant, let ℘t

be the Weiestrass function with invariants g2(t), g3(t) and period lattice Ω(t), let {ui; i =

1, ..., n} be holomorphic functions on an open subset of C, linearly independent over Z

modulo Ω(t), and such that the functions ℘t(ui(t)) are algebraic. Then, the 3n function

ui(t), ζ(ui(t)), `nσ(ui(t)) (i = 1, ..., n) are algebraically independent over C(t).

Proof : let E be the corresponding elliptic curve; for i = 1, ..., n, set pi = qi = expE(ui)

and denote by Li the differential operator Lpi,pi;p0,i , for some choice of section p0,i. All

these are defined over an algebraic extension K of C(t). The unipotent radical Ru of the
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differential Galois group over K of the direct sum of the Li’s naturally embeds in Hn, via

the isomorphisms φi : Ru(PV (Li)) ' H of Case (ii) above. We claim that the image of

Ru coincides with Hn (which has dimension 2n + n = 3n). The proposition then easily

follows from Thm 1.

For each i, let ψi be the composition of φi with the projection from H to V. Since

the points qi are linearly independent over End(E), the extensions Nqi defined above are

C-linearly independent in Ext(1, HdR(E/K)), and Thm 2 of [B3] (or more generally, Thm

2.2.14 of [Ha]) implies that the image of Ru under (ψ1, ..., ψn) fills up Vn. But since < | >
is non degenerate, the derived group of any subgroup of Hn projecting onto Vn fills up Cn,

so that the only subgroup of Hn projecting onto Vn is Hn itself, and indeed, Ru = Hn.

I shall not attempt here to formulate a Schanuel conjecture for smooth one-motives

over an arbitrary base over C, which would extend Proposition 1 and Theorem 1, and

parallel Conjecture 1 of §2. The question is of course to find the correct analogue of the

Mumford-Tate group. Let me only point out to the probable relevence of the algebraic

D-group structure which Pillay’s Galois groups [Pi] are endowed with. Already when G

is constant, the two sides of Remark 1 show that the expected group should lie in the

tangent bundle TG̃ × G̃ of G̃. In the non constant case, it is not difficult to guess that

the prolongation τ(G̃) of G̃, which in a sense is the natural habitat of Manin kernels (cf.

[Ma]), will play a role. The ∂-Hodge structures of [Bu] may also have some bearing on

these questions.

We finally mention two further directions of study:

i) the Fourier expansions of the functions ζ(z)− η1
ω1
z, σ(z)e−

η1
2ω1

z2 , σ(z+v)
σ(z)σ(v)e

− η1ω1
vz

are building blocks in the theory of q-difference equations. Can q-difference Galois groups

and their higher dimensional analogues provide a new insight on Schanuel’s conjecture ?

ii) what about characteristic p analogues ? We shall here merely refer to [AMP]

for the algebraic independence of the Zp-powers fλ1 , ..., fλr of a given power series f in

Fp[[t]], and in closer relation to the present study, to [Pa] for a Galois theoretic solution

of the logarithmic case of Schanuel’s conjecture on powers of the Carlitz module.
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Prep. Inst. Math. Jussieu 121, 1997 (unpublished).
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Institut de Mathématiques de Jussieu

bertrand@math.jussieu.fr

AMS Class.: 12H05, 11J95.

Key-words: algebraic independence, abelian varieties, function fields, differential Galois

theory.

20


