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ABSTRACT

This paper constructs cospecialization homomorphisms between the (p') versions of the
tempered fundamental group of the fibers of a smooth morphism with polystable reduction
(the tempered fundamental group is a sort of analog of the topological fundamental group
of complex algebraic varieties in the p-adic world). We studied the question for families
of curves in another paper. To construct them, we will start by describing the pro-(p’)
tempered fundamental group of a smooth and proper variety with polystable reduction in
terms of the reduction endowed with its log structure, thus defining tempered fundamental
groups for log polystable varieties.

Introduction

This paper is a sequel to [9]. In that article we studied the behavior of the tempered fundamental
groups of the fibers of a p-adic family of curves. More precisely we proved the following:

THEOREM 0.1 ([9, th. 0.1]). Let K be a complete discretely valued field. Let L be a set of primes
that does not contain the residual characteristic of K. Let Y — O be a morphism of log schemes.
Let Yo = Y, N'Y, C Y where Y is the completion of Y along its closed fiber. Let X — Y be a
proper semistable curve with compatible log structure. Let U = X,. Let 11 and 1o be two Berkovich
points of Yy whose residue fields have discrete valuation, and let 71,72 be geometric points above
them. Let 5o — 51 be a log specialization of their log reductions such that there exists a compatible
specialization fja — 7j1. Then, there is a cospecialization homomorphism 7)™ (Up )& — 71" (Up, ).
Moreover, it is an isomorphism if My s, — My s, is an isomorphism.

The aim of this paper is to generalize this result in higher dimension. However, in this paper,
we will only consider the case of vertical semistable morphisms X — Y (which means mainly that
U, = Xa,)-

Recall that, if LL is a set of primes, the L-tempered fundamental group is the prodiscrete group that
classifies the L-tempered coverings, which are étale coverings in the sense of A.J. de Jong (that is to
say that locally on the Berkovich topology, it is a direct sum of finite étale coverings) such that, after
pulling back by some L-finite étale covering, they become topological coverings (for the Berkovich

topology).
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In this article, we shall study the following situation. Let K be a discretely valued field, Og
be its valuation ring, k be its residue field and p its characteristics (which can be 0). Let X — Y
be a proper pluristable (for example semistable) morphism of schemes over O with geometrically
connected fibers.
Let L be a set of prime that does not contain p. If 77 is a (Berkovich) point of the generic fiber of
Y, we first want to describe the geometric L-tempered fundamental group of X, in terms of X,
where s; is the reduction of n;. To be sure that this reduction exists we have to assume 7 is in the
tube ), of the special fiber of Y. Let us make sure at first that we can get such a description for the
pro-LL completion, i.e. the algebraic fundamental group. One cannot apply directly Grothendieck’s
specialization theorems since the special fiber is not smooth but only pluristable. Indeed, a pro-L
geometric covering of the generic fiber will in generally only induce a Kummer covering on the special
fiber. These are more naturally described in terms of log geometry and of the log fundamental group.
The log fundamental group classifies Kummer log étale coverings (or, equivalently finite log étale
coverings) : étale locally, these coverings are pullbacks of a morphism SpecZ[Q)] — SpecZ[P] of
a morphism of monoids P — ) where @ is the saturation of P in an extension of P8P of finite
index invertible on the log scheme. For a proper and log smooth log scheme over a complete discrete
valuation ring, there is, as in the proper and smooth case for Grothendieck’s fundamental group,
a specialization morphism from the pro-L log fundamental group of the generic fiber (which is
isomorphic to the pro-L algebraic fundamental group of the maximal open subset of the generic
fiber where the log structure is trivial) to the pro-L log fundamental group of the closed fiber. We
will have to assume the field H(n;) to be with discrete valuation in order to get log schemes with
good finiteness properties (more precisely to be fs). Then, one can endow X, with a natural log
structure. The pro-IL fundamental group of X, is isomorphic to the pro-L log fundamental group
of Xg,. To try to describe the L-tempered fundamental group, one has to describe the topological
behavior of any L-algebraic covering of X, . Berkovich, in 3], constructed a combinatorial object
(more precisely a polysimplicial set) depending only on X , such that the Berkovich generic fiber
X, 1s naturally homotopically equivalent to the geometric realization of this combinatorial object,
thus generalizing the case of curves with semistable reduction, where the homotopy type of the
generic fiber can be naturally described in terms of the graph of this semistable reduction. We
will extend such a description to our log coverings: for every log covering ¥ — XOH(n1>7 we will
construct a combinatorial object C(Y), depending only on Yj,, such that its geometric realization
| C(Y')] is naturally homotopically equivalent to the Berkovich generic fiber Y,),. This will enable us
to define a L-tempered fundamental group of our log reduction, which is isomorphic to the tempered
fundamental group of the generic fiber: for any Galois két covering f : Y — Xj,, there is an action
of Gal(Y/X,,) on C(Y). Such an action defines an extension Gy of Gal(Y/X,,) by m°P(| C(Y))):
Gy = {(91,92) € Aut(|C(Y)|*) x Gal(Y/Xs,)|mrg1 = gam}, where 7w : [C(Y)|* — |C(Y)] is the
universal topological covering of | C(Y')|. The L-tempered fundamental group of Xj, is the projective
limits of these extensions Gy, where Y runs through pointed két Galois coverings of X of L order.
In particular, one gets:

THEOREM 0.2 (see th. 3.2). The L-tempered fundamental group of X, only depends on the log
reduction X, .

Once we have a definition for the log geometric tempered fundamental group wiemp_geom(X s,) of
the log fibers in the special locus of Y, one can reformulate our cospecialization problem only in
terms of this special locus.

We will prove the following:
THEOREM 0.3 (th. 4.8). Let nm and ny be two Berkovich points with discrete valuation fields of
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Yo = V3" N9Q,. Let 71,72 be geometric points above them. Let 55 — 51 be a specialization of
their log reductions such that there exists a compatible specialization 7o — 1. Then there is a

oL . temp- temp-
cospecialization homomorphism """ (X, )b — m omPeeom (x L.

Moreover, one can give a criterion for this cospecialization homomorphism to be an isomorphism.
To do this, we will have to make an assumption on the combinatorial behavior of the geometric fibers
of X — Y. More precisely, the polysimplicial set associated with those geometric fibers will be as-
sumed to be interiorly free (this is for example the case if X — Y is strictly polystable or if X — Y
is of relative dimension 1, which explains why such a condition did not appear in [9]). If the mor-
phism of monoids My@ — Hy@ is an isomorphism, then the cospecialization homomorphism
ryempEeom (x Yb  plempeeom (x L is an isomorphism.

The first thing we need to construct the cospecialization homomorphism for tempered fundamen-

tal groups is a specialization morphism for the LL-log geometric fundamental groups of X5, and Xg,.
More precisely we would like to extend any L-log geometric covering of X, to a két neighborhood
of s;. By restricting this extension to Xjg,, one obtains a functor from L-log coverings of X5, to
L-log coverings of Xg,, this functor induces the wanted specialization morphism of L-log geometric
fundamental groups. If one has such a specialization morphism, by comparing it to the fundamental
groups of X and Xj, and using Grothendieck’s specialization theorem, we will easily get that it
must be an isomorphism). These specialization morphisms has already been constructed in [9, prop.
2.10].
Then we have to study the combinatorial behavior of a két covering with respect to cospecialization.
By étale localization, one can assume that Y is strictly local with special point 51. Up to két local-
ization of Y, any két covering Us, of Y5, extends to a két covering U of Y, and U — Y is saturated.
For a stratum u of Us,, there is among the strata of Uy, whose closure contains u a stratum «’ with
smallest closure (i.e. a biggest stratum for specialization): it defines a map Str(Us,) — Str(Us,).
The fact that U — Y is saturated implies that the closure of the strata of U are flat over their
image in Y and have geometrically reduced fibers. Thanks to [6, cor. 18.9.8]), this implies that v’ is
geometrically connected, whence a cospecialization map Str(Us, ) — Str(Us,). This cospecialization
map can be extended into a morphism of polysimplicial sets. One gets by pullback a specialization
functor between the category of topological coverings of the polysimplicial sets Us, and Ug, . Since
The cospecialization morphisms of polysimplicial sets commute with két coverings, the specialization
functor can be seen as a functor of fibered categories over the category of L-log coverings of X5, (or
equivalently of L-finite étale coverings of Xy, ). But the fibered category of tempered coverings over
the category of L-finite étale coverings of Xy, is naturally equivalent to the stack associated to the
fibered categories of topological coverings over the category of L-finite étale coverings of X5 . Thus
the topological specialization functor gives us the wanted tempered specialization functor.

Let us now discuss the organization of the paper.

The first section of this paper will be devoted to recall the main tools we will need later. We will re-
call the definition of the tempered fundamental group and its basic properties. We will also consider
an L-version of the tempered fundamental group, where L is a set of prime numbers (L-tempered
fundamental groups were already introduced in [10] in the case of curves). We will then recall the
basics of log geometry, especially the theory of két coverings and log fundamental groups. We will
end this part by recalling the topological structure of the generic fiber (considered as a Berkovich
space) of a pluristable formal scheme, as studied in 3] and in [4].

In §2, we define the tempered fundamental group of a connected pluristable log scheme X over
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a log point. To do this, we define a functor C from the Kummer étale site of our pluristable log
scheme X to the category of polysimplicial sets (which extends the definition of the polysimplicial
set associated to a pluristable scheme defined by Berkovich in [3]). We also defines a log geometric
version by taking the projective limit under connected két extensions of the base log point.

In §3, for a connected, proper, generically smooth and pluristable scheme X over a complete dis-

cretely valued ring O (thus endowed with a canonical log structure), we construct a specialization
morphism between the L-tempered fundamental group of the generic fiber, considered as a Berkovich
space, and the L-tempered fundamental group of the special fiber endowed with the inverse image
log structure, which is an isomorphism if the residual characteristic of K is not in L.
This specialization morphism is induced by the specialization morphism from the algebraic fun-
damental group of the generic fiber to the log fundamental group of the special fiber, and by the
fact that the geometric realization of the polysimplicial set | C(Y')| of a két covering of the special
fiber of X is canonically homotopically equivalent to the Berkovich space Y, of the corresponding
étale covering of the generic fiber. This homotopy equivalence is obtained by extending the strong
deformation retraction of X" to a strong deformation retraction of Y;* onto a subset canonically
homeomorphic to | C(Y)].

In §4, we construct cospecialization morphisms between the polysimplicial sets of the geometric
fibers of a polystable fibration. To do so, we first prove that, up to étale localization of Y at sq, for
any stratum z of X3, , the set of strata of X, whose closure contains x has a biggest element (for the
order induced by existence of specialization), and this biggest stratum is geometrically irreducible.
This will induce cospecialization morphisms on the set of strata of the geometric fibers of X — Y.
Up to két localization, the same result is also true for két coverings of Y. This cospecialization maps
of set of strata in fact come from maps of polysimplicial sets. If we identify the categories of L-két
coverings of Xz, and Xz, thanks to specialization of ket coverings, one gets, for U in this category,
amap |C(Us, )| — | C(Us,)| functorially in U (and in particular, when U is Galois, compatibly with
the action of the Galois group of U). We get from this cospecialization morphisms between the
L-geometric tempered fundamental groups of the fibers of our strictly polystable log fibration.
Thanks to the isomorphisms between the LL-geometric tempered fundamental group of the fiber over
a discretely valued Berkovich point of the generic part of our base log scheme and the L-geometric
tempered fundamental group of the fiber over the reduction log point, we will get theorem 0.3.

1. Reminder on the skeleton of a Berkovich space with pluristable reduction

1.1 Polystable morphisms

Let K be a complete nonarchimedean field and let Ok be its ring of integers.

If X is a locally finitely presented formal scheme over Ok, X, will denote the generic fiber of X in
the sense of Berkovich (]2, section 1]).

Recall the definition of a polystable morphism of formal schemes:

DEFINITION 1.1 ([3, def. 1.2], [4, section 4.1]). Let ¢ : P — X be a locally finitely presented
morphism of formal schemes over Og.

(i) ¢ is said to be strictly polystable if, for every point y € 9), there exists an open affine neighbor-
hood X' = Spf(A) of z := ¢(y) and an open neighborhood 9’ C ¢~1(X’) of y such that the in-
duced morphism )’ — X’ factors through an étale morphism )’ — Spf(By) X x - - - Xz Spf(Bp)
where each B is of the form A{To,--- , T, }/(To---Tn, — a;) with a € A and n > 0. It is said
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to be nondegenerate if one can choose X', Y’ and (B;, a;) such that {z € (Spf(4),)|ai(xz) = 0}
is nowhere dense.

(ii) ¢ is said to be polystable if there exists a surjective étale morphism )’ — 9) such that )’ — %
is strictly polystable. It is said to be nondegenerate if one can choose ) such that 9’ — X is
nondegenerate.

Then a (nondegenerate) polystable fibration of length | over & is a sequence of (nondegenerate)
polystable morphisms X = (X; — -+ — ¥; — 6).
Then K—Psz‘,flét (resp. K-Pstfi™, K-Pst ltps)will denote the category of polystable fibrations of
length [ over Ok, where a morphism X — %) is a collection of étale (resp. smooth, resp. trivially
polystable) morphisms (X; — 2);)1<ig which satisfies the natural commutation assumptions.
Pstfit (resp. Pstfim, Pstfltps) will denote the category of couples (X, K1) where K is a complete
non archimedean field and X is a polystable fibration over Og,, and a morphism (X, K1) — (2, K2)
is a couple (¢, 1) where ¢ is an isometric extension Ko — K and % is a morphism X — @@90; Ok,

in Kl—Pstflét (resp. K-Pstfi™, Ki-Pst ltps).

Let k be a field.
Let X be a k-scheme locally of finite type.
The normal locus Norm(X"™4) is a dense open subset of X. Let us define inductively X(©) = xred
X0+ = X0\ Norm(X®). The irreducible components of X\ X0+D are called the strata of X
(of rank ). This gives a partition of X. The set of the generic points of the strata of X is denoted
by Str(X) (This set is in natural bijection with the set of strata of X'). There is a natural partial
order on Str(X) defined by z < y if and only if y € {z}.

Berkovich defines another filtration X = Xy D X(;) D --- such that X; ) is the closed subset
of points contained in at least two irreducible components of X(;. X is said to be quasinormal if
all of the irreducible components of each X(;), endowed with the reduced subscheme structure, is
normal (this property is local for the Zariski topology and remains true after étale morphisms). If
X is quasinormal, then X = X (1), X is quasinormal if and only if the closure of every stratum is
normal. A strictly plurinodal scheme over a field is quasinormal ([3, prop. 2.1]).

There is a natural partial order on Str(X) defined by = < y if and only if y € {x}.

We say that a strictly plurinodal scheme X over a field K is elementary if Str(X) has a biggest
element; we say that it is geometrically elementary if it is elementary and all the strata are geomet-
rically irreducible. Finally, a strictly pluristable morphism Y — X is geometrically elementary if all
the fibers are geometrically elementary.

1.2 Polysimplicial sets

Berkovich defines polysimplicial sets in |3, section 3| as follows.

For an integer n, let [n] denote {0,1,--- ,n}.

For a tuple n = (ng,---,np) with either p = ng = 0 or n; > 1 for all 4, let [n] denote the set
[no] X - -+ X [np] and w(n) denote the number p.

Berkovich defines a category A whose objects are [n] and morphisms are maps [m] — [n] associated
with triples (J, f, ), where:

— J is a subset of [w(m)] assumed to be empty if [m] = [0],
— [ is an injective map J — [w(n)],

— ais a collection {oy }ogigp, Where oy is an injective map [my-1)] — [ny] if | € Im(f), and oy is
a map [0] — [ny] otherwise.



The map 7 : [m] — [n] associated with (J, f, ) takes j = (jo, -, jw(m)) € [m] toi= (io, + ,iyp(n))
with i; = ay(jp-1()) for I € Im(f), and 4; = a;(0) otherwise.

A polysimplicial set is a functor A°®? — Set. Polysimplicial sets form a category denoted by A° Set.
One considers A as a full subcategory of A°Set by the Yoneda functor. If C is a polysimplicial set
A/ C is the category whose objects are morphisms [n] — C in A° Set and morphisms from [n] — C
to [m] — C are morphisms [n] — [m] that make the triangle commute. Objects of A/ C are called
polysimplices of C, and if x : [n] — C is a polysimplex, n will be denoted by n,.

A polysimplex x of a polysimplicial set C is said to be degenerate if there is a non isomorphic
surjective map f of A such that x is the image by f of a polysimplex of C. Let C® be the subset
of non degenerate polysimplices of Cy,.

Thanks to an analog of Eilenberg-Zilber lemma for polysimplicial sets ([3, lem. 3.2]), a morphism
C’ — Cis bijective if and only if it maps non degenerate polysimplices to nondegenerate polysimplices
and (C")2d — € is bijective for any n.

There is a functor O : A° Set — Poset where O(C) is the partially ordered set associated to Ob(A/ C)
endowed with the preorder where x < y if there is a morphism z — y in A/ C. If one sees O(C)
as a category, there is an obvious functor A/C — O(C). As a set, O(C) coincides with the set of
equivalence classes of nondegenerate polysimplices.

A polysimplicial set C is said interiorly free if Aut(n) acts freely on CI4. If C; — Cy is a morphism of
polysimplicial sets mapping nondegenerate polysimplices to nondegenerate polysimplices such that
O(C1) — O(Cy) is an isomorphism and Cj is interiorly free, then C; — Cg is an isomorphism.
Berkovich also defines a strictly polysimplicial category A whose objects are those of A, but with only
injective morphisms between them. The functor A — A — A°Set extends to a functor A°Set —
A° Set which commutes with direct limits (the objects of A°Set will be called strictly polysimplicial
sets).

Berkovich then considers a functor ¥ : A — Ke to the category of Kelley spaces, i.e. topological
spaces X such that a subset of X is closed whenever its intersection with any compact subset of X
is closed. This functor takes [n] to Sy = {(ui)o<i<po<i<n; € [0, 1] 3, uy = 1}, and takes a map ~
associated to (J, f, @) to X(y) that maps u = (u;) to u’ = (u};) defined as follows: if [m] # [0] and
i ¢ Im(f) or [m] = [0] then u}, = 1 for | = «;(0) and u}, = 0 otherwise; if [m] # [0] and i € Im(f),
then u}, = Up1 ()0 (1) for I € Im(cy;) and ), = 0 otherwise.

This induces a functor, the geometric realization, | | : A°Set — Ke (by extending ¥ in such a way
that it commutes with direct limits). If O(C) is finite (resp. locally finite), then | C | is compact (resp.
locally compact).

There is also a bifunctor [0 : A°Set xA°Set — A°Set which commutes with direct limits and
defined by [(no, - ,np)]O[(ng, -~ ,ny,)] = [(no, -+ ,np,ng, -+ ,n,)]. Thus [COC | = [C| x [C|
where the product on the right is the product of Kelley spaces (which is the same as the product of
topological spaces whenever C and C’ are locally finite).

1.3 Polysimplicial set of a polystable fibration

If X is strictly polystable over k and x € Str(X), Irr(X, ) will denote the metric space of irreducible
components of X passing through = where d(X;, X2) = codim,(X; N X32). On a tuple [n], one can
consider the metric d defined by d((no, - -+ ,np), (ng, - ,ny)) = {i € [[0,p]]|n; # nj}|. Then there is
a unique tuple [n] such that Irr(X, z) is bijectively isometric to [n]. If [m] — [n] is isometric, there
exists a unique y € Str(X) with y < z and a unique isometric bijection [m] — Irr(X,y) such that

mn] — Irr(X,2)
T T
m]  — Trr(X,y)
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commutes.

The functor which to [n] associates the set of couples (z, u) where x € Str(X) and p is a isometric
bijection [n] — Irr(X,x) defines a strict polysimplicial set C'(X) (and thus a polysimplicial set
C(X)).

There is a functorial isomorphism of partially ordered sets O(C(X)) =~ Str(X).

PROPOSITION 1.2 ([3, prop. 3.14]). One has a functor C : Pst®™ — A° Set, such that C(X) is as
previously defined if X is strictly polystable and, for every étale surjective morphism X' — X:

C(X) = Coker(C(X' xx X') = C(X")).

This functor extends to a functor C for strictly polystable fibrations over K of length I.
Let us assume we already constructed C for strictly polystable fibrations of length [ — 1 such that
O(C(X)) = Str(X;—1). Let X : X; — X;_1 — --- — Speck be a strictly polystable fibration, and
let X;_;:X;—1 — -+ — Speck. Then for every ' < x € Str(X;_1), one has:

LEMMA 1.3 ([3, cor.6.2]). There is a canonical cospecialization morphism C(X;,) — C(X;,) and
if " < 2’ < z, the morphism C(X;;) — C(X;,») coincides with the composition C(X;,) —
C(X12) — C(Xpgr).

This gives a functor Str(X;_;)°® — A°Set that maps an object z in Str(X;_1)°" to C(X;,) and
an arrow =’ — x to the cospecialization morphism C(X;,/) — C(Xj,) given by lemma 1.3. If one
composes this functor with (A/(C(X;_;)))°®? — O(C(X;_;))°? = Str(X;_1)°P, one gets a functor

D: (A/(C(X;_1))) — A°Set.
Berkovich then defines a polysimplicial set (where we set C = C(X;_;)):

C(X)=COD:=Coker( [[ myOD.= [[ [.]OD.),
Ni(A/C) No(A/C)

where, for f : y — z € Ni(A/C), the upper arrow sends [n,| D, to [n,]0D, by the morphism
[f]0idp, and the lower arrow sends [n,|OJ D, to [n,]0 Dy by the morphism idp,, 0 Dy. This
construction extends to (non necessarily strictly) polystable fibrations:

PROPOSITION 1.4 ([3, prop 6.9]). There is a functor C : Pst;> — A Set such that:
(i) for every étale surjective morphism of polystable fibrations X' — X:
C(X) = Coker(C(X' xx X') = C(X")).
(i) O(C(X)) = Str(X).

1.4 Skeleton of a Berkovich space

Berkovich attaches to a polystable fibration X = (X; — X;_1 — --- — Spf(Og)) a subset of the
generic fiber X;, of X, the skeleton S(X) of X, which is canonically homeomorphic to | C(X,)|
(see [3, th. 8.2]). In fact, when X is non degenerate—for example generically smooth (we will only
use the results of Berkovich to such polystable fibrations)—the skeleton of X depends only on X;
according to [4, prop. 4.3.1.(ii)]; such a formal scheme that fits into a polystable fibration will be
called pluristable, and we will note S(X;) this skeleton.

In this case [4, prop. 4.3.1.(ii)] gives a description of S(X;), which is independant of the retraction.
For any x,y € X;,, we write x < y if for every étale morphism X’ — X; and any 2’ over x, there
exists y’ over y such that for any f € O(%,), |f(2')] < |f(¥')| (% is a partial order on X;,). Then
S(%;) is just the set of maximal points of X;,, for <.



Moreover there is a strong deformation retraction of X;, to S(X) and this construction is com-
patible with étale morphisms; more precisely, one has the following theorem:
THEOREM 1.5 ([3, th. 8.1]). One can construct, for every polystable fibration X = (X, fip A
X1 — Spf(Ok)), a proper strong deformation retraction ® : X, x [0,1] — X, of X;,, onto the
skeleton S(X) of X such that:

(1) S(X) = Usesx,_,) S(Xiz) (set-theoretic disjoint union), where X, ; = (X1 — -+ —
Spf(Ok));

(ii) if ¢ :+ Y — X is a morphism of fibrations in Pstf, one has ¢.,(y:) = ¢1,(y): for every
RS QJl,n-

Let us describe more precisely how the retraction is defined.

If X = Spf Ox{P}/(p; — 2i) where P is isomorphic to ©o<i, N1 p; = (1,---,1) € N*T! and
zi € Ok, let By, be the formal multiplicative group Spf Ox{T, %} over Of, let us denote for any n
by @m(") the kernel of the multiplication &,," T — &, and let & be the formal completion at the
identity of [, ®m ™ (it is a formal group). Then & acts on X. The group G' = &, acts then on X,,.
G has canonical subgroups G, for t € [0, 1] defined by the inequalities |T;; — 1| < ¢ where Tj; are the
coordinates in G. Gy has a maximal point g;. Similarly, for any complete extension K'/K, Gy @ x K’
has a maximal point g; g. If # € X, one defines x; := g; * z to be the image of g; 3/(,;) by the map
G K' = (Gt XX)I CGix X — X.

If X is étale over Spf Ox{P}/(p; — zi), the action of & extends in a unique way to an action on
X, and x; is still defined by g¢; * . For any X polystable over O, one has thus defined the strong
deformation locally for the quasi-étale topology of X7", and Berkovich verifies that it indeed descends
to a strong deformation on X.

For a polystable fibration X — X;_ 1 — --- — Spf Ok, we first assume that X — X;_; is of the
kind Spf B — Spf A with B = A{P}/(p; — a;) (this will be called a standard polystable morphism),
one first retracts fiber by fiber on S(X/X;_1), which are strictly polystable. The image obtained

can be identified with S = {(x,ro,--- ,rp) € Xj_1,,7i0 - - Tin;, = |ai(x)|}, one then has a homotopy
U S x[0,1] = 8 by W(x,rg, - ,Tp,t) = (24, Ung(ro, |ao(xt)]), -+ ¥, (rp, |ap(xt)])), where oy, is
some strong deformation of [0, 1]"*! to (1,---,1) € [0,1]""! defined by Berkovich (we will just need

that ¢, (ri, 1)) = ¥ (r}, 1)), for any A € R*" and any k € [[0,7]]) , and ; is defined by the strong
deformation of X;_1 .

If X - X' — X;_1 is a geometrically elementary composition of an étale morphism and a stan-
dard polystable morphism, S(X/%X;—1) — S(X'/%;-1) is an isomorphism, so that we deform X’ fiber
by fiber onto S(X/X;_1), then we just do the same retraction as for S(X’/X;_1). For an arbitrary
polystable fibration X — --- — Og, this defines the retraction locally for the quasi-étale topology
of X, and Berkovich verifies that it descends to a deformation retraction on X.

Berkovich deduces from (1.5.(ii)) the following corollary:

COROLLARY 1.6 (|3, cor. 8.5]). Let K’ be a finite Galois extension of K and let X be a polystable
fibration over Ok with a normal generic fiber X; ,,. Suppose we are given an action of a finite group
G on X over Ok and a Zariski open dense subset U of X;, which is stable under the action of
G. Then there is a strong deformation retraction of the Berkovich space G\U to a closed subset
homeomorphic to G\| C(X)|.

More precisely, in this corollary, the closed subset in question is the image of S(X) (which is
G-equivariant and contained in U) by U — G\U.



Theorem 1.5 also implies that the skeleton is functorial with respect to pluristable morphisms:

PROPOSITION 1.7 [4, prop. 4.3.2.(1)]. If ¢ : X — %) is a pluristable morphism between nondegenerate
pluristable formal schemes over O, ¢,(S(X)) C S(2).

In fact, more precisely, from the construction of S, S(X) = U,eg(y) 5(Xy)-

2. Tempered fundamental group of a polystable log scheme

In this section we define a tempered fundamental group for a polystable fibration over a field,
endowed with some compatible log structure (we will call this a polystable log fibration). To define
our tempered fundamental group, we will need a notion of “topological covering” of a két covering
Z of our polystable log fibration X — --- — k. To do this we will define for any Z a polysimplicial
set C(Z) over the polysimplicial set C(X), functorially in Z. Thus if Z is a finite Galois covering of
X with Galois group G, there is an action of G on C(Z) which defines an extension of groups:

1 —7m(|C(2)) -z — G — 1.

Our tempered fundamental group will be the projective limits of II; when Z runs through pointed
Galois coverings of X.

2.1 Polystable log schemes

All monoids are assumed to be commutative. We will use multiplicative notations. If X is an fs log
scheme, we will denote by X the underlying scheme, by Mx the étale sheaf of monoids on X defining
the log structure, and by X, the open subset of X where the log structure is trivial.

A strict étale morphism of fs log scheme ¥ — X is a strict morphism of log schemes such that
Y — X is étale. If we talk about étale topology on X, it will mean strict étale topology on X (or
equivalently étale topology on X ), and not log étale topology.

Let S be a fs log scheme.

DEFINITION 2.1. A morphism ¢ : Y — X of fs log schemes will be said:
— standard nodal if X has an fs chart X — Spec P and Y is isomorphic to X Xgpecz(p) Z[Q] with
Q=(P®uN&uvN)/(u-v=a)with a € P.

a strictly plurinodal morphism of log schemes if for every point y € Y, there exists a Zariski
open neighborhood X’ of ¢(y) and a Zariski open neighborhood Y’ of y in Y x x X’ such that
Y’ — X’ is a composition of strict étale morphisms and standard nodal morphisms.

— a plurinodal morphism of log schemes if, locally for the étale topology of X and Y, it is strictly
plurinodal.

— a strictly polystable morphism of log schemes if for every point y € Y, there exists aa affine
Zariski open neighborhood X’ = Spec A of ¢(y), an fs chart P — A of the log structure of X’
and a Zariski open neighborhood Y’ of 4 in Y x x X’ such that Y’ — X factors through a strict
¢tale morphism Y/ — X' xz1p Z[Q] where Q = (P&@}_y < Tio, -+, Tin; >)/(Tio- - - Tin; = a;)
with a; € P.

— a polystable morphism of log schemes if, locally for the étale topology of Y and X, it is a strict
polystable morphism of log schemes.

A polystable log fibration (resp. strictly polystable log fibration) X over S of length [ is a sequence of
polystable (resp. strictly polystable) morphism of log schemes X; — --+ — X7 — Xy = S.
A morphism of polystable log fibrations of length [ f : Y — X is given by morphisms f; : ¥; — Xj
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of fs log schemes for every 4 such that the obvious diagram commutes.
A morphism f of polystable fibrations will be said két (resp. strict étale) if f; is két (resp. strict
étale) for all 4.

A polystable (resp. strictly polystable) morphism of log schemes is plurinodal (resp. strictly
plurinodal).
A plurinodal morphism is log smooth and saturated.

Remark. If ¢ : X — Y is a stricly polystable morphism of log schemes, then for any y € Y, for
any Zariski open neighborhood X’ of ¢(y) and any chart X’ — Spec P, there is a Zariski open
neighborhood X” C X’ of ¢(y) and a Zariski open neighborhood Y’ of y in Y xx X” such that
Y’ — X factors through a strict étale morphism Y/ — X’ xzp Z[Q] where Q = (P & @P)_, <
Tio, - Tiny >)/(Tio - -+ - Tin, = a;) with a; € P.

LEMMA 2.2. Let ¢ : Y — X be a plurinodal (resp. strictly plurinodal, resp. polystable, resp.
strictly pluristable) morphism of schemes, such that X has a log regular log structure Mx and ¢ is
smooth over X¢;. Then (Y, Oy N j. Oy, ) (X, Mx) is a plurinodal (resp. strictly plurinodal, resp.

polystable, resp. strictly pluristable) morphlsm of log schemes.

Proof. Let us prove it for the case of a stricly polystable morphism.
One can assume that X = Spec(A) has a chart ¢ : P — A and that Y = By xx -+ Xx B, with
B; = Spec A[Ti0, -+, Tin,]/Tio - - - Tin; — a; with a; € A. Since ¢ is smooth over Xi,, a; is invertible
over Xy, thus after multiplying a; by an element of A* (we can do that by also multiplying Tjo
by this element), we may assume that a; = ¥(b;) for some b; € P. Thus Y = X Xgz/p] Z[Q] where
=Po@ g <To, -, Tin, >)/(Tio - -+ - Tin, = b;) with b; € P. If we endow Y with the log
structure My associated with @, Y — X becomes a strict polystable morphism of log schemes. In
particular Y is log regular ([7, th. 8.2]). Since, the set of points of Y where My is trivial is Ykx,,,
My = Oy ﬁj*Oi‘,Xtr according to [11, prop. 2.6]. O

2.2 Strata of log schemes

For a polystable (log) fibration X : X — --- — Spec k, Berkovich defines a polysimplicial set C(X).
In this part we want to generalize this construction to any két log scheme Z over X. To do this we
will study the stratification of an fs log scheme defined by rk(z) = rk(M%"), which corresponds to
Berkovich stratification for plurinodal schemes, and we will show that étale locally a két morphism
X — Y induces an isomorphism between the posets of the strata of X and Y. This will enables us
to define the polysimplicial set of Z étale locally. We will then descend it so that it satisfies the same
descent property as in proposition 1.4.

Let Z be an fs log scheme, one gets a stratification on Z by saying that a point z of Z is of rank
7 if 1k'98(2) = rk(MEP/O%) = r (where Z is some geometric point over z and where rk is the rank of
an abelian group of finite type).
The subset of points of Z such that the rank is < r is an open subset of Z (|12, cor. 11.2.3.5]). W
thus get a good stratification.
The strata of rank r of Z are then the connected components of the subset of points z of rank r.
This is a partition of Z, and a strata of rank r is open in the closed subset of points x of rank > r.
It is endowed with the reduced subscheme structure of Z.
The set of strata is partially ordered by = < y if and only if y C Z. One denotes by Str;(Z) the
poset of strata below x. More generally, if z is a point of Z, we denote by Str.(Z) the set of strata
y of Z such that z € g (Str,(Z) is simply Str,(Z) where z is the stratum of z containing x). If Z is
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a geometric point of Z, let Strf*"(Z) = lim

(v.a) Strg(U) where (U, w) goes through étale neighbor-
hoods of z; it can be identified with Str(Z(z)) where Z(Zz) is the strict localization of Z at Zz.
If f:Z' — Z is a két morphism, then 1k!°%(z) = rk'°8(f(z)), so the strata of Z’ are the connected

components of the preimages of the strata of Z.

If f: P — Ogis achart of Z, it induces a continuous map f*: Z — Spec P that maps a point z
to the prime p, = P\f‘l(O*Z’Z) of P.Let F, = P\p, be the corresponding face. Then Mz, = P/F.
One deduces from it that the strata of Z are exactly the connected components of the preimages by
f* of points in Spec P. In particular one gets a map Str(Z) — Spec P. If z is a point of Z, the map
Z(z) — Spec P factorizes through a map Z(z) — Spec My ., which does not depend on the choice
of the chart. One gets a map Str,(Z) — Spec Mz .. For a general log scheme Z, if Z is a geometric
point of Z, one gets a map Strf*™(Z) — Spec My 5.
Let us look at the structure of the strata of Speck[P] endowed with the log structure for which
f: P — k[P] is a chart. Let f*: Speck[P] — Spec P and let p be a prime of P and let F' = P\p
be thecorresponding face of P. Then f*~({p}) is a closed subset of Spec k[P] which, endowed with
its structure of reduced closed subscheme, is Spec k[P]/(p) where (p) = D, c, k-pi C k[P] ((p) is a
prime ideal of k[P]). Moreover, the obvious morphism of rings k[F] — k[P]/(p) is an isomorphism,
inducing thus an isomorphism of schemes f*~({p}) = Spec k[P]/(p) ~ Spec k[F]. However the log
structure on Spec k[F] for which F is a chart is not correspond in general with the log structure on
Spec k[P]/(p) for which P is a chart. The open immersion f*~'({p}) € f*~'({p}) corresponds then
to the open immersion Spec k[F®P] — Spec k[F|. In particular, since Spec k[F8P] is connected, there

is a unique stratum of Spec k[P] above p and thus Str(Spec k[P]) — Spec P is bijective.

Let Z be a plurinodal log scheme over some log point (k, M) of characteristic p and of rank
ro and let z be a point of Z. One has rk'°8(z) = ro + rk(z) where rk(2) is the codimension of the
strata containing z in Z for the Berkovich stratification of plurinodal schemes. Thus the strata are
the same for this stratification and the stratification of Berkovich. The strata of Z are normal.

We will often denote abusively in the same way a stratum and its generic point.

Recall that Z is said to be quasinormal if the closure of any stratum endowed with its reduced
scheme structure is normal.

LeMMA 2.3. Let f : Z — S = Speck be a log smooth morphism. Let Z be a geometric point.
Let f. : Spec My ; — Spec Mgs. Then ¢z 5 : Str¥*™(Z) — Spec My ; is injective and its image is
(M ). Moreover Z(Z) is quasinormal. In particular, every stratum of Z is normal.

Proof. Since the unique stratum of S is mapped to Mg by the map Str*"
has Im ¢z > C f*_l(Mgg).

The lemma can be proven étale locally: one can assume that S has a chart S — Spec k[P] where P
is sharp, and that Z = S Xgpeck[p) Spec k[Q] where ¢ : P — @ is injective and the torsion part of
Coker 1P are finite. Let q' € f; 1(M% ;) and let q be its image in Spec Q. The image of q in Spec P
is the image p of Mg . Let F'=Q\q and Fy = P\p. The morphism S — Spec k[P] factors through
Spec k[F§P]. Let ¢ : Z — Spec Q and let Zr be the closed subset ¥ "' ({q}) of Z (2 lies in ZF). Then
Z is the support of the closed subscheme Z Xgpec k(g SPec k[Q]/(q), which we also denote by Zp.

Then,

(S) — Spec Mg 5, one

Zp = Z Xspeck|Q)SPec k[F] = SXgpec k[pSPec k[F] = S Xspec kry)SPec k[F] = SXgpec pmsr)Spec k[FESP].

Let Tp be the saturation of F§P in F& and let T} be a subgroup of F&P such that F = T & T7.
The morphism S X Spoc k[FEP] Spec k[Tp] — S is étale, so up to replacing k by a finite extension, one
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can assume Fg* = Ty. Then Zp = S Xgpeck[ry) Spec k[FF§P] = Spec k[FF” NT1]. But FFE® NT
is a saturated monoid, hence Zp is normal. Thus Zp(Z) is irreducible. Moreover, if F' C F', then
Zpr C Zp: the generic point of Zr lies above q. One thus obtains that there is a unique stratum of
Z(Zz) lying above q. O]

LEMMA 2.4. Let Z be a Zariski log scheme, let Z — Speck be a log smooth morphism and let
Z" — Z be a két morphism, then Str,/(Z') — Str,(Z) is an isomorphism of posets.

Proof. There is a commutative diagram:

Str& ™ (Z') —— Stré™(Z)— Spec My :

| |

StrZ/(Z’) R StrZ(Z) [ Spec MZ,Z

Since St (Z) — Spec My , is injective, Str2**"(Z) — Str,(Z) must be bijective. The morphism
Str& " (Z") — Str°™(Z) is bijective thanks to lemma 2.3 because Spec Mz .» — Spec Mz, is
bljectlve since Mz, — Mz, is Kummer. Hence Str,/(Z") — Str.(Z) must also be bijective.

If 2} and 2} are elements of Str.(Z'), then Str.,(Z]) — Str.,(Z1) is also bijective, so that 25 €
Str.;(Z1) if and only if z9 € Str;, (Z1), i.e. 25 < 27 if and only if 2 < 1. O

In particular, one can apply lemma 2.4 if Z is strictly plurinodal.

2.3 Polysimplicial set of a két log scheme over a polystable log scheme

Let C — C be a morphism of polysimplicial sets. Let « : S — O(C) (resp. o/ : S" — O(C’)) be
a morphism of posets such that S¢, — O(C)<a(r) (resp. S, = O(C')<a/(a) for any x). Then o
defines a functor O(C)°P — Set by sending ¢ to a~!(c) and if ¢ < ¢, then the map a~!(c/) — a~1(c)
sends 2’ € a~!(c/) to the unique preimage of ¢ by the map S<ar — O(C)<e. One gets a functor F :
(A/C)°P — O(C)°P — Set (resp. F' : (A/C')°P — O(C')°P — Set), which defines a polysimplicial
set D = CxF (resp. D' = C' xF'):

D= CokerHHny :;Han

z—y F(z T F(x)

If we consider F' as a functor (A/C)°? — A° Set, then D is nothing else than COF (but this is
a very simple case of [J-product where all the fibers are discrete). To give a slightly more explicit
description of D, Dy = [[,cc. F(z) and if f : m — n is a morphism of A and 2z € F(z) with
z € Cp, f*(2) = F(f) € F(f*(z)) where f is the morphism f*(z) — z in A/C. Since F' maps
surjective morphisms to isomorphisms, a polysimplex z € F(z) of D is nondegenerate if and only if
x is nondegenerate. One gets that O(D) = S and that D is interiorly free if C is.

Then any morphism of posets f: S — S’ such that

S - 9
l !
oC) — 0O

is commutative induces a unique morphism of polysimplicial sets f : D — D’ over C — C’ such that

O(f) = f-

Let us consider now a strictly polystable log fibration X : X — X; 1 — .-+ — s where s is
an fs log point. If f : Z — X is két, the map of posets Str(f) : Str(Z) — Str(X) = O(C(X))
is such that Str(Z)<. ~ Str(X)¢y(.) for any z € Str(Z) according to lemma 2.4. Thus one gets a
functor Dz = (A/ C(X))°" — Set and a polysimplicial set Cx(Z) = C(X) O Dy (we will often write
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C(Z) instead of Cx(Z)). This polysimplicial set is still interiorly free and O(C(Z)) is functorially
isomorphic to Str(Z).

LEMMA 2.5. If X — X' is a két morphism of strictly polystable log fibrations, then there is a
canonical isomorphism Cy/(X;) ~ C(X) such that Str(X;) = O(Cx/(X;)) — Str(X;) = O(C(X)) is
the identity of Str(X;).

Proof. Assume we already construct the isomorphism Cyx: (Xj—1) >~ C(X;_;). Then, Cx/(X;) =
D;0C(X]_;) and C(X) = D,0C(X,_,) where if  is the generic point of a stratum of X |,
Di(z) = Cx; (Xiz) and Da(z) = C(Xy). By induction on [, the problem is thus reduced to the
case where [ = 1 and X — X' is a két morphism of strictly polystable objects over Spec k.

We have Cx/(X) = Dx x C(X') where Dx maps 2’ € Str(X’) to the set of strata of X above 2.
Then Cx/(X) is associated to the strictly polysimplicial set C' = Dx x C(X'). Then

Cl={(x,2',p),x € Str(X),2’ = f(x),p:n~Irr(X',2')} = {(z, ),z € Str(X), pp : n ~ Irr(X, x) }

n

because Irr(X,z) — Irr(X’, 2’) is an isomorphism. Thus C}, ~ C}, (and the bijection is compatible
with maps of A), which gives the wanted isomorphism. O

Let us consider a commutative diagram

zZ — 7
! i
X - X

where X — X' is a két morphism of strictly polystable log fibration. Then
C&(Z) = DZ/X X C(K) ~ DZ/X X CK/(X) = DZ/X X (DX/X’ X C(K/>) = DZ/X’ X C(X,) = CX/(Z)

where Dy x(z) = Str(Z — X) ! (z), Dx/x:(2') = Str(X — X')"}a') and Dy x/(a') = Str(Z —
X')7!(2'). There is a morphism of functors Dy, x: — Dy which induces a morphism of polysim-
plicial sets

CK(Z) = DZ/X’ X C(K’) — DZ//X/ X C(X/) = CK/(Z,>
This morphism is an isomorphism if and only if Str(Z) — Str(Z’) is bijective.

Let Z' — Z be a két covering, let Z” = Z' xz Z' and let x be a stratum of X, then Dy(x) =
Coker(Dyzn(z) = Dy (x)). We deduce from it that

C(Z") = Coker(C(Z') = C(2)).

One may also define Cx (Z) for X a general polystable fibration. Let X’ — X be an étale covering
where X' is strictly polystable, let X” = X' x x X’ and let Z’ and Z"” the pullbacks of Z to X’ and

X" then one defines Cx (Z) = Coker(Cxn(Z") = Cx/(Z")) (it does not depend of the choice of X').

If Z/ — Z is a surjective két morphism over X and Z" = Z' x5 Z', Str(Z) = Coker(Str(Z") =
Str(Z)).
One thus gets (két(X) denotes the category of két log schemes over X):

PROPOSITION 2.6. Let X be a polystable log fibration, one has a functor Cx : két(X) — (A)° Set
such that:

— if 7' — Z is a két covering of két(X),
C(Z) = Coker(C(Z' xz Z") = C(Z")).
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— O(C(Z2)) is functorially isomorphic to Str(Z).

Remark. If one has a két morphism ¥ — X of polystable fibrations of length [, the polysimplicial
complex C(Y]) we have just define by considering Y; as két over X is canonically isomorphic to the
polysimplicial complex of the polystable fibration C(Y) defined by Berkovich.

We say that a fs log scheme Z over a log point s is log geometrically irreducible if the underlying

scheme of Z X, s’ is irreducible for any morphism s’ — s of log points. If Z /§ is geometrically
irreducible and Z — s is saturated, then Z/s is log geometrically irreducible since the underlying
scheme of Z x4 s’ is Z x3 &.
If Z is quasicompact, then there is a connected két covering s’ — s such that all the strata of
Zg are geometrically irreducible and Zy — s’ is saturated. Then all the strata of Zy are log
geometrically irreducible. In particular, for any morphism of fs log points s” — ', C(Zg/) — C(Zy)
is an isomorphism. The polysimplicial complex C(Zy ) for such an s is denoted by Cgeom(Z/s).

Let z be a geometric point of Z. Let U be an étale neighborhood of z such that Str§*™(Z) —

Str(U) is an isomorphism. One defines C(Z)z := C(U) (it does not depend on the choice of U. If
Z — X is két, C(Z); — C(X)z is an isomorphism of polysimplicial sets.

LEMMA 2.7. The space | C(Z)z| is contractible.

Proof. Let @y, : |[n]| x [0,1] — |[n]| be defined by ®n((ui),t)q = (1 — t)uy + -=. This is a deforma-
tion retraction to a point. These deformation retractions are compatible with surjective maps m — n.

One can assume that X Y, X;_1 — -+ — sis a strictly polystable fibration of length [ and that
Z = X. Let 7’ be the image of  := z in X;_1. One can also assume that Str2*“"(X) — Str(X)
and Str&°™(X;_1) — Str(X;_1) are bijections. By induction on I, one can assume that | C(X;_1)] is
contractible.

If 4/ is a stratum of X;_;, X, has a biggest stratum y and C(X,/) ~ [n,]. Then

a,b
|C(X)| = Coker( [ Iyl x|yl = [T 1my]l x gD,
fy1—y2€ y' €A/ C
A/C(Xi-1)

where a maps |[n, ]| x [[ny][ to |[n,]| x [[ny]] by id x fo where fo is the cospecialization map
C(X,,) — C(Xy,) given by lenma 1.3 and b maps [y ] X [[ny]] to |[myy]l % [[ng,]] £ x i

One defines a deformation retraction ® of [ 1,/ p/ o(x, ) [yl %[ [0y]| by @(u,v,t) = (u, Pn, (v,1)).
MOI‘GOVGT, if (21722) S Hnyll]‘ X Hnyz]‘a

®(a(z1,22),1) = (21, (I)nyl (fo(z2),1)) = (1, fO((I)nyQ (22,1))) = a(z1, q)ny2 (22,1))

because the map n,, — n,, inducing fj is surjective, and

D(b(21, 22),t) = (f*21, Pn,, (22, 1)) = b(21, Pn,, (22,1)).

Thus ® induces a deformation retraction of C(X), also denoted by ® by abuse of notation. This
retraction is compatible with ¢ : | C(X)| — | C(X;—1)| in the sense that (®(z,t)) = ¥(z) for every
t € [0,1].Let S be the image of this retraction. Let u € | C(X;_1)| and let ¢’ be the stratum of X;_;
corresponding to the cell of | C(X;_1)| containing u. then 1~!(u) is canonically homeomorphic to
|[ny]] (cf. [3, cor. 6.6]), and the deformation retraction of ¥~!(u) induced by ® is just ®y,. Thus
S Nvp~1(u) is reduced to a point: the map S — | C(X;_1] is bijective. Since Str(X) is finite, | C(X)]
is compact and S is also compact since it is the image of |C(X)| by a continuous map. The map
S — C(X;_1) is thus an homeomorphism, and C(X;_;) is contractible by induction. Thus C(X) is
contractible. O

14



2.4 Tempered fundamental group of a polystable log fibration
Here we define the tempered fundamental group of a log fibration X over an fs log point. If T is a

két covering of X, the topological coverings of | C(T')| will play the role of the topological coverings
of T

Let us start by a categorical definition of tempered fundamental groups that we will use later in
our log geometric situation.
Consider a fibered category D — C such that:

— C is a Galois category,
— for every connected object U of C, Dy is a category equivalent to Iy -Set for some discrete
group 1y,
— if U and V are two objects of C, the functor Dy 11y — Dy X Dy is an equivalence,
— if f: U — V is a morphism in C, f* : Dy — Dy is exact.
Then, one can define a fibered category D’ — C such that the fiber in U is the category of descent
data of D — C with respect to the morphism U — e (where e is the final element of C).

Let U be a connected Galois object of C and let G be the Galois group of U/e. Then Dj; can be
described in the following way:

— its objects are couples (Sy, (¥g)gec), where Sy is an object of Dy and v, : Sy — ¢*Sy is an
isomorphism in Dy such that for any g,9" € G, (g"¢y) 0 by = 1y, (after identifying (¢'g)* and
g*g"" by the canonical isomorphism to lighten the notations).

— a morphism (S, (¢y)) — (Sy;, ) is a morphism ¢ : Sy — Sy, in Dy such that for any g € G,
Yy = (9" P)g.

There is a natural functor Fy : D}, — Dy, which maps (Su, (¥g)) to Sy. Let Fiy be a fundamental
functor Dy — Set, such that Aut Fyy = .
Let F = FyFp, and I}, = Aut F.

PROPOSITION 2.8. (i) The natural functor F : Dy, — IIj; -Set is an equivalence.

(ii) There is a natural exact sequence
1 -1y -1 -G — 1.

Proof. First notice that Dy, is a boolean topos and that F' is faithful and exact.

A pointed object of Dy, is by definition a pair (S5, s) with S an object of S, and s € F(S). Let us
show that, to prove (4), it is enough to show that there exists a pointed object (7°°°,t>) of Dy, such
that for every pointed object (S, s) of Dy, the map Hom(7>, S) — F(S) that maps f to F(f)(t>)
is bijective (i.e. T represents the functor F).

The group Aut(7T°) acts on Hom (7>, S) = F(S) by action on the left compatibly for every S: one
gets a morphism a : Aut(7°°) — Aut(F'), which is bijective by Yoneda’s lemma.

If Sy C F(S) is stable by Aut F, then the subobject Sy of S defined as the unions of the images of
morphisms ¢ : T — S such that F(¢)(t) € S, satisfies F(Sy) = Sy. Thus if S,S" are objects of
Dy,

Hom(S,S") = {Sy— S x S'|Syp = S}
= {S, C F(S) x F(S') stable by the action of Aut F|S, = F(S)}
— Homy, (F(S), F(5").
Thus F is fully faithful. Let S be a IIj-set. There exists an epimorphism S’ — S such that I},
acts freely on S’ and on S” := S’ xg S’ Thus there exists S” and S’ such that F(S’) = S’ and

15



F(8") = 8" (S and S” are direct sums of copies of T°). Let S = Coker(S” = S’), where the two
morphisms are defined thanks to the full faithfulness of F. Then F(S) = S. Thus F is an equivalence.

Let us construct T°°. If S is an object of Dy let S = 11 e g*sS, et
vn:S=][gs= ][] whs=[[rgs=n(]]gS) =hr"S
geG gheG geG geqG
This defines an object S of Dy;. Then, for any object S’ of Dy, there is a natural map
Homgpy (S,T) < Homp, (S, Fy(T))

that maps v to the restriction of Fy() to the subobject S of Fo(g’).
The restriction of Fy(1)) to g*S C Fy(S) is 1, g*a(v). Hence Fy(1p) only depends on a(y), which
shows the injectivity of a since F' is faithful. Conversely, if § € Homp,, (S, Fo(T')), one defines

. -1
Bo : Fo(S ) ]_[ g*S — Fy(T) by gluing the composite morphisms g*S 9y g Fo(T) wi Fo(T). The
following dlagram is commutative:

-1

Fo(S) = ¢S [1g* Fo(T) 22— Ry (1)

P, iwh
*w7
B Eo(3) = [[ 1 g"S — 11 h*g* Fo(P) 2 b Fy(1)

and thus 3y defines a morphism ) € Homp, (g, T) such that a(y)) = 8. Thus « is bijective.
If (5°°,s*) is a universal pointed object of Dy, then, for every T,

Hom(S5>°, T) = Hom(S®, Fy(T)) = F(T).

Thus (S°°, s°°) is a universal pointed object of Dy;.

The functor Fy induces a morphism II; — H’U. There is also a natural exact functor Fj :
H -Set — Dy; which maps a H-set Y to (Y = [[,cy{y}, (¢n)) where Y is a constant object of Dy
and vy, maps y to h-y. F'Fy is canonically isomorphic to the forgetful functor H -Set — Set, the
functor Fy thus induces a morphism II;; — H. Since Iy = Fy7(S*°) and II}; = F(S*°), one only has
to see that the following exact sequence of pointed sets is exact:

1— Fy(8%) — F(S®) = [[Fu(g"5™) — G —1
g
where the map [[, Fiy(9*S>) — G maps Fy(g*5>) to g. O

If (Uj, u;)ieg is a cofinal projective system of pointed Galois objects (and let P be the correspond-

ing object of pro-C), one may define B*™P(D/C, P) to be the category Lim Dj; . An isomorphism of
— 4 ?

pro-objects P — P’ induces an equivalence B*™P(D/C, P') — B*™P(D/C, P), so that B*™P(D/C, P)
does not depend up to equivalence on the choice of (U;);. Moreover, if h € G; = Gal(U;/e) the end-
ofunctor h* : Df]i — Dbi maps S = (Sy,, ) to h*S = (h*SUi,"l/Jhg”l/}}:l). Then vy, : Sy, — h*Sy,
defines an isomorphism S — h*S functorially in S. Thus h* : Dy, — Dy, is canonically isomorphic
to the identity of DU Thus every automorphism of the pro-object P induces an endofunctor of
BtmP(D/C, P) which is canonically isomorphic to the identity (functorially on Aut P).

Let (Fj)ier be a family of fundamental functors F; : Dy, — Set and assume one has a family
(af) ., —v;, indexed on the set of morphisms in I, of isomorphisms of functors F; f* — Fj such that
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for any U; EN U; 2 U, ag(af-g*) = agy (after identifying (¢ f)* and f*g* to lighten the notations).
Such a family exists if I is just N. Then, this induces a projective system (H’Ui)ie 7 (unique up to
isomorphism independantly of (o) if /=N and the functors Dy, — ngj are fully faithful), so that
one can define

m P (D/C, (Fy)) = lim Iy,

Assume one has a 2-commutative diagram with fibered vertical arrows:

Dl — DQ
! l
a L oe

such that f : C; — Cq is exact, and D1,y — Do p(py is exact for every object U of Cy.
One then gets a functor B*™P(D; /Cy) — B*™P(Dy/Cs).

For example, let X be a K-manifold, C be the category of finite étale covering of X and D — C
be the fibered category such that Dy is the category of topological coverings of U. Then, since
finite étale coverings are morphisms of effective descent for tempered coverings, Dy, can be identi-
fied functorially with the full subcategory of Cov'®™P(X) of tempered coverings S such that Sy is
a topological covering of U. If (U;,u;) is a cofinal system of pointed Galois cover of (X, x), then
Bt*mP(C /D) becomes canonically equivalent with Cov®™™P(X).

Let us apply our categorical definition of tempered fundamental groups to our log geometrical
case.
Let X : X — X;_1 — --- — Spec(k) be a polystable log fibration, and assume that X is connected.
Then one has a functor Cyop : KCov(X) — Ke obtained by composing the functor C of proposi-
tion 2.6 with the geometric realization functor.
One can thus define a fibered category Dyop, — KCov(X) such that the fiber of a két covering of YV’
of X is the category of topological coverings of Ciop(Y) (which is equivalent to 7} (Ciop(Y))-Set).
One defines a fibered category DDyemp — KCov(X) such that the fiber of a két covering f: Y — X
is the category of descent data of Dy, — KCov(X) with respect to Y — X (this corresponds
heuristically to the “tempered” coverings of X that become topological after pullback by Y — X).
Let = be a log geometric point of X and let (Y,y) be a log geometrically pointed connected Galois
két covering of (X, z). Let g := |C(Y)y| — | C(Y)|. The space § is contractible according to lemma
2.7. Then one has a fundamental functor F), : Dyopy — Cov'®P(f) = Set that corresponds to the
base point ¢ (F}(S) is the set of connected components of S x| ¢(y) 7). Moreover, for any morphism
f:(Y'y) — (Y,y), the two functors F,, f* and F, are canonically isomorphic.
Then one can consider the functor Fiy,y) : DDtempy — Set which associates to a descent datum T
the set Fy(Ty). The induced functor DDsempy — Aut(F(y,,))-Set is an equivalence of categories.
One has an exact sequence:

1 — mP(|C(Y)],§) — Aut(Flyy)) — Gal(Y/X) — 1.
Then one defines
Triemp(X7$)L = lﬂl Aut(F(y’y)),
(Yiy)

where the projective limit is taken over the directed category L- GalKCov (X, x) of pointed connected
Galois L-finite két coverings of (X, z).

If o — x1 is a specialization of log geometric points of X, it induces a natural equivalence
between the category of pointed coverings of (X, x2) and the category of pointed coverings of (X, z1)
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(we thus identify the two categories). If Y is a pointed covering (Y, y1) of (X, x1), the corresponding
pointed covering of (X, x2) is (Y, y2) where ys is the unique log geometric point above xo such that
there is a specialization y2 — 1 (and this specialization is unique). There is a commutative diagram

Y1 ——= Y2

N

| C(Y)]

This induces a canonical isomorphism Fy, ~ F,,, functorial in Y, so that one gets a canonical
. . t t . .

isomorphism 7" (X, z1)% — 7" (X, z2)". If X is connected and z1,z2 are two log geometric
points of X, there exists a sequence of specializations and cospecializations joining x1 to xo, so that

t t : .
(X, 2p)Y and 7" (X, 22)Y are isomorphic.

One has an equivalence of categories between

BtempL(X’x) = Lim DDyempy /- GalKCov (X, z)

and the category 7" (X, x)F-Set of sets with an action of 7°™P(X, z)" that goes through a dis-
crete quotient of i P (X, z)k.

Assume now that X is log geometrically connected, i.e. that Xy is connected for any két exten-
sion k’ of k. Let k be a log geometric point on k, let Z = (Z}/) be a compatible system of log geometric
points of X3 where &’ runs through két extensions of (k, k) (for every k/, the set of geometric points
above Ty is a non empty finite set and thus the set of compatible systems of log geometric points is
a non empty profinite set).

Then, one defines 7}*™P8°™ (X, z)k = lim , TP (X, Ty )Y, where k' runs through két extensions
of k in a log geometric point k. Let KCovgeom(X) = IﬂnKCOV(Xk/) where k' runs through két

extensions of k in k. It is the category of log geometric coverings of X.

If Y — X is a log geometric covering, defined over &/, Cgeom(Yss) does not depend of &', so that
one gets a functor KCovgeom (X) — Ke which maps Y to | Cgeom(Y)|. If Z is a compatible system of
points, for any pointed log geometric covering (Y, ) of (X, Z), y defines a fundamental functor Fj
of Diop-geomy Which are canonically isomorphic for any morphism (Y”, ") — (Y, 7). One thus get a
fibered category Diop-geom — KCoVgeom (X ), whose fiber in Y is the category of topological coverings
of | Cgeom (Y')|. Then

PO (X )L = 1P (Dyopgeom / KCOVgeom (X)), (Fy))E.

3. Comparison result for the pro-(p’) tempered fundamental group

If X:X — -+ — Spec(Og) is a proper polystable log fibration, we want to compare the tempered
fundamental group of the generic fiber X, with the tempered fundamental group of the special
fiber endowed with its natural log structure. The specialization theory of the log fundamental group
already gives us a functor from két coverings of the special fiber and algebraic coverings of the generic
fiber. To extend this to tempered fundamental groups, one has to compare, for any két covering 7 of
the special fiber, the topological space C(Ts) with the Berkovich space of the corresponding covering
T, of the generic fiber. Thus we will define, as in [3], a strong deformation retraction of 7" to a
subset canonically homeomorphic to | C(7Ts)|. We will construct this retraction étale locally, where
T has a Galois covering V'’ by some polystable log fibration over a finite tamely ramified extension
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of Ok. Then the retraction of the tube of Ty is obtained by descending the retraction of the tube
of V/, defined in [3]. We will then verify that the retraction does not depend on the choice of V' so
that we can descend the retraction we defined étale locally.

3.1 Skeleton of a két log scheme over a pluristable log scheme

If X — Spec Ok is a morphism of finite type, we denote by X the completion of X along the closed
fiber X,. The generic fiber, in the sense of Berkovich, of a locally topologically finitely generated
formal scheme X over Spf O will be denoted by X,,.

Let X : X — --- — Spec(Og) be a polystable log fibration over Spec(Ok).

PRroOPOSITION 3.1. For every két morphism T — X, let %, be the generic fiber, in the sense of
Berkovich, of the formal completion of T along its special fiber. Then, there is a functorial map
| C(T)s)| — %), which identifies, | C(Ts)| with a subset S(T') of €, on which %, retracts by strong
deformation.

Remark. %, is naturally an analytic subdomain of T". Moreover if T is proper over Ok (for example
if X is proper, and T is a finite két covering), then ¥, — T7" is an isomorphism.

Proof. Let f : T — X be a két morphism. Let x € Ts. Let U : Uy — --- — Uy be a polystable
fibration étale over X such that (U, z;) is an étale neighborhood of f(x), such that, for every i,
U, has an exact chart P; — A; and compatible morphisms P; — P;y1 such that the induced mor-
phism U1 — Ui Xgpecz(p,) SPec Z[Piy1] is étale. One has an étale neighborhood i : (V,2') — (T, x)
of z, a (p/)-Kummer morphism P, — @ such that V' — X factors through an étale morphism
V' — Ul Xgpecz(p) SPec Z[Q]. By definition of a (p')-Kummer morphism, there exists n prime to p
such that P, — %PZ factors through P, — @. Thus V has a két Galois covering that comes from a
polystable fibration U' = V' — Uj_; — --- — Spec O, where Uj = U; Xgpec 7P, SPEC Z[LP)] for
i <land V' =V xz0 Z[LP] (so that there is a strict ¢tale morphism V' — U/) over Ok for some
finite tamely ramified extension K’ = K[r'/"] of K . Let us call G = (LPep/QEP)V the Galois group
of this két covering.

The deformation retraction of ’ZT% defined in theorem 1.5 is G-equivariant, so that it defines a de-
formation retraction of U,. Let S( ) denote the image of the retraction of ( ),. Then S(U,) =
G\S(T;) = G\| C(V])| = [G\ C(V{)| = | C(V5)] (corollary 1.6).

Let us show that the previously defined retraction of 4, does not depend on n. Let us start by
the case of a polystable morphism.
Let

W Zy = Spec A[P]/(pi — \i) — Za = Spec A[P]/(pi — AS)

where P = NI*l = @i, jerNejj and p; = Zj e;; induced by the multiplication by s on P, where s is
an integer prime to p and where A € A.

Let G be the generic fiber of the formal completion of G,(f;) at the identity; it acts on Z; and Zs.

One has (g - ) = ¢° - ¢¥(x).
Let T;; be the coordinates of G. Then |T7% —1| = |T;; — 1] if [T;; —1] < 1. Thus, fort <1, ()*: G — G
induces an isomorphism ( )*: Gy — Gy, and g§ = g;.
Thus, if ¢ < 1 (and also for ¢ = 1 by continuity),
() = P(ge* ) = g * (@) = g * (@) = P ().
For a standard polystable fibration, the same result will easily follow by induction using that

Y (ri t)/5 = wn(ril/s, t1/%) (we kept the notations from the sketch of the proof of theorem 1.5).
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More precisely, suppose we have the diagram:

B = B'[Y;j]/(Yio -+ Yin, = bi) <—— B’

¢T ¢’

A= AXy5]/(Xio - Xin;, — ai) =—— A/

where ¢(X;;) = Y} and thus ¢'(a;) = b7, and ¢ := Spf ¢’ : Spf B’ — Spf A’ is a két morphism of
polystable log ﬁbratlons and assume by 1nduct10n that we already know that ¢(z¢) = é(z);.

Let X (resp. X', 9), ') denote Spf A (resp. Spf A’, Spf B, Spf B’).

The first part of the retraction of X3" and 93" (consisting of the retraction fiber by fiber) commutes
with gz~5 := Spf ¢ according to the previous case. We thus just have to study the second part of the
retraction.

gg induces a map:

Sa = {(z,rij) € (X2 x [0,1]P|rig - - 1o, = |as(2)[} € X2
!
Sp = {(y,riy) € (@) < [0, ]rig -+ rin, = |bi(y)|} € Y

which maps (z,7;) to (¢/'(z), T}j/S) (remark that |a;(z)| = |bi(¢/(2))]%).
Then, if (x,7;;) € Sa (we will write y := ¢/(z); by induction assumption, ¢'(z;) = yt)
O((w,rij)) = é((wtawm(rija‘ai(xtz‘)k))
= (Y U, (13, i (20) )})
= (g0, u r J Nai(@)[Y*)e)

( tﬂ/}m( z] 7’b (yt)‘) )
(.

)
o(x, r”)

Thus we get that the retraction of {;, does not depend on n.

Let W — T be another neighborhood of x satisfying the same properties as V', and W’ defined in
the same way. One may assume by the previous remark that we chose the same n. Let W” = V/xpW'.
We have a commutative diagram

W// p/ > W/
Pl
V/ %. T
where W = V' xp W'. . Let us show that p : W” — V' is étale (symmetrically, p’ is étale too).
Since p is két, it is enough to prove that p is strict, 7.e. that for any geometric point z € W”,
My 2y — Myyn . is an isomorphism. Let v = p(2), w = p/(2), 7 = i(v) = i'(w) and § = f(1) € X
Then Mx¢ = P,/F where F is a face of P,. Thenﬁﬁvw = iPl/F = %MX@ where F), is the
saturation of F' in %P. Symmetrically, one also has My ,, = %MX@. Thus,

MW”,Z = MV’,U @MT’T MW’,w
= MV’,U @MT,T MW’,w

177 177
= aMxe O, aMxye
= *MX/s@ W MX)e/ My
= 7MX/§7
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where the sums are sums in the category of fs monoids. Thus p is strict, and therefore étale.

Let thus v € U} and w € 2, with same image 7 in T,,. Let z € 20; be above v and w. Then, for every
t €10,1], vy = p(z) and wy = p'(z;) according to theorem 1.5.(ii). Thus i(vy) = ip(z) = i'p'(z) =
i'(y;). Thus, the retractions of the different %,, are compatible and define a map ¥, x [0,1] — T,,.
This map is continuous since, [[U; is a covering of T, [[;, — T, is quasi-étale and surjective
and thus a topological factor map (as in the proof of theorem 1.5 of Berkovich; cf. [3, lem. 5.11]).
Moreover, if ¢ : Ty — T is a két morphism of két log schemes over X, ¢(z;) = ¢(x)¢. As in theo-
rem 1.5.(vi), it is also compatible with isometric extensions of K.

Let V = U; Vi be a covering of T such that every V; satisfies the same property as V. Since
f: QT — T is a topological factor map, S(’B )= YS(T})) — S(T, n) is also a topological factor
map. Thus one gets an isomorphism, functorial in T,

S(%,) = Coker(S(By) x 5¢3,)S(Tyy) = S(Byy))) = Coker(| C(Va)|x| ¢z | C(Va)| = | C(VL)]) = | C(Ty)].-
O

3.2 Comparison theorem

Let K be a complete discrete valuation field. Let p be the residual characteristic (which can be 0).
Let X : X — -+ — Spec Ok be a proper polystable log fibration.

Let us now compare the tempered fundamental group of the generic fiber, as a K-manifold, and the
tempered fundamental group of its special fiber as defined in §2.4.

A geometric point T of X7" is given by a algebraically closed complete nonarchimedean extension
Q) of K and a K-morphism Z : Spec{) — X. Since X — Spec O is proper, T extends uniquely
to a morphism Spec Oq — X. If one endows Spec Oq of the log structure induced by Oq\{0}, one
can extend Spec Oqg — X in a morphism of log schemes. By looking at the closed fiber, one gets a
morphism of log schemes Z : Spec kg — X, where Spec kg has the log structure induced by Oq\{0}
(it is a log geometric point). The log geometric point  is called the log reduction of z.

THEOREM 3.2. Let T be a geometric point of X", and let T be its log reduction. One has a morphism
ﬂemp(Xf;m, ) — 7P (X, &)Y which is an isomorphism if p ¢ L.

These morphisms are compatible with finite extensions of K.

Proof. One has two functors L- KCov(X) — L- Cov®8(X,), which is an equivalence of categories
if p ¢ L, and L- KCov(X) — L-KCov(Xs) which is an equivalence of categories (theorem [9, th.
2.4]). One has a fibered category Diy,(X;) over L- KCov(X;) whose fiber at a L-finite két cover-
ing T of X, is the category of topological coverings of 7. Let us call Df},(X) the pullback of
Dio,(Xy)/L- KCov(X;) to L- KCov(X): the fiber at a L-finite két covering T of X is the category
of topological coverings of 7;". One has also another fibered category Dy (X) over L- KCov(X)
obtained by pulling back the fibered category Diop(Xs) — L- KCov(X;) defined in part 2.4 along
L-KCov(X) — L-KCov(Xj): the fiber at a L-finite két covering T' of X is the category of topo-
logical coverings of | C(75)|. Proposition 3.1 induces an equivalence of fibered categories Di;, (X ) —

Dip,(X), and thus an isomorphism TP (DR (X)) /L- KCov(X)) =~ W}emp(Digp X)/L-KCov(X)).
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The 2-commutative diagram

Diep(X) Diop(Xn)

| |

L-KCov(X) — LL- Cov®¥8(X,)

induces a morphism

TP (XA = wE (DR (X)L Cov8(X,) — i (D, (X)L KCov(X))

which is an isomorphism if p ¢ L. Similarly,

DS(I))p (X) Digp(XS)

| |

L- KCov(X) — LL- Cov?2(X,)

induces an isomorphism

T L) — (D,

(X)/L-KCov(X))
since L- KCov(X) — L- KCov(Xj;) is an equivalence of categories. O

3.3 Geometric comparison theorem
We will assume in this section that p ¢ L.

THEOREM 3.3. There is a natural isomorphism

L) 206
Proof. One knows, according to [1, prop 5.1.1], that

ﬂ-iemp(Xﬁ) = @ﬂ-iemp(XKi)?

K;

where K; runs through the finite extensions of K in K.
This induces an analog result for the LL-version.
However, we would like to know, in the case where p ¢ L, if one can only take the projective limit
over tamely ramified extensions of K (i.e. to két extensions of Og). Then the isomorphism we want
would simply be obtained from theorem 3.2 by taking the projective limit over két extensions of Oy.

We have to show that if 7" is a L-finite két geometric covering of X (which is defined over a finite
tamely ramified extension of K according to |8, prop. 1.15]: one can thus assume that 7" is defined
over K), the universal topological covering TVT’] of TT’] is defined over some tamely ramified extension
of K.

By changing Spec Ok by some két covering (which amounts to changing K by some tamely ramified
extension) one may assume that 7" — Spec O is saturated.

One already knows that ﬁ; is defined over some finite extension K» of K (|1, lem 5.1.3]). Let K be
the maximal unramified extension of K in K. As T' — Op is saturated, the underlying scheme of
T ’OK2 is obtained by the base change of schemes Spec Ok, — Spec O, of the underlying scheme of
TIOKl' By looking at the special fiber, as K1 = K3 (as schemes), the morphism T, — Ty induces
an isomorphism between the underlying schemes, thus a bijection between their strata, and thus an
isomorphism |C(T}, )| — [C(Tg, )| and S(Ty,) — S(T}, ).
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Thus i; is defined over Kj.
]

This isomorphism is Gal(K, K)-equivariant (since the isomorphism for each Galois extension K
of K is Gal(K;/K)-equivariant).

4. Cospecialization of pro-(p’) tempered fundamental group

Let X — Y be a proper polystable log fibration, such that Y is log smooth and proper over O
(the properness of Y — Of is only assumed so that every point of Y, has a reduction in Yj, but
the cospecialization morphisms we will construct only depend of Y locally). In this section we will
construct the cospecialization morphisms for the (p’)-tempered fundamental group of the geometric
fibers of X, — Y. Thanks to theorem 3.3 we will be reduced to construct cospecialization mor-
phisms for the (p’)-tempered fundamental group of the log geometric fibers of X, — Y. Let thus
So — §1 be a specialization of log geometric points of Y, where §; and §o are the reductions of
geometric points 71, 72 of Y},

We constructed in [9, th. 0.2] an equivalence of geometric (p')-két coverings of X, and X,,.
Now we must compare, for any such két covering Z,, corresponding to Z,, (which extends over
the preimage Xy of some két neighborhood U of s; in Y'), their polysimplicial sets as defined in
proposition 2.6. First assume that ss is the generic point of its stratum. We will construct the
cospecialization morphism of polysimplicial set étale locally, so that we can assume X to be strictly
polystable (the properness will not be used for this). This cospecialization morphism of polysimplicial
set will be constructed in the following way. Let z be a geometric stratum of Zg,. After some két
localization of the base so that Zy becomes saturated. Then the set of strata z; of Z,, such that z is
in the closure of z3 has a unique minimal element (as in lemma 1.3), which we call z’. Then, thanks
to the fact that Zy — U is saturated, the closure of 2’ in the strict localization of the generic point
of z is separable onto its image. According to [6, cor. 18.9.8], 2’ is geometrically connected, thus
defining a geometric stratum of Z,,. One thus obtains a map from the set of geometric strata of Zs,
to the set of geometric strata of Zs,; this map induces a morphism of polysimplicial sets. In the case
where polysimplicial sets of the geometric fibers of Y — X are interiorly free, the cospecialisation
morphism of polysimplicial sets is an isomorphism if s; and s are in the same stratum. We will end
this article by glueing our specialization isomorphism of (p’)-log tempered fundamental group with
our cospecialization morphisms of polysimplicial sets in a cospecialization morphism of tempered
fundamental groups.

4.1 Cospecialization of polysimplicial sets

In this section, we construct a cospecialization map of polysimplicial set for a composition of a két
morphism and of a log polystable fibration.

LEMMA 4.1. If ¢ : P — @ is an integral (resp. saturated) morphism of fs monoids and F' is a face
of Q, let F = ¢ ' (F'). Then F — F' is also integral (resp. saturated).

Proof. To prove that F — F’ is integral, thanks to [12, prop. 1.4.3.11], one only has to prove that
if fi, f5 € F' and f1, fo € F are such that f{é(f1) = fo¢(f2), there are ¢’ € F' and g1, g2 € F such
that f] = ¢'¢(g1) and f; = g'¢(g2).

But there exists ¢’ € Q and g1, g2 € P that satisfies those properties since P — @ is integral. But,
since F' is a face of Q, ¢, ¢(g1), #(g2) must be in F’, and thus g; and g are in F.
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Thanks to a criterion of T. Tsuji ([13, prop. 4.1]), an integral morphism of fs monoids f : Py — Qo
is saturated if and only if for any a € Py, b € QQp and any prime number p such that f(a)|bP, there
exists ¢ € Py such that a|c? and f(c)|b. Let a € F,b € F'" and p be a prime such that ¢(a)|0P. Then
since ¢ : P — (@ is saturated, there exists ¢ € P such that a|c? and f(c)|b. But f(c)|b implies that
f(c) € F', whence c € F. O

PROPOSITION 4.2. Let f : X — Y be a saturated log smooth morphism of fs log schemes. Assume Y
is strictly henselian of special point §1 and let y2 € Y. Let v € Xy,. The set A :={Z € Str(Xy,)|r €
Z} has a biggest element Zy. Moreover, Z is geometrically connected.

Proof. Up to replacing Y by a closed subscheme, one can assume that Y is integral and y9 is the
generic point of Y. One can assume that f has a chart:

X' — Spec Z[Q]

..

Y — Spec Z[P]

where P is sharp, ¢ : P — (@ is an injective saturated morphism of fs monoids, X’ — Yy =
Y Xgpecz(p] SPec Z[Q)] is étale, X' — Y factorizes through f and g : X’ — X is étale. One also
assumes that X' has a unique point 2’ above z. If A" := {Z' € Str(X,,)|2’ € Z'} has a biggest
element Z|, g(Zo) is a biggest element of A. Moreover, if Z is geometrically connected, g(Z;)) is also
geometrically connected. One can thus assume X' = X.

Let F; = P\py be the kernel of P — My,,; since yo is a generic point of YV, Y — Spec Z[P]
factorizes through Y — SpecZ[P]/(p2) ~ Z[F3]. Let F1 = Q\q:1 be the kernel of Q — Mx ;. Let
F =< Fi,¢(F}) > be the face of @ generated by Fy and ¢(F), and let g2 = Q\F. Then g2 is the
biggest element of Spec @ above qi contained in pa. Let Xo := X Xgpeczjg) SPec Z[Q]/(g2): it is a
closed subscheme of X. Set-theoretically it is the union of the strata of X whose image in @) contains
g2 (it contains x since g2 C q1).

Let us show that Xo — Y is separable (i.e. flat with geometrically reduced fibers). Since
Xo = Yp =Y Xgpecz(p) SPec Z[Q]/(a2) = Y Xgpecz(ry) Spec Z[F] is étale, it is enough to show
that Spec Z[F}] — Spec Z|F] is separable. But F' — F} is saturated thanks to lemma 4.1; this im-
plies that Spec Z[Fj] — Spec Z[F] is separable. According to [6, cor. 18.9.8], for everx y € Y, Xo(x),
is geometrically connected (where Xo(x) denotes the localization of Xy at x). Set-theoretically
Xo(x)y, is the subset of X, consisting of points z which specialize to = and such that the kernel
F, of Mx,. — Spec(Q is contained in F. For every point of z = Xq(z)y,, F. is contained in F,
contains F} because x is a specialization of z and contains ¢~!(F,) = Fj because the face corre-
sponding to yo is Fy: thus F, = F. Thus X(x)y, is contained in a single stratum Zy of X, (Zp is an
element of A). Since the generic point zy of Z is in Xo(x),,, Zo must also be geometrically connected.

Let Z # Zy be in A a maximal element and let z be its generic point. Let qz be the corresponding
face of @ then qz C q1 and ¢*(qz) = p2. Thus qz C qa. Let Xy, = X Xgpec 7)) SPec Z[Q]/(qz) (this
is union of the strata of X’ yhose image in () contains qz). As previously, Xgq, (), is geometrically
connected and contains z as a generic point. It also contains 2. Since Z is open in (Xg,)y,, and
Z N Xqy(2)yy G Xqz(w)y,, » must specialize in Xy (2')y, to an element 2’ that is not in Z. The
stratum containing 2’ is in A and is bigger than Z. Thus A has no maximal element other than Z;.
Since A is locally finite, Zy must be the biggest element of A.

O

If f: X — Y is asaturated log smooth morphism of fs log schemes and 42 — ¥ is a specialization
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of geometric points, one can apply proposition 4.2 to the pullback of f to the strict henselization of
y1: one gets a nondecreasing map Str(Xy, ) — Str(Xy,).

If Z —- X is két and X — Y is asaturated log smooth morphism of fs log schemes and g2 — 1
is a két specialization of log geometric points, there exists a két neighborhood U of g; such that
Xy =X xy U — U is saturated. One thus gets a cospecialization map

Str(Zy,) — Str(Zg,).

ProrosiTION 4.3. If X — Y is proper and My@ — My@ is an isomorphism, then the cospecial-
ization map Str(Xy, ) — Str(Xy,) is bijective.

Proof. Assume Y = Spec A is strictly local with special point %1, integral with generic point 75 and
X — Y is saturated. By pulling back along the normalization of 10/, one can also agssume that A is
normal.

Let Z be a stratum of )E'yz and let z be its generic point. Let Z be the normalization of the closure
Z of Z (endowed with the pullback log structure). Let v : V — X be an étale morphism such that
V — Y has a global chart:

V — Spec Z[Q)]

|

Y — Spec Z[P]

such that V' — Y = Spec Z[Q)] Xgpeczp) ¥ is étale and P — @ is injective and saturated.

Let p € Spec P be the image of y; by the map Y — Spec P and let F = P\p. The morphism
Y — Spec Z[P] factorizes through Y — Spec Z[F'], where Spec Z[F] is the closure of the stratum of
Spec Z[P] corresponding to p. Since My, — My g, is in an isomorphism, it even factorizes through
Y — SpecZ[F*®P], where Spec Z[F®P] is the stratum of SpecZ[P] corresponding to p. If Z; is a
stratum of Vj, above a face Fy of @, the corresponding stratum Zs of Vj, by the cospecialization
map is also above Fy: the map My ;, — My s, is an isomorphism.

Let (2;)icr be the family of preimages of z in V. Let q; € Spec@ be the image of z; by the map
V — Spec@Q. Let F; = Spec@Q\q;. According to lemma 4.1, F' — F; is a saturated morphism of
fs monoids. Then {z;} is an irreducible component of Vi, = V Xgpecz(q) Spec Z[Fj], which is étale
above Y Xgpeczjq] SPec Z[Fj] = Spec A @z per) Z[F 1 Fj] = Spec A[F~1F; N T, where T is a direct
summand of P in Q8P. F~1F;NT is saturated: according to [12, prop.1.3.3.1], Spec A[F71F;NT)is
normal. Hence {z;} is a connected component of Vi and is normal. Thus Z xx V =[] {2:}. Since,
the geometric fibers of Spec A[F~!F; N T| — Spec A are normal for any choice of V, the geometric
fibers of Z — Y are also normal.

The morphism 7 — Y is proper. Let Z — W — Y be its Stein factorization. Since Z — Y is
separable, according to [5, prop X.1.2] , W — Y is an étale covering. Since Y is strictly henselian W
is a direct sum of copies of Y. Since Z,, is connected, W = Y. Thus all the fibers of Z — Y are

geometrically connected. Since they are normal, they are also geometrically irreducible. Since Z—-7Z
is surjective, Zgl is also irreducible. Let z; be the generic point of 7371. Then for any specialization
of geometric points z — Zz1, MX@ — Mx 7 is an isomorphism (this can be checked on 7 x x Vif
V is a neighborhood of z1). The strata Z; of Xy, containing z1 should cospecialize to a stratum A
bigger than Z, but thenMX’g/ — M > should also be an isomorphism and thus Z' = Z. This shows
the surjectivity of Str(X,,) — Str(Xy,).

If Z € Str(X,,) cospecializes to Z, then Z] C Zy, and thus Z is bigger than Z; but then the
morphism MX% — Mx 3, is also an isomorphism, and thus Z; = Z;, which shows the injectivity
of the cospecialization map. O

We now want to define cospecialization maps of polysimplicial complexes. Let us begin with an
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analog of 3, lem. 6.1].

LEMMA 4.4. Let X — Y be a strictly polystable morphism of log schemes and let §o — 1 be
a specialization of geometric points of Y. Let x1 be a stratum of Xy, and let xo be its image in
Str(Xy,) by the cospecialization map. Then, given an isometric bijection p : [n] — Irr(Xy,, x1),
there exists a unique couple (I, ') consisting of a subset I C [w(n)] and of an isometric bijection
@ [ng] — Irr(Xy,, x2) such that

] — Irr(Xy,, z1)
! !

] — TIrr(Xg,, 2)

If moreover My g, — My g, is an isomorphism, then I = [w(n)].

Proof. The uniqueness is obvious since there is no isometric bijection [n;] — [ny] for I # J and
[n] — [n;] is surjective. One can replace Y by its strict henselization at §; and assume Y = Spf A.
Let m : My — A. Thanks to [3, lem. 2.10|, the proposition is local on the étale topology of X so
that one can assume X = Spec B where B = By ®4 --- ®4 B, ®4 C and

with m(m;)(g1) = 0 and C smooth over A. Let I = {i € [p]|m(m;)(g2)} = 0. Then one gets an
isometric bijection Irr(Xy,, z2) =~ [ng]. O

Thus, if X — Y is strictly polystable, Str(Xy ) — Str(Xy,) induces a natural cospecializa-
tion morphism of polysimplicial sets C(Xy,) — C(Xy,). If Myy — Myy, is an isomorphism,
C(Xy,) — C(Xy,) maps nondegenerate polysimplices to nondegenerate polysimplices.

Let X : X = X; — --- — Y be a strictly polystable fibration. Assume we constructed a
cospecialization morphism of polysimplicial sets ;1 : C(Xj_145,) — C(Xj—14 ) such that the
induced map Str(X;_1 5,) — Str(X;_14,) obtained by applying O is the cospecialization map already
defined.One has C(Xy,) = C(X;_1,5,) OD; and C(Xy,) = C(X;—-15,) O D2. Assume Y to be strictly
local. Let yo be the point of Y where %5 lies. Let 21 € Str(X;_1,5,). Let 22 be the image of z; by
the cospecialization map Str(X;_1 5, ) — Str(X;_14,). Let Z2 be the image of x5 in Str(X;_;,,).
If 21 € Str(X,,), then the set {Z € Str(Xy,)|z1 C Z} has a biggest element Zp according to
proposition 4.2 and is geometrically irreducible. Since {Z € Str(Xz,)|21 C Z} is nonempty, one has
Zy € Str(Xz,) C Str(X,,). Since 2, is geometrically irreducible, it defines a stratum zs of Str(X5,).
Thus one gets a map Str(X,,) — Str(X,,). Moreover, if z} < z1 € Str(X;_1 5,) and 2% is the image
of | by the cospecialization map Str(X;_q 5 ) — Str(X;_14,) (thus 25 < 2), then the following
diagram is commutative:

Str(Xz, ) — Str(X,r)
StI‘(XM) —_— Str(XzQ

where the horizontal arrows are given by lemma 1.3. Let us choose geometric points Z; and Zy of
X;_1 above z1 and x2. Let us choose a specialization 3 — Z1. The following diagram commutes:

Str(Xz,) — Str(Xz,)
Str(Xa, ) — Str(Xy,)
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Let Z; be a preimage of z; in Str(Xz, ) and let Z» be the image of z; in Str(Xz,). Then Irr(Xz, ) —
Irr(X,,) and Irr(Xz,) — Irr(X,,) are isomorphisms. One thus gets a statement similar to lemma
4.4 for z; and z2: one gets a morphism C(X,,) — C(X,,), compatible with morphisms of lemma
1.3. One thus gets a morphism of functors D1 — Dat);_1 4.

This induces a morphism C(Xjy,) — C(Xg,). If My,z — My, is an isomorphism and =z is the
image of x1 by the cospecialization map, MXz_l,ah — MXZ_I@ is also an isomorphism. By induction
on [, one gets that C(Xy, ) — C(Xy,) maps nondegenerate polysimplices to nondegenerate polysim-
plices.

If Z — X is a két morphism, the morphism Str(Zy,) — Str(Zy,) above Str(Xy,) — Str(Xy,)
induces a morphism C(Zy,) — C(Zy,).

Assume now X is a polystable fibration over Y and Z — X is két. Let X’ — X be étale and
surjective such that X isa strictly polystable fibration over Y Let X" = X' xx X', 7/ = Z xx X/,
7" = 7 xx X". Then the commutative diagram

CXy,) = C(Xy)
l l
C(Xy,) = C(Xp,)

induces a cospecialization morphism of polysimplicial sets C(Xy, ) — C(Xg,). One gets the following
result:

PRrOPOSITION 4.5. Let X be a polystable log fibration over Y. Let 1 — %o be a két specializa-
tion of log geometric points. There is, for every két morphism Z — X a cospecialization map
Cgeom(Zy, /Y1) = Cgeom(Zy,/y2) functorial in Z.

Let us assume now that Z — Y is proper and that My — My, is an isomorphism. The mor-
phism C(Zy,/y1) — C(Zy,/7y2) maps nondegenerate polysimplices to nodegenerate polysimplices
and, according to proposition 4.3, Str(Zy, ) — Str(Zy,) is bijective.

Therefore, if one assumes moreover that Cgeom (Zy, /¥2) is interiorly free (this is the case if Cgeom (Zy, /¥2)
is interiorly free), then

Cgeom(Zy2 /gl) - Cgeom(Zyz /ﬂz)

is also an isomorphism.

4.2 Specialization of tempered fundamental groups of log schemes

First, recall the result we proved in [9, §2.4] about specialization of log fundamental groups.

Let X — Y be a proper and saturated morphism of log schemes. Assume moreover X — Y to have
log geometrically connected fibers. Let o — ¢1 be a specialization of log geometric points of Y.
Let T be the strictly local scheme of Y at ¢; endowed with the inverse image log structure, and let
z be its closed point, endowed with the inverse image log structure.

One has the following arrows (defined up to inner homomorphisms):

T (X o) ) — N (X)) S O (X T o SO (X, f) @),
THEOREM 4.6 |9, prop. 2.4|. One has a specialization morphism
Ty (X, o) ) — O (X )P
that factors through w8 ™ (X1 /T)®).
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We can now use this with our cospecialization morphism of polysimplicial sets when these are
isomorphisms.

PrOPOSITION 4.7. Let Y be a fs log scheme, let X — Y be a proper polystable log fibration
with geometrically connected fibers. Assume moreover that the polysimplicial set Cgeom(X5) of any
geometric fiber is interiorly free. Let yo — 41 be a specialization of log geometric points over fs log
points yo — y1 of Y such that My’gl — Mgz is an isomorphism. Let IL. be a set of primes which does
not contain the residual characteristic of y; One has a specialization morphism defined up to inner
automorphism:

7_‘_;iernp-f:.%oln (ng )]L - ﬂ_iemp—geom (X?h )]L .

Proof. One can assume that Y is strictly local with closed point y;. There is a functor
F : KCoVgeom (X, /51)" — KCoVgeom (Xy, /F2)"

According to theorem 4.6, if Zy, is some geometric két covering of Xy, /y1, it extends to a geometric
két covering of X/Y": there is a connected finite pointed két covering (U, @) of (Y, 91) such that Zy,
extends to a két covering Zyy — Xy := X xy U. This extension becomes unique after replacing U by
some bigger covering. If 4y — @y is the két specialization of log geometric points lifting 42 — 41, then
(Zu)a, is nothing but the geometric két covering F'(Zy,) of Xy,. We will simply denote it by Zg,.
One has an isomorphism Cgeom(Zg,) =~ Cgeom(Zy,) functorially in Zy,. One gets a cospecialization
functor of fibered categories:

Dtop-geom (XQ ) - Dtop-geom (Xg )
! !
KCOVgeom(Xyl /yl)L - Kcovgeom (Xy2 /yZ)L

c s - . temp-geom L temp-geom L
and thus a specialization morphism (Xg)~ — (Xg )™ O

4.3 Cospecialization morphisms of pro-(p’) tempered fundamental groups

Let K be a discrete valuation field, and Spec Ok is endowed with its usual log structure, and assume
that the residual characteristic p of K is not in L. Let Y — Spec O be a morphism of fs log schemes
such that Y is locally noetherian. Let %) be the formal completion of Y along its closed fiber. Then
2, is an analytic domain of Y3". Let Yy =), N Y3" C Y2

Let X — Y be a proper and polystable log fibration with geometrically connected fibers.

Let ¢ be a K'-point of Yy where K’ is a complete extension of K. One has canonical morphism of log
schemes Spec O — Y where Spec O is endowed with the log structure given by Og/\{0} — Ox.
The log reduction 5 of g is the log point of Y corresponding to the special point of Spec O+ with
the inverse image of the log structure of Spec Og:. If K’ has discrete valuation, then § is a fs log
point. If K’ is algebraically closed, § is a geometric log point.

Let 13vtan(Y) be the category whose objects are geometric points g of Yp, such that H(y) is dis-
cretely valued (where y is the underlying point of §) and Hom(y, 7’) is the set of két specializations
from 5 to §, where 5 and & are the log reductions of i and 7/, such that there exists some special-
ization § — ¥ of geometric points in the sense of algebraic étale topology for which the following
diagram commutes:

|

<— W)

QL <~
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Let Pt*(Y') be the category defined from i;tan(Y) by inverting the class of morphisms y — 3 for
which 5 — 5 is a cospecialization isomorphism.

Let Pt§"(Y') be the category obtained from Ptan(Y) by inverting the class of morphisms i — 7’ such
that My,g/ — Myg is an isomorphism.

Let OutGpyop be the category of topological groups with outer morphisms.

THEOREM 4.8. There is a functor 7,"""(X () : Pt*"(Y)°P — OutGpyop sending j to ;""" (Xy).
If, for every geometric point bar s of Y, the polysimplicial set C(X5) is interiorly free, then the
functor m°™P(X ) factors through Pt§™(Y")°P.

Proof. Let §o — 71 be a morphism I/DVtan(Y). One has to construct a cospecialization morphism
temp X- temp X-

(X)) = (Xp).

One has a cospecialization functor

F . KCovgeom(Xsl/51)]L — KCovgeom(XSQ/52)]L

which factors through KCovgeom (X7/T )& where T is the strict localization at ;.

The cospecialization functor KCovgeom (Xs,/ s — Covalg(Xgi) is an equivalence since y; € Yi,
(I8, th. 1.4]). If one choses a specialization g2 — 7 above 53 — 3j, the functor Cove(X; )k —
Cov?le (Xy )& is also an equivalence. One gets that F' is an equivalence.

If Z,, is some geometric két covering of X, , it extends thanks to corollary 4.6 to some két
neighborhood (U,u1) of 51 in T'. Let Zyy — U be this extension (unique after replacing U by some
smaller neighborhood of 51). Let ua — u; be the unique lifting of 5o — §;. Then Zs, := F(Z5,) is
nothing but Zg,. One has a cospecialization morphism Cgeom(Zs,) — Cgeom(Zs,), which induces a
specialization functor

Dtop—geomez (ng) - ,Dtop—geornXS2 (Zsl)-

It is an equivalence of categories if So — 51 is a cospecialization isomorphism or if ngl — MY,§2
is an isomorphism and all the geometric fibers of X — Y have interiorly free polysimplicial sets.
Thus we have a 2-commutative diagram:

Dtop—geom Xo Dtop—geom Xso
L P! L
KCovgeom(Xs,/51)" — KCovVgeom(Xs,/52)
where F~! is some quasi inverse of F. This induces a cospecialization outer morphism
temp-geom L temp-geom L
T (XS1/81) — T (XSQ/SQ) :

The comparison morphisms of theorem 3.3 gives us the wanted morphism, which is an isomorphism
if 55 — 51 is a cospecialization isomorphism or if Mys — My, is an isomorphism and all the
geometric fibers of X — Y have interiorly free polysimplicial sets.
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