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Abstract

This paper constructs cospecialization homomorphisms between the (p′) versions of the
tempered fundamental group of the �bers of a smooth morphism with polystable reduction
(the tempered fundamental group is a sort of analog of the topological fundamental group
of complex algebraic varieties in the p-adic world). We studied the question for families
of curves in another paper. To construct them, we will start by describing the pro-(p′)
tempered fundamental group of a smooth and proper variety with polystable reduction in
terms of the reduction endowed with its log structure, thus de�ning tempered fundamental
groups for log polystable varieties.

Introduction

This paper is a sequel to [9]. In that article we studied the behavior of the tempered fundamental
groups of the �bers of a p-adic family of curves. More precisely we proved the following:

Theorem 0.1 ([9, th. 0.1]). Let K be a complete discretely valued �eld. Let L be a set of primes

that does not contain the residual characteristic of K. Let Y → OK be a morphism of log schemes.

Let Y0 = Ytr ∩Yη ⊂ Y an where Y is the completion of Y along its closed �ber. Let X → Y be a

proper semistable curve with compatible log structure. Let U = Xtr. Let η1 and η2 be two Berkovich

points of Y0 whose residue �elds have discrete valuation, and let η̄1, η̄2 be geometric points above

them. Let s̄2 → s̄1 be a log specialization of their log reductions such that there exists a compatible

specialization η̄2 → η̄1. Then, there is a cospecialization homomorphism πtemp
1 (Uη̄1)

L → πtemp
1 (Uη̄2)

L.
Moreover, it is an isomorphism if MY,s̄1 →MY,s̄2 is an isomorphism.

The aim of this paper is to generalize this result in higher dimension. However, in this paper,
we will only consider the case of vertical semistable morphisms X → Y (which means mainly that
Uη̄i = Xη̄i).
Recall that, if L is a set of primes, the L-tempered fundamental group is the prodiscrete group that
classi�es the L-tempered coverings, which are étale coverings in the sense of A.J. de Jong (that is to
say that locally on the Berkovich topology, it is a direct sum of �nite étale coverings) such that, after
pulling back by some L-�nite étale covering, they become topological coverings (for the Berkovich
topology).
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In this article, we shall study the following situation. Let K be a discretely valued �eld, OK
be its valuation ring, k be its residue �eld and p its characteristics (which can be 0). Let X → Y
be a proper pluristable (for example semistable) morphism of schemes over OK with geometrically
connected �bers.
Let L be a set of prime that does not contain p. If η1 is a (Berkovich) point of the generic �ber of
Y , we �rst want to describe the geometric L-tempered fundamental group of Xη1 in terms of Xs1

where s1 is the reduction of η1. To be sure that this reduction exists we have to assume η1 is in the
tube Yη of the special �ber of Y . Let us make sure at �rst that we can get such a description for the
pro-L completion, i.e. the algebraic fundamental group. One cannot apply directly Grothendieck's
specialization theorems since the special �ber is not smooth but only pluristable. Indeed, a pro-L
geometric covering of the generic �ber will in generally only induce a Kummer covering on the special
�ber. These are more naturally described in terms of log geometry and of the log fundamental group.
The log fundamental group classi�es Kummer log étale coverings (or, equivalently �nite log étale
coverings) : étale locally, these coverings are pullbacks of a morphism SpecZ[Q] → SpecZ[P ] of
a morphism of monoids P → Q where Q is the saturation of P in an extension of P gp of �nite
index invertible on the log scheme. For a proper and log smooth log scheme over a complete discrete
valuation ring, there is, as in the proper and smooth case for Grothendieck's fundamental group,
a specialization morphism from the pro-L log fundamental group of the generic �ber (which is
isomorphic to the pro-L algebraic fundamental group of the maximal open subset of the generic
�ber where the log structure is trivial) to the pro-L log fundamental group of the closed �ber. We
will have to assume the �eld H(η1) to be with discrete valuation in order to get log schemes with
good �niteness properties (more precisely to be fs). Then, one can endow Xs1 with a natural log
structure. The pro-L fundamental group of Xη1 is isomorphic to the pro-L log fundamental group
of Xs1 . To try to describe the L-tempered fundamental group, one has to describe the topological
behavior of any L-algebraic covering of Xη1 . Berkovich, in [3], constructed a combinatorial object
(more precisely a polysimplicial set) depending only on Xs1 , such that the Berkovich generic �ber
Xη1 is naturally homotopically equivalent to the geometric realization of this combinatorial object,
thus generalizing the case of curves with semistable reduction, where the homotopy type of the
generic �ber can be naturally described in terms of the graph of this semistable reduction. We
will extend such a description to our log coverings: for every log covering Y → XOH(η1)

, we will
construct a combinatorial object C(Y ), depending only on Ys1 , such that its geometric realization
|C(Y )| is naturally homotopically equivalent to the Berkovich generic �ber Yη1 . This will enable us
to de�ne a L-tempered fundamental group of our log reduction, which is isomorphic to the tempered
fundamental group of the generic �ber: for any Galois két covering f : Y → Xs1 , there is an action
of Gal(Y/Xs1) on C(Y ). Such an action de�nes an extension GY of Gal(Y/Xs1) by πtop

1 (|C(Y )|):
GY = {(g1, g2) ∈ Aut(|C(Y )|∞) × Gal(Y/Xs1)|πg1 = g2π}, where π : |C(Y )|∞ → |C(Y )| is the
universal topological covering of |C(Y )|. The L-tempered fundamental group of Xs1 is the projective
limits of these extensions GY , where Y runs through pointed két Galois coverings of X of L order.
In particular, one gets:

Theorem 0.2 (see th. 3.2). The L-tempered fundamental group of Xη1 only depends on the log

reduction Xs1 .

Once we have a de�nition for the log geometric tempered fundamental group πtemp-geom
1 (Xs1) of

the log �bers in the special locus of Y , one can reformulate our cospecialization problem only in
terms of this special locus.

We will prove the following:

Theorem 0.3 (th. 4.8). Let η1 and η2 be two Berkovich points with discrete valuation �elds of
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Y0 = Y an
tr ∩ Yη. Let η̄1, η̄2 be geometric points above them. Let s̄2 → s̄1 be a specialization of

their log reductions such that there exists a compatible specialization η̄2 → η̄1. Then there is a

cospecialization homomorphism πtemp-geom
1 (Xη̄1)

L → πtemp-geom
1 (Xη̄2)

L.

Moreover, one can give a criterion for this cospecialization homomorphism to be an isomorphism.
To do this, we will have to make an assumption on the combinatorial behavior of the geometric �bers
of X → Y . More precisely, the polysimplicial set associated with those geometric �bers will be as-
sumed to be interiorly free (this is for example the case if X → Y is strictly polystable or if X → Y
is of relative dimension 1, which explains why such a condition did not appear in [9]). If the mor-
phism of monoids MY,s̄1 → MY,s̄2 is an isomorphism, then the cospecialization homomorphism
πtemp-geom

1 (Xη̄1)
L → πtemp-geom

1 (Xη̄2)
L is an isomorphism.

The �rst thing we need to construct the cospecialization homomorphism for tempered fundamen-
tal groups is a specialization morphism for the L-log geometric fundamental groups of Xs̄1 and Xs̄2 .
More precisely we would like to extend any L-log geometric covering of Xs1 to a két neighborhood
of s1. By restricting this extension to Xs̄2 , one obtains a functor from L-log coverings of Xs̄1 to
L-log coverings of Xs̄2 , this functor induces the wanted specialization morphism of L-log geometric
fundamental groups. If one has such a specialization morphism, by comparing it to the fundamental
groups of Xη̄1 and Xη̄2 and using Grothendieck's specialization theorem, we will easily get that it
must be an isomorphism). These specialization morphisms has already been constructed in [9, prop.
2.10].
Then we have to study the combinatorial behavior of a két covering with respect to cospecialization.
By étale localization, one can assume that Y is strictly local with special point s̄1. Up to két local-
ization of Y , any két covering Us̄1 of Ys̄1 extends to a két covering U of Y , and U → Y is saturated.
For a stratum u of Us̄1 , there is among the strata of Us2 whose closure contains u a stratum u′ with
smallest closure (i.e. a biggest stratum for specialization): it de�nes a map Str(Us̄1) → Str(Us2).
The fact that U → Y is saturated implies that the closure of the strata of U are �at over their
image in Y and have geometrically reduced �bers. Thanks to [6, cor. 18.9.8]), this implies that u′ is
geometrically connected, whence a cospecialization map Str(Us̄1)→ Str(Us̄2). This cospecialization
map can be extended into a morphism of polysimplicial sets. One gets by pullback a specialization
functor between the category of topological coverings of the polysimplicial sets Us̄2 and Us̄1 . Since
The cospecialization morphisms of polysimplicial sets commute with két coverings, the specialization
functor can be seen as a functor of �bered categories over the category of L-log coverings of Xs̄1 (or
equivalently of L-�nite étale coverings of Xη̄1). But the �bered category of tempered coverings over
the category of L-�nite étale coverings of Xη̄1 is naturally equivalent to the stack associated to the
�bered categories of topological coverings over the category of L-�nite étale coverings of Xη̄1 . Thus
the topological specialization functor gives us the wanted tempered specialization functor.

Let us now discuss the organization of the paper.
The �rst section of this paper will be devoted to recall the main tools we will need later. We will re-
call the de�nition of the tempered fundamental group and its basic properties. We will also consider
an L-version of the tempered fundamental group, where L is a set of prime numbers (L-tempered
fundamental groups were already introduced in [10] in the case of curves). We will then recall the
basics of log geometry, especially the theory of két coverings and log fundamental groups. We will
end this part by recalling the topological structure of the generic �ber (considered as a Berkovich
space) of a pluristable formal scheme, as studied in [3] and in [4].

In �2, we de�ne the tempered fundamental group of a connected pluristable log scheme X over
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a log point. To do this, we de�ne a functor C from the Kummer étale site of our pluristable log
scheme X to the category of polysimplicial sets (which extends the de�nition of the polysimplicial
set associated to a pluristable scheme de�ned by Berkovich in [3]). We also de�nes a log geometric
version by taking the projective limit under connected két extensions of the base log point.

In �3, for a connected, proper, generically smooth and pluristable scheme X over a complete dis-
cretely valued ring OK (thus endowed with a canonical log structure), we construct a specialization
morphism between the L-tempered fundamental group of the generic �ber, considered as a Berkovich
space, and the L-tempered fundamental group of the special �ber endowed with the inverse image
log structure, which is an isomorphism if the residual characteristic of K is not in L.
This specialization morphism is induced by the specialization morphism from the algebraic fun-
damental group of the generic �ber to the log fundamental group of the special �ber, and by the
fact that the geometric realization of the polysimplicial set |C(Y )| of a két covering of the special
�ber of X is canonically homotopically equivalent to the Berkovich space Y an

η of the corresponding
étale covering of the generic �ber. This homotopy equivalence is obtained by extending the strong
deformation retraction of Xan

η to a strong deformation retraction of Y an
η onto a subset canonically

homeomorphic to |C(Y )|.

In �4, we construct cospecialization morphisms between the polysimplicial sets of the geometric
�bers of a polystable �bration. To do so, we �rst prove that, up to étale localization of Y at s̄1, for
any stratum x of Xs̄1 , the set of strata of Xs2 whose closure contains x has a biggest element (for the
order induced by existence of specialization), and this biggest stratum is geometrically irreducible.
This will induce cospecialization morphisms on the set of strata of the geometric �bers of X → Y .
Up to két localization, the same result is also true for két coverings of Y . This cospecialization maps
of set of strata in fact come from maps of polysimplicial sets. If we identify the categories of L-két
coverings of Xs̄1 and Xs̄2 thanks to specialization of ket coverings, one gets, for U in this category,
a map |C(Us̄1)| → |C(Us̄2)| functorially in U (and in particular, when U is Galois, compatibly with
the action of the Galois group of U). We get from this cospecialization morphisms between the
L-geometric tempered fundamental groups of the �bers of our strictly polystable log �bration.
Thanks to the isomorphisms between the L-geometric tempered fundamental group of the �ber over
a discretely valued Berkovich point of the generic part of our base log scheme and the L-geometric
tempered fundamental group of the �ber over the reduction log point, we will get theorem 0.3.

1. Reminder on the skeleton of a Berkovich space with pluristable reduction

1.1 Polystable morphisms

Let K be a complete nonarchimedean �eld and let OK be its ring of integers.
If X is a locally �nitely presented formal scheme over OK , Xη will denote the generic �ber of X in
the sense of Berkovich ([2, section 1]).
Recall the de�nition of a polystable morphism of formal schemes:

Definition 1.1 ([3, def. 1.2], [4, section 4.1]). Let φ : Y → X be a locally �nitely presented
morphism of formal schemes over OK .

(i) φ is said to be strictly polystable if, for every point y ∈ Y, there exists an open a�ne neighbor-
hood X′ = Spf(A) of x := φ(y) and an open neighborhood Y′ ⊂ φ−1(X′) of y such that the in-
duced morphism Y′ → X′ factors through an étale morphism Y′ → Spf(B0)×X′ · · ·×X′ Spf(Bp)
where each Bi is of the form A{T0, · · · , Tni}/(T0 · · ·Tni − ai) with a ∈ A and n > 0. It is said
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to be nondegenerate if one can choose X ′, Y ′ and (Bi, ai) such that {x ∈ (Spf(A)η)|ai(x) = 0}
is nowhere dense.

(ii) φ is said to be polystable if there exists a surjective étale morphism Y′ → Y such that Y′ → X

is strictly polystable. It is said to be nondegenerate if one can choose Y′ such that Y′ → X is
nondegenerate.

Then a (nondegenerate) polystable �bration of length l over S is a sequence of (nondegenerate)
polystable morphisms X = (Xl → · · · → X1 → S).
Then K-Pstf ét

l (resp. K-Pstf sm
l , K-Pstf tps

l )will denote the category of polystable �brations of
length l over OK , where a morphism X → Y is a collection of étale (resp. smooth, resp. trivially
polystable) morphisms (Xi → Yi)16i6l which satis�es the natural commutation assumptions.
Pstf ét

l (resp. Pstf sm
l , Pstf tps

l ) will denote the category of couples (X,K1) where K1 is a complete
non archimedean �eld and X is a polystable �bration over OK1 , and a morphism (X,K1)→ (Y,K2)
is a couple (φ, ψ) where φ is an isometric extension K2 → K1 and ψ is a morphism X→ Y⊗OK2

OK1

in K1-Pstf ét
l (resp. K1-Pstf sm

l , K1-Pstf tps
l ).

Let k be a �eld.
Let X be a k-scheme locally of �nite type.
The normal locus Norm(Xred) is a dense open subset of X. Let us de�ne inductively X(0) = Xred,
X(i+1) = X(i)\Norm(X(i)). The irreducible components of X(i)\X(i+1) are called the strata of X
(of rank i). This gives a partition of X. The set of the generic points of the strata of X is denoted
by Str(X) (This set is in natural bijection with the set of strata of X). There is a natural partial
order on Str(X) de�ned by x 6 y if and only if y ∈ {x}.

Berkovich de�nes another �ltration X = X(0) ⊃ X(1) ⊃ · · · such that X(i+1) is the closed subset
of points contained in at least two irreducible components of X(i). X is said to be quasinormal if
all of the irreducible components of each X(i), endowed with the reduced subscheme structure, is
normal (this property is local for the Zariski topology and remains true after étale morphisms). If
X is quasinormal, then X(i) = X(i). X is quasinormal if and only if the closure of every stratum is
normal. A strictly plurinodal scheme over a �eld is quasinormal ([3, prop. 2.1]).
There is a natural partial order on Str(X) de�ned by x 6 y if and only if y ∈ {x}.

We say that a strictly plurinodal scheme X over a �eld K is elementary if Str(X) has a biggest
element; we say that it is geometrically elementary if it is elementary and all the strata are geomet-
rically irreducible. Finally, a strictly pluristable morphism Y → X is geometrically elementary if all
the �bers are geometrically elementary.

1.2 Polysimplicial sets

Berkovich de�nes polysimplicial sets in [3, section 3] as follows.
For an integer n, let [n] denote {0, 1, · · · , n}.
For a tuple n = (n0, · · · , np) with either p = n0 = 0 or ni > 1 for all i, let [n] denote the set
[n0]× · · · × [np] and w(n) denote the number p.
Berkovich de�nes a category Λ whose objects are [n] and morphisms are maps [m]→ [n] associated
with triples (J, f, α), where:

� J is a subset of [w(m)] assumed to be empty if [m] = [0],

� f is an injective map J → [w(n)],

� α is a collection {αl}06l6p, where αl is an injective map [mf−1(l)]→ [nl] if l ∈ Im(f), and αl is
a map [0]→ [nl] otherwise.
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The map γ : [m]→ [n] associated with (J, f, α) takes j = (j0, · · · , jw(m)) ∈ [m] to i = (i0, · · · , iw(n))
with il = αl(jf−1(l)) for l ∈ Im(f), and il = αl(0) otherwise.
A polysimplicial set is a functor Λop → Set. Polysimplicial sets form a category denoted by Λ◦ Set.
One considers Λ as a full subcategory of Λ◦ Set by the Yoneda functor. If C is a polysimplicial set
Λ/C is the category whose objects are morphisms [n]→ C in Λ◦ Set and morphisms from [n]→ C
to [m] → C are morphisms [n] → [m] that make the triangle commute. Objects of Λ/C are called
polysimplices of C, and if x : [n]→ C is a polysimplex, n will be denoted by nx.
A polysimplex x of a polysimplicial set C is said to be degenerate if there is a non isomorphic
surjective map f of Λ such that x is the image by f of a polysimplex of C. Let Cnd

n be the subset
of non degenerate polysimplices of Cn.
Thanks to an analog of Eilenberg-Zilber lemma for polysimplicial sets ([3, lem. 3.2]), a morphism
C′ → C is bijective if and only if it maps non degenerate polysimplices to nondegenerate polysimplices
and (C′)nd

n → Cnd
n is bijective for any n.

There is a functor O : Λ◦ Set→ Poset where O(C) is the partially ordered set associated to Ob(Λ/C)
endowed with the preorder where x 6 y if there is a morphism x → y in Λ/C. If one sees O(C)
as a category, there is an obvious functor Λ/C → O(C). As a set, O(C) coincides with the set of
equivalence classes of nondegenerate polysimplices.
A polysimplicial set C is said interiorly free if Aut(n) acts freely on Cnd

n . If C1 → C2 is a morphism of
polysimplicial sets mapping nondegenerate polysimplices to nondegenerate polysimplices such that
O(C1)→ O(C2) is an isomorphism and C2 is interiorly free, then C1 → C2 is an isomorphism.
Berkovich also de�nes a strictly polysimplicial category Λ whose objects are those of Λ, but with only
injective morphisms between them. The functor Λ → Λ → Λ◦ Set extends to a functor Λ◦ Set →
Λ◦ Set which commutes with direct limits (the objects of Λ◦ Set will be called strictly polysimplicial

sets).
Berkovich then considers a functor Σ : Λ → Ke to the category of Kelley spaces, i.e. topological
spaces X such that a subset of X is closed whenever its intersection with any compact subset of X
is closed. This functor takes [n] to Σn = {(uil)06i6p,06l6ni

∈ [0, 1][n]|
∑

l uil = 1}, and takes a map γ
associated to (J, f, α) to Σ(γ) that maps u = (ujk) to u′ = (u′il) de�ned as follows: if [m] 6= [0] and
i /∈ Im(f) or [m] = [0] then u′il = 1 for l = αi(0) and u′il = 0 otherwise; if [m] 6= [0] and i ∈ Im(f),
then u′il = uf−1(i),α−1

i (l) for l ∈ Im(αi) and u′il = 0 otherwise.

This induces a functor, the geometric realization, | | : Λ◦ Set → Ke (by extending Σ in such a way
that it commutes with direct limits). If O(C) is �nite (resp. locally �nite), then |C | is compact (resp.
locally compact).
There is also a bifunctor � : Λ◦ Set×Λ◦ Set → Λ◦ Set which commutes with direct limits and
de�ned by [(n0, · · · , np)]�[(n′0, · · · , n′p′)] = [(n0, · · · , np, n′0, · · · , n′p′)]. Thus |C �C′ | = |C | × |C′ |
where the product on the right is the product of Kelley spaces (which is the same as the product of
topological spaces whenever C and C′ are locally �nite).

1.3 Polysimplicial set of a polystable �bration

If X is strictly polystable over k and x ∈ Str(X), Irr(X,x) will denote the metric space of irreducible
components of X passing through x where d(X1, X2) = codimx(X1 ∩X2). On a tuple [n], one can
consider the metric d de�ned by d((n0, · · · , np), (n′0, · · · , n′p)) = |{i ∈ [[0, p]]|ni 6= n′i}|. Then there is
a unique tuple [n] such that Irr(X,x) is bijectively isometric to [n]. If [m]→ [n] is isometric, there
exists a unique y ∈ Str(X) with y 6 x and a unique isometric bijection [m]→ Irr(X, y) such that

[n] → Irr(X,x)
↑ ↑

[m] → Irr(X, y)
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commutes.
The functor which to [n] associates the set of couples (x, µ) where x ∈ Str(X) and µ is a isometric
bijection [n] → Irr(X,x) de�nes a strict polysimplicial set C(X) (and thus a polysimplicial set
C(X)).
There is a functorial isomorphism of partially ordered sets O(C(X)) ' Str(X).

Proposition 1.2 ([3, prop. 3.14]). One has a functor C : Pstsm → Λ◦ Set, such that C(X) is as

previously de�ned if X is strictly polystable and, for every étale surjective morphism X ′ → X:

C(X) = Coker(C(X ′ ×X X ′) ⇒ C(X ′)).

This functor extends to a functor C for strictly polystable �brations over K of length l.
Let us assume we already constructed C for strictly polystable �brations of length l − 1 such that
O(C(X)) = Str(Xl−1). Let X : Xl → Xl−1 → · · · → Spec k be a strictly polystable �bration, and
let X l−1 : Xl−1 → · · · → Spec k. Then for every x′ 6 x ∈ Str(Xl−1), one has:

Lemma 1.3 ([3, cor.6.2]). There is a canonical cospecialization morphism C(Xl,x) → C(Xl,x′) and

if x′′ 6 x′ 6 x, the morphism C(Xl,x) → C(Xl,x′′) coincides with the composition C(Xl,x) →
C(Xl,x′)→ C(Xl,x′′).

This gives a functor Str(Xl−1)op → Λ◦ Set that maps an object x in Str(Xl−1)op to C(Xl,x) and
an arrow x′ → x to the cospecialization morphism C(Xl,x′) → C(Xl,x) given by lemma 1.3. If one
composes this functor with (Λ/(C(X l−1)))op → O(C(X l−1))op = Str(Xl−1)op, one gets a functor

D : (Λ/(C(X l−1)))
op → Λ◦ Set .

Berkovich then de�nes a polysimplicial set (where we set C = C(X l−1)):

C(X) = C �D := Coker(
∐

N1(Λ/C)

[ny]�Dx ⇒
∐

N0(Λ/C)

[nx]�Dx),

where, for f : y → x ∈ N1(Λ/C), the upper arrow sends [ny]�Dx to [nx]�Dx by the morphism
[f ]� idDx and the lower arrow sends [ny]�Dx to [ny]�Dy by the morphism id[ny ] �Df . This
construction extends to (non necessarily strictly) polystable �brations:

Proposition 1.4 ([3, prop 6.9]). There is a functor C : Psttps
l → ΛSet such that:

(i) for every étale surjective morphism of polystable �brations X ′ → X:

C(X) = Coker(C(X ′ ×X X ′) ⇒ C(X ′)).

(ii) O(C(X)) ' Str(X).

1.4 Skeleton of a Berkovich space

Berkovich attaches to a polystable �bration X = (Xl → Xl−1 → · · · → Spf(OK)) a subset of the
generic �ber Xl,η of Xl, the skeleton S(X) of X, which is canonically homeomorphic to |C(Xs)|
(see [3, th. 8.2]). In fact, when X is non degenerate�for example generically smooth (we will only
use the results of Berkovich to such polystable �brations)�the skeleton of X depends only on Xl

according to [4, prop. 4.3.1.(ii)]; such a formal scheme that �ts into a polystable �bration will be
called pluristable, and we will note S(Xl) this skeleton.
In this case [4, prop. 4.3.1.(ii)] gives a description of S(Xl), which is independant of the retraction.
For any x, y ∈ Xl,η, we write x � y if for every étale morphism X′ → Xl and any x′ over x, there
exists y′ over y such that for any f ∈ O(Xη), |f(x′)| 6 |f(y′)| (� is a partial order on Xl,η). Then
S(Xl) is just the set of maximal points of Xl,η for �.
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Moreover there is a strong deformation retraction of Xl,η to S(X) and this construction is com-
patible with étale morphisms; more precisely, one has the following theorem:

Theorem 1.5 ([3, th. 8.1]). One can construct, for every polystable �bration X = (Xl
fl−1→ · · · f1→

X1 → Spf(OK)), a proper strong deformation retraction Φl : Xl,η × [0, l] → Xl,η of Xl,η onto the

skeleton S(X) of X such that:

(i) S(X) =
⋃
x∈S(Xl−1) S(Xl,x) (set-theoretic disjoint union), where Xl−1 = (Xl−1 → · · · →

Spf(OK));
(ii) if φ : Y → X is a morphism of �brations in Pstf ét

l , one has φl,η(yt) = φl,η(y)t for every

y ∈ Yl,η.

Let us describe more precisely how the retraction is de�ned.
If X = Spf OK{P}/(pi − zi) where P is isomorphic to ⊕06i6pNni+1, pi = (1, · · · , 1) ∈ Nni+1 and
zi ∈ OK , let Gm be the formal multiplicative group Spf OK{T, 1

T } over OK , let us denote for any n
by Gm

(n) the kernel of the multiplication Gm
n+1 → Gm and let G be the formal completion at the

identity of
∏
i Gm

(ni) (it is a formal group). Then G acts on X. The group G = Gη acts then on Xη.
G has canonical subgroups Gt for t ∈ [0, 1] de�ned by the inequalities |Tij − 1| 6 t where Tij are the
coordinates in G. Gt has a maximal point gt. Similarly, for any complete extension K ′/K, Gt⊗KK ′

has a maximal point gt,K′ . If x ∈ X, one de�nes xt := gt ∗ x to be the image of gt,H(x) by the map
Gt ⊗K K ′ = (Gt ×X)x ⊂ Gt ×X → X.
If X is étale over Spf OK{P}/(pi − zi), the action of G extends in a unique way to an action on
X, and xt is still de�ned by gt ∗ x. For any X polystable over OK , one has thus de�ned the strong
deformation locally for the quasi-étale topology of Xan

η , and Berkovich veri�es that it indeed descends
to a strong deformation on X.
For a polystable �bration X → Xl−1 → · · · → Spf OK , we �rst assume that X → Xl−1 is of the
kind Spf B → Spf A with B = A{P}/(pi− ai) (this will be called a standard polystable morphism),
one �rst retracts �ber by �ber on S(X/Xl−1), which are strictly polystable. The image obtained
can be identi�ed with S = {(x, r0, · · · , rp) ∈ Xl−1,η, ri0 · · · rini = |ai(x)|}, one then has a homotopy
Ψ : S × [0, 1] → S by Ψ(x, r0, · · · , rp, t) = (xt, ψn0(r0, |a0(xt)|), · · · , ψnp(rp, |ap(xt)|)), where ψn is
some strong deformation of [0, 1]n+1 to (1, · · · , 1) ∈ [0, 1]n+1 de�ned by Berkovich (we will just need
that ψn(ri, t)λk = ψn(rλi , t

λ)k for any λ ∈ R∗+ and any k ∈ [[0, n]]) , and xt is de�ned by the strong
deformation of Xl−1,η.
If X → X′ → Xl−1 is a geometrically elementary composition of an étale morphism and a stan-
dard polystable morphism, S(X/Xl−1)→ S(X′/Xl−1) is an isomorphism, so that we deform X′ �ber
by �ber onto S(X/Xl−1), then we just do the same retraction as for S(X′/Xl−1). For an arbitrary
polystable �bration X → · · · → OK , this de�nes the retraction locally for the quasi-étale topology
of Xη, and Berkovich veri�es that it descends to a deformation retraction on X.

Berkovich deduces from (1.5.(ii)) the following corollary:

Corollary 1.6 ([3, cor. 8.5]). Let K ′ be a �nite Galois extension of K and let X be a polystable

�bration over OK′ with a normal generic �ber Xl,η. Suppose we are given an action of a �nite group

G on X over OK and a Zariski open dense subset U of Xl,η which is stable under the action of

G. Then there is a strong deformation retraction of the Berkovich space G\U to a closed subset

homeomorphic to G\|C(X)|.

More precisely, in this corollary, the closed subset in question is the image of S(X) (which is
G-equivariant and contained in U) by U → G\U .
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Theorem 1.5 also implies that the skeleton is functorial with respect to pluristable morphisms:

Proposition 1.7 [4, prop. 4.3.2.(i)]. If φ : X→ Y is a pluristable morphism between nondegenerate

pluristable formal schemes over OK , φη(S(X)) ⊂ S(Y).

In fact, more precisely, from the construction of S, S(X) =
⋃
y∈S(Y) S(Xy).

2. Tempered fundamental group of a polystable log scheme

In this section we de�ne a tempered fundamental group for a polystable �bration over a �eld,
endowed with some compatible log structure (we will call this a polystable log �bration). To de�ne
our tempered fundamental group, we will need a notion of �topological covering� of a két covering
Z of our polystable log �bration X → · · · → k. To do this we will de�ne for any Z a polysimplicial
set C(Z) over the polysimplicial set C(X), functorially in Z. Thus if Z is a �nite Galois covering of
X with Galois group G, there is an action of G on C(Z) which de�nes an extension of groups:

1→ πtop
1 (|C(Z)|)→ ΠZ → G→ 1.

Our tempered fundamental group will be the projective limits of ΠZ when Z runs through pointed
Galois coverings of X.

2.1 Polystable log schemes

All monoids are assumed to be commutative. We will use multiplicative notations. If X is an fs log
scheme, we will denote by X̊ the underlying scheme, byMX the étale sheaf of monoids on X̊ de�ning
the log structure, and by Xtr the open subset of X where the log structure is trivial.
A strict étale morphism of fs log scheme Y → X is a strict morphism of log schemes such that
Y̊ → X̊ is étale. If we talk about étale topology on X, it will mean strict étale topology on X (or
equivalently étale topology on X̊), and not log étale topology.

Let S be a fs log scheme.

Definition 2.1. A morphism φ : Y → X of fs log schemes will be said:

� standard nodal if X has an fs chart X → SpecP and Y is isomorphic to X ×SpecZ[P ] Z[Q] with
Q = (P ⊕ uN⊕ vN)/(u · v = a) with a ∈ P .

� a strictly plurinodal morphism of log schemes if for every point y ∈ Y , there exists a Zariski
open neighborhood X ′ of φ(y) and a Zariski open neighborhood Y ′ of y in Y ×X X ′ such that
Y ′ → X ′ is a composition of strict étale morphisms and standard nodal morphisms.

� a plurinodal morphism of log schemes if, locally for the étale topology of X and Y , it is strictly
plurinodal.

� a strictly polystable morphism of log schemes if for every point y ∈ Y , there exists aa a�ne
Zariski open neighborhood X ′ = SpecA of φ(y), an fs chart P → A of the log structure of X ′

and a Zariski open neighborhood Y ′ of y in Y ×XX ′ such that Y ′ → X factors through a strict
étale morphism Y ′ → X ′×Z[P ]Z[Q] whereQ = (P⊕

⊕p
i=0 < Ti0, · · · , Tini >)/(Ti0·· · ··Tini = ai)

with ai ∈ P .
� a polystable morphism of log schemes if, locally for the étale topology of Y and X, it is a strict

polystable morphism of log schemes.

A polystable log �bration (resp. strictly polystable log �bration) X over S of length l is a sequence of
polystable (resp. strictly polystable) morphism of log schemes Xl → · · · → X1 → X0 = S.
A morphism of polystable log �brations of length l f : Y → X is given by morphisms fi : Yi → Xi
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of fs log schemes for every i such that the obvious diagram commutes.
A morphism f of polystable �brations will be said két (resp. strict étale) if fi is két (resp. strict
étale) for all i.

A polystable (resp. strictly polystable) morphism of log schemes is plurinodal (resp. strictly
plurinodal).
A plurinodal morphism is log smooth and saturated.

Remark. If φ : X → Y is a stricly polystable morphism of log schemes, then for any y ∈ Y , for
any Zariski open neighborhood X ′ of φ(y) and any chart X ′ → SpecP , there is a Zariski open
neighborhood X ′′ ⊂ X ′ of φ(y) and a Zariski open neighborhood Y ′ of y in Y ×X X ′′ such that
Y ′ → X factors through a strict étale morphism Y ′ → X ′ ×Z[P ] Z[Q] where Q = (P ⊕

⊕p
i=0 <

Ti0, · · · , Tini >)/(Ti0 · · · · · Tini = ai) with ai ∈ P .

Lemma 2.2. Let φ : Y → X be a plurinodal (resp. strictly plurinodal, resp. polystable, resp.

strictly pluristable) morphism of schemes, such that X has a log regular log structure MX and φ is

smooth over Xtr. Then (Y,OY ∩ j∗O∗YXtr

)→ (X,MX) is a plurinodal (resp. strictly plurinodal, resp.

polystable, resp. strictly pluristable) morphism of log schemes.

Proof. Let us prove it for the case of a stricly polystable morphism.
One can assume that X = Spec(A) has a chart ψ : P → A and that Y = B0 ×X · · · ×X Bp with
Bi = SpecA[Ti0, · · · , Tini ]/Ti0 · · ·Tini − ai with ai ∈ A. Since φ is smooth over Xtr, ai is invertible
over Xtr, thus after multiplying ai by an element of A∗ (we can do that by also multiplying Ti0
by this element), we may assume that ai = ψ(bi) for some bi ∈ P . Thus Y = X ×Z[P ] Z[Q] where
Q = (P ⊕

⊕p
i=0 < Ti0, · · · , Tini >)/(Ti0 · · · · · Tini = bi) with bi ∈ P . If we endow Y with the log

structure MY associated with Q, Y → X becomes a strict polystable morphism of log schemes. In
particular Y is log regular ([7, th. 8.2]). Since, the set of points of Y where MY is trivial is YXtr

,
MY = OY ∩ j∗O∗YXtr

according to [11, prop. 2.6].

2.2 Strata of log schemes

For a polystable (log) �bration X : X → · · · → Spec k, Berkovich de�nes a polysimplicial set C(X).
In this part we want to generalize this construction to any két log scheme Z over X. To do this we
will study the strati�cation of an fs log scheme de�ned by rk(z) = rk(Mgp

z ), which corresponds to
Berkovich strati�cation for plurinodal schemes, and we will show that étale locally a két morphism
X → Y induces an isomorphism between the posets of the strata of X and Y . This will enables us
to de�ne the polysimplicial set of Z étale locally. We will then descend it so that it satis�es the same
descent property as in proposition 1.4.

Let Z be an fs log scheme, one gets a strati�cation on Z by saying that a point z of Z is of rank
r if rklog(z) = rk(Mgp

z̄ /O∗z̄) = r (where z̄ is some geometric point over z and where rk is the rank of
an abelian group of �nite type).
The subset of points of Z such that the rank is 6 r is an open subset of Z ([12, cor. II.2.3.5]). We
thus get a good strati�cation.
The strata of rank r of Z are then the connected components of the subset of points z of rank r.
This is a partition of Z, and a strata of rank r is open in the closed subset of points x of rank > r.
It is endowed with the reduced subscheme structure of Z.
The set of strata is partially ordered by x 6 y if and only if y ⊂ x̄. One denotes by Strx(Z) the
poset of strata below x. More generally, if z is a point of Z, we denote by Strz(Z) the set of strata
y of Z such that z ∈ ȳ (Strz(Z) is simply Strx(Z) where x is the stratum of z containing x). If z̄ is
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a geometric point of Z, let Strgeom
z̄ (Z) = lim←−(U,ū)

Strū(U) where (U, ū) goes through étale neighbor-

hoods of z̄; it can be identi�ed with Str(Z(z̄)) where Z(z̄) is the strict localization of Z at z̄.
If f : Z ′ → Z is a két morphism, then rklog(x) = rklog(f(x)), so the strata of Z ′ are the connected
components of the preimages of the strata of Z.

If f : P → OZ is a chart of Z, it induces a continuous map f∗ : Z → SpecP that maps a point z
to the prime pz = P\f−1(O∗Z,z) of P . Let Fz = P\pz be the corresponding face. ThenMZ,z = P/F .
One deduces from it that the strata of Z are exactly the connected components of the preimages by
f∗ of points in SpecP . In particular one gets a map Str(Z)→ SpecP . If z is a point of Z, the map
Z(z) → SpecP factorizes through a map Z(z) → SpecMZ,z, which does not depend on the choice
of the chart. One gets a map Strz(Z)→ SpecMZ,z. For a general log scheme Z, if z̄ is a geometric
point of Z, one gets a map Strgeom

z̄ (Z)→ SpecMZ,z̄.
Let us look at the structure of the strata of Spec k[P ] endowed with the log structure for which
f : P → k[P ] is a chart. Let f∗ : Spec k[P ] → SpecP and let p be a prime of P and let F = P\p
be thecorresponding face of P . Then f∗,−1({p}) is a closed subset of Spec k[P ] which, endowed with
its structure of reduced closed subscheme, is Spec k[P ]/(p) where (p) =

⊕
pi∈p k.pi ⊂ k[P ] ((p) is a

prime ideal of k[P ]). Moreover, the obvious morphism of rings k[F ]→ k[P ]/(p) is an isomorphism,
inducing thus an isomorphism of schemes f∗,−1({p}) = Spec k[P ]/(p) ' Spec k[F ]. However the log
structure on Spec k[F ] for which F is a chart is not correspond in general with the log structure on
Spec k[P ]/(p) for which P is a chart. The open immersion f∗,−1({p}) ⊂ f∗,−1({p}) corresponds then
to the open immersion Spec k[F gp]→ Spec k[F ]. In particular, since Spec k[F gp] is connected, there
is a unique stratum of Spec k[P ] above p and thus Str(Spec k[P ])→ SpecP is bijective.

Let Z be a plurinodal log scheme over some log point (k,Mk) of characteristic p and of rank
r0 and let z be a point of Z. One has rklog(z) = r0 + rk(z) where rk(z) is the codimension of the
strata containing z in Z for the Berkovich strati�cation of plurinodal schemes. Thus the strata are
the same for this strati�cation and the strati�cation of Berkovich. The strata of Z are normal.
We will often denote abusively in the same way a stratum and its generic point.

Recall that Z is said to be quasinormal if the closure of any stratum endowed with its reduced
scheme structure is normal.

Lemma 2.3. Let f : Z → S = Spec k be a log smooth morphism. Let z̄ be a geometric point.

Let f∗ : SpecMZ,z̄ → SpecMS,s̄. Then φZ,z̄ : Strgeom
z̄ (Z) → SpecMZ,z̄ is injective and its image is

f−1
∗ (M∗

S,s̄). Moreover Z(z̄) is quasinormal. In particular, every stratum of Z is normal.

Proof. Since the unique stratum of S is mapped to M∗
S,s̄ by the map Strgeom

s̄ (S) → SpecMS,s̄, one

has ImφZ,z̄ ⊂ f−1
∗ (M∗

S,s̄).
The lemma can be proven étale locally: one can assume that S has a chart S → Spec k[P ] where P
is sharp, and that Z = S ×Spec k[P ] Spec k[Q] where ψ : P → Q is injective and the torsion part of
Cokerψgp are �nite. Let q′ ∈ f−1

∗ (M∗
S,s̄) and let q be its image in SpecQ. The image of q in SpecP

is the image p of M∗
S,s̄. Let F = Q\q and F0 = P\p. The morphism S → Spec k[P ] factors through

Spec k[F gp
0 ]. Let φ : Z → SpecQ and let ZF be the closed subset ψ−1({q}) of Z (z̄ lies in ZF ). Then

ZF is the support of the closed subscheme Z ×Spec k[Q] Spec k[Q]/(q), which we also denote by ZF .
Then,

ZF = Z×Spec k[Q]Spec k[F ] = S×Spec k[P ]Spec k[F ] = S×Spec k[F0]Spec k[F ] = S×Spec k[F gp
0 ]Spec k[FF gp

0 ].

Let T0 be the saturation of F gp
0 in F gp and let T1 be a subgroup of F gp such that F gp = T0 ⊕ T1.

The morphism S ×Spec k[F gp
0 ] Spec k[T0]→ S is étale, so up to replacing k by a �nite extension, one
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can assume F gp
0 = T0. Then ZF = S ×Spec k[T0] Spec k[FF gp

0 ] = Spec k[FF gp
0 ∩ T1]. But FF

gp
0 ∩ T1

is a saturated monoid, hence ZF is normal. Thus ZF (z̄) is irreducible. Moreover, if F ′ ( F , then
ZF ′ ( ZF : the generic point of ZF lies above q. One thus obtains that there is a unique stratum of
Z(z̄) lying above q.

Lemma 2.4. Let Z be a Zariski log scheme, let Z → Spec k be a log smooth morphism and let

Z ′ → Z be a két morphism, then Strz′(Z ′)→ Strz(Z) is an isomorphism of posets.

Proof. There is a commutative diagram:

Strgeom
z̄′ (Z ′) //

����

Strgeom
z̄ (Z) � � //

����

SpecMZ,z̄

Strz′(Z ′) // Strz(Z) // SpecMZ,z

Since Strgeom
z̄ (Z)→ SpecMZ,z is injective, Strgeom

z̄ (Z)→ Strz(Z) must be bijective. The morphism
Strgeom

z̄′ (Z ′) → Strgeom
z̄ (Z) is bijective thanks to lemma 2.3 because SpecMZ′,z′ → SpecMZ,z is

bijective since MZ,z →MZ′,z′ is Kummer. Hence Strz′(Z ′)→ Strz(Z) must also be bijective.
If z′1 and z′2 are elements of Strz′(Z ′), then Strz′1(Z

′
1) → Strz1(Z1) is also bijective, so that z′2 ∈

Strz′1(Z
′
1) if and only if z2 ∈ Strz1(Z1), i.e. z′2 6 z′1 if and only if z2 6 z1.

In particular, one can apply lemma 2.4 if Z is strictly plurinodal.

2.3 Polysimplicial set of a két log scheme over a polystable log scheme

Let C → C′ be a morphism of polysimplicial sets. Let α : S → O(C) (resp. α′ : S′ → O(C′)) be
a morphism of posets such that S6x

'→ O(C)6α(x) (resp. S′6x
'→ O(C′)6α′(x) for any x). Then α

de�nes a functor O(C)op → Set by sending c to α−1(c) and if c 6 c′, then the map α−1(c′)→ α−1(c)
sends x′ ∈ α−1(c′) to the unique preimage of c by the map S6x′ → O(C)6c′ . One gets a functor F :
(Λ/C)op → O(C)op → Set (resp. F ′ : (Λ/C′)op → O(C′)op → Set), which de�nes a polysimplicial
set D = C×F (resp. D′ = C′×F ′):

D = Coker(
∐
x→y

∐
F (x)

[ny] ⇒
∐
x

∐
F (x)

[nx]).

If we consider F as a functor (Λ/C)op → Λ◦ Set, then D is nothing else than C �F (but this is
a very simple case of �-product where all the �bers are discrete). To give a slightly more explicit
description of D, Dn =

∐
x∈Cn

F (x) and if f : m → n is a morphism of Λ and z ∈ F (x) with
x ∈ Cn, f

∗(z) = F (f̄) ∈ F (f∗(x)) where f̄ is the morphism f∗(x) → x in Λ/C. Since F maps
surjective morphisms to isomorphisms, a polysimplex z ∈ F (x) of D is nondegenerate if and only if
x is nondegenerate. One gets that O(D) = S and that D is interiorly free if C is.
Then any morphism of posets f : S → S′ such that

S → S′

↓ ↓
O(C) → O(C′)

is commutative induces a unique morphism of polysimplicial sets f : D → D′ over C→ C′ such that
O(f) = f .

Let us consider now a strictly polystable log �bration X : X → Xl−1 → · · · → s where s is
an fs log point. If f : Z → X is két, the map of posets Str(f) : Str(Z) → Str(X) = O(C(X))
is such that Str(Z)6z ' Str(X)6f(z) for any z ∈ Str(Z) according to lemma 2.4. Thus one gets a
functor DZ = (Λ/C(X))op → Set and a polysimplicial set CX(Z) = C(X) �DZ (we will often write
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C(Z) instead of CX(Z)). This polysimplicial set is still interiorly free and O(C(Z)) is functorially
isomorphic to Str(Z).

Lemma 2.5. If X → X ′ is a két morphism of strictly polystable log �brations, then there is a

canonical isomorphism CX′(Xl) ' C(X) such that Str(Xl) = O(CX′(Xl))→ Str(Xl) = O(C(X)) is

the identity of Str(Xl).

Proof. Assume we already construct the isomorphism CX′
l−1

(Xl−1) ' C(X l−1). Then, CX′(Xl) =
D1 �C(X ′

l−1) and C(X) = D2 �C(X ′
l−1) where if x is the generic point of a stratum of X ′

l−1,
D1(x) = CX′

l,x
(Xl,x) and D2(x) = C(Xl,x). By induction on l, the problem is thus reduced to the

case where l = 1 and X → X ′ is a két morphism of strictly polystable objects over Spec k.
We have CX′(X) = DX × C(X ′) where DX maps x′ ∈ Str(X ′) to the set of strata of X above x′.
Then CX′(X) is associated to the strictly polysimplicial set C ′ = DX × C(X ′). Then

C ′n = {(x, x′, µ), x ∈ Str(X), x′ = f(x), µ : n ' Irr(X ′, x′)} = {(x, µ), x ∈ Str(X), µ : n ' Irr(X,x)}

because Irr(X,x) → Irr(X ′, x′) is an isomorphism. Thus C ′n ' Cn (and the bijection is compatible
with maps of Λ), which gives the wanted isomorphism.

Let us consider a commutative diagram

Z → Z ′

↓ ↓
X → X ′

where X → X ′ is a két morphism of strictly polystable log �bration. Then

CX(Z) = DZ/X ×C(X) ' DZ/X ×CX′(X) = DZ/X × (DX/X′×C(X ′)) = DZ/X′×C(X ′) = CX′(Z)

where DZ/X(x) = Str(Z → X)−1(x), DX/X′(x′) = Str(X → X ′)−1(x′) and DZ/X′(x′) = Str(Z →
X ′)−1(x′). There is a morphism of functors DZ/X′ → DZ′/X′ which induces a morphism of polysim-
plicial sets

CX(Z) = DZ/X′ × C(X ′)→ DZ′/X′ × C(X ′) = CX′(Z ′).
This morphism is an isomorphism if and only if Str(Z)→ Str(Z ′) is bijective.

Let Z ′ → Z be a két covering, let Z ′′ = Z ′ ×Z Z ′ and let x be a stratum of Xs, then DZ(x) =
Coker(DZ′′(x) ⇒ DZ′(x)). We deduce from it that

C(Z ′′) = Coker(C(Z ′) ⇒ C(Z)).

One may also de�ne CX(Z) for X a general polystable �bration. Let X ′ → X be an étale covering
where X ′ is strictly polystable, let X ′′ = X ′ ×X X ′ and let Z ′ and Z ′′ the pullbacks of Z to X ′ and
X ′′. then one de�nes CX(Z) = Coker(CX′′(Z ′′) ⇒ CX′(Z ′)) (it does not depend of the choice of X ′).

If Z ′ → Z is a surjective két morphism over X and Z ′′ = Z ′ ×Z Z ′, Str(Z) = Coker(Str(Z ′′) ⇒
Str(Z ′)).
One thus gets (két(X) denotes the category of két log schemes over X):

Proposition 2.6. Let X be a polystable log �bration, one has a functor CX : két(X) → (Λ)◦ Set
such that:

� if Z ′ → Z is a két covering of két(X),

C(Z) = Coker(C(Z ′ ×Z Z ′) ⇒ C(Z ′)).
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� O(C(Z)) is functorially isomorphic to Str(Z).

Remark. If one has a két morphism Y → X of polystable �brations of length l, the polysimplicial
complex C(Yl) we have just de�ne by considering Yl as két over Xl is canonically isomorphic to the
polysimplicial complex of the polystable �bration C(Y ) de�ned by Berkovich.

We say that a fs log scheme Z over a log point s is log geometrically irreducible if the underlying
scheme of Z ×s s′ is irreducible for any morphism s′ → s of log points. If Z̊/̊s is geometrically
irreducible and Z → s is saturated, then Z/s is log geometrically irreducible since the underlying
scheme of Z ×s s′ is Z̊ ×s̊ s̊′.
If Z is quasicompact, then there is a connected két covering s′ → s such that all the strata of
Zs′ are geometrically irreducible and Zs′ → s′ is saturated. Then all the strata of Zs′ are log
geometrically irreducible. In particular, for any morphism of fs log points s′′ → s′, C(Zs′′)→ C(Zs′)
is an isomorphism. The polysimplicial complex C(Zs′) for such an s′ is denoted by Cgeom(Z/s).

Let z̄ be a geometric point of Z. Let U be an étale neighborhood of z̄ such that Strgeom
z̄ (Z) →

Str(U) is an isomorphism. One de�nes C(Z)z̄ := C(U) (it does not depend on the choice of U . If
Z → X is két, C(Z)z̄ → C(X)x̄ is an isomorphism of polysimplicial sets.

Lemma 2.7. The space |C(Z)z̄| is contractible.

Proof. Let Φn : |[n]| × [0, 1]→ |[n]| be de�ned by Φn((uil), t)il = (1− t)uil + t
ni
. This is a deforma-

tion retraction to a point. These deformation retractions are compatible with surjective mapsm→ n.

One can assume that X
ψ→ Xl−1 → · · · → s is a strictly polystable �bration of length l and that

Z = X. Let x̄′ be the image of x̄ := z̄ in Xl−1. One can also assume that Strgeom
x̄ (X) → Str(X)

and Strgeom
x̄′ (Xl−1)→ Str(Xl−1) are bijections. By induction on l, one can assume that |C(Xl−1)| is

contractible.
If y′ is a stratum of Xl−1, Xy′ has a biggest stratum y and C(Xy′) ' [ny]. Then

|C(X)| = Coker(
∐

f :y1→y2∈
Λ/C(Xl−1)

|[ny′1 ]| × |[ny2 ]|
a,b

⇒
∐

y′∈Λ/C

|[ny′ ]| × |[ny]|),

where a maps |[ny′1 ]| × |[ny2 ]| to |[ny′1 ]| × |[ny1 ]| by id×f0 where f0 is the cospecialization map
C(Xy2)→ C(Xy1) given by lemma 1.3 and b maps |[ny′1 ]| × |[ny2 ]| to |[ny′2 ]| × |[ny2 ]| f

∗ × id.

One de�nes a deformation retraction Φ of
∐
y′∈Λ/C(Xl−1) |[ny′ ]|×|[ny]| by Φ(u, v, t) = (u,Φny(v, t)).

Moreover, if (z1, z2) ∈ |[ny′1 ]| × |[ny2 ]|,

Φ(a(z1, z2), t) = (z1,Φny1
(f0(z2), t)) = (z1, f0(Φny2

(z2, t))) = a(z1,Φny2
(z2, t))

because the map ny2 → ny1 inducing f0 is surjective, and

Φ(b(z1, z2), t) = (f∗z1,Φny2
(z2, t)) = b(z1,Φny2

(z2, t)).

Thus Φ induces a deformation retraction of C(X), also denoted by Φ by abuse of notation. This
retraction is compatible with ψ : |C(X)| → |C(Xl−1)| in the sense that ψ(Φ(z, t)) = ψ(z) for every
t ∈ [0, 1].Let S be the image of this retraction. Let u ∈ |C(Xl−1)| and let y′ be the stratum of Xl−1

corresponding to the cell of |C(Xl−1)| containing u. then ψ−1(u) is canonically homeomorphic to
|[ny]| (cf. [3, cor. 6.6]), and the deformation retraction of ψ−1(u) induced by Φ is just Φny . Thus
S ∩ ψ−1(u) is reduced to a point: the map S → |C(Xl−1| is bijective. Since Str(X) is �nite, |C(X)|
is compact and S is also compact since it is the image of |C(X)| by a continuous map. The map
S → C(Xl−1) is thus an homeomorphism, and C(Xl−1) is contractible by induction. Thus C(X) is
contractible.
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2.4 Tempered fundamental group of a polystable log �bration

Here we de�ne the tempered fundamental group of a log �bration X over an fs log point. If T is a
két covering of X, the topological coverings of |C(T )| will play the role of the topological coverings
of T .

Let us start by a categorical de�nition of tempered fundamental groups that we will use later in
our log geometric situation.
Consider a �bered category D → C such that:

� C is a Galois category,

� for every connected object U of C, DU is a category equivalent to ΠU -Set for some discrete
group ΠU ,

� if U and V are two objects of C, the functor DU ‘
V → DU ×DV is an equivalence,

� if f : U → V is a morphism in C, f∗ : DV → DU is exact.

Then, one can de�ne a �bered category D′ → C such that the �ber in U is the category of descent
data of D → C with respect to the morphism U → e (where e is the �nal element of C).
Let U be a connected Galois object of C and let G be the Galois group of U/e. Then D′U can be
described in the following way:

� its objects are couples (SU , (ψg)g∈G), where SU is an object of DU and ψg : SU → g∗SU is an
isomorphism in DU such that for any g, g′ ∈ G, (g∗ψ′g) ◦ψg = ψg′g (after identifying (g′g)∗ and
g∗g′∗ by the canonical isomorphism to lighten the notations).

� a morphism (SU , (ψg))→ (S′U , ψ
′
g) is a morphism φ : SU → S′U in DU such that for any g ∈ G,

ψ′gφ = (g∗φ)ψg.

There is a natural functor F0 : D′U → DU , which maps (SU , (ψg)) to SU . Let FU be a fundamental
functor DU → Set, such that AutFU = ΠU .
Let F = FUF0, and Π′

U = AutF .

Proposition 2.8. (i) The natural functor F : D′U → Π′
U -Set is an equivalence.

(ii) There is a natural exact sequence

1→ ΠU → Π′
U → G→ 1.

Proof. First notice that D′U is a boolean topos and that F is faithful and exact.
A pointed object of D′U is by de�nition a pair (S, s) with S an object of S, and s ∈ F (S). Let us
show that, to prove (i), it is enough to show that there exists a pointed object (T∞, t∞) of D′U such
that for every pointed object (S, s) of D′U , the map Hom(T∞, S)→ F (S) that maps f to F (f)(t∞)
is bijective (i.e. T∞ represents the functor F ).
The group Aut(T∞) acts on Hom(T∞, S) = F (S) by action on the left compatibly for every S: one
gets a morphism a : Aut(T∞)→ Aut(F ), which is bijective by Yoneda's lemma.
If S0 ⊂ F (S) is stable by AutF , then the subobject S0 of S de�ned as the unions of the images of
morphisms φ : T∞ → S such that F (φ)(t) ∈ S0 satis�es F (S0) = S0. Thus if S, S

′ are objects of
D′U ,

Hom(S, S′) = {S0 ↪→ S × S′|S0
∼→ S}

= {S0 ⊂ F (S)× F (S′) stable by the action of AutF |S0
∼→ F (S)}

= HomΠ′U
(F (S), F (S′)).

Thus F is fully faithful. Let S be a Π′
U -set. There exists an epimorphism S′ → S such that Π′

U

acts freely on S′ and on S′′ := S′ ×S S′. Thus there exists S′′ and S′ such that F(S′) = S′ and
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F(S′′) = S′′ (S′ and S′′ are direct sums of copies of T∞). Let S = Coker(S′′ ⇒ S′), where the two
morphisms are de�ned thanks to the full faithfulness of F . Then F(S) = S. Thus F is an equivalence.

Let us construct T∞. If S is an object of DU let S̃ =
∐
g∈G g

∗S, et

ψh : S̃ =
∐
g∈G

g∗S =
∐
gh∈G

(gh)∗S '→
∐
g∈G

h∗g∗S = h∗(
∐
g∈G

g∗S) = h∗S̃.

This de�nes an object S̃ of D′U . Then, for any object S′ of D′U , there is a natural map

HomD′U (S̃, T ) α→ HomDU
(S, F0(T ))

that maps ψ to the restriction of F0(ψ) to the subobject S of F0(S̃).
The restriction of F0(ψ) to g∗S ⊂ F0(S̃) is ψ−1

g g∗α(ψ). Hence F0(ψ) only depends on α(ψ), which
shows the injectivity of α since F is faithful. Conversely, if β ∈ HomDU

(S, F0(T )), one de�nes

β0 : F0(S̃) =
∐
g g

∗S → F0(T ) by gluing the composite morphisms g∗S
g∗β→ g∗F0(T )

ψ−1
g→ F0(T ). The

following diagram is commutative:

F0(S̃) =
∐
g∗S

ψh

//
∐
g∗F0(T )

‘
ψ−1

g // F0(T )

ψh

��
h∗F0(S̃) =

∐
h∗g∗S //

∐
h∗g∗F0(T )

‘
h∗ψ−1

g // h∗F0(T )

and thus β0 de�nes a morphism ψ ∈ HomD′U (S̃, T ) such that α(ψ) = β. Thus α is bijective.
If (S∞, s∞) is a universal pointed object of DU , then, for every T ,

Hom(S̃∞, T ) ∼→ Hom(S∞, F0(T )) ∼→ F (T ).

Thus (S̃∞, s∞) is a universal pointed object of D′U .

The functor F0 induces a morphism ΠU → Π′
U . There is also a natural exact functor F1 :

H -Set → D′U which maps a H-set Y to (Y =
∐
y∈Y {y}, (ψh)) where Y is a constant object of DU

and ψh maps y to h · y. FF1 is canonically isomorphic to the forgetful functor H -Set → Set, the
functor F1 thus induces a morphism Π′

U → H. Since ΠU = FU (S∞) and Π′
U = F (S̃∞), one only has

to see that the following exact sequence of pointed sets is exact:

1→ FU (S∞)→ F (S̃∞) =
∐
g

FU (g∗S∞)→ G→ 1

where the map
∐
g FU (g∗S∞)→ G maps FU (g∗S∞) to g.

If (Ui, ui)i∈I is a co�nal projective system of pointed Galois objects (and let P be the correspond-
ing object of pro-C), one may de�ne Btemp(D/C, P ) to be the category Lim

−→ i
D′Ui

. An isomorphism of

pro-objects P → P ′ induces an equivalence Btemp(D/C, P ′)→ Btemp(D/C, P ), so that Btemp(D/C, P )
does not depend up to equivalence on the choice of (Ui)i. Moreover, if h ∈ Gi = Gal(Ui/e) the end-
ofunctor h∗ : D′Ui

→ D′Ui
maps S = (SUi , ψg) to h∗S = (h∗SUi , ψhgψ

−1
h ). Then ψh : SUi → h∗SUi

de�nes an isomorphism S → h∗S functorially in S. Thus h∗ : D′Ui
→ D′Ui

is canonically isomorphic
to the identity of D′Ui

. Thus every automorphism of the pro-object P induces an endofunctor of
Btemp(D/C, P ) which is canonically isomorphic to the identity (functorially on AutP ).

Let (Fi)i∈I be a family of fundamental functors Fi : DUi → Set and assume one has a family
(αf )f :Ui→Uj

, indexed on the set of morphisms in I, of isomorphisms of functors Fif
∗ → Fj such that
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for any Ui
f→ Uj

g→ Uk, αg(αf · g∗) = αgf (after identifying (gf)∗ and f∗g∗ to lighten the notations).
Such a family exists if I is just N. Then, this induces a projective system (Π′

Ui
)i∈I (unique up to

isomorphism independantly of (αf ) if I=N and the functors D′Ui
→ D′Uj

are fully faithful), so that
one can de�ne

πtemp
1 (D/C, (Fi)) = lim←−Π′

Ui

Assume one has a 2-commutative diagram with �bered vertical arrows:

D1 → D2

↓ ↓
C1

f→ C2
such that f : C1 → C2 is exact, and D1,U → D2,f(U) is exact for every object U of C1.
One then gets a functor Btemp(D1/C1)→ Btemp(D2/C2).

For example, let X be a K-manifold, C be the category of �nite étale covering of X and D → C
be the �bered category such that DU is the category of topological coverings of U . Then, since
�nite étale coverings are morphisms of e�ective descent for tempered coverings, D′U can be identi-
�ed functorially with the full subcategory of Covtemp(X) of tempered coverings S such that SU is
a topological covering of U . If (Ui, ui) is a co�nal system of pointed Galois cover of (X,x), then
Btemp(C/D) becomes canonically equivalent with Covtemp(X).

Let us apply our categorical de�nition of tempered fundamental groups to our log geometrical
case.
Let X : X → Xl−1 → · · · → Spec(k) be a polystable log �bration, and assume that X is connected.
Then one has a functor Ctop : KCov(X) → Ke obtained by composing the functor C of proposi-
tion 2.6 with the geometric realization functor.
One can thus de�ne a �bered category Dtop → KCov(X) such that the �ber of a két covering of Y
of X is the category of topological coverings of Ctop(Y ) (which is equivalent to πtop

1 (Ctop(Y )) -Set).
One de�nes a �bered category DDtemp → KCov(X) such that the �ber of a két covering f : Y → X
is the category of descent data of Dtop → KCov(X) with respect to Y → X (this corresponds
heuristically to the �tempered� coverings of X that become topological after pullback by Y → X).
Let x be a log geometric point of X and let (Y, y) be a log geometrically pointed connected Galois
két covering of (X,x). Let ỹ := |C(Y )y| → |C(Y )|. The space ỹ is contractible according to lemma
2.7. Then one has a fundamental functor Fy : DtopY → Covtop(ỹ) = Set that corresponds to the
base point ỹ (Fy(S) is the set of connected components of S×|C(Y )| ỹ). Moreover, for any morphism
f : (Y ′, y′)→ (Y, y), the two functors Fy′f

∗ and Fy are canonically isomorphic.
Then one can consider the functor F(Y,y) : DDtempY → Set which associates to a descent datum T
the set Fy(TY ). The induced functor DDtempY → Aut(F(Y,y)) -Set is an equivalence of categories.
One has an exact sequence:

1→ πtop
1 (|C(Y )|, ỹ)→ Aut(F(Y,y))→ Gal(Y/X)→ 1.

Then one de�nes

πtemp
1 (X,x)L = lim←−

(Y,y)

Aut(F(Y,y)),

where the projective limit is taken over the directed category L-GalKCov(X,x) of pointed connected
Galois L-�nite két coverings of (X,x).

If x2 → x1 is a specialization of log geometric points of X, it induces a natural equivalence
between the category of pointed coverings of (X,x2) and the category of pointed coverings of (X,x1)
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(we thus identify the two categories). If Y is a pointed covering (Y, y1) of (X,x1), the corresponding
pointed covering of (X,x2) is (Y, y2) where y2 is the unique log geometric point above x2 such that
there is a specialization y2 → y1 (and this specialization is unique). There is a commutative diagram

ỹ1

##FF
FF

FF
FF

F
// ỹ2

��
|C(Y )|

This induces a canonical isomorphism Fy1 ' Fy2 , functorial in Y , so that one gets a canonical
isomorphism πtemp

1 (X,x1)L → πtemp
1 (X,x2)L. If X is connected and x1, x2 are two log geometric

points of X, there exists a sequence of specializations and cospecializations joining x1 to x2, so that
πtemp

1 (X,x1)L and πtemp
1 (X,x2)L are isomorphic.

One has an equivalence of categories between

Btemp,L
(X,x) = Lim

−→
DDtempY /L-GalKCov(X,x)

and the category πtemp
1 (X,x)L -Set of sets with an action of πtemp

1 (X,x)L that goes through a dis-
crete quotient of πtemp

1 (X,x)L.

Assume now that X is log geometrically connected, i.e. that Xk′ is connected for any két exten-
sion k′ of k. Let k̄ be a log geometric point on k, let x̄ = (x̄k′) be a compatible system of log geometric
points of Xk′ where k

′ runs through két extensions of (k, k̄) (for every k′, the set of geometric points
above x̄k is a non empty �nite set and thus the set of compatible systems of log geometric points is
a non empty pro�nite set).
Then, one de�nes πtemp-geom

1 (X, x̄)L = lim←−k′ π
temp
1 (Xk′ , x̄k′)L, where k′ runs through két extensions

of k in a log geometric point k̄. Let KCovgeom(X) = Lim
−→

KCov(Xk′) where k′ runs through két

extensions of k in k̄. It is the category of log geometric coverings of X.

If Y → X is a log geometric covering, de�ned over k′, Cgeom(Yk′) does not depend of k′, so that
one gets a functor KCovgeom(X)→ Ke which maps Y to |Cgeom(Y )|. If x̄ is a compatible system of
points, for any pointed log geometric covering (Y, ȳ) of (X, x̄), ȳ de�nes a fundamental functor Fȳ
of Dtop-geomY which are canonically isomorphic for any morphism (Y ′, ȳ′)→ (Y, ȳ). One thus get a
�bered category Dtop-geom → KCovgeom(X), whose �ber in Y is the category of topological coverings
of |Cgeom(Y )|. Then

πtemp-geom
1 (X, x̄)L := πtemp

1 (Dtop-geom /KCovgeom(X), (Fȳ))L.

3. Comparison result for the pro-(p′) tempered fundamental group

If X : X → · · · → Spec(OK) is a proper polystable log �bration, we want to compare the tempered
fundamental group of the generic �ber Xη with the tempered fundamental group of the special
�ber endowed with its natural log structure. The specialization theory of the log fundamental group
already gives us a functor from két coverings of the special �ber and algebraic coverings of the generic
�ber. To extend this to tempered fundamental groups, one has to compare, for any két covering Ts of
the special �ber, the topological space C(Ts) with the Berkovich space of the corresponding covering
Tη of the generic �ber. Thus we will de�ne, as in [3], a strong deformation retraction of T an

η to a
subset canonically homeomorphic to |C(Ts)|. We will construct this retraction étale locally, where
T has a Galois covering V ′ by some polystable log �bration over a �nite tamely rami�ed extension
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of OK . Then the retraction of the tube of Ts is obtained by descending the retraction of the tube
of V ′

s , de�ned in [3]. We will then verify that the retraction does not depend on the choice of V ′ so
that we can descend the retraction we de�ned étale locally.

3.1 Skeleton of a két log scheme over a pluristable log scheme

If X → SpecOK is a morphism of �nite type, we denote by X the completion of X along the closed
�ber Xs. The generic �ber, in the sense of Berkovich, of a locally topologically �nitely generated
formal scheme X over Spf OK will be denoted by Xη.
Let X : X → · · · → Spec(OK) be a polystable log �bration over Spec(OK).

Proposition 3.1. For every két morphism T → X, let Tη be the generic �ber, in the sense of

Berkovich, of the formal completion of T along its special �ber. Then, there is a functorial map

|C(T )s)| → Tη, which identi�es, |C(Ts)| with a subset S(T ) of Tη on which Tη retracts by strong

deformation.

Remark. Tη is naturally an analytic subdomain of T an
η . Moreover if T is proper over OK (for example

if X is proper, and T is a �nite két covering), then Tη → T an
η is an isomorphism.

Proof. Let f : T → X be a két morphism. Let x ∈ Ts. Let U : Ul → · · · → U0 be a polystable
�bration étale over X such that (Ul, xl) is an étale neighborhood of f(x), such that, for every i,
Ui has an exact chart Pi → Ai and compatible morphisms Pi → Pi+1 such that the induced mor-
phism Ui+1 → Ui×SpecZ[Pi] SpecZ[Pi+1] is étale. One has an étale neighborhood i : (V, x′)→ (T, x)
of x, a (p′)-Kummer morphism Pl → Q such that V → X factors through an étale morphism
V → Ul ×SpecZ[Pl] SpecZ[Q]. By de�nition of a (p′)-Kummer morphism, there exists n prime to p

such that Pl → 1
nPl factors through Pl → Q. Thus V has a két Galois covering that comes from a

polystable �bration U ′ = V ′ → U ′l−1 → · · · → SpecOK′ , where U ′i = Ui ×SpecZ[Pi] SpecZ[ 1
nPi] for

i 6 l and V ′ = V ×Z[Q] Z[ 1
nPl] (so that there is a strict étale morphism V ′ → U ′l ) over OK′ for some

�nite tamely rami�ed extension K ′ = K[π1/n] of K . Let us call G = ( 1
nP

gp/Qgp)∨ the Galois group
of this két covering.
The deformation retraction of V′

η de�ned in theorem 1.5 is G-equivariant, so that it de�nes a de-
formation retraction of Vη. Let S( ) denote the image of the retraction of ( )η. Then S(Vη) =
G\S(V′

η) = G\|C(V ′
s )| = |G\C(V ′

s )| = |C(Vs)| (corollary 1.6).

Let us show that the previously de�ned retraction of Uη does not depend on n. Let us start by
the case of a polystable morphism.
Let

ψ : Z1 = SpecA[P ]/(pi − λi)→ Z2 = SpecA[P ]/(pi − λsi )
where P = N|r| = ⊕(i,j)∈rNeij and pi =

∑
j eij induced by the multiplication by s on P , where s is

an integer prime to p and where λ ∈ A.
Let G be the generic �ber of the formal completion of G(r)

m at the identity; it acts on Z1 and Z2.
One has ψ(g · x) = gs · ψ(x).
Let Tij be the coordinates of G. Then |T sij−1| = |Tij−1| if |Tij−1| < 1. Thus, for t < 1, ( )s : G→ G
induces an isomorphism ( )s : Gt → Gt, and g

s
t = gt.

Thus, if t < 1 (and also for t = 1 by continuity),

ψ(xt) = ψ(gt ∗ x) = gst ∗ ψ(x) = gt ∗ ψ(x) = ψ(x)t.

For a standard polystable �bration, the same result will easily follow by induction using that

ψn(ri, t)1/s = ψn(r
1/s
i , t1/s) (we kept the notations from the sketch of the proof of theorem 1.5).
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More precisely, suppose we have the diagram:

B = B′[Yij ]/(Yi0 · · ·Yini − bi) B′oo

A = A′[Xij ]/(Xi0 · · ·Xini − ai)

φ

OO

A′

φ′

OO

oo

where φ(Xij) = Y s
ij and thus φ′(ai) = bsi , and φ̃

′ := Spf φ′ : Spf B′ → Spf A′ is a két morphism of

polystable log �brations and assume by induction that we already know that φ̃(xt) = φ̃(x)t.
Let X (resp. X′, Y, Y′) denote Spf A (resp. Spf A′, Spf B, Spf B′).
The �rst part of the retraction of Xan

η and Yan
η (consisting of the retraction �ber by �ber) commutes

with φ̃ := Spf φ according to the previous case. We thus just have to study the second part of the
retraction.
φ̃ induces a map:

SA = {(x, rij) ∈ (X′)anη × [0, 1][n]|ri0 · · · rini = |ai(x)|} ⊂ Xan
η

↓
SB = {(y, rij) ∈ (Y′)anη × [0, 1][n]|ri0 · · · rini = |bi(y)|} ⊂ Yan

η

which maps (x, rij) to (φ̃′(x), r1/sij ) (remark that |ai(x)| = |bi(φ̃′(x))|s).
Then, if (x, rij) ∈ SA (we will write y := φ̃′(x); by induction assumption, φ̃′(xt) = yt)

φ̃((x, rij)t) = φ̃((xt, ψni(rij , |ai(xt)|)k))
= (yt, ψni(rij , |ai(xt)|)

1/s
k )

= (yt, ψni(r
1/s
ij , |ai(xt)|1/s)k)

= (yt, ψni(r
1/s
ij , |bi(yt)|)k)

= (y, r1/sij )t
= φ̃(x, rij)t

Thus we get that the retraction of Uη does not depend on n.

LetW → T be another neighborhood of x satisfying the same properties as V , andW ′ de�ned in
the same way. One may assume by the previous remark that we chose the same n. LetW ′′ = V ′×TW ′.
We have a commutative diagram

W ′′

p

��

p′ // W ′

i′

��
V ′ i // T

where W ′′ = V ′ ×T W ′. . Let us show that p : W ′′ → V ′ is étale (symmetrically, p′ is étale too).
Since p is két, it is enough to prove that p is strict, i.e. that for any geometric point z ∈ W ′′,
MV ′,p(z) →MW ′′,z is an isomorphism. Let v = p(z), w = p′(z), τ = i(v) = i′(w) and ξ = f(τ) ∈ X.

Then MX,ξ = Pl/F where F is a face of Pl. Then MV ′,v = 1
nPl/Fn = 1

nMX,ξ where Fn is the
saturation of F in 1

nP . Symmetrically, one also has MW ′,w = 1
nMX,ξ. Thus,

MW ′′,z = MV ′,v ⊕MT,τ
MW ′,w

= MV ′,v ⊕MT,τ
MW ′,w

= 1
nMX/ξ ⊕MT,τ

1
nMX/ξ

= 1
nMX/ξ ⊕ 1

nM
gp
X/ξ/M

gp
T,τ

= 1
nMX/ξ,
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where the sums are sums in the category of fs monoids. Thus p is strict, and therefore étale.
Let thus v ∈ V′

η and w ∈W′
η with same image τ in Tη. Let z ∈W′′

η be above v and w. Then, for every
t ∈ [0, 1], vt = p(zt) and wt = p′(zt) according to theorem 1.5.(ii). Thus i(vt) = ip(zt) = i′p′(zt) =
i′(y′t). Thus, the retractions of the di�erent Vη are compatible and de�ne a map Tη × [0, 1] → Tη.
This map is continuous since,

∐
Vi is a covering of T,

∐
Vi,η → Tη is quasi-étale and surjective

and thus a topological factor map (as in the proof of theorem 1.5 of Berkovich; cf. [3, lem. 5.11]).
Moreover, if φ : T1 → T2 is a két morphism of két log schemes over X, φ(xt) = φ(x)t. As in theo-
rem 1.5.(vi), it is also compatible with isometric extensions of K.

Let Ṽ =
⋃
i Vi be a covering of T such that every Vi satis�es the same property as V . Since

f : Ṽη → T̃η is a topological factor map, S(Ṽη) = f−1(S(T̃η)) → S(T̃η) is also a topological factor
map. Thus one gets an isomorphism, functorial in T ,

S(Tη) = Coker(S(Ṽη)×S(Tη)S(Ṽη) ⇒ S(Ṽη))) = Coker(|C(Vs)|×|C(Ts)||C(Vs)|⇒ |C(Vs)|) = |C(Ts)|.

3.2 Comparison theorem

Let K be a complete discrete valuation �eld. Let p be the residual characteristic (which can be 0).
Let X : X → · · · → SpecOK be a proper polystable log �bration.
Let us now compare the tempered fundamental group of the generic �ber, as a K-manifold, and the
tempered fundamental group of its special �ber as de�ned in �2.4.
A geometric point x̄ of Xan

η is given by a algebraically closed complete nonarchimedean extension
Ω of K and a K-morphism x̄ : Spec Ω → X. Since X → SpecOK is proper, x̄ extends uniquely
to a morphism SpecOΩ → X. If one endows SpecOΩ of the log structure induced by OΩ\{0}, one
can extend SpecOΩ → X in a morphism of log schemes. By looking at the closed �ber, one gets a
morphism of log schemes x̃ : Spec kΩ → Xs, where Spec kΩ has the log structure induced by OΩ\{0}
(it is a log geometric point). The log geometric point x̃ is called the log reduction of x̄.

Theorem 3.2. Let x̄ be a geometric point ofXan
η , and let x̃ be its log reduction. One has a morphism

πtemp
1 (Xan

η , x̄)L → πtemp
1 (Xs, x̃)L which is an isomorphism if p /∈ L.

These morphisms are compatible with �nite extensions of K.

Proof. One has two functors L-KCov(X) → L-Covalg(Xη), which is an equivalence of categories
if p /∈ L, and L-KCov(X) → L-KCov(Xs) which is an equivalence of categories (theorem [9, th.
2.4]). One has a �bered category Dan

top(Xη) over L-KCov(Xη) whose �ber at a L-�nite két cover-
ing T of Xη is the category of topological coverings of T an. Let us call Dan

top(X) the pullback of
Dan

top(Xη)/L-KCov(Xη) to L-KCov(X): the �ber at a L-�nite két covering T of X is the category
of topological coverings of T an

η . One has also another �bered category Dsp
top(X) over L-KCov(X)

obtained by pulling back the �bered category Dtop(Xs) → L-KCov(Xs) de�ned in part 2.4 along
L-KCov(X) → L-KCov(Xs): the �ber at a L-�nite két covering T of X is the category of topo-
logical coverings of |C(Ts)|. Proposition 3.1 induces an equivalence of �bered categories Dan

top(X)→
Dsp

top(X), and thus an isomorphism πtemp
1 (Dan

top(X)/L-KCov(X)) ' πtemp
1 (Dsp

top(X)/L-KCov(X)).
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The 2-commutative diagram

Dan
top(X) //

��

Dan
top(Xη)

��
L-KCov(X) // L-Covalg(Xη)

induces a morphism

πtemp
1 (Xan

η )L = πtemp
1 (Dan

top(Xη)/L-Covalg(Xη))→ πtemp
1 (Dan

top(X)/L-KCov(X))

which is an isomorphism if p /∈ L. Similarly,

Dsp
top(X) //

��

Dsp
top(Xs)

��
L-KCov(X) // L-Covalg(Xs)

induces an isomorphism

πtemp
1 (Xs)L → πtemp

1 (Dsp
top(X)/L-KCov(X))

since L-KCov(X)→ L-KCov(Xs) is an equivalence of categories.

3.3 Geometric comparison theorem

We will assume in this section that p /∈ L.

Theorem 3.3. There is a natural isomorphism

πtemp-geom
1 (Xs)L ' πtemp

1 (Xη̄)L.

Proof. One knows, according to [1, prop 5.1.1], that

πtemp
1 (Xη̄) ' lim←−

Ki

πtemp
1 (XKi),

where Ki runs through the �nite extensions of K in K.
This induces an analog result for the L-version.
However, we would like to know, in the case where p /∈ L, if one can only take the projective limit
over tamely rami�ed extensions of K (i.e. to két extensions of Ok). Then the isomorphism we want
would simply be obtained from theorem 3.2 by taking the projective limit over két extensions of Ok.

We have to show that if T ′ is a L-�nite két geometric covering of X (which is de�ned over a �nite
tamely rami�ed extension of K according to [8, prop. 1.15]: one can thus assume that T ′ is de�ned
over K), the universal topological covering T̃ ′η of T

′
η is de�ned over some tamely rami�ed extension

of K.
By changing SpecOK by some két covering (which amounts to changing K by some tamely rami�ed
extension) one may assume that T ′ → SpecOK is saturated.
One already knows that T̃ ′η is de�ned over some �nite extension K2 of K ([1, lem 5.1.3]). Let K1 be
the maximal unrami�ed extension of K in K2. As T

′ → OK is saturated, the underlying scheme of
T ′OK2

is obtained by the base change of schemes SpecOK2 → SpecOK1 of the underlying scheme of

T ′OK1
. By looking at the special �ber, as K1 = K2 (as schemes), the morphism T ′K2

→ T ′K1
induces

an isomorphism between the underlying schemes, thus a bijection between their strata, and thus an
isomorphism |C(T ′K2

)| → |C(T ′K1
)| and S(T ′K2

)→ S(T ′K1
).
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Thus T̃ ′η is de�ned over K1.

This isomorphism is Gal(K̄,K)-equivariant (since the isomorphism for each Galois extension Ki

of K is Gal(Ki/K)-equivariant).

4. Cospecialization of pro-(p′) tempered fundamental group

Let X → Y be a proper polystable log �bration, such that Y is log smooth and proper over OK
(the properness of Y → OK is only assumed so that every point of Yη has a reduction in Ys, but
the cospecialization morphisms we will construct only depend of Y locally). In this section we will
construct the cospecialization morphisms for the (p′)-tempered fundamental group of the geometric
�bers of Xη → Yη. Thanks to theorem 3.3 we will be reduced to construct cospecialization mor-
phisms for the (p′)-tempered fundamental group of the log geometric �bers of Xs → Ys. Let thus
s̄2 → s̄1 be a specialization of log geometric points of Y , where s̄1 and s̄2 are the reductions of
geometric points η̄1, η̄2 of Yη.

We constructed in [9, th. 0.2] an equivalence of geometric (p′)-két coverings of Xη1 and Xη2 .
Now we must compare, for any such két covering Zs1 corresponding to Zs2 (which extends over
the preimage XU of some két neighborhood U of s1 in Y ), their polysimplicial sets as de�ned in
proposition 2.6. First assume that s2 is the generic point of its stratum. We will construct the
cospecialization morphism of polysimplicial set étale locally, so that we can assume X to be strictly
polystable (the properness will not be used for this). This cospecialization morphism of polysimplicial
set will be constructed in the following way. Let z be a geometric stratum of Zs1 . After some két
localization of the base so that ZU becomes saturated. Then the set of strata z2 of Zs2 such that z is
in the closure of z2 has a unique minimal element (as in lemma 1.3), which we call z′. Then, thanks
to the fact that ZU → U is saturated, the closure of z′ in the strict localization of the generic point
of z is separable onto its image. According to [6, cor. 18.9.8], z′ is geometrically connected, thus
de�ning a geometric stratum of Zs2 . One thus obtains a map from the set of geometric strata of Zs1
to the set of geometric strata of Zs2 ; this map induces a morphism of polysimplicial sets. In the case
where polysimplicial sets of the geometric �bers of Y → X are interiorly free, the cospecialisation
morphism of polysimplicial sets is an isomorphism if s1 and s2 are in the same stratum. We will end
this article by glueing our specialization isomorphism of (p′)-log tempered fundamental group with
our cospecialization morphisms of polysimplicial sets in a cospecialization morphism of tempered
fundamental groups.

4.1 Cospecialization of polysimplicial sets

In this section, we construct a cospecialization map of polysimplicial set for a composition of a két
morphism and of a log polystable �bration.

Lemma 4.1. If φ : P → Q is an integral (resp. saturated) morphism of fs monoids and F ′ is a face

of Q, let F = φ−1(F ′). Then F → F ′ is also integral (resp. saturated).

Proof. To prove that F → F ′ is integral, thanks to [12, prop. I.4.3.11], one only has to prove that
if f ′1, f

′
2 ∈ F ′ and f1, f2 ∈ F are such that f ′1φ(f1) = f ′2φ(f2), there are g′ ∈ F ′ and g1, g2 ∈ F such

that f ′1 = g′φ(g1) and f ′2 = g′φ(g2).
But there exists g′ ∈ Q and g1, g2 ∈ P that satis�es those properties since P → Q is integral. But,
since F ′ is a face of Q, g′, φ(g1), φ(g2) must be in F ′, and thus g1 and g2 are in F .
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Thanks to a criterion of T. Tsuji ([13, prop. 4.1]), an integral morphism of fs monoids f : P0 → Q0

is saturated if and only if for any a ∈ P0, b ∈ Q0 and any prime number p such that f(a)|bp, there
exists c ∈ P0 such that a|cp and f(c)|b. Let a ∈ F, b ∈ F ′ and p be a prime such that φ(a)|bp. Then
since φ : P → Q is saturated, there exists c ∈ P such that a|cp and f(c)|b. But f(c)|b implies that
f(c) ∈ F ′, whence c ∈ F .

Proposition 4.2. Let f : X → Y be a saturated log smooth morphism of fs log schemes. Assume Y̊
is strictly henselian of special point ȳ1 and let y2 ∈ Y . Let x ∈ Xȳ1 . The set A := {Z ∈ Str(Xy2)|x ∈
Z} has a biggest element Z0. Moreover, Z0 is geometrically connected.

Proof. Up to replacing Y̊ by a closed subscheme, one can assume that Y̊ is integral and y2 is the
generic point of Y . One can assume that f has a chart:

X ′ //

��

SpecZ[Q]

��
Y // SpecZ[P ]

where P is sharp, φ : P → Q is an injective saturated morphism of fs monoids, X ′ → YQ =
Y ×SpecZ[P ] SpecZ[Q] is étale, X ′ → Y factorizes through f and g : X ′ → X is étale. One also

assumes that X ′ has a unique point x′ above x. If A′ := {Z ′ ∈ Str(X ′
y2)|x

′ ∈ Z ′} has a biggest
element Z ′0, g(Z0) is a biggest element of A. Moreover, if Z ′0 is geometrically connected, g(Z ′0) is also
geometrically connected. One can thus assume X ′ = X.
Let F ′2 = P\p2 be the kernel of P → MY,y2 ; since y2 is a generic point of Y , Y → SpecZ[P ]
factorizes through Y → SpecZ[P ]/(p2) ' Z[F ′2]. Let F1 = Q\q1 be the kernel of Q → MX,x. Let
F =< F1, φ(F ′2) > be the face of Q generated by F2 and φ(F1), and let q2 = Q\F . Then q2 is the
biggest element of SpecQ above q1 contained in p2. Let X0 := X ×SpecZ[Q] SpecZ[Q]/(q2): it is a
closed subscheme of X. Set-theoretically it is the union of the strata of X whose image in Q contains
q2 (it contains x since q2 ⊂ q1).

Let us show that X0 → Y is separable (i.e. �at with geometrically reduced �bers). Since
X0 → YF = Y ×SpecZ[P ] SpecZ[Q]/(q2) ' Y ×SpecZ[F ′2] SpecZ[F ] is étale, it is enough to show
that SpecZ[F ′2] → SpecZ[F ] is separable. But F → F ′2 is saturated thanks to lemma 4.1; this im-
plies that SpecZ[F ′2]→ SpecZ[F ] is separable. According to [6, cor. 18.9.8], for everx y ∈ Y , X0(x)y
is geometrically connected (where X0(x) denotes the localization of X0 at x). Set-theoretically
X0(x)y2 is the subset of Xy2 consisting of points z which specialize to x and such that the kernel
Fz of MX,z → SpecQ is contained in F . For every point of z = X0(x)y2 , Fz is contained in F ,
contains F1 because x is a specialization of z and contains φ−1(Fz) = F ′2 because the face corre-
sponding to y2 is F

′
2: thus Fz = F . Thus X0(x)y2 is contained in a single stratum Z0 of Xy2 (Z0 is an

element of A). Since the generic point z0 of Z0 is inX0(x)y2 , Z0 must also be geometrically connected.

Let Z 6= Z0 be in A a maximal element and let z be its generic point. Let qZ be the corresponding
face of Q then qZ ⊂ q1 and φ

∗(qZ) = p2. Thus qZ ⊂ q2. Let XqZ = X×SpecZ[Q] SpecZ[Q]/(qZ) (this
is union of the strata of X ′ yhose image in Q contains qZ). As previously, XqZ (x)y2 is geometrically
connected and contains z as a generic point. It also contains z0. Since Z is open in (XqZ )y2 , and
Z ∩ XqZ (x)y2 ( XqZ (x)y2 , z must specialize in X ′

qZ
(x′)y2 to an element z′ that is not in Z. The

stratum containing z′ is in A and is bigger than Z. Thus A has no maximal element other than Z0.
Since A is locally �nite, Z0 must be the biggest element of A.

If f : X → Y is a saturated log smooth morphism of fs log schemes and ȳ2 → ȳ1 is a specialization
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of geometric points, one can apply proposition 4.2 to the pullback of f to the strict henselization of
ȳ1: one gets a nondecreasing map Str(Xȳ1)→ Str(Xȳ2).
If Z → X is két and X → Y is asaturated log smooth morphism of fs log schemes and ȳ2 → ȳ1

is a két specialization of log geometric points, there exists a két neighborhood U of ȳ1 such that
XU := X ×Y U → U is saturated. One thus gets a cospecialization map

Str(Zȳ1)→ Str(Zȳ2).

Proposition 4.3. If X → Y is proper and MY,ȳ1 → MY,ȳ2 is an isomorphism, then the cospecial-

ization map Str(Xȳ1)→ Str(Xȳ2) is bijective.

Proof. Assume Y̊ = SpecA is strictly local with special point ȳ1, integral with generic point ȳ2 and
X → Y is saturated. By pulling back along the normalization of Y̊ , one can also assume that A is
normal.
Let Z be a stratum of X̊y2 and let z be its generic point. Let Z̃ be the normalization of the closure
Z of Z (endowed with the pullback log structure). Let v : V → X be an étale morphism such that
V → Y has a global chart:

V //

��

SpecZ[Q]

��
Y // SpecZ[P ]

such that V → YQ = SpecZ[Q]×SpecZ[P ] Y is étale and P → Q is injective and saturated.
Let p ∈ SpecP be the image of ȳ1 by the map Y → SpecP and let F = P\p. The morphism
Y → SpecZ[P ] factorizes through Y → SpecZ[F ], where SpecZ[F ] is the closure of the stratum of
SpecZ[P ] corresponding to p. SinceMY,ȳ1 →MY,ȳ2 is in an isomorphism, it even factorizes through
Y → SpecZ[F gp], where SpecZ[F gp] is the stratum of SpecZ[P ] corresponding to p. If Z1 is a
stratum of Vȳ1 above a face F0 of Q, the corresponding stratum Z2 of Vȳ2 by the cospecialization
map is also above F0: the map MV,z̄1 →MV,z̄2 is an isomorphism.
Let (zi)i∈I be the family of preimages of z in V . Let qi ∈ SpecQ be the image of zi by the map
V → SpecQ. Let Fi = SpecQ\qi. According to lemma 4.1, F → Fi is a saturated morphism of
fs monoids. Then {zi} is an irreducible component of VFi = V ×SpecZ[Q] SpecZ[Fi], which is étale
above YQ ×SpecZ[Q] SpecZ[Fi] = SpecA⊗Z[F gp] Z[F−1Fi] = SpecA[F−1Fi ∩ T ], where T is a direct
summand of F gp in Qgp. F−1Fi∩T is saturated: according to [12, prop.I.3.3.1], SpecA[F−1Fi∩T ] is
normal. Hence {zi} is a connected component of VFi and is normal. Thus Z̃ ×X V =

∐
{zi}. Since,

the geometric �bers of SpecA[F−1Fi ∩ T ] → SpecA are normal for any choice of V , the geometric
�bers of Z̃ → Y are also normal.
The morphism Z̃ → Y is proper. Let Z̃ → W → Y be its Stein factorization. Since Z̃ → Y is
separable, according to [5, prop X.1.2], W → Y is an étale covering. Since Y is strictly henselian W
is a direct sum of copies of Y . Since Z̃y2 is connected, W = Y . Thus all the �bers of Z̃ → Y are

geometrically connected. Since they are normal, they are also geometrically irreducible. Since Z̃ → Z
is surjective, Z ȳ1 is also irreducible. Let z1 be the generic point of Z ȳ1 . Then for any specialization

of geometric points z̄ → z̄1, MX,z̄1 → MX,z̄ is an isomorphism (this can be checked on Z̃ ×X V if
V is a neighborhood of z̄1). The strata Z1 of Xȳ1 containing z1 should cospecialize to a stratum Z ′

bigger than Z, but thenMX,z̄′ →MX,z̄ should also be an isomorphism and thus Z ′ = Z. This shows
the surjectivity of Str(Xy1)→ Str(Xy2).
If Z ′1 ∈ Str(Xy1) cospecializes to Z, then Z ′1 ⊂ Z ȳ1 and thus Z ′1 is bigger than Z1 but then the
morphism MX,z̄′1

→ MX,z̄1 is also an isomorphism, and thus Z ′1 = Z1, which shows the injectivity
of the cospecialization map.

We now want to de�ne cospecialization maps of polysimplicial complexes. Let us begin with an
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analog of [3, lem. 6.1].

Lemma 4.4. Let X → Y be a strictly polystable morphism of log schemes and let ȳ2 → ȳ1 be

a specialization of geometric points of Y . Let x1 be a stratum of Xȳ1 and let x2 be its image in

Str(Xȳ2) by the cospecialization map. Then, given an isometric bijection µ : [n] → Irr(Xȳ1 , x1),
there exists a unique couple (I, µ′) consisting of a subset I ⊂ [w(n)] and of an isometric bijection

µ′ : [nI ]→ Irr(Xȳ2 , x2) such that

[n] → Irr(Xȳ1 , x1)
↓ ↓

[nI ] → Irr(Xȳ2 , x2)

If moreover MY,ȳ1 →MY,ȳ2 is an isomorphism, then I = [w(n)].

Proof. The uniqueness is obvious since there is no isometric bijection [nI ] → [nJ ] for I 6= J and
[n]→ [nI ] is surjective. One can replace Y by its strict henselization at ȳ1 and assume Y = Spf A.
Let π : MY,ȳ1 → A. Thanks to [3, lem. 2.10], the proposition is local on the étale topology of X so
that one can assume X = SpecB where B = B1 ⊗A · · · ⊗A Bp ⊗A C and

Bi = A[Ti0, · · · , Tini ]/(Ti0 · · ·Tini − π(mi))

with π(mi)(ȳ1) = 0 and C smooth over A. Let I = {i ∈ [p]|π(mi)(ȳ2)} = 0. Then one gets an
isometric bijection Irr(Xȳ2 , x2) ' [nI ].

Thus, if X → Y is strictly polystable, Str(Xȳ1) → Str(Xȳ2) induces a natural cospecializa-
tion morphism of polysimplicial sets C(Xȳ1) → C(Xȳ2). If MY,ȳ1 → MY,ȳ2 is an isomorphism,
C(Xȳ1)→ C(Xȳ2) maps nondegenerate polysimplices to nondegenerate polysimplices.

Let X : X = Xl → · · · → Y be a strictly polystable �bration. Assume we constructed a
cospecialization morphism of polysimplicial sets ψl−1 : C(Xl−1,ȳ2) → C(Xl−1,ȳ1) such that the
induced map Str(Xl−1,ȳ2)→ Str(Xl−1,ȳ1) obtained by applying O is the cospecialization map already
de�ned.One has C(Xȳ1) = C(Xl−1,ȳ1) �D1 and C(Xȳ2) = C(Xl−1,ȳ2) �D2. Assume Y to be strictly
local. Let y2 be the point of Y where ȳ2 lies. Let x1 ∈ Str(Xl−1,ȳ1). Let x2 be the image of x1 by
the cospecialization map Str(Xl−1,ȳ1) → Str(Xl−1,ȳ2). Let x̃2 be the image of x2 in Str(Xl−1,y2).
If z1 ∈ Str(Xx1), then the set {Z ∈ Str(Xy2)|z1 ⊂ Z} has a biggest element z̃2 according to
proposition 4.2 and is geometrically irreducible. Since {Z ∈ Str(Xx̃2)|z1 ⊂ Z} is nonempty, one has
z̃2 ∈ Str(Xx̃2) ⊂ Str(Xy2). Since z̃2 is geometrically irreducible, it de�nes a stratum z2 of Str(Xx2).
Thus one gets a map Str(Xx1)→ Str(Xx2). Moreover, if x′1 6 x1 ∈ Str(Xl−1,ȳ1) and x

′
2 is the image

of x′1 by the cospecialization map Str(Xl−1,ȳ1) → Str(Xl−1,ȳ2) (thus x′2 6 x2), then the following
diagram is commutative:

Str(Xx1)

��

// Str(Xx′1
)

��
Str(Xx2) // Str(Xx′2

)

where the horizontal arrows are given by lemma 1.3. Let us choose geometric points x̄1 and x̄2 of
Xl−1 above x1 and x2. Let us choose a specialization x̄2 → x̄1. The following diagram commutes:

Str(Xx̄1)

��

// Str(Xx̄2)

��
Str(Xx1) // Str(Xx2)
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Let z̄1 be a preimage of z1 in Str(Xx̄1) and let z̄2 be the image of z1 in Str(Xx̄2). Then Irr(Xx̄1)→
Irr(Xx1) and Irr(Xx̄2) → Irr(Xx2) are isomorphisms. One thus gets a statement similar to lemma
4.4 for z1 and z2: one gets a morphism C(Xx1) → C(Xx2), compatible with morphisms of lemma
1.3. One thus gets a morphism of functors D1 → D2ψl−1,∗.
This induces a morphism C(Xȳ1) → C(Xȳ2). If MY,ȳ1 → MY,ȳ2 is an isomorphism and x2 is the
image of x1 by the cospecialization map,MXl−1,x̄1 →MXl−1,x̄2 is also an isomorphism. By induction
on l, one gets that C(Xȳ1)→ C(Xȳ2) maps nondegenerate polysimplices to nondegenerate polysim-
plices.

If Z → X is a két morphism, the morphism Str(Zȳ2) → Str(Zȳ1) above Str(Xȳ1) → Str(Xȳ2)
induces a morphism C(Zȳ1)→ C(Zȳ2).

Assume now X is a polystable �bration over Y and Z → X is két. Let X ′ → X be étale and
surjective such that X isa strictly polystable �bration over Y Let X ′′ = X ′ ×X X ′, Z ′ = Z ×X X ′,
Z ′′ = Z ×X X ′′. Then the commutative diagram

C(X ′′
ȳ1) ⇒ C(X ′

ȳ1)
↓ ↓

C(X ′′
ȳ2) ⇒ C(X ′

ȳ2)

induces a cospecialization morphism of polysimplicial sets C(Xȳ1)→ C(Xȳ2). One gets the following
result:

Proposition 4.5. Let X be a polystable log �bration over Y . Let ȳ1 → ȳ2 be a két specializa-

tion of log geometric points. There is, for every két morphism Z → X a cospecialization map

Cgeom(Zy1/ȳ1)→ Cgeom(Zy2/ȳ2) functorial in Z.

Let us assume now that Z → Y is proper and that MY,ȳ1 →MY,ȳ2 is an isomorphism. The mor-
phism C(Zy2/ȳ1) → C(Zy2/ȳ2) maps nondegenerate polysimplices to nodegenerate polysimplices
and, according to proposition 4.3, Str(Zȳ1)→ Str(Zȳ2) is bijective.
Therefore, if one assumes moreover that Cgeom(Zy2/ȳ2) is interiorly free (this is the case if Cgeom(Zy2/ȳ2)
is interiorly free), then

Cgeom(Zy2/ȳ1)→ Cgeom(Zy2/ȳ2)

is also an isomorphism.

4.2 Specialization of tempered fundamental groups of log schemes

First, recall the result we proved in [9, �2.4] about specialization of log fundamental groups.
Let X → Y be a proper and saturated morphism of log schemes. Assume moreover X → Y to have
log geometrically connected �bers. Let ȳ2 → ȳ1 be a specialization of log geometric points of Y .
Let T be the strictly local scheme of Y at ȳ1 endowed with the inverse image log structure, and let
z be its closed point, endowed with the inverse image log structure.
One has the following arrows (de�ned up to inner homomorphisms):

πlog-geom
1 (Xy2/y2)(p

′) → πlog-geom
1 (Xz/z)(p

′) '→ πlog-geom
1 (XT /T )(p

′) ← πlog-geom
1 (Xy1/y1)(p

′).

Theorem 4.6 [9, prop. 2.4]. One has a specialization morphism

πlog-geom
1 (Xȳ2/y2)(p

′) → πlog-geom
1 (Xȳ1/y1)(p

′)

that factors through πlog-geom
1 (XT /T )(p

′).
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We can now use this with our cospecialization morphism of polysimplicial sets when these are
isomorphisms.

Proposition 4.7. Let Y be a fs log scheme, let X → Y be a proper polystable log �bration

with geometrically connected �bers. Assume moreover that the polysimplicial set Cgeom(Xs̄) of any
geometric �ber is interiorly free. Let ȳ2 → ȳ1 be a specialization of log geometric points over fs log

points y2 → y1 of Y such that MY,ȳ1 →M ȳ2 is an isomorphism. Let L be a set of primes which does

not contain the residual characteristic of y1 One has a specialization morphism de�ned up to inner

automorphism:

πtemp-geom
1 (Xȳ2)

L → πtemp-geom
1 (Xȳ1)

L.

Proof. One can assume that Y̊ is strictly local with closed point y1. There is a functor

F : KCovgeom(Xy1/ȳ1)L → KCovgeom(Xy2/ȳ2)L.

According to theorem 4.6, if Zȳ1 is some geometric két covering of Xy1/y1, it extends to a geometric
két covering of X/Y : there is a connected �nite pointed két covering (U, ū1) of (Y, ȳ1) such that Zȳ1
extends to a két covering ZU → XU := X×Y U . This extension becomes unique after replacing U by
some bigger covering. If ū2 → ū1 is the két specialization of log geometric points lifting ȳ2 → ȳ1, then
(ZU )ū2 is nothing but the geometric két covering F (Zȳ1) of Xȳ2 . We will simply denote it by Zȳ2 .
One has an isomorphism Cgeom(Zȳ1) ' Cgeom(Zȳ2) functorially in Zȳ1 . One gets a cospecialization
functor of �bered categories:

Dtop-geom(Xȳ1) → Dtop-geom(Xȳ2)
↓ ↓

KCovgeom(Xy1/y1)L → KCovgeom(Xy2/y2)L

and thus a specialization morphism πtemp-geom
1 (Xȳ2)

L → πtemp-geom
1 (Xȳ1)

L.

4.3 Cospecialization morphisms of pro-(p′) tempered fundamental groups

Let K be a discrete valuation �eld, and SpecOK is endowed with its usual log structure, and assume
that the residual characteristic p of K is not in L. Let Y → SpecOK be a morphism of fs log schemes
such that Y̊ is locally noetherian. Let Y be the formal completion of Y along its closed �ber. Then
Yη is an analytic domain of Y an

K . Let Y0 = Yη ∩ Y an
tr ⊂ Y an

K .
Let X → Y be a proper and polystable log �bration with geometrically connected �bers.
Let ỹ be a K ′-point of Y0 where K

′ is a complete extension of K. One has canonical morphism of log
schemes SpecOK′ → Y where SpecOK′ is endowed with the log structure given by OK′\{0} → OK′ .
The log reduction s̃ of ỹ is the log point of Y corresponding to the special point of SpecOK′ with
the inverse image of the log structure of SpecOK′ . If K ′ has discrete valuation, then s̃ is a fs log
point. If K ′ is algebraically closed, s̃ is a geometric log point.

Let P̃t
an

(Y ) be the category whose objects are geometric points ȳ of Y0, such that H(y) is dis-
cretely valued (where y is the underlying point of ȳ) and Hom(ȳ, ȳ′) is the set of két specializations
from s̄ to s̄′, where s̄ and s̄′ are the log reductions of ȳ and ȳ′, such that there exists some special-
ization ȳ → ȳ′ of geometric points in the sense of algebraic étale topology for which the following
diagram commutes:

ȳ //

��

s̄

��
ȳ′ // s̄′
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Let Ptan(Y ) be the category de�ned from P̃t
an

(Y ) by inverting the class of morphisms ȳ → ȳ′ for
which s̄→ s̄′ is a cospecialization isomorphism.
Let Ptan

0 (Y ) be the category obtained from P̃t
an

(Y ) by inverting the class of morphisms ȳ → ȳ′ such
that MY,s̄′ →MY,s̄ is an isomorphism.
Let OutGptop be the category of topological groups with outer morphisms.

Theorem 4.8. There is a functor πtemp
1 (X(·)) : Ptan(Y )op → OutGptop sending ȳ to πtemp

1 (Xȳ).
If, for every geometric point bar s of Y , the polysimplicial set C(Xs̄) is interiorly free, then the

functor πtemp
1 (X(·)) factors through Ptan

0 (Y )op.

Proof. Let ȳ2 → ȳ1 be a morphism P̃t
an

(Y ). One has to construct a cospecialization morphism
πtemp

1 (Xȳ1)→ πtemp
1 (Xȳ2).

One has a cospecialization functor

F : KCovgeom(Xs1/s1)
L → KCovgeom(Xs2/s2)

L

which factors through KCovgeom(XT /T )L where T is the strict localization at s1.
The cospecialization functor KCovgeom(Xsi/si)

L → Covalg(Xȳi) is an equivalence since yi ∈ Ytr

([8, th. 1.4]). If one choses a specialization ȳ2 → ȳ1 above s̄2 → s̄1, the functor Covalg(Xȳi)
L →

Covalg(Xȳ2)
L is also an equivalence. One gets that F is an equivalence.

If Zs1 is some geometric két covering of Xs1 , it extends thanks to corollary 4.6 to some két
neighborhood (U, ū1) of s̄1 in T . Let ZU → U be this extension (unique after replacing U by some
smaller neighborhood of s̄1). Let ū2 → ū1 be the unique lifting of s̄2 → s̄1. Then Zs̄2 := F (Zs̄1) is
nothing but Zū2 . One has a cospecialization morphism Cgeom(Zs̄1) → Cgeom(Zs̄2), which induces a
specialization functor

Dtop-geomXs2
(Zs2)→ Dtop-geomXs2

(Zs1).

It is an equivalence of categories if s̄2 → s̄1 is a cospecialization isomorphism or if MY,s̄1 → MY,s̄2

is an isomorphism and all the geometric �bers of X → Y have interiorly free polysimplicial sets.
Thus we have a 2-commutative diagram:

Dtop-geomXs1
→ Dtop-geomXs2

↓ ↓
KCovgeom(Xs1/s1)

L F−1

→ KCovgeom(Xs2/s2)
L

where F−1 is some quasi inverse of F . This induces a cospecialization outer morphism

πtemp-geom
1 (Xs1/s1)

L → πtemp-geom
1 (Xs2/s2)

L.

The comparison morphisms of theorem 3.3 gives us the wanted morphism, which is an isomorphism
if s̄2 → s̄1 is a cospecialization isomorphism or if MY,s̄1 → MY,s̄2 is an isomorphism and all the
geometric �bers of X → Y have interiorly free polysimplicial sets.
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