Metric ultraproducts of metric groups

Michal Doucha

Université de Franche-Comté, Besançon

June 6, 2016

An arbitrary topological group with a norm/left-invariant metric can be approximated by finite normed groups.

An arbitrary topological group with a norm/left-invariant metric can be approximated by finite normed groups.

More precisely, there is a countable sequence of finite normed groups such that any finite subset of any normed group is ε -approximated by all but finitely many of them, for any $\varepsilon > 0$.

An arbitrary topological group with a norm/left-invariant metric can be approximated by finite normed groups.

More precisely, there is a countable sequence of finite normed groups such that any finite subset of any normed group is ε -approximated by all but finitely many of them, for any $\varepsilon > 0$.

Theorem

There is a sequence of finite normed groups whose metric ultraproduct contains isometrically as a subgroup every separable normed topological group. A metric *d* on a group *G* is *left-invariant* if $d(x, y) = d(g \cdot x, g \cdot y)$ for every $x, y, g \in G$. Right-invariance and bi-invariance are defined analogously.

A metric *d* on a group *G* is *left-invariant* if $d(x, y) = d(g \cdot x, g \cdot y)$ for every $x, y, g \in G$. Right-invariance and bi-invariance are defined analogously.

A norm (or length function/value) on a group G is a function $\lambda: G \to \mathbb{R}^+_0$ satisfying:

•
$$\lambda(g) = 0$$
 iff $g = 1_G$;

2
$$\lambda(g) = \lambda(g^{-1})$$
, for every $g \in G$;

$$\ \, {\bf 0} \ \, \lambda(g\cdot h)\leq \lambda(g)+\lambda(h), \ \, \text{for every} \ \, g,h\in G.$$

A metric *d* on a group *G* is *left-invariant* if $d(x, y) = d(g \cdot x, g \cdot y)$ for every $x, y, g \in G$. Right-invariance and bi-invariance are defined analogously.

A norm (or length function/value) on a group G is a function $\lambda: G \to \mathbb{R}^+_0$ satisfying:

1
$$\lambda(g) = 0$$
 iff $g = 1_G$;

2
$$\lambda(g) = \lambda(g^{-1})$$
, for every $g \in G$;

 $\ \, {\bf 0} \ \, \lambda(g\cdot h)\leq \lambda(g)+\lambda(h), \, \text{for every } g,h\in G.$

If a norm λ additionally satisfies $\lambda(g^{-1} \cdot h \cdot g) = \lambda(h)$, then we shall call it *conjugacy-invariant*.

If λ is a norm on G, then

- the formula $d_{\lambda}^{L}(g,h) = \lambda(g^{-1} \cdot h)$ defines a left-invariant metric,
- the formula $d_{\lambda}^{R}(g,h) = \lambda(h \cdot g^{-1})$ defines a right-invariant metric.

If λ was conjugacy-invariant, then $d_{\lambda}^{L} = d_{\lambda}^{R}$ is a bi-invariant metric.

If λ is a norm on G, then

- the formula $d_{\lambda}^{L}(g,h) = \lambda(g^{-1} \cdot h)$ defines a left-invariant metric,
- the formula $d_{\lambda}^{R}(g,h) = \lambda(h \cdot g^{-1})$ defines a right-invariant metric.

If λ was conjugacy-invariant, then $d_{\lambda}^{L}=d_{\lambda}^{R}$ is a bi-invariant metric.

Conversely, if *d* is left- or right-invariant metric, then the formula $\lambda_d(g) = d(g, 1_G)$ defines a norm.

Moreover, if d was bi-invariant, then λ_d is conjugacy-invariant.

Let G be a group with a norm λ . Then G with the topology given by λ is a topological group iff

for every $g \in G$ for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\forall h \in G \ (\lambda(h) < \delta \Rightarrow \lambda(g^{-1} \cdot h \cdot g) < \varepsilon).$$

Let G be a group with a norm λ . Then G with the topology given by λ is a topological group iff

for every $g \in G$ for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\forall h \in G \ (\lambda(h) < \delta \Rightarrow \lambda(g^{-1} \cdot h \cdot g) < \varepsilon).$$

We shall such norms *continuous*.

Example: Conjugacy-invariant norms.

Non-example: Take F_{∞} freely generated by $(g_n)_{n \in \mathbb{N}}$. For any reduced word $w_1 \dots w_m$ over the alphabet $\{g_i, g_i^{-1} : i \in \mathbb{N}\}$ set

$$\lambda(w_1\ldots w_m)=\sum_{i=1}^m \rho(w_i)$$

where $\rho(w_i) = 1/n$ iff $w_i = g_n$ or $w_i = g_n^{-1}$.

Non-example: Take F_{∞} freely generated by $(g_n)_{n \in \mathbb{N}}$. For any reduced word $w_1 \dots w_m$ over the alphabet $\{g_i, g_i^{-1} : i \in \mathbb{N}\}$ set

$$\lambda(w_1\ldots w_m)=\sum_{i=1}^m \rho(w_i)$$

where $\rho(w_i) = 1/n$ iff $w_i = g_n$ or $w_i = g_n^{-1}$. Then $\lim_i \lambda(g_i) = 0$, however $\lim_i \lambda(g_1^{-1} \cdot g_i \cdot g_1) = 2$.

Theorem [Birkhoff-Kakutani]

If G is a first-countable Hausdorff topological group, then it admits a compatible continuous norm.

Theorem [Birkhoff-Kakutani]

If G is a first-countable Hausdorff topological group, then it admits a compatible continuous norm.

Fact

For G a Hausdorff topological group, TFAE:

- *G* is SIN, i.e. it admits a neighborhood basis of the identity consisting of open sets closed under conjugation,
- G admits a compatible norm λ such that there is a single modulus of continuity for every g ∈ G for the function h → λ(g⁻¹ ⋅ h ⋅ g),
- G admits a conjugacy-invariant norm.

Let C be a class of normed groups (with norms bounded by 1). Say that a (discrete) group G is C-approximable if there is some constant $K \in (0, 1)$ such that for any finite subset $F \subseteq G$ and any $\varepsilon > 0$ there is $(H, \lambda) \in C$ and a map $\phi : F \to H$ such that Let C be a class of normed groups (with norms bounded by 1). Say that a (discrete) group G is C-approximable if there is some constant $K \in (0, 1)$ such that for any finite subset $F \subseteq G$ and any $\varepsilon > 0$ there is $(H, \lambda) \in C$ and a map $\phi : F \to H$ such that

•
$$\lambda(\phi(1_G)) < \varepsilon$$
, if $1_G \in F$;

- $\ \ \, {\it O} \ \ \, d^L_\lambda(\phi(g\cdot h),\phi(g)\cdot\phi(h))<\varepsilon, \ \, {\it for \ all \ \ g,h\in F};$
- $d^{L}_{\lambda}(\phi(g),\phi(h)) > K, \text{ for all } g,h \in F.$

Sofic groups: groups approximable by finite permutation groups equipped with the normalized Hamming norm; i.e for ρ ∈ S_N, λ_H(ρ) = 1/n · |{i ≤ n : ρ(i) ≠ i}|.

- Sofic groups: groups approximable by finite permutation groups equipped with the normalized Hamming norm; i.e for $\rho \in S_N$, $\lambda_H(\rho) = 1/n \cdot |\{i \le n : \rho(i) \ne i\}|$.
- Hyperlinear groups: groups approximable by groups of finite-dimensional unitary matrices equipped with the normalized 'Hilbert-Schmidt' norm; for u ∈ U(n), set λ_{HS}(u) = 1/√n ⋅ ||Id − u||_{HS}.

- Sofic groups: groups approximable by finite permutation groups equipped with the normalized Hamming norm; i.e for $\rho \in S_N$, $\lambda_H(\rho) = 1/n \cdot |\{i \le n : \rho(i) \ne i\}|$.
- Hyperlinear groups: groups approximable by groups of finite-dimensional unitary matrices equipped with the normalized 'Hilbert-Schmidt' norm; for u ∈ U(n), set λ_{HS}(u) = 1/√n ⋅ ||Id − u||_{HS}.
- Weakly sofic group: groups approximable by finite groups equipped with an arbitrary conjugacy-invariant norm.

- Sofic groups: groups approximable by finite permutation groups equipped with the normalized Hamming norm; i.e for $\rho \in S_N$, $\lambda_H(\rho) = 1/n \cdot |\{i \le n : \rho(i) \ne i\}|$.
- Hyperlinear groups: groups approximable by groups of finite-dimensional unitary matrices equipped with the normalized 'Hilbert-Schmidt' norm; for u ∈ U(n), set λ_{HS}(u) = 1/√n ⋅ ||Id − u||_{HS}.
- Weakly sofic group: groups approximable by finite groups equipped with an arbitrary conjugacy-invariant norm.
- Weakly hyperlinear groups: groups approximable by compact groups with an arbitrary conjugacy-invariant norm.

Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} . Let $(G_n)_n$ be a sequence of some metric structures, uniformly metrically bounded, and with equi-uniformly continuous operations.

Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} . Let $(G_n)_n$ be a sequence of some metric structures, uniformly metrically bounded, and with equi-uniformly continuous operations.

Then $d_{\mathcal{U}}((g_n)_n, (h_n)_n) = \lim_{\mathcal{U}} d(g_n, h_n)$, for $(g_n)_n, (h_n)_n \in \prod_n G_n$ is a complete pseudometric on $\prod_n G_n$ and the equivalence relation given by having pseudodistance zero is a congruence relation with respect to the operations. So we can form a quotient denoted by $\prod_{\mathcal{U}} G_n$ called the metric ultraproduct of the sequence $(G_n)_n$. **Example:** Let $(G_n, \lambda_n)_n$ be a sequence of groups with conjugacy-invariant norms bounded by 1.

Then $\prod_{\mathcal{U}} G_n$ is a group with a conjugacy-invariant norm.

Example: Let $(G_n, \lambda_n)_n$ be a sequence of groups with conjugacy-invariant norms bounded by 1.

Then $\prod_{\mathcal{U}} G_n$ is a group with a conjugacy-invariant norm. It is analogously defined as the metric quotient $(G_n)_{\ell_{\infty}}/\mathcal{N}$, where $(G_n)_{\ell_{\infty}}$ is $\prod_n G_n$ with the supremum norm and $\mathcal{N} = \{(g_n)_n \in \prod_n G_n : \lim_{\mathcal{U}} \lambda_n(g_n) = 0\}$ is the set of sequences of elements whose norms converge to zero along \mathcal{U} . That is easily checked to be a closed normal subgroup. Let again \mathcal{C} be some class of groups equipped with conjugacy-invariant norm (bounded by 1).

Let again \mathcal{C} be some class of groups equipped with conjugacy-invariant norm (bounded by 1).

Fact

A countable group G is C-approximable iff there are a sequence $(G_n)_n \subseteq C$, a non-principal ultrafilter \mathcal{U} on \mathbb{N} and an algebraic monomorphism $\phi : G \hookrightarrow \prod_{\mathcal{U}} G_n$ (where the elements of $\phi[G]$ are uniformly separated).

There is a universal separable group with conjugacy-invariant norm bounded by 1, i.e. every separable group with conjugacy-invariant norm bounded by 1 embeds into it via an isometric homomorphism.

There is a universal separable group with conjugacy-invariant norm bounded by 1, i.e. every separable group with conjugacy-invariant norm bounded by 1 embeds into it via an isometric homomorphism. The group is a completion of a direct limit of finitely generated free groups with distinguished finite subsets and conjugacy-invariant norms, bounded by 1, on them. That is, we have a sequence $(F_1, A_1, \lambda_1) \le (F_2, A_2, \lambda_2) \le \dots (F_m, A_m, \lambda_2) \le \dots$, where F_n is a free of *n* free generators and $A_n \subseteq F_n$ a finite subsets, λ_n a 'partial' conjugacy-invariant norm on A_n .

Consequence

Groups with conjugacy-invariant norms bounded by 1 are approximable by finitely generated free groups with 'finitely-determined' norm. Actually, the same is true without the boundedness condition.

Consequence

Groups with conjugacy-invariant norms bounded by 1 are approximable by finitely generated free groups with 'finitely-determined' norm. Actually, the same is true without the boundedness condition.

Problem

Finitely generated free groups are residually finite. Can one use that along with the constructions above to prove that every group is weakly sofic, resp. a stronger assertion that every group with conjugacy-invariant norm is approximable by finite groups with conjugacy-invariant norm? Let (G, λ) be a normed group. For every $g \in G$ define $\Gamma_g : [0, \infty) \rightarrow [0, \infty)$ the *minimal modulus of continuity* as follows:

Let (G, λ) be a normed group. For every $g \in G$ define $\Gamma_g : [0, \infty) \rightarrow [0, \infty)$ the minimal modulus of continuity as follows:For $r \in [0, \infty)$ set

$$\Gamma_g(r) = \sup\{\lambda(g^{-1} \cdot h \cdot g), \lambda(g \cdot h \cdot g^{-1}) : \lambda(h) \leq r\}.$$

Let (G, λ) be a normed group. For every $g \in G$ define $\Gamma_g : [0, \infty) \rightarrow [0, \infty)$ the minimal modulus of continuity as follows:For $r \in [0, \infty)$ set

$$\Gamma_g(r) = \sup\{\lambda(g^{-1} \cdot h \cdot g), \lambda(g \cdot h \cdot g^{-1}) : \lambda(h) \le r\}.$$

 λ on G is conjugacy-invariant if and only if for every $g \in G$, $\Gamma_g = \mathrm{id}$, i.e. $\Gamma_g(r) = r$ for every $g \in G$ and $r \in [0, \sup_{h \in G} \lambda(h)]$.

Let (F, λ) be a finitely generated free group with a conjugacy-invariant norm. Let $A \subseteq F$ be a finite subset and let $\varepsilon > 0$. Then there exist a finite normed group (H, ρ) and a map $\phi : A \to H$ such that

Let (F, λ) be a finitely generated free group with a conjugacy-invariant norm. Let $A \subseteq F$ be a finite subset and let $\varepsilon > 0$. Then there exist a finite normed group (H, ρ) and a map $\phi : A \to H$ such that

 the map φ is a partial monomorphism preserving the norm (resp. isometric);

Let (F, λ) be a finitely generated free group with a conjugacy-invariant norm. Let $A \subseteq F$ be a finite subset and let $\varepsilon > 0$. Then there exist a finite normed group (H, ρ) and a map $\phi : A \to H$ such that

- the map φ is a partial monomorphism preserving the norm (resp. isometric);
- Solution for every *a* ∈ *A*, we have $\Gamma_{\phi(a)} \le (1 + \varepsilon)$ id, i.e. for every *a* ∈ *A* and *r* ∈ [0, max_{*h*∈*H*} $\rho(h)$] we have

$$\Gamma_{\phi(a)}(r) \leq r + \varepsilon r.$$

There exists a countable sequence of finite normed groups (G_n, λ_n) such that for every normed topological group (H, ρ) and any finite subset $A \subseteq H$ and ε there exists N_0 such that for every $n \ge N_0$ there exists a map $\phi : A \to G_n$ such that for every $a \in A$

There exists a countable sequence of finite normed groups (G_n, λ_n) such that for every normed topological group (H, ρ) and any finite subset $A \subseteq H$ and ε there exists N_0 such that for every $n \ge N_0$ there exists a map $\phi : A \to G_n$ such that for every $a \in A$

$$|\rho(\mathbf{a}) - \lambda_n(\phi(\mathbf{a}))| < \varepsilon,$$

٩

٠

There exists a countable sequence of finite normed groups (G_n, λ_n) such that for every normed topological group (H, ρ) and any finite subset $A \subseteq H$ and ε there exists N_0 such that for every $n \ge N_0$ there exists a map $\phi : A \to G_n$ such that for every $a \in A$

$$|\rho(\mathbf{a}) - \lambda_n(\phi(\mathbf{a}))| < \varepsilon,$$

$$\Gamma^H_a pprox \Gamma^{G_n}_{\phi(a)}$$

Observation

Every finitely generated normed group (G, ρ) may be viewed as a finitely generated free group with a pseudonorm.

Observation

Every finitely generated normed group (G, ρ) may be viewed as a finitely generated free group with a pseudonorm.

Let g_1, \ldots, g_n be some generators of G. Let F be a free group freely generated by g_1, \ldots, g_n and let $\phi : F \hookrightarrow G$ be the canonical epimorphism. Then we define a pseudonorm λ on F by setting

$$\lambda(f) = \rho(\phi(f)),$$

for every $f \in F$.

Lemma

Let *F* be a finitely generated free group with a pseudonorm λ . Let $A \subseteq F$ be a finite subset and $\varepsilon > 0$. Then there exists a rational norm ρ on *F* (determined by values on *A*) such that for every $a \in A$,

 $|\lambda(a) - \rho(a)| < \varepsilon.$

Lemma

Let F_1, \ldots, F_n be finitely generated free groups with norms $\lambda_1, \ldots, \lambda_n$. Then there exists a norm λ on $F_1 * \ldots * F_n$ such that

э

Lemma

Let F_1, \ldots, F_n be finitely generated free groups with norms $\lambda_1, \ldots, \lambda_n$. Then there exists a norm λ on $F_1 * \ldots * F_n$ such that

- for every $i \leq n$, $\lambda \upharpoonright F_i = \lambda_i$,
- for every free generator $g \in F_i$, $i \leq n$, $\Gamma_g^{F_i} \approx \Gamma_g^{F_1 * \dots * F_n}$.

Let (F, λ) be a finitely generated free group with a norm. Let $A \subseteq F$ be a finite subset. Then there exist a finite normed group (H, ρ) and a map $\phi : A \to H$ such that

Let (F, λ) be a finitely generated free group with a norm. Let $A \subseteq F$ be a finite subset. Then there exist a finite normed group (H, ρ) and a map $\phi : A \to H$ such that

() the map ϕ is a partial monomorphism preserving the norm;

Let (F, λ) be a finitely generated free group with a norm. Let $A \subseteq F$ be a finite subset. Then there exist a finite normed group (H, ρ) and a map $\phi : A \to H$ such that

() the map ϕ is a partial monomorphism preserving the norm;

2) for each
$$a \in A$$
, $\Gamma_a^F \approx \Gamma_{\phi(a)}^H$

Let $(G_n, \lambda_n)_n$ be a sequence of normed groups and let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} . Let $(G_n)_{\ell_{\infty}}$ be the restricted direct product $\{(g_n)_n \in \prod_n G_n : \sup_n \lambda_n(g_n) < \infty\}$. Let $(G_n)_{\mathcal{C}}$ be the subset of elements "continuous" in the ultraproduct, i.e. the set

$$\{(g_n)_n \in (G_n)_{\ell_{\infty}} : \forall \varepsilon > 0 \; \exists \delta > 0 \; \exists A \in \mathcal{U} \}$$

 $\forall n \in A \ \forall h \in G_n(\lambda_n(h) < \delta \Rightarrow \lambda_n(g_n^{-1} \cdot h \cdot g_n) < \varepsilon \wedge \lambda_n(g_n \cdot h \cdot g_n^{-1}) < \varepsilon \}.$

Let $(G_n, \lambda_n)_n$ be a sequence of normed groups and let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} . Let $(G_n)_{\ell_{\infty}}$ be the restricted direct product $\{(g_n)_n \in \prod_n G_n : \sup_n \lambda_n(g_n) < \infty\}$. Let $(G_n)_{\mathcal{C}}$ be the subset of elements "continuous" in the ultraproduct, i.e. the set

$$\{(g_n)_n \in (G_n)_{\ell_{\infty}} : \forall \varepsilon > 0 \; \exists \delta > 0 \; \exists A \in \mathcal{U} \}$$

 $\forall n \in A \ \forall h \in G_n(\lambda_n(h) < \delta \Rightarrow \lambda_n(g_n^{-1} \cdot h \cdot g_n) < \varepsilon \wedge \lambda_n(g_n \cdot h \cdot g_n^{-1}) < \varepsilon \}.$

 $(G_n)_{\mathcal{C}}$ is a subgroup of $(G_n)_{\ell_{\infty}}$. If all the norms λ_n were conjugacy-invariant (or equicontinuous) then $(G_n)_{\mathcal{C}} = (G_n)_{\ell_{\infty}}$.

If we define the ultraproduct pseudonorm $\lambda_{\mathcal{U}}$ on $(G_n)_{\mathcal{C}}$, i.e. we set

$$\lambda_{\mathcal{U}}((g_n)_n) = \lim_{\mathcal{U}} \lambda_n(g_n)$$

for every $(g_n)_n \in (G_n)_{\mathcal{C}}$, then $\lambda_{\mathcal{U}}$ is continuous. Therefore, the set of $\lambda_{\mathcal{U}}$ -zero elements $N = \{(g_n)_n : \lambda_{\mathcal{U}}((g_n)_n) = 0\}$ is a closed normal subgroup.

We denote the quotient $(G_n)_{\mathcal{C}}/N$ by $(G_n)_{\mathcal{U}}$.

Facts

If all the (G_n, λ_n)'s are conjugacy-invariant, then (G_n)_U is the standard ultraproduct.

- ● ● ●

Facts

- If all the (G_n, λ_n)'s are conjugacy-invariant, then (G_n)_U is the standard ultraproduct.
- $(G_n)_{\mathcal{U}}$ is complete, i.e. whenever $(u_n)_n \subseteq (G_n)_{\mathcal{U}}$ is a sequence from the ultraproduct such that both $(u_n)_n$ and $(u_n^{-1})_n$ are Cauchy, then there is $u \in (G_n)_{\mathcal{U}}$ such that

$$\lim_{n} u_{n} = u$$

and

$$\lim_{n} u_{n}^{-1} = u^{-1}.$$

Metric ultraproducts

Facts

There exists a sequence of finite normed groups (G_n, λ_n)_n such that for any non-principal ultrafilter U on N we have that (G_n)_U = {1}.

Metric ultraproducts

Facts

- There exists a sequence of finite normed groups (G_n, λ_n)_n such that for any non-principal ultrafilter U on N we have that (G_n)_U = {1}.
- For every normed group (G, λ) and an ultrafilter \mathcal{U} on \mathbb{N} , we have $G \hookrightarrow_{iso} (G)_{\mathcal{U}}$.

Metric ultraproducts

Facts

- There exists a sequence of finite normed groups (G_n, λ_n)_n such that for any non-principal ultrafilter U on N we have that (G_n)_U = {1}.
- For every normed group (G, λ) and an ultrafilter \mathcal{U} on \mathbb{N} , we have $G \hookrightarrow_{iso} (G)_{\mathcal{U}}$.

However, for example consider ${\it S}_\infty$ with some compatible norm, e.g.

$$\lambda_1(\rho) = 1/\min\{n : \rho(n) \neq n\}$$

or

$$\lambda_2(\rho) = \sum_{i:\rho(i)\neq i} 1/2^i.$$

Then for any ultrafilter $\mathcal U$ on $\mathbb N$ we have

$$(S_{\infty})_{\mathcal{U}}\cong S_{\infty}.$$

Let (G_n, λ_n) be the sequence of the finite normed groups from the main theorem and \mathcal{U} be some non-principal ultrafilter on \mathbb{N} . Then $(G_n)_{\mathcal{U}}$ contains isometrically as a subgroup every separable normed topological group.

Choose an increasing sequence of finite subsets $H_1 \subseteq H_2 \subseteq ...$ such that $H = \bigcup_n H_n$, and a decreasing sequence $(\varepsilon_n)_n$ such that $\lim_n \varepsilon_n = 0$.

Choose an increasing sequence of finite subsets $H_1 \subseteq H_2 \subseteq ...$ such that $H = \bigcup_n H_n$, and a decreasing sequence $(\varepsilon_n)_n$ such that $\lim_n \varepsilon_n = 0$.

By the main theorem, there is an increasing sequence $1 \leq k_1 < k_2 < \ldots$ such that for every *n* and every $k_n \leq i < k_{n+1}$ there is a map $\phi_i : H_n \to G_i$ which is preserves the norm by an ε_n error and does not change the moduli of continuity "too much".

Choose an increasing sequence of finite subsets $H_1 \subseteq H_2 \subseteq ...$ such that $H = \bigcup_n H_n$, and a decreasing sequence $(\varepsilon_n)_n$ such that $\lim_n \varepsilon_n = 0$.

By the main theorem, there is an increasing sequence $1 \leq k_1 < k_2 < \ldots$ such that for every *n* and every $k_n \leq i < k_{n+1}$ there is a map $\phi_i : H_n \to G_i$ which is preserves the norm by an ε_n error and does not change the moduli of continuity "too much".

Then for every $h \in H$, for all but finitely many $i \in \mathbb{N}$, $\phi_i(h)$ is defined. Thus we define $\Phi : H \hookrightarrow (G_n)_{\mathcal{U}}$ by

 $\Phi(h) = (\phi_i(h))_i.$

It follows that $\Phi : H \hookrightarrow (G_n)_{\mathcal{U}}$ is an isometric embedding for non-principal ultrafilter (for any ultrafilter extending the filter of co-finite sets).

Since $(G_n)_{\mathcal{U}}$ is complete, it contains isometrically \mathbb{H} .

Let (F, λ) be a finitely generated free group with a conjugacy-invariant norm, $A \subseteq F$ a finite subset and $\varepsilon > 0$. Does there exist a finite group (H, ρ) with a conjugacy-invariant norm and a map $\phi : A \to H$ such that

• ϕ is an ε -approximate homomorphism, i.e. $d_{\rho}(\phi(a \cdot b), \phi(a) \cdot \phi(b)) < \varepsilon$ for every $a, b \in A$, Let (F, λ) be a finitely generated free group with a conjugacy-invariant norm, $A \subseteq F$ a finite subset and $\varepsilon > 0$. Does there exist a finite group (H, ρ) with a conjugacy-invariant norm and a map $\phi : A \to H$ such that

• ϕ is an ε -approximate homomorphism, i.e. $d_{\rho}(\phi(a \cdot b), \phi(a) \cdot \phi(b)) < \varepsilon$ for every $a, b \in A$,

•
$$|\lambda(a) - \rho(\phi(a))| < \varepsilon$$
, for every $a \in A$?