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A geometric approach to topological groups

The goal of these talks is to present a geometric approach to the study of
Polish or even general topological groups.

This theory will be an extension of geometric group for finitely or
compactly generated groups, but will also encompass other tools of a
similar nature such as geometric non-linear functional analysis.

Basic motivating examples include:

Finitely generated groups and locally compact groups,

Banach spaces,

Homeomorphism groups of manifolds.
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Example 1: Word metrics

Consider a group G with a fixed symmetric generating set 1 ∈ S ⊆ G .

We may define a length function on G by letting

‖x‖S = min(k
∣∣ ∃s1, . . . , sk ∈ S : x = s1 · · · sk).

From this, we define a left-invariant metric on Γ, called the word metric, by

ρS(x , y) = ‖x−1y‖S = min(k
∣∣ ∃s1, . . . , sk ∈ S : y = xs1 · · · sk).

The fundamental observation of geometric group theory is that any two
finite generating sets S and S ′ for a finitely generated group G , induce
quasi-isometric word metrics, i.e.,

1

K
ρS − C 6 ρS ′ 6 KρS + C

for some constants K ,C .
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For example, let F2 be the free non-abelian group on generators a, b and
set Σ = {1, a, b, a−1, b−1}.

• •

•

•

•

•

•
a−1

bba−1 ba

1

b−1

a

aba−1b

a−1b−1 ab−1

b−1a−1 b−1a

b−2

b2

a2a−2
• •

• •
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•
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Consider first (Z,+) with generating set Σ1 = {−1, 0, 1}.

• • • • • • • • • •
−2 −1 0 1 2 3

Whereas, with generating set Σ2 = {−2,−1, 0, 1, 2}, we have

•
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Then
1

2
ρΣ1 6 ρΣ2 6 ρΣ1 .
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Example 2: Proper metrics

If G is a compactly generated locally compact Polish group, then we can
similarly equip G with the word metric ρK of a compact symmetric
generating set K 3 1.

By the Baire category theorem, some power Kp has non-empty interior, so
if K1, K2 are two such sets, then

K1 ⊆ Kn
2 , and K2 ⊆ Km

1

for some n and m.

Therefore,
1

n
ρK1 6 ρK2 6 m · ρK1 .

So, up to quasi-isometry, ρK is independent of K .
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If G is not compactly generated, a result of R. Struble instead provides us
with a compatible left-invariant proper metric d , i.e., so that closed balls
are compact.

Any two such metrics d and d ′ will be coarsely equivalent, that is,

κ
(
d(x , y)

)
6 d ′(x , y) 6 ω

(
d(x , y)

)
for functions κ, ω : R+ → R+ with limt→∞ κ(t) =∞.

Observe that this is weaker than being quasi-isometric.
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Example 3: Banach spaces

Though Banach spaces are not usually considered as topological groups,
the geometry of (X , ‖ · ‖) is encoded by the underlying additive group
(X ,+).

Indeed, if BX = {x ∈ X | ‖x‖ 6 1} denotes the unit ball, then the word
metric ρBX

is quasi-isometric to the norm metric ρ‖·‖.

Though of course an entirely trivial observation, it will eventually allow us
to view the non-linear geometry of Banach spaces as a special instance of
our general theory.

Geometric non-linear functional analysis
= Geometric group theory of Banach spaces
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Preliminaries: Uniform spaces

To understand the framework, recall A. Weil’s concept of uniform spaces.

A uniform space is a set X equipped with a family U of subsets
E ⊆ X × X called entourages verifying the following conditions.

1 Every E ∈ U contains the diagonal ∆ = {(x , x)
∣∣ x ∈ X},

2 U is closed under taking supersets, finite intersections and inverses,
E 7→ E−1 = {(y , x)

∣∣ (x , y) ∈ E},
3 for any E ∈ U , there is F ∈ U so that

F ◦ F = {(x , z)
∣∣ ∃y (x , y), (y , z) ∈ F} ⊆ E .

A uniform space is intended to capture the idea of being uniformly close in
a topological space and hence gives rise to concepts of Cauchy sequences
and completeness.
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Pseudometric spaces

The canonical example of a uniform space is when (X , d) is a metric or,
more generally, a pseudometric space.

Recall here that an écart on X is a map d : X × X → R+ satisfying

d(x , x) = 0,

d(x , y) = d(y , x),

d(x , z) 6 d(x , y) + d(y , z).

A pseudometric space is a set X equipped with an écart.

In this case, we may, for every α > 0, set

Eα = {(x , y)
∣∣ d(x , y) < α}

and define a uniformity Ud by

Ud = {E ⊆ X × X
∣∣ ∃α > 0 Eα ⊆ E}.
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J. Roe’s Coarse spaces

A coarse space is a set X equipped with a collection E of subsets
E ⊆ X × X called entourages satisfying the following conditions.

1 The diagonal ∆ belongs to E ,

2 if E ⊆ F ∈ E , then also E ∈ E ,

3 if E ,F ∈ E , then E ∪ F ,E−1,E ◦ F ∈ E .

Again, if (X , d) is a pseudometric space, there is a canonical coarse
structure Ed obtained by

Ed = {E ⊆ X × X
∣∣ ∃α <∞ E ⊆ Eα}.

The main point here is that, for a uniform structure, we are interested in
Eα for α small, but positive, while, for a coarse structure, α is considered
large, but finite.
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3 if E ,F ∈ E , then E ∪ F ,E−1,E ◦ F ∈ E .

Again, if (X , d) is a pseudometric space, there is a canonical coarse
structure Ed obtained by

Ed = {E ⊆ X × X
∣∣ ∃α <∞ E ⊆ Eα}.

The main point here is that, for a uniform structure, we are interested in
Eα for α small, but positive, while, for a coarse structure, α is considered
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Morphisms

Recall that a map φ : (X ,U)→ (M,V) between uniform spaces is
uniformly continuous if

∀F ∈ V ∃E ∈ U : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Similarly, a map φ : (X , E)→ (M,F) between coarse spaces is
bornologous if

∀E ∈ E ∃F ∈ F : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Moreover, φ is a coarse embedding if in addition

∀F ∈ F ∃E ∈ E : (x , y) /∈ E ⇒
(
φ(x), φ(y)

)
/∈ F .

E.g., a map φ : (X , d)→ (M, ∂) is bornologous if

κ
(
d(x , y)

)
6

∂
(
φ(x), φ(y)

)
6 ω

(
d(x , y)

)
for some ω : R+ → R+.

Christian Rosendal Coarse geometry of Polish groups I Polish groups and geometry 12 / 28



Morphisms

Recall that a map φ : (X ,U)→ (M,V) between uniform spaces is
uniformly continuous if

∀F ∈ V ∃E ∈ U : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Similarly, a map φ : (X , E)→ (M,F) between coarse spaces is
bornologous if

∀E ∈ E ∃F ∈ F : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Moreover, φ is a coarse embedding if in addition

∀F ∈ F ∃E ∈ E : (x , y) /∈ E ⇒
(
φ(x), φ(y)

)
/∈ F .

E.g., a map φ : (X , d)→ (M, ∂) is bornologous if

κ
(
d(x , y)

)
6

∂
(
φ(x), φ(y)

)
6 ω

(
d(x , y)

)
for some ω : R+ → R+.

Christian Rosendal Coarse geometry of Polish groups I Polish groups and geometry 12 / 28



Morphisms

Recall that a map φ : (X ,U)→ (M,V) between uniform spaces is
uniformly continuous if

∀F ∈ V ∃E ∈ U : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Similarly, a map φ : (X , E)→ (M,F) between coarse spaces is
bornologous if

∀E ∈ E ∃F ∈ F : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Moreover, φ is a coarse embedding if in addition

∀F ∈ F ∃E ∈ E : (x , y) /∈ E ⇒
(
φ(x), φ(y)

)
/∈ F .

E.g., a map φ : (X , d)→ (M, ∂) is bornologous if

κ
(
d(x , y)

)
6

∂
(
φ(x), φ(y)

)
6 ω

(
d(x , y)

)
for some ω : R+ → R+.

Christian Rosendal Coarse geometry of Polish groups I Polish groups and geometry 12 / 28



Morphisms

Recall that a map φ : (X ,U)→ (M,V) between uniform spaces is
uniformly continuous if

∀F ∈ V ∃E ∈ U : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Similarly, a map φ : (X , E)→ (M,F) between coarse spaces is
bornologous if

∀E ∈ E ∃F ∈ F : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Moreover, φ is a coarse embedding if in addition

∀F ∈ F ∃E ∈ E : (x , y) /∈ E ⇒
(
φ(x), φ(y)

)
/∈ F .

E.g., a map φ : (X , d)→ (M, ∂) is bornologous if

κ
(
d(x , y)

)
6

∂
(
φ(x), φ(y)

)
6 ω

(
d(x , y)

)
for some ω : R+ → R+.

Christian Rosendal Coarse geometry of Polish groups I Polish groups and geometry 12 / 28



Morphisms

Recall that a map φ : (X ,U)→ (M,V) between uniform spaces is
uniformly continuous if

∀F ∈ V ∃E ∈ U : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Similarly, a map φ : (X , E)→ (M,F) between coarse spaces is
bornologous if

∀E ∈ E ∃F ∈ F : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Moreover, φ is a coarse embedding if in addition

∀F ∈ F ∃E ∈ E : (x , y) /∈ E ⇒
(
φ(x), φ(y)

)
/∈ F .

E.g., a map φ : (X , d)→ (M, ∂) is a coarse embedding if

κ
(
d(x , y)

)
6 ∂

(
φ(x), φ(y)

)
6 ω

(
d(x , y)

)
for some ω : R+ → R+ and κ : R+ → R+ with limt→∞ κ(t) =∞.

Christian Rosendal Coarse geometry of Polish groups I Polish groups and geometry 13 / 28



Isomorphisms

A coarse embedding φ : (X , d)→ (M, ∂) is a coarse equivalence if,
moreover, the image is cobounded, that is,

sup
z∈M

∂(z , φ[X ]) <∞.

Alternatively, there is a definition resembling homotopy equivalence.

Namely, a coarse equivalence is a pair of bornologous maps

(X , d)
φ

�
ψ

(M, ∂)

so that ψ ◦ φ and φ ◦ ψ are close to the identities on X and M, i.e.,

sup
x∈X

d
(
ψφ(x), x

)
<∞ & sup

z∈M
∂
(
φψ(z), z

)
<∞.
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Left-uniform structure on a topological group

If G is a topological group, its left-uniformity UL is that generated by
entourages of the form

EV = {(x , y) ∈ G × G
∣∣ x−1y ∈ V },

where V varies over all identity neighbourhoods in G .

A basic theorem, due essentially to G. Birkhoff (fils) and S. Kakutani, is
that

UL =
⋃
d

Ud ,

where the union is taken over all continuous left-invariant écarts d on G ,
i.e., so that

d(zx , zy) = d(x , y).
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Left-coarse structure on a topological group

Now, coarse structures should be viewed as dual to uniform structures, so
we obtain appropriate definitions by placing negations strategically in
definitions for concepts of uniformities.

Definition

If G is a topological group, its left-coarse structure EL is given by

EL =
⋂
d

Ed ,

where the intersection is taken over all continuous left-invariant écarts d
on G .
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Coarsely bounded sets

The definition of the coarse structure EL is not immediately transparent
and it is thus useful to have alternate descriptions of it.

Definition

A subset A ⊆ G of a topological group is said to be coarsely bounded if

diamd(A) <∞

for every continuous left-invariant écart d on G .

One may easily show that the class of coarsely bounded subsets is an ideal
of subsets of G stable under the operations

A 7→ A−1, (A,B) 7→ AB and A 7→ A.
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Proposition

The left-coarse structure EL on a topological group G is generated by
entourages of the form

EA = {(x , y)
∣∣ x−1y ∈ A},

where A varies over coarsely bounded sets.
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By the mechanics of the Birkhoff–Kakutani metrisation theorem, we have
the following description of the coarsely bounded sets.

Proposition

A subset A of a Polish group G is coarsely bounded if and only if, for every
identity neighbourhood V , there are a finite set F ⊆ G and k > 1 so that

A ⊆ (FV )k .

• For example, the coarsely bounded subsets of a countable discrete group
are simply the finite sets.

• More generally, in a locally compact σ-compact group, they are the
relatively compact subsets.

• Similarly, in the underlying additive group (X ,+) of a Banach space
(X , ‖ · ‖), they are the norm bounded subsets.
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Metrisability

As with the topology and left-uniformity on a topological group,
metrisability of the left-coarse structure is not automatic.

Here (X , E) is metrisable if there is a metric d on X so that E = Ed .

Theorem

The following conditions are equivalent for a Polish group G .

1 The left-coarse structure EL is metrisable,

2 there is a compatible left-invariant metric d on G so that EL = Ed ,

3 G is locally bounded, i.e., there is a coarsely bounded identity
neighbourhood V ⊆ G .

In case d is a compatible left-invariant écart inducing the coarse structure
on G , that is, EL = Ed , we say that d is coarsely proper.
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on G , that is, EL = Ed , we say that d is coarsely proper.

Christian Rosendal Coarse geometry of Polish groups I Polish groups and geometry 20 / 28



Metrisability

As with the topology and left-uniformity on a topological group,
metrisability of the left-coarse structure is not automatic.

Here (X , E) is metrisable if there is a metric d on X so that E = Ed .

Theorem

The following conditions are equivalent for a Polish group G .

1 The left-coarse structure EL is metrisable,

2 there is a compatible left-invariant metric d on G so that EL = Ed ,

3 G is locally bounded, i.e., there is a coarsely bounded identity
neighbourhood V ⊆ G .

In case d is a compatible left-invariant écart inducing the coarse structure
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Thus, d is coarsely proper if and only if the finite d-diameter subsets of G
are simply the coarsely bounded sets.

If d and d ′ are both coarsely proper metrics on G , then Ed = EL = Ed ′ , so
d are d ′ are coarsely equivalent, i.e.,

κ(d(x , y)) 6 d ′(x , y) 6 ω(d(x , y))

for some functions κ, ω as before.

A canonical example of a non-locally bounded group is an infinite product
such as ∏

n∈N
Z.

Indeed, in a countable product
∏

n Gn, the coarsely bounded sets are
contained in products

∏
n Bn of coarsely bounded sets Bn ⊆ Gn.
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Coarse versus quasi-metric structure

In the case of a finitely generated group, one may identify a stronger
geometric structure than the coarse structure.

Namely, word metrics of finite generating sets were not only coarsely
equivalent, but quasi-isometric.

In the same manner, for compactly generated Polish groups or Polish
groups generated by coarsely bounded sets, words metrics associated to
closed such generating sets are also quasi-isometric.

So one can identify the quasi-metric structure as that identified by any
such word metric.

Moreover, a coarse equivalence between such groups is always a
quasi-isometry, so you may think of quasi-isometry in place of coarse
equivalence throughout.
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Groups with coarsely proper metrics

The canonical example of a coarsely proper metric is of course a proper
metric on a locally compact group.

Similarly, the norm metric on a Banach space is coarsely proper.

The next class of examples to consider are isometry groups.

Suppose (X , d) is a separable complete metric space and let Isom(X , d)
denote its group of isometries equipped with the Polish topology of
pointwise convergence; i.e.,

gi → g ⇔ gi (x)→ g(x) for all x ∈ X .
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Note that, for any fixed x0 ∈ X , the formula

D(g , f ) = d(g(x0), f (x0))

defines a continuous left-invariant écart on G .

So the left-coarse structure EL is included in ED and thus the orbit map

g ∈ Isom(X , d) 7→ g(x0) ∈ X

is bornologous.

For it to be a coarse equivalence, we need, moreover, that the action is
coarsely proper, i.e.,

diam
(
B · x0

)
<∞ ⇒ B is coarsely bounded

and cobounded
sup
x∈X

d(x ,G · x0) <∞.
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Isom(U)

A posthumously published paper of P. Urysohn established the existence of
the now named Urysohn metric space U.

This a separable complete metric space uniquely characterised by it
containing all other separable metric spaces and so that any isometry

φ : A→ B

between finite subsets A,B ⊆ U extends to a full autoisometry of U.

In particular, its isometry group Isom(U) acts transitively and hence
coboundedly on U and, moreover, the action is coarsely proper.

So, for any choice of x0 ∈ U,

g ∈ Isom(U) 7→ g(x0) ∈ U

is a coarse equivalence between Isom(U) and U.
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Aut(T∞)

Let T∞ denote the regular tree of countably infinite valence and let
Aut(T∞) denote its group of automorphisms.

Alternatively, Aut(T∞) is the isometry group of T∞ viewed as a graph
with its path metric.

Then Aut(T∞) is a non-Archimedean Polish group, meaning that it has a
neighbourhood basis at the identity consisting of open subgroups, namely,
the pointwise stabilisers

VA = {g ∈ Aut(T∞) | g(a) = a; ∀a ∈ A}

of finite subsets A ⊆ T∞.

Again, for any root t0 ∈ T∞, the map

g ∈ Aut(T∞) 7→ g(t0) ∈ T∞

is a coarse equivalence.
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Coarsely bounded groups

A number of large non-compact groups turn out to be coarsely bounded,
that is, every compatible left-invariant metric on them is bounded.

Such groups will be coarsely equivalent to a one-point metric space.

This includes automorphism groups of countable ℵ0-categorical structures,
such as

S∞, Aut(Q, <), Homeo({0, 1}N), Aut(R),

where S∞ is the group of all permutations of N and R is Rado’s graph.

Moreover, it also includes isometry groups of separably categorical
structures,

U(H), Isom(Lp), Isom(SU),

and even homeomorphism groups

Homeo([0, 1]N), Homeo(Sn), Homeo(R).
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S∞ n F∞ and S∞ n Fin

Let F∞ denote the non-Abelian free group on generators a1, a2, . . . and let
Fin be the group of all finitely supported permutations of N.

There are natural actions of S∞ by automorphisms of F∞ and Fin given
respectively by permuting the generators and by conjugacy.

We let S∞ n F∞ and S∞ n Fin be the corresponding semidirect products,
both Polish in the product topologies.

Also, as S∞ is coarsely bounded, their coarse equivalence types can be
computed explicitly; namely,

S∞ n F∞ ≈coarse

(
F∞, ρ{a1,a2,...}±

)
≈coarse T∞

and
S∞ n Fin ≈coarse

(
Fin, ρ{transpositions}

)
.
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