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Chapter 1

Topological spaces and metrics

One of the main purposes of descriptive set theory is to study the complexity of sets,
or rather subsets of Polish spaces, which will be defined in the next chapter after the
following thorough review of some fundamental notions from topology.

We chose to present topological spaces first in terms of neighborhood systems which
provide a more direct grasp on the notion of continuity. The usual definition in terms
of a family of open sets satisfying certain axioms is then introduced. Open sets are
fundamental in descriptive set theory since we them as the simplest subsets of a topological
space: if we know that x belongs to an open sets, we know that all the points sufficiently
close to it also do.

1.1 Topological spaces

1.1.1 A motivating example: metric spaces

Let us start by recalling that a metric space is a set X equipped with a metric, i.e. a
map d : X ×X → [0,+∞[ which satisfies the following three axioms:

• (separation) for every x ∈ X, d(x, x) = 0 and for every x, y ∈ X, if x 6= y then
d(x, y) > 0 ;

• (symmetry) for every x, y ∈ X, one has d(x, y) = d(y, x) ;

• (triangle inequality) for every x, y, z ∈ X, one has the inequality

d(x, z) 6 d(x, y) + d(y, z).

The first example of a metric space that one encounters is the reals equipped with
the distance d(x, y) = |x− y|. More generally normed vector spaces (V, ‖·‖) are naturally
endowed with a metric d(x, y) = ‖x− y‖, so other examples of metric spaces include
Hilbert spaces, Lp spaces etc.

The reader has probably already encountered the following important consequences
of the triangle inequality, so we only state them and leave their proofs in the following
exercise.1.

Exercise 1.1. Let (X, d) be a metric space.
1Remember that all the exercises of this book have indications and solutions to be found on .

3



4 CHAPTER 1. TOPOLOGICAL SPACES AND METRICS

1. Show that for every x, y, z ∈ X we have

d(x, z) > |d(y, x)− d(y, z)| (1.1)

2. Let A be a non-empty subset of X, let x ∈ X and define d(x,A) := infa∈A d(x, a).
We say that the map x 7→ d(x,A) is the distance to A. Show that for all x, y ∈ X
we have

d(x, y) > |d(x,A)− d(y, A)| . (1.2)

How is this a generalization of the previous question ?

One of the goals of these lectures is to present a wealth of important examples of
metric spaces. Contrarily to the normed vector space case, these spaces will often not
come with a canonical metric, and it will be better to view them as topological spaces.
But before we get into this, we will recall some important definitions in the metric setup
so as to make the definition of a topological space more natural.

Definition 1.1. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y . Given
x0 ∈ X and y0 ∈ Y , one says that f(x) tends to y0 as x tends to x0 if for every ε > 0,
there is δ > 0 such that whenever x ∈ X verifies dX(x, x0) < δ, its image f(x) satisfies to
dY (y0, f(x)) < ε.

By the separation axiom, if f(x) tends to y0 as x tends to x0 then one has f(x0) = y0.
So the y0 in the above definition is unique, and when f(x) tends to y0 as x tends to x0

we will write
lim
x→x0

f(x) = y0.

This can be rephrased in terms of open balls. Given x ∈ X, and r > 0, the open ball
Bd(x, r) of radius r around x consists in all the points which are r-close to x:

Bd(x, r) = {y ∈ X : d(x, y) < r}.

When the metric d is clear from the context, we will skip the index and simply write
B(x, r) for the open ball of radius r around x.

Given a subset B ⊆ X, we say that B is an open ball around x ∈ X if it is equal to
Bd(x, r) for some r > 0.

We now see that the definition of convergence is equivalent to the following: given
any open ball B1 around y0, one can find an open ball B2 around x whose image f(B2) is
contained in B1.

A slightly more efficient to say this is: the preimage of any open ball around f(x0)
contains an open ball around x0. Who can do more can do less, so we may as well say
that the preimage of any set containing a ball around f(x0) contains a ball around x0.

We have thus obtained a symmetric definition of convergence purely in terms of preim-
ages, which is nice since as the reader knows preimages are well-behaved with respect to
set-theoretic operations. The notion of neighborhood captures what is going on here.

Definition 1.2. Let (X, d) be a metric space. Given x ∈ X, a subset V ⊆ X is a
neighborhood of x if it contains an open ball around x.

As explained earlier, we have limx→x0 f(x) = y0 if and only if the preimage f−1(V ) of
any neighborhood V of y0 is a neighborhood of x0.
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1.1.2 Neighborhood systems

Definition 1.3. Let (X, d) be a metric space. Given x ∈ X, we define Vx the neighbor-
hood filter of x to be the set of neighborhoods of x:

Vx := {V ⊆ X : ∃r > 0, B(x, r) ⊆ V }.

Proposition 1.4. The neighborhood filter Vx of a point x in a metric space (X, d) satisfies
the following properties.

(i) It contains X: X ∈ Vx.

(ii) It is stable under finite intersection2 : for every V,W ∈ Vx we have V ∩W ∈ Vx.

(iii) It is stable under taking supersets: for all V ∈ Vx, if W ⊆ X satisfies V ⊆ W then
W ∈ Vx.

(iv) all its elements contain x: for all V ∈ Vx, we have x ∈ V .

Proof. (i) holds because B(x, 1) ⊆ X. (ii) follows from the fact that B(x, r) ∩ B(x, r′) =
B(x,min(r, r′)). (iii) is straightforward from the definition and (iv) is a consequence of
the fact that every open ball around x contains x.

Remark 1.5. In general a filter on X is a set of subsets of X containing X, stable under
finite intersections and supersets, and which does not contain the empty set. Note that
neighborhood filters are examples of filters. Filters provide a very useful way of defining
convergence when dealing with non-metric spaces. The interested reader is referred to
Exercise ?? for a proof of the Tychonov theorem using filters.

We will now give an important property of the neighborhood filters in a metric space
by seeing how the triangle inequality relates them.

Lemma 1.6. Let (X, d) be a metric space and x ∈ X. Then the open ball B(x, r) is a
neighborhood of all its points: for all y ∈ B(x, r), one has B(x, r) ∈ Vy.

Proof. Let y ∈ B(x, r). Then for all z ∈ B(y, r − d(x, y)), the triangle inequality yields

d(x, z) 6 d(x, y) + d(y, z)

< d(x, y) + r − d(x, y) = r.

We thus have the inclusion B(y, r − d(x, y)) ⊆ B(x, r). We conclude that the open ball
B(y, r − d(x, y)) witnesses the fact that B(x, r) is a neighborhood of y.

Proposition 1.7. Let (X, d) be a metric space. The family of neighborhood filters (Vx)x∈X
of a point x in a metric space (X, d) satisfies the following property.

(v) For every x ∈ X and every neighborhood V ∈ Vx, there exists a neighbourhoodW ∈ Vx
such that V is a neighbourhood of every y ∈ W (∀y ∈ W,V ∈ Vx).

Proof. Let x ∈ X, let V be a neighbourhood of x. By definition there is r > 0 such that
B(x, r) ⊆ V . Let W = B(x, r), then Lemma 1.6 implies that W ∈ Vy for all y ∈ W .
Since W ⊆ V and every Vy is a filter, we conclude that for all y ∈ W we have V ∈ Vy.

2An immediate recurrence shows that Vx is stable under finite intersection if and only if the intersection
of any two of its elements still belongs to it.
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The above property is fundamental since it is the only one which relates neighborhoods
from different points. It is moreover the only one for which we used the triangle inequality.

We will now turn these propositions into definitions from which we will recover the
commonly used definition of a topology.

Definition 1.8. Let X be a set. A neighborhood system on X is a family (Vx)x∈X of
subsets of X satisfying the following conditions for all x ∈ X.

(i) X ∈ Vx.

(ii) For all V,W ∈ Vx we have V ∩W ∈ Vx.

(iii) For all V ∈ Vx if W ⊆ X satisfies V ⊆ W then W ∈ Vx.

(iv) For all V ∈ Vx we have x ∈ V .

(v) For all V ∈ Vx there is W ∈ Vx such that for all y ∈ W we have V ∈ Vx.

The conjunction of Proposition 1.4 and Proposition 1.7 can now be rephrased as: the
family of neighborhood filters in a metric space is a neighborhood system. Let us give
another example.

Definition 1.9. The one-point compactification of N is the set N := N ∪ {+∞}
equipped with the following neighborhood system :

• For every n ∈ N, every subset of N containing n is a neighborhood of n.

• The neighborhoods of +∞ are subsets of N containing an interval of the form

[[n,+∞]] := {n ∈ N : n > N} ∪ {+∞}.

Exercise 1.2. Check that this is indeed a neighborhood system and then find a metric
on N which induces the same neighborhood system.

1.1.3 Topologies

Definition 1.10. Let V = (Vx)x∈X be a neighborhood system on a set X. A subset U of
X is V-open if it is a neighborhood of all its elements: for all x ∈ U one has U ∈ Vx.

Example 1.11. If (X, d) is a metric space, then its open balls are open by Lem. 1.6.

The properties satisfied by the family of V-open sets of a neighborhood system V
motivate the following definition.

Definition 1.12. Let X be a set. A topology on X is a set τ of subsets of X called
open sets such that:

(a) the empty set and the whole set X are open: ∅, X ∈ τ ;

(b) the intersection of any finite family of open sets is open: for all U, V ∈ τ we have
U ∩ V ∈ τ ;

(c) the reunion of any family of open sets is open: for all U ⊆ τ we have
⋃
U∈U U ∈ τ .

A couple (X, τ) where τ is a topology on X is called a topological space.
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Proposition 1.13. The V-open sets of a neighborhood system V form a topology on X.

Proof. The empty set is a neighborhood of all its elements, hence it is open. Also X is a
neighborhood of all its points by property (i), so property (a) is established.

If U,U ′ are open and x ∈ U ∩ U ′, we find V, V ′ ∈ Vx such that V ⊆ U and V ′ ⊆ U ′.
So V ∩ V ′ ⊆ U ∩ U ′ and property (ii) implies V ∩ V ′ ∈ Vx which proves property (b).

Finally if U is a family of open sets and x ∈
⋃
U , there is U ∈ U such that x ∈ U and

since U is open we find a neighborhood V ∈ Vx such that V ⊆ U ⊆
⋃
U . So

⋃
U is open

which proves property (c).

Definition 1.14. Let V be a neighborhood system, then the set of V-open sets is called
the topology associated to the neighborhood system V .

Example 1.15. If X is a set, then P(X) is clearly a topology. It is called the discrete
topology. Observe that it can also be viewed as the topology associated to the neigh-
borhood system (Vx)x∈X where for each x ∈ X the neighborhood filter Vx is the set of all
V ⊆ X such that x ∈ V .

Let us remark that only the two first properties (i) and (ii) of neighborhood systems
have been used in the proof that neighborhood systems define a topology. The three other
ones will be used to go the other way around and recover our initial neighborhood system
from the associated topology.

Definition 1.16. Let τ be a topology. For x ∈ X let Vτx be the set of V ⊆ X containing
an open set containing x. Then (Vτx )x∈X is the neighborhood system associated to
the topology τ .

Let us check that (Vτx )x∈X is indeed a neighborhood system.

Proof. Let x ∈ X. Since X is open it is a neighborhood of all its points (property (a)) so
X ∈ Vτx : property (i) holds.

Let V1, V2 ∈ Vx and let U1, U2 ∈ τ be open sets containing x such that U1 ⊆ V1 and
U2 ⊆ V2. Then by property (b) the intersection U1∩U2 is open, and since U1∩U2 ⊆ V1∩V2

we conclude that V1 ∩ V2 ∈ Vτx , establishing property (ii).
Property (iii) follows from the fact that if V contains an open set containing x then

all the sets containing V also do. Property (iv) also follows directly from the definition
of (Vτx )x∈X .

Finally if V ∈ Vτx , let U ⊆ V be open containing x. Then U ∈ Vτx and since U is open
we have V ∈ Vy for all y ∈ U . This proves property (v).

Now that we have established a correspondence between topologies and neighborhood
systems, we need to check that this correspondence is bijective, i.e. that the “maps”
provided by definitions 1.14 and 1.16 are inverse of each other.

Theorem 1.17. Let X be a set, let τ be a topology on X and let (Vx) be a neighborhood
system on X.

(1) The topology associated to the neighborhood system associated to τ is equal to τ .

(2) The neighborhood system associated to the topology associated to (Vx)x∈X is equal to
(Vx)x∈X .
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Proof. (1) Let τ ′ be the topology associated to the neighborhood system (Vτx )x∈X associ-
ated to τ . By definition an open set is a neighborhood of all its points so τ ⊆ τ ′.

Conversely, let U ∈ τ ′ and let x ∈ U . By definition of τ ′ we find V ∈ Vτx such that
x ∈ V ⊆ U . By the definition of Vτx we then find a τ -open set O containing x such that
O ⊆ U . We conclude that U is the union of the τ -open sets contained in U , so since
τ is stable under arbitrary unions we conclude that U ∈ τ . Hence we have the reverse
inclusion τ ′ ⊆ τ , establishing (1).

(2) Let τV be the topology associated to (Vx)x∈X , and let (V ′x)x∈X be the associated
neighborhood system. For all x ∈ X, if V ∈ V ′x, we have a τV-open set U containing x
such that U ⊆ V . By the definition of τV we have that U ∈ Vx, and since U ⊆ V and Vx
is stable under taking supersets, we conclude that V ∈ Vx. Hence V ′x ⊆ Vx.

The reverse inclusion is where condition (v) on neighborhood systems comes into play
(recall that this condition reflects the triangle inequality in metric spaces). Let x ∈ X
and let V ∈ Vx. Now consider the set U = {y ∈ X : V ∈ Vy}. By property (iv) the
set U is contained in V and contains x. Now property (v) implies that U is τV-open: if
y ∈ U then V ∈ Vy so we find W ∈ Vy such that W ⊆ V and V ∈ Vz for all z ∈ W . So
W ⊆ U and we conclude that U is indeed τV-open. We conclude that V ∈ V ′x, so V ′x = Vx
as wanted.

The above proof made implicitly use of an important concept in a topological space
(X, τ): the interior Å of a subset A ⊆ X, defined to be the reunion of the open sets
contained in A:

Å =
⋃
{U ∈ τ : U ⊆ A}.

Since a topology is stable under arbitrary unions the interior of A is actually an open set,
and by construction it is the greatest open set contained in A. In particular A is open if
and only if A = Å.

We can now reformulate some concepts from the proof of Theorem 1.17: in the proof
that τ ′ ⊆ τ in (1), we showed that if U ∈ τ ′ then U is equal to its τ -interior, hence τ -open.
Moreover the essence of the proof that V ⊆ V ′ in (2) is the following statement which we
leave as an exercise.

Exercise 1.3. Let V be a neighborhood system on a set X. Show that given a subset
A ⊆ X, the τV-interior of A is the set of all x ∈ X such that A is a neighborhood of x.

If (X, d) is a metric space, we can associate to it a neighborhood system as in Definition
1.3 and thus a topology via Definition 1.14. This topology will be called the topology
associated to the metric d. By definition, a subset U of X is open for the topology
associated to d if for every x ∈ U there is ε > 0 such that Bd(x, r) ⊆ U . Note that every
open ball is indeed open for this topology as a consequence of Lemma 1.6.

Example 1.18. Let X be a set equipped with the discrete topology. Then the discrete
metric δ defined by

δ(x, y) =

{
0 if x = y,
1 if x 6= y.

is compatible with the discrete topology.

Definition 1.19. Given a topological space (X, τ), a metric d on X is compatible with
the topology τ if τ is equal to the topology associated to the metric d.
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If a topological space admits a compatible metric, we call it metrizable. Let us
point out already that our main objects of study in this book, namely Polish spaces, are
metrizable topological spaces.

Convention. We will often work with topological spaces whose topology will be implicit,
i.e. we will only refer to elements of the topology as open sets. As we saw, the topology is
also described by its associated neighorhood system, and we will also refer to it implicitly.
For instance, the statement “Let X be a topological space, let U ⊆ X be an open set, let
x ∈ U and let V be a neighborhood of x” means “Let (X, τ) be a topopological space and
(Vτx )x∈X be the associated neighborhood system, let U ∈ τ , let x ∈ U and let V ∈ Vτx ”.

Exercise 1.4. Let X be a set.

1. Show that two metrics d1 and d2 on X induce the same topology if and only if for
every x ∈ X and every ε > 0, there is δ > 0 such that

Bd1(x, δ) ⊆ Bd2(x, ε) and Bd2(x, δ) ⊆ Bd1(x, ε).

2. Show that if (X, d) is a metric space, then if we let d̃(x, y) = min(1, d(x, y)), the
map d̃(x, y) is a metric compatible with the topology induced by d.

Remark 1.20. In Exercise ?? we will see a general recipe for building many compatible
metrics from one.

1.2 Around convergence

1.2.1 Closed subsets and closures

Definition 1.21. Let (X, τ) be a topological space. A subset F ⊆ X is closed if its
complement is open, i.e. X \ F ∈ τ .

We note the following reformulation of being closed in terms of neighborhoods systems,
which we will very soon use without mention.

Proposition 1.22. Let (X, τ) be a topological space. A subset F ⊆ X is closed if and
only if every x ∈ X \ F has a neighborhood disjoint from F .

Proof. By definition we have the following chain of equivalences: F is closed ⇐⇒ X \F
is open ⇐⇒ X \ F is a neighborhood of all its points ⇐⇒ every x ∈ X \ F has a
neighborhood contained in X \ F . But being contained in X \ F is equivalent to being
disjoint from F so F is closed if and only if every x ∈ X \ F has a neighborhood disjoint
from F .

The collection of closed subsets of a topological space satisfies the following properties,
dual to those of a topology3:

(a’) ∅ and X are closed;

(b’) any finite union of closed sets is closed;
3The proofs of these properties are straightforward consequences of the fact that taking the complement

“exchanges unions and intersections”.
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(c’) any intersection of closed sets is closed.

The notion of interior can be dualized by taking the complement: given a subset A of
a topological space (X, τ), its closure A is the intersection of the closed sets containing
A. Since any intersection of closed sets is closed, A is the smallest closed set containing
A and A is closed if and only if A = A.

Exercise 1.5. Let V be a neighborhood system on a set X. Show that given a subset
A ⊆ X, the τV-closure of A is the set of all x ∈ X such that every neighborhood of x
intersects A4.

Definition 1.23. Let X be a topological space. A subset A ⊆ X is dense if A = X.

Exercise 1.6. 1. Show that the set of rationals Q is dense in R.

2. Show that N is dense in its one point compactification N (see Def. 1.9), thus
justifying the notation.

Let (X, d) be a metric space. The closed ball of radius r > 0 around x ∈ X is defined
by

B6d (x, r) := {y ∈ X : d(x, y) 6 r}.

Proposition 1.24. Let (X, d) be a metric space, let x ∈ X and r > 0. Then B6d (x, r) is
closed.

Proof. We use the characterization of Prop. 1.22. Suppose y 6∈ B6(x, r), then d(x, y) > r.
Then for every z ∈ Bd(y, d(x, y)− r) we have

d(x, z) > |d(x, y)− d(y, z)| > d(x, y)− d(y, z) > d(x, y)− (d(x, y)− r)) > r,

so Bd(y, d(x, y) − r) is a neighborhood of y which is still disjoint from B6d (x, r), and we
conclude that B6d (x, r) is closed.

When clear from context we simply write the closed ball of radius r around x as
B6(x, r). Let us stress out that it is not equal to the closure of B(x, r) in general, as
opposed to what happens in normed vector spaces. A simple counterexample is given by
open balls of radius 1 in the discrete metric defined in Example 1.18. We end this section
by seeing how the distance to a set can yield both open and closed sets.

Exercise 1.7. Let (X, d) be a metric space, let A ⊆ X.

1. Show that A = {x ∈ X : d(x,A) = 0}.

2. For ε > 0, let the ε-neighborhood of A be the set

(A)ε := {x ∈ A : d(x,A) < ε}.

Show that (A)ε is open. (Hint: show that (A)ε =
⋃
a∈AB(a, ε)).

4In particular A is closed if and only if for every x ∈ X, one has x ∈ A if and only if every neighborhood
of x intersects A.
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1.2.2 Convergence and Hausdorfness

Our main motivation for the introduction of neighborhood systems is that they provide a
natural framework to recast the intuitive definition of convergence of a function in a more
symmetric manner as explained right before Definition 1.2. The axiom of separation for
metrics makes limits unique, and we need a replacement of it for neighborhood systems,
or equivalently for topologies. Of the many possible choices, the following has proven to
be the most robust.

Definition 1.25. A topological space (X, τ) is Hausdorff if for any x, y ∈ X one has
x 6= y if and only if x and y have disjoint respective neighborhoods: there is a neighborhood
U of x and a neighborhood V of y such that U ∩ V = ∅.

Example 1.26. Metric spaces are Hausdorff, as witnessed by the open balls B(x, d(x,y)
2

)

and B(y, d(x,y)
2

). Indeed, any element z of the intersection of these balls violates the
triangle inequality. As a consequence, metrizable topological spaces are Hausdorff.

If (X, d) is a metric space, we saw that closed balls are closed. In particular, given
x ∈ X, the closed ball of radius zero around x is closed, so {x} is closed. The same is
true in Hausdorff topological spaces.

Proposition 1.27. Let X be a Hausdorff topological space. Then for every x ∈ X, the
singleton {x} is closed.

Proof. Let y 6∈ {x}, then we find disjoint open sets U and V with x ∈ U and y ∈ V . Then
V is a neighborhood of y disjoint from {x}. This shows {x} is closed by Prop. 1.22.

We can now start studying convergence in general topological spaces. Let us first give
the definition, which by now should not come as a surprise.

Definition 1.28. Let (X, τX) and (Y, τY ) be topological spaces and let f : X → Y . Given
x0 ∈ X, one says that f(x) tends to y0 as x tends to x0 if the preimage under f of any
neighborhood of y0 is a neighborhood of x0: for all V ∈ VτYy0 , one has f−1(V ) ∈ VτXx0 .

Proposition 1.29. Let (X, τX) and (Y, τY ) be topological spaces and let f : X → Y ,
x0 ∈ X and y0 ∈ Y . Assume that Y is Hausdorff. If f(x) tends to y0 as x tends to x0,
then one must have y0 = f(x0).

Proof. Assume by contradiction that f(x0) 6= y0. By Hausdorfness, there are disjoint
neighborhoods U of f(x0) and V of y0. But then since both f−1(U) and f−1(V ) are
neighborhoods of x0, their intersection f−1(U ∩ V ) is a neighborhood of x0 hence non-
empty, a contradiction. We conclude that y0 = f(x0) as wanted.

So when Y is Hausdorff we will write as in the metric case

lim
x→x0

f(x) = y0 = f(x0).

when f(x) tends to y0 as x tends to x0.
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1.2.3 Continuity

Definition 1.30. Let (X, τX) and (Y, τY ) be topological spaces and let f : X → Y . We
say that f is continuous if for every x0 ∈ X, one has that f(x) tends to f(x0) as x tends
to x0.

Exercise 1.8. Show that the composition of any two continuous maps is continuous.

When we are dealing with metric spaces (X, dX) and (Y, dY ), observe that f : X → Y
is continuous if and only if for every x ∈ X and every ε > 0, there is δ > 0 such that for
all x′ satisfying dX(x, x′) < δ we have d(f(x), f(x′) < ε. We have the stronger notion of
uniform continuity where given ε > 0 we can now find a δ which works simultaneously
for all x ∈ X.

Definition 1.31. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is
uniformly continuous if for every ε > 0 there is δ > 0 such that for all x, x′ ∈ X
satisfying dX(x, x′) < δ, we have dY (f(x), f(x′)) < ε.

Finally, one has the even stronger condition of being Lipschitz.

Definition 1.32. Let (X, dX) and (Y, dY ) be metric spaces andK > 0. A map f : X → Y
is K-Lipschitz if for all x, x′ ∈ X, we have dY (f(x), f(x′)) 6 KdX(x, x′). When f is
K-Lipschitz for some K > 0, we say that f is Lipschitz.

Example 1.33. Equation (1.2) from Exercise 1.1 can now be reformulated as: given any
non-emtpy subset A of a metric space (X, d), the distance to A is a 1-Lipschitz function
from (X, d) to (R, |·|).

Observe that Lipschitz functions are indeed uniformly continuous: if f : (X, dX) →
(Y, dY ) isK-Lipschitz, given ε > 0, we have that dY (f(x), f(x′)) < ε as soon as dX(x, x′) <
ε/K. Let us now come back to our topological framework and see how it provides an
elegant equivalent definition for continuity.

Proposition 1.34. Let (X, τX) and (Y, τY ) be topological spaces and let f : X → Y . The
following are equivalent.

1. The map f is continuous.

2. The preimage under f of any open set is open: for every U ∈ τY we have f−1(U) ∈
τX .

3. The preimage under f of any closed set is closed: for every F ⊆ Y closed in Y , we
have f−1(F ) closed in X.

Proof. The equivalence between (2) and (3) is clear from the fact that f−1 preserves
complements.

Let us prove that (2)⇒(1). Suppose that the preimage of any open set is open, and
let x0 ∈ X. If V is a neighborhood of f(x0), there is an open set U contained in V . The
preimage of V is then open and contains x0, so it is a neighborhood of x0. We conclude
that f is continuous.

Conversely, if f is continuous, let U be an open set and let x0 ∈ f−1(U). Since U
is open we find a neighborhood V of f(x0) contained in U . Since f(x) tends to f(x0)
as x tends to x0, the preimage f−1(V ) a neighborhood of x0. Moreover V ⊆ U implies
f−1(V ) ⊆ f−1(U) so we conclude that f−1(U) is a neighborhood of x0. So f−1(U) is a
neighborhood of all its points hence open.
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We can now give a one line proof of the fact that given a set A, the set {x ∈ X :
d(x,A) < ε} is open (question 2 from Exercise 1.7). Indeed {x ∈ X : d(x,A) < ε} is the
preimage of the open set ] −∞, ε[ via the distance to A map which is 1-Lipschitz hence
continuous. Actually from now on we will follow the following principle:

In order to show that a set is closed (resp. open), show that it is the preimage via a
continuous map of a set which is already known to be closed (resp. open) !

Of course for this to work one needs a bunch of open and closed sets to start with.
Open and closed balls are a start, but this method will really prove efficient once we have
the definition of the product topology and obtain some natural continuous functions and
closed sets from this construction (namely projections and diagonals, see Sec. 1.3.3).

1.2.4 Convergence of partially defined functions

We will often need to deal with functions which are not defined everywhere, i.e. of the
form f : A→ Y where A ⊆ X and the limit point x0 may not belong to A. Convergence
of f(x) when x tends to x0 is then defined in a similar way as before by considering the
intersections of the neighborhoods of x0 with A. For this to make sense, we need these
neighborhoods to actually intersect A, i.e. we need that x0 ∈ A. Note that however we
don’t necessarily have x0 ∈ A.

Definition 1.35. Let X be a topological space, let A ⊆ X and let x0 ∈ A. Let Y be a
topological space, let y0 ∈ Y and f : A→ Y .

We say that f(x) tends to y0 as x tends to x0 if whenever V is a neighborhood of y0,
there exists a neighborhood W of x0 such that f−1(V ) = W ∩ A.

Let us remark that the above definition is compatible with the one where A = X (Def.
1.28). The following proposition, although simple, is important.

Proposition 1.36. Let X be a topological space, let A ⊆ X and let x0 ∈ A. Let Y be a
topological space, let y0 ∈ Y and f : A → Y . If f(x) tends to y0 as x tends to x0 then
y0 ∈ f(A).

Proof. Let V be a neighborhood of y0, then by definition f−1(V ) is of the form A∩W for
some neighborhood W of x0. Since x0 ∈ A we have A ∩W 6= ∅ so f−1(V ) is nonempty.
This means that V intersects f(A) and thus every neighborhood of y0 intersects f(A).
We conclude that y0 ∈ f(A).

Exercise 1.9. Let X, Y, Z be topological spaces, A ⊆ X and B ⊆ Y . Let f : A→ B and
g : B → Z. Show that if f(x) tends to y0 as x tends to x0 and if g(y) tends to g(y0) as y
tends to y0 thn f ◦ g(x) tends to z0 as x tends to x0

The following proposition establishes the uniqueness of the limit when it exists.

Proposition 1.37. If Y is Hausdorff, then there is at most one y0 ∈ Y such that f(x)
tends to y0 as x tends to x0.

Proof. Suppose f(x) tends to both y0 and y1 as x tends to x0. By Hausdorffness, there are
disjoint neighborhoods U of x0 and V of y1. But then since both f−1(U) and f−1(V ) are
neighborhoods of x0, their intersection f−1(U ∩ V ) must be nonempty, a contradiction.
We conclude that y0 = y1 hence limit points are unique.
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When Y is Hausdorff, we will thus write

lim
x→x0

f(x) = y0.

Since we asked in the above definition that x0 ∈ A, let us remark that y0 ∈ f(A).
Indeed for every neighborhood V of y0 we have f−1(V ) = W ∩ A for some neighborhood
W of x0 and since x0 ∈ A we have W ∩ A 6= ∅ so V 6= ∅.

We continue with an important property of continuous functions: they are uniquely
determined by their restriction to a dense subset.

Proposition 1.38. Let X be a topological space and let Y be a Hausdorff topological space.
Let A be a dense subset of X. Then every continuous function f : X → Y is completely
determined by its restriction to A: if g : X → Y is another continuous function such that
f�A = g�A then f = g.

Proof. Let x0 ∈ X, then f(x0) is the limit as x tends to x0 of f(x). Since x ∈ A we can
also consider the limit of the restriction of f to A as x tends to x0. A direct application
of the definition then shows that f�A(x) tends to f(x0) as x tends to x0. By the same
argument g�A(x) tends to g(x0) as x tends to x0.

Since g�A = f�A the uniqueness of the limit that we just proved implies f(x0) =
g(x0).

Let us now apply the notion of convergence to the point +∞ in the topological space
N = N ∪ {∞}.

Proposition 1.39. Let (X, τ) be a topological space and let (un)n∈N be a sequence of
elements of x and let l ∈ X. Consider the map ũ : N ∪ {+∞} → X defined by ũ(n) = un
and ũ(+∞) = l. The following are equivalent:

(i) limn→+∞ un = l

(ii) for all neighborhood V of l there is N ∈ N such that for every n > N we have
un ∈ V .

(iii) the map ũ is continuous.

Moreover, if one of the above conditions is satisfied, then l ∈ un : n ∈ N.

Proof. The equivalence between (i) and (ii) is a direct application of the definitions con-
vergence (Def. 1.35) and of the neighborhoods of +∞ (Def. 1.9).

So we need to show that (i) ⇐⇒ (iii). Note that for every n ∈ N, the set {n} is
a neighborhood of n so we always have limx→n ũ(x) = ũ(n) = un. So saying that ũ is
continuous means that limx→+∞ ũ(x) = ũ(+∞), i.e. limn→+∞ un = l.

Exercise 1.10. Let f : X → Y be a continuous map where Y is Hausdorff. Show that
for every sequence (xn), if lim

n→+∞
xn = x then lim

n→+∞
f(xn) = f(x). We will now see that

one can characterize continuity this way when Y is moreover first-countable.
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1.2.5 First-countability and sequences

Definition 1.40. Let (X, τ) be a topological space and let x ∈ X. A family V of
neighborhoods of x is a neighborhood basis for x if for every neighborhood W of x,
there is V ∈ V such that V ⊆ W .

Example 1.41. In a metric space (X, d), the sequence (Vn)n∈N∗ defined by Vn := B(x, 1
n
)

is a countable neighborhood basis of x such that V n+1 ⊆ Vn.

Definition 1.42. A topological space (X, τ) is first-countable if all its elements have a
countable neighborhood basis.

Example 1.43. As an immediate consequence of Example 1.41, metrizable topological
spaces are first-countable.

Here is a useful observation about first-countability which provides something similar
to balls of radius 1/n in the metrizable case.

Lemma 1.44. Let X be a topological space, suppose that x ∈ X has a countable neigh-
borhood basis. Then x has a neighborhood basis (Vn)n∈N which is decreasing, i.e. such that
for all n ∈ N we have Vn+1 ⊆ Vn.

Proof. Let (Wn)n∈N be a neighborhood basis of x and put Vn =
n⋂
i=0

Wi. By construction

Vn+1 ⊆ Vn for all n ∈ N and each Vn is a neighborhood of x as desired.

The main good thing about first-countability is that it allows one to think about many
topological concept in terms of sequences.

Proposition 1.45. Let X be a metrizable or more generally first-countable topological
space and let A ⊆ X. Then the closure A of A is the set of limits of sequences of elements
of A:

A = {x ∈ X : ∃(xn) ∈ AN, xn → x}.

In particular, A is closed if and only if every convergent sequence of elements of A con-
verges to an element of A.

Proof. Let us first show that every limit of sequence of elements of A belongs to A (this
does not use the fact that X is first-countable and also follows from ). Suppose x = limxn
with xn ∈ A and V is a neighborhood of x. Since x = limxn there is n ∈ N such that
xn ∈ V and hence V ∩ A 6= ∅. So x ∈ A.

Conversely let x ∈ A, then for every neighborhood V of x, one has V ∩ A 6= ∅. Let
(Vn) be a decreasing neighborhood basis of x as per Lem. 1.44. For every n ∈ N we find
xn ∈ Vn ∩ A. We then have xn → x as wanted. Indeed if V is a neighborhood of x there
is N ∈ N such that VN ⊆ V since (Vn) is a basis. Since (Vn) is decreasing for all n > N
we also have Vn ⊆ V and hence xn ∈ V .

For the “in particular” part of the proposition, recall that A is closed if and only if
A = A.

Proposition 1.46. Let X and Y be topological spaces, let f : X → Y and suppose X is
metrisable or more generally first-countable. Then the map f is continuous if and only if
for every x ∈ X and every sequence xn → x, one has f(xn)→ f(x).
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Proof. The direct implication was done in Exercise 1.10: if f is continuous then xn → x
implies f(xn)→ f(x).

The converse will be proved via the characterization of continuity in terms of preimages
of closed sets being closed (item (3) in Prop. 1.34) and the previous proposition. Let F
be a closed subset of Y , let us show that f−1(F ) is closed. By the previous proposition it
suffices to show that every convergent sequence of elements of F converges to an element
of F . So let xn → x for some x ∈ X where xn ∈ f−1(F ) for all n ∈ N. By definition
for all n ∈ N we have f(xn) ∈ F , and by assumption f(xn) → f(x). We conclude that
f(x) ∈ F , i.e. x ∈ f−1(F ) which is thus a closed set as wanted.

Remark 1.47. Using sequences to check continuity is often quite convenient since we are
accustomed to dealing with convergence. The notion of net provides a useful replacement
in the general case, see exercise ??.

1.2.6 Homeomorphisms

Homeomorphisms are fundamental because many of the properties that we deal with are
not changed when passing to a homeomorphic space. So rather than working with our
original topological space X, it will often be convenient to work with another space Y
homeomorphic to it with some nice additional features.

Definition 1.48. Let X and Y be two topological spaces. A map f : X → Y is called a
homeomorphism if it is a bijection and both f and f−1 are continuous. When there is
a homeomorphism X → Y , we say that X and Y are homeomorphic.

A map f : X → Y is called a homeomorphism onto its image or an embedding
if it is injective and if its corestriction X → f(X) is a homeomorphism (where f(X) is
equipped with the induced topology).

Observe that X is homeomorphic to Y if and only Y is homeomorphic to X. Let us
make more precise the assertion that homeomorphisms preserve the topology.

Exercise 1.11. Let (X, τX) and (Y, τY ) be topological spaces. Show that f : X → Y is
a homeomorphism if and only if f is continuous bijective and τY = {f(U) : U ∈ τX}.

All the topological properties that we will see are invariant under homeomorphism
(which means that ifX satisfies a property and Y is homeomorphic toX then Y also does).
As an example, let us spell out why Hausdorfness is invariant under homeomorphism. The
idea is simply to use the homeomorphism to transport relevant objects between X and
Y .

Proposition 1.49. Let X and Y be two homeomorphic topological spaces. If X is metriz-
able then so is Y . If X is Hausdorff then so is Y .

Proof. Let f : X → Y be a homeomorphism. Assume X is Hausdorff and let f : X → Y
be a homeomorphism. Let y1 6= y2 ∈ Y . Then f−1(y1) 6= f−1(y2) so there are disjoint open
sets U1 and U2 such that f−1(y1) ∈ U1 and f−1(y2) ∈ U2. Since f is a homeomorphism
f(U1) and f(U2) are disjoint open sets, and y1 ∈ f(U1) while y2 ∈ f(U2): Y is Hausdorff
as promised.

Remark 1.50. See Exercise 1.36 for other properties which are invariant under homeo-
morphism.
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Let us end this section by giving a sequential characterization of homeomorphisms
similar to the one of continuity from the previous section.

Proposition 1.51. Let X and Y be metrisable or more generally first-countable Hausdorff
topological spaces. Then a map f : X → Y is a homeomorphism onto its image if and
only if the following condition is satisfied: for every sequence (xn) ∈ XN and every x ∈ X
we have xn → x ⇐⇒ f(xn)→ f(x).

Proof. The direct implication is clear from Prop. 1.46.
Now assume conversely that for every sequence (xn) ∈ XN and every x ∈ X we have

xn → x ⇐⇒ f(xn)→ f(x).
Let us first check that f is injective: if f(x) = f(y) we consider the constant sequence

xn = x and we thus have f(x) → f(y) as n tends to +∞. So by assumption we have
x→ y as n tends to +∞; since X is Hausdorff this implies x = y.

The continuity of f and f−1 : f(X) → X now follows from the previous proposition,
and we conclude f is a homeomorphism onto its image.

1.3 Operations on topological spaces

The purpose of this section is to see how to build new topological spaces out of old ones.
These constructions will in turn provides ways to build new Polish spaces in the next
chapter.

1.3.1 Induced topology

Let us start by the most basic such construction: given a topological space X and a subset
A ⊆ X, there is a natural way to equip A with a topology.

Definition 1.52. The induced topology τA on a subset A of a topological space (X, τA)
is defined by

τA = {U ∩ A : U ∈ τ}.

In other words, a set U ⊆ A is τA-open if and only if it is the intersection with A of a
τ -open subset of X.

Exercise 1.12. Let (X, τ) be a topological space, and let A be a subset of X.

1. Check that the induced topology τA is a topology, and show that it is given by the
following neighborhood system: given x ∈ A, a subset V of A is a neighborhood of x
if and only if it is the intersection with A of a τ -neighborhood of x.

2. Let f : A → Y be a map where Y is a topological space, and let x0 ∈ A. Prove that
the definitions of the convergence of f(x) as x tends to x0 are the same wether we
chose to view f as a partially defined map (as in Def. 1.35) or as a map defined on the
topological space (A, τA) (as in Def. 1.28).

3. Let f : X → Y be a map, where Y is a topological space. Prove that f is continuous
if and only if its corestriction f : X → f(X) is continuous, where f(X) is equipped
with the induced topology.
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1.3.2 Disjoint union topology

We give the second construction in terms of neighborhood systems.

Definition 1.53. Let (X, τX) and (Y, τY ) be two topological spaces. The disjoint union
topology is the topology on X t Y associated to the disjoint union neighborhood
system defined by: given x ∈ X tY , a subset V ⊆ X tY containing is a x neighborhood
of x when either

• x ∈ X and V ∩X is a τX-neighborhood of x or

• x ∈ Y and V ∩ Y is a τY -neighborhood of x.

Remark 1.54. The disjoint union topology is sometimes called the direct sum topology
for category theoretic reasons (cf. question 2 of the following exercise).

Exercise 1.13. Let (X, τX) and (Y, τY ) be two topological spaces.

1. Check that the disjoint union neighborhood system is indeed a neighborhood system.

2. Show that if Z is a topological space and fX : X → Z, fY : Y → Z are continuous
maps, then the map f : X t Y → Z defined by

f(x) =

{
fX(x) if x ∈ X
fY (x) if x ∈ Y

is continuous for the disjoint union topology, and that conversely every continuous map
f : X t Y → Z can be decomposed likewise.

3. Show that a subset U ⊆ X tY is open if and only if its intersection with X is τX-open
while its intersection with Y is τY -open.

4. Generalize this construction to arbitrary disjoint unions.

1.3.3 Product topology

We now finally move to the fundamental concept of the product topology which can be
summed up by the following slogan: “convergence in the product topology is equivalent
to convergence in each coordinate” (see Prop. 1.58).

We will present the construction in terms of neighborhood systems and leave the
topological formulation as an exercise.

If (Xi)i∈I is family of sets then for each j ∈ I we denote by πj the projection
∏

i∈I Xi →
Xj defined by πj((xi)i∈I) = xj.

Observe that if we want convergence in the product topology on
∏

i∈I Xi to imply
convergence on some coordinate i0 ∈ I, we need that for every (xi)i∈I ∈

∏
i∈I Xi and

every neighborhood Vi0 of xi0 , the set π−1
i0

(Vi0) is a neighborhood of x. The fact that
finite intersections of neighborhoods are neighborhoods then forces us to make the fol-
lowing definition where neighborhoods in the product put constraints on finitely many
coordinates.
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Definition 1.55. Let (Xi)i∈I be a family of topological spaces. Then the product neigh-
borhood system on

∏
i∈I Xi is defined as follows: a set V ⊆

∏
i∈I Xi is a neighborhood

of (xi)i∈I if and only if it contains a set of the form⋂
i∈K

π−1
i (Vi)

for some finite subset K of I, where for each i ∈ K the set Vi is a neighborhood of xi.
The associated topology is called the product topology.

Let us note the following reformulation: in the product neighborhood system, a set
V ⊆

∏
i∈I Xi is a neighborhood of (xi)i∈I if and only if it contains a set of the form

{(yi)i∈I : yi1 ∈ Vi1 and ... and yin ∈ Vin}

for some n ∈ N and some distinct i1, ..., in ∈ I, where for each k = 1, ..., n the set Vik is
a neighborhood of xik . In more informal terms, an element y of the product is close to
x when it has finitely many coordinates close to those of x. Let us now check that the
product neighborhood system is indeed a neighborhood system.

Proof that the product neighborhood system is a neighborhood system. Conditions (i), (iii)
and (iv) are clear from the definition. The stability under finite intersection is also not
hard to see: if V and V ′ are neighborhoods of x, then V contains

⋂n
i∈K π

−1
i (Vi) and W

contains
⋂
i∈L π

−1
i (V ′i ) where (Vi)i∈K and (V ′i )i∈L are two finite families of neighborhoods.

For i ∈ K ∪ L, we let

Wi =


Vi ∩ V ′i if i ∈ K ∩ L
Vi if x ∈ K \ L
V ′i if x ∈ L \K

Note that each Wi is still a neighborhood of xi. Then V ∩W contains⋂
i∈K∪L

π−1
i (Wi),

witnessing that V ∩W is a neighborhood of (xi)i∈I .
Finally let us check that property (v) is satisfied: let V be a neighborhood of (xi)i∈I ,

and let (Vi)i∈K neighborhoods such that
⋂
i∈K π

−1
i (Vi) ⊆ V . Then for each i ∈ K we have

Wi ⊆ Vi such that Vi is a neighborhood of every element of Wi and Wi is a neighborhood
of xi. Then

⋂
i∈K π

−1
i (Wi) is a neighborhood of (xi) and

⋂
i∈K π

−1
i (Vi) (hence V ) is a

neighborhood every (yi) ∈
⋂
i∈K π

−1
i (Wi).

Exercise 1.14. Show that if (Xn)n∈N is a sequence of first-countable topological spaces,
then the product

∏
n∈NXn is first-countable.

Remark 1.56. When we are dealing with a finite product of topological spaces
∏n

i=1Xi,
a basis of neighborhoods of (xi)

n
i=1 is simply given by the set of V1 × · · · × Vn where each

Vi is a neighborhood of xi.

An important fact about Hausdorff topological spaces is that equality defines a closed
relation for the product topology.

Proposition 1.57. Let X be a Hausdorff topological space. Then the diagonal subspace
∆X = {(x, y) ∈ X2 : x = y} is closed in X2.
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Proof. We prove that the complement of ∆X is open: if x 6= y, by Hausdorfness x and y
have disjoint neighborhoods U and V , so U × V is a neighborhood of (x, y) disjoint from
∆X .

Exercise 1.15. Prove more generally that if X is Hausdorff and I is a set, then the space
of constant maps I → X is closed in XI . (Hint: write it as an intersection of closed sets).

The following characterization of convergence in product spaces is fundamental.

Proposition 1.58. Let X be a topological space, let A ⊆ X and let (Yi)i∈I be a family of
topological spaces. Consider a map f : A→

∏
i∈I Yi. Given x0 ∈ A and (yi)i∈I ∈

∏
i∈I Yi

the following are equivalent:

(i) f(x) tends to (yi)i∈I as x tends to x0;

(ii) for all i ∈ I, πi(f(x)) tends to yi as x tends to x0.

Proof. Assuming (i), we get (ii) because πi is continuous and convergence behaves well
with respect to composition (see Exercise 1.9).

Conversely assume (ii): for all i ∈ I, πi(f(x)) tends to yi as x tends to x0. Let
V ⊇

⋂
i∈K π

−1
i (Vi) be a neighborhood of (yi)i∈I , where K is finite and for i ∈ K the set

Vi is a neighborhood of yi. Observe that

f−1

(⋂
i∈K

π−1
i (Vi)

)
=
⋂
i∈K

f−1π−1
i (Vi) =

⋂
i∈K

(πi ◦ f)−1(Vi).

Since for each i ∈ K we have πi(f(x)) → yi as x tends to x0, each (πi ◦ f)−1(Vi) is a
neighborhood of x0, and we conclude that f−1(V ) is a neighborhood of x0. So (i) holds
as wanted.

If (Xn, dn)n∈N are metric spaces, there is no canonical notion of a “product metric”
on the product space

∏
n∈NXn (even for finite products). However, we can always find a

metric compatible with the product topology. Let us start with the easier finite case.

Exercise 1.16. Let (X1, d1),..., (Xn, dn) be metric spaces. Show that the metric d on∏n
i=1 Xi defined by d((x1, ..., xn), (y1, ..., yn)) =

∑n
i=1 di(xi, yi) is a metric compatible with

the product topology.

In the infinite case, we will use the same idea of taking a sum, but the sum is indexed
over an infinite set so we need to make sure it converges. The trick is to replace each
metric dn by 1

2n
min(1, dn).

Proposition 1.59. Suppose (Xn)n∈N is a countable family of metrizable topological spaces.
Then the product topology on

∏
n∈NXn is metrizable.

Moreover, if for each n we have a metric dn compatible with the topology of Xn, then
the metric

d((xn), (x′n)) =
∑
n∈N

1

2n
min(1, dn(xn, x

′
n)).

is compatible with the product topology on
∏

nXn.
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Proof. The first part of the proposition clearly follows from the second, so we only need
to show that the function d defined in the proposition is a metric compatible with the
product topology.

Noting that for each n ∈ N, the map (x, x′) 7→ min(1, dn(x, x′)) is a metric on Xn

compatible with the topology induced by dn (see Exercise 1.4), it is straightforward to
check that d is a metric.

To see that d is compatible with the product topology, we need to show that the
identity map on

∏
n∈NXn is a homeomorphism when on one side we put the product

topology and on the other side the topology induced by d. Since
∏

n∈NXn is first-
countable for the product topology (Exercise 1.14), by Prop. 1.51 we only need to check
that for a sequence ((xnm)m∈N)n∈N of elements of

∏
nXn and (x′m)m∈N ∈

∏
nXn, we have

((xnm)m∈N)n∈N → (x′m)m∈N in the product topology as n tends to +∞ iff d(((xnm), (x′n))→ 0
as n tends to +∞.

But by the dominated convergence theorem for series, d(((xnm), (x′m))→ 0 is equivalent
to dm(xnm, x

′
m)→ 0 for all m ∈ N, which by the previous proposition is in turn equivalent

to ((xnm)m∈N)n∈N → (x′m)m∈N in the product topology as wanted.

1.3.4 Projective limits

We won’t need inverse limits very often, so the reader may skip this part and get back to
it when needed.

Definition 1.60. Let (I,<) be an ordered set, meaning that for all i, j, k ∈ I we have
i 6< i and the implication

i < j and j < k ⇒ i < k.

Suppose moreover that I is directed, which means that for every i, j ∈ I there is k ∈ I
such that k > i and k > j. A couple ((Xi)i∈I , (fi,j)i<j) is a projective diagram of
topological spaces when the following conditions are satisfied:

• (Xi)i∈I is a family of Hausdorff topological spaces;

• for each i < j, we have that fi,j : Xj → Xi is continuous;

• for each i < j < k we have fi,k = fi,j ◦ fj,k.

Definition 1.61. The projective limit (or limit or inverse limit) of a projective diagram
of topological spaces ((Xi)i∈I , (fi,j)i<j) is denoted by lim←−Xi and defined by

lim←−Xi =

{
(xi)i∈I ∈

∏
i∈I

Xi : ∀i < j, fi,j(xj) = xi

}
.

It is equipped with the topology induced by the product topology on
∏

i∈I Xi.

Example 1.62. Let p ∈ N be a prime number. For each n < m ∈ N, we have pmZ 6 pnZ
so we have a surjection fn,m : Z/pmZ → Z/pnZ. By putting the discrete topology on
each Z/pnZ, we get a projective diagram. The associated projective limit is the space
Zp := lim←−Z/pnZ which has a natural ring structure and is called the ring of p-adic
integers. See Exercise ?? for more on this.

Projective limits satisfy the following universal property.
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Proposition 1.63. Let ((Xi)i∈I , (fi,j)i<j) be a projective diagram of topological spaces.
Whenever Y is a topological space endowed with continuous maps gi : Y → Xi such that
for each i < j we have fi,jgj = gi, then there is a unique continuous map g : Y → lim←−Xi

satisfying πig = gi.

Proof. Observe that the condition πig = gi means that all the coordinates of the map
g : Y →

∏
Xi, are prescribed, so uniqueness is clear and we must define g by g(y) =

(gi(y))i∈I . The continuity of g is then a consequence of the continuity of each gi and of
the characterization of convergence in product spaces (Prop. 1.58).

Proposition 1.64. The projective limit of any projective diagram of topological spaces
((Xi)i∈I , (fi,j)i<j) is a closed subspace of the product space

∏
i∈I Xi.

Proof. This is left to the reader, who can either do it by hand (i.e. show directly that its
complement is open) or use the more “descriptive” way of looking at it suggested by the
next exercise.

Exercise 1.17. Show that for each i < j, the map (xi)i∈I 7→ (fi,j(xj), xi) is continuous.
Deduce that the set Fi,j =

{
(xi)i∈I ∈

∏
i∈I Xi : fi,j(xj) = xi

}
is closed (hint: use Prop.

1.57). Use this to prove Prop. 1.64.

An easy way for an ordered set to be directed is to have a maximum. However in this
case the resulting topological space is not interesting as the following exercise shows.

Exercise 1.18. Let ((Xi)i∈I , (fi,j)i<j) be a projective diagram of topological spaces, sup-
pose that we have k ∈ I such that for all i ∈ I, i 6 k. Show that the projective limit
lim←−Xi is homeomorphic to Xk. Why is this a direct consequence of the next proposition
?

Let (I,<) be a directed set, a subset K ⊆ I is cofinal if for every i ∈ I there is k ∈ K
such that i < k. Observe that if K is cofinal, then it is directed as well. In particular
when ((Xi)i∈I , (fi,j)i<j) is a projective diagram of topological spaces and K is cofinal in I
then ((Xk)k∈K , (fk,l)k<l) also is. The next proposition shows that the projective limit is
the same.

Proposition 1.65. Let (I,<) be a directed set, let K ⊆ I be cofinal. Let ((Xi)i∈I , (fi,j)i<j)
be a projective diagram of topological spaces, then the projection map

∏
i∈I Xi →

∏
k∈K Xk

induces a homeomorphism between the inverse limits lim←−
i∈I

Xi and lim←−
k∈K

Xk.

1.4 Generating a topology

We have so far presented topologies in terms of neighborhoods systems because we believe
this notion is more natural to grasp when one is familiar with convergence. However, the
elegance of the three axioms of topologies (namely (a) containing the empty set and
the whole space, (b) being stable under finite intersections and (c) being stable under
arbitrary reunions) makes them more flexible. In particular, it allows one to give very
concise definitions of the above constructions.

Let us start with an easy operation on topologies on a common set X. Recall that
P(P(X)) is an ordered set for inclusion, and since topologies are elements of the latter,
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we can compare them and say a topology τ is greater than another topology τ ′ when
τ ′ ⊆ τ 5.

Lemma 1.66. Let (τi)i∈I be a non-empty family of topologies on a set X. Then
⋂
i∈I τi

is a topology. It is the greatest topology contained in each τi.

Proof. That
⋂
i∈I τi is a topology is a direct consequence of the fact that each τi is:

(a) for each i ∈ I we have ∅, X ∈ τi so ∅, X ∈
⋂
i∈I τi;

(b) if U, V ∈
⋂
i∈I τi then for each i ∈ I we have U, V ∈ τi so U ∩ V ∈ τi because τi is a

topology. We conclude that U ∩ V ∈
⋂
i∈I τi;

(c) similarly if (Uj)j∈J is an arbitrary family of elements of
⋂
i∈I τi, then for each i ∈ I

we have
⋃
j∈J Uj ∈ τi because the latter is a topology and hence

⋃
j∈J Uj ∈

⋂
i∈I τi.

If (Uj)j∈J is an arbitrary family of elements of
⋂
i∈I τi, then for each i ∈ I we have⋃

j∈J Uj ∈ τi because the latter is a topology and hence
⋃
j∈J Uj ∈

⋂
i∈I τi. The set

⋂
i∈I τi

is the greatest set contained in each τi, and since it also happens to be a topology it must
be the greatest topology contained in each τi.

Definition 1.67. Let X be a set, let A ⊆ P(X). The topology generated by A is the
smallest topology containing A, denoted by τ(A).

To see why this definition makes sense, consider the set TA of all the topologies contain-
ing A. Such a set is non-empty since it contains P(X). Then τ(A) :=

⋂
τ∈TA τ satisfies the

requirements of the definition: it is by construction smaller than any topology containing
A, and it is a topology by the above lemma.

When τ = τ(A) we say that A is a subbasis for the topology τ . Here is an important
application.

Proposition 1.68. Let X and Y be topological spaces. Suppose A is a subbasis for the
topology of Y . Then f : X → Y is continuous if and only if for every U ∈ A, the set
f−1(U) is open in X.

Proof. Denote by τX the topology of X and by τY the topology of Y . Let τ ′ := {U ∈
τY : f−1(U) ∈ τX}. By our assumptions τ ′ contains A, and since τX contains X and
∅ we have that τ ′ contains Y and ∅. Moreover τ ′ is stable under arbitrary reunions: if
(Ui)i∈I is a family of open subsets of Y such that for every i ∈ I we have f−1(Ui) ∈ τX ,
then f−1(

⋃
i∈I Ui) =

⋃
i∈I f

−1Ui ∈ τX . So τ ′ is a topology which contains A, and since
the latter is a subbasis for τY , we conclude τY ⊆ τ ′. By definition this means that f is
continuous.

Let us now see a more concrete way of building τ(A). We make the convention that
the intersection of an empty family of subsets of X is equal to X, and that the union of
an empty family of sets is empty.

Proposition 1.69. Let X be a set, let A ⊆ P(X). Then the topology τ(A) generated by
A is the set of unions of finite intersections of elements of A.

5When a topology τ contains a topology τ ′, one sometimes says that τ refines τ ′ or that τ ′ is coarser
than τ . We believe however that these terms can add confusion and thus will not use them in this book.
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Proof. Let us check that if we define τ ′(A) as the set of unions of finite intersections of
elements of A, then τ ′(A) is the smallest topology containing A. Let us first see why
τ ′(A) is a topology. The verification is tedious but straightforward.

Clearly τ ′(A) contains A. Let B be the set of finite intersections of elements of A,
then τ ′(A) is the set of reunions of elements of B and hence contains B. By definition
B ∈ B if and only if there is F ⊆ A finite such that

B =
⋂
A∈F

A.

If we take F = ∅ we get that X ∈ B ⊆ τ(A), and since a reunion over the empty set is
empty we see that ∅ ∈ τ ′(A). This takes care of axiom (a).

Let us now move to axiom (b), which is stability under finite intersections. Observe
that B is stable under finite intersections because if F, F ′ ⊆ A are finite then⋂

A∈F

A ∩
⋂
A∈F ′

A =
⋂

A∈F∪F ′
A

and F ∪ F ′ is finite. Note that by definition A ∈ τ(A) if and only if there is G ⊆ B such
that A =

⋃
B∈GB. We can now check that τ ′(A) is stable under finite intersections: if we

are given G,G′ ⊆ B, then ⋃
B∈G

B ∩
⋃

B′∈G′
B′ =

⋃
(B,B′)∈G×G′

B ∩B′

which belongs to τ ′(A) since B is stable under finite intersections and τ ′(A) is defined as
the set of unions of elements of B.

Finally τ ′(A) is stable under arbitrary reunions because any reunion of reunions of
elements of B is a reunion of elements of B. So τ ′(A) satisfies axioms (a), (b) and (c)
hence τ ′(A) is a topology containing A. We now finish the proof by checking that τ ′(A)
is the smallest such topology.

If τ is any topology such thatA ⊆ τ , then τ is stable under finite intersections and thus
must contain B. But then its stability under arbitrary reunions entails that it contains
τ ′(A) which is thus the smallest topology containing A. By the definition of τ(A), we
conclude τ(A) = τ ′(A) as wanted.

The following definition is not really needed now but it explains why we use the term
subbasis.

Definition 1.70. Let (X, τ) be a topological space, let B ⊆ τ . We say that B is a basis
for τ if every τ -open subset is a reunion of elements of B.

Observe that by the above proposition if A is a subbasis of a topology τ then the set B
of finite intersections of elements of A is a basis of τ . Moreover every basis is a subbasis.

Let us give an easy example: the disjoint union topology.

Exercise 1.19. Let (X, τX) and (Y, τY ) be two topological spaces. Show that the disjoint
union topology is the topology generated by τX ∪ τY . Show that moreover τX ∪ τY is a
basis for the disjoint union topology.

Let us finally note the following concrete way of checking that B is a basis for τ .
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Proposition 1.71. Let (X, τ) be a topological space, let B ⊆ τ . Then B is a basis of τ
if and only if for every open subset U and every x ∈ U there is B ∈ B containing x such
that B ⊆ U .

Proof. If B is a base then U is a reunion of elements of B so in particular all the elements
of U belong to some B ∈ B contained in U . For the converse note that if every x ∈ U
belongs to some B ∈ B contained in U then U must be equal to the reunion of the
elements of B it contains.

Corollary 1.72. Let (X, τ) be a topological space, let A ⊆ τ . Then A is a subbasis for τ
if and only if for every τ -open set U and every x ∈ U there are A1, ..., An ∈ A such that
x ∈ A1 ∩ · · · ∩ An ⊆ U .

Proof. This follows readily from the previous proposition along with the fact that Prop.
1.69 may now be reformulated as: a basis for τ(A) is the set of finite intersections of
elements of A.

We finally explain how to make one application continuous when its range is already
equipped with a topology.

Definition 1.73. Let X be a set, let (Y, τ) be a topological space and let f : X → Y be
a map. The pullback topology f∗τ is the set

f∗τ = {f−1(U) : U ∈ τ}

The pullback topology f∗τ is a topology because f−1(Y ) = X, f−1(∅) = ∅ so f∗τ
contains ∅ and X and f−1 is compatible with all set-theoretic operations so f∗τ is stable
under finite intersections and arbitrary reunions. Moreover by the characterization of
continuity (Prop. 1.34) any topology making f continuous should contain f∗τ so it is
the smallest topology which makes f continuous. More generally, we have the following
proposition.

Proposition 1.74. Let X be a set, let (Yi, τi)i∈I be a family of topological spaces and for
each i ∈ I let fi : X → Yi be a map. Then there is a smallest topology τ on X making fi
continuous for every i ∈ I, namely the topology generated by the reunion

⋃
i∈I fi∗τi.

Moreover, the map

Φ : (X, τ)→
∏
i∈I

(Yi, τi)

x 7→ (fi(x))i∈I

is a homeomorhism onto its image.

Proof. The fact that the topology τ generated by
⋃
i∈I fi∗τi is the smallest topology mak-

ing each fi continuous isa direct consequence of the fact that the topology generated by
the reunion

⋃
i∈I fi∗τi is the smallest topology containing each fi∗τi, and for each i ∈ I

the topology fi∗τi is the smallest topology making fi continuous.
For the second part, observe that for each i ∈ I the injective map Φ sends every

U ∈ fi∗τi to Φ(X)∩ π−1
i (U) where πi is the projection onto Yi. Since

⋃
i∈I fi∗τi generates

τ∞ while {Φ(X) ∩ π−1
i (U) : U ∈ τi, i ∈ I} generates the topology induced by the product

topology on Φ(X), this shows Φ is a homeomorphism onto its image.
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We finally have the following important way of understanding the product topology.

Corollary 1.75. Let (Xi, τi)i∈I be a family of topological spaces. Then the product topology
on
∏

i∈I Xi is the smallest topology which makes for every i0 ∈ I the projection πi0 :∏
i∈I Xi → Xi0 continuous.

Proof. Apply the previous proposition to X =
∏

i∈I Xi and observe that the map Φ from
the proposition is then the identity map on X !

1.5 Complete metric spaces
We will now focus on completeness, a feature of metric spaces which cannot be recast in
purely topological terms but which will have a very important topological consequence,
namely the Baire category theorem (see Section 2.8).

1.5.1 Cauchy sequences and completeness

Let (X, d) be a metric space. A sequence (xn) ∈ XN is d-Cauchy or simply Cauchy if for
every ε > 0 there is N ∈ N such that for all n,m >M one has d(xn, xm) < ε.

Lemma 1.76. Let (X, d) be a metric space, then every convergent sequence of elements
of X is d-Cauchy.

Proof. If xn → x and ε > 0, we find N such that d(xn, x) < ε/2 for all n > N . We deduce
that for all n,m > N we have by the triangle inequality d(xn, xm) < d(xn, x)+d(x, xm) < ε
so that (xn) is a Cauchy sequence.

Definition 1.77. A metric space (X, d) is complete if every Cauchy sequence is conver-
gent.

The first non-trivial example of complete metric space is provided by the reals with
their usual metric. Other important examples are Banach spaces, i.e. normed vector
spaces whose associated metric is complete. The following proposition is an easy conse-
quence of the sequential characterization of closedness.

Proposition 1.78. Let (X, d) be a complete metric space and let Y ⊆ X. Then Y is
complete for the induced metric if and only if Y is closed in X.

Proof. Let dY = d�Y×Y be the induced metric on Y .
Suppose Y is closed in X, then every dY -Cauchy sequence is d-Cauchy and hence has a

limit in X since d is complete. Since Y is closed this limit belongs to Y , and we conclude
that (Y, dY ) is complete.

Conversely suppose Y is not closed in X, then we find a sequence (yn) of elements
of Y converging to some x ∈ X \ Y . By Lem. 1.76 we conclude that (yn) is d-Cauchy,
so by definition (yn) is dY -Cauchy. Since x 6∈ Y , by uniqueness of the limit (yn) is not
convergent in Y so that (Y, dY ) is not complete.

Let us end this section with an important construction of complete metric spaces.

Definition 1.79. Let X be a set, let (Y, d) be a metric space. Denote by `∞d (X, Y ) the
set of functions f : X → Y such that f(X) has finite diameter (such functions are also
called d-bounded functions).
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Observe that when the metric d is already bounded, `∞d (X, Y ) is just the set of all
functions X → Y . The space `∞d (X, Y ) is equipped with the metric d∞ of uniform
convergence defined by

d∞(f, g) = sup
x∈X

d(f(x), g(x)).

Exercise 1.20. Check that d∞ is indeed well-defined and a metric (hint : to see that it
is well-defined, observe that if we fix x0 ∈ X then by the triangle inequality for all x ∈ X
we have d(f(x), g(x)) 6 diamd f(X) + d(f(x0), g(x0)) + diamd g(X)).

Proposition 1.80. Let X be a set and (Y, d) be a complete metric space. The metric d∞
on `∞d (X, Y ) is complete.

Proof. Let (fn) be a Cauchy sequence for d∞. By definition of the metric for each x ∈ X,
the sequence (fn(x))n∈N is Cauchy and thus admits a (unique) limit which we denote by
f(x). Let us show that d∞(fn, f) → 0. Let ε > 0, consider N ∈ N such that for all
n,m > N we have d∞(fn, fm) < ε. Let n > N and let x ∈ X. Then for all m > N we
must have d(fn(x), fm(x)) < ε so by letting m tend to +∞ we have d(fn(x), f(x)) 6 ε.
This shows that d∞(fn, f) 6 ε and thus fn → f as wanted: the metric d∞ is complete.

Example 1.81. Let X be a set, let us denote by `∞(X,R) the set of bounded functions
f : X → R. It is a normed vector space for the norm ‖f‖∞ = supx∈X |f(x)|. The
previous proposition yields that the metric associated to this norm is complete: `∞(X,R)
is a Banach space.

1.5.2 Closed subsets of vanishing diameter

We will now provide a very important consequence of completeness which is actually
equivalent to it. We need the notion of diameter.

Definition 1.82. Let (X, d) be a metric space and let A be a non-empty subset of X.
The (d-)diameter of A is

diamd(A) := sup
x,y∈A

d(x, y).

When the metric d is clear from the context, we will also write diam(A) for the diameter
of A. A subset is called bounded if it is empty or has finite diameter.

Finally, a sequence (An) of non-empty subsets of X has vanishing diameter if
diam(An)→ 0.

Exercise 1.21. Let (X, d) be a metric space and A ⊆ X. Show that diam(A) = diam(A).

Remark 1.83. It follows from the previous exercise that a sequence of subsets (An) has
vanishing diameter if and only if the sequence of closures (An) has.

The following theorem will be used very often in these notes. The fundamental im-
plication for us is that in a complete metric space, the intersection of every decreasing
sequence of nonempty closed sets of vanishing diameter is a singleton ((i)⇒(iii)). The fact
that this characterizes complete metric spaces is of theoretical importance but in these
notes we will only use it when we characterize compactness in metric spaces [?].

Theorem 1.84. Let (X, d) be a metric space. The following are equivalent:

(i) (X, d) is a complete metric space.
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(ii) Every decreasing sequence of nonempty closed sets of vanishing diameter has non-
empty intersection;

(iii) The intersection of every decreasing sequence of nonempty closed sets of vanishing
diameter is a singleton.

Proof. (i)⇒(ii): consider a sequence (xn)n∈N such that for all n ∈ N we have xn ∈ Fn. Let
us show that (xn) is Cauchy. Given ε > 0, find N ∈ N such that diam(FN) < ε. Then for
all n,m > N we have {xn, xm} ⊆ FN so that d(xn, xm) < ε by definition of the diameter.
We conclude the sequence (xn) is Cauchy.

By completeness we can consider the limit x ∈ X of the sequence (xn). Since each Fn
is closed and contains all the xm for m > n, we must have that x belongs to every Fn by
Prop. 1.45 and thus x ∈

⋂
n Fn which is thus non-empty.

(ii)⇒(iii) Let us show more generally that given any sequence (Fn) of subsets of X
of vanishing diameter, the intersection

⋂
n Fn contains at most one point, from which the

implication will be clear. If x1, x2 ∈
⋂
n Fn then d(x1, x2) 6 diamd(Fn) for all n ∈ N so

d(x1, x2) = 0 and hence x1 = x2.
(iii)⇒(i): Let (xn) be a Cauchy sequence, consider for every n ∈ N the closed set Fn =

{xm : m > n}. Since (xn) is Cauchy, the sequence of sets ({xm : m > n}) has vanishing
diameter, hence (Fn) has vanishing diameter as well. Define x ∈ X by {x} =

⋂
n Fn,

we now show xn → x. Given ε > 0, find N such that diam(Fn) < ε. We then have
d(x, xn) < ε for all n > N because xn ∈ Fn and x ∈ Fn, so xn → x as wanted.

1.5.3 Completeness and extension of continuous functions

We will now use completeness so as to extend continuous functions whose range is a
complete metric space. Let us start with a very special case of continuous functions,
namely isometries. A map f : (X, dX) → (Y, dY ) is an isometry if for all x, x′ ∈ X we
have dY (f(x), f(x′)) = dX(x, x′). Isometries are continuous because they are 1-Lipschitz.

Theorem 1.85. Let (X, dX) and (Y, dY ) be complete metric space, let A be a dense subset
of X, and let f : A→ Y be an isometry with dense image. Then f extends uniquely to a
surjective isometry f̃ : X → Y .

Proof. Let x ∈ X, since A is dense in X we find a sequence (an) of elements of A such
that an → a. The sequence (an)n∈N is thus Cauchy (Lem. 1.76) and since f is an isometry
the sequence (f(an))n∈N also is. It thus has a limit which we define to be equal to f̃(x).
Let us verify this limit does not depend on the choice of the sequence an → x. If bn → x,
then dX(an, bn) 6 dX(an, x)+dX(x, bn) so dX(an, bn)→ 0 and hence dY (f(an), f(bn))→ 0
so f(an) and f(bn) must converge to the same limit. So f̃ is well-defined.

Moreover f̃ extends f because if x ∈ A and an → x then f(x) = limn→+∞ f(an) by
continuity. Let us show that f is an isometry: let x, y ∈ X, let an → x and bn → y. Then

dY (f̃(x), f̃(y)) = lim
n→+∞

dY (f(an), f(bn))

= lim
n→+∞

dX(an, bn)

dY (f̃(x), f̃(y)) = dX(x, y)

so f̃ is indeed an isometry. Since isometries are continuous, any isometric extension of f
is determined by its restriction to A (Prop. 1.38) which if f . So f̃ is the unique isometry
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X → Y extending f . Finally observe that f̃(X) is a complete metric space for f̃ is an
isometry and (X, dX) is complete, so f̃(X) is closed and since it contains the dense set
f(X), we conclude that f̃(X) = Y , i.e. f̃ is surjective.

We will now identify a more general condition which forces a map f to send a Cauchy
sequence to a Cauchy sequence.

Definition 1.86. Let (X, τX) be a topological space and (Y, dY ) be a metric space, and
let f : A ⊆ X → Y . Given x ∈ A, the oscillation of f at x, denoted by oscf (x), is the
quantity

oscf (x) = inf
V ∈Vx

diam(f(V ∩ A)),

where Vx denotes the neighborhood filter of x.

Observe that if Wx is a neighborhood basis of x, then we can compute the oscillation
of f at x by only considering elements of Wx, i.e. oscf (x) = infV ∈Wx diam(f(V ∩A)). In
particular when X is metrizable and d is a compatible metric on (X, τX), we have

oscf (x) = inf
n∈N

diam(f(Bd(x, 1/n) ∩ A)).

Moreover since diam(f(Bd(x, ε) ∩ A) is an increasing function of ε we actually have

oscf (x) = lim
n→+∞

diam (f (Bd (x, 1/n) ∩ A)) .

Also note that in the above definition we always require x ∈ A so that f(V ∩ A) is
nonempty, but we allow x 6∈ A.

Exercise 1.22. Let (X, dX) and (Y, dY ), let f : A ⊆ X → Y and let x ∈ A.

1. Show that f is continuous at x if and only if oscf (x) = 0.

2. Prove that if f is continuous at x then

{f(x)} =
⋂
ε>0

f(B(x, ε)) =
⋂
ε>0

f(B(x, ε)) =
⋂
n∈N

f(B(x, 1/n)).

The last equality from the previous exercise is the key to extending a continuous
function to the set of x ∈ A satisfying oscf (x) = 0.

Proposition 1.87. Let (X, dX) and (Y, dY ) be metric spaces with dY complete, and let
f : A ⊆ X → Y be a continuous function. Then f extends uniquely to a continuous
function f̃ on

Ã := {x ∈ A : oscf (x) = 0}.

Proof. Uniqueness is again a consequence of the fact that a continuous function is de-
termined by its restriction to a dense subset (Prop. 1.38), noting that A is dense in
Ã.

For existence, let us first define f̃ and then check that f̃ extends f and is indeed
continuous.

Let x ∈ Ã, by definition oscf (x) = 0. Observe that the family of nonempty sets
(f(B(x, 1/n) ∩ A))n∈N has vanishing diameter, hence the family of nonempty closed sets
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(f(B(x, 1/n) ∩ A))n∈N has vanishing diameter. Its intersection is thus a singleton by
Theorem 1.84 so we define f̃(x) by

{f̃(x)} =
⋂
n∈N

f(B(x, 1/n) ∩ A).

Observe that by Exercise 1.22, f̃ extends f .
We finally check that f̃ is continuous: if x ∈ Ã and ε > 0, take δ > 0 such that

diam(f(B(x, δ)) < ε. Let x′ ∈ Ã such that d(x, x′) < δ, we will show that d(f̃(x), f̃(x′)) <
ε. Define δ′ := δ − d(x, x′). By the triangle inequality B(x′, δ′) ⊆ B(x, δ) and thus
f(B(x′, δ′)) ⊆ f(B(x, δ)). We thus have

f(B(x′, δ′)) ⊆ f(B(x, δ)).

In particular f̃(x′) ∈ f(B(x′δ)). Now by assumption the set f(B(x, δ)) has diameter less
than ε and contains f̃(x) so d(f̃(x), f̃(x′)) < ε as wanted. We conclude that f̃ is indeed
continuous, which ends the proof.

We used the framework of decreasing closed sets of vanishing diameter in the above
proof because it provides a direct way of defining a continuous function which will be used
many times in this book. But the following exercise shows that the approach through
Cauchy sequence also works.

Exercise 1.23. Let (X, dX) and (Y, dY ) be metric spaces with dY complete, and let
f : A ⊆ X → Y be a continuous function. Let x ∈ A such that oscf (x) = 0. Show that if
an → x with an ∈ A, then (f(an))n∈N is a Cauchy sequence. Deduce another proof of the
above proposition which follows the lines of the proof of Thm. 1.85.

The previous proposition applies particularly well when dealing with uniformly con-
tinuous functions.

Proposition 1.88. Let (X, dX) and (Y, dY ) be metric spaces, with (Y, dY ) complete. Let
A ⊆ X and f : A→ Y , be a uniformly continuous function. Then f extends uniquely to
a uniformly continuous function f̃ : A→ Y .

Proof. We want to apply Prop. 1.87. To this end, it suffices to show that for all x ∈ A,
the oscillation of the continuous function f at the point x is equal to zero.

Fix ε > 0 and apply the definition of uniform continuity to find δ > 0 such that
dY (f(x), f(x′)) < ε whenever dX(x, x′) < δ. Then the image of any ball of radius δ/2 has
diameter less than ε, in particular the oscillation at any point x ∈ A is not greater than
ε. Since ε > 0 was arbitrary, we conclude that oscf (x) = 0 for all x ∈ A.

The fact that f̃ is uniformly continuous is left as the next exercise.

Exercise 1.24. Finish the proof of the above proposition: show that f̃ is uniformly
continuous. (Hint: do a uniform version of the end of the proof of Prop. 1.87).

1.5.4 The completion of a metric space

We now show that every metric space can be turned into a complete metric space in a
canonical way.
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Theorem 1.89. Let (X, d) be a metric space. There is a complete metric space (X, d)
such that X is dense in X and the metric d extends d. This metric space is moreover
unique in the sense that if (Y, dY ) is another such space, then the identity map on X
extends to an isometry between (X, d) and (Y, dY ).

Proof. Uniqueness is a direct consequence of Thm. 1.85.
For existence, observe that it suffices to find an isometry ρ : (X, d) → (Z, dZ) where

(Z, dZ) is a complete metric space: we can then identify (X, d) to its image ρ(X) in (Z, dZ)
and let X be the closure of ρ(X) in Z, so that (X, dZ) is complete by Prop. 1.78.

Given a metric space (X, d), a complete metric space (X, d) such that X is dense in
X and the metric d extends d is called a completion of X.

1.6 Countability and topological spaces
We will now work out some “smallness criterions” for topological spaces, all of which will
be met by Polish spaces and rely on countability.

1.6.1 Separability

Definition 1.90. Let X be a topological space. We say X is separable if there is A ⊆ X
countable such that A = X.

A subset A such that A = X is called a dense subset of X. So separable spaces are
spaces admitting a countable dense subset.

Example 1.91. R is a separable topological space since the countable subset Q is dense
in R. The normed vector space `∞(X) of bounded functions X → R is not separable as
soon as X is infinite (see Exercise ??).

Proposition 1.92. Any countable product of separable topological spaces is separable for
the product topology.

Proof. Let us first deal with the countable infinite case. Let (Xn)n∈N be a sequence of
non-empty separable spaces, and for every n ∈ N let An ⊆ Xn be a dense subset. Let us
fix a sequence (xn)n∈N in

∏
n∈NXn. For each n ∈ N consider the set

Bn := A0 × A1 × · · · × An × {xn+1} × {xn+2} × · · · .

Each Bn is countable so their union B :=
⋃
n∈NBn also is.

It remains to see why B is dense in
∏

n∈NXn. Let (yn)n∈N ∈
∏

n∈NXn and let V be
a neighborhood of (yn)n∈N. By definition of the product topology, we find K ⊆ N finite
and for each n ∈ K a neighborhood Vn of yn such that V contains the set of sequences
(zn) such that for all n ∈ K we have zn ∈ Vn.

For each n ∈ K there is an ∈ An such that an ∈ Vn since An is dense in Xn. Consider
the sequence (zn) defined by

zn =

{
an if n ∈ K
xn if n 6∈ K

Observe that (zn) ∈ V ∩BN where N = maxK, witnessing that V ∩B 6= ∅ as wanted.
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Now if we are dealing with a finite family of separable topological spaces (Xi)
n
i=1, we

let for each i let Ai ⊆ Xi be countable dense. Then the same argument as above shows
that the countable set A1 × · · · × An is dense in

∏n
i=1 Xi which is thus separable.

It is not true in general that a subspace of a separable space is separable (see Exercise
1.43). However, this is true in metrizable spaces, and to see this we need the notion of
second-countability.

1.6.2 Second-countablity

Definition 1.93. Let X be a topological space. A family B of open subsets of X is called
a basis for the topology if every open set can be written as a union of elements of B.
The topological space X is second-countable if its topology admits a countable basis.

The main feature of second-countablity for us will be that it is inherited by subspaces.

Proposition 1.94. Let X be a second-countable topological space, and let Y ⊆ X. Then
Y is second-countable for the induced topology.

Proof. If (Un)n∈N is a countable basis for the topology of X, then it is straightforward to
check that (Un ∩ Y )n∈N is a countable basis for the topology of Y which is thus second-
countable.

We now turn to the relationship between second-countability and separability.

Lemma 1.95. Every second-countable topological space is separable.

Proof. Let X be a second-countable topological space. Let (Un)n∈N be a countable basis
its topology. For every n ∈ N such that Un 6= ∅, pick xn ∈ Un. Then the countable set
{xn : n ∈ N and Un 6= ∅} is dense in X: if U is a non-empty open subset of X, there is
n ∈ N such that ∅ 6= Un ⊆ U so that U contains xn. We conclude that X is separable.

Theorem 1.96. Let X be a metrizable topological space. Then X is separable if and only
if X is second-countable.

Proof. We just proved that in any topological space, second-countability implies separa-
bility.

Conversely, suppose that X is a separable metrizable space. Let d be a compatible
metric on X, let A ⊆ X be a countable dense subset. We will show that the countable
family of open balls

B = {B(a, r) : a ∈ A, r ∈ Q∩]0,+∞[}

is a basis for the topology, witnessing that X is second-countable. To see this, it suffices to
show that every x ∈ U belongs to some B ∈ B with B ⊆ U (to check that this condition
implies B is a basis, observe that it implies U is equal the reunion of all B ∈ B such that
B ⊆ U).

So let x ∈ U , since U is open we find r > 0 such that B(x, r) ⊆ U . Up to taking
a smaller r > 0 we may assume r ∈ Q. Since A is dense we then find a ∈ A which
is r/2-close to x. The triangle inequality yields that B(a, r/2) ⊆ B(x, r) ⊆ U , and by
symmetry we have x ∈ B(a, r/2) ⊆ U . Since B(a, r/2) ∈ B, this shows that B is a basis
for the topology.

Corollary 1.97. Every subspace of a separable metrizable space is also separable.
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Proof. Let X be a separable metrizable space, then X is second-countable by the previous
theorem. Every subspace Y ⊆ X is also second-countable as a consequence of Proposition
1.94, and hence separable by Lemma 1.95.

Remark 1.98. The following application of second-countability will also be useful: when
Y is a second-countable topological space with basis (Un)n∈N, a map f : X → Y is
continuous as soon as f−1(Un) is open for every n ∈ N (by Prop. 1.68).

1.6.3 Lindelöf’s lemma

Definition 1.99. Given a set X, a cover of X is a family of sets (Ai)i∈I such that

X ⊆
⋃
i∈I

Ai.

A subcover of a cover (Ai)i∈I is a subfamily (Ai)i∈J which is still a cover of X.
When (X, τ) is a topological space, an open cover of X is a cover of X made of open

subsets of X.

Here are some examples of open covers and subcovers :

• The families (]−∞, 0[, ]− 1,+∞[) and (]n, n+ 2[)n∈Z are open covers of R.

• Any basis of open sets of a topological space forms a cover. In particular, second-
countable topological spaces admit countable covers and a metric space admits the
family of all its balls as an open covering.

• Given a separable metric space (X, d) and a countable dense subset Y of X, we
showed that the set of open balls centered at elements of Y with rational radius
actually forms a countable basis of the topology (see the proof of Thm. 1.96) and
hence a countable subcover of the cover by all open balls.

As we will see now, covers of second-countable topological spaces always admit count-
able subcovers.

Lemma 1.100 (Lindelöf’s lemma). Let X be a second-countable topological space. Then
every open cover of X contains a countable subcover: whener (Ui)i∈I is an open cover of
X there exists J ⊆ I countable such that X ⊆

⋃
i∈J Ui.

Proof. Let (Ui)i∈I be an open cover of X, and let B = {Vn : n ∈ N} be a countable basis
for the topology. Let A = {n ∈ N : ∃i ∈ I, Vn ⊆ Ui}. For each n ∈ A, pick in ∈ I such
that Vn ⊆ Uin .

Then (Uin : n ∈ A) is a countable subfamily of (Ui)i∈I . To end the proof we need to
show that it is also a cover of X. Let x ∈ X, we find i ∈ I such that x ∈ Ui. Since B
is a basis, there is n ∈ N such that x ∈ Vn ⊆ U . By definition we have n ∈ A so that
Vn ⊆ Uin . Since x ∈ Vn we conclude that x ∈ Uin so that X =

⋃
n∈N Uin as wanted.

Corollary 1.101. Let X be a second-countable topological space, let (Ui)i∈I be a family
of open subsets of X. Then (Ui)i∈I contains a countable subfamily with the same reunion:
there is J ⊆ I countable such that ⋃

i∈J

Ui =
⋃
i∈I

Ui.

Proof. By Prop. 1.94 the subspace
⋃
i∈I Ui is second-countable. Applying the previous

lemma to the cover (Ui)i∈I , we get the desired countable subfamily (Ui)i∈J .
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1.7 Compactness

1.7.1 Definition in terms of covers

Compactness admits many equivalent formulations, and one of the most elegant of them
can be seen as a strengthening of the conclusion of Lindelöf’s lemma.

Definition 1.102. A topological space (X, τ) is compact if all its open covers admit a
finite subcover: whener (Ui)i∈I is an open cover of X there exists F ⊆ I finite such that
X ⊆

⋃
i∈F Ui.

Exercise 1.25. 1. Show that finite sets are compact for the discrete topology

2. Show that R is not compact by giving an example of a countable open cover of R
which does not admit a finite subcover.

3. Show that compactness can be checked by considering covers consisting only of
elements of a given basis of the topology.

Remark 1.103. Compactness can actually be checked by considering covers consisting
only of elements of a subbabis of the topology (see Exercise 1.44).

Let us give three important examples of compact spaces; the proofs that they are
indeed compact will be given later using other characterizations of compactness in metriz-
able spaces and the fact that products of compact spaces are compact.

• Given two reals a < b, the interval [a, b] is compact.

• The product space {0, 1}N is compact. It is called the Cantor space and will be of
great importance to us.

• The product space [0, 1]N is compact. We will see later that it contains every compact
metrizable space as a closed subspace.

Given a subset Y of a topological space X, when we say that Y is compact we always
mean that it is compact for the induced topology. The following exercise shows that the
notion of compact subset can actually be defined purely in terms of the ambient topology.

Exercise 1.26. Let X be a topological space and let Y ⊆ X. Show that Y is compact if
and only if every cover of Y by open subsets of X admits a finite subcover.

Proposition 1.104. The continuous image of a compact set is compact: if X is a compact
topological space, Y is a topological space and f : X → Y is continuous then f(X) is
compact.

Proof. Let (Vi)i∈I be an open cover of f(X). By definition we have f(X) ⊆
⋃
i∈I Vi. Since

f−1(f(X)) = X, we deduce
X ⊆

⋃
i∈I

f−1(Vi).

By continuity each f−1(Vi) is open so (f−1(Vi))i∈I is an open cover of X. It thus admits a
finite subcover (f−1(Vi))i∈F . It follows that (Vi)i∈F is a cover of f(X). We conclude that
f(X) is compact.
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Proposition 1.105. Every closed subspace of a compact topological space is compact.

Proof. Let X be a compact topological space, let F be a closed subset of X. By Exercise
1.26 we need to show that every open cover F by open subsets of X admits a finite
subcover. Let (Ui)i∈I be such a cover, let i0 6∈ I and consider the open set Ui0 = X \ F .
Then (Ui)i∈I∪{i0} is an open cover of X which thus admits a finite subcover (Ui)i∈F with
F ⊆ I ∪ {i0} finite. By the definition of Ui0 we conclude that (Ui)i∈F\{i0} is a finite
subcover of F .

We will end this section with a very useful reformulation of compactness which is
basically obtained by taking complements.

Definition 1.106. A family of sets (Ai)i∈I has the finite intersection property if for every
F ⊆ I finite, one has

⋂
i∈F Ai 6= ∅.

Note that if
⋂
i∈I Ai 6= ∅ then the family (Ai)i∈I has the finite intersection property.

Proposition 1.107. Let (X, τ) be a topological space. Then X is compact if and only if
every family of closed sets (Fi)i∈I which has the finite intersection property actually has
non-empty intersection:

⋂
i∈I Fi 6= ∅.

Proof. If X is compact, suppose by contradiction (Fi)i∈I is a family of closed subsets with
the intersection property but with trivial intersection. Then (X \ Fi)i∈I is an open cover
of X with no finite subcover, a contradiction. So

⋂
i∈I Fi 6= ∅ and we conclude that every

family of closed sets with the finite intersection property has non-empty intersection.
Conversely, suppose X is not compact. We then find an open cover (Ui)i∈I of X with

no finite subcover. We thus have a family of closed subsets (X \Ui)i∈I which has the finite
intersection property but whose intersection is empty.

1.7.2 Compactness in metric spaces

1.7.2.1 Precompactness

Applying the definition of compactness to the cover of a metric space by open balls of a
fixed radius leads to the notion of precompactness.

Definition 1.108. A metric space (X, d) is precompact if for every ε > 0 there is F ⊆ X
finite such that

(B(x, ε))x∈F

is a cover of X.

Proposition 1.109. Every compact metric space is precompact.

Proof. This is a straightforward consequence of the definition of compactness applied to
the covers (B(x, ε))x∈X for every ε > 0.

Here is a simple reformulation of the notion of precompactness for a metric space
(X, d): a subset A ⊆ X is ε-dense in X if for all x ∈ X there is a ∈ A such that
d(x, a) < ε. Now the precompactness of (X, d) is equivalent to the following statement:
for every ε > 0, there is a finite subset of X which is ε-dense in X.

Proposition 1.110. Every precompact metric space is bounded (i.e. has finite diameter).
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Proof. Let F ⊆ X be a finite subset which is 1-dense. Let us show that the diameter of
X is at most diam(F ) + 2: given x, x′ ∈ X we find f, f ′ ∈ F such that d(x, f) < 1 and
d(x′, f ′) < 1 by 1-density . Then d(f, f ′) 6 diam(F ) so by the triangle inequality

d(x, x′) 6 d(x, f) + d(f, f ′) + d(f ′, x′) 6 diam(F ) + 2.

Since F is finite it has finite diameter, so we can conclude from the previous inequation
that diam(X) is finite.

Corollary 1.111. Every compact metric space is bounded.

Proof. By Proposition 1.109 every compact space is precompact, hence bounded by the
previous proposition.

We now give a sequential characterization of precompactness which will allow us to
recover the well-known characterization of compactness in terms of subsequences (a se-
quence (vn) is a subsequence of a sequence (un) if there is an increasing map ϕ : N→ N
such that for all n ∈ N, vn = uϕ(n)).

Proposition 1.112. Let (X, d) be a metric space. The following are equivalent

(i) (X, d) is precompact;

(ii) every sequence has a Cauchy subsequence.

Proof. (i)⇒(ii): suppose (X, d) is precompact, let (xn) be a sequence of elements of X.
We first build by induction a decreasing family (An) of infinite subsets of N such that
A0 = N and for every n > 0 we have diam({xm : m ∈ An}) 6 1

n
.

We start with A0, and then assuming An has been constructed, we use precompactness
to cover X by finitely many balls (Bi)

k
i=1 of radius 1

2(n+1)
. Since An is infinite, there is

i ∈ {1, ..., k} such that for infinitely many m ∈ An, we have xm ∈ Bi. We then let
An+1 = {m ∈ An : xm ∈ Bi} and observe that diam({xm : m ∈ An+1}) 6 diamBi 6 1

n+1

as wanted. This completes the construction. Now let ϕ(n) = min{m : m ∈ An}, then
(xϕ(n)) is the desired Cauchy subsequence.

(ii)⇒(i): by contrapositive, suppose (X, d) is not precompact, then there is some
ε > 0 such that no finite subset of X is ε-dense. This allows us to construct by induction
a sequence (xn) such that d(xn, xm) > ε for all n 6= m: start with an arbitrary x0 ∈ X, and
when x0, ..., xn have been built take xn+1 witnessing that the finite set {x0, ..., xn} is not
ε-dense. Since the property d(xn, xm) > ε for all n 6= m will be inherited by subsequences,
such a sequence (xn) cannot have a Cauchy subsequence.

The following exercise shows that one can characterize precompact subsets of metric
spaces “from the outside”.

Exercise 1.27. Let (X, d) be a metric space.

1. Show that a subspace Y ⊆ X is precompact for the induced metric if and only if
for every ε > 0 there is F ⊆ X finite such that Y ⊆

⋃
x∈F Bd(x, ε)

2. Deduce that Y ⊆ X is precompact for the induced metric if and only if Y is.
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1.7.2.2 Mesh property

We say that a metric space (X, d) has the mesh property if for every open cover of X,
there is ε > 0 such that every open ball of radius ε is contained in some Ui: for every
x ∈ X, there is i ∈ I such that

B(x, ε) ⊆ Ui.

Such an ε is called amesh of the cover (Ui)i∈I . We will now reuse the ideas from Lindelöf’s
lemma in our metric context to show that compact metric spaces have the mesh property.

Lemma 1.113. Let (X, d) be a compact metric space, then (X, d) has the mesh property.

Proof. Define a set A := {(x, ε) ∈ X × R∗+ : ∃i ∈ I, B(x, 2ε) ⊆ Ui}. Then since (Ui)i∈I is
an open cover of X and open balls form a basis of the topology, we have that

(B(x, ε))(x,ε)∈A

is an open cover of X. By compactness, we find n ∈ N, elements x1, ..., xn ∈ X, radiuses
ε1, ..., εn and indices i1, ..., in ∈ I such that

X ⊆
n⋃
k=1

B(xk, εk)

and for every k = 1, ..., n we have B(xi, 2εi) ⊆ Uik . Let ε = min{ε1, ..., εn}, we will see
that this ε works. Indeed if x ∈ X, then there is k ∈ {1, ..., n} such that x ∈ B(xk, εk),
and then since B(xk, 2εk) ⊆ Uik the triangle inequality yields B(x, ε) ⊆ Uik as wanted.

Remark 1.114. See Exercise ?? for a proof of this proposition using Lipschitz functions.

We can now obtain the uniform continuity of continuous functions on compact spaces
as a consequence of the existence of a mesh for an open cover.

Proposition 1.115. Let (X, dX) be a compact metric space, let (Y, dY ) be a metric space
and let f : X → Y be a continuous function. Then f is uniformly continuous: for
every ε > 0 there is δ > 0 such that for all x, x′ ∈ X satisfying dX(x, x′) < δ we have
dY (f(x), f(x′)) < ε.

Proof. Let ε > 0, and consider the cover (f−1(BdY (f(x), ε/2)))x∈X . Let δ be a mesh for
this cover, we will see that this δ works.

Let x, x′ ∈ X with dX(x, x′) < δ. Then there is some x′′ ∈ X such that BdX (x, δ) ⊆
f−1(BdY (f(x′′), ε/2)). So x and x′ belong to f−1(BdY (f(x′′), ε/2), which means that
dY (f(x), f(x′′)) < ε/2 and dY (f(x′), f(x′′)) < ε/2. By the triangle inequality we con-
clude that

dY (f(x), f(x′)) 6 dY (f(x), f(x′′)) + dY (f(x′′), f(x′)) < ε

as wanted.

1.7.2.3 Characterizing compactness in metric spaces

Theorem 1.116. Let (X, d) be a metric space. The following are equivalent:

(i) X is compact;

(ii) (X, d) is precompact and complete;
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(iii) Every sequence of elements of X has a converging subsequence;

(iv) (X, d) is precompact and has the mesh property.

Proof. (i)⇒(ii): Suppose X is compact. Then X is precompact (Prop. 1.109). To see
that (X, d) is complete, we use the characterization provided by Theorem 1.84: given a
decreasing family of nonempty closed subsets (Fn) of vanishing diameter, we must show
it has nonempty intersection. By compactness we only need to show that it has the finite
intersection property (see Prop. 1.107). So let n1, ..., nk ∈ N, and let N = max(n1, ..., nk),
then since the sequence (Fn) is decreasing we have FN ⊆

⋂k
i=1 Fni

. The set FN being
nonempty, we conclude that

⋂k
i=1 Fni

is nonempty. So (Fn) has the finite intersection
property and hence has nonempty intersection by compactness.

(ii)⇒(iii) Let (xn) be a sequence of elements of X, then by precompactness it has a
Cauchy subsequence. By completeness, such a subsequence converges.

(iii)⇒(iv): If every sequence has a converging subsequence, then since converging
sequences are Cauchy (Lem. 1.76) we conclude that every sequence has a Cauchy subse-
quence. So by Prop. 1.112, (X, d) is precompact.

Let us now prove by contradiction that (X, d) also satisfies the mesh property. Suppose
not, let (Ui)i∈I be an open cover of X, then given any ε > 0 we can find some x ∈ X
such that B(x, ε) is contained in no Ui. Applying this for every n with εn = 1

n
we find

a sequence (xn) such that B(xn, 1/n) is contained in no Ui. By asumption it has a
subsequence (xϕ(n)) converging to some x ∈ X. Now let i ∈ I such that x ∈ Ui. We find ε
such that B(x, 2ε) ⊆ Ui. But for large enough n, we have d(x, xϕ(n)) < ε and 1/ϕ(n) < ε
so that by the triangle inequality

B

(
xϕ(n),

1

ϕ(n)

)
⊆ B(x, 2ε) ⊆ Ui,

a contradiction.
(iv)⇒(i): Suppose (X, d) is precompact and has the mesh property, let us show X is

compact. Let (Ui)i∈I be an open cover of X, let ε be a mesh for this cover. Then by
precompactness we find a finite set {x1, ..., xn} which is ε-dense in X. Since ε is a mesh
for each k ∈ {1, ..., n} there is ik ∈ I such that B(xk, ε) ⊆ Uik . We conclude that (Uik)nk=1

is a finite subcover of X. So every open cover of X has a finite subcover, in other words
X is compact.

Note that item (3) above does not refer to the metric itself but only to the topology.
We thus have the following important corollary.

Corollary 1.117. A metrizable topological space X is compact if and only if every se-
quence of elements of X has a converging subsequence.

Remark 1.118. The above theorem also shows that if X is a metrizable compact topo-
logical space, then every compatible metric on X is precompact and complete. In Exercise
2.3 we will actually show that a metrizable topological space is compact if and only if all
its compatible metrics are complete.

Corollary 1.119. Let (X, d) be a complete metric space. A subset Y ⊆ X is precompact
if and only if its closure is compact.

Proof. Observe that if F is ε-dense in Y , then F is 2ε-dense in Y so if Y is precompact
its closure Y also is. Moreover Y is a complete metric space because X is and Y is closed,
so by the above theorem Y is compact.

Conversely if Y is compact then it is precompact
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1.7.3 Tychonov’s theorem

On of the most fundamental properties of compactness is that it is stable under products.

Theorem 1.120 (Tychonov). Any product of compact spaces is compact.

In this section, we are only going to prove Tychonov’s theorem in the case of a count-
able product of compact metric spaces. Our main reason for doing so is that Tychonov’s
theorem in its above form is actually equivalent to the axiom of choice which we try to
avoid as much as possible ?? so as to get constructive proofs. A proof of the general
version of Tychonov’s theorem is also given in exercise ??.

For this, we use the characterization of compactness in terms of subsequences. The
key idea is that we can iterate taking subsequences. The following exercise is a good
warmup.

Exercise 1.28. Show that any finite product of compact metrizable spaces is compact
metrizable.

Theorem 1.121. Any countable product of compact metrizable spaces is compact metriz-
able.

Proof. By the previous exercise we only need to deal with the countable infinite case. So
let (Xn)n∈N be a countable family of compact metrizable spaces. For notational simplicity,
we go back to the set-theoretic definition of products and view elements of the product
space as maps f : N→

⋃
n∈NXn such that f(n) ∈ Xn for all n.

We have shown in Prop. 1.59 that the product
∏

n∈NXn is metrizable, so by the
characterization of compactness for metric spaces we need to show that every sequence of
elements of

∏
n∈N(Xn) has a converging subsequence.

So let (fm)m∈N be a sequence of elements of
∏

n∈N(Xn). We will build by induction a
family (ϕn) of increasing maps N → N and elements xn ∈ Xn such that for each n, the
sequence

(fϕ0...ϕn(m)(n))m∈N

converges to xn.
We start by applying the compactness of X0 to find an increasing ϕ0 : N → N and

x0 ∈ X0 such that fϕ0(m)(0) converges to x0 ∈ X0. Then, ϕ0, ..., ϕn and x0, ..., xn having
been built, we apply the compactness of Xn+1 to the sequence (fϕ0···ϕn(m)(n + 1))m∈N to
find an increasing ϕn+1 : N→ N and xn+1 ∈ Xn+1 such that fϕ0···ϕn+1(m)(n+ 1) converges
to xn+1 as m tends to +∞.

Now consider the map ϕ : N → N given by ϕ(m) = ϕ0 · · ·ϕm(m). Let us prove that
fϕ(m) → (xn)n∈N as m tens to ∞. By Theorem 1.116 we need to show that for all n ∈ N
we have fϕ(m)(n)→ xn. So fix n ∈ N and let V be a neighborhood of xn.

By the definition of ϕn we have that fϕ0···ϕn(m)(n)→ xn as m→ +∞. So there isM ∈
N such that for all m >M , we have fϕ0···ϕn(m)(n) ∈ V . Up to replacing M by max(M,n),
we may as well assume M > n. Now for all m > M , we have ϕn+1 · · ·ϕm(m) > m, and
hence fϕ0···ϕnϕn+1···ϕm(m)(n) ∈ V , which by definition means fϕ(m) ∈ V as wanted.

1.7.4 Compactness and separation

We now will see that in compact spaces, Hausdorfness allows one not only to separate
distinct points by open sets, but also disjoint compact sets. Let us first give a precise
meaning to the notion of separation, which is a recurrent theme in descriptive set theory.
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Definition 1.122. Let X be a set, let A and B be two disjoint subsets of X. We say
that A and B are separated by two other subets C and D if we have A ⊆ C, B ⊆ D
and C ∩D = ∅.

Of course A and B are always separated by themselves, but the point of the above def-
inition is to separate them by nicer sets. For instance, Hausdorfness may be reformulated
as: disjoint singletons can be separated by open subsets. Here is a stronger statement.

Proposition 1.123. Let X be a Hausdorff topological space. Then if K is a compact
subset of X and x ∈ X \K then there are disjoint open subsets U and V with K ⊆ U and
x ∈ V . In other words, we can separate points from compact subsets by open subsets.

Proof. Let K ⊆ X be compact for the induced topology, and let x 6∈ K. Since X is
Hausdorff, the family of all open subsets of X which are disjoint from some open subset
containing x is a cover of X \ {x}, in particular it is a cover of K. By Exercise 1.26 such
a cover has a finite subcover (U1, ..., Un) and by definition for each i ∈ {1, ..., n} there is
an open set Vi containing x which is disjoint from Ui.

The open set V :=
⋂n
i=1 Vi is then disjoint from the open set U :=

⋃n
i=1 Ui which

contains K. Moreover x ∈ V so U and V are as wanted.

In the above proof, we used an important trick which we single out.

Trick A (Separation trick). Suppose A and B are sets with A covered by (Ai)i∈I . Suppose
for each i ∈ I we have another set Bi such that Ai and B are separated by Ai and Bi.
Then A is separated from B by

⋃
i∈I Ai and

⋂
i∈I Bi.

Proof. Indeed A ⊆
⋃
i∈I Ai because (Ai)i∈I covers A and B ⊆

⋂
i∈I Bi because for each

i ∈ I we have B ⊆ Bi. Moreover
⋃
i∈I Ai ∩

⋂
i∈I Bi ⊆

⋃
i∈I Ai ∩Bi = ∅.

Exercise 1.29. Show that in a Hausdorff topological space, any two disjoint compact sets
can be separated by open sets. (Hint: if K and L are disjoint compact, use the previous
proposition and compactness to find a finite open cover (Ui)

n
i=1 of K and open sets Vi ⊇ L

disjoint from Ui. Conclude by applying the above trick).

Let us now move to an important consequence of the above separation result.

Proposition 1.124. Let X be a Hausdorff topological space. Then every compact subset
of X is closed.

Proof. Let K ⊆ X be compact, let x 6∈ K. By the previous proposition we get disjoint
open sets U and V with K ⊆ U and x ∈ V . In particular K is disjoint from V which is
a neighborhood of x. We conclude K is closed.

Corollary 1.125. Let X be a compact Hausdorff topological space, let Y ⊆ X. Then Y
is compact if and only if it is closed.

Proof. The direct implication is the previous proposition, while the converse is Prop.
1.105.

In the metric case, we can actually separate closed sets from compact ones by open
sets using the following result.
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Proposition 1.126. Let (X, d) be a metric space. Let K be a compact subspace of X and
let F be a closed subset. Then there is ε > 0 such that for all k ∈ K and f ∈ F , we have

d(x, f) > ε.

Proof. Suppose not. Then we can build sequences (kn)n∈N ∈ KN and (fn)n∈N ∈ FN such
that d(kn, fn) < 1/n for all n ∈ N. Since K is compact, by taking a subsequence we may
assume that kn → k for some k ∈ K. Then since d(kn, fn)→ 0 we also have fn → k, and
since F is closed we conclude k ∈ F , which contradicts the disjointness of F and K.

Theorem 1.127. Let X be a compact topological space, let Y be a Hausdorff topological
space. Let f : X → Y be a continuous map. The following are true:

(1) whenever F ⊆ X is closed, its image f(F ) is compact in Y and

(2) if f is injective, it is a homeomorphism onto its image.

Proof. (1): Let F ⊆ X closed, then F is compact because X is, so by Prop. 1.104 f(F )
is compact.

(2): The map f is continuous injective so to show that f is a homeomorphism onto
its image we need to show that f maps open subsets of X to open subsets of f(X), or
equivalently that f maps closed subsets of X to closed subsets of f(X). But if F ⊆ X is
closed we have just seen that f(F ) is compact in Y hence closed in Y because Y is Haus-
dorff. In particular f(F ) is closed in f(X) and we conclude that f is a homeomorphism
onto its image.

1.7.5 Compactness in R
Compactness is very useful in the topological space R. Recall that R a metrizable topo-
logical space with a nice compatible metric provided by the complete metric d associated
to the absolute value:

d(x, y) = |x− y| .

When we view R as a metric space, we will always be considering this metric. Let us first
understand exactly which subsets of R are compact.

Proposition 1.128. Let a 6 b be two reals. Then the closed interval [a, b] is compact.

Proof. First, [a, b] is closed because it is equal to the closed ball of radius (a−b)/2 around
(a+ b)/2. The compatible metric d(x, y) = |x− y| thus restricts to a complete metric on
[a, b]. Moreover, if ε > 0, by the archimedean property of the reals there is n ∈ N such
that nε > 2(b− a). It is then straightforward to check that [a, b] is covered by the finite
family of ε-balls (B(a + kε/2, ε))nk=0, so [a, b] is precompact. We conclude that ([a, b], d)
is a precompact complete metric space, hence [a, b] is compact by Thm. 1.116.

Theorem 1.129. The compact subspaces of R are exactly the closed bounded subsets of
R.

Proof. If K ⊆ R is compact, then K is bounded by Cor. 1.111 and closed by Prop. 1.124.
Conversely if K is bounded and closed, let M > 0 be a bound for the diameter of K. Fix
x0 ∈ K, then K is contained in [x0−M,x0 +M ] which is compact by Prop. 1.128. So K
is a closed subset of a compact space hence K is compact.
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The following is a fundamental result in analysis.

Theorem 1.130. Every non-empty compact subset of R has a minimum and a maximum.

Proof. Let K ⊆ R be compact and non empty. Consider the family of non-empty closed
sets (]−∞, x] ∩K)x∈X . This family is closed under finite intersections because

(]−∞, x1] ∩K) ∩ · · · ∩ (]−∞, xn] ∩K) =]−∞,min(x1, ..., xn)] ∩K,

so since it consists of non-empty sets it has the finite intersection property. Since K is
compact, Prop. 1.107 yields that the set L :=

⋂
x∈K ]−∞, x]∩K is nonempty. Let x0 ∈ L,

then x0 ∈ K and for every x ∈ K we have x0 ∈]−∞, x] so x0 6 x. We conclude that x0

is the minimum of K (note that L must then be a singleton).
For the maximum, the same proof works by considering the family ([x,+∞[∩K)x∈X

instead.

1.8 Local compactness and one point compactifications

Definition 1.131. A topological space X is locally compact if every x ∈ X has a
neighborhood basis consisting of compact subsets.

As a first example, note that the discrete topology is always locally compact.

Example 1.132. Here is a less trivial example: R is locally compact. Indeed if x ∈ R,
closed intervals of the form [x− ε, x+ ε] for ε > 0 form a basis of compact neighborhoods
of x.

Unlike for compact spaces, arbitrary products of locally compact spaces are not locally
compact. However we still have the following.

Proposition 1.133. Any finite product of locally compact spaces is locally compact.

Proof. It suffices to show that the product of two locally compact spaces is locally com-
pact, so let X and Y be locally compact, let (x, y) ∈ X × Y . Let W be a neighborhood
of (x, y) then by definition of the product topology we find neighborhoods U of x and
V of Y such that U × V ⊆ W . Since X and Y are locally compact, we find K ⊆ U
compact neighborhood of x and L ⊆ V compact neighborhood of y, so that K × L ⊆ W
is a compact neighborhood of (x, y).

Exercise 1.30. Show RN is not locally compact. (Hint: show by contradiction that every
compact set has empty interior).

To see that a Hausdorff topological space is locally compact, it actually suffices to
check that each point admits one compact neighborhood.

Theorem 1.134. Let X be a Hausdorff topological space. Then the following are equiv-
alent:

(i) X is locally compact;

(ii) every x ∈ X admits a compact neigbhorhood.
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Proof. The implication (i)⇒(ii) follows from the fact that a basis of neighborhoods is
never empty.

For (ii)⇒(i), assume every x ∈ X admits a compact neigbhorhood. Let x ∈ X, let V
be a neighborhood of x. We need to find a compact neigborhood of x inside V .

By assumption we can find a compact neighborhood K of x. Up to replacing V by
V ∩K, we may as well assume V ⊆ K. Consider the compact space K \ V . There are
disjoint open sets U1 and U2 such that x ∈ U1 and K \V ⊆ U2. Since V is a neighborhood
of x, we find W ⊆ V open containing x. Now let us see why the neighborhood F of x
defined by F = W ∩ U1 is as wanted. First, F is compact because it is a closed subset
of the compact set K. Moreover U1 is disjoint from the open set U2, its closure also is
and so F is disjoint from U2. In particular F is disjoint from K \ V , which since F ⊆ K
means that F is contained in V as wanted.

Corollary 1.135. Every compact Hausdorff topological space is locally compact.

Proof. Let X be compact Hausdorff, then for every x ∈ X the set X is a compact
neighborhood of x. Since X is Hausdorff the preceding theorem allows us to conclude X
is locally compact.

We now relate locally compact spaces to compact spaces by “adding a point at infinity”,
generalizing the construction of the one point compactification of N.

Definition 1.136. Let X be a Hausdorff locally compact space which is not compact.
Its one point compactification is the set X t{∞} equipped with the topology whose open
sets are the open subsets of X along with sets of the form {∞} ∪X \K where K ranges
over compact subsets of X.

Exercise 1.31. Check that the one point compactification of a Hausdorff locally compact
space is ineed a topological space, that it is compact and that X embeds into it.

1.9 Connectedness
Ultrametric, example: Qp, for lc we have td implies zero dim. Intervals are connected.

1.10 Urysohn’s metrization theorem
In this section we give a characterization of the second countable topological spaces which
admit a compatible metric. We first give a necessary separation condition called normal-
ity.

Definition 1.137. A topological space X is normal if disjoint closed sets can be sep-
arated by open sets: for every disjoint closed subsets F,G ⊆ X there are disjoint open
subsets U and V such that F ⊆ U and G ⊆ V .

Proposition 1.138. Every metrizable topological space is normal.

Proof. Let X be a topological space and d be a compatible metric. Let F,G ⊆ X be
disjoint closed sets. Since F and G are closed and disjoint, we have d(x,G) > 0 for all
x ∈ F and d(x, F ) > 0 for all x ∈ G. We then define

U =
⋃
x∈F

Bd(x, d(x,G)/2) and V =
⋃
x∈G

Bd(x, d(x, F )/2).
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Being unions of open balls, both U and V are open and we clearly have F ⊆ U and
G ⊆ V . Let us finish the proof by showing U and V are disjoint. If y ∈ U ∩ V then
we find x1 ∈ F with d(x1, y) < d(x1, G)/2 and x2 ∈ G with d(x2, y) < d(x2, F ). By the
triangle inequality we have

d(x1, x2) 6 d(x1, y) + d(x2, y) <
d(x1, G) + d(x2, F )

2
.

But by the definition of the distance functions d(x1, x2) > d(x1, G) and d(x1, x2) >
d(x2, F ) so d(x1, x2) > d(x1,G)+d(x2,G)

2
, a contradiction.

Proposition 1.139. Every compact Hausdorff topological space is normal.

Proof. Let X be a compact Hausdorff topological space. If F and G are two disjoint
closed subsets of X they are compact (Prop. 1.105), so by Exercise 1.29 they can be
separated by open subsets.

The following easy reformulation of normality will prove more useful.

Exercise 1.32. Show that a topological space is normal if and only if for every closed
set F contained in an open set U , there is an open set V such that F ⊆ V and V ⊆ U .

Recall that the topological space [0, 1]N is metrizable and that every subspace of a
metrizable space is metrizable. We are going to prove that every a second-countable
Hausdorff normal topological spaceX is metrizable by showing thatX is homeomorphic to
a subspace of [0, 1]N. To this end, we need a big supply of continuous functions X → [0, 1]
which are provided by the following key lemma.

Lemma 1.140. Let X be a normal topological space and let F,G be disjoint closed subsets
of X. There is a continuous function f : X → [0, 1] such that f(F ) = {0} and f(G) =
{1}.

Proof. Using the reformulation of normality provided by Exercise 1.32, we will first build
by induction a family of open sets (Uq)q∈Q∩]0,1] containing F and contained in X \G such
that for all q, r ∈ Q ∩ [0, 1] with q < r, we have

Uq ⊆ Ur.

We initiate our construction with U1 = X \G, and U0 an open set such that F ⊆ U0 and
U0 ⊆ U1. We then let (qn)n∈N be an enumeration of Q ∩ [0, 1] with q0 = 0 and q1 = 1.

Assuming that Uq0 , ..., Uqn have been built for some n > 1, let us construct Uqn+1 . We
first find k, l ∈ {0, ..., n} so that qk is the greatest element of {q0, ..., qn} less than qn+1

while ql is the smallest element of {q0, ..., qn} greater than qn+1. We then apply normality
to U qk ⊆ Uql to find Uqn+1 with

Uqk ⊆ Uqn+1 and Uqn+1 ⊆ Uql .

By construction in the end we obtain a family of open sets (Uq)q∈Q∩[0,1] containing F and
contained in X \G such that for any q, r ∈ Q ∩ [0, 1] with q < r, we have

Uq ⊆ Ur.
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Let us now define our function f : X → [0, 1] by

f(x) = inf({1} ∪ {q ∈ Q ∩ [0, 1] : x ∈ Uq})

Observe that by definition we have the following property: for all x ∈ Uq we have
f(x) 6 q and for all x 6∈ Uq we have f(x) > q. Since F is contained in every Uq, we then
have f(F ) ⊆ {0}, and since each Uq is disjoint from G we also have f(G) ⊆ {1}. We thus
have to understand why f is continuous.

Let b ∈]0, 1], we have f−1([0, b[) =
⋃
q<b Uq: the inclusion from right to left follows

from the fact that for every q ∈ Q∩ [0, 1] we have f(Uq) ⊆ [0, q], and conversely if f(x) < b
we may find a rational q such that f(x) < q < b and it follows that x ∈ Uq.

Now let a ∈ [0, 1[, then f−1(]a, 1]) =
⋃
q>aX \ Uq. Indeed if f(x) > a we find ε such

that x 6∈ Ur for all r ∈]a, a + ε[∩Q. We then pick such a r and chose some rational
q ∈]a, r[: we then have Uq ⊆ Ur and since x 6∈ Ur in particular x 6∈ Uq. The reverse
inclusion

⋃
q>aX \ Uq ⊆ f−1(]a, 1]) follows immediatly from the fact that for all x 6∈ Uq

we have f(x) > q.
Since the topology of [0, 1] is generated by intervals of the form [0, b[ and ]a, 1] and

their preimages by f are open, we conclude that the preimage of any open subset of [0, 1]
is open: the map f is continuous as wanted.

Theorem 1.141. Let X be a second-countable Hausdorff topological space. Then the
following are equivalent:

(i) X is normal;

(ii) X is metrizable;

(iii) X is homeomorphic to a subspace of the Hilbert cube [0, 1]N.

Proof. The implication (ii)⇒(i) is Prop. 1.138, while (iii)⇒(ii) follows from the fact that
[0, 1]N is metrizable (by Prop. 1.59) and subspaces of metrizable spaces are metrizable.

So we only need to prove (i)⇒(iii). Let X be a normal second-countable Hausdorff
topological space. Let (Un)n∈N be a basis for its topology. We need to build enough
continuous functions fn : X → [0, 1] so that the map Φ : x ∈ X 7→ (fn(x))n∈N ∈ [0, 1]N is
not only continuous but a homeomorphism onto its image. To this end, we will need that
for each n ∈ N, Φ(Un) is an open subset of Φ(X), in other words we will need an open
subset Vn of [0, 1]N such that for all x ∈ X, x ∈ Un ⇔ Φ(x) ∈ Vn.

Let us fix n ∈ N. If we are given a closed subset F of Un, Lem. 1.140 provides us
f : X → [0, 1] such that x 6∈ Un ⇒ f(x) = 1 and x ∈ F ⇒ f(x) = 0. In particular
f(x) < 1 ⇒ x ∈ Un. For the converse to hold, we will need to use countably many
functions and cover Un by countably many closed subsets. Let us first check that such a
cover exists.

By Hausdorffness for each x ∈ Un the singleton {x} is closed (Prop. 1.27). Since X is
normal and (Um)m∈N is a basis for the topology, we then find Um containing x such that
Um ⊆ Un. In other words {Um : Um ⊆ Un} is a cover of Un.

For each m ∈ N such that Um ⊆ Un we use Lem. 1.140 to pick fn,m : X → [0, 1]
continuous such that fn,m(Um) = {0} and fn,m(X \Un) = {1}. Observe that since the set
of Um contained in Un is a cover of Un, we now have x ∈ Un if and only if there is m such
that fn,m(x) < 1.
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Let I be the set of (n,m) ∈ N2 such that Um ⊆ Un. We can now define

Φ : X → [0, 1]I

x 7→ (fn,m(x))(n,m)∈I

Since each fn,m is continuous, Φ is continuous. Moreover Φ is injective because if x 6= y
we find Un containing x but not y, and then there is (n,m) ∈ I such that x ∈ Um so
fn,m(x) = 0 but fn,m(y) = 1.

Let us finally check that the corestriction of Φ to its image is open: we have x ∈ Un
if and only if there is m such that fn,m(x) < 1, so

Φ(Un) = Φ(X) ∩
⋃

m∈N:(n,m)∈I

π−1
n,m([0, 1[)

where πn,m is the projection onto the (n,m)-coordinate. This implies that Φ(Un) is open
for the induced topology on Φ(X), and since (Un) is a basis for the topology of X, the
corestriction of Φ to Φ(X) is an open map. Moreover Φ is continuous injective, so we
conclude that Φ is a homeomorphism onto its image.

Exercise 1.33. Show directly that every separable metric space (X, d) is homeomorphic
to a subspace of [0, 1]N by fixing a dense set (xn)n∈N and considering the map x 7→
(min(1, d(xn, x)))n∈N.

1.11 Exercises

1.11.1 Basic exercises

Exercise 1.34. Let (X, d) be a metric space. Fix x0 ∈ X, and define the SNCF6 metric
by dSNCF(x, y) := d(x, x0) +d(x0, y). Check that this is indeed a metric, and find out why
this metric has something to do with the French railway system.

Exercise 1.35. Show that if a topological space admits a countable subbasis then it is
second-countable. Deduce that any countable product of second-countable topological
spaces is second-countable for the product topology.

Exercise 1.36. Show that the following properties of topological spaces are invariant
under homeomorphism: metrizability, separability, first-countability, second-countability,
compactness, local compactness, admitting a compatible complete metric. Use the latter
to show that the topological space ]− 1, 1[ admits a compatible complete metric.

Exercise 1.37. Let X be a compact space.

1. Let U be a family of open subsets of X. Suppose that U separates points, meaning
that for every x 6= y there are disjoint U, V ∈ U such that x ∈ U and y ∈ V . Show
that U generates the topology of X

2. Deduce that every countable compact Hausdorff space is metrizable.
6SNCF stands for Société Nationale des Chemins de Fer.
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1.11.2 Around Lindelöf’s lemmma

Exercise 1.38 (A stronger version of Urysohn’s metrization theorem). A topological
space is regular if points can be separated from closed subsets by open sets: for every
closed set F and for every x 6∈ F there are disjoint open sets U and V such that F ⊆ U
and x ∈ V .

1. Show that a topological space X is regular if and only if for every closed subset
F ⊆ X and every x 6∈ F we may find an open set U containing x such that U is
disjoint from F .

2. Show that given two disjoint closed subsets F and G of a second-countable topo-
logical space, we may find a countable cover (Un)n∈N of F such that Un is disjoint
from G for each n ∈ N.

3. Show that every regular second-countable topological space is normal. (Hint: apply
the previous question to find countable open covers (Un)n∈N of F of G with Un∩G =
∅ = Vn ∩ F for all n ∈ N. Then replace Un and Vn by smaller open sets so that for
all m 6 n, Vm ∩ Un = ∅ and Um ∩ Vn = ∅.)

4. Conclude that every regular second-countable Hausdorff topological space is metriz-
able. This is often the way Urysohn’s metrization theorem is actually stated.

Exercise 1.39. Let X be a second-countable topological space. Show that every basis of
the topology of X contains a countable basis.

Exercise 1.40. Let X and Y be topological spaces with X separable. Show that if there
is a continuous surjective map f : X → Y then Y is separable.

Exercise 1.41. Let (X, τX) be a Hausdorff topological space, let (Y, τY ) be a topological
space and f : X → Y . Show that Φ is a homeomorphism onto its image if and only if
Φ∗τY = τX , where Φ∗τY is the pullback topology of τY .

Exercise 1.42. Given two reals a < b, show directly that the interval [a, b] is compact.

Exercise 1.43. Separability does not pass to closed subspaces.
Consider the space {0, 1}[0,1] equipped with the product topology, which we identify

to the space of subsets of [0, 1] via their characteristic functions.

1. Show that this space is separable (Hint: consider finite unions of open intervals with
rational endpoints.)

2. Deduce that this space is not first-countable (Hint: Show that any first-countable
separable space has at most the cardinality of the continuum).

3. Show that the subspace of singletons is closed and not separable.

1.11.3 Some uses of the axiom of choice in topology

Exercise 1.44 (Alexander’s subbase theorem). Let (X, τ) be a topological space, let
U ⊆ τ , suppose that U generates τ and that every cover of X by elements of U has a
finite subcover. Show that X is compact. (Hint: assume not, show that X has a maximal
cover C without a finite subcover. Show that there is x ∈ X which is not covered by U ∩C
and deduce a contradiction)
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Exercise 1.45. The Stone-Čech compactification of the integers.
This exercise uses the definition of filters, ultrafilters and their basic properties, for

which the reader is refered to Exercise ??. The Stone-Čech compactification of the
integers, denoted by βN, is the set of all ultrafilters on N endowed with the topology
whose prebase is given by the set of

VA = {U ∈ βN : A ∈ U}.

where A is a subset of N. In other words, the topology is the topology induced by the
product topology on {0, 1}P(N).

1. Show that the set of integers (identified to the set of principal ultrafilters) is discrete
and dense. Show that the sequence (n)n∈N has no converging subsequence.

2. Show that the prebase of the topology that we described is actually a base.

3. Let X be a Hausdorff infinite topological space. Show that there is an open set
U ⊆ X such that X \ U is infinite. Deduce that X contains an infinite discrete
subset (an infinite subset onto which the induced topology is the discrete topology).

4. Use this to show that in the Stone-Čech compactification of the integers, every
converging sequence is stationary !



Chapter 2

Polish spaces

2.1 Definition and first examples
Definition 2.1. A Polish space is a separable topological space whose topology admits
a compatible complete metric.

The most basic examples of Polish spaces arise as complete separable metric spaces
where we forget about the metric and only keep the topology: for instance R as well as
C form a Polish space for the topology induced by the metric d(x, y) = |x− y|. More
generally, whenever X is a separable Banach space (a separable normed vector space such
that the metric associated to the norm is complete), X is a Polish space for the topology
induced by the metric associated to its norm. In particular, we have the following examples
of Polish spaces where K = R or C.

• Every separable Hilbert space over K is a Polish space for the induced topology.

• Given p ∈ [1,+∞[ and a countable set X at most countable, the K-vector space
`p(X) of maps X → K such that

∑
x∈X |f(x)|p < +∞ is a separable Banach space

for the norm

‖f‖p :=

(∑
x∈X

|f(x)|p
)1/p

,

in particular it is a Polish space for the induced topology.

• We will see later that more generally Lp(X,λ) is a separable Banach space whenever
X is a Polish space equipped with a σ-finite measure λ (see Chapter ??).

• Given a compact metrisable space X, the space C0(X,K) of continuous functions
X → K is a separable Banach space for the norm ‖f‖∞ := supx∈X |f(x)| (see
Exercice ?? for the proof). It is thus a Polish space.

Let us remark that since metrizable topological spaces are separable if and only if they
are second-countable (Thm. 1.96), one could take as an equivalent definition that Polish
spaces are second-countable topological spaces admitting a compatible complete metric.

We will obtain many more examples of Polish spaces by using the following proposition,
often without mentioning it.

Proposition 2.2. Every closed subspace of a Polish space is Polish for the induced topol-
ogy.

49
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Proof. Let X be a Polish space and let Y ⊆ X closed. Then Y is separable by Corollary
1.97, and if we let d be a compatible complete metric on X then its restriction to Y is
complete since Y is closed (Prop. 1.78). We conclude that Y is Polish.

The following lemma is simple but fundamental.

Lemma 2.3. Every Polish space admits a compatible complete metric which is bounded
by 1.

Proof. Let d be a compatible complete metric on a Polish space X. Then the map
d̃ : (x, y) 7→ min(1, d(x, y)) is a metric on X (this is easily checked directly, but see
Exercise ?? for a more general statement). This metric is clearly bounded by 1. Moreover
it is compatible with the topology of X since it has the same open balls of radius < 1
as our original metric d. Finally every d̃-Cauchy sequence must be d-Cauchy, so d̃ is
complete.

2.2 Operations on Polish spaces

We have seen that closed subspaces of Polish spaces are Polish. We will now present
several other ways of building new Polish spaces. The most important one is countable
products.

Proposition 2.4. Let (Xi)i∈I be a countable family of Polish spaces. Then
∏

i∈I Xi is a
Polish space for the product topology.

Proof. By Proposition 1.92 any countable product of separable topological spaces is sep-
arable so

∏
i∈I Xi is separable.

Since I is countable, we may as well assume I ⊆ N. Using Lemma 2.3 we choose for
each i ∈ I a compatible complete metric di on Xi such that di 6 1. We then define on∏

i∈I Xi a metric d by letting

d((xi), (yi)) =
∑
i∈I

1

2i
di(xi, yi).

It is easily checked that d induces the product topology on
∏

i∈NXi (see exercise ?? for
details).

Let ((xni )i∈I)n∈N be d-Cauchy. Let i ∈ I. For every n,m ∈ N the definition of d yields
the inequality

di(x
n
i , x

m
i ) 6 2id((xni )i∈N, (x

m
i )i∈N)

so the sequence (xni )n∈N is di-Cauchy . Since di is complete, we find a limit xi ∈ XI

for the sequence (xni )n∈N. So for every i ∈ I we have found xi such that (xni )n∈N tends
to xi. Since convergence in the product topology is equivalent to convergence in every
coordinate (Prop. 1.58), we deduce that ((xni )i∈N)n∈N tends to (xi)i∈N. This shows that
d is complete as wanted. Being separable and having d as a compatible complete metric,
the product space

∏
i∈I Xi is Polish.

Remark 2.5. Note that when I is finite we can drop the 1
2i

in the definition of d and we
don’t need to assume each di is bounded.
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Example 2.6. Since finite products of Polish spaces are Polish and R is Polish, Rn is a
Polish space. In particular for every n ∈ N, the space Mn(R) (' Rn2) of n-dimensional
matrices is Polish. So the group

Sln(R) = {M ∈Mn(R) : detM = 1}

is a Polish space, being closed in Mn(R) (indeed it is the preimage of the closed set {1} via
the determinant function which is continuous because it is a polynomial in the coefficients
of the matrix). We will see later that it is actually a Polish group. The same is true of
any classical matrix group over R or C, e.g. Sln(C), Gln(C) or SOn(R), but to see that
Gln(C) is Polish we need to know that open subsets of Polish spaces are Polish (cf. Prop.
2.9)

Example 2.7. We also obtain from the previous proposition two new fundamental infinite-
dimensional examples of Polish spaces arising as countable infinite products. These will
be the object of the next chapter but they will also play an important role throughout
the whole book.

• The Baire space is NN equipped with the product topology is a Polish space,
viewing N as a Polish space for the discrete topology.

• The Cantor space is {0, 1}N equipped with the product topology is a Polish space,
viewing {0, 1} as a Polish space for the discrete topology. Note that the Cantor
space is a closed subspace of the Baire space and that it is compact by Tychonov’s
theorem.

Two more examples of Polish spaces arising as infinite products are RN and theHilbert
cube [0, 1]N. Note that the Hilbert cube is compact by Tychonov’s theorem.

Let us now make use of the fact that the product of two Polish spaces is Polish so as
to obtain that open subspaces of Polish spaces are Polish. The key to this is the following
lemma, which we state separately because we will use it again.

Lemma 2.8. Let X be a Polish space. Every open subset U of X is homeomorphic to a
closed subset of X × R.

Proof. Let d be a compatible metric on X. Consider the injective map

Φ : X → X × R

x 7→ (x,
1

d(x,X \ U)
)

By Exercise ?? Φ is continuous, and since its inverse is a restriction of the projection
X × R→ X, the map Φ is actually a homeomorphism onto its image.

Moreover its image is closed: let us check this by using the sequential characterisation
of closedness. Suppose (xn,

1
d(xn,X\U)

) converges to (x, r), then in particular the sequence
1

d(xn,X\U)
) converges. So d(xn, X \ U) must be bounded away from zero: there is δ > 0

such that d(xn, X \ U) > δ for all n ∈ N. Since xn → x we deduce d(x,X \ U) > δ by
continuity. We conclude that x ∈ U and r = 1

d(x,X\U)
, i.e. (x, r) ∈ Φ(U) which is thus

closed.

Proposition 2.9. Let X be a Polish space and let Y ⊆ X be open. Then Y is Polish for
the induced topology.
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Proof. By the previous lemmma Y is homeomorphic to a closed subset of a Polish space.
By Prop. 2.2 the latter is Polish so Y is Polish as well.

We now turn to the main result of this section: countable intersections of open subsets
are Polish for the induced topology. Let us first give those subsets a name.

Definition 2.10. A subset A of a topological space X is called Gδ if it can be written as
a countable intersection of open subsets: there is a sequence (Un) of open subsets of X
such that A =

⋂
n∈N Un.

Example 2.11. Let us see some examples of Gδ subsets.

• Every open subset U is Gδ (take Un = U).

• Every countable intersection of Gδ subsets is a Gδ subset (indeed, if An =
⋂
m∈N Un,m

then
⋂
n∈NAn =

⋂
(n,m)∈N×N Un,m).

• The set R \ Q is Gδ in R. More generally in any Hausdorff topological space X,
whenever D is a countable subset of X we have that X \D is Gδ. Indeed X \D =⋂
d∈DX \ {d} and by Hausdorffness each X \ {d} is open.

• The set of surjective sequences of integers is Gδ in NN (see Exercise ?? where also
more examples of Gδ subsets are provided).

Lemma 2.12. Every closed subset of a metrizable space is Gδ.

Proof. Let F be a closed subspace of a metrizable space X equipped with a compatible
metric d. For each ε > 0 let

(F )ε := {x ∈ X : d(x, F ) < ε}.

Each (F )ε is open and F = {x ∈ X : d(x, F ) = 0} (see Exercise 1.7). We thus have the
equality

F =
⋂
n∈N∗

(F )1/n,

witnessing that F is Gδ.

We can now generalize to Gδ subsets the fact that closed subsets of Polish spaces are
Polish. The proof contains an important idea: we will unfold our countable intersection
of open subsets so as to view it as a closed subset of a countable product of open subsets.
Let us state this idea as a trick and then prove the announced result.

Trick B (Intersection to product trick). Let X be a set, let (Ai)i∈I be a family of subsets
of X. Consider the injective map Φ which takes x ∈ X to the constant family equal to x

Φ :X → XI

x 7→ (x)i∈I .

Then Φ

(⋂
i∈I

Ai

)
= Φ(X) ∩

∏
i∈I

Ai.

Moreover if X is a Hausdorff topological space, Φ(X) is a closed subset of XI for the
product topology and Φ is a homeomorphism onto its image.
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Proof. Observe that if (x)i∈I ∈
∏

i∈I Ai then by definition for each i ∈ I we have x ∈ Ai
so x ∈

⋂
i∈I Ai. The converse clearly holds, so Φ−1(

∏
i∈I Ai) =

⋂
i∈I Ai as stated.

Now by the definition of Φ, the space Φ(X) is equal to the space ∆X of constant
functions in XI . The latter is closed in XI as soon as X is Hausdorff (Exercise 1.15) so
Φ(X) is closed.

Finally let us check that Φ is a homeomorphism onto its image. Clearly Φ is continuous
and bijective. Moreover its inverse is a restriction the projection onto the first coordinate,
so its inverse is also continuous: we conclude Φ is a homeomorphism onto its image as
wanted.

Theorem 2.13. Every Gδ subset of a Polish space is Polish for the induced topology.

Proof. Let X be a Polish space, and let (Un)n∈N be a countable family of open subsets of
X. Our aim is to show that their intersection

⋂
n∈N Un is Polish. We unfold this countable

intersection by considering the map

Φ : X → XN

x 7→ (x, x, ....).

from the intersection to product trick B. The map Φ is a homeomorphism onto its image
Φ(X) which is closed and we have

Φ

(⋂
n∈N

Un

)
= Φ(X) ∩

∏
n∈N

Un.

Each Un is Polish by Proposition 2.9 and so their product
∏

n∈N Un also is by Proposition
2.4. But Φ(X) is closed in XN, and the product topology on

∏
n∈N Un is the topology

induced by the product topology in XN so Φ(X) ∩
∏

n∈N Un is closed in
∏

n∈N Un. Using
Proposition 2.2 we obtain that Φ(X)∩

∏
n∈N Un is Polish. Since

⋂
n∈N Un is homeomorphic

to Φ(X) ∩
∏

n∈N Un via Φ, we conclude that
⋂
n∈N Un is Polish as well.

Exercise 2.1. Exhibit a compatible complete metric on
⋂
n∈N Un by unraveling the proof

that
∏

n∈N Un admits a compatible complete metric.

Let us finally observe that the disjoint union of two Polish topologies is Polish for the
disjoint union topology.

Proposition 2.14. Let X and Y be two Polish spaces. Then X t Y is Polish for the
disjoint union topology.

Proof. If D1 is countable dense in X while D2 is countable dense in Y , it follows from
the definition of the disjoint union topology that D1 tD2 is dense in X tY which is thus
separable.

Let dX , dY be compatible complete metrics on X and Y respectively. By Lem. 2.3
we can take these metrics to be bounded by 1. Then let d be the metric which restricts
to dX on X, to dY on Y and such that d(x, y) = 1 for all x ∈ X and all y ∈ Y . If (xn) is
a d-Cauchy sequence then let N ∈ N such that d(xn, xm) < 1 for all n,m > N . By the
definition of the metric all the terms starting from n = N belong to the same set.

By symmetry we may as well assume xN ∈ X, then for each n > N we must have
xn ∈ X and (xn)n>N is thus a dX-Cauchy sequence. So (xn) is convergent for the topology
on X, hence it is convergent for the disjoint union topology. We conclude d is complete
as wanted.

Exercise 2.2. Check that the metric we defined above was indeed a compatible metric
for the disjoint union topology. Generalize the above result to countable disjoint unions.
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2.3 Polish subspaces are exactly Gδ subsets
The following theorem is fundamental and provides a converse to Theorem 2.13.

Theorem 2.15. Let X be a metrizable topological space, suppose that Y ⊆ X is Polish
for the induced topology. Then Y is a Gδ subset of X.

Proof. Let dX be a compatible metric on X and dY be a compatible complete metric on
Y . By Lemma 2.12 the closed set Y is Gδ in X. Since Gδ subsets of Gδ subspaces are Gδ

in the bigger space, it suffices to show that Y is Gδ is Y . In other words we may as well
assume that Y = X, i.e. Y is dense in X.

For every n ∈ N, let Un be the reunion of the non-empty τX-open sets U such that
diamdY (U ∩ Y ) 6 1

n
. We will now prove that Y =

⋂
n∈N Un. We first point out two

immediate facts.

• Every non-empty open U ⊆ X has a non-empty intersection with Y since Y is
dense. In particular diamdY (U ∩ Y ) is alway well-defined.

• Every non-empty open subset V ⊆ U will satisfy diamdY (V ∩ Y ) 6 diamdY (U ∩ Y ).

Let us show that Y ⊆
⋂
n∈N Un: let y ∈ Y . Since the metric dY is compatible with the

topology induced by X, the dY -open ball BdY (y, 1
2n

) is equal to U ∩ Y for some U ⊆ X
open. Since diamdY (BdY (y, 1

2n
)) 6 1

n
we have by definition that Un contains U so that

y ∈ Un. We conclude that Y ⊆
⋂
n∈N Un.

Conversely, let x ∈
⋂
n∈N Un. Then for every n ∈ N, we find an open neighborhood Vn

of x such that diamdY (Vn ∩ Y ) 6 1
n
. Up to replacing each Vn by a smaller dX-open ball,

we may assume that the sequence (Vn) is decreasing and that (Vn)n∈N is a neighborhood
basis for x in X.

Now pick for every n ∈ N some yn ∈ Vn ∩ Y . Observe that (yn) is dY -Cauchy since
(Vn) is decreasing and has vanishing dY -diameter. So (yn) has a limit y ∈ Y , but because
(Vn) is a decreasing neighborhood basis of x and yn ∈ Vn for all n ∈ N, we also have
yn → x so x = y and we conclude x ∈ Y .

We thus have the desired reverse inclusion
⋂
n∈N Un ⊆ Y and we conclude Y =

⋂
n∈N Un

as wanted.

2.4 Every Polish space is homeomorphic to a closed
subspace of RN

We will now use the techniques and results from previous sections so as to show that
every Polish space is homeomorphic to a Gδ subset of [0, 1]N, and then that every Polish
space is homeomorphic to a closed subset of RN.

Proposition 2.16. Let X be a Polish space. Then X is homeomorphic to a Gδ subset of
[0, 1]N.

Proof. Since X is separable and metrizable, we know by Exercise 1.33 that X is homeo-
morphic to a subspace of [0, 1]N. Such a subspace is then Polish and thus a Gδ subset of
[0, 1]N by Theorem 2.15.

Exercise 2.3. Show that a Polish space is compact if and only if all its compatible metrics
are complete.
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Let us now use the above proposition to show that every Polish space is homeomorphic
to a closed subset of RN. Note that such a result could not be true in [0, 1]N for it is compact
and thus so are its closed subsets.

Theorem 2.17. Every Polish space is homeomorphic to a closed subspace of the Polish
space RN.

Proof. Let X be a Polish space. By Prop. 2.16 we may assume X is a Gδ subset of [0, 1]N.
Write X =

⋂
n∈N Un where each Un is open in [0, 1]N. As in the proof of Thm. 2.13 we

use Trick B by considering the map

Φ : X →
∏
n∈N

Un

x 7→ (x, x, ...).

The map Φ is a homeomorphism onto its image and its image is a closed subset of
∏

n∈N Un.
Now by Prop. 2.8 each Un is homeomorphic to a closed subset of [0, 1]N × R and since
[0, 1]N is closed in RN we deduce that each Un is homeomorphic to a closed subset of
RN × R. We conclude that X is homeomorphic to a closed subset of (RN × R)N ∼= RN as
desired.

2.5 Polish compact spaces
We will now improve our characterization of compact metric spaces from Section 1.7.2.3
so as to give various equivalent reformulations of being a compact Polish space.

Theorem 2.18. Let X be a compact Haudorff topological space. Then the following are
equivalent:

(i) X is Polish,

(ii) X is homeomorphic to a closed subspace of [0, 1]N,

(iii) X is metrizable,

(iv) X is second-countable.

Proof. We will prove the equivalence of the above statements by following the chain of
implications (i)⇒(iv)⇒(ii)⇒(iii)⇒(i).

We know that Polish spaces are second-countable so (i)⇒(iv).
Let us now show (iv)⇒(ii). Let X be a second-countable Hausdorff compact topolog-

ical space. Since X is compact Hausdorff, X is normal (Prop. 1.139). So by Urysohn’s
metrization X is homeomorphic to a subspace of [0, 1]N. Since compact subspaces of
Hausdorff spaces are closed, we conclude that X is homeomorphic to a closed subspace of
[0, 1]N as wanted.

The implication (ii)⇒(iii) follows from the metrizability of [0, 1]N along with the fact
that subspaces of metrizable spaces are metrizable.

Finally let us show (iii)⇒(i). Let X be a metrizable compact topological space, then
if d is a compatible metric it must be complete and precompact by item (ii) from Thm.
1.116. So we now only need to show that X is separable, which will follow easily from the
precompactness of d. Indeed if for every ε ∈ Q>0 we fix a finite set Fq which is ε-dense,
then

⋃
q∈Q>0 Fq is a countable dense subset of X. So (i) holds, which ends the proof of

the remaining implication (iii)⇒(i).
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Observe that by Tychonov’s theorem (Thm. 1.121), the class of compact Polish spaces
is closed under countable products. Also any closed subset of a compact Polish space is
compact Polish since both properties are inherited by closed subsets (by Prop. 1.105 and
Prop. 2.2).

2.6 Polish locally compact spaces

2.7 Baire class 1 functions and semi-continuity
We will now investigate the important notion of Baire class 1 functions, which are func-
tions which fall short of being continuous.

Definition 2.19. Let X and Y be topological spaces, a map f : X → Y is Baire class
1 if the preimage of every open subset of Y is an Fσ subset of X.

Remark 2.20. By taking complements we see that equivalently, f : X → Y is Baire
class 1 if the preimage of every closed subset of Y is a Gδ subset of X. Recalling that Gδ

subsets of Polish spaces are Polish, this notion will easily provide us examples of Polish
spaces.

Example 2.21. By Lem. 2.12, every continuous function between metrizable spaces is
Baire class 1.

Remark 2.22. It is straightforward to check that if we compose a continuous function
with a Baire class 1 function then we get a Baire class 1 function.

Let us now see the main source of Baire class 1 functions: taking pointwise limits of
continuous function (we will see in Prop. ?? that it is sometimes the only source of such
functions).

Proposition 2.23. Let X and Y be metrizable topological spaces, with Y separable. Sup-
pose that f : X → Y is the pointwise limit of a sequence (fn) of continuous functions, i.e.
for all x ∈ X we have f(x) = limn→+∞ fn(x). Then f is Baire class 1.

Proof. We will show that the preimage of every open subset is Fσ. Let U be an open
subset of Y . Since Y is metrizable separable we may and do write U =

⋃
n∈NBn where

each Bn is open and satisfies Bn ⊆ U .
Observe that if a point y ∈ U arises as a limit of yn ∈ U then since the Bn’s are open

and cover U we will find some m,N ∈ N such that yn ∈ Bm for all n > N , in particular
yn ∈ Bm all n > N . Conversely, every limit of elements of Bm belongs to U . Applying
this to elements of the form f(x), we see that f(x) ∈ U if and only if there are m,N ∈ N
such that for all n > N we have fn(x) ∈ Bm. In other words,

f−1(U) =
⋃
m∈N

⋃
M∈N

⋂
n>N

f−1
n (Bm)

Since each fn is continuous, the sets f−1
n (Bm) are closed, so f−1(U) is Fσ as wanted.

Exercise 2.4. Identify 2N with the set of subsets A ⊆ N.

1. Show that the maps (A,B) 7→ A ∪ B and (A,B) 7→ A ∩ B are continuous maps
2N × 2N → 2N.
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2. Deduce that the maps (An)n∈N 7→
⋃
n∈NAn and (An)n∈N 7→

⋂
n∈NAn are Baire class

1 maps (2N)N → 2N. Are they continuous ?

As a concrete example, we will now show that the set of surjective maps N → N is
Gδ (hence Polish) by using Baire class 1 functions. This could of course be done directly,
but our point is that with Baire class 1 functions we can get easily many more examples.

Lemma 2.24. Let A be a subset of N. The map ΦA : NN → 2N which maps f ∈ NN to
f(A) is Baire class 1.

Proof. Observe that f(A) =
⋃
n∈A f({n}). By question 2 of the above exercise, taking a

countable union is a Baire class 1 operation so it suffices to show that for each n ∈ N,
the map Φ{n} : f 7→ {f(n)} is continuous. The topology of 2N is generated by open
sets of the form {A ∈ N : k ∈ A} and {A ∈ N : k 6∈ A} for k ∈ N. By definition
Φ−1
n ({A ∈ N : k ∈ A}) = {f ∈ NN : f(n) = k} which is clopen while Φ−1

n ({A ∈ N : k 6∈
A} = {f ∈ NN : f(n) 6= k} which is open so Φ{n} is indeed continuous.

Remark 2.25. The same proof shows that for F ⊆ N finite, the map ΦF is actually
continuous.

Corollary 2.26. The set of of surjective maps N→ N is Gδ in NN, hence Polish.

Proof. Using the notation of the above lemma, we have that the set of surjective maps
N→ N is the preimage of the closed set {N} by the Baire class 1 map ΦN, so it is Gδ.

Fundamendal examples of Baire class 1 functions are provided by real-valued semi-
continuous functions.

Definition 2.27. Let X be a topological space. A function f : X → R is lower semi-
continuous if for every closed interval of the form ]−∞, x], we have that f−1(]−∞, x])
is closed.

It is upper semi-continuous if for every closed interval of the form [x,+∞[ we have
that f−1([x,+∞[) is closed.

Proposition 2.28. Every lower (resp. upper) semi-continuous function is Baire class 1.

Proof. If f is lower semi-continuous, then the preimage of every interval of the form
]x,+∞[ is open. Observe that an interval of the form [x,+∞[ can be rewritten as a
countable intersection

[x,+∞[=
⋂
n∈N

]
x− 1

n
,+∞

[
so by taking the complement the preimage of the set ] −∞, x[ is Fσ. Now if ]x, y[ is an
open interval we write it as ] −∞, y[∩]x,+∞[ and so its preimage is the intersection of
two Fσ subsets, hence it is Fσ. Since every open set is a countable reunion of intervals,
we conclude that the preimage of every open set is a countable reunion of Fσ sets, so it is
Fσ.

We have the following sequential characterization of semi-continuity, analogous ot that
of continuity.

Proposition 2.29. Let X be a first-countable topological space. Then a function f :
X → R is lower semi-continuous if and only if for every xn → x we have f(x) 6
lim infn→+∞ f(xn).
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2.8 The Baire category theorem
Let us now see one of the main features of Polish spaces: countable intersections of dense
open subsets are dense. This only uses the fact that Polish spaces admit a compatible
complete metric.

Theorem 2.30 (Baire category theorem). Let X be a topological space which admits a
compatible complete metric. Let (Un)n∈N be a countable family of dense open subsets of
X. Then

⋂
n∈N Un is dense in X.

Proof. We need to show that every non-empty open set U intersects
⋂
n∈N Un. So let U

be a non-empty open subset of X. Let us also fix a compatible complete metric d.
Because U0 is dense, U0 ∩U is non-empty. Moreover it is an open set, so we may find

an open ball B0 ⊆ U0 ∩ U . By shrinking the radius of B0 if necessary, we may actually
assume that B0 ⊆ U0 ∩ U and that diamd(B0) 6 1

Now B0 ∩ U1 is open non-empty by the density of U1, so we find an open ball B1 ⊆
B0 ∩U1. Again by shrinking its radius we may assume B1 ⊆ B0 ∩U1 and diamd(B1) 6 1

2
.

We continue this construction by induction: assuming that for n > 1 we have build
an open ball Bn, then the set Bn ∩ Un+1 is open non-empty by the density of Un and we
find an open ball Bn+1 ⊆ Bn ∩ Un+1. By shrinking its radius we may assume

Bn+1 ⊆ Bn ∩ Un+1 and diamd(Bn+1) 6
1

2n+1
.

Now observe that (Bn)n∈N is a decreasing sequence of closed sets of vanishing diameter.
Since (X, d) is complete Thm. 1.84 applies. So let x ∈ X such that

⋂
n∈NBn = {x}.

Since B0 ⊆ U , we have x ∈ U , and since for every n ∈ N we have Bn ⊆ Un, we also have
x ∈

⋂
n∈N Un. We conclude that U ∩

⋂
n∈N Un 6= ∅ as wanted.

Countable intersection of open sets are called Gδ, so the Baire category theorem says
that any countable intersection of dense open sets is dense Gδ. The reader should think
of dense Gδ sets as big sets in view of the following proposition.

Proposition 2.31. Let X be a topological space admitting a compatible complete metric.
Then every countable intersection of dense Gδ sets is dense Gδ.

Proof. Let (An)n∈N be such a sequence of dense Gδ sets, for each n ∈ N we find a countable
family of open sets (Un,m)m∈N such that An =

⋂
m∈N Un,m. So we have

⋂
n,m Un,m =⋂

n∈NAn. Each Un,m is dense and since N×N is countable,
⋂
n,m Un,m is dense Gδ by the

Baire category theorem.

Here is a typical application of the Baire category theorem. We will see many more
in the exercises, and also once we have more Polish spaces to play with (cf. Chapter 4).

Exercise 2.5. A real number x ∈ R is Liouville if for every n ∈ N there are p ∈ Z and
q ∈ N with q > 1 such that 0 <

∣∣∣x− p
q

∣∣∣ < 1
qn
.

1. Show that every Liouville number is irrational.

2. Show that the set of Liouville numbers is dense Gδ.

3. Deduce that every real number is the sum of two Liouville numbers. (Hint: let L
denote the set of Liouville numbers. Show that for every x ∈ R the set x/2 − L ∩
−x/2 + L is not empty).
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Let us note the following reformulation of the Baire category theorem.

Corollary 2.32. Let X be a topological space which admits a compatible complete metric.
Then every countable reunion of closed sets of empty interior has empty interior.

Proof. This is a direct application of the fact that taking the complement takes closed
sets to open sets, countable unions to countable intersections and sets with empty interior
to dense sets.

Example 2.33. The topological space Q cannot admit a compatible complete metric
because it does not satisfy the Baire category theorem, in particular it is not a Polish
space. Indeed, consider for each q ∈ Q the closed set {q}. Observe that since every non-
empty open subsets of Q is infinite, {q} has empty interior. So if Q admitted a compatible
complete metric, by the Baire category theorem Q =

⋃
q∈Q{q} would have empty interior,

which is absurd since its interior is Q (note that here we consider the interior of Q inside
Q with the induced topology from R, and not inside R !).

2.9 The Cantor-Bendixon rank and perfect Polish spaces

We will now use the Baire category theorem to show that every uncountable Polish space
contains a canonical nonempty perfect closed subset.

Definition 2.34. Let X be a topological space. A point x ∈ X is isolated in X if {x}
is open. The space X is perfect if it is non-empty and has no isolated point.

Example 2.35. In the set {0} ∪ {1/n : n ∈ N} equipped with the induced topology,
every point is isolated except for 0.

It is a straightforward exercise to check that every finite Polish space only consists of
isolated points and thus is not perfect. Less trivially, the Baire category theorem implies
that every countable Polish space must contain at least one isolated point. This was used
in our proof that Q is not a Polish space.

Proposition 2.36. Let X be a countable Polish space. Then X is not perfect.

Proof. Suppose by contradiction that X has no isolated point. Then for every x ∈ X the
closed set {x} has empty interior. But then by the Baire category theorem the countable
set X =

⋃
x∈X{x} has empty interior, a contradiction.

Observe that if an open subset of a Polish space contains an isolated point for the
induced topology, then the point was already isolated in the whole space. So the above
proposition yields that each countable open subset of a Polish space contains an isolated
point. By removing all those subsets, we will actually get a canonical closed perfect
subspace.

Theorem 2.37. Let X be an Polish space. Then there is a closed perfect subspace of X
which contains every Polish perfect subspace of X. Its complement is the reunion of the
open countable subsets of X, which is countable.
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Proof. Consider the open set

U :=
⋃
{V ⊆ X open countable}.

Let us show that U is countable. Since X is Polish it has a countable basis B of open sets.
So every V ⊆ X open countable is a reunion of elements of B which must be themselves
countable, and we conclude that

U :=
⋃
{V ∈ B : V is countable}.

So U is countable, being a union of countably many countable sets.
Let x ∈ X \U , then by the definition of U every neighborhood V of x is uncountable,

and since U is countable this implies V ∩ X \ U is uncountable. In particular x is not
isolated in X \ U for the induced topology. We conclude that X \ U is perfect. Let us
show that X \ U is the biggest Polish perfect subspace of X.

Suppose Y is another perfect Polish subspace of X. Then U ∩ Y is a countable Polish
space. Suppose by contradiction it is nonempty. Then it contains an isolated point for
the induced topology by the above proposition . Since U is open we conclude that U ∩ Y
contains an isolated point for Y which is thus not perfect, a contradiction. So Y ∩ U is
empty, in other words Y ⊆ X \ U as wanted.

The maximum perfect Polish subspace of a Polish spaceX is called its perfect kernel.

Remark 2.38. By the above theorem, the complement of the perfect kernel is countable.
So when X is uncountable its perfect kernel is nonempty. Moreover when X is countable
its perfect kernel is trivial by Proposition 2.36.

Note that since the complement of the perfect kernel is the reunion of the countable
open subsets, the the perfect kernel of X is the set of all points x ∈ X such that every
neighborhood of x is uncountable. These are called condensation points.

We now present another perhaps more intuitive way of obtaining a perfect closed
subset of a Polish space : we will keep removing isolated points until we cannot anymore.

Definition 2.39. Let X be a topological space. Its Cantor-Bendixon derivative is
the subset X ′ defined by

X ′ = X \ {x ∈ X : x is isolated in X}.

Note that by definition X is perfect if and only if X ′ = X. Moreover X ′ is closed in X
because its complement is a reunion of open singletons. We can now define by induction
on countable ordinals the α’th Cantor-Bendixon derivative X(α) of a topological space X
as follows:

• X(0) = X;

• X(α+1) = (X(α))′;

• X(α) =
⋂
β<αX

(β) when α is a limit ordinal.

Observe that since intersections of closed sets are closed, each X(α) is closed.

Proposition 2.40. Let X be a Polish space. There is a countable ordinal β such that
X(β) is a perfect closed subset of X. Moreover X(β) is then the perfect kernel of X.
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Proof. Define X(∞) =
⋂
α∈ω1

X(α). Then since each X(α) is closed, (X \X(α))α∈ω1 is an open

cover of X \X(∞). By Lindelöf’s lemma, it contains a countable subcover (X \X(αn))n∈N,
which by taking complements again means X(∞) =

⋂
n∈NX

(αn).
Since ω1 is stable under countable supremums we can define β = sup{αn : n ∈ N} ∈ ω1.

We then have X(β) = X(∞). In particular X(β) = X(β+1), so X(β) is a perfect closed subset
of X as wanted.

Moreover at each step we only remove countably many points, so since β is countable
the complement of X(β) is a countable open subset of X. Theorem 2.37 thus yields that
X(β) contains the perfect kernel of X, and since X(β) is perfect we conclude that they are
equal.

Definition 2.41. The Cantor-Bendixon rank of a Polish space X is the least ordinal
α ∈ ω1 such that X(α) is perfect. It is denoted by CB(X).

Exercise 2.6. Show that for every α ∈ ω1, there is a Polish space X such that CB(X) =
α. (Hint: for the limit case use the disjoint union operation and in the successor case
multiply by N ∪ {∞}).

2.10 Exercises
Exercise 2.7 (difficult). Let f : R → R be a C∞ function such that for all x ∈ R, there
is n ∈ N such that f (n)(x) = 0. Then f is a polynomial.

Exercise 2.8. Show that a Polish space is compact if and only if all its compatible metrics
are complete.

A countable family of pseudometric which separates points yields a metric.
Redo open is Polish via x 7→ (x, 1

d(x,X\Y )
).

Redo countable product by hand.
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Chapter 3

The Cantor space, the Baire space and
schemes

We will now introduce the two most fundamental examples of Polish spaces from the
theoretical point of view, namely the Cantor space and the Baire space. The first will be
surjectively universal among all compact Polish spaces, while the second will be surjec-
tively universal among all Polish spaces, in a sense that we will define later.

3.1 The Cantor space
Definition 3.1. The Cantor space is the space 2N := {0, 1}N of infinite sequences of
zeros and ones equipped with the product topology, viewing {0, 1} as a topological space
for the discrete topology.

Identifying a subset of N to its characteristic function, we may also view the Cantor
space as the space of subsets of N. Note that by the definition of the product topology, a
sequence (An) of subsets of N converges to A ⊆ N if and only if for every k ∈ N and for
all large enough n ∈ N we have k ∈ An if and only if k ∈ A.

In the next proposition, recall that a topological space is called zero-dimensional if its
topology admits a basis made of clopen sets (i.e. sets which are both closed and open).

Proposition 3.2. The Cantor space is a compact zero-dimensional Polish space.

Proof. The space {0, 1} is compact zero-dimensional and Polish. Since the class of zero-
dimensional compact Polish spaces is stable under countable products (see Prop. ?? and
Prop. ??), the Cantor space {0, 1}N itself is a compact zero-dimensional Polish space.

We will now construct an explicit basis of clopen sets for the topology of the Cantor
space. In order to do so, we introduce some important terminology.

We denote by 2<N the set of finite sequences of zeros and ones, i.e. tuples of the form
s = (s0, ..., sn−1) where xi ∈ {0, 1} for all i ∈ {0, ..., n − 1} and n ∈ N. To lighten the
notation, will also write these tuples as words, so we define s0...sn−1 = (s0, ..., sn−1).

The unique integer n ∈ N such that s ∈ 2<N may be written as s = s0...sn−1 is called
the length of s and denoted by |s|. The unique sequence of length zero is denoted by ∅.

For a finite sequence s ∈ 2<N and m 6 |s|, we let s�m = s0...sm−1. For an infinite
sequence x ∈ 2N , we let x�n = (x0, ..., xn−1). Now every finite sequence s ∈ 2<N defines a
set Ns ⊆ 2N given by

Ns := {x ∈ 2N : x�|s| = s}.

63
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The following proposition justifies the denomination of sets of the form Ns as basic
clopen sets.

Proposition 3.3. The family (Ns)s∈2<N is a countable basis for the topology of the Cantor
space which consists of clopen sets.

Proof. Let s ∈ 2<N. Note that Ns is the preimage of the clopen set {s} ⊆ {0, 1}|s| under
the projection onto the first |s| coordinates, so Ns is clopen.

Moreover for every x ∈ 2N the definition of the product topology implies that the
family of clopen sets (Nx�n)n∈N is a neighborhood basis of x. As a consequence the whole
family (Ns)s∈2<N is a basis for the topology of the Cantor space.

Note that for s, t ∈ 2<N, we have Ns ⊆ Nt if and only if t is an initial segment of s,
meaning |t| 6 |s| and s�|t| = t, which we also write as s 6 t.

BNote that for this order, s < t implies that s is a longer word than t !
We can represent the order < as a tree-order as given by the following picture, where

we observe that s < t if and only if s is a descendant of t. The empty sequence is the root
of the tree.

∅

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 3.1: The rooted tree structure on 2<N

For this to work, we first need to show that every uncountable Polish space contains
a non-empty perfect closed subset, which is the point of the next section.

3.2 Polish spaces satisfy the continuum hypothesis topo-
logically

In this section we prove that every uncountable Polish space contains a copy of the Cantor
set. A key step will be to find in any uncountable Polish space a family (Us)s∈2<N of open
subsets which looks very much alike the Ns. Here is a precise definition.

Definition 3.4. A Cantor scheme on a topological space X is a family (Us)s∈2<N of
subsets of X such that for every s ∈ 2<N and every i ∈ {0, 1} we have Usi ⊆ Us.

Observe that whenever f : 2N → X is a continuous map, the family (f(Ns))s∈2<N is a
Cantor scheme (to see this note that f(Ns) is closed by compactness and continuity). We
will now find conditions which recast the injectivity and continuity of f in terms of the
Cantor scheme.
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Definition 3.5. A Cantor scheme (Us)s∈2<N on a topological space X is proper if for
every s ∈ 2<N we have Us0 ∩ Us1 = ∅.

Note that if a Cantor scheme is proper then s 66 t and t 66 s implies Us ∩ Ut = ∅. In
particular if |t| = |s| but s 6= t, then Us ∩ Ut = ∅.

Definition 3.6. If (X, d) is a metric space, we say that the Cantor scheme (Us)s∈2<N on
X is has vanishing diameter if for every x ∈ 2N we have diamd(Ux�n)→ 0.

Exercise 3.1. Show that every continuous map f : 2N → X yields a Cantor scheme
(f(Ns))s∈2<N of vanishing diameter which is proper if and only if f is injective.

Proposition 3.7. Let (X, d) be a complete metric space, let (Us)s∈2<N be a convergent
Cantor scheme consisting of nonempty sets. Then there is a continuous map f : 2N → X
such that for every x ∈ 2N,

{f(x)} =
⋂
n∈N

Ux�n =
⋂
n∈N

Ux�n.

Moreover if the scheme is proper then f is injective.

Proof. Let x ∈ 2N. Observe that (Ux�n) is a decreasing family of nonempty closed subsets
of vanishing diameter, so by Theorem 1.84 its intersection is a singleton. So we can indeed
define a map f : 2N → X by the equation {f(x)} =

⋂
n∈N Ux�n. Moreover by condition

(a) of d-convergence, we have for each n the inclusions Ux�n+1 ⊆ Ux�n ⊆ Ux�n so we also
have {f(x)} =

⋂
n∈N Ux�n.

Let us now see why f is continuous: fix ε > 0 and x ∈ 2N, then by condition (b) of
d-convergence there is N ∈ N such that diamd(Ux�N < ε. But for all y ∈ Nx�N we have by
definition f(y) ∈ Uy�N = Ux�N so d(f(x), f(y)) 6 ε. So f is continuous.

If the scheme is proper and x and y are distinct elements of the Cantor space, there
is n ∈ N such that x�n 6= y�n. Then Ux�n and Uy�n are disjoint, and the first contains
f(x) while the second contains f(y) which are thus also distinct. So properness implies
injectivity as wanted.

Theorem 3.8. Let X be a perfect Polish space. Then there is a closed subset of X which
is homeomorphic to the Cantor space.

Proof. Let X be a perfect Polish space and let d be a compatible complete metric on
X. Since 2N is compact Hausdorff, every continuous injective map 2N → X must be
a homeomorphism onto its image, so we only need to find a continuous injective map
f : 2N → X.

To this end, we will define by induction a scheme (Us)s∈2<N consisting of non-empty
open subsets of X such that:

(i) For every s ∈ 2<N we have Us0 t Us1 ⊆ Us

(ii) For every s ∈ 2<N we have diamd(Us) < 2−|s|

Observe that condition (i) implies that the scheme is a proper Cantor scheme while
condition (ii) implies that it has vanishing diameter. By the above proposition this scheme
yields the desired continuous injective map. So we only need to explain how to build such
a scheme.
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U∅

U0 U1

U00 U01 U10 U11

Figure 3.2: The beginning of our Cantor scheme on X

We start with U∅ an open ball of diameter less than 1 and then, assuming Us has been
defined, we define Us0 and Us1 as follows.

Since Us is open and X is perfect, we have that Us is perfect and since it is not empty,
it contains at least two distinct points x and y. We then find disjoint open balls Us0 and
Us1 around x and y respectively, and up to shrinking their radiuses we have Us0tUs1 ⊆ Us,
diamd(Us0) < 2−|s|−1 and diamd(Us1) < 2−|s|−1 as wanted.

Remark 3.9. Observe that if we endow the Cantor space with the compatible metric
defined by d(x, y) = 2−n(x,y) where n(x, y) = min{n ∈ N : xn 6= yn}, then by condition
(ii) the map associated to the Cantor scheme is actually 1-Lipschitz.

We can finally apply the previous theorem to get the following remarkable result:
Polish spaces satisfy the continuum hypothesis in a stronger topological way.

Corollary 3.10. Let X be an uncountable Polish space. Then X contains a closed subset
which is homeomorphic to the Cantor space.

Proof. By Theorem 2.37, the uncountability of X yields that its perfect kernel Y is closed
nonempty. We now apply the previous theorem to Y and get the desired result.

3.3 The Cantor space surjects onto every compact metriz-
able space

We now use again Cantor schemes to show that the Cantor space surjects continuously
onto every compact Polish space.

Theorem 3.11. Let X be a non empty compact Polish space. Then there is a continuous
surjection f : 2N → X.

Proof. Let X be a compact Polish space and let d be a compatible complete metric on
X. Let us build by induction a Cantor scheme (Fs)s∈2<N consisting of nonempty closed
sets such that

(i) F∅ = X

(ii) For all s ∈ 2<N, Fs = Fs0 ∪ Fs1

(iii) The scheme has vanishing diameter
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We must start with F∅ = X. By compactness, we can cover X by a finite family
(Fi)

n
i=1 of closed balls of diameter less than 1/2. We now put F0i = Xi∪· · ·∪Xn for i 6 n

and F0i1 = Xi for i < n (see Figure ??). The construction is carried on by repeating this
process within each Xi using closed sets of diameter < 1/3, and so on.

As in the proof of Thm. 3.8, we then get from our Cantor scheme a continuous map
f : 2N → X defined by {f(x)} =

⋂
n∈N Ux�n. Let us check that f is surjective. If y ∈ X,

we define by induction a sequence (xn)n∈N ∈ 2N by letting xn be the first element of {0, 1}
such that y ∈ Ux0...xn . Observe that conditions (i) and (ii) ensure that (xn) is well defined.
We then have y = f((xn)) by definition so f is surjective.

3.4 A characterization of the Cantor space as a zero-
dimensional space

3.5 Trees and their boundaries

Before we move on to the Baire space, it is useful to formalize the descriptive set-theoretic
notion of tree. For this we first extend the notation we used for indexing Cantor schemes,
replacing {0, 1} by an arbitrary set A.

Let A<N =
⊔
n∈N Nn the set of finite sequences of elements of A. Given s ∈ A<N, the

unique integer n ∈ N such that s ∈ An is the length |s| of s. Given s ∈ A<N and n 6 |s|,
we let s�n = (s0, ..., sn−1). Say that t is an initial segment of s if |t| 6 |s| and s�|t| = t.
We then write s 6 t and also say that s is a descendant of t or that t is a parent of s.
The order 6 is called the tree order on A<N.

BNote that for this order, s < t implies that s is a longer word than t !

Definition 3.12. A tree (on a set A) is a subset T ⊆ A<N such that whenever s ∈ T ,
all the parents of s also belong to t: for all t ∈ A<N, if s < t then t ∈ T .

The elements of a tree are called its nodes.

Definition 3.13. Let T be a tree, then a node s ∈ T is a leaf if there is no t ∈ T such
that t < s.

So by definition leafs are minimal elements for the tree-order on T , or equivalently
they are nodes without descendants.

A tree on a set A is pruned if it has no leaf. Note that this is equivalent to saying
that for every s ∈ T , there is a ∈ A such that sa ∈ T (indeed if we have some t ∈ T such
that t < s then t�|s|+1 ∈ T ).

We denote by Pr(A) the set of pruned trees on A.
For an infinite sequence x ∈ AN and n ∈ N, we let x�n = (x0, ..., xn−1).

Definition 3.14. An infinite branch or an end of a tree T is a sequence x ∈ AN such
that for every n ∈ N we have x�n ∈ T .

Let us see that in a pruned tree, every node is the beginning of an end (!).

Proposition 3.15. Let T be a pruned tree, let s ∈ T . Then there is an end x of T such
that x�|s| = s.
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Proof. Let T be a nonempty pruned tree. We define the infinite branch (xn)n∈N by
induction, starting of course with x0 · · ·x|s|−1 = s. For n > |s|, having constructed
x0, ..., xn−1 ∈ A so that x0 · · ·xn−1 ∈ T , we simply use that T is pruned so as to find
xn ∈ A such that x0 · · ·xn−1xn ∈ T .

Corollary 3.16. Every nonempty pruned tree has an end.

Remark 3.17. The reader may have noticed that we used the axiom of dependent choice,
which is actually equivalent to the statement that for every set A, every pruned tree on
A has an infinite branch (see Exercise ??).

We now give another well-known sufficient condition for having an infinite branch.

Definition 3.18. A tree T on a set A is locally finite if every s ∈ T has only finitely
many direct descendants: there are only finitely many a ∈ A such that sa ∈ T .

Proposition 3.19 (König’s lemma). Every infinite locally finite tree has an end.

Proof. Let T be an infinite locally finite tree, consider the subtree

S := {s ∈ T : s has infinitely many descendents in T}.

Let s ∈ S, let sa1, ..., san be the direct descendants of s. Then one of sa1, ..., san must have
infinitely many descendants because otherwise s would have finitely many descendants,
contradicting the definition of S. So S is pruned.

Moreover since T is infinite the empty sequence belongs to S which is thus nonempty.
By the above proposition S has an infinite branch. Such an infinite branch is also an
infinite branch for T .

Let us now study the connection between trees and the product topology of AN where
A is equipped with the discrete topology. For s ∈ A<N we let

Ns := {x ∈ AN : x�|s| = s}.

Observe that each Ns is clopen and that (Ns)s∈A<N forms a basis for the topology of AN.

Definition 3.20. Let T be a tree. Its boundary is defined as the set ∂T of ends of T .

Lemma 3.21. Let T be a tree. Then its boundary ∂T is a closed subset of AN.

Proof. By definition x 6∈ ∂T means that there is n ∈ N such that x�n 6∈ T . Then Nx�n is
an open neighborhood of x which is disjoint from ∂T . We conclude ∂T is closed.

We have the following important further connection between closed subsets of AN and
pruned trees.

Proposition 3.22. The map ∂ : T 7→ ∂T induces a bijection between the set of pruned
trees and the set of closed subsets of AN. Its inverse is the map

F 7→ TF := {s ∈ A<N : Ns ∩ F 6= ∅}.
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Proof. We have already seen that ∂ takes values into closed subsets of AN. Moreover if F
is a closed subset, TF is pruned: if s ∈ A<N and Ns∩F 6= ∅ we have F∩Ns =

⋃
a∈A F∩Nsa,

so there is a ∈ A such that Nsa ∩ F 6= ∅.
To finish the proof, it suffices to show that for every pruned tree T we have T∂T = T

and that for every closed subset F we have ∂TF = F .
So let T be a pruned tree, observe that T∂T is the set of s ∈ A<N such that there is an

end x of T satisfying x�|s| = s. In other words T∂T is the set of beginnings of ends of T ,
which is equal to T by Prop. 3.15.

Now let F be a closed subset of AN, by definition ∂TF is the set of x ∈ AN such that
for every n ∈ N we have Nx�n ∩ F 6= ∅. Since for every x ∈ AN the family (Nx�n)n∈N is
a neighborhood basis for x, we conclude that ∂TF is the closure of F , so ∂TF = F as
wanted.

3.6 An application to the Baire space
By definition, the Baire space is the space NN equipped with the product topology. Using
the notation from the previous section, we have that (Ns)s∈N<N is a basis for its topology
consisting of clopen sets, in particular the Baire space is a zero-dimensional Polish space.

We will now use the correspondence between pruned trees and closed subsets so as to
build a nice choice function for closed sets.

Proposition 3.23. Let T be a nonempty pruned tree on N. Then T has an end x such
that for every s ∈ T we have xi 6 si for every i ∈ {0, ..., |s| − 1}.

Proof. We construct the end by induction, starting with x0 = min{k ∈ N : k ∈ T} and
then, x0, ..., xn having been built, we let xn+1 = min{k ∈ N : x0 · · ·xnk ∈ T}.

Definition 3.24. The end of T constructed in the above proposition is called the leftmost
end (or leftmost branch) of T . It is denoted by l(T ).

Identifying a nonempty closed subset F of NN to the corresponding nonempty pruned
tree TF = {s ∈ N<N : Ns ∩ F 6= ∅} via Proposition 3.22, we also let l(F ) := l(TF ) be the
leftmost end of the closed set F . Observe that l(F ) ∈ F .

We will now use the leftmost end to show that every nonempty closed subset F of NN

is a continuous image of NN via a map which is moreover the identity on F .

Theorem 3.25. Let F be a nonempty closed subset of NN. Then there is a continuous
map f : NN → F such that f(x) = x for every x ∈ F .

Proof. For x ∈ NN \ F , let k(x) = max{k ∈ N : Nx�k ∩ F 6= ∅}. Observe that k is a
continuous function on NN \F because it is locally constant (indeed if we fix x0 ∈ NN \F
we see that k(x) = k(x0) for every x ∈ Nx0�k(x0)+1).

We then define f : NN → F by

f(x) =

{
x if x ∈ F

l(Nx�k(x) ∩ F ) if x 6∈ F.

Since k is locally constant, the function f is locally constant and hence continuous when
restricted to the open set NN \ F . So to conclude that f is continuous, we only need to
show that for every x ∈ F we have f(y)→ f(x) when y → x.
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So let V be a neighborhood of some x ∈ F , up to shrinking V we may assume
that V = Nx�N for some N ∈ N. Then for all y ∈ Nx�N , either y ∈ F and then
f(y) = y ∈ Nx�N or y 6∈ F , in which case k(y) > N since F ∩Ny�N = F ∩Nx�N 6= ∅ and
thus f(y) = l(Ny�k(y) ∩ F ) ∈ Nx�N . In both cases we have f(y) ∈ V as wanted.

Remark 3.26. We will see in Corollary ?? that the same is true if we replace the Baire
space NN by any zero-dimensional Polish space. For now, we can remark that the above
proof also works for the Cantor space.

Exercise 3.2. Show that the map f from the above proof is actually 1-Lipschitz for the
metric defined by d(x, y) = 2−n(x,y) where n(x, y) = min{n ∈ N : xn 6= yn}.

3.7 Around the universality of the Baire space
In this section, we will see various results which show the ubiquity of the Baire space. A
key tool for these results will be the following natural analogue of Cantor schemes.

Definition 3.27. A Luzin scheme on a set X is a family (Fs)s∈N<N of subsets of X such
that for every s ∈ N<N and every i ∈ N we have Fsi ⊆ Fs.

Observe that a family (Fs)s∈N<N of subsets of X is a Luzin scheme if and only if
for every for every s, t ∈ N<N such that t < s we have Ft ⊆ Fs. Just like with Cantor
schemes, we can define a condition which will allows us to produce a continuous map from
a Luzin scheme (convergence), and a further condition which makes the map injective
(properness).

Definition 3.28. If (X, d) is a metric space, we say that the Luzin scheme (Fs)s∈N<N on
X is d-convergent if the following two conditions are satisfied:

(a) for every s ∈ N<N and every i ∈ {0, 1} we have Fsi ⊆ Fs

(b) for every x ∈ NN we have diamd(Fx�n)→ 0.

Definition 3.29. A Luzin scheme on a set X is proper if

We emphasize again that if a Luzin scheme is proper then s 66 t and t 66 s implies
Us ∩ Ut = ∅, in particular if |t| = |s| but s 6= t, then Us ∩ Ut = ∅.

Theorem 3.30. Let X be a Polish space. Then there is a closed subset F of NN and a
continuous bijection f : F → X whose inverse f−1 is Baire-class 1.

Proof. We will build a proper Lusin scheme on X

Theorem 3.31. Let X be a Polish space. Then there is an open continuous surjection
π : NN → X.

Proof.

The above result has many applications, but for now we shall content ourselves with
the following important way of recognising a Polish space which is due to Sierpinski.

Theorem 3.32. Let X be a Polish space and let Y be a metrizable space. Suppose there
is a continuous open map π : X → Y . Then Y is Polish.



3.8. A CHARACTERIZATION OF THE BAIRE SPACE 71

Proof. Being the continuous image of a separable topological space, Y is separable (see
Ex. ??).

Observe that by Theorem 3.31, we may as well assume X = NN. We thus get a
decreasing Souslin scheme (Ys) on Y consisting of open sets given by Ys = π(Ns)

Let d be a compatible metric on Y . Since π is continuous, this Souslin scheme has
vanishing diameter. Let Ŷ be the completion of (Y, d) where we still write the associated
metric as d. We get another decreasing Souslin scheme (Us) on Ŷ by letting Us be the
interior of the closure of Ys in Y . Note that (Us) still has vanishing diameter and Vs ⊆ Us
so that for all x ∈ NN we have

⋂
n∈N Ux�n = {π(x)}. If (Us) were locally finite, we would

be done by a direct application of Lem. ??
We will thus ”refine” (Us) so as to obtain a locally finite Souslin scheme. The key

lemma which allows us to do so is the following.

Lemma 3.33. Let (Un) be a family of open subsets of a Polish space. There is a family
(Vn) of open sets such that

(i) for every n ∈ N, Vn ⊆ Un;

(ii)
⋃
n∈N Vn =

⋃
n∈N Un;

(iii) every x ∈
⋃
n Vn belongs to finitely many Vn’s.

Proof. We would like to simply build a partition by letting Vn = Un\
⋃
i<n Ui but of course

Vn may simply not be open. However each Ui is Fσ so we will simply remove more and
more of Ui from Un as n grows so as to satisfy (iii). To be more precise, for each i ∈ N
we write Ui as

Ui =
⋃
n

Fi,n

where Fi,n is an increasing sequence of closed sets. Then let

Vn = Un \
⋃
i<n

Fi,n.

Assertions (i) and (ii) are clearly satisfied, and to see that (iii) holds, let i ∈ N and suppose
x ∈ Vi =

⋃
n Fi,n. Let n ∈ N such that x ∈ Fi,n then by construction x cannot belong to

Um as soon as m > n.

Let us apply the above lemma a first times to (Un) and get (Vn) as in the lemma.
Then for each n apply the lemma to (Vn∩Un,m) and keep on doing so (apply to Vs∩Usm).
We remark that since for every n ∈ N we have Y ⊆

⋃
|s|=n Us, the same is true with (Vs)

by an immediate induction.

3.8 A characterization of the Baire space
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Chapter 4

Examples of Polish spaces

4.1 Function spaces

4.1.1 The compact-open topology

We already mentioned that every separable Banach space is a Polish space for the topology
induced by its norm. An example of separable Banach space that the reader may have
already encountered is the space of continuous functions from [0, 1] to R equipped with
the norm ‖f‖∞ = supx∈[0,1] |f(x)|. Our first class of examples of Polish spaces are a
generalization of this space: we will show that whenever X is a locally compact Polish
space and Y is any Polish space, the space of continuous functions from X to Y has a
natural Polish topology.

Definition 4.1. Let X be a locally compact Polish space, let Y be a Polish space. We
denote by C(X, Y ) the space of continuous maps from X to Y .

It is equipped with the compact-open topology, which is the topology generated
by the subbasis consisting of the subsets

{f ∈ C(X, Y ) : f(K) ⊆ U}

where K ⊆ X is compact and U ⊆ Y is open.

Our main result in this section is that this topology is always Polish. Let us start by
understanding better this topology when X is compact Polish.

Recall that if X is compact then by Cor. 1.111 every continuous function X → Y is
d-bounded (meaning that its image has finite diameter) and thus C(X, Y ) is a subspace
of the space `∞d (X, Y ) of all d-bounded functions.

Recall that the space `∞d (X, Y ) is equipped with the metric d∞ of uniform conver-
gence defined by

d∞(f, g) = sup
x∈X

d(f(x), g(x)).

We saw in Prop. 1.80 that such a metric is complete, and we will see that it is actually
compatible and complete on C(X, Y ) when X is compact Polish.

Proposition 4.2. Let X be a compact Polish space and (Y, d) a metric space. Then the
compact-open topology on C(X, Y ) is the same as the topology of uniform convergence
induced by d∞.

73
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Proof. Let us first show that every element of the subbasis of the compact-open topology
is d∞-open: let K ⊆ X compact, U ⊆ Y open, let O = {f ∈ C(X, Y ) : f(K) ⊆ U} and
finally let f0 ∈ O.

Recall that f0(K) is compact (see Thm. 1.127). Let ε > 0 such that all the elements
of f0(K) are at distance at least ε from all the elements in the complement of U (such
an ε exists by virtue of Prop. 1.126). Then all the elements f of the d∞-ball of radius ε
around f0 still satisfy f(K) ⊆ U , so that O is d∞-open as wanted.

Conversely, let us show that every d∞ open ball is a neighborhood of its center for
the compact-open topology. Let f0 ∈ C(X, Y ), let ε > 0. By compactness the cover
(f−1

0 (B(y, ε/5)))y∈Y admits a finite subcover (f−1
0 (B(yi, ε/4)))ni=1. For i = 1, ..., n let

Ci = f−1
0 (B6(yi, ε/5)), then (Ci)

n
i=1 is a cover of X by closed (hence compact) subsets

such that for each i, we have diam(f0(Ci)) < ε/2.
For each i ∈ {1, ..., n}, pick xi ∈ Ci and let Ui be the open ball of radius ε/2 around

f0(xi). Then by construction the intersection over i ∈ {1, ..., n} of the open sets

{f ∈ C(X, Y ) : f(Ci) ⊆ Ui}

is contained in the ε-ball around f0. Indeed given any x ∈ K, take i ∈ {1, ..., n} such
that x ∈ Ci, then both f(x) and f0(x) belong to Ui and thus are at distance at most ε.
We conclude that Bd∞(f0, ε) is a neighborhood of f0 for the compact-open topology as
wanted.

Observe that the above proposition implies that if we take two compatible metrics
d1 and d2 on Y , then the restrictions of the metrics d∞1 and d∞2 to C(X, Y ) are also
compatible, which was not clear at all a priori.

We will now see that d∞ is complete when restricted to C(X, Y ) when X is compact,
using the fact that C(X, Y ) then consists of uniformly continuous functions.

Definition 4.3. Let (X, dX) and (Y, d) be metric space, the space UC(X, Y ) is the space of
uniformly continuous functions, i.e. of functions f : X → Y such that for all ε > 0, there
is δ > 0 such that whenever x1, x2 ∈ X satisfy dX(x1, x2) < δ, we have d(f(x1), f(x2)) < ε.

Lemma 4.4. Let (X, dX) and (Y, d) be metric space. The space UC(X, Y ) is closed in
`∞d (X, Y ).

Proof. For a function f ∈ `∞d (X, Y ), its modulus of uniform continuity is the map
δ(f) : N→ [0,+∞[ defined by

δ(f)(n) = sup
dX(x1,x2)< 1

n

d(f(x1), f(x2)).

Observe that since f is bounded, we have δ(f) ∈ `∞(N,R). Moreover it is straightforward
to check that δ : `∞d (X, Y )→ `∞(N,R) is 2-Lipschitz, hence continuous.

Now by definition f is uniformly continuous if and only if δ(f)(n) → 0[n → +∞], so
by the continuity of δ it suffices to show that the following claim holds.

Claim. In `∞(N,R), the space of sequences which converge to zero is closed.

Proof of claim. We show that its complement is open: if un 6→ 0, we may find ε > 0 and
a subsequence (uϕ(n)) such that

∣∣uϕ(n)

∣∣ > ε for all n ∈ N. Then if (vn) is ε/2-close to (un)
it will satisfy

∣∣vϕ(n)

∣∣ > ε/2 for all n and hence will not converge to zero. This proves that
the space of sequences which do not converge to zero is open as wanted.
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As explained before, since UC(X, Y ) is the inverse image of the space of sequences
converging to zero via the continuous map δ, we then have that UC(X, Y ) is closed as
wanted.

Exercise 4.1. Show that UC(X, Y ) is not separable for the topology of uniform conver-
gence as soon as X is non compact. (Hint: Prove this first when X = N and Y = {0, 1},
both equipped with the discrete metric).

Proposition 4.5. Let X be a compact space, let (Y, d) be a complete metric space. The
the metric d∞ on C(X, Y ) is complete.

Proof. Let dX be a compatible metric on X, then we know that every continuous function
X → Y is uniformly continuous, so C(X, Y ) = UC(X, Y ) by Prop. 1.115. By the two
previous lemmas, the latter is closed in the complete metric space (`∞d (X, Y ), d∞) and
hence it is a complete metric space for the induced metric by Prop. 1.78.

Now that we have a complete metric on C(X, Y ) compatible with the compact-open
topology when X is compact and Y is Polish, we need to check that the compact-open
topology is separable. Let us first do this in the easier case where X is the Cantor space.

Lemma 4.6. Let Y be a Polish space. Then C(2N, Y ) is separable for the compact-open
topology.

Proof. Let D be a countable dense subset of Y . For each n ∈ N, consider the countable
space Dn of functions taking values in D such that f(x) only depends on the first n bits
of x. We will show that the countable set

⋃
n∈NDn is dense in C(2N, Y ) by using the

compatible metric d∞ associated to some compatible metric d on Y .
Let ε > 0 and let f ∈ C(2N, Y ). For each x ∈ 2N there is a clopen set Ux containing x

such that diam f(Ux) < ε, so by compactness we may find a finite subcover (U1, ..., Un) of
2N by clopen sets such that for each i ∈ {1, ..., n}, diamd(f(Ui)) < ε.

Now there is N ∈ N such that each Ui is a reunion of cylinder sets of length N . So if
we pick for each s ∈ 2n some s̃ ∈ Ns and define a function fN ∈ DN by fN(x) = f(x̃�N),
we see that d∞(f, fN) < ε as wanted.

Theorem 4.7. Let X be a compact Polish space. Then C(X, Y ) is a Polish space for the
compact-open topology.

Proof. As explained before, we already have a compatible complete metric on C(X, Y ):
the metric of uniform convergence d∞ associated to a complete metric d on Y . Indeed by
Prop. 4.2 the compact-open topology is compatible with the associated metric of uniform
convergence d∞ and by Prop. 4.5 the latter is complete.

To show that C(X, Y ) is Polish for the compact-open topology, we now only need to
show it is separable. To this end, let π : 2N → X be a continuous surjection as provided
by Thm. 3.11. Then every continuous function f : X → Y lifts to a continuous function
f̃ : 2N → Y given by f̃ = f ◦ π. Moreover f 7→ f̃ is easily checked to be an isometry
C(X, Y ) → C(2N, Y ) for their metrics of uniform convergence associated to d. By the
previous lemma the metric space C(2N, Y ) is separable, so the isometrically embedded
space C(X, Y ) also is by Cor. 1.97.

Let us now deal with the general case when X is locally compact Polish. Recall that
by Thm. ?? we may then write X =

⋃
n∈NKn where each Kn is compact and contained

in the interior of Kn+1.
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Proposition 4.8. Let X be a locally compact non compact Polish space, let (Kn)n∈N be
an increasing sequence of compact subsets of X such that X =

⋃
n∈NKn and each Kn

is compact and contained in the interior of Kn+1. For each n ∈ N, let rn : C(X, Y ) →
C(Kn, Y ) and πn : C(X,Kn+1)→ C(Kn, Y ) be the restriction maps.

Then the map

f 7→ (rn(f))n∈N

induces a homeomorphism between C(X, Y ) and lim←−C(Kn, Y ).

Proof. First note that rn is continuous because if K ⊆ Kn is compact and U ⊆ Y is
open, then the preimage of the subbasic open set {f ∈ C(Kn, Y ) : f(K) ⊆ U} is simply
the open set {f ∈ C(X, Y ) : f(K) ⊆ U}. Also note that rn and the πn’s commute
so by the universal property of the projective limit we have a unique continuous map
r : C(X, Y )→ lim←−C(Kn, Y ) such that πnr = rn.

The map r is injective since
⋃
nKn = X, and we must thus show that it is surjective

and open. Both actually follow from the fact that each Kn is contained in the interior of
Kn+1. Indeed, suppose we are given (fn) ∈ lim←−C(Kn, Y ), i.e. a sequence of continuous
functions fn : Kn → Y where fn+1 extends fn for every n. We are then forced to defined
the map f by f(x) = fn(x) for all x ∈ X, where n is large enough so that x ∈ Kn. The
continuity of X follows from the fact that Kn is contained in the interior of Kn+1: indeed
we can then deduce from the continuity of fn+1 the fact that limx→x0 f(x) = f(x0) for
all x0 ∈ Kn and conclude that f is continuous since

⋃
nKn = X. This shows that r is

surjective.
Let us finally show r is open. Consider K ⊆ X compact and U ⊆ Y is open, by

compactness and the equality X =
⋃
n K̊n there is n0 such that K ⊆ Kn0 . Then it is

straightforward to check that

r({f ∈ C(X, Y ) : f(K) ⊆ U}) = {(fn) ∈ lim←−C(Kn, Y ) : fn0(K) ⊆ U}

which yields that the bijection r is open as wanted.

4.1.2 The topology of pointwise convergence and equicontinuity

Definition 4.9. Let X be a topological space, an equicontinuity modulus on X is a
family V = (Vx,ε)x∈X,ε>0 be a family of subsets of X such that for each x ∈ X and ε > 0,
Vx,ε is an open neighborhood of x.

If (Y, d) is a metric space and f : X → Y , we say that f is V-continuous if for all
x ∈ X and all ε > 0 we have

diamd(f(Vx,ε)) 6 ε.

Observe that a function f : X → Y is continuous if and only if it admits some
equicontinuity modulus. A family (fi)∈I of continuous functions is called equicontinuous
if there is an equicontinuity modulus V such that each fi is V-continuous.
Theorem 4.10. Let X be a Polish space, let (Y, d) be a complete separable metric space.
Let V = (Vx,ε)x∈X,ε>0 be an equicontinuity modulus. Consider the set FV of functions
which are V-continuous and let D be a countable dense subset of X.

Then the restriction map

Φ : FV → Y D

f 7→ f�D.

is a homeomorphism onto its image, and Φ(FV) is closed in Y D.
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Proof. Let us show that Φ is a homeomorphism onto its image. Since continuous func-
tions are determined by their restriction to a dense subset, the map Φ is injective. It
is continuous by definition of the topology of pointwise convergence. To see that Φ−1 is
continuous, let x ∈ X, let f ∈ FV and let ε > 0. Consider the neighborhood Vx,ε/3 of x
and fix y ∈ D ∩ Vx,ε/3. Observe that if d(f(y), g(y) < ε/3 then by the triangle inequality
d(f(x), g(x)) < ε. We conclude Φ−1 is open.

Let us now show that Φ(FV) is closed in Y D. Observe that Φ(FV) is contained in the
set G of f ∈ Y D such that

∀x ∈ X, ∀ε > 0, ∀y1, y2 ∈ D ∩ Vx,ε, d(f(y1), f(y2)) 6 ε.

The set G is clearly closed, moreover all its element have oscillation zero on X so they are
restrictions of continuous functions on X which still have V as a modulus of oscillation.
So Φ(FV) = G is closed as wanted.

Theorem 4.11. Let X be a topological space, let V = (Vx,ε) be an equicontinuity modulus
on X and let (Y, d) be a metric space. Then on FV the compact-open topology and the
topology of pointwise convergence coincide.

Proof. By the definition of the compact-open topology and the fact that whenever K is
compact the compact-open topology is induced by the metric of uniform convergence, we
need to show that whenever K is compact, the topology of pointwise convergence and the
topology of uniform convergence coincide on FV . The topology of uniform convergence
clearly contains the topology of pointwise convergence. For the converse, we will show that
every neighborhood for the uniform convergence is also a neighborhood fro the pointwise
convergence.

Let f ∈ FV , and let ε > 0. By compactness we find a finite cover (Vxi,ε)
n
i=1 of K. Then

by the triangle inequality and equicontinuity we have that Bd∞(f, 3ε) contains the finite
intersection

n⋂
i=1

{g ∈ FV : d(g(xi), f(xi)) < ε},

and is thus a neighborhood of f for the pointwise convergence topology.

Corollary 4.12 (Ascoli’s theorem). Let (fi)i∈I be a sequence of continuous functions
on a compact Polish space X. Then (fi)i∈I is relatively compact if and only if it is
equicontinuous and for each x ∈ X, the set {fi(x) : i ∈ I} is relatively compact.

Proof. Assume (fi)i∈I is relatively compact.
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4.2 Topologies on hyperspaces of closed subsets

4.2.1 The lower topology on the hyperspace of closed subsets of
a Polish space

4.2.2 The Vietoris topology on the hyperspace of compact subsets
of a Polish space

4.2.3 The Fell topology on the hyperspace of closed subsets of a
locally compact Polish space

4.2.4 The Wijsman topology on the hyperspace of closed subsets
of a complete separable metric space

Let (X, d) be a complete separable metric space. The Wijsman topology on F (X) is the
smallest topology which makes for every x ∈ X the map F 7→ d(x, F ) continuous.

Theorem 4.13. Let (X, d) be a complete separable metric space. Then the Wijsman
topology on F (X) is Polish.

Proof. We will show that Let (xn)n∈N be a dense sequence in X. Consider the space
Observe that the space of 1-Lipschitz maps X → R is closed in RX . Moreover, the

Φ : F (X)→ RX

4.3 Spaces of structures
Only in the classical case.

4.4 Further examples
Mentions further examples such as space of actions, L0 spaces (proofs and defs to be given
later). Metric structures. Spaces of models for universal theories. Operator algebras.
Spaces of operator algebras.

4.5 Exercices
Add the Michael selection theorem.



Chapter 5

Borel sets and functions

5.1 The Borel hierarchy
We have already seen several important classes of subsets in a Polish space such as open,
closed, Gδ and Fσ sets. These are part of the fundamental class of Borel subsets, and we
will start by recalling its definition.

A σ-algebra on a set X is set A ⊆ P(X) of subsets of X such that

• A contains the empty set: ∅ ∈ A;

• A is stable under taking complements: for all A ∈ A, we also have X \ A ∈ A;

• A is stable under countable unions: for all (An)n∈N ∈ AN, one has
⋃
n∈NAn ∈ A.

The set of all subsets P(X) is a σ-algebra, and any intersection of σ-algebras is a
σ-algebra. Given B ⊆ P(X), we can thus define the σ-algebra generated by B as the
intersection of all the σ-algebras containing B, which by construction is the smallest σ-
algebra containing B. Note that this definition is from above since it requires us to consider
bigger σ-algebras.

Definition 5.1. Let (X, τ) be a topological space. The σ-algebra of Borel subsets of
X is the σ-algebra generated by the topology of X. It is denoted by B(X, τ) or simply
B(X) when the topology is clear from the context.

We will now see how to construct the Borel σ-algebra from below, starting from open
sets and taking sufficiently many countable unions and complements. We will need a
construction by induction on countable ordinals to ensure stability under countable unions
in the end.

Definition 5.2. Let X be a topological space. We define by induction on ξ ∈ ω∗1 some
sets of subsets of X denoted by Σ0

ξ(X) and Π0
ξ(X) as follows:

(a) Σ0
1(X) is the set of open subsets of X;

(b) For all ξ ∈ ω1 with ξ > 1, Π0
ξ(X) = {X \ A : A ∈ Σ0

ξ(X)};

(c) For all ξ ∈ ω1 with ξ > 2, Σ0
ξ is the set of A ⊆ X that can be written as A =

⋃
n∈NAn

where for all n ∈ N,
An ∈

⋃
η<ξ

Π0
η(X).

79
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Elements of Σ0
ξ(X) are called of additive class ξ while elements of Π0

ξ(X) are of mul-
tiplicative class ξ. Finally, we let

∆0
ξ(X) = Σ0

ξ(X) ∩Π0
ξ(X)

and refer to elements of ∆0
ξ(X) as of ambiguous class ξ.

Let us compute the very first steps of this construction. We start by (a) with Σ0
1(X)

the set of open subsets of X, then by (b) we take complements and obtain Π0
1(X) which

is thus the set of closed subsets of X. After that, we take by (c) countable unions and get
Σ0

2(X) the set of Fσ subsets of X and finally by (b) again Π0
2(X) is the set of complements

of Fσ subsets of X, also known as Gδ subsets of X. Also note that by definition a subset
of X is of ambiguous class 1 (belongs to ∆0

1(X)) if and only if it is clopen.
One often denotes by G(X) = Σ0

1(X) the set of open subsets of X and by F (X) =
Π0

1(X) the set of closed subsets of X. The notations Fσ and Gδ can be generalised: given
a set of subsets A, we denote by Aσ the set of countable unions of elements of A, and by
Aδ the set of countable intersections of elements of A. As an example, axiom (c) can be
rewritten as

Σ0
ξ(X) =

(⋃
η<ξ

Π0
η(X)

)
σ

.

We will also drop the reference to X when using the above notations as adjectives, which
we were already doing when talking about Fσ or Gδ subsets of X. For instance, when we
write "let A be a Π0

3 subset of X", we mean "let A ∈ Π0
3(X)".

Remark 5.3. One reads Π0
3 as Pi-zero-three (the order is important because when we

will go beyond the Borel hierarchy, the upper index will change !).

Lemma 5.4. Let X be a Polish space. For all ξ, η ∈ ω1 such that η 6 ξ, we have

Σ0
η(X) ⊆ Σ0

ξ(X) and Π0
η(X) ⊆ Π0

ξ(X).

Proof. First note that Σ0
η(X) ⊆ Σ0

ξ(X) if and only if Π0
η(X) ⊆ Π0

ξ(X) since we can go
from one to the other by taking complements, which is involutive.

Let us then show Σ0
η(X) ⊆ Σ0

ξ(X) whenever η 6 ξ. Note that if both ξ > 2 and η > 2
then by (c) we have that Σ0

η(X) ⊆ Σ0
ξ(X) since the latter is the set of countable unions

of more sets.
We now only have to show that Σ0

1(X) ⊆ Σ0
2(X). This inclusion means that every

open set is Fσ, a fact that we have already observed (see Rmk. ??).

Remark 5.5. Duality here ? Then obtain Pi as countable intersection of Sig.

Note that by the above lemma we have Σ0
ξ+1 = (Π0

ξ)σ (DEFINE NOTATIONS). More
generally, the following is true.

Lemma 5.6. Suppose (ηn) is a countable family of ordinals and let ξ be their strict
supremum. Then

Σ0
ξ = (

⋃
n

Π0
ηn)σ and Π0

ξ = (
⋃
n

Σ0
ηn)δ

We then have the following basic stability properties for the classes of Borel subsets
Σ0
ξ and Π0

ξ , where X and Y denote Polish spaces.
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• Stability under continuous preimages: if Γ is either Σ0
ξ or Π0

ξ for some ξ ∈ ω1, then
for every continuous map f : X → Y and every A ∈ Γ(Y ) we have f−1(A) ∈ Γ(Y ).

• Stability under finite unions or intersections: if Γ is either Σ0
ξ or Π0

ξ for some ξ ∈ ω1

then for all A,B ∈ Γ(X) we have A ∩B ∈ Γ(X) and A ∪B ∈ Γ(X).

• Σ0
ξ is actually stable under countable unions: for all ξ ∈ ω1 and for all (An) ∈

(Σ0
ξ(X))N we have ⋃

n∈N

An ∈ Σ0
ξ(X).

• Π0
ξ is stable under countable intersections: for all ξ ∈ ω1 and for all (An) ∈ (Π0

ξ(X))N

we have ⋂
n∈N

An ∈ Π0
ξ(X).

Exercise 5.1. Establish the above four stability properties of the classes Σ0
ξ and Π0

ξ .

5.2 Decompositions as disjoint unions and applications

The disjointness trick allows us to write every reunion of Borel sets
⋃
nAn as a reunion

of disjoint Borel sets
⊔
nA
′
n with A′n ⊆ An. Let us apply this trick to the definition of the

class Σ0
ξ for ξ > 1.

Proposition 5.7. Let ξ > 1. Then every element of Σ0
ξ can be written as a countable

disjoint union of ∆0
ξ sets.

Proof. Let A =
⋃
nBn where each Bn is in some Π0

η for some η < ξ. For every n ∈ N let
A′n := An \ (A0 ∪ · · · ∪ An−1). Then A′n ∈ ∆0

ξ and A =
⊔
A′n.

Proposition 5.8. Let ξ > 3. Then every element of Σ0
ξ can be written as a countable

disjoint union of
⋃
η<ξΠ

0
η sets.

Proof. By Lemma 5.4 every element of Σ0
ξ can be written as a countable union of elements

of
⋃

1<η<ξΠ
0
η.

So write A =
⋃
nAn in such a way. For each n the set X \ A0 ∪ · ∪ An−1 is in Σ0

η for
some 1 < η < ξ. So

X \ (A0 ∪ · · · ∪ An−1) =
⊔
m

Bn,m

where Bn,m ∈ ∆0
η ⊆ Π0

η. Now

A =
⊔
n

An ∩ (X \ (A0 ∪ · ∪ An−1)) =
⊔
n

(
An ∩

⊔
m

Bn,m

)
=
⊔
n,m

An ∩Bn,m.

Now for all n,m we have An ∩Bn,m ∈ Π0
η for some η < ξ as wanted.

[Source: Kuratowski, Topologie I p. 254 C’est du à Lusin, cf. ref. therein].
We have a weaker result in the case ξ = 2. Let us start by a lemma on particular Σ0

2

sets, namely open sets.
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Lemma 5.9. In a metrizable space, every open set can be written as a reunion of a
countable point-finite family of closed sets.

Proof. Let d be a compatible metric and let U be open. For every n ∈ N, consider the set

Fn := {x ∈ X : d(x,X \ U) ∈ [1/n+ 1, 1/n]}.

Each Fn is closed and we have U = {x ∈ X : d(x,X\U) > 0} =
⋃
n∈N Fn. By construction

each x ∈ X can belong to at most two distinct Fn’s (with consecutive indices) so we have
the desired result.

Proposition 5.10. In a metrisable space, every Fσ set can be written as a reunion of a
countable point-finite family of closed sets.

Proof. Let A
⋃
n Fn, for each n consider the open set set Un := X \ (F0 ∪ · · · ∪ Fn−1). By

the previous lemma we may write it as Un =
⋃
m Fn,m where (Fn,m) is a point-finite family

of closed sets.
Now A =

⊔
n (Fn ∩ Un) =

⋃
n,m Fn ∩ Fn,m is written as the reunion of a countable

point-finite family of closed sets.

Theorem 5.11. Let ξ > 1. Then ∃∞Π0
ξ = Π0

ξ+2.

Proof. The inclusion ∃∞Π0
ξ = Π0

ξ+2 is an exercise. For the other way around, suppose
first ξ > 2 and let A ∈ Π0

ξ+2. Then write A as a decreasing intersection of Σ0
ξ+1 sets An.

By the previous proposition, each of these may be written as

An =
⊔

Bn,m

where Bn,m is in Π0
ξ . We now claim that A = ∃∞Bn,m. The inclusion from left to right is

clear, and for the other way around note that if x ∈ ∃∞Bn,m since for each n there is at
most one m such that x ∈ Bn,m there must be infinitely many n such that x belongs to
some Bn,m hence to An, and since the An are decreasing this means x ∈

⋂
An.

In the case ξ = 1 the same argument works with Prop. 5.10 instead.

Proposition 5.12. Let X be a Polish space, let (An) be a countable family of elements
of Σ0

ξ(X) for some ξ > 2. Then there are pairwise disjoint A′n ⊆ An with A′n ∈ Σ0
ξ(X)

and ⊔
n∈N

A′n =
⋃
n∈N

An.

Proof. For each n ∈ N, write An =
⋃
m∈NBn,m with each Bn,m ∈ Π0

η for some η < ξ,
then

⋃
nAn =

⋃
n,mBn,m. We will now use the disjointness trick but with N2 as index set

instead of N.
Let < be an order on N2 isomorphic to the usual well-order on N. For each (n,m) ∈ N2,

let

B′n,m = Bn,m \

 ⋃
(k,l)<(n,m)

Bk,l


Since the set of predecessors of each (n,m) is finite, we have

⋃
(k,l)<(n,m) Bk,l ∈ Π0

ξ and
hence B′n,m ∈ Σ0

ξ . By construction the family (B′n,m)n,m∈N is disjoint and has the same
reunion as (Bn,m)n,m∈N. Let A′n =

⊔
mB

′
n,m, since Σ0

ξ is stable under countable unions we
have A′n ∈ Σ0

ξ and ⊔
n

A′n =
⊔
n,m

B′n,m =
⋃
n,m

Bn,m =
⋃
n

An

as wanted.
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5.3 Structural properties

5.4 Γ-complete subsets
Given a Borel subset A ⊆ X of a Polish space, we would like to determine the exact Borel
complexity of A, i.e. the smallest ordinals ξ and ξ′ such that A ∈ Σ0

ξ(X) and A ∈ Π0
ξ′(X).

This could for instance allow us to distinguish A from another Borel set B. Let us first
compare the complexities of two sets A and B by trying to compute one from the other
through a continuous map.

Definition 5.13. Let X and Y be Polish spaces, let A ⊆ X and B ⊆ Y . Say that A
continuously reduces to B if there is a continuous map f : X → Y such that for all
x ∈ X the condition x ∈ A is equivalent to f(x) ∈ B, i.e.

A = f−1(B).

This is written as (A ⊆ X) 6c (B ⊆ Y ), and often the ambient sets X and Y are clear
from the context so we simply write A 6c B.

If A 6c B we think of A as “simpler” than B. Indeed if we need to know wether x ∈ A
we can do this by checking wether f(x) ∈ B.

Exercise 5.2. Prove that 6c defines a preorder on inclusions A ⊆ X. Show that ifX, Y, Z
are Polish spaces with X ⊆ Y and (A ⊆ X) 6c (B ⊆ Z) then (A ⊆ Y ) 6c (B ⊆ Z).
Does the converse hold ?

The fact that the classes Σ0
ξ and Π0

ξ are stable under countinuous preimages (Exercise
??) means that Σ0

ξ and Π0
ξ form initial segments for 6c.

We would like to define Γ-hard subsets B ⊆ Y as subsets more complicated than any
element of Γ(X) for every Polish space X, and Γ-complete subsets as those who moreover
belong to Γ(Y ).

Note however that there might already be no non-constant continuous maps X → Y ,
for instance when X is connected and Y is totally disconnected. So the complexity of X
has to be as low as possible if we want to have a chance for Γ-hard or complete subsets
to exist. We will thus take X to be always equal to the Baire space, which as we saw
surjects continuously onto any Polish space.

Definition 5.14. Let Γ be a class of subsets of Polish spaces, and let X be a Polish space.
An inclusion A ⊆ X is called Γ-hard if for every every B ∈ Γ(NN) we have B 6c A.
A ⊆ X is Γ-complete if moreover A ∈ Γ(X).

When X is clear from the context we will simply say that A is Γ-hard (resp. Γ-
complete).

Exercise 5.3. Prove that A ⊆ X is Γ-hard (resp. Γ-complete) if and only if X \ A is
Γ̌-hard (resp. Γ̌-complete).

The previous definitions are not standard, usually one replaces the Baire space NN by
any zero-dimensional Polish space Y . This difference does not matter for the classes of
subsets we are interested in as the following exercise shows.

Exercise 5.4. Let X be a Polish space and A ⊆ X, and suppose that Γ = Σ0
ξ or Γ = Π0

ξ

for some ξ ∈ ω∗1. Show that A is Γ-hard if and only if for every zero-dimensional Polish
space Y and every B ∈ Γ(Y ) we have B 6c A.
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Let us now check that Σ0
ξ and Π0

ξ-complete sets are as complicated as possible.

Proposition 5.15. Let A ⊆ X be a Σ0
ξ-complete (resp. Π0

ξ-complete) subset. Then
A 6∈ Π0

ξ(X) (resp. A 6∈ Σ0
ξ(X)).

Proof. Since the classesΣ0
ξ andΠ0

ξ are dual of each other, it suffices to prove the statement
about Σ0

ξ-complete sets (by Exercise 5.4). Suppose A is Σ0
ξ-complete. Let B ⊆ NN be a

Σ0
ξ non Π0

ξ subset, whose existence is guaranteed by Cor. ??. Then since A is Σ0
ξ-hard we

have B 6c A. So A cannot be Π0
ξ because otherwise B would also be by Exercise ??.

The most complicated elements of Σ0
ξ or Π0

ξ which we have built so far were universal
parametrizations and these are indeed complete.

Proposition 5.16. Let X be a Polish space and Γ be a class of subsets of Polish spaces.
Then every X-parametrization of Γ(NN) is Γ-hard and every universal X-parametrization
of Γ(NN) is Γ-complete.

Proof. Suppose A ⊆ X×NN is an X-parametrization of Γ(NN) and let B ∈ Γ(NN). Since
A parametrizes Γ(NN) we find x ∈ X such that B = Ax. Then B 6c A via y 7→ (x, y).
We conclude that A is Γ-hard. If A was moreover universal it follows from the definitions
that A is Γ-complete.

Since X-universal parametrizations for Σ0
ξ(NN) or Π0

ξ(NN) exist as soon as X is un-
countable Polish, we conclude that for every ξ ∈ ω1, there is a Σ0

ξ-complete set as well
as a Π0

ξ-complete set. We will now build more trackable examples of such sets using the
following simple but fundamental device.

Proposition 5.17. Consider a class Γ of subsets of Polish spaces. Let A ⊆ X and B ⊆ Y
where X and Y are Polish spaces and suppose A 6c B. If A is Γ-hard then B also is.

Proof. Let C ∈ Γ(NN). Then C 6c A because A is Γ-hard. Hence by transitivity C 6c B
and we conclude that B is Γ-hard.

This proposition provides a nice recipe to prove that a subset B ⊆ Y is Γ-complete:
first show that B ∈ Γ(Y ) and then find a Γ-hard subset A ⊆ X such that A 6c B (when
Γ is stable under continuous preimages the subset A actually had to be Γ-complete).

We will now climb up the Borel hierarchy so as to build some easier concrete examples
of Σ0

ξ or Π0
ξ-complete sets for ξ 6 3.

Proposition 5.18. Let N = N ∪ {∞} be the one point compactification of N as defined
in Exercise ??. Then N ⊆ N is Σ0

1-complete.

Proof. Let U be a Σ0
1 (i.e. open) subset of NN. For x ∈ U let n(x) be the smallest of all

integer n ∈ N such that Nx�n ⊆ U . Then define f : NN → N by

f(x) =

{
n(x) if x ∈ U,
∞ else.

By construction U = f−1(N) and one easily checks that f is continuous so that U 6c N.
So N ⊆ N is Σ0

1-complete.

Exercise 5.5. Show that in any Polish space X, an open subset is Σ0
1-complete if and

only if it is not closed. (Hint: use the two preceding propositions)
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We now explain how to build a Π0
ξ+1-complete set from a Σ0

ξ one.

Proposition 5.19. Let X be a Polish space, suppose A ⊆ X is Σ0
ξ-complete. Then

AN ⊆ XN is Π0
ξ+1-complete.

Proof. First note that AN =
⋂
n∈N π

−1
n (A) where πn is the projection on the n-th coordi-

nate so that AN is in Π0
ξ+1(XN).

Now suppose B ∈ Π0
ξ+1(NN). By exercise ?? there is a countable family (Bn) of

elements of Σ0
ξ(NN) such that B =

⋂
n∈NBn. We will now use the intersection-to-product

trick: the map
Φ : NN → (NN)N

x 7→ (x, x, ...)

is continuous and B = Φ−1(
∏

n∈NBn) so B 6c
∏

n∈NBn. We thus only need to show
that

∏
n∈NBn 6c AN. But since A is Σ0

ξ complete we have for every n ∈ N a continuous
map fn : NN → X such that Bn = f−1

n (A), and then the map (fn)n∈N :
∏

n∈NBn → AN

witnesses that
∏

n∈NBn 6c AN.

Exercise 5.6. Show more generally that given a countable ordinal ξ and a family (ηn) of
ordinals whose strict supremum is equal to ξ, if for every n ∈ N the inclusion An ⊆ Xn is
Σ0
ηn-complete then

∏
n∈NAn ⊆

∏
n∈NXn is Π0

ξ-complete.
Deduce that {0, 1}N contains Σ0

ξ and Π0
ξ-complete subsets for every ξ ∈ ω∗1. Conclude

that the same is true of any uncountable Polish space.

As an immediate consequence of Prop. 5.19 and Prop. 5.18 we get the following result.

Corollary 5.20. The subset NN ⊆ (N)N is Π0
2-complete.

Deduce that finite subsets of N are also (prolongement du truc NN → 2N). So sequences
of finite subsets are Π0

3-complete. Use this to show that sequences of integers tending to
infinity is also. (show that increasing sequences of finite subsets with union equal to N
correspond to sequences of integers tending to infinity via un 7→ (An := {k : uk 6 n})

Exercise 5.7. Set of non atomic proba is Gδ-complete ( associate to zero the proba δ0

and to one the proba 1/2(δ0 + δ1) to a sequence of zeros and ones associate a product
probability measure on 2N as product of the corresponding measures). Deduce that the
set of completely atomic is Π0

3-complete (use the sum of the 1/2nµn where µn constructed
as before).

5.5 The Baire hierarchy of Borel functions
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Chapter 6

Standard Borel spaces

This does NOT require injective images of Borel sets being Borel because for Cantor-
Bendixon we know already that the maps are homeomorphisms onto their images.

6.1 Turning Borel sets into clopen sets
In this section we will see how to make a Borel subset clopen without changing the Borel
σ-algebra. Let us first see how to do this for open subsets.

Lemma 6.1. Let U be an open subset on a Polish space (X, τ). Then there is a Polish
topology τ ′ on X such that τ ⊆ τ ′, B(X, τ) = B(X, τ ′) and U is τ ′-clopen

Proof. Both U and X \ U are Polish spaces for the induced topology. We let τ ′ be the
disjoint union topology on U t (X \U), which is Polish by Proposition 2.14. By definition
the τ ′-open sets are the sets of the form V ∩U t (W ∩X \U) where V and W are open in
X, so τ ⊆ τ ′ and τ ′-open sets belong to B(X, τ), which implies B(X, τ) = B(X, τ ′).

Next, we need a lemma which will help us in proving that the set of Borel subsets
which can be made clopen is stable under countable reunion.

Lemma 6.2. Let (X, τ) be a Polish space. For each n ∈ N, let τn be a topology on X
containing τ such that B(X, τ) = B(X, τn). Then the topology τ∞ generated by

⋃
n∈N τn is

Polish and satisfies B(X, τ) = B(X, τ∞).

Proof. Consider the following injective map

Φ : (X, τ∞)→
∏
n∈N

(X, τn)

x 7→ (x, x, ...).

Then Φ is a homeomorphism onto its image by Proposition 1.74.
Observe that Φ(X) is the set of constant maps N→ X, and hence closed in

∏
n∈N(X, τn)

because it is closed in
∏

n∈N(X, τ) (Exercise 1.15) and each τn contains τ . We deduce that
Φ(X) is Polish for the topology induced by

∏
n∈N(X, τn), so since Φ is a homeomorphism

onto its image the topology τ∞ is Polish as well.
Finally, τ∞ is second-countable and generated by

⋃
n∈N τn so each of its elements is

a countable reunion of finite intersections of elements of
⋃
n∈N τn. Since for each n we

have τn ⊆ B(X, τ) this yields τ∞ ⊆ B(X, τ). We moreover clearly have τ ⊆ τ∞, so
B(X, τ) = B(X, τ∞).

87
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Theorem 6.3. Let (X, τ) be a Polish space. Let B ⊆ X be a Borel subset. Then
there is a Polish topology τ ′ on X containing τ such that B is τ ′-clopen, τ ⊆ τ ′ and
B(X, τ) = B(X, τ ′).

Proof. Let A be the set of all Borel subsets B ⊆ X satisfying the conclusion of the
theorem. We will show that A is a σ-algebra which contains τ -open sets, from which the
desired equality A = B(X, τ) follows by the definition of B(X, τ).

Observe that Lemma 6.1 precisely says that A contains τ -open sets. Moreover A is
stable under complement because the complement of a clopen subset is clopen. We now
only need to show that A is stable under countable reunions.

Let (An)n∈N be a countable family of elements of A, then for each n ∈ N we fix a
Polish topology τn containing τ such that B(X, τn) = B(X, τ) and An is τ -clopen. Let
τ∞ be the topology generated by

⋃
n∈N τn. By Lemma 6.2, the topology τ∞ is Polish and

B(X, τ∞) = B(X, τ).
Now A is τ∞-open as it is the reunion of the τ∞ open sets An. We may thus use

Lemma 6.1 so as to get τ ′ containing τ∞ with B(X, τ∞) = B(X, τ ′) and A τ ′-clopen.
Then τ ′ witnesses that A ∈ A so A is indeed a σ-algebra. As explained at the beginning,
this ends the proof.

This theorem has many structural consequences. The first is that Borel sets satisfy
the a stronger topological form of the continuum hypothesis.

Theorem 6.4. Let (X, τ) be a Polish space, let B ⊆ X be an uncountable Borel subset.
Then B contains a closed subset of X which is homeomorphic to the Cantor space.

Proof. Let τ ′ be a Polish topology containing τ such that B(X, τ) = B(X, τ ′) and B is
τ ′-clopen. Then B is Polish for the topology induced by τ ′, and since it is uncountable
Corollary 3.10 provides us a continuous injective map f : 2N → (B, τ ′). In particular f is
continuous injective as a map 2N → (X, τ), and since 2N is compact we conclude that f
is a homeomorphism onto its image and that f(2N) is τ -closed.

Another consequence is that we can turn Borel functions into continuous ones.

Theorem 6.5. Let (X, τ) be a Polish space, let Y be a second-countable topological space
and let f : X → Y be a Borel map. Then there is a Polish topology τ ′ on X which
contains τ such that f : (X, τ ′)→ Y is continuous and B(X, τ) = B(X, τ ′).

Proof. Let (Vn)n∈N be a basis for the topology of Y . Since f is Borel each f−1(Vn) is
Borel, so by Theorem 6.3 for each n ∈ N there is a Polish topology τn on X containing
τ such that f−1(Vn) is τn-clopen and B(X, τn) = B(X, τ). By Lemma 6.2 the topology τ ′
generated by

⋃
n∈N τn is stilll Polish, contains τ and satisfies B(X, τ) = B(X, τ ′). Now for

each n ∈ N the set f−1(Vn) is τ ′-open, so since (Vn)n∈N is a basis for the topology of Y
we conclude f : (X, τ ′)→ Y is continuous as wanted.

The following consequence will prove useful in the next section.

Proposition 6.6. Let X be a Polish space, let B ⊆ X be a Borel subset. Then there is a
a closed subset F of NN and a continuous injective map f : F → X such that B = f(NN).
Moreover f−1 is Borel.
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Proof. Denote by τ the topology of X Let τ ′ be a Polish topology containing τ such that
B(X, τ) = B(X, τ ′) and B is τ ′-clopen. Then B is Polish for the topology induced by
τ ′ so by Theorem 3.30 we find a closed subset F of NN and a continuous bijective map
f : NN → (B, τ ′) whose inverse is τ ′-Baire class 1 (hence Borel). Since τ ⊆ τ ′ the map f
is also τ -continuous, and since B(X, τ) = B(X, τ ′) we conclude f−1 is also Borel for the
topology τ .

Our final application of Theorem 6.3 says that Borel sets are analytic (see Chap. 7).

Proposition 6.7. Let X be a Polish space, let B ⊆ X be a Borel subset. Then there is
a continuous map f : NN → X such that B = f(NN).

Proof. Compose the continuous map f : F → B from the previous proposition with a
continuous surjection g : NN → F whose existence is guaranteed by Prop. ??

6.2 Classification of standard Borel spaces

6.3 Operations on standard Borel spaces
The following lemma will be upgraded in the next chapter.

Lemma 6.8. Let X be a Polish space and Y a Hausdorff second-countable topological
space. If f : X → Y is Borel, then the graph of f is Borel.

Proof. Since Y is Hausdorff, the diagonal ∆Y = {(y, y) : y ∈ Y } is closed in Y 2, in
particular it is Borel. The map Φ : (x, y) 7→ (f(x), y) is Borel, and the graph of f is equal
to Φ−1(∆Y ) hence Borel.

6.4 The Effros space of a Polish space
We will now define an important example of standard Borel space, namely the space of
all closed subsets of a given Polish space X, also called the Effros space of X.

Definition 6.9. Let X be a Polish space. The Effros space of X is the space F (X) of
all closed subsets of X equipped with the σ-algebra generated by sets of the form

FU := {F ∈ F (X) : F ∩ U 6= ∅}

where U ranges over open subsets of X. This σ-algebra will be called the Effros σ-algebra.

Theorem 6.10. The Effros space of a Polish space is a standard Borel space.

Proof. We will show that the Effros space is standard by showing that it is measurably
isomorphic to a Borel subspace of the Cantor space 2N.

Let (Un) be a countable basis of the topology of X consisting of nonempty open sets.
Let us first note that the Effros σ-algebra is generated by sets of the form

FUn = {F ∈ F (X) : F ∩ Un 6= ∅}

for n ∈ N. Indeed the σ-algebra generated by such sets is contained in the Effros σ-algebra,
and conversely if U is open we write U =

⋃
k Unk

and thus have FU =
⋃
k FUk

.
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We have a natural way of coding a closed subset by noting which Un it intersects: this
defines a map Φ : F (X)→ 2N by Φ(F ) = {n ∈ N : F ∩ Un 6= ∅} where we view 2N as the
set of subsets of N. Since the complement of a closed set is open and (Un) is a basis of
the topology, for all F ∈ F(X) we have

X \ F =
⋃

n∈N\Φ(F )

Un.

In particular the map Φ is injective. To see that it is a measurable isomorphism onto its
image, simply note that

Φ(FUn) = {A ⊆ N : n ∈ A} ∩ Φ(F (X))

and that sets of the form {A ⊆ N : n ∈ A} for n ∈ N generate the Borel σ-algebra of the
Cantor space while sets of the form FUn for n ∈ N generate the Effros σ-algebra as we
explained at the beginning of the proof.

To complete the proof, we now need to show the image of Φ is Borel. Let d be a
compatible complete metric on X. Clearly Φ(F (X)) is contained in the following two sets

B1 = {A ⊆ N : ∀n,m ∈ N, Un ⊆ Um ⇒ (n ∈ A⇒ m ∈ A)} and
B2 = {A ⊆ N : ∀n ∈ A,∀ε ∈ Q>0,∃m ∈ A,Um ⊆ Un and diamd(Um) < ε}

6.5 The selection theorem
Do for NN, then use a continuous open surjection to transfer.

6.6 Examples
Countable models of a theory.



Chapter 7

Analytic and coanalytic sets

7.1 Definition and characterizations
Definition 7.1. Let X be a Polish space. A subset A ⊆ X is analytic if there is a
continuous map f = NN → X such that A = f(NN). It is coanalytic if its complement
is analytic.

We denote by Σ1
1(X) the set of analytic subsets of a Polish space X, and by Π1

1(X)
the set of coanalytic subsets of X.

Example 7.2. By Corollary 6.7, every Borel subset of a Polish space is analytic. Since
complements of Borel sets are Borel, every Borel subset of a Polish space is also coanalytic.

One of the goals of this chapter will be to show that the previous examples do not
exhaust the class of (co)analytic sets (Thm. ??). Moreover, we will see that a subset of
a Polish space is Borel if and only if it is both analytic and coanalytic (Thm. ??). But
first, we need a better understanding of analytic subsets.

Proposition 7.3. Let Y be a Polish space and let B ⊆ Y . The following are equivalent

(i) B is analytic;

(ii) there is a Polish space X, a Borel subset A ⊆ X and a Borel map f : X → Y such
that B = f(A);

(iii) there is a closed subset F of NN × Y such that B = πY (F ).

Proof. (iii)⇒(ii) by considering X = NN × Y , A = F and f = πY .
For (i)⇒(iii), consider a continuous function f : NN → Y such that B = f(NN). Then

the graph of f is a closed subset of NN×Y whose projection onto Y is equal to f(NN) = B.
Let us show (ii)⇒(i). Suppose there is a Polish space X, a Borel subset A ⊆ X and a

Borel map f : X → Y such that B = f(A). By Prop. ?? we can change the topology of
X without changing its Borel σ-algebra so that f is actually continuous. Then by Cor. ??
we have g : NN → X continuous such that A = g(NN). Then f ◦ g : NN → Y is continuous
and f ◦ g(NN) = f(A) = B so B is analytic.

Observe that Condition (ii) provides a purely Borel definition of an analytic subset.
In particular, being an analytic subset of a Polish space does not really depend on the
ambient topology, but rather on the σ-algebra of Borel sets it generates. This motivates
the following definition.

91
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Definition 7.4. Let Y be a standard Borel space, then a subset B ⊆ Y is analytic if
there is a a standard Borel space X, a Borel subset A ⊆ X and a Borel map f : X → Y
such that B = f(A).

By condition (ii) of the previous proposition, a subset of a standard Borel space is
analytic if and only if it is analytic for some Polish topology compatible with the Borel
σ-algebra, if and only if it is analytic for every Polish topology compatible with the Borel
σ-algebra.

Proposition 7.5. The class of analytic subsets of a Polish space is stable under:

• Borel direct image: if A ∈ Σ1
1(X) and f : X → Y is Borel then f(A) ∈ Σ1

1(Y );

• Borel preimage: if B ∈ Σ1
1(Y ) and f : X → Y is Borel f−1(B) ∈ Σ1

1(X);

• countable intersection: if for every n ∈ N, An ∈ Σ1
1(X) then

⋂
n∈NAn ∈ Σ1

1(X);

• countable reunion: if for every n ∈ N, An ∈ Σ1
1(X) then

⋃
n∈NAn ∈ Σ1

1(X).

Proof. The stability under Borel direct image is a straightforward consequence of the
characterization of analytic sets as Borel direct images of Borel subsets (item (ii) from
the previous proposition).

For stability under countable reunion, let us rather use the original definition of an-
alytic sets. Suppose for each n ∈ N we have a continuous map fn : NN → X such that
fn(NN) = An, let us show that

⋃
n∈NAn is analytic. Consider the map f : N × NN → X

defined by f(n, x) = fn(x). Then the image of f is equal to
⋃
n∈NAn, and since the

domain of f is N× NN which is homeomorphic to NN, we conclude
⋃
n∈NAn is analytic.

Let us now see why a countable intersection of analytic sets is analytic. We will use a
variant of the intersection-to-product trick B. Suppose for each n ∈ N we have a continuous
map fn : NN → X such that fn(NN) = An, and consider the map f : (NN)

N → XN

which maps (xn)n∈N ∈ (NN)N to (fn(xn))n∈N. Then f is continuous, and its image is∏
n∈NAn. Now consider the set F ⊆ (NN)N consisting of all sequences (xn)n∈N such

that for every k, l ∈ N we have fk(xk) = fl(xl). Observe that F is closed because it is
equal to f−1(∆XN) where ∆XN is the closed space of constant sequences in XN. Then by
construction f(F ) = (

⋂
n∈NAn)N, so if we let π1 : XN → X be the projection onto the

first coordinate, we see that
⋂
n∈NAn = π1 ◦ f(F ). So

⋂
n∈NAn is analytic by item (ii) of

the previous proposition.
Finally let us prove that the Borel preimage of any analytic set is analytic. Let f :

X → Y be a Borel map, suppose that A ⊆ Y is analytic. Let Γ(f) = {(x, f(x)) : x ∈ X}
be the graph of f , recall from Lemma 6.8 that it is a Borel subset of X×Y , hence analytic.
Now observe that f−1(A) = πX((X × A) ∩ Γ(f)). The set X × A is analytic (indeed if
A = f(B) with B and f Borel then X ×A = (idX × f)(X ×B)) so by the previous part
of the proof the intersection (X ×A)∩ Γ(f) is analytic. So f−1(A) is the direct image of
an analytic set via a Borel map, hence f−1(A) is analytic.

Exercise 7.1. Donnons maintenant quelques exemples d’ensembles analytiques (les preuves
sont laissées en exercice):

• L’ensemble des fonctions continues sur [0, 1] dérivables quelque part, c’est-à-dire des
f telles qu’il existe x0 ∈]0, 1[ avec f dérivable en x0.

• L’ensemble des suites de réels qui admettent une sous-suite convergente.
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• L’ensemble des compacts de [0, 1] qui contiennent un irrationnel.

• On considère l’ensemble des arbres enracinés localement dénombrables, vu comme
fermé de 2N<N . Alors l’ensemble des arbres non bien fondés est analytique.

Par (ii), on a un schéma de Souslin naturel sur A en posant Fs = f(Ns). Comme
f(NN) = A on a que pour tout n,

⋃
|s|=n Fs = A donc A =

⋂
n

⋃
|s|=n Fs, mais également

comme f est continue A =
⋃
y∈NN

⋂
n∈N Fy�n

Plus généralement, étant donné un schéma de Souslin (Fs) on définit l’opération de
Souslin

A((Fs)) =
⋃
y∈NN

⋂
n∈N

Fy�n

De manière générale, on a toujours l’inclusion

A((Fs)) ⊆
⋂
n∈N

⋃
|s|=n

Fs

Remarquons que l’inclusion peut être stricte: considérons l’homéomorphisme f : NN →
R \ Q et le schéma de Souslin associé (Fs) donné par Fs = f(Ns). Par continuité, c’est
un schéma de Souslin évanescent, et donc si on remplace (Fs) par (Fs), on obtient

A(Fs) = A(Fs)

mais par densité
⋂
n∈N

⋃
|s|=n F s = R

Lemma 7.6. Si le schéma de Souslin est propre, c’est à dire si les Fsi pour i ∈ N sont
disjoints pour tout s, alors

A((Fs)) =
⋃
y∈NN

⋂
n∈N

Fy�n

Proof. Un élément de l’ensemble droite va, par propreté, définir une unique suite y ∈
NN...

Theorem 7.7. Soit X polonais non dénombrable. Il existe un (co)analytique non borélien.

Proof. Soit F un NN-paramétrage universel des fermés de NN ×X, c’est à-dire que F ⊆
NN×NN×NN est fermé et que tout fermé de NN×NN est de la forme Fx. On définit alors
un NN-paramétrage universel de Σ1

1(X) en posant A =
⋃
x∈NN{x} × πX(Fx) = πNN×X(F )

qui est donc bien analytique. Alors pour X = NN, l’antidiagonale de A n’est pas un sous-
ensemble analytique de NN d’après le théorème de Cantor (??). Mais elle est coanalytique
par construction, donc on a un coanalytique non borélien, et son complémentaire est
analytique non borélien.

Comme NN est un Gδ dans tout espace polonais non dénombrable, le théorème est
prouvé.

En regardant le fermé de NN2 dont notre analytique non borélien est la projection et
en utilisant le fait que NN = R \ Q, on trouve un Gδ de R2 dont la projection n’est pas
analytique.

Notons par contre les faits suivants:

• La projection d’un fermé de R2 est un Fσ. En fait, dans tout polonais Kσ c’est vrai.

• La projection d’un fermé de K ×X où K est compact, est fermée
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7.2 The separation theorem

7.3 The analytic graph theorem

Mention that this makes one conclusion in the turning into clopen useless.

7.4 Injective images of Borel sets are Borel

Need some applications apart from the fact that this is a complete characterization of
Borel sets.

7.5 Ill-founded trees and complete analytic sets

Every analytic set of NN arises as the projection of some closed set F in NN × NN. We
rather view NN×NN as (N×N)N so that its closed sets correspond to pruned trees by the
previous section. Let T be the unique pruned tree such that F = [T ].

We may view T as a set of pairs of sequences (s, t) of the same length, and an end of
T as a pair (x, y) of sequences such that for all n we have (x�n, y�n) ∈ T . Now note that
x ∈ π1([T ]) if and only if Fx is non-empty, which means that we can find y such that for
all n ∈ N we have (x�n, y�n) ∈ T .

Observe that each x ∈ NN defines a (possibly empty) tree Tx given by y ∈ Tx if and
only if (x�|y|, y) ∈ T . So Fx is non empty if and only if Tx has an end, i.e. if and only if
Tx is ill-founded.

Observe that the map x 7→ Tx is Borel so we have reduced our analytic set to the set
of ill-founded trees.

7.6 Well-founded trees and ranks

Soit A un ensemble (qu’on supposera assez souvent dénombrable). Un arbre (enraciné)
sur A est un ensemble T non vide de suites finies d’éléments de A qui est stable par préfixe
(il contient en particulier la suite vide, qui est sa racine). Un arbre T est bien fondé s’il
n’a pas de branche infinie (appelée aussi bout), c’est-à-dire s’il n’existe pas x ∈ AN telle
que pour tout n, x�n ∈ T . Par l’axiome du choix dépendant, c’est équivalent à dire que la
relation s ≺ t si s est un suffixe de t est bien fondée (tout ensemble contient un élément
≺-minimal).

Il est taillé s’il n’a pas de feuille, c’est à dire de sommet sans fils. Notons que dans
un arbre taillé (sur A dénombrable) tout sommet appartient à une branche infinie, en
particulier aucun arbre taillé n’est bien fondé.

7.6.1 WF est Π1
1-complet

Les arbres permettent de mieux comprendre les fermés l’espace de Baire. Il est facile de
voir que l’ensemble des bouts d’un arbre, noté [T ], est un fermé de AN.

Proposition 7.8. Tout fermé de l’espace de Baire est l’ensemble des bouts d’un arbre
taillé.
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Proof. On considère l’ensemble des s tels que Ns ∩ F 6= ∅. C’est toujours un arbre taillé,
mais le fait que F soit fermé nous garantit que F = [T ]: on a clairement F ⊆ [T ] et
réciproquement si x 6∈ F alors on a un ouvert Nx�n disjoint de F et donc x 6∈ [T ].

On considère maintenant les arbres sur A = B×C. On préfère voir un sommet comme
un couple de suites finies (b, c) de même longueur. Étant donné x ∈ BN, on définit T (x)
comme l’ensemble des s ∈ C<N tels que (x�|s|, s) ∈ T .

On a vu que tout sous-ensemble analytique de NN est la projection d’un fermé de
NN×NN ' (N×N)N. Ce fermé est l’ensemble des bouts d’un arbre (taillé) T sur (N×N)N,
il s’agit de comprendre sa projection sur la première coordonnée.

Or on a x ∈ π1([T ]) ssi il existe y tel que (x, y) ∈ [T ], c’est à dire tel que pour tout n,
(x�n, y�n) ∈ T .

Cette condition en y revient à dire que y ∈ T (x) donc x ∈ π1([T ]) ssi T (x) admet une
branche infinie, c’est-à-dire si T (x) n’est pas bien fondé.

Ainsi π1([T ]) se réduit de manière borélienne à IF l’ensemble des arbres sur N qui ne
sont pas bien fondés. Ce dernier est clairement analytique, il est donc Σ1

1-complet (en
particulier non borélien puisqu’il existe des analytiques de l’espace de Baire non boréliens).
Et donc WF est Π1

1-complet.

7.6.2 Relations bien fondées

Soit X un ensemble et ≺ une relation sur X, elle est bien fondée si tout sous-ensemble
Y admet un élément minimal y0, c’est-à-dire que pour tous y ∈ Y , on n’a jamais y ≺ y0.
En particulier, ≺ est antiréflexive.

La propriété fondamentale des ensembles bien fondés est le principe d’induction: pour
voir qu’une propriété P (x) est satisfaite par tout élément de X, il suffit de voir que pour
tout x, si P (y) est satisfaite pour tout y ≺ x alors P (x) est vraie (considérer un élément
minimal de l’ensemble des x tels que P (x) est fausse).

Par l’axiome du choix dépendant, une relation est bien fondée ssi il n’y a pas de chaîne
infinie descendante (xn telle que xn + 1 ≺ xn pour tout n).

7.6.3 Rang d’un arbre bien fondé

Soit T un arbre bien fondé (sur un ensemble A quelconque). La relation naturelle s ≺ t
ssi t préfixe s et t 6= s est bien fondée, on peut alors définir par induction un rang sur les
sommets de T : le rang d’une feuille est zéro, et le rang d’un sommet t est

sup
s≺t
{ρT (s) + 1}

Le rang d’un arbre non vide est alors le rang de sa racine +1, et le rang de l’arbre vide
est nul. Notons que toutes ces définitions ne font pas intervenir l’axiome du choix.

Plus généralement on peut définir un rang sur une relation bien fondée. Une manière
de le faire est d’éplucher un ensemble par l’opération qui retire l’ensemble des minimaux
(analogue de la dérivation). On sait qu’il existe un ordinal à partir duquel le procédé
stationne: sinon on a une injection de la classe des ordinaux dans l’ensemble des parties
de X. De plus une fois que le procédé stationne, on a l’ensemble vide puisque X est bien
fondé. Le rang d’un élément est le premier ordinal pour lequel cet élément a été enlevé.

Maintenant, étant donné deux arbres S et T , si il existe ϕ : S → T strictement
croissante et T est bien fondé alors S aussi. Cela provient de la caractérisation en termes
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de chaînes infinies décroissantes. De plus, on a alors ρ(S) 6 ρ(T ) car on montrer par une
induction immédiate que pour tout s, ρS(s) 6 ρT (ϕ(s)).

Pour la réciproque, on va avoir besoin de choix dépendant et de travailler avec S arbre
sur N (on utilise le choix dénombrable pour passer de n à n + 1 et le choix dépendant
nous dit qu’on a quelque chose de bien défini pour tout n). On part de f(∅) = ∅, puis f
étant construite pour |s| 6 n avec ρS(s) 6 ρT (f(s)), on a pour a ∈ N tel que sa ∈ S,

ρS(sa) < ρS(s) 6 ρT (f(s)) = sup
b

(ρT (f(s)b) + 1)

En particulier on trouve b tel que ρT (f(s)b) + 1 > ρS(sa) et donc ρT (f(s)b) > ρS(sa), et
on envoie sa sur f(s)b.

Soit maintenant ≺ bien fondée sur X, on lui associe un arbre sur X dont les sommets
sont les suites (x0, ..., xn) avec xn ≺ xn−1 · · · ≺ x0 (et les (x0) et la suite vide).

Par construction, cet arbre est bien fondé, de plus son rang est celui de la relation.
Montrons en effet par induction sur ≺ que pour tout x, pour tout n si x ≺ xn ≺ · · · ≺ x0

le rang du sommet correspondant dans T≺ est le rang de x.
Si x est minimal, alors les sommets correspondants sont des feuilles, donc bien de rang

0.
Supposons que ce soit vrai pour les prédécesseurs de x, considérons x ≺ xn ≺ · · · ≺ x0.

Si x a un prédécesseur y, le rang de x est le sup des rangs de y ≺ x ≺ xn... ≺ x0+1, qui
est le sup des ρ≺(y) + 1, c’est ce qu’on veut.

Supposons maintenant que X soit un borélien standard. Si le rang de ≺ est > ω1,
on sait que tous les arbres bien fondés sur N s’envoient via une application strictement
croissante dans T≺.

Autrement dit WF est l’ensemble des S tels qu’il existe une application f : N<N → X<N

(appartenant donc à un espace polonais) telle que pour tout s, s′ ∈ S avec s ≺ s′, on ait
f(s) ≺ f(s′).

Lemma 7.9. Le rang d’un arbre sur N est borné par ω1.

Proof. Par induction. On ne prend que des supremum dénombrables.

Les arbres bien fondés de rang 6 α forment un borélien. En effet, on montre d’abord
que le rang d’un arbre, c’est le supremum des rangs des sous arbres partant des sommets
n pour n ∈ N.

Alors un arbre est de rang 6 α ssi il tous les arbres partant des sommets n sont de
rang 6 β pour des β < α. Comme l’application T 7→ T〈n〉 est continue, le résultat suit
par induction.

Corollary 7.10. Tout ensemble coanalytique s’écrit comme réunion croissante de ω1

boréliens.

On en déduit qu’un ensemble coanalytique est soit de cardinal ℵ0, ℵ1 ou 2ℵ0 .

7.7 Analytic sets and the Souslin operator
In this section we will define and study basic properties of the Souslin operator, which
we have already seen without giving it a proper name. Recall that a Souslin scheme is
simply a family (Ps)s∈NN of sets. The Souslin operator A is then defined by

A((Ps)s∈N<N) =
⋃
y∈NN

⋂
n∈N

Py�n .



7.7. ANALYTIC SETS AND THE SOUSLIN OPERATOR 97

The following proposition is a reformulation of a fact that we used several times.

Proposition 7.11. Let X be a Polish space. Every analytic subset A of X is of the form
A = A((Ps)s∈N<N) where (Ps)s∈NN is a Souslin scheme consisting of closed subsets.

Proof. Let f : NN → X be a continuous function such thatA = f(NN) and let Ps := f(Ns).
For every y ∈ NN the point (f(y)) has a neighborhood basis consisting of closed sets, and
since (Ny�n)n∈N is a neighborhood basis of y we have that

The fact that f is continuous implies that for every y ∈ NN
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Chapter 8

Baire measurability

8.1 Nowhere dense sets and meager sets

Recall that the Baire category theorem states that if X is a Polish space and A is a
countable reunion of closed subsets of empty interior, then A itself has empty interior.
We may thus view countable reunions of closed subsets as small subsets, which motivates
the following definition.

Definition 8.1. A subset A of a topological space X is called meager if there is a
countable family (Fn)n∈N of closed subsets of empty interior such that A ⊆

⋃
n∈N Fn. It

is called comeager if its complement is meager.

Observe that meager subsets form a σ-ideal, meaning that any subset of a meager
set is meager and that any countable reunion of meager sets is meager. Moreover, ev-
ery countable intersection of comeager subsets is comeager, and every set containing a
comeager set must be comeager.

Exercise 8.1. Prove the previous observation. Then show that if X is a Polish space, a
subset of X cannot be both meager and comeager.

In this section, we will show that the notion of a meager set relativizes well to open
subspaces: a subset of an open subspace is meager as a subset of the subspace if and only
if it is meager as a subset of the space. Observe however that being closed with empty
interior does not relativize well because a closed subset of an open subset may not be
closed in the ambient space. The following notion will allow us to overcome this problem.

Definition 8.2. Let X be a topological space. A subset A of X is called nowhere dense
if for every nonempty open subset U of X, there is a non empty open subset V ⊆ U such
that A ∩ V = ∅.

Example 8.3. Let O be an open subset of a topological space X. Then O \O is nowhere
dense: if U is open, either U ∩O = ∅ and then V := U is already disjoint from O \O, or
U ∩O 6= ∅ in which case we can take V := O ∩ U which is nonempty by definition of the
closure.

Proposition 8.4. A subset of a topological space is nowhere dense if and only if its closure
has empty interior.
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Proof. Let A be a nowhere dense subset of a topological space X. Observe that if U is an
open subset contained in A, then by definition of the closure any non empty open subset
V of U intersects A, so A as empty interior.

Conversely, suppose A has empty interior. Let U be an open subset of X. If U is
disjoint from A there is nothing to do, otherwise U intersects A but cannot be contained
in A because A has empty interior. So V := U \A is a nonempty open subset of U disjoint
from A as wanted.
Lemma 8.5. Let X be a topological space, let A ⊆ Y . The following hold.

(1) If A is nowhere dense as a subset of Y then A is nowhere dense as a subset of X.

(2) If A is meager as a subset of Y then A is meager as a subset of X.

Proof. Let us first prove (i). Suppose A is nowhere dense as a subset of Y . Let U ⊆ X
be open nonempty. If U ∩A is empty, there is nothing to do. Otherwise, the set U ∩ Y is
a nonempty open subset of Y , and we thus find V ⊆ U open in Y such that V ∩ A = ∅.
By definition of the induced topology there is W ⊆ X open such that V = Y ∩W . Then
V ′ := W ∩ U is a nonempty open subset of U which is disjoint from A. This proves that
A is nowhere dense as a subset of Y .

Now (ii) is a straightforward consequence from (i): suppose A meager in Y and write
A ⊆

⋃
n∈N Fn where each Fn is nowhere dense in Y , then each Fn is nowhere dense in X

so A is also meager in X.
Remark 8.6. Rather than saying A is nowhere dense/meager as a subset of Y , we will
now rather say that A is nowhere dense/meager in Y for the sake of simplicity.

Here is an application of the previous lemma. A Baire topological space is a
topological space in which every meager set has empty interior. The Baire category
theorem asserts that every Polish space is a Baire space. The class of Baire topological
spaces satisfies the following closure property.
Theorem 8.7. Let X be a Baire topological space, let Y ⊆ X be open. Then Y is also a
Baire topological space for the induced topology.

Proof. Let A ⊆ Y be meager in Y , then A is also meager in X by the previous lemma.
It follows that A has empty interior in X, but since Y is open this implies A has empty
interior in Y .

Let us conclude this section by mentioning that meagerness actually relativises well.
Proposition 8.8. Let X be a topological space, let O ⊆ X be open, and let A ⊆ O. The
following hold.

(1) A is nowhere dense in O if and only if A is nowhere dense in X.

(2) A is meager in O if and only if A is meager in X.

Proof. (1) By Lemma 8.5, if A is nowhere dense as a subset of O then it is nowhere dense
as a subset of X. Conversely, suppose A is nowhere dense as a subset of X. If U is an
open nonempty subset of O then U is also open as a subset of X, so there is V ⊆ U
nonempty open in X such that V ∩ A = ∅. But V is also open in O so we conclude A is
nowhere dense as a subset of O.

(2) We already saw that if A is a meager subset of O then A is meager as a subset of
X (Lemma 8.5). Conversely, if A is meager as a subset of X then A ⊆

⋃
n∈N Fn where

each Fn is nowhere dense in X. By item (1) for each n the set Fn ∩ O is still nowhere
dense, so we conclude A ⊆

⋃
n∈N Fn ∩O is meager in O.
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8.2 Baire measurability
Whenever A,B are subsets of a topological space X, we write A =∗ B if A4B is meager.

Proposition 8.9. Let X be a topological space. Then =∗ satisfies the following properties:

(1) =∗ is an equivalence relation;

(2) for all A,B ⊆ X we have A =∗ B if and only if X \ A =∗ X \B;

(3) if for every n ∈ N we have An =∗ Bn then
⋃
n∈NAn =∗

⋃
n∈NBn.

Proof. Let us first prove (1). The relation =∗ is clearly reflexive and symmetric, moreover
it is transitive because of the inclusion A4C ⊆ (A4B)∪ (B4C) and the fact that the
reunion of two meager subsets is meager. So =∗ is an equivalence relation.

(2) follows directly from the equality (X \ A)4 (X \B) = A4B.
We finally prove (3). Suppose An =∗ Bn for every n ∈ N, then by definition An4Bn

is meager for every n ∈ N. Observe that(⋃
n∈N

An

)
4

(⋃
n∈N

Bn

)
⊆
⋃
n∈N

An4Bn,

so since any countable reunion of meager sets is meager, we conclude that
(⋃

n∈NAn
)
4(⋃

n∈NBn

)
is meager, which means that

⋃
n∈NAn =∗

⋃
n∈NBn as wanted.

Remark 8.10. The above proof only uses the fact that meager subsets form a σ-ideal.

Definition 8.11. Let X be a topological space. A subset A of X is called Baire-
measurable if there is an open subset O ⊆ X such that A =∗ O.

Observe that every meager set and every open set is Baire-measurable. Here is a more
interesting example.

Example 8.12. We know from Example 8.3 that for every open set O the set O \ O
is nowhere dense, in particular it is meager. We thus have O =∗ O so the set O is
Baire-measurable.

Theorem 8.13. The set BP(X) of Baire-measurable subsets of a topological space X is
a σ-algebra. In particular, it contains all Borel subsets.

Proof. Since every open set is Baire-measurable, we have ∅ ∈ BP(X).
Let us then show that BP(X) is stable under complements. Let A be Baire-measurable,

then we find O ⊆ X open such that A =∗ O. We also know that O =∗ O so by transitivity
A =∗ O. Now by taking complements X \A =∗ X \O and since X \O is open we conclude
X \ A is Baire-measurable.

We then prove that BP(X) is stable under countable reunions. Let (An)n∈N be a
sequence of Baire-measurable set. We find a sequence (On)n∈N of open subsets of X such
that for every n ∈ N we have An =∗ On is meager. By item (3) from the above proposition
we gave

⋃
n∈NAn =∗

⋃
n∈NOn. But

⋃
n∈NOn is open, so

⋃
n∈NAn is Baire-measurable as

wanted.
So BP(X) is a σ-algebra, and since open sets are Baire-measurable, BP(X) contains

all Borel sets.
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Proposition 8.14. Let X be a topological space, let A ⊆ X. The following are equivalent

(1) A is Baire-measurable,

(2) There are a Gδ subset G ⊆ X and a meager subset M ⊆ X such that A = G tM ,

(3) There are an Fσ subset F ⊆ X and a meager subset M ⊆ X such that A = F \M .

Proof. Both implications (2)⇒(1) et (3)⇒(1) are immediate consequences of the fact that
BP(X) is a σ-algebra which contains Borel and meager sets.

Let us show (1)⇒(2). Let A ⊆ X be Baire-measurable. We have O ⊆ X open such
that A4 O is meager, which means that A4 O is contained in a set F ⊆ X which is a
countable reunion of closed subsets of empty interior. Then G := O \ F and M := A \G
are as wanted (G is disjoint from M by the definition of M , G is Gδ because O is open
and F is Fσ, and M is meager because G =∗ O =∗ A).

Finally, let us show that (1)⇒(3). Let A ⊆ X be Baire measurable, then X \ A is
Baire-measurable. Since the implication (1)⇒(2) holds, we have a Gδ subset G ⊆ X and
a meager subset M ⊆ X such that X \A = GtM . Let F = X \G, then F is Fσ and we
have A = X \ (X \ A) = X \ (G \M) = F tM as wanted.

Define Berstein set and show these are not Baire-measurable

8.3 The open enveloppe of a subset
When A ⊆ U is comeager in U , the set A is thought of as a big subset of U . When A
is not a subset of U , we can still consider its intersection with U and see wether it is
comeager in U or not. Let us give a name to this property.

Definition 8.15. Let X be a topological space, let U ⊆ X be open and let A ⊆ X. We
say A is generic in U if U \ A is meager in X.

Proposition 8.16. Let X be a topological space, let U ⊆ X be open and let A ⊆ X. The
following are equivalent:

(1) A is generic in U ;

(2) U \ A is meager in U ;

(3) U ∩ A is comeager in U .

Proof. The equivalence between (1) and (2) is a direct consequence of the fact that mea-
gerness relativizes well to open subsets (Proposition 8.8). Moreover (2) is equivalent to
(3) by the definitions of meagerness and comeagerness.

Remark 8.17. The terminology “A is comeager in U ” is sometimes also used to say that
A ∩ U is comeager in U . We prefer to stick to our original definition of comeagerness,
which only makes sense for subsets of U .

Definition 8.18. Let X be a topological space, let A ⊆ X. Define the open enveloppe
of A as

U(A) :=
⋃
{U ⊆ X open: A generic in U}.

We will now see that U(A) is the biggest open subset in which A is generic, .
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Proposition 8.19. Let X be a second-countable topological space, let A ⊆ X. Then A is
generic in U(A).

Proof. By Lindelöf’s lemma, we can find a countable family of open subsets Un such that
A is generic in each Un and U(A) =

⋃
n∈N Un. Then for each n ∈ N the set Un\A is meager

in X, so
⋃
n∈N(Un \ A) is meager in X. Since

⋃
n∈N(Un \ A) = (

⋃
n∈N Un) \ A = U(A) we

conclude that A is generic in U(A).

Remark 8.20. The above proposition actually also holds in the non second-countable
case, using the axiom of choice (see Exercise ??).

Proposition 8.21. Let X be a second-countable topological space. The following hold.

(1) A =∗ U(A) if and only if A is Baire-measurable.

(2) If A is non meager and Baire-measurable, then U(A) is nonempty.

Proof. We first prove (1). If A =∗ U(A) then A is Baire-measurable because U(A) is
open. Conversely, if A is Baire-measurable, let O be an open subset such that A =∗ O.
Then O \A is meager so O ⊆ U(A). We deduce that A \U(A) ⊆ A \O is meager because
A =∗ O. But U(A) \A is meager by the previous proposition so A4U(A) is meager, i.e.
A =∗ U(A).

Now (2) is a straightforward consequence of (1) because if A is non meager, U(A) =∗ A
so U(A) cannot be meager.

Proposition 8.22. Let X be a second countable Baire topological space. Let A be a
Baire-measurable subset of X. Then A is non meager if and only if U(A) is nonempty.

Proof. The direct implication was established in the previous proposition. We prove the
converse by contrapositive. Suppose A is meager, let U be an open subset of X, then
U \ A is comeager in U . Since X is a Baire topological space, U also is by Theorem 8.7.
So A cannot meager in U because otherwise the empty set would be comeager in U . We
conclude that A is comeager in no open subset of X, so by definition U(A) = ∅.

8.4 Category quantifiers and the Kuratowski-Ulam the-
orem

Definition 8.23. Let X be a topological space, let P (x) be a property.
We say that P (x) holds generically, and we write ∀∗xP (x) when the set {x ∈ X :

P (x)} is comeager.
We say that P (x) holds non-meagerly, and we write ∃∗xP (x) when the set {x ∈

X : P (x)} is non-meager.

Let us make a two important remarks which will get us accustomed to this terminology.
First, observe that if P (x) and Q(x) are properties such that ∀∗xP (x) and ∃∗xQ(x), then
there is x ∈ X such that P (x) and Q(x) hold. Indeed, the set A := {x ∈ X : P (x)} is
comeage while B := {x ∈ X,Q(x)} is non meager so they must intersect (if not, then B
is contained in the complement of A, hence B is meager !).

Second, we have the following universal quantifier exchange rule: if (Pn(x))n∈N is a
sequence of properties, then

∀n∀∗xPn(x) ⇐⇒ ∀∗x∀nPn(x)
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Indeed if An := {x ∈ X : Pn(x)}, the above equivalence says that An is comeager for every
n ∈ N if and only if

⋂
n∈NAn is comeager, which is true because countable intersections

of comeager sets are comeager.
The Kuratowski-Ulam theorem can be thought of as the topological version of Fubini’s

theorem, which in its most basic form says that a measurable subset of a product space
has full measure for the product measure if and only if almost all its fibers have full
measure. Here, we start by proving a similar statement for open dense subsets.

Lemma 8.24. Let X be a topological space, let Y be a second-countable topological space.
Suppose U ⊆ X × Y is open dense. Then ∀∗x the set Ux is open dense.

Proof. First observe that since U is open, Ux is open for every x ∈ X. So we only
need to show that ∀∗X Ux is dense. Let (Vn)n∈N be a countable basis of the topology
of Y consisting of nonempty open sets, we then need to show ∀∗x∀nUx ∩ Vn 6= ∅. By
the universal quantifier exchange rule, it suffices to show that for every n ∈ N, the set
{x ∈ X : Ux ∩ Vn 6= ∅} is comeager.

So fix n ∈ N and consider the open set X × Vn. Because U is dense in X × Y and
X × Vn is open, the open set U ∩ (X × Vn) is dense in X × Vn. So its projection onto X
is open dense as well, which means {x ∈ X : Ux ∩ Vn 6= ∅} is open dense. In particular,
{x ∈ X : Ux ∩ Vn 6= ∅} is comeager as wanted.

We now upgrade the above lemma to obtain the full analogue of the fact that a measure
zero set in a product space has almost all its fibers of measure zero.

Lemma 8.25. Let X be a topological space, let Y be a second-countable topological space.
The following hold.

(1) If A ⊆ X × Y is meager, then ∀∗x the vertical section Ax is meager in X.

(2) If A ⊆ X × Y is comeager, then ∀∗x the vertical section Ax is comeager in X.

Proof. First observe that (1) and (2) are equivalent because one can be obtained from the
other by taking complements.

We thus only need to prove that (2) holds. Suppose A ⊆ X×Y is comeager. We find a
countable family (Un) of open dense subsets ofX×Y . For every n ∈ N, the previous lemma
yields that ∀∗x the vertical section (Un)x is comeager. Applying the universal quantifier
exchange rule, we deduce that ∀∗x the vertical section (Un)x is comeager for every n ∈
N. Since for every x the section Ax contains

⋂
n∈N(Un)x and countable intersections of

comeager sets are comeager, we conclude that ∀∗x the section Ax is comeager as wanted.

The definition of the product measure implies that a product of measurable sets A×B
has measure zero if and only if one of the factors has measure zero. We now prove the
analogous fact in the topological context.

Lemma 8.26. Let X and Y be second-countable topological spaces, let A ∈ BP(X) and
B ∈ BP(Y ). Then A×B is meager if and only if A is meager or B is meager.

Proof. If A is meager, write A ⊆ Fn where each Fn is closed with empty interior. Then
for each n ∈ N the set Fn × Y is closed in X × Y and has empty interior (see Exercise
??). The set A× Y =

⋃
n∈N Fn × Y is thus meager, in particular A× B is meager. The
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same argument shows that if B is meager then A×B is meager, which finishes the proof
of the reverse implication.

Now suppose A × B is meager but A is non meager. Then by the above lemma we
have ∀∗x (A×B)x is meager, and since A is non meager we find x ∈ A such that (A×B)x
is meager, which means B is meager as wanted.

Before we start proving the Kuratowski-Ulam theorem, we mention one useful conse-
quence of the direct implication from the previous lemma.

Proposition 8.27. Let X and Y be second-countable topological spaces. If A ∈ BP(X)
and B ∈ BP(Y ) then A×B ∈ BP(X × Y )

Proof. Let U ⊆ X open such that A =∗ U and V ⊆ Y open such that B =∗ V . We have
the following inclusion:

(A×B)4 (U × V ) ⊆ (A4 U)× Y ∪X × (B 4 V )

But by the previous lemma, both (A4U)×Y and X× (B4V ) are meager so (A×B)4
(U × V ) is meager. Since U × V is open, we conclude A×B is Baire-measurable.

Theorem 8.28. Let X and Y be second-countable topological spaces. Let A ∈ BP(X×Y ).
The following hold.

(1) A is comeager ⇐⇒ ∀∗x Ax is comeager ⇐⇒ ∀∗y Ay is comeager.

(2) A is meager ⇐⇒ ∀∗x Ax is meager ⇐⇒ ∀∗y Ay is meager.

(3) ∀∗x Ax ∈ BP(Y ) and ∀∗y Ay ∈ BP(X).

8.5 BP(X) has enveloppes
In this section we will that BP(X) has enveloppes and thus is stable under the Souslin
operator.

8.6 Meager relations and the Kuratowski-Mycielski the-
orem

8.7 Applications to equivalence relations
A meager equivalence relation has all its classes meager. To show an Fσ equivalence
relation is meager, need to find two distinct dense equivalence classes. Applications to
spaces of probability measures (measures orthogonal to one given measure are dense Gδ:
take two disjoint countable dense sets and look at measures "supported" on these sets).
Need to explain somewhere why proba measures are limits of convex combinations of
Dirac (clear via density of step functions in L∞).
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Chapter 9

Polish groups

9.1 Definition and first examples

A topological group is a group G equipped with a separated topology τ such that
the product map (g, h) 7→ gh and the inverse map g 7→ g−1 are continuous. The most
basic non-discrete example of a topological group is probably the reals equipped with the
addition: using the triangle inequality one shows that addition is continuous, and the
inverse map x 7→ −x is actually an isometry, hence continuous.

Another example is given by the group of invertible matrices for the topology induced
by Rn2 . Indeed, the fact that the formulas for the product and the inverse are rational
fraction in terms of the coefficients implies that they are continuous. Note that every
subgroup of a topological group is a topological group for the induced topology.

Definition 9.1. A Polish group is a topological group whose topology is Polish.

We will now give many examples of such groups, each of which is important in its own
right.

9.1.1 Separable Banach spaces

9.1.2 The group S∞ of permutations of the integers

9.2 Non-archimedean Polish groups

9.3 Left-invariant (pseudo)-metrics

When we are given a normed vector space, we can naturally endow it with the metric
defined by d(x, y) = ‖x− y‖. Observe that translations are then isometries for this metric.

The aim of this section is to carry out a similar procedure for Polish groups. We will
build a natural analogue of a norm for a group and we will then see two natural ways
to extend this to a metric on the whole group. The first will turn left translations into
isometries, and the second will turn right translations into isometries.

Definition 9.2. A (pseudo-)metric d on a group G is called left-invariant if for all
g, g′, h ∈ G we have d(hg, hg′) = d(g, g′), and right-invariant if for all g, g′, h ∈ G we
have d(gh, g′h) = d(g, g′),

107
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Exercise 9.1. LetG be a non-archimedean Polish group and let (Gn) be a decreasing basis
of neighborhoods of the identity consisting of open subgroups. Show that the function
l : G→ R+ defined by

l(g) = 2−min{n∈N:g∈Gn}

is a continuous length function on G.

As we said, to obtain a metric from a norm, we let d(x, y) = ‖x− y‖. In a non-
commutative group endowed with a length function l, a natural analogue is to define

d(x, y) = l(xy−1).

Observe that the function d we obtained satisfies

d(x1y, x2y) = l(x1yy
−1x2) = l(x1x

−1
2 ) = d(x1, x2).

In other words, for each y ∈ G the right translation by y (i.e. the map g 7→ gy) is an
isometry (G, d)→ (G, d).

We have seen that S∞ is endowed with a compatible metric d defined by

d(σ, τ) = 2−min{n∈N:σ(x)6=σ′(x)}.

Such a metric is not complete, but let us remark that for all σ, σ′, τ ∈ S∞ and n ∈ N
we have τσ(n) 6= τσ′(n) if and only if σ(n) 6= σ′(n) so that

d(τσ, τσ′) = d(σ, σ′).

This means that the metric d is left-invariant.
In this section, we will actually endow any Polish group with such a left-invariant

metric. For a non-archimedean Polish group G, we can simply use the metric induced by
d on G viewed as a closed subgroup of S∞ (cf. Theorem ??). As a justification for the
general construction Let us remark that such a metric could be directly defined by letting
(Gn) be a basis of neighborhoods of the identity consisting of open subgroups and then
letting

d(

The result behind this is somehow technical. We will first state it and derive some
consequences so as to motivate it. The proof will only be given at the end of the section.

Definition 9.3. Let G be a group. Given a subset A ⊆ G, we let A−1 = {g−1 : g ∈ A}
and say A is symmetric if A = A−1.

Given two subsets A,B ⊆ G, we denote by A · B the set of products of the form ab
for a ∈ A and b ∈ B. We will also denote by A·n the set of products of elements of A,
namely

A·n = {a1a2 · · · an : a1, ..., an ∈ A}.

Remark 9.4. It is pretty common in the litterature to skip the dot and simply write An,
which has the defect of being ambiguous.

Theorem 9.5. Let G be a group, let (Un) be a decreasing family of symmetric subsets of
G containing 1G such that for all n ∈ N,

U ·2n+1 ⊆ Un.

Then there is a pseudo-metric d on G such that
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(i) The pseudo-metric d is left invariant.

(ii) For all x ∈ Un, d(1, x) 6 3 · 2−n

(iii) For all x 6∈ Un, d(1, x) > 2−n

Proof. First note that by using our hypothesis that for all n ∈ N, U ·2n+1 ⊆ Un, a straight-
forward induction on k yields that for every n0 < n1 < · · · < nk we have

Un0 ⊇ Un1Un2 · · ·Unk
. (*)

We will now build a natural analogue of a norm in our group G using a construc-
tion reminiscent of the Urysohn construction of a continuous test function on a normal
topological space (Lem. 1.140). For each n ∈ N∗ Let V2−n := Un. We will extend this
definition so that Vr makes sense for every r positive dyadic fraction. First, for all r > 1
we let Vr = G. Next, for r ∈ N∗[1/2] and r < 1 write the dyadic expansion of r as
r = 2−n1 + · · ·+ 2−nk with n1 < · · · < nk. Then let

Vr = V2−n1 · · ·V2−nk .

Given r, s ∈ N∗[1/2], note that if the biggest exponent nk in the dyadic expansion of r
satisfies 2−nk > s then

Vr+s = VrVs

Now property (*) may be restated as: for every n0 < n1 < · · · < nk, if we let t =
2−n1 + 2−n2 + · · ·+ 2−nk then

V2−n0 ⊇ Vt.

We will use this property to show that the Vr’s are nested, i.e.

∀r < s, Vr ⊆ Vs (9.1)

So suppose r < s, write r = 2−n1 + · · ·+2−nk with n1 < · · · < nk and s = 2−m1 + · · ·+2−ml

with m1 < · · · < ml. Let i be the first integer such that mi 6= ni, then since r < s we
must have mi < ni. Since mi < ni < ni+1 < · · ·nk, property (*) yields

V2−mi ⊇ V2−ni · · ·V2−nk .

Multiplying each side by V2−n1 · · ·V2−ni−1 on the left, we finally obtain

Vs ⊇ V2−n1 · · ·V2−ni−1V2−mi ⊇ Vr

We now define a function which will behave almost like a norm on G: for g ∈ G we
let

φ(g) := inf{r : g ∈ Vr}.
Then clearly φ(g) 6 2−n for all x ∈ Un, and φ(g) > 2−n for all g 6∈ Un. Moreover since
each Vr contains 1G, we have φ(1G) = 0.

We will now see that φ satisfies a uniform continuity-like inequality, which will allow
us to build a left-invariant pseudo metric with nice properties out of it.

The key to this inequality an estimate on products of the Vr’s, namely for all r ∈ N[1/2]
and n ∈ N,

VrV2−n ⊆ Vr+3·2−n (9.2)
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First note that if n is stricly larger than the biggest exponent in the dyadic expansion of
r, then we have

VrV2−n = Vr+2−n ⊆ Vr+3·2−n .

If not, write r = 2−n1 + · · ·+ 2−nk with n1 < · · · < nk. Let i ∈ N such that ni < n 6 ni+1

(if n 6 n1 we take i = 0). Then consider r′ = 2−n1 + · · · + 2−ni + 2 · 2−n. Observe that
r′ > r, r′ − r 6 2 · 2−n and n is stricly larger than the biggest exponent in the dyadic
expansion of r′. We thus have

VrV2−n ⊆ Vr′V2−n = Vr′+2−n .

Since r 6 2 · 2−n + r we conclude Vr′+2−n ⊆ Vr+3·2−n as wanted.
We can now use 9.2 to establish the desired uniform continuity-like inequality, namely

for all x ∈ V2−n and all g ∈ G, |φ(gx)− φ(g)| 6 3 · 2−n (9.3)

Equation 9.2 implies that for all g ∈ G and all x ∈ V2−n , if φ(g) < r, then φ(gx) 6
r + 3 · 2−n. Taking the infimum over all r such that φ(g) < r, we conclude that

φ(gx) 6 φ(g) + 3 · 2−n

for all g ∈ G and all x ∈ V2−n . Since V2−n = Un is symetric, we deduce that for all g ∈ G
and all x ∈ V2−n , we have φ(gx−1) 6 φ(g) + 2−n. Replacing g by gx in the above equation
(g 7→ gx is a bijection of G!), we conclude that for all g ∈ G and x ∈ V2−n ,

φ(g) 6 φ(gx) + 3 · 2−n,

which finishes the proof of equation 9.3.
We have a nice pseudometric for points close to the identity given by (x, y) 7→

|φ(x)− φ(y)|. We will now propagate it to the whole group by letting

d(x, y) = sup
g∈G
|φ(gx)− φ(gy)| .

Let us now check our function d is a pseudo-metric. Clearly d(x, x) = 0 for all x ∈ G and
d(x, y) = d(y, x) for all x, y ∈ G. For the triangle inequality, note that for all g, x, y, z ∈ G

|φ(gx)− φ(gz)| 6 |φ(gx)− φ(gy)|+ |φ(gy)− φ(gz)| 6 d(x, y) + d(y, z).

Taking the supremum over g ∈ G establishes d(x, z) 6 d(x, y) + d(y, z).
Finally, let us check that d has the desired properties.

(i) Given x, y, h ∈ G we have

d(hx, hy) = sup
g∈G

d(ghx, ghx).

Since g 7→ g is a bijection of G we can replace gh by g in the right-hand term, which
establishes left-invariance.

(ii) Given x ∈ Un = V2−n and h ∈ G, equation 9.3 implies |φ(gx)− φ(g)| 6 3 · 2−n for
all g ∈ G , so by taking the supremum d(1G, x) 6 3 · 2−n.

(iii) Given x 6∈ Un = V2−n we have φ(x) > 2−n and since φ(1G) = 0 we deduce
|φ(x)− φ(1G)| > 2−n. We conclude that d(1G, x) > 2−n.
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9.4 Building new Polish groups out of old ones

9.5 Some important classes of Polish groups

9.5.1 Locally compact second-countable groups

As we already pointed out, the topological groups R, Rn or Gln(R) are examples of Polish
groups. They actually belong to the well-studied class of locally compact groups, i.e.
topological groups whose topology is locally compact. By Theorem ??, a locally compact
group is Polish if and only if it is second-countable. In particular R, Rn, Gln(R) (and
more generally Lie groups) are locally compact second-countable groups. More examples
provided in the next exercise.

Exercise 9.2.

One of the main features of locally compact groups is the existence of a Haar measure,
which is a powerful generalization of the Lebesgue measure on the reals. This actually
characterizes locally compact groups among Polish groups by a result of []. For a nice
treatment of the Haar measure we refer the reader to [].

Another nice feature of locally compact groups is that the totally disconnected ones
are actually non-archimedean, which is a much stronger notion of non-connectedness. The
situation is far more complicated (hence interesting !) for Polish groups, cf. Exercise ??..

Most of the Polish groups that we are going to deal with are very far from being locally
compact since they will often have all their compact subsets of empty interior, like the
Baire space NN.

9.6 Continuous actions on Polish spaces
Vaught transform: good motivation end of chapter 1 in Hjorth, Group Actions and Count-
able Models
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