Partiel de théorie des ensembles

Durée : 2h. Tous documents interdits.

Dans tout l'énoncé, sauf mention explicite du contraire, on se place dans ZFC.

Exercice 1. Retour sur les ensembles bien ordonnés.

On rappelle qu'un plongement entre ensembles (strictement) ordonnés $(X, <_X)$ et $(Y, <_Y)$ est une application $f: X \to Y$ telle que pour tous $x, x' \in X$, on a $x <_X x'$ ssi $f(x) <_Y f(x')$. Montrer que si $(X, <_X)$ et $(Y, <_Y)$ sont deux ensembles bien ordonnés, alors l'un des deux se plonge dans l'autre, et que si chacun se plonge dans l'autre, alors ils sont isomorphes.

Exercice 2. Une restriction sur 2^{\aleph_0} .

Montrer que $\aleph_{\omega} \neq 2^{\aleph_0}$.

Exercice 3. Une application du lemme de Fodor.

Soit $\mathcal{F} = (F_i)_{i \in I}$ une famille d'ensembles finis indexée par un ensemble I de cardinal \aleph_1 . On va montrer qu'il existe $J \subseteq I$ de cardinal \aleph_1 et un ensemble fini F tels que pour tous $i, j \in J$ distincts, $F_i \cap F_j = F$.

- 1. Montrer que l'on peut supposer que $I = \omega_1$ et que chaque F_i est un sous-ensemble de ω_1 .
- 2. Montrer qu'il existe un ensemble stationnaire S et un ordinal $\gamma < \omega_1$ tel que pour tout $\alpha \in S$,

$$\sup(\alpha \cap F_{\alpha}) = \gamma.$$

- 3. Montrer que l'on peut trouver $S' \subseteq S$ de cardinal \aleph_1 et un ensemble fini F tels que pour tout $\alpha \in S'$, $F_{\alpha} \cap \alpha = F$.
- 4. Construire par récurrence transfinie une famille strictement croissante $(\alpha_{\lambda})_{\lambda \in \omega_1}$ d'ordinaux telle pour tout $\lambda \in \omega_1$, $\alpha_{\lambda} \in S'$ et de plus, $\alpha_{\lambda} > \sup(\bigcup_{\lambda' < \lambda} F_{\alpha_{\lambda'}})$.
- 5. Montrer que $J = \{\alpha_{\lambda} : \lambda \in \omega_1\}$ est l'ensemble d'indices voulu.

Exercice 4. Dérivation de Cantor-Bendixson.

Soit (X, <) un ensemble totalement ordonné. Un élément de $x \in X$ est dit **isolé** si il vérifie les deux conditions suivantes :

- soit x est le minimum de X, soit l'ensemble $\{y \in X : y < x\}$ a un maximum ;
- soit x est le maximum de X, soit l'ensemble $\{y \in X : y > x\}$ a un minimum.

Étant donné un ensemble totalement ordonné (X, <), sa **dérivée de Cantor-Bendixson** est l'ensemble totalement ordonné X' muni de l'ordre induit par <, où

$$X' = \{x \in X : x \text{ n'est pas isolé}\}.$$

On définit alors par récurrence transfinie sur α ordinal la α -ième dérivée de Cantor-Bendixson de X par :

$$\begin{array}{ll} - & X^{(0)} = X \\ - & X^{(\alpha+1)} = (X^{(\alpha)})' \\ - & \text{si } \beta \text{ limite, } X^{(\beta)} = \bigcap_{\alpha < \beta} X^{(\alpha)} \end{array}$$

- 1. Expliciter la construction par récurrence transfinie en utilisant le théorème du cours (on précisera la relation fonctionnelle H et on vérifiera les hypothèses du théorème).
- 2. Montrer que si X est un ordinal, alors X' est l'ensemble des ordinaux limites de X.

On appelle **rang de Cantor-Bendixson** d'un ensemble totalement ordonné (X,<) le plus petit ordinal α tel que $X^{(\alpha)} = X^{(\alpha+1)}$ et on le note $\operatorname{rg}_{CB}(X)$.

3. Montrer que le rang de Cantor-Bendixson est bien défini.

- 4. Montrer que si α est un ordinal, alors $\alpha^{(\operatorname{rg}_{CB}(\alpha))} = \emptyset$.
- 5. Montrer que pour tout ordinal α , $\operatorname{rg}_{CB}(\alpha) \leq \alpha$.
- 6. Quel est le rang de Cantor-Bendixson de $\omega + 1$? De $\omega \times \omega + 1$?
- 7. Trouver un ordinal de rang de Cantor-Bendixson ω .

On s'intéresse désormais à déterminer le rang de Cantor-Bendixson de ω_1 .

- 8. Montrer que si $X\subseteq \omega_1$ est un club, alors X' est également un club.
- 9. Montrer que pour tout $\alpha < \omega_1$, $\omega_1^{(\alpha)}$ est un club. Quel est son type d'ordre, i.e. l'ordinal auquel il est isomorphe?
- 10. En déduire que $\operatorname{rg}_{CB}(\omega_1) = \omega_1$.
- 11. Montrer qu'en fait, pour tout cardinal κ régulier, $\operatorname{rg}_{CB}(\kappa) = \kappa$.