# L Université de Paris 

# GEOMETRIC GROUP THEORY ON THE COMMENSURATING SYMMETRIC GROUP 

## Frédérique FAIRIER

## Supervised by François LE MAÎTRE

Master Logique Mathématiques et Fondements de I'Informatique

## Contents

Introduction ..... 2
$1 \quad S_{\infty}$ has property (OB) ..... 4
1.1 Definitions and structure of the proof ..... 4
$1.2 S_{\infty}$ is Cayley-bounded and has uncountable cofinality ..... 4
1.3 Characterization of the Bergman property ..... 11
1.4 End of the proof ..... 12
1.5 Last part ..... 13
2 Results on $\mathcal{S}(X, M)$ and $\mathcal{S}^{\circ}(X, M)$ ..... 14
2.1 Definitions ..... 14
2.2 Results ..... 14
3 A characterization of local boundedness ..... 18
3.1 Definitions. ..... 18
3.2 First results ..... 18
3.3 Intermediate theorems ..... 25
3.4 Final theorem ..... 28
$4 \mathcal{S}(\mathbb{Z}, \mathbb{N})$ is locally bounded ..... 34
4.1 Proof on $\mathcal{S}^{\circ}(\mathbb{Z}, \mathbb{N})$ ..... 34
4.2 Proof on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ ..... 36
5 Embedding in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ ..... 38
References ..... 41

## Introduction

We study in this thesis two Polish groups $S_{\infty}$ and $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.
Definition 1. A Polish group is a topological group, i.e. a group $(G, \tau)$ such that
(i) $\tau$ is an Hausdorff topology,
(ii) the map from $G \times G$ to $G$ that sends $(g, h)$ to $g h$ is continuous,
(iii) the map from $G$ to $G$ that sends $g$ to $g^{-1}$ is continuous,
whose topology is Polish, i.e. its topology admits a complete compatible metric and is separable which means that there exists a countably dense subset.
$S_{\infty}$ is the infinite symmetric group and $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is the group of permutations of $\mathbb{Z}$ commensurating $\mathbb{N}$, i.e. the group of $\sigma \in \operatorname{Sym}(\mathbb{Z})$ such that

$$
|\mathbb{N} \triangle \sigma \mathbb{N}|<+\infty
$$

$S_{\infty}$ has been studied in various papers especially by George M. Bergman in Ber06]. Indeed in this paper, Bergman discovers that $S_{\infty}$ has the Bergman property.

Definition 2. A group $G$ has the Bergman property or is Bergman if whenever $W_{0} \subseteq W_{1} \subseteq \ldots \subseteq G=\bigcup_{n} W_{n}$, there are $n$ and $k$ such that $G=W_{n}^{k}$.

Thanks to the work done by Christian Rosendal in Ros09, we are able to prove that a group $G$ has the Bergman property implies that $G$ has property (OB) which is a geometric property. This result holds mainly due to Theorem 4.

Definition 3. A topological group $G$ has property (OB) if whenever $G$ acts by continuous isometries on a metric space ( $X, d$ ), then every orbit is bounded.
Theorem 4. The following are equivalent for a group $G$ :
(i) Whenever $G$ acts by isometries on a metric space ( $X, d$ ), every orbit is bounded;
(ii) Any left-invariant metric on $G$ is bounded;
(iii) $G$ has the Bergman property.
$S_{\infty}$ is bounded whereas $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is not. Thus $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ cannot have the property (OB). But we will show that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is locally bounded.

Definition 5. A topological group $G$ is locally bounded if and only if it has a coarsely bounded identity neighborhood.

Following Rosendal, our aim is to show that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ admits a left-invariant pseudometric which solely depends on its group topology, and which is welldefined up to quasi-isometry. Such a pseudometric on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is called maximal. This is a generalization for finitely generated groups with the word metric, with respect to a finite generating set, as a maximal metric.

Definition 6. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be pseudometric spaces.
A map $\Phi: X \mapsto Y$ is said to be a quasi-isometric embedding if there are positive constants $K, C$ such that

$$
\frac{1}{K} \cdot d_{X}\left(x_{1}, x_{2}\right)-C \leqslant d_{Y}\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right) \leqslant K \cdot d_{X}\left(x_{1}, x_{2}\right)+C
$$

Also $\Phi$ is a quasi-isometry if, moreover there exists a positive constant $C$ that for any $y \in Y$, there exists $x \in X$ such that

$$
d_{Y}(\Phi(x), y) \leqslant C
$$

$\mathcal{S}(\mathbb{Z}, \mathbb{N})$ already admits a pseudometric which is defined by Yves De Cornulier in Cor16.

Definition 7. For $g, h \in \mathcal{S}(\mathbb{Z}, \mathbb{N}), d_{\mathbb{N}}(g, h)=\left|g_{\mathbb{N}} \triangle h_{\mathbb{N}}\right|$ is a left-invariant pseudometric on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.

So we show that this pseudometric is maximal on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ thanks to the following proposition.

Proposition 8. For a continuous left-invariant pseudometric $d$ on a topological group $G$, the following are equivalent:
(i) $d$ is maximal;
(ii) d is coarsely proper and (G,d) is large scale geodesic;
(iii) d is quasi-isometric to the word metric $\rho_{A}$ given by a coarsely bounded symmetric generating set $A \subseteq G$.

To show this, we need a characterization of the notion of being locally bounded which is done by Rosendal in Ros. We will show that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is locally bounded and even generated by a coarsely bounded set. The fact that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is locally bounded is then a corollary of the following result:

Theorem 9. For a European topological group G, the following are equivalent:
(i) $G$ admits a continuous left-invariant maximal pseudometric $d$;
(ii) $G$ is generated by a coarsely bounded set;
(iii) $G$ is locally bounded and not the union of a countable chain of proper open subgroups;
(iv) the coarse structure is monogenic.

We finally show that for every $k \geqslant 1$, the group $\mathbb{Z}^{k}$ embeds into $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ isometrically for its natural word metric. This shows that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ has infinite asymptotic dimension, although we did not have the time to consider this notion in details (see for instance the third section of [BD08]).

Let us finally present the plan of this thesis. In the first section we show that $S_{\infty}$ has property (OB). We then present some basic results on the commensurating symmetric group $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ which will be needed later on. In the third section, we prove Theorem 9 . Finally in the fourth section, we prove that $d_{\mathbb{N}}$ is maximal and in the fifth section, we show that $\mathbb{Z}^{k}$ is isometrically embedded into $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.

## $1 S_{\infty}$ has property (OB)

$S_{\infty}$ is the symmetric group of $\mathbb{N}$. It is a Polish group. In this section, we will prove that any symmetric group of an infinite group has property (OB) using the Bergman property. Indeed being Bergman is stronger than having the property (OB). In particular, $S_{\infty}$ has property (OB). This section is mainly from Ber06.

### 1.1 Definitions and structure of the proof

$H$ stands for the symmetric group $\Omega$ which is an infinite set, i.e. $H=\operatorname{Sym}(\Omega)$. First we will clarify some basic definitions that will be needed throughout the proof.

Definition 10. A subset $\Delta \subseteq \Omega$ is a moiety if $|\Delta|=|\Omega|=|\Omega \backslash \Delta|$.
Notation 11. For subsets $\Delta \subseteq \Omega$ and $U \subseteq H, U_{(\Delta)}$ denotes the set of elements of $U$ that stabilizes $\Delta$ pointwise.

Definition 12. For two sets $A, B$, we say that $A$ and $B$ are commensurated, and we write $A \sim B$ if, $|A \triangle B|<\infty$. Here $\triangle$ is the symmetric difference. Notice that $\sim$ is an equivalence relation.

Definition 13. For $\Omega$ an infinite set, an element $\sigma \in \operatorname{Sym}(\Omega)$ is replete if it has $|\Omega|$ orbits of each positive cardinality smaller than $\aleph_{0}$. For a subset $\Delta \subseteq \Omega$ of cardinality $|\Omega|, \sigma$ is replete on $\Delta$ if $\sigma \Delta=\Delta$ and the restriction of $\sigma$ to $\Delta$ is a replete permutation of $\Delta$.

Definition 14. A group $G$ has the Bergman property or is Bergman if whenever $W_{0} \subseteq W_{1} \subseteq \ldots \subseteq G=\bigcup_{n} W_{n}$, there are $n$ and $k$ such that $G=W_{n}^{k}$.
Definition 15. A group $G$ acts by continuous isometries on a metric space ( $X, d$ ) if for all $x \in X$ the function from $G$ to $X, g \mapsto g x$ is continuous.

Definition 16. A topological group $G$ has property (OB) if whenever $G$ acts by continuous isometries on a metric space ( $X, d$ ), then every orbit is bounded.

To complete the proof that $S_{\infty}$ has property (OB), we will show in section 1.2 that it has uncountable cofinality and is Cayley-bounded, and then we will show and use the following connections between properties of a topological group $G$.

$$
\begin{aligned}
& G \text { is Cayley-bounded and has uncountable cofinality, } \\
& \Leftrightarrow G \text { has the Bergman property (Section } 1.3 \text { ), } \\
& \Leftrightarrow \text { whenever } G \text { acts by isometries on a metric space }(X, d) \text {, every orbit is } \\
& \quad \text { bounded (Section } 1.4 \text {, } \\
& \Rightarrow G \text { has property (OB) (Section } 1.5 \text {. }
\end{aligned}
$$

## 1.2 $S_{\infty}$ is Cayley-bounded and has uncountable cofinality

We recall that $H$ stands for the symmetric group of $\Omega$, an infinite set. We are going to show that any $H$ is Cayley-bounded and has uncountable cofinality. To show these two properties, we need two theorems from [Ber06]:

Theorem 23. If $U$ generates $H$ then there exists $n$ such that $H \subseteq\left(U \cup U^{-1}\right)^{n}$. We say that $H$ is Cayley-bounded.

Theorem 24. Let $\left(H_{n}\right)_{n \in I}$ be a chain of subgroups of $H$ with $|I| \leqslant|\Omega|$ such that

$$
H=\bigcup_{n \in I} H_{n} .
$$

Then there exists $n$ such that $H=H_{n}$. We say that $H$ has uncountable cofinality.

To be able to prove these theorems, a few lemmas are required.
Lemma 17. For every permutation $\sigma$ of $\Omega$, there exists two replete permutations $\sigma_{1}, \sigma_{2}$ such that $\sigma=\sigma_{1} \sigma_{2}$.

Proof. For $\sigma$ a permutation, we choose $\Delta_{0}$ a moiety of $\Omega$ such that $\sigma$ moves finitely many elements from $\Delta_{0}$ to $\Omega \backslash \Delta_{0}$ or from $\Omega \backslash \Delta_{0}$ to $\Delta_{0}$. If $\Omega$ is uncountable, there exists such a $\Delta_{0}$ because $\Omega$ contains $|\Omega|$ orbits, and thus can be written as the disjoint union of two sets, each of which contains $|\Omega|$ orbits. We can thus define $\Delta_{0}$ as one of theses two sets. If $\Omega$ is countable:

* If $\sigma$ has infinitely many orbits or if $\sigma$ has more than one infinite orbit, then we do the same as above.
* If $\sigma$ has exactly one infinite orbit $\alpha\langle\sigma\rangle$ and finitely many finite orbits, then we take $\Delta_{0}=\left\{\alpha \sigma^{n}: n \geqslant 0\right\}$. We can see that $\sigma$ moves one element out of $\Delta_{0}$ and none into it.
Now we split $\Omega \backslash \Delta_{0}$ into two disjoint moieties $\Delta_{1}$ and $\Delta_{2}$ such that

$$
\left(\sigma \Delta_{0} \cup \sigma^{-1} \Delta_{0}\right) \backslash \Delta_{0} \subseteq \Delta_{1} .
$$

We claim that for any permutation $\tau_{0}$ of $\Delta_{0}$ and any permutation $\tau_{2}$ of $\Delta_{2}$, there exists a permutation $\rho$ of $\Omega$ such that: $\left.\sigma \rho\right|_{\Delta_{0}}=\tau_{0}$ and $\left.\rho\right|_{\Delta_{2}}=\tau_{2}$.
Indeed, suppose $\tau_{0}$ and $\tau_{2}$ as above. Thanks to the two conditions, the values of $\rho$ are specified on $\sigma \Delta_{0}$ and on $\Delta_{2} . \rho$ has not yet been defined on $\Omega \backslash\left(\sigma \Delta_{0} \cup \Delta_{2}\right)$. Since $\Delta_{0} \sim \sigma \Delta_{0}$, we have

$$
\Delta_{0} \cup \Delta_{2} \sim \sigma \Delta_{0} \cup \Delta_{2}
$$

By taking the complement of the latter and since $\Omega=\Delta_{0} \sqcup \Delta_{1} \sqcup \Delta_{2}$, we have

$$
\Omega \backslash\left(\sigma \Delta_{0} \cup \Delta_{2}\right) \sim \Delta_{1}
$$

Since $\left|\Delta_{1}\right|=|\Omega|$, we also have $\left|\Omega \backslash\left(\sigma \Delta_{0} \cup \Delta_{2}\right)\right|=|\Omega|$.
Now we look at the set in the image of $\rho$ which has not been defined. Indeed the set of values for $\rho$ that has not been specified is

$$
\Omega \backslash\left(\tau_{0} \sigma \Delta_{0} \cup \tau_{2} \Delta_{2}\right)
$$

Since $\tau_{0}$ and $\tau_{2}$ are permutations, they are bijections then $\left|\tau_{0} \sigma \Delta_{0}\right|=\left|\sigma \Delta_{0}\right|$ and $\left|\tau_{2} \Delta_{2}\right|=\left|\Delta_{2}\right|$. Moreover $\sigma \Delta_{0}$ is equal to $\Delta_{0}$. Hence

$$
\tau_{0} \sigma \Delta_{0} \cup \tau_{2} \Delta_{2}=\sigma \Delta_{0} \cup \Delta_{2} \sim \Delta_{0} \cup \Delta_{2} .
$$

Since $\Omega \backslash\left(\Delta_{0} \cup \Delta_{2}\right)=\Delta_{1}$ which is infinite, the set

$$
\Omega \backslash\left(\tau_{0} \sigma \Delta_{0} \cup \tau_{2} \Delta_{2}\right)
$$

is also infinite. Hence

$$
\Omega \backslash\left(\tau_{0} \sigma \Delta_{0} \cup \tau_{2} \Delta_{2}\right)
$$

can be mapped bijectively into $\Omega \backslash\left(\sigma \Delta_{0} \cup \Delta_{2}\right)$. We call this bijection $\rho$ which is then well-defined on $\Omega$.

Now we take two replete permutations for $\tau_{0}$ and $\tau_{2}$, then $\rho$ is replete on $\Delta_{2}$ and $\sigma \rho$ is replete on $\Delta_{0}$ so they are both replete. Then $\sigma=(\sigma \rho) \rho^{-1}$ is the product of two replete permutations which is what we wanted to show.

Lemma 18. For $\sigma \in H$, there exists $\tau_{1}, \tau_{2} \in H$ such that

$$
\sigma=\tau_{1}^{-1} \tau_{2}^{-1} \tau_{1} \tau_{2}
$$

Then any element of $H$ is a commutator.
Proof. By Lemma 17, there exists $\sigma_{1}, \sigma_{2}$ two replete permutations such that $\sigma=\sigma_{1} \sigma_{2}$.
Since any two permutations $\sigma_{1}, \sigma_{2}$ in $H$ are conjugate if and only if for any $n=1, \ldots, \aleph_{0}, \sigma_{1}$ and $\sigma_{2}$ have the same number of orbits of cardinal n , then $\sigma_{1}$ is conjugate of $\sigma_{2}$. Moreover for any $\sigma \in H, \sigma$ is conjugate to its inverse. So $\sigma_{1}$ is conjugate of $\sigma_{2}^{-1}$. Indeed there exists $\rho \in H$ such that $\sigma_{1}=\rho \sigma_{2}^{-1} \rho^{-1}$.
Since, $\sigma=\sigma_{1} \sigma_{2}, \sigma=\rho \sigma_{2}^{-1} \rho^{-1} \sigma_{2}$. In particular, we have $\tau_{1}=\rho^{-1}$ and $\tau_{2}=\sigma_{2}$.

Definition 19. A subset $\Delta \subseteq \Omega$ is full with respect to a subset $U \subseteq H$ if the set of permutations of $\Delta$ induced by members of $U_{\{\Delta\}}:=\{\sigma \in U: \sigma \Delta=\Delta\}$ is all of $\operatorname{Sym}(\Delta)$.

Lemma 20. Let $\Delta_{1}$ and $\Delta_{2}$ be moieties of $\Omega$ such that $\Delta_{1} \cap \Delta_{2}$ is also a moiety and $\Delta_{1} \cup \Delta_{2}=\Omega$. Let $U, V \subseteq H$. If $U$ and $V$ closed under inverses such that $\Delta_{1}$ is full with respect to $U$ and $\Delta_{2}$ is full with respect to $V$, then

$$
H=(U V)^{4} V \cup(V U)^{4} U
$$

Proof. First we notice that the set of elements of $H$ that stabilize $\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)$ pointwise

$$
H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right)}=\left\{u \in H \mid u . s=s \forall s \in \Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right\}
$$

is isomorphic to $\operatorname{Sym}\left(\Delta_{1} \cap \Delta_{2}\right)$ thanks to the following isomorphism

$$
\begin{array}{rll}
H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right)} & \rightarrow & H_{\left(\Delta_{1} \cap \Delta_{2}\right)} \\
g & \mapsto & g_{\mid \Delta_{1} \cap \Delta_{2}}
\end{array}
$$

which is injective. By Lemma 18, every element $\sigma \in H$ can be written as a commutator: $\sigma=\tau_{1}^{-1} \tau_{2}^{-1} \tau_{1} \tau_{2}$ with $\tau_{1}, \tau_{2} \in H$.

We assumed that $\Delta_{1}$ is full with respect to $U$, so we can find an element $\rho \in U_{\left\{\Delta_{1}\right\}}$ such that $\left.\rho\right|_{\Delta_{1} \cap \Delta_{2}}$ acts like $\tau_{1}$ and $\left.\rho\right|_{\Delta_{1} \backslash \Delta_{2}}=$ id. Similarly, we can find an element $\gamma \in V_{\left\{\Delta_{2}\right\}}$ such that $\left.\gamma\right|_{\Delta_{1} \cap \Delta_{2}}$ acts like $\tau_{2}$ and $\left.\gamma\right|_{\Delta_{2} \backslash \Delta_{1}}=\mathrm{id}$.

So the commutator $\rho^{-1} \gamma^{-1} \rho \gamma$ acts like $\sigma$ on $\Delta_{1} \cap \Delta_{2}$ and is the identity on $\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)$. Hence

$$
\rho^{-1} \gamma^{-1} \rho \gamma \in H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right)} .
$$

So we have:

$$
H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right)} \subseteq U^{-1} V^{-1} U V=U V U V
$$

since $U$ and $V$ are closed under inverses.
$\Delta_{1} \cap \Delta_{2}$ is a moiety so $\left|\Delta_{1} \cap \Delta_{2}\right|=|\Omega|$. Moreover $\Delta_{1}$ is a moiety so

$$
\left|\Delta_{1}\right|=\left|\Omega \backslash\left(\Delta_{2} \backslash \Delta_{1}\right)\right|=\left|\Delta_{2} \backslash \Delta_{1}\right|=|\Omega| .
$$

So $\Delta_{1} \cap \Delta_{2}$ and $\Delta_{2} \backslash \Delta_{1}$ are of cardinality $|\Omega|$. Hence we can find an element $\lambda$ of $\operatorname{Sym}\left(\Delta_{2}\right)$ that interchanges the two sets. Since $\Delta_{2}$ is full with respect to $V$, $\lambda$ is actually in $V$. We now have:

$$
\begin{equation*}
\lambda^{-1} H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right)} \lambda \subseteq \lambda^{-1} U V U V \lambda \subseteq V^{-1} U V U V V=V U V U V V \tag{1}
\end{equation*}
$$

Since $\lambda$ is interchanging $\Delta_{1} \cap \Delta_{2}$ with $\Delta_{2} \backslash \Delta_{1}$,

$$
\begin{equation*}
\lambda^{-1} H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right)} \lambda=H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right) \lambda\right)}=H_{\left(\Omega \backslash\left(\Delta_{2} \backslash \Delta_{1}\right)\right)}=H_{\left(\Delta_{1}\right)} \tag{2}
\end{equation*}
$$

Combining the two equations 1 and 2 , we get

$$
\begin{equation*}
H_{\left(\Delta_{1}\right)}=\lambda^{-1} H_{\left(\Omega \backslash\left(\Delta_{1} \cap \Delta_{2}\right)\right)} \lambda \subseteq V U V U V V . \tag{3}
\end{equation*}
$$

Since we could exchange $\Delta_{1}$ and $\Delta_{2}$ in the previous reasoning, we then have a similar result for $H_{\left(\Delta_{2}\right)}$ :

$$
H_{\left(\Delta_{2}\right)} \subseteq U V U V U U
$$

Let $\sigma \in H$. We notice that $\sigma^{-1}\left(\Delta_{1} \cap \Delta_{2}\right)$ has either $|\Omega|$ elements of $\Delta_{1}$ or $|\Omega|$ elements of $\Delta_{2}$. Without loss of generality, we assume that $\sigma^{-1}\left(\Delta_{1} \cap \Delta_{2}\right)$ has $|\Omega|$ elements from $\Delta_{1}$. So in particular, $\sigma^{-1} \Delta_{1}$ has $|\Omega|$ elements of $\Delta_{1}$ since it cannot have more than $|\Omega|$. Since $\Delta_{1}$ is full with respect to $U$, we can find a permutation $\delta \in U_{\left\{\Delta_{1}\right\}}$ such that all the elements of $\Delta_{1} \backslash \sigma^{-1} \Delta_{1}$ are mapped into $\Delta_{1} \cap \Delta_{2}$ and the $|\Omega|$ elements of $\Delta_{1} \cap \sigma^{-1} \Delta_{1}$ into $\Delta_{1} \cap \Delta_{2}$. Moreover $\delta$ maps all the elements of $\Omega \backslash \Delta_{1}$ onto itself. Then $\delta$ maps all elements of

$$
\sigma^{-1}\left(\Omega \backslash \Delta_{1}\right)=\sigma^{-1} \Delta_{2}
$$

into $\Delta_{2}$.
We want to find $\theta \in V_{\left\{\Delta_{2}\right\}}$ such that

$$
\theta \delta \sigma^{-1}\left(\Omega \backslash \Delta_{1}\right)=\Omega \backslash \Delta_{1}
$$

We construct the following permutation:
If $x \in \Omega \backslash \sigma^{-1} \Delta_{1}$, either $x \in \Delta_{1}$, so $x \in \Delta_{1} \backslash \sigma^{-1} \Delta_{1}$. Or since $\delta$ maps the elements of $\Delta_{1} \backslash \sigma^{-1} \Delta_{1}$ into $\Delta_{1} \cap \Delta_{2}$, we have that $\delta x \in \Delta_{1} \cap \Delta_{2}$. Either $x \notin \Delta_{1}$, since $\delta$ maps the elements of $\Omega \backslash \Delta_{1}$ into $\Omega \backslash \Delta_{1}$, we have that $\delta x \notin \Delta_{1}$. In particular, since $\Omega=\Delta_{1} \cap \Delta_{2}, \delta x \in \Delta_{2}$. Now if

$$
y \in\left(\Omega \backslash \Delta_{1}\right) \delta \sigma^{-1} \subseteq \Delta_{2}
$$

$y=\delta \sigma^{-1} x$ where $x \in \Omega \backslash \Delta_{1} \subseteq \Delta_{2}$, so we fix $\theta y=x$. Our $\theta$ is only a partial bijection of $\Delta_{2}$ for now. We still need to show that $\operatorname{dom}(\theta)$ and $\operatorname{im}(\theta)$ have infinite complements in $\Delta_{2}$ to be able to put them in bijection.
We have that

$$
\operatorname{dom}(\theta)=\delta\left(\Omega \backslash \sigma^{-1} \Delta_{1}\right)
$$

We denote by $K$ the set of elements of $\Delta_{1} \cap \Delta_{2}$ that are mapped by $\delta$ in $\Delta_{1} \cap \Delta_{2}$. Our aim is to show that $\delta K$ is included in the complement of $\delta\left(\Omega \backslash \sigma^{-1} \Delta_{1}\right)$ in $\Delta_{2}$ and then that $\delta K$ has an infinite complement.
First we have that $K \subseteq \sigma^{-1} \Delta_{1}$ so $K$ is disjoint from $\Omega \backslash \sigma^{-1} \Delta_{1}$. Thus $\delta K$ is disjoint from $\delta\left(\Omega \backslash \sigma^{-1} \Delta_{1}\right)$. Therefore $\delta\left(\Omega \backslash \sigma^{-1} \Delta_{1}\right)$ is included in the complement of $\delta K$ in $\Delta_{2}$. Moreover $\delta\left(\Omega \backslash \sigma^{-1} \Delta_{1}\right)$ is infinite so $\delta K$ has an infinite complement. Besides

$$
\delta K \subseteq \delta\left(\Omega \backslash \sigma^{-1} \Delta_{1}\right)
$$

hence $\operatorname{dom}(\theta)$ has infinite complement in $\Delta_{2}$.
Now we have $\theta y=x$ for $x \in \Omega \backslash \Delta_{1}$ and $y \in \delta \sigma^{-1}\left(\Omega \backslash \Delta_{1}\right)$, so $\operatorname{im}(\theta)$ is included in $\Omega \backslash \Delta_{1}$. Moreover $\Delta_{1} \cap \Delta_{2}$ is infinite and disjoint from $\operatorname{im}(\theta)$, thus $\Delta_{1} \cap \Delta_{2}$ is included in the complement of $\operatorname{im}(\theta)$ in $\Delta_{2}$. Therefore $\operatorname{im}(\theta)$ has infinite complement in $\Delta_{2}$.
On the remaining part of $\Omega$, we define $\theta=\mathrm{id}$. So we have $\theta \Delta_{2}=\Delta_{2}$, therefore $\theta \in V_{\left\{\Delta_{2}\right\}}$. This concludes the definition of $\theta$.

Taking the complements of $\delta \sigma^{-1}\left(\Omega \backslash \Delta_{1}\right)$ and $\Omega \backslash \Delta_{1}$, we have that

$$
\theta \delta \sigma^{-1} \Delta_{1}=\Delta_{1}
$$

Since $\Delta_{1}$ is full with respect to $U$, we can find $\alpha \in U_{\left\{\Delta_{1}\right\}}$ such that

$$
\left.\alpha\right|_{\Delta_{1}}=\left(\theta \delta \sigma^{-1}\right)^{-1} \text { i.e. } \alpha \theta \delta \sigma^{-1} \in H_{\left(\Delta_{1}\right)}
$$

Then $\sigma(\alpha \theta \delta)^{-1} \in H_{\left(\Delta_{1}\right)}$. By equation (3), we have that

$$
\sigma(\alpha \theta \delta)^{-1} \in V U V U V V
$$

Thus

$$
\sigma \in U V U V U V U V V=(U V)^{4} V
$$

Since we can exchange the roles of $U$ and $V$, then there is also the following alternative: $\sigma \in(V U)^{4} U$. Hence

$$
H=(U V)^{4} V \cup(V U)^{4} U
$$

Lemma 21. If $U \subseteq H$ is closed under inverses has a full moiety, then there exists $x \in H$ of order 2 such that

$$
H=(U x)^{7} U^{2} x \cup(x U)^{7} x U^{2}
$$

Proof. Assume $\Delta_{1}$ is a full moiety with respect to U . We choose a moiety $\Delta_{2} \subseteq \Omega$ such that $\Delta_{1} \cap \Delta_{2}$ is a moiety and $\Delta_{1} \cup \Delta_{2}=\Omega$.
First we have

$$
\Omega \backslash \Delta_{1}=\left(\Delta_{1} \cup \Delta_{2}\right) \backslash \Delta_{1}=\Delta_{2} \backslash \Delta_{1}
$$

Similarly we have $\Omega \backslash \Delta_{2}=\Delta_{1} \backslash \Delta_{2}$. So $\Omega \backslash \Delta_{1} \cap \Omega \backslash \Delta_{2}$ is empty. Moreover $\Delta_{1}$ and $\Delta_{2}$ are moieties, so

$$
\left|\Omega \backslash \Delta_{1}\right|=\left|\Omega \backslash \Delta_{2}\right|=|\Omega|
$$

Thanks to the two last results, we can find an element of order 2 in $H$ that interchanges the two sets $\Omega \backslash \Delta_{1}$ and $\Omega \backslash \Delta_{2}$. It also interchanges their complements $\Delta_{1}$ and $\Delta_{2}$. We call this element $x$. Since $\Delta_{1}$ is full with respect to $U$, we have that the set of permutations of $\Delta_{1}$ induced by members of $U_{\left\{\Delta_{1}\right\}}=\left\{\sigma \in U: \sigma \Delta_{1}=\Delta_{1}\right\}$ is exactly $\operatorname{Sym}\left(\Delta_{1}\right)$. Since $\Delta_{2}=x \Delta_{1}$, we have

$$
U_{\left\{x^{-1} \Delta_{2}\right\}}=\left\{\sigma \in U:^{-1} \Delta_{2}=x^{-1} \Delta_{2}\right\}=\left\{\sigma \in U: x \sigma x^{-1} \Delta_{2}=\Delta_{2}\right\} .
$$

Then we get

$$
x U x_{\left\{\Delta_{2}\right\}}^{-1}=\left\{\tau \in x U x^{-1}: \tau \Delta_{2}=\Delta_{2}\right\}
$$

So the set of permutations of $\Delta_{2}$ induced by members of $U_{\left\{\Delta_{2}\right\}}$ is exactly $\operatorname{Sym}\left(\Delta_{2}\right)$. Thus $\Delta_{2}$ is a full moiety with respect to $x U x^{-1}=x U x$. We set $V=x U x$. By Lemma 20, we have $H=(U V)^{4} V \cup(V U)^{4} U$. Then we have the two following expressions:

$$
\begin{aligned}
& (U V)^{4} V=(U x U x)^{4} x U x=(U x)^{8} x U x=(U x)^{7} U x x U x=(U x)^{7} U^{2} x \\
& (V U)^{4} U=(x U x U)^{7} U=(x U)^{8} U=(x U)^{7} x U U=(x U)^{7} x U^{2}
\end{aligned}
$$

Thus $H=(U x)^{7} U^{2} x \cup(x U)^{7} x U^{2}$.
Lemma 22. Let $\left(U_{i}\right)_{i \in I}$ be a family of subsets of $H$ with $|I| \leqslant|\Omega|$ such that

$$
\bigcup_{i \in I} U_{i}=H
$$

Then $\Omega$ contains a full moiety with respect to at least one of the $U_{i}$.
Proof. We show the lemma by contradiction.
Since $\Omega$ is infinite and $|I| \leqslant|\Omega|$, we can write $\Omega$ as an union of disjoint moieties $\Delta_{i}$ for $i \in I$. So we have

$$
\Omega=\bigcup_{i \in I} \Delta_{i}
$$

and $\Delta_{i} \cap \Delta_{j}=\varnothing$ for $i, j \in I$.
If there are no full moiety with respect to any of the $U_{i}$, then in particular for any $i \in I \Delta_{i}$ is non-full with respect to $U_{i}$. By contradiction of the definition of full, we can choose a permutation $\sigma_{i} \in \operatorname{Sym}\left(\Delta_{i}\right)$ which is not the restriction to $\Delta_{i}$ of a member of $\left(U_{i}\right)_{i \in I}$.
Let $\sigma \in H$ be the permutation such that $\left.\forall i \sigma\right|_{\Delta_{i}}=\sigma_{i}$. Then $\forall i \sigma \notin U_{i}$. This leads to a contradiction with $\bigcup_{i \in I} U_{i}=H$.

We can now prove Theorem 23 and Theorem 24, using the previous lemmas.
Theorem 23. If $U$ generates $H$ then there exists $n$ such that $H \subseteq\left(U \cup U^{-1}\right)^{n}$. In other words $H$ is Cayley-bounded.

Proof. Assume $U$ generates $H$ as a monoid. Without loss of generality, assume $1 \in U$ and $1 \in U^{-1}$. Indeed if not, we set $V=U \cup\{1\}$. For $i \in \mathbb{N}^{*}$, let $U_{i}=U^{i} \cap\left(U^{-1}\right)^{i}$.
Since $U$ generates $H, H=\bigcup_{i} U^{i}$ which implies that $H=\bigcup_{i}\left(U^{-1}\right)^{i}$.
Thus

$$
H=\bigcup_{i} U^{i} \bigcap \bigcup_{i}\left(U^{-1}\right)^{i}=\bigcup_{i}\left(U^{i} \cap\left(U^{-1}\right)^{i}\right)=\bigcup_{i} U_{i}
$$

Since $\Omega$ is infinite, by Lemma 22, $\Omega$ contains a full moiety with respect to some $U_{i}$. Since $U_{i} \subseteq H$ is closed under inverses has a full moiety, we can use Lemma 21

$$
\text { there exists } x \in H \text { such that } H=\left(U_{i} x\right)^{7} U_{i}^{2} x \cup\left(x U_{i}\right)^{7} x U_{i}^{2}
$$

We notice that $\left(U_{i} x\right)^{7} U_{i}^{2} x \cup\left(x U_{i}\right)^{7} x U_{i}^{2} \subseteq\left(U_{i} \cup\{x\}\right)^{17}$ so $H=\left(U_{i} \cup\{x\}\right)^{17}$. We take a $j \geqslant i$ such that $x \in U_{j}$. Since $x \in U_{j}$, we obtain

$$
U^{17 j}=\left(U^{j}\right)^{17} \supseteq U_{j}^{17}=\left(U_{j} \cup\{x\}\right)^{17}
$$

Moreover $j \geqslant i$, so $U_{i} \cup\{x\} \subseteq U_{j} \cup\{x\}$. Thus we obtain

$$
H=\left(U_{i} \cup\{x\}\right)^{17} \subseteq U^{17 j}
$$

Now if $U$ generates $H$ as a group, only the inverses are missing so

$$
H \subseteq\left(U \cup U^{-1}\right)^{17 j}
$$

Theorem 24. Let $\left(H_{n}\right)_{n \in I}$ be a chain of subgroups of $H$ with $|I| \leqslant|\Omega|$ such that

$$
H=\bigcup_{n \in I} H_{n}
$$

Then there exists $n$ such that $H=H_{n}$. In other words $H$ has uncountable cofinality.

Proof. By Lemma 22, $\Omega$ has a full moiety with respect to some $H_{n}$. The $H_{n}$ are subgroups so by Lemma 21, we have that

$$
H=\left(H_{n} x\right)^{7} H_{n}^{2} x \cup\left(x H_{n}\right)^{7} x H_{n}^{2} \text { for some } x \in H
$$

Then $H=\left\langle H_{n} \cup\{x\}\right\rangle$.
Since $H=\cup_{n \in I} H_{n}$ and the $H_{n}$ form a chain of subgroups of $H$, there exists $k \geqslant n$ such that $x \in H_{k}$. Thus

$$
H_{n} \subseteq H_{n} \cup\{x\} \subseteq H_{k}
$$

Since $H=\left\langle H_{n} \cup\{x\}\right\rangle \subseteq H_{k}$, then $H=H_{k}$.
We have now proven that $H$ is Cayley-bounded and has uncountable cofinality.

### 1.3 Characterization of the Bergman property

In this part, we are going to show the following theorem that has been shown by Manfred Droste and W. Charles Holland in (DH05]:

Theorem 25. G is Cayley-bounded and has uncountable cofinality if and only if $S$ has the Bergman property.

Proof. If $U_{1} \subseteq U_{2} \subseteq \ldots \subseteq G$ subsets such that $\cup_{i} U_{i}=G$. Without loss of generality, we suppose the $U_{i}$ to be symmetric. Indeed if they are not symmetric, the we set $V_{i}=U_{i} \cup U_{i}^{-1}$. Then the $V_{i}$ are symmetric.
Let $G_{i}=\left\langle U_{i}\right\rangle$ be the subgroup generated by $U_{i}$ for any $i$. Then

$$
G_{1} \subseteq G_{2} \subseteq \ldots \subseteq S \text { and } \bigcup_{i} G_{i}=G
$$

Since $G$ has uncountable cofinality, there exists $n$ such that $G_{n}=G$. Therefore $U_{n}$ is a set of generators for $G$. Since $G$ is Cayley-bounded, there exists $k$ such that $G \subseteq\left(U_{n} \cup U_{n}^{-1}\right)^{k}=U_{n}^{k}$. Hence $G=U_{n}^{k}$.

Let $\left(G_{n}\right)_{n \in I}$ be a chain of subgroups of $G$ with $|I| \leqslant|\Omega|$ such that $G=\cup_{n \in I} G_{n}$. Since $G$ is Bergman, there exists $n$ and $k$ such that $G=G_{n}^{k}$ so in particular $G=G_{n}$.
Assume $U$ generates $G$ and without loss of generality, assume $U$ is symmetric and contains the identity. Take $W_{1} \subseteq W_{2} \subseteq \ldots \subseteq G$ by setting $W_{i}=U^{i}$. Then

$$
\bigcup_{i} W_{i}=G
$$

since $U$ generates $G$ and is symmetric. Since $G$ is Bergman, there exists $n$ and $k$ such that $G=W_{n}^{k}=\left(U^{n}\right)^{k}=U^{n k}$.

An alternative to the proofs of the theorems would have been by using the lemmas directly and show that if the assumptions of the lemmas are satisfied, then the group $S$ has the Bergman property. The proof would then be the following:

Proof. Let $G=\cup_{n} G_{n}$ with $U_{n}$ symmetric and $U_{n} \subseteq U_{n+1}$. By Lemma $22, \Omega$ contains a full moiety with respect to one of $U_{n}$, say $U_{k}$. By Lemma 21 there exists $x \in G$ of order 2 such that

$$
G=\left(U_{k} x\right)^{7} U_{k}^{2} x \cup\left(x U_{k}\right)^{7} x U_{k}^{2} .
$$

Moreover $G=\bigcup_{n} G_{n}$, so there exists $n \geqslant k$ such that $x \in U_{n}$. Hence we have

$$
G=\left(U_{k} x\right)^{7} U_{k}^{2} x \cup\left(x U_{k}\right)^{7} x U_{k}^{2} \subseteq\left(U_{n}\right)^{14} U_{n}^{3} \cup\left(U_{n}\right)^{14} U_{n}^{3} \subseteq U_{n}^{17}
$$

Therefore $F=G \subseteq U_{n}^{17}$. Hence $G=U_{n}^{17}$.

### 1.4 End of the proof

In this part, we will show that a group $G$ has the Bergman property if and only if whenever $G$ acts by isometries on a metric space $(X, d)$, every orbit is bounded.
This equivalence comes from the following theorem which is from Ros09, Theorem 2.2:

Theorem 26. The following are equivalent for a group $G$ :
(i) Whenever $G$ acts by isometries on a metric space ( $X, d$ ), every orbit is bounded;
(ii) Any left-invariant metric on $G$ is bounded;
(iii) $G$ has the Bergman property.

Proof. $(i) \Longrightarrow(i i):$ We take $G$ acting on $(G, d)$ with $d$ any left-invariant metric. Since $d$ is left-invariant, $G$ acts by isometries of $(G, d)$. So by (i), every orbit is bounded. Then for any $x \in G$, there exists $M$ such that for all $g \in G$, $d(x, g x) \leqslant M$. So in particular, for all $g \in G, d(e, g) \leqslant M$. Therefore for $g_{1}, g_{2} \in G$,

$$
d\left(g_{1}, g_{2}\right) \leqslant d\left(g_{1}, e\right)+d\left(e, g_{2}\right) \leqslant 2 M .
$$

Hence $d$ is bounded.
$(i i) \Longrightarrow(i i i)$ : Assume we have $W_{0} \subseteq W_{1} \subseteq \cdots \subseteq W_{n} \subseteq \cdots \subseteq G$ an exhaustive sequence of subsets of $G$. Moreover we also have

$$
W_{0} \cap W_{0}^{-1} \subseteq W_{1} \cap W_{1}^{-1} \subseteq \cdots \subseteq W_{n} \cap W_{n}^{-1} \subseteq \cdots \subseteq G
$$

which is an exhaustive sequence of subsets of $G$. So without loss of generality, we can suppose the $W_{i}$ to be symmetric. We also suppose that $W_{0}=\{1\}$.
We define the following left-invariant metric on $G$ for some $f, g$ :

$$
d(f, g)=\min \left(k_{1}+k_{2}+\cdots+k_{n} \mid \exists h_{i} \in W_{k_{i}} f h_{1} \ldots h_{n}=g\right) .
$$

Our aim is to prove that $d$ is bounded if and only if $G=W_{n}^{k}$ for some n and k . If $d$ is bounded then there exists an M such that for any $f, g \in G, d(f, g) \leqslant M$. In particular, for any $g \in G$,

$$
d(e, g)=\min \left(k_{1}+k_{2}+\cdots+k_{n} \mid \exists h_{i} \in W_{k_{i}} h_{1} \ldots h_{n}=g\right) \leqslant M
$$

It means that there exists $k_{1}, \ldots, k_{j}$ and $h_{1}, \ldots, h_{j}$ with $j \leqslant n$ and $h_{i} \in W_{k_{i}}$ such that $\sum_{i} k_{i} \leqslant M$ which means that all the $h_{i}$ are in $W_{\lceil M\rceil}$. This holds for any $g \in G$, so

$$
G=W_{\lceil M\rceil}^{j} .
$$

Now if $G=W_{n}^{k}$ for some n and k , for $f, g \in G$, since $f^{-1} g \in G=W_{n}^{k}$, there exists $h_{i} \in W_{n}$ such that $f^{-1} g=h_{1} \ldots h_{k}$. All the $h_{i}$ are in $W_{n}$ so

$$
\sum_{i=1}^{k} h_{i}=\sum_{i=1}^{k} n=n \cdot k .
$$

Since for $f, g \in G$ we have

$$
d(f, g)=\min \left(k_{1}+k_{2}+\cdots+k_{n} \mid \exists h_{i} \in W_{k_{i}} f h_{1} \ldots h_{n}=g\right),
$$

this minimum is smaller than or equal to $n \cdot k$. Thus $d$ is bounded.
$(i i i) \Longrightarrow(i):$ Assume G has the Bergman property and acts by isometries on a metric space ( $\mathrm{X}, \mathrm{d}$ ).
Fix an $x_{0} \in X$ and let for $n \geqslant 1$,

$$
W_{n}:=\left\{g \in G \mid d\left(x_{0}, g \cdot x_{0}\right) \geqslant n\right\} .
$$

$\left(W_{n}\right)$ is an increasing exhaustive sequence of subsets of $G$. Since $G$ has the Bergman property, $G=W_{M}^{k}$ for some M and k. Then there exists $g_{i} \in W_{M}$ such that $g=g_{1} \ldots g_{k} \in G$ and

$$
\begin{aligned}
d\left(x_{0}, g \cdot x_{0}\right)= & d\left(x_{0}, g_{1} \ldots g_{k} \cdot x_{0}\right) \\
\leqslant & d\left(x_{0}, g_{1} \cdot x_{0}\right)+d\left(g_{1} x_{0}, g_{1} g_{2} \cdot x_{0}\right)+\ldots \\
& +d\left(g_{1} \ldots g_{k-1} x_{0}, g_{1} \ldots g_{k-1} \cdot x_{0}\right) \\
\leqslant & d\left(x_{0}, g_{1} \cdot x_{0}\right)+d\left(x_{0}, g_{2} \cdot x_{0}\right)+\cdots+d\left(x_{0}, g_{k} \cdot x_{0}\right) \\
\leqslant & k M .
\end{aligned}
$$

Furthermore for $x \in X$,

$$
\begin{aligned}
d(x, g \cdot x) & \leqslant d\left(x, x_{0}\right)+d\left(x_{0}, g \cdot x_{0}\right)+d\left(g \cdot x_{0}, g \cdot x\right) \\
& \leqslant d\left(x, x_{0}\right)+k M+d\left(x, x_{0}\right) \\
& \leqslant 2 d\left(x, x_{0}\right)+k M .
\end{aligned}
$$

So for any $x \in X$, the orbit of $x$ is bounded.

### 1.5 Last part

If we have that whenever $H$ acts by isometries on a metric space (X,d), every orbit is bounded, then the latter is also true when $H$ acts continuously by isometries on a metric space ( $\mathrm{X}, \mathrm{d}$ ) which is exactly what having property $(\mathrm{OB})$ means.

In the end, the following result has been proved:
$H$ is Cayley-bounded and has uncountable cofinality implies that $H$ has property (OB) for $H=\operatorname{Sym}(N)$ with $N$ any infinite set.
Hence we have proved that the symmetric group of any infinite set has the property (OB). Thus in particular, $\mathbf{S}_{\infty}$ has property (OB) since $S_{\infty}=\operatorname{Sym}(\mathbb{N})$.

## 2 Results on $\mathcal{S}(X, M)$ and $\mathcal{S}^{o}(X, M)$

We now look at another Polish group which is $\mathcal{S}(X, M)$ :
Definition 27. For a set $X$ and a subset $M$ of $X$, let $\mathcal{S}(X, M)$ be the group of permutations of X commensurating M , i.e. the group of $\sigma \in \operatorname{Sym}(X)$ such that $|M \triangle \sigma M|<+\infty$.

In this section, we will get some results about $\mathcal{S}(X, M)$ that have been proven in Cor16] by Yves De Cornulier.

### 2.1 Definitions

Let $X$ be a set and $M$ a subset of $X$. First we define the following map that will allow us to define $\mathcal{S}^{\circ}(X, M)$.

Definition 28. We define the transfer character map:

$$
\begin{array}{ccc}
\operatorname{tr}_{M}: \mathcal{S}(X, M) & \rightarrow & \mathbb{Z} \\
g & \mapsto & \left|g^{-1} M \backslash M\right|-\left|M \backslash g^{-1} M\right| \\
& =\sum_{x \in X} \mathbb{1}_{g^{-1} M}(x)-\mathbb{1}_{M}(x)
\end{array}
$$

A few more denotations:

* $\mathcal{S}_{0}(X)$ is the group of finitely supported permutations of $X$;
* $\mathcal{S}_{0}^{+}(X)$ is its subgroup of index of alternating permutations;
* $\mathcal{S}^{o}(X, M)$ is the kernel of $\operatorname{tr}_{M}$.

Definition 29. The length $\mathcal{L}_{M}$ is defined by $\mathcal{L}_{M}=|M \triangle g M|$ for $g \in \mathcal{S}(X, M)$.
Definition 30. A group $G$ is called perfect if it equals its own commutator subgroup, i.e. if the group has no non-trivial abelian quotients. A group $G$ is called simple if it is a nontrivial group whose only normal subgroups are the trivial group and $G$ itself.

### 2.2 Results

Thanks to the transfer character map, we get more information and results on $\mathcal{S}(X, M)$ and $\mathcal{S}^{\circ}(X, M)$.

Proposition 31. The function $\operatorname{tr}_{M}$ is a continuous homomorphism from $\mathcal{S}(X, M)$ to $\mathbb{Z}$ and is bounded above by $\mathcal{L}_{M}$. It is surjective, unless $M$ or $M^{c}$ is finite (in which case it is zero). It does not depend on the choice of $M$ within its commensurability class and $\operatorname{tr}_{M^{c}}=-\operatorname{tr}_{M}$. If $X$ is infinite, its kernel $\mathcal{S}^{o}(X, M)$ is a perfect group and is generated by $\mathcal{S}(M) \cup \mathcal{S}\left(M^{c}\right) \cup \mathcal{S}_{0}^{+}(X)$.

Proof. For $g \in \mathcal{S}(X, M)$, we have

$$
\begin{aligned}
\mathcal{L}_{M}(g) & =|M \triangle g M| \\
& =|g M \backslash M|+|M \backslash g M| \\
& =\left|M \backslash g^{-1} M\right|+\left|g^{-1} M \backslash M\right| \\
& \geqslant\left|g^{-1} M \backslash M\right|-\left|M \backslash g^{-1} M\right| \\
& \geqslant \operatorname{tr}_{M}(g) .
\end{aligned}
$$

Therefore $\operatorname{tr}_{M}$ is bounded above by $\mathcal{L}_{M}$.
Let $M, N$ be such that $|M \triangle N|<\infty$. Suppose that there exists $F$ finite subset such that $N=M \sqcup F$. Let $g \in \mathcal{S}(X, M)$, then

$$
\begin{aligned}
\operatorname{tr}_{N}(g)-\operatorname{tr}_{M}(g) & =\operatorname{tr}_{M \sqcup F}(g)-\operatorname{tr}_{M}(g) \\
& =\left(\sum_{x \in X} \mathbb{1}_{g^{-1} M \sqcup F}(x)-\mathbb{1}_{M \sqcup F}(x)\right)-\left(\sum_{x \in X} \mathbb{1}_{g^{-1} M}(x)-\mathbb{1}_{M}(x)\right) \\
& =\sum_{x \in X} \mathbb{1}_{g^{-1} M \sqcup F}(x)-\mathbb{1}_{M \sqcup F}(x)-\mathbb{1}_{g^{-1} M}(x)+\mathbb{1}_{M}(x) \\
& =\sum_{x \in X} \mathbb{1}_{g^{-1} M}(x)+\mathbb{1}_{g^{-1} F}(x)-\mathbb{1}_{M}(x)-\mathbb{1}_{F}(x)-\mathbb{1}_{g^{-1} M}(x)+\mathbb{1}_{M}(x) \\
& =\sum_{x \in X} \mathbb{1}_{g^{-1} F}(x)-\mathbb{1}_{F}(x) \\
& =\operatorname{tr}_{F}(g) \\
& =0
\end{aligned}
$$

since $F$ is finite.
Now let $N^{\prime}=M \cap N$. Therefore

$$
N^{\prime} \triangle M \subseteq(M \triangle M) \cap(N \triangle M)
$$

which is finite. Thus $N^{\prime}$ is commensurated to $M$. A similar result holds for $N$, so $N^{\prime}$ is also commensurated to $N$. Since $N^{\prime} \subseteq M$, there exists $F_{1}$ finite subset such that $M=N^{\prime} \sqcup F_{1}$. Indeed $F_{1}=M \backslash N^{\prime}$ is finite since $N^{\prime} \triangle M=M \backslash N^{\prime}$. Similarly since $N^{\prime} \subseteq N$, there exists $F_{2}$ finite subset such that $N=N^{\prime} \sqcup F_{2}$. Applying the previous result on $M$ and $M \sqcup F$, we obtain

$$
\operatorname{tr}_{M}=\operatorname{tr}_{N^{\prime}}=\operatorname{tr}_{N} .
$$

Thus $\operatorname{tr}_{M}$ does not depend on the choice of $M$ within its commensurability class. For $g, h \in \mathcal{S}(X, M)$, one has

$$
\begin{aligned}
\operatorname{tr}_{M}(g h) & =\sum_{x \in X} \mathbb{1}_{(g h)^{-1} M}(x)-\mathbb{1}_{M}(x) \\
& =\sum_{x \in X} \mathbb{1}_{h^{-1} g^{-1} M}(x)-\mathbb{1}_{h^{-1} M}(x)+\sum_{x \in X} \mathbb{1}_{h^{-1} M}(x)-\mathbb{1}_{M}(x) \\
& =\sum_{x \in X} \mathbb{1}_{g^{-1} M}(h x)-\mathbb{1}_{M}(h x)+\operatorname{tr}_{M}(h) \\
& =\operatorname{tr}_{M}(g)+\operatorname{tr}_{M}(h) .
\end{aligned}
$$

Thus $\operatorname{tr}_{M}$ is a homomorphism from $\mathcal{S}(X, M)$ to $\mathbb{Z}$. Moreover

$$
\operatorname{tr}_{M}(g)=0 \Longrightarrow\left|g^{-1} M \backslash M\right|-\left|M \backslash g^{-1} M\right|=0 .
$$

This implies that $g$ stabilizes $M$. Thus the stabilizer of $M$ is contained in $\operatorname{ker}\left(\operatorname{tr}_{M}\right)$. Furthermore the stabilizer of $M$ is open by definition of the topology
of $\mathcal{S}(X, M)$. Therefore $\operatorname{tr}_{M}$ is continuous.
Moreover for $n \in \mathbb{Z}$, there exists $g$ such

$$
\left|g^{-1} M \backslash M\right|=n+\left|M \backslash g^{-1} M\right|
$$

then $|M \triangle g M|<+\infty$. Thus $g \in \mathcal{S}(X, M)$. Hence $\operatorname{tr}_{M}$ is surjective.
Let $g \in \operatorname{Ker}\left(\operatorname{tr}_{M}\right)$, it stabilizes $M$. Then the finite sets $g^{-1} M \backslash M$ and $M \backslash g^{-1} M$ have the same cardinal. So there exists a permutation $\sigma$ with finite support that exchanges the two sets and is the identity on the complement of the two sets. Let $\tau$ be either the identity when $\sigma$ is even or a transposition with support $M$ or $M^{c}$ when $\sigma$ is odd. Thus $\tau \sigma$ is an even permutation and $\tau \sigma g$ also stabilizes $M$. If $X$ is infinite, then $M$ and $M^{c}$ are infinite. Then $\mathcal{S}(M), \mathcal{S}\left(M^{c}\right)$ and $\mathcal{S}_{0}^{+}(X)$ are perfect groups. Thus $\operatorname{ker}\left(\operatorname{tr}_{M}\right)=\mathcal{S}^{o}(X, M)$ is a perfect group. If either $M$ or $M^{c}$ is infinite, then $\operatorname{ker}\left(\operatorname{tr}_{M}\right)$ is equal to $\mathcal{S}(X)$ which is perfect.

Proposition 32. Some normal subgroups of $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ are the following:

* $\{1\}, \mathcal{S}_{0}(\mathbb{Z}), \mathcal{S}_{0}^{+}(\mathbb{Z})$;
* $\mathcal{S}^{\circ}(\mathbb{Z}, \mathbb{N})$ and the subgroups which have finite index in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.

Proof. $\mathcal{S}_{0}^{+}(\mathbb{Z})$ is generated by the 3 -cycles and by the transpositions with disjoint support. $\mathcal{S}_{0}(\mathbb{Z})$ is generated by the transpositions. All the transpositions are conjugated in $\mathcal{S}_{0}(\mathbb{Z})$. So if $N \triangleleft \mathcal{S}(\mathbb{Z}, \mathbb{N})$ and $N$ contains a transposition, then $N \geqslant \mathcal{S}_{0}(\mathbb{Z})$.

First $\mathcal{S}_{0}^{+}(\mathbb{Z})$ is dense in $\mathcal{S}_{0}(\mathbb{Z})$. Moreover $\mathcal{S}_{0}^{+}(\mathbb{Z})$ is simple. Indeed let $N$ be such that $N \triangleleft \mathcal{S}_{0}^{+}(\mathbb{Z}), N \neq\{1\}$. Let $\sigma \in N \backslash\{1\}$, then $\sigma$ is not a transposition.

* if $\sigma$ is a 3 -cycle, then we have the result since $\mathcal{S}_{0}^{+}(\mathbb{Z})$ is generated by the 3-cycles;
* otherwise there exists $i, j, k, l$ two by two different such that $\sigma(i)=j$ and $\sigma(k)=l$. We have

$$
\sigma(i k) \sigma^{-1}(i k)=\sigma(i k) \sigma^{-1}(i k)^{-1}=(j l)(i k) \in \mathbb{N}
$$

since $(i k) \sigma^{-1}(i k)^{-1} \in \mathbb{N}$ is a commutator.
Let $N \unlhd \mathcal{S}(\mathbb{Z}, \mathbb{N})$ be closed and $N \neq\{1\}$. Since $N \neq\{1\}, N \geqslant \mathcal{S}_{0}^{+}(\mathbb{Z})$. Let $\sigma \in \mathbb{N} \backslash\{1\}$. Then there exists $i$ such that $\sigma(i) \neq i$.

* if $\sigma$ is a transposition then $N \geqslant \mathcal{S}_{0}(\mathbb{Z})$;
* otherwise either $\sigma$ is a 3 -cycle. In this case, $N \geqslant \mathcal{S}_{0}(\mathbb{Z})$. Or there exists $i, j, k$ and $l$ such that $(j l)(i k) \in \mathbb{N}$. Therefore $\mathcal{S}_{0}(\mathbb{Z}) \leqslant N$.
Second, $\mathcal{S}_{0}(\mathbb{Z})$ is dense in $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$. Indeed let $\sigma \in \mathcal{S}_{0}(\mathbb{Z})$ and let $U$ be a neighborhood of $\sigma$. Then we can find $P_{1}, \ldots, P_{n}$ commensurated to $\mathbb{N}$ such that

$$
U \supseteq\left\{\tau: \tau\left(P_{i}\right)=\sigma\left(P_{i}\right)\right\} .
$$

Since the $P_{i}$ are commensurated to $\mathbb{N}$, there exists $K \in \mathbb{N}$ such that

$$
\text { for any } i, P_{i} \triangle \mathbb{N} \subseteq \llbracket-K, K \rrbracket \text { and } \sigma\left(P_{i}\right) \triangle \mathbb{N} \subseteq \llbracket-K, K \rrbracket \text {. }
$$

Thus $\sigma(\mathbb{N}) \triangle \mathbb{N} \subseteq \llbracket-K, K \rrbracket$ and $\sigma^{-1}(\mathbb{N}) \triangle \mathbb{N} \subseteq \llbracket-K, K \rrbracket$.
Thus $\mathcal{S}_{0}^{+}(\mathbb{Z})$ is also dense in $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$.
By Proposition 31, we have that

$$
\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})=\left\langle\mathcal{S}_{0}^{+}(\mathbb{Z}), \mathcal{S}(\mathbb{N}), \mathcal{S}(\mathbb{Z} \backslash \mathbb{N})\right\rangle .
$$

The topology induced on $\mathcal{S}(\mathbb{N})$ is the usual topology. Indeed $\mathcal{S}(\mathbb{N})$ has an unique topology of a separable group. (Following from Corollary 1.5 in [BYT16]) We know that $\mathcal{S}_{0}(\mathbb{N})$ is dense in $\mathcal{S}(\mathbb{N})$ for the usual topology.
Let $\Phi: \mathcal{S}(\mathbb{Z}, \mathbb{N}) \rightarrow \mathcal{S}(\mathbb{Z})$. $\Phi$ is continuous if and only if it is continuous at identity. Indeed if the latter is true, then for $g_{n} \in \mathcal{S}(\mathbb{Z}, \mathbb{N})$,

$$
\text { if } g_{n} \rightarrow g \text { then } g_{n} g^{-1} \rightarrow 1
$$

Therefore $\Phi\left(g_{n} g^{-1}\right) \rightarrow 1$ which implies that $\Phi\left(g_{n}\right) \Phi(g)^{-1} \rightarrow 1$ since $\Phi$ is a morphism. Thus $\Phi\left(g_{n}\right) \rightarrow \Phi(g)$. Now to show that $\Phi$ is continuous at identity, we need to show that if $U$ is an open identity neighborhood in $\mathcal{S}(\mathbb{Z})$ then so is $\Phi^{-1}(U)$. Moreover any identity neighborhood is included in

$$
U^{\prime}=\{\sigma: \sigma(n)=n\} \text { where } n \in \mathbb{Z} \text { is fixed. }
$$

So it is enough to show that $U^{\prime}$ is an open identity neighborhood in $\mathcal{S}(\mathbb{Z})$. Let

$$
V=\{\sigma \in \mathcal{S}(\mathbb{Z}) \mid \sigma(\mathbb{N})=\mathbb{N}, \sigma(\mathbb{N} \backslash\{n\})=\mathbb{N} \backslash\{n\} \text { and } \sigma(\mathbb{N} \cup\{n\})=\mathbb{N} \cup\{n\}\}
$$

$V$ is open in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$. Also $V \subseteq U^{\prime}$,

* if $n \in \mathbb{N}$, then $\sigma(\mathbb{N} \backslash\{n\})=\mathbb{N} \backslash\{\sigma(n)\}$,
* if $n<0$, then $\sigma(\mathbb{N} \cup\{n\})=\{n\} \cup \mathbb{N}$.

Therefore

$$
U^{\prime}=\bigcup_{u \in U^{\prime}} u V
$$

thus $U^{\prime}$ is open. Hence the morphism $\Phi: \mathcal{S}(\mathbb{Z}, \mathbb{N}) \rightarrow \mathcal{S}(\mathbb{Z})$ is continuous. Thus $\mathcal{S}_{0}(\mathbb{N}) \leqslant \mathcal{S}_{0}(\mathbb{Z})$ is dense in $\mathcal{S}(\mathbb{N})$. Similarly $\mathcal{S}_{0}(\mathbb{Z} \backslash \mathbb{N}) \leqslant \mathcal{S}_{0}(\mathbb{Z})$ is dense in $\mathcal{S}(\mathbb{Z} \backslash \mathbb{N})$. Furthermore $\mathcal{S}_{0}^{+}(\mathbb{Z})$ is also dense in $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$. Therefore $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ is dense in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.
So $N \geqslant \operatorname{ker} \operatorname{tr}_{\mathbb{N}}=\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$. Either $N=\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$, or $\operatorname{tr}_{\mathbb{N}}$ is a non-trivial subgroup of $\mathbb{Z}$ of finite index. Then $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ and all its subgroups contain it. Thus $N$ has finite index in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.

So we have shown that $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ is a normal subgroup of $\mathcal{S}(\mathbb{Z}, \mathbb{N})$. Therefore when we are going to show some results on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$, we will first show it on $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ and then we will be able to show it on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.

## 3 A characterization of local boundedness

In this section, our aim is the following theorem from Ros. All of this section is originally from the latter. This theorem will give us a characterization of the notion of being locally bounded. This characterization holds for a larger claim than Polish groups, namely European groups (cf. Definition 47 ).

Theorem 68, For a European topological group G, the following are equivalent:
(i) $G$ admits a continuous left-invariant maximal pseudometric $d$;
(ii) $G$ is generated by a coarsely bounded set;
(iii) $G$ is locally bounded and not the union of a countable chain of proper open subgroups;
(iv) the coarse structure is monogenic.

Since $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is a European group, we will be able to apply this result in the next section.

### 3.1 Definitions

To start, we will see a few definitions to be able to understand the notion of coarse structure.
Definition 33. $A$ coarse space is a set $X$ equipped with a condition $\mathcal{E}$ of subsets $E \subseteq X \times X$ called entourages satisfying the following conditions:

- The diagonal $\nabla=\{(x, x) ; x \in X\}$ belongs to $\mathcal{E}$;
- if $E \subseteq F \in \mathcal{E}$, then $E \in \mathcal{E}$;
- if $E, F \in \mathcal{E}$, then $E \cup F, E^{-1}, E \circ F \in \mathcal{E}$.

The condition $\mathcal{E}$ is also called a coarse structure on $X$.
Definition 34. $A$ pseudometric space is a set $X$ equipped with an pseudometric, i.e. a map $d: X \times X \longrightarrow \mathbb{R}_{+}$such that $d$ is symmetric, satisfies the triangle inequality and $d(x, x)=0$ for all $x \in X$.
Definition 35. For a topological group $G$, we define its left-coarse structure $\mathcal{E}_{L}$ by

$$
\mathcal{E}_{L}=\bigcap\left\{\mathcal{E}_{d} \mid d \text { is a continuous left-invariant pseudometric on } G\right\} .
$$

Definition 36. A subset $A \subseteq X$ of a coarse space $(X, \mathcal{E})$ is said to be coarsely bounded if $A \times A \in \mathcal{E}$.

### 3.2 First results

The metrisation theorem of Birkhoff and Kakutani stated and proved in the book from Su Gao [Inv], has inspired the next lemma. The latter will be used several times in the next results.

Lemma 37. Let $G$ be a metrisable topological group and $\left(V_{n}\right)_{n \in \mathbb{Z}}$ an increasing chain of symmetric open identity neighborhoods satisfying $G=\cup_{n \in \mathbb{Z}} V_{n}$ and $V_{n}^{3} \subseteq V_{n+1}$. Defining for $f, g \in G$,

$$
\begin{aligned}
\delta(f, g) & :=\inf \left(2^{n} \mid f^{-1} g \in V_{n}\right) \text { and } \\
d(f, g) & :=\inf \left(\sum_{i=0}^{k-1} \delta\left(h_{i}, h_{i+1}\right) \mid h_{0}=f, h_{k}=g\right)
\end{aligned}
$$

we get that

$$
\frac{1}{2} \delta(f, g) \leqslant d(f, g) \leqslant \delta(f, g)
$$

and $d$ is a continuous and compatible left-invariant metric on $G$.
Proof. Since the $V_{i}$ are symmetric, $\delta$ is symmetric. Moreover $\delta(f, g) \geqslant 0$ for any $f, g$. Also since for $f \neq g, d(f, g) \geqslant 2$. So $\delta(f, g)>0$. Thus $\delta(f, g)=0$ if and only if $f=g$ since $f^{-1} f=1_{G} \in V_{0}$.
Let $f_{0}, f_{1}, f_{2}, f_{3} \in G$ such that

$$
\delta\left(f_{0}, f_{1}\right), \delta\left(f_{1}, f_{2}\right), \delta\left(f_{2}, f_{3}\right) \leqslant \varepsilon
$$

Let $p$ be such that

$$
2^{p}=\max \left\{\delta\left(f_{0}, f_{1}\right), \delta\left(f_{1}, f_{2}\right), \delta\left(f_{2}, f_{3}\right)\right\}
$$

Moreover

$$
f_{0}^{-1} f_{3}=f_{0}^{-1} f_{1} \cdot f_{1}^{-1} f_{2} \cdot f_{2}^{-1} f_{3} \in V_{p}^{3} \subseteq V_{p+1}
$$

Thus

$$
\delta\left(f_{0}, f_{3}\right)=\inf \left(2^{n} \mid f_{0}^{-1} f_{3} \in V_{n}\right) \leqslant 2^{p+1}=2 \times 2^{p} \leqslant 2 \varepsilon
$$

We check now that $d$ is a compatible left-invariant metric on $G$.
Since $\delta(f, g) \geqslant 0$, we have $d(f, g) \geqslant 0$ for any $f, g \in G$. Moreover

$$
d(f, f)=\inf \left(\sum_{i=0}^{k-1} \delta\left(h_{i}, h_{i+1}\right) \mid h_{0}=f, h_{k}=f\right)=\delta(f, f)=0
$$

Also since $\delta$ is symmetric, $d$ is also symmetric. Moreover for $f, g, h \in G$, let $h_{i}$ for $i \in\{0, \ldots, k\}$ be such that $h_{0}=f$ and $h_{k}=g$. Similarly let $h_{i}^{\prime}$ for $i \in\left\{0, \ldots, k^{\prime}\right\}$ be such that $h_{0}^{\prime}=f=h_{0}$ and $h_{k^{\prime}}^{\prime}=h$ and $h_{i}^{\prime \prime}$ for $i \in\left\{0, \ldots, k^{\prime \prime}\right\}$ be such that $h_{0}^{\prime \prime}=h=h_{k^{\prime}}^{\prime}$ and $h_{k^{\prime \prime}}^{\prime \prime}=g=h_{k}$. Since we add more elements to the initial sum, we have

$$
\sum_{i=0}^{k-1} \delta\left(h_{i}, h_{i+1}\right) \leqslant \sum_{i=0}^{k^{\prime}-1} \delta\left(h_{i}^{\prime}, h_{i+1}^{\prime}\right)+\sum_{i=0}^{k^{\prime \prime}-1} \delta\left(h_{i}^{\prime \prime}, h_{i+1}^{\prime \prime}\right)
$$

Therefore by taking the infimum of each sum, we have

$$
d(f, g) \leqslant d(f, h)+d(h, g)
$$

Hence $d$ verifies the triangle inequality. For $d$ to be a metric, $f \neq g$ implies that $d(f, g) \neq 0$ is left to show. First we claim that

$$
\begin{equation*}
\frac{1}{2} \delta(f, g) \leqslant d(f, g) \text { for } f \neq g \tag{4}
\end{equation*}
$$

To obtain this, we show by induction on $k \in \mathbb{N}$ that

$$
\begin{equation*}
\sum_{i=0}^{k+1} \delta\left(h_{i}, h_{i+1}\right) \geqslant \frac{1}{2} \delta\left(h_{0}, h_{k+2}\right) \tag{5}
\end{equation*}
$$

For $k \leqslant 1$, we mainly use the fact that

$$
\begin{equation*}
\text { for } \varepsilon>0 \text {, if } \delta\left(f_{0}, f_{1}\right), \delta\left(f_{1}, f_{2}\right), \delta\left(f_{2}, f_{3}\right) \leqslant \varepsilon \text {, then } \delta\left(f_{0}, f_{3}\right) \leqslant 2 \varepsilon . \tag{6}
\end{equation*}
$$

We have that

$$
\delta\left(h_{0}, h_{1}\right) \leqslant \sum_{i=0}^{2} \delta\left(h_{i}, h_{i+1}\right) .
$$

Moreover by fact (6),

$$
\frac{\delta\left(h_{0}, h_{3}\right)}{2} \leqslant \delta\left(h_{0}, h_{1}\right)
$$

Hence

$$
\frac{\delta\left(h_{0}, h_{3}\right)}{2} \leqslant \sum_{i=0}^{2} \delta\left(h_{i}, h_{i+1}\right) .
$$

For $k \geqslant 2$, we assume that inequality (5) holds for all $l<k$. Let

$$
S=\sum_{i=0}^{k+1} \delta\left(h_{i}, h_{i+1}\right)
$$

* if $\delta\left(h_{0}, h_{1}\right) \geqslant \frac{1}{2} S$, then by induction hypothesis

$$
\left.S-\delta\left(h_{0}, h_{1}\right) \geqslant \frac{1}{2} \delta\left(h_{1}, h_{k+2}\right) \Leftrightarrow 2 S-2 \delta\left(h_{0}, h_{1}\right)\right) \geqslant \delta\left(h_{1}, h_{k+2}\right) .
$$

Since $\delta\left(h_{0}, h_{1}\right) \geqslant \frac{1}{2} S$, we have $\delta\left(h_{1}, h_{k+2}\right) \leqslant S$. By fact (6),

$$
\delta\left(h_{0}, h_{k+2}\right) \leqslant S
$$

* if $\delta\left(h_{k}, h_{k+1}\right) \geqslant \frac{1}{2} S$, we use a symmetric argument.
* if $\delta\left(h_{0}, h_{1}\right), \delta\left(h_{k}, h_{k+1}\right)<\frac{1}{2} S$, let $m$ be the largest such that

$$
\begin{equation*}
\sum_{i=0}^{m} \delta\left(h_{i}, h_{i+1}\right) \leqslant \frac{1}{2} S . \tag{7}
\end{equation*}
$$

Then $1 \leqslant m<k+1$. By inductive hypothesis, we have that

$$
\delta\left(h_{0}, h_{m+1}\right) \leqslant 2 \sum_{i=0}^{m} \delta\left(h_{i}, h_{i+1}\right) \leqslant S .
$$

Since $m$ is the largest such that inequality (7) holds,

$$
\sum_{i=0}^{m+1} \delta\left(h_{i}, h_{i+1}\right)>\frac{1}{2} S
$$

Thus

$$
\sum_{i=m+2}^{k+1} \delta\left(h_{i}, h_{i+1}\right) \leqslant \frac{1}{2} S .
$$

Applying the inductive hypothesis, we have

$$
\delta\left(h_{m+2}, h_{k+2}\right) \leqslant 2 \sum_{i=m+2}^{k+1} \delta\left(h_{i}, h_{i+1}\right) \leqslant S
$$

Moreover $\delta\left(h_{m+1}, h_{m+2}\right) \leqslant S$. By fact (6), we have that $\delta\left(h_{0}, h_{k+2}\right) \leqslant 2 S$.
Hence

$$
\frac{1}{2} \delta(f, g) \leqslant d(f, g) \text { for } f \neq g
$$

Since for $f \neq g, \delta(f, g)>0$, then also $d(f, g)>0$. This implies that $d$ is a metric.
We show now that $\delta$ is left-invariant: for $f, g, h \in G$, one has

$$
\begin{aligned}
\delta(h f, h g) & =\inf \left(2^{n} \mid(h f)^{-1}(h g) \in V_{n}\right) \\
& =\inf \left(2^{n} \mid f^{-1} h^{-1} h g \in V_{n}\right) \\
& =\inf \left(2^{n} \mid f^{-1} g \in V_{n}\right) \\
& =\delta(f, g) .
\end{aligned}
$$

Thus $d$ is also left-invariant.
We show finally that $d$ is compatible with the topology of $G$. Let $U$ be open in $G$ and $g \in U$. Then for some $n \in \mathbb{N}, g V_{n} \subseteq U$. Let

$$
f \in B_{d}\left(g, 2^{n-1}\right)=\left\{h \in G \mid d(g, h)<2^{n-1}\right\},
$$

then $d(f, g)<2^{n-1}$. So by using claim (4),

$$
\delta(f, g) \leqslant 2 d(f, g)<2^{n}
$$

Thus $g^{-1} f \in V_{n}$. Hence $h \in g V_{n} \subseteq U$. Therefore

$$
B_{d}\left(g, 2^{n-1}\right) \subseteq U
$$

Now let $U$ be open in the topology given by $d$ and $g \in U$. There exists $n \in \mathbb{N}$ such that $B_{d}\left(g, 2^{n}\right) \subseteq U$. Let $f \in g B_{n+1}$, then $\delta(f, g) \leqslant 2^{n-1}$. Moreover

$$
d(f, g) \leqslant \delta(f, g) \leqslant 2^{n-1}<2^{n}
$$

by the definitions of $\delta$ and $d$. Thus $f \in B_{d}\left(g, 2^{n}\right)$. So $f \in U$. Therefore

$$
g V_{n+1} \subseteq U
$$

Thanks to the last lemma, we have the following proposition:
Proposition 38. Let $G$ be a topological group equipped with its left-coarse structure. Then the following conditions are equivalent for a subset $A \subseteq G$,
(i) A is coarsely bounded,
(ii) for every continuous left-invariant pseudometric $d$ on $G$, $\operatorname{diam}_{d}(A)<+\infty$,
(iii) for every continuous isometric action on a metric space, $G \circlearrowright(X, d)$, and every $x \in X, \operatorname{diam}_{d}(A \cdot x)<+\infty$,
(iv) for every increasing exhaustive sequence $V_{1} \subseteq V_{2} \subseteq \ldots \subseteq G$ of open subsets with $V_{n}^{2} \subseteq V_{n+1}$, we have $A \subseteq V_{n}$ for some $n$.
Moreover, suppose $G$ is countably generated over every identity neighborhood, i.e for every identity neighborhood $V$ there is a countable set $C \subseteq G$ such that $G=\langle V \cup C\rangle$. Then (i)-(iv) are equivalent to:
(v) for every identity neighborhood $V$, there is a finite set $F \subseteq G$ and $k \geqslant 1$ such that $A \subseteq(F V)^{k}$.

Proof. ( $i$ ) $\Longleftrightarrow($ ii) : By definition, $A$ is coarsely bounded is equivalent to $A \times A \in \mathcal{E}_{L}$. Moreover:
$A \times A \in \mathcal{E}_{L} \Leftrightarrow$ for any continuous left-invariant pseudometric $d$ on $G$, $A \times A \in \mathcal{E}_{d}$,
$\Leftrightarrow$ for any continuous left-invariant pseudometric $d$ on $G$, $\sup _{(f, g) \in A \times A} d(f, g)<+\infty$,
$\Leftrightarrow$ for any continuous left-invariant pseudometric $d$ on $G$, $\operatorname{diam}_{d}(A)<+\infty$.
$($ ii $) \Longrightarrow($ iii $):$ Let $G \circlearrowright(X, d)$ be a continuous isometric action on a metric space. Let $x \in X$. For $f, g \in G$, we define

$$
\partial(f, g)=d(f \cdot x, g \cdot x)
$$

which is a continuous left-invariant pseudometric on $G$. If $\operatorname{diam}_{\partial}(A)<+\infty$, then

$$
\operatorname{diam}_{d}(A \cdot x)<+\infty
$$

The same applies for any $x \in X$.
$($ iii $) \Longrightarrow(i i)$ : Let $d$ be a continuous left-invariant pseudometric on $G$ and $X$ be the corresponding metric quotient of $G$. The isometry of the pseudometric space $(G, d)$ factors through a metric space with the following equivalence relation

$$
x \sim y \text { if } d(x, y)=0 .
$$

Then the left-shift action of $G$ onto itself factors through to a continuous transitive isometric action on X. Thus if every $A$-orbit is bounded then $A$ is $d$-bounded on $G$.
$(i i) \Longrightarrow(i v):$ We are showing the contraposition, i.e. $(\neg i v) \Longrightarrow(\neg i i)$ :
Suppose there exists an increasing exhaustive chain of symmetric open subsets

$$
W_{1} \subseteq W_{2} \subseteq \ldots \subseteq G
$$

such that $W_{n}^{2} \subseteq W_{n+1}$ and $A \nsubseteq W_{n}$ for all $n$. Without loss of generality, we suppose that $1 \in W_{0}$. We take symmetric open identity neighborhoods $V_{k} \subseteq W_{0}$ for all $k<0$ such that $V_{k}^{3} \subseteq V_{k+1}$ and for all $k \geqslant 0, V_{k}=W_{2 k+2}$. Then the chain $V_{k}$ for $k \in \mathbb{Z}$ satisfy the conditions of Lemma 37 . Thus there exists a continuous left-invariant pseudometric $d$ on $G$ such that its open $n$-ball is contained in $V_{2^{n}}$ since

$$
d(f, g) \leqslant \delta(f, g)=\inf \left(2^{n} \mid f^{-1} g \in V_{n}\right)
$$

Therefore $\operatorname{diam}_{d}(A)=+\infty$.
$(i v) \Longrightarrow(i i):$ For $d$ a continuous left-invariant pseudometric on $G$, we set

$$
V_{n}=\left\{f \in G \mid d(1, f)<2^{n}\right\}
$$

For all $n, V_{n}^{2} \subseteq V_{n+1}$ since for $f, g \in V_{n}$,

$$
d(1, f g) \leqslant d(1, f)+d(f, f g)=d(1, f)+d(1, g)<2^{n}+2^{n}=2^{n+1}
$$

Moreover $V_{n}$ forms an increasing exhaustive sequence of open subsets of $G$. By (iv), there exists $k$ such that $A \subseteq V_{k}$. Furthermore notice that the $d$-bounded sets are exactly those contained in some $V_{n}$. Thus

$$
\operatorname{diam}_{d}(A)<+\infty
$$

This is for any continuous left-invariant pseudometric on $G$, so we get (ii).
$(v) \Longrightarrow(i v):$ Suppose

$$
V_{1} \subseteq V_{2} \subseteq \ldots \subseteq G
$$

is an increasing exhaustive sequence of open subsets with $V_{n}^{2} \subseteq V_{n+1}$ for any $n$. Then $V_{1}$ is an identity neighborhood. Therefore there exists a finite set $F \subseteq G$ and $k \geqslant 1$ such that $A \subseteq\left(F V_{1}\right)^{k}$. Since $F \subseteq G$, there exists $p$ such that $F \subseteq V_{p}$. Hence

$$
A \subseteq\left(F V_{1}\right)^{k} \subseteq\left(V_{p} V_{1}\right)^{k} \subseteq V_{p+k+1}
$$

since $V_{n}^{2} \subseteq V_{n+1}$ for any $n$.
$(i v) \Longrightarrow(v)$ : Suppose $G$ is countably generated over every identity neighborhood. Let $A$ be a coarsely bounded set and $V$ an identity neighborhood. Take a countable set $C=\left\{x_{n}\right\}_{n}$ such that $G=\langle V \cup C\rangle$. Let

$$
V_{n}=\left(V \cup\left\{x_{1}, \ldots, x_{n}\right\}\right)^{2 n}
$$

Then $V_{1} \subseteq V_{2} \subseteq \ldots \subseteq G$ is an increasing exhaustive sequence of open subsets with $V_{n}^{2} \subseteq V_{n+1}$. Therefore there exists $p$ such that

$$
A \subseteq V_{p}=\left(V \cup\left\{x_{1}, \ldots, x_{p}\right\}\right)^{2 p}=(F V)^{2 p}
$$

where $F$ is finite.
We now need a new definition, the ideal $\mathcal{O B}$. This name has not been chosen by hazard. We have seen in the first section the property (OB). The two notions are connected. Indeed $G$ has the property $(\mathrm{OB})$ is equivalent to $G \in \mathcal{O B}$.

Definition 39. The ideal $\mathcal{O B}$ of a group $G$ is the ideal of closed coarsely bounded sets in $G$.

The notion of left-invariant coarse structures on groups can be reformulated as ideals of subsets, which will help us in the next results.

Proposition 40. Let $G$ be a group. Then the map $\Phi$ sending $\mathcal{E}$ onto

$$
\mathcal{A}_{\mathcal{E}}=\left\{A \mid A \subseteq A_{E} \text { for some } E \in \mathcal{E}\right\}
$$

with inverse map sending $\mathcal{A}$ onto

$$
\mathcal{E}_{\mathcal{A}}=\left\{E \mid E \subseteq E_{A} \text { for some } A \in \mathcal{A}\right\}
$$

defines a bijection between the collection of left-invariant coarse structures $\mathcal{E}$ on $G$ and the collection of ideals $\mathcal{A}$ on $G$, containing $\{1\}$ and closed under inversion $A \mapsto A^{-1}$ and products $(A, B) \mapsto A B$.

Proof. Let $G$ be a group and $E \subseteq G \times G$ left-invariant. The corresponding set

$$
A_{E}=\{x \in G \mid(1, x) \in E\}
$$

is covering all of $E$ writing $E=\left\{(x, y) \in G \times G \mid x^{-1} y \in A\right\}$. This is similar for the converse. Therefore the map that sends $E$ to $A_{E}$ is a bijection between left-invariant subsets of $G \times G$ and subsets of $G$ with inverse

$$
A \mapsto E_{A}=\left\{(x, y) \in G \times G \mid x^{-1} y \in A\right\}
$$

Moreover for $A \subseteq G$,

$$
\begin{aligned}
E_{A}^{-1} & =\left\{(y, x) \in G \times G \mid x^{-1} y \in A\right\} \\
& =\left\{(y, x) \in G \times G \mid y^{-1} x \in A^{-1}\right\} \\
& =E_{A^{-1}}
\end{aligned}
$$

Also for $A, B \subseteq G$,

$$
\begin{aligned}
E_{A} \circ E_{B} & =\left\{(x, y) \in G \times G \mid x^{-1} y \in A\right\} \circ\left\{(x, y) \in G \times G \mid x^{-1} y \in B\right\} \\
& =\left\{(x, z) \in G \times G \mid \exists y \in G(x, y) \in E_{A},(y, z) \in E_{B}\right\} \\
& =\left\{(x, z) \in G \times G \mid \exists y \in G x^{-1} y \in A \text { and } y^{-1} z \in B\right\} \\
& =\left\{(x, z) \in G \times G \mid x^{-1} z \in A B\right\} \\
& =E_{A B} .
\end{aligned}
$$

Another property is

$$
E_{A}[B]:=\left\{x \in G \mid \exists b \in B(x, b) \in \mathcal{E}_{A}\right\}=B A^{-1}
$$

The coarse structure generated by a collection of left-invariant sets has a cofinal basis consisting of left-invariant sets. So $\mathcal{E}$ is left-invariant. Moreover the collection of ideals $\mathcal{A}$ on $G$ are closed under inversion and products.

Proposition 41. For every topological group $G$, we have

$$
\mathcal{E}_{L}=\mathcal{E}_{\mathcal{O B}}=\left\{E \mid E \subseteq E_{A} \text { for some } A \in \mathcal{O B}\right\}
$$

Proof. Suppose $E \in \mathcal{E}_{\mathcal{O B}}$. Then there exists $A \in \mathcal{O B}$ such that $E \subseteq E_{A}$. Let $d$ be a continuous left-invariant pseudometric on $G$. Since $A$ is coarsely bounded, by Proposition 38, $\operatorname{diam}_{d}(A)<+\infty$. Then there exists $a$ such that $d(1, x)<a$ for all $x \in A$. Hence

$$
E \subseteq E_{A} \subseteq\{(x, y) \mid d(x, y)<a\} \text {, i.e. } E \in \mathcal{E}_{d}
$$

Since it holds for any $d$ continuous left-invariant pseudometric on $G$, we have $E \in \mathcal{E}_{L}$.

Suppose $E \in \mathcal{E}_{L}$. Since $\mathcal{E}_{L}$ is left-invariant,

$$
E^{\prime}=\{(z x, z y) \mid z \in G \text { and }(x, y) \in E\}
$$

is also in $\mathcal{E}_{L}$. Moreover $E^{\prime}$ is also left-invariant so there exists $A \subseteq G$ such that $E^{\prime}=E_{A}$ and $A$ has finite diameter with respect to every continuous leftinvariant pseudometric on $G$. Hence by Proposition $38, A$ is coarsely bounded. Thus $A \in \mathcal{O B}$. Therefore $E \subseteq E_{A} \in \mathcal{O B}$, i.e. $E \in \mathcal{O \mathcal { B }}$.

### 3.3 Intermediate theorems

In this part, our aim is to show the following intermediate theorem:
Theorem 55. For an European topological group G, the following are equivalent:
(i) the left-coarse structure $\mathcal{E}_{L}$ is monogenic;
(ii) $G$ is generated by a coarsely bounded set, i.e. there is some $A \in \mathcal{O B}$ algebraically generating $G$;
(iii) $G$ is locally bounded and not the union of a countable chain of proper open subgroups.

We need some new definitions:
Definition 42. A coarse space $(X, \mathcal{E})$ is metrisable if it is of the form $\mathcal{E}_{d}$ for some generalised metric $d: X \times X \longrightarrow \mathbb{R}_{+}$.

Definition 43. A topological group $G$ is locally bounded if and only if it has a coarsely bounded identity neighborhood.

Definition 44. A topological group $G$ is a Baire if it satisfies the Baire category theorem, i.e., if the intersection of a countable family of dense open sets is dense in $G$.

Definition 45. A family $\{B\}_{n} \subseteq A$ is said to be cofinal in $A$ if for every $A \subseteq A$, there exists $B_{n}$ such that $A \subseteq B_{n}$.

Definition 46. A subset $B \subseteq X$ of a topological space $X$ is nowhere dense if its closure has empty interior, i.e. if for each open set $U \subseteq$, the set $B \cap U$ is not dense in $U$.
$A$ subset $B \subseteq X$ is somewhere dense if it is not nowhere dense.
A subset of a topological space $X$ is said to be meager in $X$ if it is a countable union of nowhere dense subsets of $X$.
$A$ subset is said to be non-meager if it is not meager.
Definition 47. A topological group $G$ is European if it is Baire and countably generated over every identity neighborhood.

The next lemmas are going to be directly used to prove Theorem 53. The latter will help proving one of the equivalences of Theorem 55

Lemma 48. Suppose $G$ is a topological group countably generated over every identity neighborhood. Then, for every symmetric open identity neighborhood $V$, there is a continuous left-invariant pseudometric d so that a subset $A \subseteq G$ is d-bounded if and only if there are a finite set $F$ and a natural $k$ such that $A \subseteq(F V)^{k}$.

Proof. Let V be a symmetric open identity neighborhood. Since $G$ is countably generated over $V$, there exists $x_{1}, x_{2}, x_{3}, \ldots \in G$ such that

$$
G=\left\langle V \cup\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}\right\rangle
$$

Now let

$$
V_{n}=\left(V \cup\left\{x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}-1\right\}\right)^{3^{n}}
$$

We have $G=\cup_{n} V_{n}$ and the $V_{n}$ is an increasing exhaustive chain of open symmetric identity neighborhood such that $V_{n}^{3} \subseteq V_{n+1}$ for any $n$. Then adding the negative indexes of the chain $V_{n}$ with symmetric open identity neighborhoods $V_{i}$ such that $V_{i}^{3} \subseteq V_{i+1}$ for any $i$, we get $V_{n} \subseteq V_{n+1}$ for $n \in \mathbb{Z}$. By Lemma 37, we obtain a continuous left-invariant pseudometric $d$ on $G$. Moreover each $d$-ball is contained in some $V_{n}$ and each $V_{n}$ has finite $d$-diameter. Then a subset $A \subseteq G$ is $d$-bounded if and only if $A \subseteq V_{n}$ for some $n$. Let $F \subseteq G$ be a finite subset. Then there exists $n \geqslant 1$ such that $F \subseteq V_{n}$. Thus

$$
(F V)^{k} \subseteq V_{n+k}
$$

has finite $d$-diameter for all $k \geqslant 1$. This shows the equivalence.
Lemma 49. Let $G$ be a locally bounded topological group and assume that $G$ is countably generated over every identity neighborhood. Then $\mathcal{E}_{L}$ is induced by a continuous left-invariant pseudometric $d$ on $G$.

Proof. Let $V$ be a symmetric open identity neighborhood coarsely bounded in $G$. Let $d$ be a continuous left-invariant pseudometric defined like in Lemma 48 , Then a subset $A \subseteq G$ is $d$-bounded if and only if there are a finite set $F$ and a natural $n$ such that $A \subseteq(F V)^{n}$. Thus $A$ is coarsely bounded in $G$. Therefore $d$ induces the left-coarse structure $\mathcal{E}_{L}$ on $G$.

Lemma 50. For a topological group $G$, the following are equivalent:
(i) the left-coarse structure $\mathcal{E}_{L}$ is metrisable;
(ii) the ideal $\mathcal{O B}$ is countably generated, i.e. the ideal $\mathcal{O B}$ has a countable cofinal subfamily;
(iii) $\mathcal{E}_{L}$ is metrised by a left-invariant metric $d$ on $G$.

Proof. $(i) \Longrightarrow(i i)$ : Recall that

$$
\mathcal{E}_{\mathcal{O B}}=\left\{E \mid E \subseteq E_{A} \text { for some } A \in \mathcal{O B}\right\}
$$

where

$$
E_{A}=\{(x, y) \in G \times G \mid(1, x) \in E\}
$$

Since by Lemma $41 \mathcal{E}_{\mathcal{O B}}=\mathcal{E}_{L}$, then the ideal $\mathcal{O B}$ is countably generated.
(ii) $\Longrightarrow$ (iii): Suppose $\mathcal{O B}$ is generated countably by a cofinal family $\left\{A_{n}\right\}_{n} \subseteq \mathcal{O B}$. Let $A_{n}^{\prime}=\{1\} \cup A_{n} A_{n}^{-1}$ and define the sequence $\left\{B_{n}\right\}_{n}$ by

$$
\begin{aligned}
& B_{0}=\{1\} \\
& B_{n+1}=A_{n+1}^{\prime} \cup B_{n} B_{n}
\end{aligned}
$$

Then $\left\{B_{n}\right\}_{n}$ is an increasing cofinal sequence in $\mathcal{O B}$. Each $B_{n}$ is symmetric and $B_{n}^{2} \subseteq B_{n+1}$. Now define a metric $d$ such that for $x, y \in G$,

$$
d(x, y)=\min \left(k \mid x^{-1} y \in B_{k}\right) .
$$

Let $A$ be a $d$-bounded set. Then for any $x, y \in A$, there exists $C \in \mathbb{R}_{+}^{*}$ such that $d(x, y) \leqslant C$. Then $A \times A \in \mathcal{E}_{d}$. There exists $K>C$ such that for any $x, y \in A$ such that $x^{-1} y \in B_{K}$. Hence $A \times A \in \mathcal{E}_{\mathcal{O B}}=\mathcal{E}_{L}$ by Lemma 41. Thus $A$ is coarsely bounded. Therefore $\mathcal{E}_{L}$ is metrised by $d$ on $G$.
$($ iii $) \Longrightarrow(i)$ : This follows by definition.
Lemma 51. Let $G$ be a Baire topological group with metrisable left-coarse structure $\mathcal{E}_{L}$. Then $G$ is locally bounded.

Proof. $\mathcal{E}_{L}$ is metrisable, then by Lemma 50 , the ideal $\mathcal{O B}$ is countably generated. So there is a countable cofinal family $\left\{A_{n}\right\}_{n}$. Thus $\left\{\overline{A_{n}}\right\}_{n}$ is cofinal in $\mathcal{O B}$. Moreover $\mathcal{O B}$ contains all the singletons, so

$$
G=\bigcup_{n} \overline{A_{n}} .
$$

Also $G$ is Baire, so $G$ is non-empty and open. Thus $G$ is non-meager. Since $G=\cup_{n} \overline{A_{n}}$, there exists at least one of the $\overline{A_{n}}$, say $\overline{A_{k}}$ which is not meager. Therefore $\overline{A_{k}}$ has non-empty interior $W$. Moreover $V=W W^{-1}$ is an identity neighborhood. Furthermore since $W \in \mathcal{O B}, W W^{-1} \in \mathcal{O B}$. Thus $V \in \mathcal{O B}$. Hence $V$ is coarsely bounded implying that $G$ is locally bounded.

Lemma 52. Let $G$ be a topological group and suppose that $\mathcal{E}_{L}$ is induced by a continuous left-invariant pseudometric $d$ on $G$. Then $G$ is locally bounded.

Proof. Since the left-invariant pseudometric $d$ is continuous, $d$ is bounded on an identity neighborhood $V$. Moreover $V \times V \in \mathcal{E}_{d}=\mathcal{E}_{L}$, thus $V \times V \in \mathcal{E}_{L}$. Hence $V$ is coarsely bounded and so $G$ is locally bounded.

Theorem 53. For a European topological group $G$, the following are equivalent:
(i) the left-coarse structure $\mathcal{E}_{L}$ is metrisable;
(ii) $G$ is locally bounded;
(iii) $\mathcal{E}_{L}$ is induced by a continuous left-invariant pseudometric d on $G$.

Proof. $(i) \Longrightarrow$ (ii): follows from Lemma 51
(ii) $\Longrightarrow$ (iii): follows from Lemma 49 .
(iii) $\Longrightarrow(i)$ : Let $d$ be a continuous left-invariant pseudometric on $G$ which induces $\mathcal{E}_{L}$. By Lemma 37, there exists $\partial$ that is a compatible and continuous left-invariant metric on $G$. Thus the left-coarse structure $\mathcal{E}_{L}$ is metrisable.

Definition 54. A coarse structure $(X, \mathcal{E})$ is monogenic if $\mathcal{E}$ is generated by a single entourage $E$.

Theorem 55. For a European topological group $G$, the following are equivalent:
(i) the left-coarse structure $\mathcal{E}_{L}$ is monogenic;
(ii) $G$ is generated by a coarsely bounded set, i.e. there is some $A \in \mathcal{O B}$ algebraically generating $G$;
(iii) $G$ is locally bounded and not the union of a countable chain of proper open subgroups.

Proof. $(i) \Longrightarrow($ iii $): \mathcal{E}_{L}$ is monogenic, so it is countably generated. Hence $\mathcal{E}_{L}$ is metrisable. By Theorem 53, $G$ is locally bounded. Now suppose $G=\cup_{n} G_{n}$ where for all $n, G_{n} \subseteq G$ which are open subgroups. By Proposition 38, each
coarsely bounded set is included in one the $G_{n}$. So there exists $n$ such that $A \subseteq G_{n}$ and since $G$ is generated by $A$,

$$
G=\langle A\rangle \subseteq G_{n}
$$

Hence $A=G_{n}$.
$($ iii $) \Longrightarrow(i i)$ : Suppose $G$ is locally bounded. Let $V$ be an identity neighborhood coarsely bounded and $\left\{x_{n}\right\}_{n}$ countable set which generates $G$ on V,

$$
\text { i.e. } G=V \cup\left\{x_{1}, \ldots, x_{n}, \ldots\right\}
$$

Moreover $G$ is not the union of a countable chain of proper open subgroups, thus $G$ is generated by $V \cup\left\{x_{1}, \ldots x_{n}\right\}$. Let for $n \in \mathbb{N}$,

$$
G_{n}=\left\langle V \cup\left\{x_{1}, \ldots x_{n}\right\}\right\rangle .
$$

Each $G_{n}$ is an open subgroup of G and the $G_{n}$ 's form an increasing exhaustive chain. Furthermore for any $g \in G$, there exists an $n$ such that $g \in G_{n}$. Now $G=\cup_{n} G_{n}$ is possible only if there exists $n$ such that

$$
G=G_{n}=\left\langle V \cup\left\{x_{1}, \ldots x_{n}\right\}\right\rangle
$$

The latter is coarsely bounded. Hence $G$ is generated by a coarsely bounded set.
$(i i) \Longrightarrow(i)$ : Suppose there exists $A \in \mathcal{O B}$ algebraically generating $G$, then $A \subseteq G$,

$$
\text { i.e. } G=\bigcup_{n} A^{n} \text {. }
$$

By the Baire theorem, some $A^{n}$ must be somewhere dense and thus $B=\overline{A^{n}}$ is coarsely bounded with non-empty interior and it is generating $G$. If $C \subseteq G$ coarsely bounded, by Proposition 38 , since $\operatorname{int}(B) \neq \emptyset$, i.e $B$ is an identity neighborhood, there exists $F$ finite set such that $F \subseteq G$ and $k \geqslant 1$ such that $C \subseteq(F B)^{k}$. Since $B$ generates $G, C \subseteq B^{m}$ for some $m \geqslant k$. Therefore $\left\{B^{n}\right\}_{n}$ is cofinal in $\mathcal{O B}$.
Hence $\mathcal{E}_{\mathcal{O B}}$ is monogenic. Indeed by replacing the generator $E \in \mathcal{E}$ in the definition of monogenic, by $E \cup \Delta$, we have that $\mathcal{E}$ is monogenic if and only if there is some entourage $E \in \mathcal{E}$ such that $\left\{E^{n}\right\}_{n}$ is cofinal in $\mathcal{E}$. Moreover $\mathcal{E}_{\mathcal{O B}}$ is a left-coarse structure, so the latter $E$ is of the form $E_{A}$ with $A$ a coarsely bounded set. Since $E_{A}^{n}=E_{A^{n}}$, we have the following equivalence: there exists a coarsely bounded set $B$ such that $\left\{B^{n}\right\}_{n}$ is cofinal in $\mathcal{O B}$ if and only if $\mathcal{E}_{\mathcal{O B}}$ is monogenic. Then by Lemma 41, $\mathcal{E}_{L}$ is monogenic.

### 3.4 Final theorem

In this section, our aimed theorem will be proved thanks mainly to Theorem 55.

First we need a few geometric notions on coarse spaces and pseudometric spaces:

Definition 56. Let $(X, \mathcal{E})$ and $(Y, \mathcal{F})$ be coarse spaces and $\Phi: X \rightarrow Y . \Phi$ is called bornologous if $(\Phi \times \Phi)[\mathcal{E}] \subseteq \mathcal{F}$.

Definition 57. A continuous left-invariant pseudometric $d$ on a topological group $G$ is coarsely proper if $d$ induces the left-coarse structure on $G$, i.e.
$\mathcal{E}_{L}=\mathcal{E}_{d}$.
Definition 58. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be pseudometric spaces.
A map $\Phi: X \rightarrow Y$ is said to be a quasi-isometric embedding if there are positive constants $K, C$ such that

$$
\frac{1}{K} \cdot d_{X}\left(x_{1}, x_{2}\right)-C \leqslant d_{Y}\left(\Phi x_{1}, \Phi x_{2}\right) \leqslant K \cdot d_{X}\left(x_{1}, x_{2}\right)+C
$$

Also $\Phi$ is a quasi-isometry if, moreover there exists a positive $C$ that for any $y \in Y$, there exists $x \in X$ such that

$$
d_{Y}(\Phi(x), y) \leqslant C
$$

A map $\Phi: X \rightarrow Y$ is Lipschitz for large distances if there are positive constants $K, C$ such that

$$
d_{Y}\left(\Phi x_{1}, \Phi x_{2}\right) \leqslant K \cdot d_{X}\left(x_{1}, x_{2}\right)+C .
$$

Definition 59. A quasimetric space is a set $X$ equipped with a quasi-isometric equivalence class $\mathcal{D}$ of pseudometrics $d$ on $X$ which is defined by the quasiisometry between two spaces. Moreover two pseudometrics $d$ and $\partial$ on a set $X$ are quasi-isometric if the identity map id $:(X, d) \rightarrow(X, \partial)$ is a quasi-isometry.

Definition 60. A pseudometric space ( $X, d$ ) is large scale geodesic if there is $K \geqslant 1$ such that, for all $x, y \in X$, there are $z_{0}=x, z_{1}, z_{2}, \ldots, z_{n}=y$ such that $d\left(z_{i}, z_{i+1}\right) \leqslant K$ and

$$
\sum_{i=0}^{n-1} d\left(z_{i}, z_{i+1}\right) \leqslant K \cdot d(x, y)
$$

Definition 61. A continuous left-invariant pseudometric $d$ on a topological group $G$ is maximal if for every other continuous left-invariant pseudometric $\partial$, there are constants $K, C$ such that $\partial \leqslant K \cdot d+C$.

Definition 62. Let $G$ be a topological group admitting a maximal pseudometric. The quasimetric structure on $G$ is the quasi-isometric equivalence class of its maximal pseudometrics.

Definition 63. If $\Sigma$ is a symmetric generating set for a topological group $G$, then its associated word metric $\rho_{\Sigma}: G \longrightarrow \mathbb{N}$ is defined by

$$
\rho_{\Sigma}(g, h)=\min \left(k \geqslant 0 \mid \exists s_{1}, \ldots, s_{k} \in \Sigma g=h s_{1} \ldots s_{k}\right) .
$$

The next lemma has been adapted from Theorem 1.4.13 (p.48) of the following paper Han14 written by Bernhard Hanke, Piotr Nowak and Guoliang Yu.

Lemma 64. Let $\Phi: X \longrightarrow Y$ be a bornologous map between quasi-metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ and assume $\left(X, d_{X}\right)$ is large scale geodesic. Then $\Phi$ is Lipschitz for large distances.

Proof. Since $\left(X, d_{X}\right)$ is large scale geodesic, there exists $K \geqslant 1$ such that for any $x, y \in X$, there exists $z_{0}=x, z_{1}, \ldots, z_{n}=y$ such that

$$
d_{X}\left(x_{i}, x_{i+n}\right) \leqslant K \text { and } \sum_{i=0}^{n-1} d_{X}\left(x_{i}, x_{i+1}\right) \leqslant K \cdot d_{X}(x, y) .
$$

First by triangle inequality, we have for $x, y \in X$ that

$$
d_{Y}(\Phi(x), \Phi(y)) \leqslant \sum_{i=0}^{n-1} d_{Y}\left(\Phi\left(x_{i}\right), \Phi\left(x_{i+1}\right)\right)
$$

Moreover since $\Phi$ is bornologous, for $E \in \mathcal{E}_{d_{X}}$,

$$
E=\left\{\left(x_{1}, x_{2}\right) \in X^{2} \mid d_{X}\left(x_{1}, x_{2}\right) \leqslant K\right\}
$$

and then $\Phi(E) \in \mathcal{E}_{d_{Y}}$. Thus there exists $K \geqslant 1$ such that

$$
\Phi(E) \subseteq\left\{\left(y_{1}, y_{2}\right) \in Y^{2} \mid d_{Y}\left(y_{1}, y_{2}\right) \leqslant K^{\prime}\right\}
$$

Therefore

$$
d_{Y}(\Phi(x), \Phi(y)) \leqslant K^{\prime} \sum_{i=0}^{n-1} d_{X}\left(x_{i}, x_{i+1}\right) \leqslant K^{\prime} K \cdot d_{X}(x, y)
$$

Lemma 65. For a continuous left-invariant pseudometric $d$ on a topological group $G$, the following are equivalent:
(i) $d$ is coarsely proper;
(ii) a set $A \subseteq G$ is coarsely bounded if and only if it is d-bounded;
(iii) for every left-invariant pseudometric $\partial$ on $G$, the map

$$
\text { id }:(G, d) \longrightarrow(G, \partial)
$$

is bornologous.
Proof. (i) $\Longrightarrow$ (iii) : Since $d$ is coarsely proper,
$\mathcal{E}_{d}=\mathcal{E}_{L}=\bigcap\left\{\mathcal{E}_{\partial} \mid \partial\right.$ continuous left-invariant pseudometric on $\left.G\right\}$
So for any $\partial$ continuous left-invariant on $\mathrm{G}, \mathcal{E}_{d} \subseteq \mathcal{E}_{\partial}$. Thus

$$
(\mathrm{id} \times \mathrm{id})\left[\mathcal{E}_{d}\right] \subseteq \mathcal{E}_{\partial} .
$$

Hence

$$
\text { id }:(G, d) \longrightarrow(G, \partial)
$$

is bornologous.
$($ ii $) \Longrightarrow($ iii $):$ Let $\partial$ be a continuous left-invariant pseudometric. To show that id : $(G, d) \longrightarrow(G, \partial)$ is bornologous. Let $A \subseteq G d$-bounded, then by (ii) $A$ is coarsely bounded, so $A$ is $\partial$-bounded. By Lemma 40, the coarse structure induced by $d$ is included in the one induced by $\partial$. Then $\mathcal{E}_{d} \subseteq \mathcal{E}_{\partial}$. Hence the identity map from $(G, d)$ to $(G, \partial)$ is bornologous.
$($ iii $) \Longrightarrow(i i)$ : Suppose that for any continuous left-invariant pseudometric $\partial$, the identity map from $(G, d)$ to $(G, \partial)$ is bornologous Then in particular, for $A \subseteq G d$-bounded and for a continuous left-invariant pseudometric $\partial$,

$$
A d \text {-bounded } \Leftrightarrow A \times A \in \mathcal{E}_{d} \Rightarrow A \times A \in \mathcal{E}_{\partial} \Rightarrow A \partial \text {-bounded. }
$$

Thus we have shown that if $A$ is $d$-bounded then $A \times A \in \mathcal{E}_{\partial}$ for any continuous left-invariant pseudometric $\partial$ which is equivalent to $A \times A \in \mathcal{E}_{L}$ i.e. $A$ is coarsely bounded.
$(i) \Longleftrightarrow(i i)$ : if a $d$-ball of radius $R$ is contained in a $\partial$-ball of radius $S$, then

$$
d(x, y)=d\left(1, x^{-1} y\right)<R \Rightarrow \partial(x, y)=\partial\left(1, x^{-1} y\right)<S
$$

By Lemma 40, $d$ is coarsely proper is equivalent to a set $A \subseteq G$ is coarsely bounded when it is $d$-bounded.

Lemma 66. Suppose $d$ is a compatible left-invariant metric on a topological group $G$ and $V$ is a symmetric open identity neighborhood generating $G$ containing 1 and having finite d-diameter. Define

$$
\partial(f, h)=\inf \left(\sum_{i=1}^{n} d\left(g_{i}, 1\right) \mid g_{i} \in V, f=h g_{1} \ldots g_{n}\right)
$$

Then $\partial$ is a compatible left-invariant metric, quasi-isometric to the word metric $\rho_{V}$.

Proof. Firstly $\partial$ is left-invariant, moreover $V$ is open and $d$ is continuous, thus $\partial$ is also continuous. Since $\partial \geqslant d, \partial$ is a compatible metric on $G$.
Then we show the last part: $\partial$ is quasi-isometric to the word metric $\rho_{V}$.
For $f, h \in G$, let $n=\rho_{V}(f, h), f=h g_{1} \ldots g_{n}$ with $g_{i} \in V$. Since $g_{i} \in V$ and $1 \in V, d\left(g_{i}, 1\right) \leqslant \operatorname{diam}_{d}(V)$. So,

$$
\begin{aligned}
& \sum_{i=1}^{n} d\left(g_{i}, 1\right) \leqslant n \cdot \operatorname{diam}_{d}(V) \\
& \text { i.e. } \partial(f, h) \leqslant \sum_{i=1}^{n} d\left(g_{i}, 1\right) \leqslant \rho_{V}(f, h) \cdot \operatorname{diam}_{d}(V)
\end{aligned}
$$

Now pick $\varepsilon>0$ such that

$$
\{g \in G \mid d(g, 1)<2 \varepsilon\} \subseteq V
$$

We fix $f, h \in G$ and take the shortest sequence such that for $g_{i} \in V$ with $i \in \llbracket 0, n \rrbracket$,

$$
f=h g_{1} \ldots g_{n} \text { and } \sum_{i=1}^{n} d\left(g_{i}, 1\right) \leqslant \partial(f, h)+1 .
$$

Then we have $g_{i} g_{i+1} \notin V$. Otherwise a sequence with $g_{i} g_{i+1}$ instead of $g_{i}$ and $g_{i+1}$ would be a shorter sequence since $d\left(g_{i} g_{i+1}, 1\right) \leqslant d\left(g_{i}, 1\right)+d\left(g_{i+1}, 1\right)$.
Let $d\left(g_{i}, 1\right) \geqslant \varepsilon$ and $d\left(g_{i+1}, 1\right) \geqslant \varepsilon$. Then there are at least $\frac{n-1}{2} g_{i}$ such that $d\left(g_{i}, 1\right) \geqslant \varepsilon$. Therefore

$$
\frac{n-1}{2} \cdot \varepsilon \leqslant \sum_{i=1}^{n} d\left(g_{i}, 1\right) \leqslant \partial(f, h)+1
$$

Since $\rho_{V}(f, h) \leqslant n$,

$$
\begin{aligned}
& \frac{\rho_{V}(f, h)-1}{2} \cdot \varepsilon \leqslant \sum_{i=1}^{n} d\left(g_{i}, 1\right) \text { and so } \\
& \frac{\varepsilon \rho_{V}(f, h)}{2}-\frac{\varepsilon}{2}-1 \leqslant \partial(f, h) \leqslant \operatorname{diam}_{d}(V) \cdot \rho_{V}(f, h) .
\end{aligned}
$$

Hence $\partial$ and $\rho_{V}$ are quasi-isometric.
Proposition 67. For a continuous left-invariant pseudometric $d$ on a topological group $G$, the following are equivalent:
(i) $d$ is maximal;
(ii) $d$ is coarsely proper and ( $G, d$ ) is large scale geodesic;
(iii) $d$ is quasi-isometric to the word metric $\rho_{A}$ given by a coarsely bounded symmetric generating set $A \subseteq G$.

Proof. (ii) $\Longrightarrow(i)$ : Suppose $\partial \neq d$ is a continuous left-invariant pseudometric on $G$. By Lemma 65, id : $(G, d) \longrightarrow(G, \partial)$ is bornologous. Then by Lemma 64 . id is Lipschitz for large distances. Thus $d$ is maximal.
$(i) \Longrightarrow(i i i):$ Claim: $G$ is generated by a closed ball

$$
B_{k}=\{g \in G \mid d(g, 1) \leqslant k\} .
$$

Suppose it is false, then $G$ is the union of an increasing chain of proper open sub-groups $V_{n}=\left\langle B_{n}\right\rangle$ for $n \geqslant 1$. We now add the negative indexes to the chain $V_{n}=\left\langle B_{n}\right\rangle$ for $n \geqslant 1$ with

$$
V_{0} \supseteq V_{-1} \supseteq V_{-1} \supseteq \ldots \ni 1
$$

where the $V_{-1}$ are symmetric and open such that $V_{n}^{3} \subseteq V_{n+1}$. From Lemma37, we get

$$
\partial(f, g)=\inf \left(\sum_{i=0}^{k-1} \delta\left(h_{i}, h_{i+1}\right) \mid h_{0}=f, h_{k}=g\right) .
$$

Since $d$ is maximal, there exists $K, C>0$ such that

$$
\partial(f, g) \leqslant K d(f, g)+C \text { for all } f, g
$$

Since $B_{n} \backslash V_{n-1} \neq \emptyset$ for infinitely many $n \geqslant 1$, for $g \in B_{n} \backslash V_{n-1} \subseteq V_{n} \backslash V_{n-1}$, there exists an infinity of $n$ such that $\partial(g, 1) \geqslant 2^{n-1}$ and $d(g, 1) \leqslant n$. Then

$$
2^{n-1} \leqslant \partial(g, 1) \leqslant K n+C
$$

for infinitely many $n$. This cannot be. Therefore

$$
G=V_{k}=\left\langle B_{k}\right\rangle \text { for a } k \geqslant 1 .
$$

Let

$$
\partial^{\prime}(f, g)=\inf \left(\sum_{i=1}^{n} d\left(g_{i}, 1\right) \mid g_{i} \in B_{k}, f=h g_{1} \ldots g_{n}\right)
$$

from Lemma 66 where $V=B_{k}$. Thus $d \leqslant \partial^{\prime}$. Moreover since $d$ is maximal, there exists $K, C>0$ such that $\partial^{\prime} \geqslant K d+C$. Therefore $d$ and $\partial^{\prime}$ are quasiisometric. By Lemma 66, $\partial^{\prime}$ is quasi-isometric to the word metric $\rho_{B_{k}}$. Thus $d$
and $\rho_{B_{k}}$ are quasi-isometric.
We need to check that $B_{k}$ is coarsely bounded. Let $d^{\prime}$ a continuous left-invariant pseudometric, then there exists $K, C>0$ such that $d^{\prime} \leqslant K d+C$. If $x, y \in B_{k}$, then $d(x, y) \leqslant 2 k$. So

$$
d^{\prime}(x, y) \geqslant 2 k K+C
$$

and in particular, $B_{k}$ is d-bounded. Therefore $B_{k}$ is coarsely bounded.
$($ iii $) \Longrightarrow(i i): \rho_{A}$ is the shortest path on the Cayley graph of $G$ with respect to the symmetric generating $A \subseteq G$. Indeed the Cayley graph has vertexes $G$ and for $g, h \in G, g$ is related to $h$ by an edge if and only if there exists $a \in A$ such that $g=h a$.
For $x, y \in G$, let
$d_{c}(x, y)=\min \left\{n \in \mathbb{N} \mid \exists x_{0}=x, x_{1}, \ldots, x_{n-1}, x_{n}=y\right.$ where $\left(x_{i}, x_{i+1}\right)$ is an edge $\}$.
Then since $\left(x_{i}, x_{i+1}\right)$ is an edge, $d_{c}\left(x_{i}, x_{i+1}\right) \leqslant 1$. Thus

$$
\sum_{i=0}^{n-1} d_{c}\left(x_{i}, x_{i+1}\right) \leqslant d_{c}(x, y)
$$

Therefore $\left(G, \rho_{A}\right)$ is large scale geodesic. Moreover $d$ is quasi-isometric to $\rho_{A}$, so $(G, d)$ is large scale geodesic.
Moreover each $d$-bounded set is $\rho_{A}$-bounded. Therefore these sets are in $A^{n}$ for an $n$. Then they are coarsely bounded. Hence $d$ is coarsely proper.

Using the previous results, we are now able to prove our main theorem.
Theorem 68. For a European topological group $G$, the following are equivalent:
(i) $G$ admits a continuous left-invariant maximal pseudometric d;
(ii) $G$ is generated by a coarsely bounded set;
(iii) $G$ is locally bounded and not the union of a countable chain of proper open subgroups;
(iv) the coarse structure is monogenic.

Proof. Thanks to Theorem 55, we already have $(i i) \Longleftrightarrow$ (iii) $\Longleftrightarrow$ (iv).
$(i i) \Longrightarrow(i)$ : Let $d$ be a continuous left-invariant pseudometric admitted by $G$. $G$ is generated by a coarsely bounded set, so it is generated by a d-bounded subset. Then this subset has finite d-dimension. So there exists $k \in \mathbb{R}$ such that $G$ is generated by the open d-ball:

$$
V=\{x \in G \mid d(1, x)<k\} .
$$

Taking the $\partial$ of Lemma 66, we have $\partial$ is quasi-isometric to the word metric $\rho_{V}$. Thus by Lemma 66, $V$ is coarsely bounded generating $G$. Therefore by Proposition 67, $\partial$ is maximal.
$(i) \Longrightarrow(i i):$ Let $d$ be a maximal pseudometric on $G$. By Proposition 67, $d$ is quasi-isometric to the word metric $\rho_{A}$ with $A$ coarsely bounded set generating $G$.

## $4 \mathcal{S}(\mathbb{Z}, \mathbb{N})$ is locally bounded

In this section, we will show that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is locally bounded. Thanks to Theorem 68, we have a characterization of such a result. Thanks to this theorem, we need to show that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ admits a continuous left-invariant maximal pseudometric $d$. The perfect candidate for $d$ is the pseudometric defined in Cor16 at the top of page 24. For a set $X$ and $M$ a subset of $X$, we have the following general definition.

Definition 69. For $g, h \in \mathcal{S}(X, M), d_{M}(g, h)=|g M \triangle h M|$ is a left-invariant pseudometric on $\mathcal{S}(X, M)$.

We are only interested in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$. So let us show that
Theorem 70. $d_{\mathbb{N}}(g, h)=|g \mathbb{N} \triangle h \mathbb{N}|$ is maximal on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.
Thanks to Proposition 67, we need to show that $d_{\mathbb{N}}$ is coarsely proper and $\left(\mathcal{S}(\mathbb{Z}, \mathbb{N}), d_{\mathbb{N}}\right)$ is large scale geodesic.

### 4.1 Proof on $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$

First we are going to show it on $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ because it is an easier case. We will then use it to prove the result on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.

To show that $\left(\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N}), d_{\mathbb{N}}\right)$ is large scale geodesic, it is enough to show that for $k$ and $e$ the neutral element,

$$
B_{d}(e, k) \subseteq B_{d}(e, 2)^{2 k}
$$

Since $\mathcal{S}_{0}^{+}(\mathbb{Z})$ the set of finite support permutations is dense in $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ and $B_{d}(e, 0)$ is open, it is enough to show

$$
B_{d}(e, k) \cap \mathcal{S}_{0}^{+}(\mathbb{Z}) \subseteq B_{d}(e, 2)^{2 k}
$$

Let $\sigma \in \mathcal{S}_{0}^{+}(\mathbb{Z})$ and $k \in \mathbb{R}_{+}$such that $d_{\mathbb{N}}(\sigma, e)=k$. Then $|\sigma \mathbb{N} \triangle \mathbb{N}|=k$. Since $\sigma$ has finite support, there exists $\sigma_{1}, \ldots, \sigma_{p}$ cyclic permutations with disjoint supports such that $\sigma=\sigma_{1} \cdots \sigma_{p}$. For $j \in\{1, \ldots, p\}$,

* if $\sigma_{j}$ has its support included in $\mathbb{N}^{c}$ or $\mathbb{N}$ then $d_{\mathbb{N}}\left(\sigma_{j}, e\right)=0$,
$*$ otherwise $\sigma_{j}=\left(a_{1} \cdots a_{n}\right)$ where $a_{i} \in \mathbb{Z}$. Let

$$
\begin{aligned}
F & =\left\{b_{1}, \ldots, b_{k} \in \mathbb{N} \text { such that } \sigma\left(b_{i}\right) \leqslant 0\right\} \cup\left\{c_{1}, \ldots, c_{k} \in \mathbb{N}^{c} \text { such that } \sigma\left(c_{i}\right) \geqslant 0\right\} \\
& =\left\{f_{1}, \ldots, f_{2 k}\right\}
\end{aligned}
$$

Then there is only a finite number of those $f_{i}$ in the $\sigma_{j}$, say $l \leqslant 2 k$. Then

$$
\begin{aligned}
\sigma_{j} & =\left(-f_{1}-f_{2}-f_{3}-\cdots-f_{l}-\right) \\
& =\left(-f_{1}\right)\left(f_{1}-f_{2}\right)\left(f_{2}-f_{3}\right) \cdots\left(f_{l}-\right)
\end{aligned}
$$

where each - means that there are some $a_{i} \neq f_{m}$ for any $m \in\{1, \ldots, 2 k\}$.
So first we have that

$$
d_{\mathbb{N}}\left(\left(-f_{1}\right), e\right)=d_{\mathbb{N}}\left(\left(f_{l}-, e\right)=0\right.
$$

Let us compute it for the cycle $\left(-f_{1}\right)$. In the latter, we know that all the $a_{i} \neq f_{1}$ are all of the same sign. Also $\sigma$ sends the element before $f_{1}$ onto $f_{1}$ so $f_{1}$ is of the same sign too. Thus all the elements of $\left(-f_{1}\right)$ are of the same sign. Therefore $d_{\mathbb{N}}\left(\left(-f_{1}\right), e\right)=0$. Second we have the following

$$
d_{\mathbb{N}}\left(\left(f_{i}-f_{i+1}\right), e\right)=2
$$

since two elements are sent from $\mathbb{N}$ to $\mathbb{N}^{c}$ or the other direction.
Since $\sigma$ is the product of $\sigma_{j}$, we have:

$$
\begin{equation*}
B_{d}(e, k) \subseteq B_{d}(e, 2)^{2 k} \tag{8}
\end{equation*}
$$

By Lemma 65, $d_{\mathbb{N}}$ is coarsely proper if and only if every $d_{\mathbb{N}}$-bounded set $A$ is coarsely bounded. Now thanks to Proposition 38, it is equivalent to for every identity neighborhood V , there is a finite set $F \subseteq G$ and $k \geqslant 1$ such that $A \subseteq(F V)^{k}$. Equation 8 is used to reduce to the case $A=B_{d}(e, 2)$ which is a subset of $G$. Let

$$
V=\left\{\sigma \in \mathcal{S}^{o}(\mathbb{Z}, \mathbb{N}): \sigma\left(P_{i}\right)=P_{i} \text { where } i \in\{1, \ldots, k\}, P_{i}| | P_{i} \triangle \mathbb{N} \mid<\infty\right\}
$$

There exists $K$ such that $\left|P_{i} \triangle \mathbb{N}\right| \subseteq\{-K, \ldots, K\}$. Hence

$$
V \supseteq \tilde{V}=\{\sigma \in V: \sigma(i)=i \forall i \in\{-K, \ldots, K\}\}
$$

Moreover

$$
\tilde{V} \cong \operatorname{Sym}(\rrbracket-\infty,-K-1 \rrbracket) \times \operatorname{Sym}(\llbracket K+1,+\infty \llbracket)
$$

since the values outside of these two intervals do not matter as long as they stay either in $\mathbb{N}$ or $\mathbb{N}^{c}$.
Furthermore $\operatorname{Sym}(\rrbracket-\infty,-K-1 \rrbracket)$, respectively $\operatorname{Sym}(\llbracket K+1,+\infty \llbracket)$ is an open subgroup of $\operatorname{Sym}\left(\mathbb{N}^{c}\right)$, respectively of $\operatorname{Sym}(\mathbb{N})$.
We start with an easier case: let $\sigma \in B_{d}(e, 0)$ and $A=\sigma([0, K[)$. Then there exists $\tau \in V$ such that $\tau(A \subseteq[0,2 K[)$. Thus

$$
B=\tau \sigma([0, K[) \subseteq[0,2 K[.
$$

Now we construct $\tau^{\prime} \in \operatorname{Sym}\left(\left[0,2 K[)\right.\right.$ such that $\tau^{\prime}(B)=[0, K[$.
Since for $x \in\left[0, K\left[, \tau \sigma(x) \in\left[0,2 K\left[\right.\right.\right.\right.$, we define $\tau^{\prime}$ by $\tau^{\prime}(\tau \sigma(x))=x$ for all $x \in\left[0,2 K\left[\right.\right.$. Then we extend $\tau^{\prime}$ arbitrarily such that $\tau^{\prime} \in \operatorname{Sym}([0,2 K[)$. We have $\tau^{\prime} \tau \sigma \in \operatorname{Sym}\left(\left[0,2 K[)\right.\right.$ where $\tau^{\prime} \in \operatorname{Sym}([0,2 K[), \tau \in V$. So $\tau \sigma \in \operatorname{Sym}([0,2 K[) V$. Thus $\sigma \in V \operatorname{Sym}([0,2 K[) V$. Hence

$$
B_{d}(e, 0) \subseteq V \operatorname{Sym}([0,2 K[) V
$$

Since $\operatorname{Sym}([0,2 K[)$ is a finite subset, we found $F$ such that

$$
B_{d}(e, 0) \subseteq V F V
$$

Then we show the case which is the one we need. Let $\sigma \in B_{d}(e, 2)$. Let $a<0$ such that $\sigma(a) \geqslant 0$ and $b \geqslant 0$ such that $\sigma(b)<0$. Moreover let $A=\sigma(]-K, K[)$. Then there exists $\tau \in \tilde{V}$ such that $\tau(A) \subseteq]-2 K, 2 K[$. Our aim is to have for $K \geqslant 0$ such that

$$
\tau \in \tilde{V}, \tau(\{a, b, \sigma(a), \sigma(b)\}) \subseteq]-2 K, 2 K[
$$

We set $\sigma^{\prime}=\tau \sigma \tau^{-1}$. Then $\tau(a) \mapsto \tau \sigma(a)$ and $\tau(b) \mapsto \tau \sigma(b)$ by $\sigma^{\prime}$. By composing by $\sigma^{\prime}$ if needed, we can suppose that $a, \sigma(a), b$ and $\sigma(b)$ are in $]-2 K, 2 K[$. Thus

$$
\text { there exists } \tau \in \operatorname{Sym}(]-2 K, 2 K[) \text { such that } \tau \sigma(\mathbb{N})=N
$$

Hence $\tau \sigma \in B_{d}(e, 0)$. Since $B_{d}(e, 0) \subseteq V F V$ as shown above, $\tau \sigma \in V F V$. Moreover since $\tau \in \tilde{V} \subseteq V, \sigma \in V F V$. Thus

$$
B_{d}(e, 2) \subseteq V F V
$$

Therefore $d_{\mathbb{N}}$ is maximal on $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$.

### 4.2 Proof on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$

We have proven that $d_{\mathbb{N}}$ is maximal on $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$. So now we are going to prove it on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.

We first prove that $\left(\mathcal{S}(\mathbb{Z}, \mathbb{N}), d_{\mathbb{N}}\right)$ is large scale geodesic. Let $\sigma \in \mathcal{S}(\mathbb{Z}, \mathbb{N})$, $k=|\sigma \mathbb{N} \triangle \mathbb{N}|$ and $t: n \mapsto n+1$. Then $\operatorname{tr}(t)=1$ and $\mathrm{d}_{\mathbb{N}}(t, \mathrm{id})=1$. Let $i=\operatorname{tr}(\sigma)$ and $\tau=\sigma t^{-i}$. Then since tr is a morphism, we have

$$
\operatorname{tr}(\tau)=\operatorname{tr}(\sigma)+\operatorname{tr}\left(t^{-i}\right)=i-i=0
$$

Thus $\tau \in \mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$. Moreover

$$
\begin{aligned}
d_{\mathbb{N}}(\tau, \mathrm{id}) & \leqslant d_{\mathbb{N}}(\tau, \sigma)+d_{\mathbb{N}}(\sigma, \mathrm{id}) \\
& \leqslant d_{\mathbb{N}}(\sigma, \mathrm{id})+d_{\mathbb{N}}\left(t^{-i}, \mathrm{id}\right) \\
& \leqslant k+|i| \\
& \leqslant k+k \\
& \leqslant 2 k
\end{aligned}
$$

Thus $\tau$ is the product of at most $2 k$ elements with distance smaller or equal than 2 to the identity. Since $\sigma=\tau t^{i}, \sigma$ is the product of at most $3 k$ elements with distance smaller or equal than 2 to the identity.

Second we prove that $d_{\mathbb{N}}$ is coarsely proper. Let $r \geqslant 1$. The aim is to show that $B_{d}(\mathrm{id}, r)$ is bounded, i.e. for any open identity neighborhood $V$ there exists a finite subset $F \subseteq G$ and an $n$ such that $B_{d}(\mathrm{id}, r) \subseteq(V F)^{n}$.
Since $\mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ is an open subgroup of $\mathcal{S}(\mathbb{Z}, \mathbb{N})$, we can suppose that $V \subseteq \mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$. From what we have done above, we already know that there exists $n$ and a finite subset $F \in \mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$ such that

$$
B_{d}(\mathrm{id}, r) \cap \mathcal{S}^{o}(\mathbb{Z}, \mathbb{N}) \subseteq(V F)^{n}
$$

By letting $\tilde{F}=F \cup\left\{t^{-r}, \ldots, t^{r}\right\}$, we have that

$$
B_{d}(\mathrm{id}, r) \subseteq(V \tilde{F})^{n+1}
$$

Indeed, if $\sigma \in B_{d}(\mathrm{id}, r)$,

$$
|\operatorname{tr}(\sigma)| \leqslant d(r, \mathrm{id}) \leqslant r
$$

Then $t^{\operatorname{tr}(\sigma)} \in \tilde{F}$ and $\sigma=\tau t^{\operatorname{tr}(\sigma)}$ by letting $\tau=\sigma t^{-\operatorname{tr}(\sigma)}$. So $\operatorname{tr}(\tau)=0$. Thus $\tau \in \mathcal{S}^{o}(\mathbb{Z}, \mathbb{N})$. Therefore $\tau \in(V F)^{n}$. Hence

$$
\sigma \in(V F)^{n} \tilde{F} \subseteq(V F)^{n+1}
$$

Therefore $d_{\mathbb{N}}$ is maximal on $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.
Thus we have proven that $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ is locally bounded.

## 5 Embedding in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$

We want to know what can be embedded in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$.
The aim of this part is to show that $\mathbb{Z}^{k}$ can be embedded in $\mathcal{S}(\mathbb{Z}, \mathbb{N})$ where $\mathbb{Z}^{k}=<e_{1}, \ldots, e_{k}>$ vectors of the canonical basis of $\mathbb{Z}^{k}$.

On $\mathbb{Z}^{k}$, there is the $l^{1}$ metric which is the distance to the generators defined for $\left(n_{1}, \ldots, n_{k}\right),\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$ by

$$
d_{l^{1}}\left(\left(n_{1}, \ldots, n_{k}\right),\left(m_{1}, \ldots, m_{k}\right)\right)=\sum_{i=1}^{k}\left|n_{i}-m_{i}\right|
$$

We want to find a map $\rho: \mathbb{Z}^{k} \rightarrow \mathcal{S}(\mathbb{Z}, \mathbb{N})$ such that

$$
d_{l^{1}}\left(\left(n_{1}, \ldots, n_{k}\right),\left(m_{1}, \ldots, m_{k}\right)\right)=d_{\mathbb{N}}\left(\rho\left(n_{1}, \ldots, n_{k}\right), \rho\left(m_{1}, \ldots, m_{k}\right)\right)
$$

Let $\rho\left(e_{i}\right)=\tau_{i}$ for $1 \leqslant i \leqslant k$ where

$$
\tau_{i}(x)=\left\{\begin{array}{r}
x+k \text { if } x \equiv i[k] \\
x \text { otherwise }
\end{array}\right.
$$

For $\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$ and $p \in \mathbb{N}$,

$$
\begin{aligned}
\rho\left(n_{1}, \ldots, n_{k}\right)(p)= & \left(\tau_{1}^{n_{1}} \circ \cdots \circ \tau_{k}^{n_{k}}\right)(p) \\
= & p+n_{i} k \text { where } i \text { is the only element of }\{1, \ldots, k\} \text { such that } \\
& p \equiv i[k] .
\end{aligned}
$$

Now we prove that $d_{l^{1}}$ is also left-invariant. Indeed for $m=\left(m_{1}, \ldots, m_{k}\right)$, $n=\left(n_{1}, \ldots, n_{k}\right), p=\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{Z}^{k}$,

$$
\begin{aligned}
d_{l^{1}}(p+n, p+m) & =\sum_{i=1}^{k}\left|\left(p_{i}+n_{i}\right)-\left(p_{i}+m_{i}\right)\right| \\
& =\sum_{i=1}^{k}\left|p_{i}+n_{i}-p_{i}-m_{i}\right| \\
& =\sum_{i=1}^{k}\left|n_{i}-m_{i}\right| \\
& =d_{l^{1}}(n, m) .
\end{aligned}
$$

Since $d_{l^{1}}$ and $d_{\mathbb{N}}$ are left-invariant, it is enough to show for any $\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$ that

$$
d_{l^{1}}\left(\left(n_{1}, \ldots, n_{k}\right),(0, \ldots, 0)\right)=d_{\mathbb{N}}\left(\rho\left(n_{1}, \ldots, n_{k}\right), \mathrm{id}\right)
$$

Indeed for any $\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$,

$$
d_{l^{1}}\left(\left(n_{1}, \ldots, n_{k}\right),(0, \ldots, 0)\right)=d_{l^{1}}\left(\left(m_{1}, \ldots, m_{k}\right)+\left(n_{1}, \ldots, n_{k}\right),\left(m_{1}, \ldots, m_{k}\right)\right) .
$$

Moreover

$$
\begin{aligned}
& d_{l^{1}}\left(\left(n_{1}, \ldots, n_{k}\right),(0, \ldots, 0)\right)=d_{\mathbb{N}}\left(\rho\left(n_{1}, \ldots, n_{k}\right), \text { id }\right) \\
\Leftrightarrow & \sum_{i=1}^{k}\left|n_{i}\right|=\left|\rho\left(n_{1}, \ldots, n_{k}\right) \mathbb{N} \triangle \mathbb{N}\right| .
\end{aligned}
$$

So we need to show the above. To do that we fix $i \in\{0, \ldots, k-1\}$. Let

$$
A_{i}=\{p \in \mathbb{Z}: p \equiv i[k]\} .
$$

Each $A_{i}$ is $\rho$-invariant: for any $q \in \mathbb{Z}$,

$$
\rho\left(n_{1}, \ldots, n_{k}\right)(i+q k)=i+\left(q+n_{i}\right) k .
$$

Hence $A_{i}=\{i+q k: q \in \mathbb{Z}\}$. Let $B_{i}=\{i+q k: q \in \mathbb{N}\}=A_{i} \cap \mathbb{N}$. Thus

$$
\mathbb{N}=B_{o} \sqcup \cdots \sqcup B_{k-1} .
$$

Clearly $\rho\left(n_{1}, \ldots, n_{k}\right)\left(B_{i}\right)=n_{i} k+B_{i} \subseteq A_{i}$. Moreover we have

$$
\begin{aligned}
\rho\left(n_{1}, \ldots, n_{k}\right) \mathbb{N} \triangle \mathbb{N} & =\bigsqcup_{i} \rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle \bigsqcup_{j} B_{j} \\
& =\bigsqcup_{i, j=0}^{k-1} \rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{j} .
\end{aligned}
$$

If $i \neq j$ then $\rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \cap B_{j}=\emptyset$. Therefore $\rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{j}=\emptyset$. Hence

$$
\rho\left(n_{1}, \ldots, n_{k}\right) \mathbb{N} \triangle \mathbb{N}=\bigsqcup_{i=0}^{k-1} \rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{i}
$$

Now we look at the $n_{i}$ 's for each $B_{i}$.
The first case is if $n_{i} \geqslant 0$ :
$\rho\left(n_{1}, \ldots, n_{k}\right) B_{i}=\left\{i+\left(n_{i}+q\right) k: q \in \mathbb{N}\right\} \subseteq B_{i}$.

$$
\text { So } \rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{i}=B_{i} \backslash \rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \text {. }
$$

If $x \in B_{i}$, then $x=i+q k$ where $q \in \mathbb{N}$. So if $x \in \rho\left(n_{1}, \ldots, n_{k}\right) B_{i}$, then $x=i+\left(q^{\prime}+n_{i}\right) k$ with $q^{\prime} \in \mathbb{N}$. Thus

$$
i+q k=i+\left(q^{\prime}+n_{i}\right) k
$$

Hence $q=q^{\prime}+n_{i}$. The reasoning also goes from bottom to top.
So $x \in \rho\left(n_{1}, \ldots, n_{k}\right) B_{i}$ if and only if $q^{\prime}=q-n_{i}>0$. Thus

$$
x \in B_{i} \backslash \rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \Leftrightarrow q-n_{i}<0 \Leftrightarrow q<n_{i} .
$$

Therefore $\rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{i}=\{i+q k: q \in\{0, \ldots, n-1\}\}$. Hence

$$
\left|\rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{i}\right|=\left|n_{i}\right|
$$

The second case is if $n_{i}<0$ :
$\rho\left(n_{1}, \ldots, n_{k}\right) B_{i}=\left\{i+\left(n_{i}+q\right) k: q \in \mathbb{N}\right\} \supseteq B_{i}$. So

$$
\begin{aligned}
\rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{i} & =\rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \backslash B_{i} \\
& =\left\{i+\left(n_{i}+q\right) k: q \in \mathbb{N}, n_{i}+q<0\right\} \\
& =\left\{i+\left(n_{i}+q\right) k: q \in\{0, \ldots,-n-1\}\right\} .
\end{aligned}
$$

Therefore we also have $\left|\rho\left(n_{1}, \ldots, n_{k}\right) B_{i} \triangle B_{i}\right|=\left|n_{i}\right|$. Hence

$$
\left|\rho\left(n_{1}, \ldots, n_{k}\right) \mathbb{N} \triangle \mathbb{N}\right|=\sum_{i=1}^{k}\left|n_{i}\right|
$$

Therefore $\rho: \mathbb{Z}^{k} \rightarrow \mathcal{S}(\mathbb{Z}, \mathbb{N})$ is an isometric embedding. Hence
$\mathbb{Z}^{k} \leqslant \mathcal{S}(\mathbb{Z}, \mathbb{N})$. This embedding would then allow us to find the asymptotic dimension of $\mathcal{S}(\mathbb{Z}, \mathbb{N})$. This is done in the third section by Bell and in Dranishnikov BD08.

## References

[BD08] G. Bell and A. Dranishnikov. Asymptotic dimension. 2008.
[Ber06] George M. Bergman. Generating Infinite Symmetric Groups. Bulletin of the London Mathematical Society, 38(3):429-440, 2006.
[BYT16] Itaï Ben Yaacov and Todor Tsankov. Weakly almost periodic functions, model-theoretic stability, and minimality of topological groups. Transactions of the American Mathematical Society, 368(11):82678294, November 2016.
[Cor16] Yves Cornulier. Group actions with commensurated subsets, wallings and cubings. arXiv:1302.5982 [math], August 2016.
[DH05] Manfred Droste and W. Holland. Generating automorphism groups of chains. Forum Mathematicum - FORUM MATH, 17:699-710, May 2005.
[Han14] Bernhard Hanke. Piotr Nowak, Guoliang Yu: "Large Scale Geometry". Jahresbericht der Deutschen Mathematiker-Vereinigung, 116(2):119122, June 2014.
[Inv] Invariant Descriptive Set Theory - 1st Edition - Su Gao Routledge B. https://www.routledge.com/Invariant-Descriptive-SetTheory/Gao/p/book/9780367386962.
[Ros] Christian Rosendal. Coarse Geometry of Topological Groups. page 170.
[Ros09] Christian Rosendal. A topological version of the Bergman property. Forum Mathematicum, 21(2), January 2009.

