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Abstract

In this paper we generalize the work of Berenstein and Henson about model theory of

probability spaces with an automorphism in [BH04] by studying model theory of probability

spaces with a countable group acting by automorphisms. We use continuous model theory

to axiomatize the class of probability algebras endowed with an action of the countably

generated free group F8 by automorphisms, and we can then study probability spaces

through the correspondence between separable probability algebras and standard probability

spaces.

Given an IRS (invariant random subgroup) θ on F8, we can furthermore axiomatize the

class of probability algebras endowed with an action of the countably generated free group

F8 by automorphisms whose IRS is θ. We prove that if θ is hyperfinite, then this theory is

complete, model complete and stable and we show that the stable independence relation is

the classical probabilistic independence of events.

In order to do so, we give a shorter proof of the result of Gábor Elek stating that given a

hyperfinite IRS θ on a countable group Γ, every orbit of the conjugacy relation on the space

of actions of Γ with IRS θ is dense for the uniform topology.
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1 Introduction

1 Introduction

Section 2 deals with graphs. We recall the definition of a graphing and prove some basic

properties about it. In particular, we give a proof of Aldous and Lyons that for every

convergent sequence of finite graphs, there is a graphing which is a limit of this sequence,

using the Bernoullization of a measure.

In Section 3 we focus our attention on the notion of hyperfiniteness of graphings. First

we recall a well known result about hyperfinite graphings : every hyperfinite graphing is a

limit of a convergent sequence of finite graphs. Then we present a version of a theorem of

Gábor Elek ([Ele12]) stating that hyperfiniteness is an invariant of statistical equivalence

(see Definition 2.9), using the general notion of Bernoullization of a graphing.

In Section 4 we present the corollary of Rokhlin Lemma which is the key point in the

study of probability spaces with an automorphism conducted in [BH04]. The goal of this

section is to prove a generalization to hyperfinite pmp actions of this corollary that we call

the big theorem of this paper. Namely we prove that if θ is a hyperfinite IRS on a countable

group Γ, then for any two pmp action α : Γ ãÑ pX,µq and β : Γ ãÑ pY, νq on standard

probability spaces, F Ď Γ finite and ε ą 0 there is a pmp bijection ρ : X Ñ Y such that

µptx P X : @γ P F, γβ ˝ ρpxq “ ρ ˝ γαpxquq ą 1´ ε

In other words, the relation of conjugacy on the Polish space of pmp actions of Γ on a

standard probability space having IRS θ has dense orbits.

Moreover we prove a stronger version of the latter theorem involving the stabilization of

set of Borel parameters, when α is a factor of β (see Definition 4.11).

Finally in Section 5 we use the tools of Section 4 to study model theory of atomless

probability algebras with a countable group Γ acting by automorphisms. In fact, without

loss of generality, we restrict our study to actions of F8 the countably generated free group

as any action of a countable group can be seen as an action of F8.

First we recall the correspondence between separable models of the latter theory and

pmp actions of F8 on standard probability spaces using the classical correspondence between

separable atomless probability algebras and standard probability spaces and then applying

lifting theorems. For any IRS θ on F8 we define a theory Aθ representing pmp actions with

IRS θ, after proving that the IRS is indeed expressible in the first order.

Then the big theorem of Section 4 and the stronger version we already talked about

allow us to prove that these theories for θ hyperfinite are complete and model complete

by repeating the proofs found in [BH04]. However, there is a small subtlety for quantifier

elimination. Indeed in general the theories of the form Aθ for θ hyperfinite do not admit

quantifier elimination. We prove that we can still get elimination of quantifiers by adding

the supports (see Definition 5.10) of the automorphisms to the signature of the theory, and

we use this to prove that our theories are stable and to describe the stable independence

relation given by non dividing.
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2 Preliminaries

2 Preliminaries

Throughout the paper, the abbreviation pmp stands for ”probability measure preserving”.

2.1 About graphs

Definition 2.1. A graph G is a couple pV pGq, EpGqq where V pGq is a set and EpGq is an

irreflexive and symmetric relation on V pGq. Elements of V pGq are called vertices of G and

elements of EpGq are called edges of G.

For G a graph, for each v P V pGq we let degGpvq “ |tu P V pGq : pv, uq P EpGqu| and we

call supvPV pGq degGpvq P N Y t8u the degree bound of G. In the first two sections, we fix

d P N and unless it is precised otherwise, we consider only graphs of degree bound less than

d.

Definition 2.2. An isomorphism of graphs between G and H is a bijection f : V pGq Ñ

V pHq such that @x, y P V pGq, px, yq P EpGq ô pfpxq, fpyqq P EpHq.

Definition 2.3. Let G be a graph, A Ď V pGq and B Ď EpGq, then we define :

• V GadjpAq “ tv P V pGq : Da P A pa, vq P EpGqu the set of vertices adjacent to A.

• V GincpBq “ tv P V pGq : Du P V pGq, pu, vq P B _ pv, uq P Bu the set of vertices

incident to B.

• EGincpAq “ tpa, vq P EpGq : a P Au the set of edges incident to A.

We will write VadjpAq, VincpBq and EincpAq when by the context it is clear which graph

G is considered.

Definition 2.4. Let G be a graph, a subgraph of G is a graph H such that V pHq “ V pGq

and EpHq Ď EpGq. In this case, we write H Ď G.

If V Ď V pGq, the subgraph of G induced by V is the graph pV pGq, EpGq X V ˆ V q.

Nevertheless, in many cases it will be convenient to identify the induced graph on V and

the graph pV,EpGq X V ˆ V q and therefore see the induced graph on V as a graph on the

set of vertices V .

Whenever G is a graph and x P V pGq, we denote BGr pxq and we call the r-ball around

x in G the subgraph induced by G on vertices that are accessible from x with a walk of

distance at most r in EpGq.

We consider three classes of graphs :

• G is the set of finite graphs, up to isomorphism.

• For r P N, Gr is the set of rooted graphs of radius at most r, up to rooted isomorphism.

• G˚ is the set of rooted connected graphs up to rooted isomorphism.

In what follows, we will also consider graphs colored on vertices by the Cantor set

K :“ t0, 1uN :

• GK is the set of finite graphs colored on vertices by K, up to colored isomorphism.
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2.2 Graphings

• For r, s P N, GK
r,s is the set of rooted graphs of radius at most r and colored on vertices

by K, up to rooted isomorphism of graphs preserving the first s digits of the coloring

of any vertex. GK
r,s can also be seen as the set of rooted graphs of radius at most r

and colored by t0, 1us, up to rooted colored isomorphism. When r “ s, we write GK
r

for GK
r,s.

• G K
˚ is the set of rooted connected graphs colored on vertices by K up to rooted colored

isomorphism.

In general, we write G „ H to indicate that G and H are isomorphic. The type of isomor-

phism depends implicitly on the graphs G and H considered. For example if both G and H

are rooted graphs, the isomorphism is supposed to be a rooted isomorphism. If both G and

H are colored graphs, the isomorphism is supposed to be a colored isomorphism.

For G and H graphs colored by K, we write G „s H when G and H are isomorphic

as non-colored graphs by an isomorphism of graphs that preserves the first s digits of the

coloring of any vertex. For G colored by K and α P GK
r,s, we just write G „ α for G „s α.

Note that this definition makes sense as there cannot be a stronger form of isomorphism

than „s between G and α.

In this paper we will have to consider many sequences, if pxnqnPN is a sequence, we use

the notation px to refer to pxnqnPN.

For α P Gr (resp. GK
r,s) we let Nα Ď G˚ (resp. G K

˚ ) be the set of x P G˚ (resp. G K
˚ )

with root u such that Bxr puq „ α. It is easy to see that G˚ (resp. G K
˚ ) is a zero-dimensional

Polish space, whose basic clopen sets are the Nα for α P Gr (resp. GK
r,s). Notice that the

Nα for α P GK
r already form a basis for the topology on G K

˚ . For A Ď Gr (resp. GK
r,s) we

also write NA for
Ť

αPA

Nα.

2.2 Graphings

We now introduce the notion of graphing, which is at the intersection of the notions of

graphs and of pmp equivalence relations :

Definition 2.5. Let X be a standard Borel space and R be a Borel equivalence relation on

X. We let rRs be the group of Borel automorphisms of X whose graphs are contained in

R. We say that a Borel probability measure µ on X is R-invariant if every element of rRs

preserves the measure µ, namely, @f P rRs f˚µ “ µ.

From now on, for X any measurable space, we denote by PpXq the set of probability

measures on X. We will only consider Borel σ-algebras so in the following every element of

PpXq is a Borel probability measure on X.

Proposition 2.6 (Admitted, [Kec04]). With the same notations as above, for any

µ P PpXq, we can define two measures µl and µr on R by

• For all non-negative Borel f : RÑ r0,8s,
ş

R
f dµl “

ş

X

ř

yPrxsR

fpx, yq dµpxq

• For all non-negative Borel f : RÑ r0,8s,
ş

R
f dµr “

ş

X

ř

yPrxsR

fpy, xq dµpxq

Then µl “ µr if and only if µ is R-invariant.
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2.3 Convergence of graphs

Definition 2.7. Let G a Borel graph on a standard probability space pX,µq. Then the

equivalence relation RG induced by G is the Borel equivalence relation on pX,µq whose classes

are the connected components of G. We say that G is a graphing when µ is RG -invariant.

We can define a measure on the set of edges of a graphing by :

Definition 2.8. Let GpX,µq be a graphing and Z Ď EpGq Borel, the edge measure of the set

Z is defined by µEpZq :“ µlpZq “ µrpZq “
ş

X
degZpxqdµpxq, where µl and µr are defined

with respect to the Borel equivalence relation RG and degZpxq is the number of edges in Z

incident to x.

In this paper, any graphing is supposed of degree bound d, so the edge measure of a set

of edges is bounded by the measure of the vertices incident to this set. Namely, for all Borel

Z Ď EpGq we have µpVincpZqq ď µEpZq ď d.µpVincpZqq.

2.3 Convergence of graphs

To any finite graph and to any graphing we can associate a probability measure on G˚ (resp.

G K
˚ ) :

• If G P G (resp. GK), then let µC be the probability counting measure on V pGq and

πG : V pGq Ñ G˚ (resp. V pGq Ñ G K
˚ ) defined by πGpvq “ rG, vs. Now let µG “ πG˚µC .

• If G is a graphing on a probability space pX,µq, then πG : V pGq Ñ G˚ (resp. V pGq Ñ

G K
˚ ) defined by πGpxq “ rG, xs. Now let µG “ πG˚µ.

For G a graph, r P N and α P Gr (resp. r, s P N and Gr,s let VαpGq “ tv P V pGq :

BGr pvq „ αu.

Note that since measures on G˚ (resp. G K
˚ ) are determined by their values on the clopen

sets Nα for α P
Ť

r
Gr (resp.

Ť

r,s
Gr,s), the measures µG and µG are totally determined by the

equalities µGpNαq “ µCpVαpGqq and µGpNαq “ µpVαpGqq.

Definition 2.9. For G a finite graph and G a graphing, we call µG and µG the random

graphs associated respectively to G and G.

We say that two graphings G and H are statistically equivalent if µG “ µH.

Definition 2.10. Let X be a Polish space along with its Borel σ-algebra, then we call

the weak topology on PpXq the topology generated by the applications µ ÞÑ
ş

fdµ, for

f : X Ñ r0,8s continuous and bounded.

For this topology, pµnq converges to µ if for every bounded continuous function f : X Ñ

r0,8s, we have lim
nÑ8

ş

fdµn “
ş

fdµ. In this case we say that pµnq weakly converges to

µ and we write pµnq ñ µ.

Proposition 2.11 (Portmanteau theorem, Admitted, [Kec10]). The following are equivalent

:

1. pµnq ñ µ

2. @C Ď X closed, lim sup
nÑ8

µnpCq ď µpCq

3. @U Ď X open, lim inf
nÑ8

µnpUq ě µpUq
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2.4 Realization of a limit of graphs by a graphing

We now want to describe weak convergence in the spaces PpG˚q and PpG K
˚ q. For this

we have the following lemma :

Lemma 2.12. Let X be a zero-dimensional Polish space along with its Borel σ-algebra and

let pUkq be a basis of X consisting of clopen sets. Then the weak topology on PpXq is the

topology generated by the family of applications pµ ÞÑ µpUkqqkPN.

Proof. Suppose pµnq ñ µ, then by Proposition 2.11, @k P N,

lim sup
nÑ8

µnpUkq ď µpUkq ď lim inf
nÑ8

µnpUkq so lim
nÑ8

µnpUkq “ µpUkq.

Conversely, suppose that @k P N lim
nÑ8

µnpUkq “ µpUkq. Take any open set U Ď X

and pkiq a finite or countable sequence in N such that U “
Ů

i Uki . Using discrete Fatou’s

Lemma, we then have

lim inf
nÑ8

µnpUq “ lim inf
nÑ8

ÿ

i

µnpUkiq

ě
ÿ

i

lim inf
nÑ8

µnpUkiq

“
ÿ

i

µpUkiq

“ µpUq

So by Proposition 2.11, pµnq ñ µ.

Thus, if X be a zero-dimensional Polish space and pUnq is a basis of X consisting of clopen

sets, then the weak topology on PpXq is induced by the distance dwpµ, νq “
ř

nPN

1
2n |µpUnq ´

νpUnq|.

For pG “ pGnq P GN (resp. GKN
), we say that pG converges (or is a convergent sequence)

when pµGnq weakly converges in PpG˚q (resp. PpG K
˚ q). Without loss of generality, we may

suppose that any convergent sequence of graphs pG “ pGnq verifies lim
nÑ8

|V pGnq| “ 8, since

if G is a finite graph and H is a graph composed of finitely many disconnected copies of G,

then µG “ µH . From now on, every convergent graph sequence considered is supposed to

satisfy the latter property.

If pG is a convergence sequence, we denote by µ
pG the weak limit of the sequence pµGnq

and we call it the Benjamini-Schramm limit of pG.

As G˚ (resp. G K
˚ ) is a zero-dimensional Polish space and the Nα for r P N and α P Gr

(resp. r, s P N and α P GK
r,s) is a basis consisting of clopen sets, pG converges if and only if

for any α, pµGnpNαqqnPN converges and in this case, µ
pGpNαq “ lim

nÑ8
µGnpNαq.

Finally, if G is a graphing and pG “ pGnq P GN is a sequence of finite graphs, we say that

pG converges to G if pµGnq ñ µG . If pG “ pGnq is a sequence of graphings, we say that pG
converges to G if pµGnq ñ µG .

2.4 Realization of a limit of graphs by a graphing

Two questions naturally arise from the definitions of the latter paragraph :

1. Is every graphing a limit of finite graphs ?

2. Does every convergent sequence of finite graphs converge to a graphing ?

7



2.4 Realization of a limit of graphs by a graphing

While the first one is an open conjecture of Aldous and Lyons and will be discussed

partially in Section 3, the answer to the second one is positive. We devote this subsection

to the construction of a suitable graphing.

2.4.1 Unimodularity

First, one can define a Borel graph structure on G˚ (resp. G K
˚ ) by letting px, yq P EpG˚q

(resp. EpG K
˚ q) if and only if there is a connected graph (resp. a connected graph colored by

K) G and pu, vq P EpGq such that x “ rG, us and y “ rG, vs. In other words, px, yq P EpG˚q

if and only if y can be obtained from x by changing the root according to an edge of x.

From now on we write G˚ (resp. G K
˚ ) either to talk about the graph we just defined or its

underlying space.

Under certain conditions, the latter graph is locally similar to its elements, as witnesses

the Lemma below :

Lemma 2.13. If a graph G has no automorphism, then the graph with vertices

trG, vs : v P V pGqu and edges induced by changing the root by an adjacent vertex is isomor-

phic to G.

Proof. By construction the map v ÞÑ rG, vs is a surjective graph morphism. If it was not

injective, there would be at least two different vertices v1, v2 such that rG, v1s “ rG, v2s, in

other words, there would be an automorphism of G sending v1 to v2, hence the result.

Thus, if µ P PpG˚q is concentrated on graphs with no automorphism, then for α P Gr

µG˚pNαq “ µptx P G˚ : BG˚
r pxq „ αuq “ µpNαq

However, even in this case, we cannot just take the graph on pG˚, µ pGq to answer the

question because µ
pG may not be RG˚ -preserving. Nevertheless, µ

pG is always a unimodular

measure :

Definition 2.14. Let G˚˚ be the set of connected birooted graphs, namely of connected

graphs with an ordered pair of roots, up to birooted isomorphism.

Definition 2.15. Let µ P PpG˚q (resp. PpG K
˚ q). We define two measures µL and µR on

G˚˚ (resp. G K
˚˚) by

• For all non-negative Borel f ,
ş

G˚˚
f dµL “

ş

G˚

ř

vPV pxq

fpx, u, vq dµprx, usq

• For all non-negative Borel f ,
ş

G˚˚
f dµR “

ş

G˚

ř

vPV pxq

fpx, v, uq dµprx, usq

We call µ unimodular if µL “ µR.

Of course for every finite graph G, µG is unimodular as a linear combination of Dirac

measures, so the fact that µ
pG is unimodular follows from :

Lemma 2.16. Every weak limit of unimodular measures on PpG˚q is unimodular.

Proof. Let pµnq be a sequence of unimodular measures in PpG˚q (resp. PpG K
˚ q) weakly

converging to µ. Let’s show that µL “ µR.
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2.4 Realization of a limit of graphs by a graphing

Like G˚, G˚˚ is a zero-dimensional space Polish space. For r P N, define G˚˚
r to be the

set of birooted graphs px, u, vq such that x “ Bxr puq Y Bxr pvq, up to birooted isomorphism.

Then a base for the topology on G˚˚ composed of clopen sets is given by the

Nβ “ trx, u, vs P G˚˚ : Bxr puq YB
x
r pvq „ βu for r P N and β P G˚˚

r . Moreover, the Nβ for β

connected already form a base for this topology. Thus letting CG˚˚
r be the subset of G˚˚

r

consisting of the connected elements, we only need to prove that µL and µR coincide on the

Nβ for β P
Ť

r
CG˚˚

r .

The maps u ÞÑ
ř

vPV pxq

1Nβ prx, u, vsq and u ÞÑ
ř

vPV pxq

1Nβ prx, v, usq are continuous and

bounded (indeed, rx, u, vs P Nβ ñ dxpu, vq ď 2n) so by weak convergence of the sequence

pµnq.

µLpNβq “

ż

G˚

ÿ

vPV pxq

1Nβ prx, u, vsq dµprx, usq

“ lim
nÑ8

ż

G˚

ÿ

vPV pxq

1Nβ prx, u, vsq dµnprx, usq

“ lim
nÑ8

ż

G˚˚

1Nβ dµnL

“ lim
nÑ8

ż

G˚˚

1Nβ dµnR

“ lim
nÑ8

ż

G˚

ÿ

vPV pxq

1Nβ prx, v, usq dµnprx, usq

“

ż

G˚

ÿ

vPV pxq

1Nβ prx, v, usq dµprx, usq

“ µRpNβq

Hence µ is unimodular.

Now there are natural applications Φ : G˚˚ Ñ RG˚ and ΦK : G K
˚˚ Ñ RG K

˚
(recall that

RG˚

(resp. RG K
˚

) is the equivalence relation on G˚ (resp. G K
˚ ) induced by its graph structure),

defined by rx, u, vs ÞÑ prx, us, rx, vsq. Φ (resp. ΦK) is a bijection when restricted to the

graphs that have no automorphism.

Thus, if µ P PpG˚q (resp. PpG K
˚ q) is unimodular and concentrated on the elements rx, us

of G˚ (resp. G K
˚ ) such that x has no automorphism, then Φ (resp. ΦK) is a bijection and it

is easy to see that Φ (resp. ΦK) sends µL to µl and µR to µr. By Proposition 2.6, µ is then

RG˚ -invariant (resp. RG K
˚

-invariant), and so pG˚, µq (resp. pG K
˚ , µq) is a graphing.

Combining the latter results, we see that if µ
pG is concentrated on the elements rx, us of

G˚ such that x has no automorphism, then pG converges to the graphing pG˚, µ pGq. In the

general case, we use the Bernoullization of µ
pG to break symmetries.
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2.4 Realization of a limit of graphs by a graphing

2.4.2 Bernoullization of a measure

Definition 2.17. Let µ P PpG˚q, we define the Bernoullization of µ and we denote by µK

to be a Borel probability measure on G K
˚ extending µ and such that the probabilities of

colorings follow the Lebesgue measure on K.

Namely for r, s P N and α P GK
r,s, letting β P Gr be the underlying colorless graph

of α, we let Aαβ be the coefficient |AutpG2q|

|AutpG1q|
where G1, G2 are respective representatives for

the classes β and α. Then we have µKpNαq “
Aαβ

2s.|V pαq|
µpNβq, since

Aαβ
2s.|V pαq|

is indeed the

Lebesgue probability that a random coloring of an element of Nβ induces an element of Nα.

The Bernoullization of µ
pG can be obtained with probability 1 by coloring randomly

independently the graphs Gn and taking the Benjamini-Schramm limit :

Lemma 2.18 ([Ele10]). Let pG “ pGnq P GN be a convergent sequence of graphs and µ
pG P

PpG˚q be its Benjamini-Schramm limit measure. Let µK
pG
P PpG K

˚ q be the Bernoullization of

µ
pG. Let C

pG be the product of the spaces CGn for n P N endowed with the product measure ν.

C
pG is the space of random and independent colorings on the sequence pG. For c P C

pG let us

denote the graphs Gn colored with c by Gcn.

Then @˚c P C
pG, the sequence pGcnq converges to µK

pG
in the sense of Benjamini-Schramm.

Proof. In this proof the hypothesis that lim
nÑ8

|V pGnq| “ 8 is necessary.

Take α P GK
r,s, we denote by β P Gr the underlying colorless graph. With this notation,

we have µ
pGpNαq “

Aαβ
2s.|V pαq|

µ
pGpNβq by the definition of the Bernoullization.

Our goal is thus to show that @˚c P C
pG lim
nÑ8

µGcnpNαq “
Aαβ

2s.|V pαq|
µ

pGpNβq.

For u P V pGnq we let Cunpαq “ tc P C pG : B
Gcn
r puq „ αu, then @u P V pGnq,

νpCunpαqq “
Aαβ

2s.|V pαq|
. However, we can’t directly apply the law of large numbers, since the

Cunpαq may not be independent for u ranging over V pGnq.

Claim 2.18.1. Let m P N, then there is l P N such that for any graph G there is

a coloring of G by l colors such that two different vertices having same color are at

distance at least m one of the other.

Proof. Set l “ dm`1`1. It is a well known fact that any simple graph of degree bound

k can be colored properly by k`1 colors. Define Gďm to be the simple graph on V pGq

whose edges are the pairs tx, yu such that dGpx, yq ď m. Note that since G is of degree

bound d (every graph is supposed so in this section) Gďm is a simple graph of degree

bound less than dm`1, so it can be colored properly with l “ dm`1 ` 1 colors. Now

this induces a suitable coloring of G. �

Recall that VβpGnq “ tv P V pGnq : BGnr pvq „ βu and VαpG
c
nq “ tv P V pGnq : B

Gcn
r pvq „

αu. By the claim, there is l P N such that for any n, there is a partition Pn of VβpGnq into

l pieces such that @P P Pn @u, v P P dGnpu, vq ď 2r ñ u “ v. For q ě 2 let P 1n,q be the

subset of Pn consisting of the elements P such that |P |
|V pGnq|

ą 2´q

l .

Let ε ą 0 be small enough. By construction of Pn, for P P Pn and any distinct elements

u1, . . . , uk P P , the sets Cujn pαq are independent for j “ 1, . . . , k. As lim
nÑ8

|V pGnq| “ 8, we

10



2.4 Realization of a limit of graphs by a graphing

have lim
nÑ8

min
PPP 1n,q

|P | “ 8 and so by the law of large numbers, @˚c P C
pG, for n big enough

and P P P 1n,q we have
ˇ

ˇ

ˇ

ˇ

|VαpG
c
nq X P |

|P |
´

Aαβ
2s.|V pαq|

ˇ

ˇ

ˇ

ˇ

ă ε

Moreover, the elements of P 1n,q are disjoint so we get, for n big enough and P P P 1n,q
ˇ

ˇ

ˇ

ˇ

|VαpG
c
nq X

Ť

P 1n,q|
|
Ť

P 1n,q|
´

Aαβ
2s.|V pαq|

ˇ

ˇ

ˇ

ˇ

ă ε

Furthermore, by definition of P 1n,q, we have
|VβpGnqz

Ť

P 1n,q|
|V pGnq|

ď
ř

PPPn

2´q

l “ 2´q so for n and q

big enough,
ˇ

ˇ

ˇ

|
Ť

P 1n,q|
|V pGnq|

´ µ
pGpNβq

ˇ

ˇ

ˇ
ă ε and

ˇ

ˇ

ˇ

|VαpG
c
nq X

Ť

P 1n,q |
|V pGnq|

´ µGcnpNαq
ˇ

ˇ

ˇ
ă ε.

Combining these inequalities gives us

ˆ

Aαβ
2s.|V pαq|

´ ε

˙

pµ
pGpNβq´εq ď

|VαpG
c
nq X

Ť

P 1n,q|
|
Ť

P 1n,q|
|
Ť

P 1n,q|
|V pGnq|

ď

ˆ

Aαβ
2s.|V pαq|

` ε

˙

pµ
pGpNβq`εq

which implies, for n and q big enough,

Aαβ
2s.|V pαq|

µ
pGpNβq ´ 2ε ď

|VαpG
c
nq X

Ť

P 1n,q|
|V pGnq|

ď
Aαβ

2s.|V pαq|
µ

pGpNβq ` 3ε

hence the final inequality,

Aαβ
2s.|V pαq|

µ
pGpNβq ´ 3ε ď µGcnpNαq ď

Aαβ
2s.|V pαq|

µ
pGpNβq ` 4ε

Theorem 2.19. Take a convergent sequence of finite graphs pG “ pGnq and let G
pG be the

graph G K
˚ endowed with the measure µK

pG
. Then G

pG is a graphing and pG converges to G
pG.

Moreover, @˚x P G K
˚ , x „ pG K

˚ , xq. We call G
pG the canonical limit of pG.

Proof. First, by definition of the Bernoullization, the measure µK
pG

is concentrated on graphs

without automorphism. The following are consequences :

• By Lemma 2.13, @˚x P G K
˚ , x „ pG K

˚ , xq.

• By Lemma 2.18 µK
pG

is a weak limit of linear combinations of Dirac measures and thus

is unimodular by Lemma 2.16. As remarked before, in the case where the measure is

concentrated on graphs without automorphism, this shows that µK
pG

is RG K
˚

-invariant.

In other words, G
pG is a graphing.

• Finally, again by Lemma 2.13, for α P Gr

µG
xG
pNαq “ µK

pG
pC

G K
˚

α q “ µK
pG
pNαq “ µ

pGpNαq

so G
pG is indeed a limit of pG.

11



3 Hyperfiniteness

3 Hyperfiniteness

In this section every graph considered is still supposed to be of degree bound at most d,

with the exception of the last corollary.

Definition 3.1. Let GpX,µq be a graphing. G is called hyperfinite if

@ε ą 0 DM P N DZ Ď EpGq Borel such that µEpZq ă ε and the subgraphing H “ GzZ has

components of size at most M .

This section contains the proofs for two important properties of hyperfiniteness :

1. Every hyperfinite graphing G is the limit of a sequence of finite graphs pG.

2. Hyperfiniteness is an invariant of statistical equivalence. That is, if G and H are

statistically equivalent (recall that it means that µG “ µH), then G is hyperfinite if

and only if H is.

Before anything else, let’s note that we can also define hyperfiniteness according to the

next proposition. We will use both definitions indifferently in the rest of the paper.

Proposition 3.2. Let GpX,µq be a graphing, then the following are equivalent :

1. GpX,µq is hyperfinite.

2. @ε ą 0 DZ Ď EpGq Borel of edge measure µEpZq ă ε such that the components of the

graphing GzZ are finite.

Proof. Only one direction is of interest. Let ε ą 0 and Z Ď EpGq Borel of edge measure

µEpZq ă ε such that the components of the graphing H “ GzZ are finite. For n P N let

Xďn be the Borel subset of X consisting of the components of H of size at most n. It is

clear that X “
Ť

nPN
Xďn and µ is a probability measure so lim

nÑ8
µpXzXďnq “ 0. Take M P N

such that µpXzXďM q ă
ε´µEpZq

d and set Z 1 “ Z Y EHincpXzXďM q. Then µEpZ
1q ă ε and

moreover, the graphing GzZ 1 has components of size at most M by definition.

3.1 Hyperfinite graphings are limits of finite graphs

We begin with a very useful lemma.

Lemma 3.3. If GpZ, ηq is a graphing, A a subgraphing and pAnq a sequence of

subgraphings of G such that lim
nÑ8

ηEpEpAq4 EpAnqq “ 0, then An converges to A in the

sense of Benjamini and Schramm.

Proof. We write Dn for EpAq4 EpAnq. Let r P N and α P Gr, we set

Dr
n “ tz P Z : BGr pzq X VincpDnq ‰ Hu. By measure preservation, we get

ηpDr
nq ď dr.ηpVincpDnqq ď dr.ηEpDnq, so lim

nÑ8
ηpDr

nq “ 0. Furthermore, for z R Dr
n, we

have of course BAr pzq „ BAnr pzq, hence

|µApNαq ´ µAnpNαq| “ |ηpCAα q ´ ηpC
An
α q|

“ |ηptz P Z : BAr pzq „ αuq ´ ηptz P Z : BAnr pzq „ αuq|

“ |ηptz P Dr
n : BAr pzq „ αuq ´ ηptz P Dr

n : BAnr pzq „ αuq|

ď 2ηpDr
nq

12



3.2 Hyperfiniteness is an invariant of statistical equivalence

Thus pAnq converges to A.

Definition 3.4. For M P N let GM be the set of unrooted connected graphs of size at most

M . If G is a finite graph then for S P GM we let CGS “ tv P V pGq : rvsG „ Su. Moreover, we

let cGS “
|CGS |
|V pGq| . If GpX,µq is a graphing, then for S P GM we let CGS “ tx P X : rxsG „ Su

and we let cGS “ µpCGS q.

Theorem 3.5. Let G be a hyperfinite graphing, then there is a sequence pG converging to G.

Proof. By Lemma 3.3, every hyperfinite graphing is a limit of graphings whose sizes of

components are bounded. The conclusion then follows from

Claim 3.5.1. Let G be a graphing whose components are of size at most M , then

there is a sequence of finite graphs pG converging to G.

Proof. It is clear by measure preservation that

@r P N @α P Gr µGpNαq “
ÿ

SPGM

cGS .µSpNαq

so choose a sequence ppknpSq : S P GM qqnPN of elements of NGM such that

@S P GM lim
nÑ8

knpSq
ř

SPGM

knpSq
“ cGS . Such a sequence exists because

ř

SPGM

cGS “ 1. We then

define the graphs Gn to be the disconnected union of nkpSq disconnected copies of S

for each S P GM . Obviously, µGnpNαq “
ř

SPGM

knpSq
ř

SPGM

knpSq
.µSpNαq, thus pµGnq ñ µG . �

3.2 Hyperfiniteness is an invariant of statistical equivalence

All the results of this subsection are due to Gábor Elek [Ele12].

Definition 3.6. Let G be a graph. For A Ď V pGq finite, we define the boundary of A in

G, denoted by BGpAq to be the set of edges incident to both A and V pGqzA. We also define

the isoperimetric constant of A in G by iGpAq “
|BGA|
|A| .

We say that a graph G is amenable if @ε ą 0 DA Ď V pGq finite such that iGpAq ă ε.

Lemma 3.7. Let GpX,µq be a graphing, H be an induced subgraphing and ε ą 0. Then

there is a Borel K Ď X, which intersects every amenable component of H and such that the

components of K are finite sets of isoperimetric constant less than ε in H.

Proof. We define K by induction. The idea is that for each n P N we add to K finite sets of

radius less than n and having isoperimetric constant less than ε, in a way that any set that

we add stay disconnected from any other set in K.

For n “ 0, let K0 “ H.

Suppose Kn´1 Ď X is defined. We then define Kn. First, by a result of Kechris, Solecki

and Todorcevic, any Borel graph of degree bound d can be colored properly in a Borel way

with d ` 1 colors. Applying the proof of Claim 2.18.1, we see that there exists a Borel

13



3.2 Hyperfiniteness is an invariant of statistical equivalence

partition X “
Ů

iďln

Ai such that two distinct elements of an Ai are at distance at least 2n`2

in H.

For i “ 0 and x P A0, we let Rn,0x be the set of finite subsets S Ď X such that :

• x P S

• S Ď Bnpxq

• iHpSq ă ε

• EHincpSq X EHincpKn´1q “ H

Take a Borel linear order on the finite subsets of X and let K0
n “ Kn´1 Y

Ť

xPA0

min Rn,0x ,

with the convention that min H “ H.

Suppose Ki´1
n already defined and for x P Ai we let Rn,ix be the set of finite subsets

S Ď X such that :

• x P S

• S Ď Bnpxq

• iHpSq ă ε

• EHincpSq X EHincpKi´1
n q “ H

Then let Ki
n “ Ki´1

n Y
Ť

xPAi

min Rn,ix . Finally let Kn “ Kln
n and K “

Ť

nPN
Kn.

By construction it is clear that the components of K are the sets of the form min Rn,ix ,

which are finite sets of isoperimetric constant less than ε in H. Let’s prove that K intersects

every amenable component of H :

Let C be an amenable component of H and suppose that K X C “ H. Then obviously

@n P N @i ď ln K
i
n XC “ H, thus the construction of the Rn,ix shows that Rn,ix is the set of

finite subsets of X such that :

• x P S

• S Ď Bnpxq

• iHpSq ă ε

Since C is amenable, let S Ď C be a finite subset of isoperimetric constant iHpSq ă ε. Take

any x P S and a natural number n such that S Ď Bnpxq. Let Ai be the set containing x

in the partition X “
Ů

iďln

Ai. By the remark above, S P Rn,ix , therefore x P K X C ‰ H, a

contradiction.

Theorem 3.8. Let GpX,µq be a graphing, then the following are equivalent :

1. G is hyperfinite.

2. For every subgraphing H Ď G of positive measure, almost all the components of H are

amenable.

Proof. 2. ñ 1. :

Suppose 2.. We let A be the set of families A of Borel subsets of X such that :

• @A P A µpAq ą 0.

• @A ‰ A1 P A no vertex in A is adjacent to a vertex in A1.

14



3.2 Hyperfiniteness is an invariant of statistical equivalence

• For any A P A , the components of G
æXz

Ť

A1‰A

V GadjpA
1q

are finite sets of isoperimetric

constant less than ε in G
æXz

Ť

A1‰A

V GadjpA
1q

.

Let us order A by inclusion. Then H P A and every chain of A has an upper bound in A,

namely its union, so we can apply Zorn’s Lemma.

Let A be maximal in A. Suppose that µp
Ť

APA

V GadjpAqq ă 1, then let Y “ Xz
Ť

APA

V GadjpAq

and consider the subgraphing H induced on Y . By Lemma 3.7 and the hypothesis 2., there

is a Borel set K Ď Y which interesects almost every component of H and such that the

components of K are finite sets of isoperimetric constant less than ε in H. Then we have :

• As K is a complete section for Y , by Feldman-Moore Theorem, Y can be covered by

a countable union of sets of measure µpKq and therefore µpKq ą 0.

• @A P A no vertex in A is adjacent to a vertex in K by definition of Y .

• Note that two elements of Y adjacent in G are adjacent in H by definition, so the

components of K for G are the components of K for H and therefore are finite sets

in G. Furthermore, the boundary of a component of K in G
æXz

Ť

APA
V GadjpAq

“ GæY is

contained in Y as well, so any component of K has same boundary in GæY and H. It

follows that the components of K in GæY are finite sets of isoperimetric constant less

than ε in GæY .

But this means that A Y tKu P A, contradicting the maximality of A . That proves that

µp
Ť

APA

V GadjpAqq “ 1.

Finally, let Z “
Ť

APA

BpG
æXz

Ť

A1‰A

V G
adj

pA1q
qA Ď EpGq and consider the graphing G

æ
Ť

APA
V GadjpAq

zZ.

Since the sets A are pairwise disconnected for A P A , by removing Z we remove the

boundary of each finite component of A in G, and so we end up with only finite com-

ponents in G
æ

Ť

APA
V GadjpAq

zZ. Moreover, for each finite component C of an A P A , we have

|BpG
æXz

Ť

A1‰A

V G
adj

pA1q
qC| ď ε|C| so by averaging we get µEpBpG

æXz
Ť

A1‰A

V G
adj

pA1q
qAq ď εµpAq and so

µEpZq ď ε.

1. ñ 2. :

Suppose that G is hyperfinite and 2. does not hold. There is a subgraphing H Ď G of

positive measure such that for each component C of H, inf
AĎC finite

iHpAq ą 0 and without

loss of generality we may suppose that Dn P N such that for each component C of H, we

have inf
AĎC finite

iHpAq ě
1
n , by σ-additivity of µ.

By hyperfiniteness of G, let Z Ď EpGq be such that µEpZq ă
µpV pHqq

n and all the

components of GzZ are finite.

Take D a component of GzZ. For C a component of H, as C XD is a finite subset of C,

we have |BHpC XDq| ě
|CXD|
n . Moreover, if C ‰ C 1 are components of H,

BHpC XDq X BHpC
1 XDq Ď EHincpCq X E

H
incpC

1q “ H. Combining these inequalities for the

components C1, . . . , Cn that intersect D, we get |BHpDX V pHqq| ě |DXV pHq|
n . Furthermore,

BHpDX V pHqq Ď EGincpDq XZ, indeed every edge in GzZ witnesses that its two extremities

are in the same component for GzZ so such an edge cannot be in the boundary of D.

We just proved that for each component D of GzZ, |EGincpDq X Z| ě
|DXV pHq|

n and thus

on average µEpZq ě
µpV pHqq

n , contradicting the definition of Z.
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3.2 Hyperfiniteness is an invariant of statistical equivalence

Definition 3.9. Let GpX,µq and HpY, νq be two graphings. A graphing factor map is

a pmp almost surjective map π : Y Ñ X such that @˚y P Y πærysH is an isomorphism of

graphs.

We say that G is a factor of H and we write G Ď H if there exists a graphing factor

map π : Y Ñ X.

Proposition 3.10. Let GpX,µq Ď HpY, νq two graphings. Then G is hyperfinite if and only

if H is.

Proof. Let π : Y Ñ X be a graphing factor map.

Suppose that G is hyperfinite, take ε ą 0 and Z Ď EpGq such that µEpZq ă ε and the

components of GzZ are finite. Then the set π´1pZq Ď EpHq witnesses the hyperfiniteness

of H.

Conversely, suppose that G is not hyperfinite. Then by Theorem 3.8 there is a subgraph-

ing K Ď G of positive measure such that not almost all components of K are amenable.

Then π´1pKq Ď H is a subgraphing of positive measure and not almost all components of

π´1pKq are amenable, therefore, H is not hyperfinite.

Theorem 3.11. Let G and H be statistically equivalent graphings, then G is hyperfinite if

and only if H is.

Proof. Let HpX,µq be a graphing. Consider the map πRH : RH Ñ G˚˚ that sends px, yq

to their component for H birooted in px, yq. It is easy to check that πRH˚µl “ µHL and

πRH˚µr “ µHR. But H is a graphing, so µl “ µr and it follows that µH is unimodular.

Therefore by taking its Bernoullization we get a graphing GµHpG K
˚ , µ

K
H q.

The goal in this proof is to show thatH is hyperfinite if and only if GµH is. The conclusion

will then follow from the fact that GµH only depends on µH.

Claim 3.11.1. There is a common extension to H and GµH . In other words there is

a graphing K such that both H and GµH are factors of K.

Proof. The chosen graphing will be the Bernoullization ofH. For any graphingHpX,µq
(not necessarily on G˚), the construction of its Bernoullization HK presented below is

classical :

Definition 3.12. By Lusin-Novikov theorem, there exists a family pfi : i P Nq of Borel

partial maps X Ñ X such that H “
Ů

iPN Γpfiq, where Γpfiq is the graph of fi. Thus

we can embed H in X ˆN in a Borel way with the application Φ : px, yq Ñ px, ϕxpyqq

where ϕxpyq is the only integer i such that fipxq “ y.

The space on which the Bernoullization is defined is XˆKN, we will denote it by XK.

It is endowed with its σ-algebra of Borel sets for the product topology on XK, which

is a Polish topology. Therefore, XK is a standard Borel.

For the measure µK, we begin by defining a measure on KN for each x P X with the

formula : µx “
Â

iPΦpHqx
λb

Â

iRΦpHqx
δ0. Then let µK “

ş

X
δx ˆ µx dµpxq P PpXKq.
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3.2 Hyperfiniteness is an invariant of statistical equivalence

Finally the Bernoullization of H is the graph HK on XK defined by :

ppx, fq, py, gqq P EpHKq ðñ px, yq P EpHq and f ˝ ϕx “ g ˝ ϕy

The idea is to see the space XK as the space of colorings by K on X, with the Lebesgue

measure on colorings. We take the convention that on points of the space XK which

do not represent any element of H, the colorings must have value 0.

To see that HK is indeed a graphing, let us define, for px, yq P RH and f P KN, fxÑy

to be the only element of KN such that ppx, fq, py, fxÑyqq P RHK .

Take any Borel non-negative ϕ : RHK Ñ 8, we let Φ : RH Ñ r0,8s be defined by

Φpx, yq “
ş

KN ϕppx, fq, py, fxÑyqq dµzpfq.

We have

ż

RHK

ϕ dpµKql “

ż

XK

ÿ

py,gqPrx,fsHK

ϕppx, fq, py, gqq dµKpx, fq

“

ż

X

ż

XK

ÿ

py,gqPrx,fsHK

ϕppx, fq, py, gqq dpδz ˆ µzqpx, fq dµpzq

“

ż

X

ż

KN

ÿ

py,gqPrz,fsHK

ϕppz, fq, py, gqq dµzpfq dµpzq

“

ż

X

ż

KN

ÿ

yPrzsH

ϕppz, fq, py, fzÑyqq dµzpfq dµpzq

“

ż

X

ÿ

yPrzsH

ż

KN
ϕppz, fq, py, fzÑyqq dµzpfq dµpzq

“

ż

X

ÿ

yPrzsH

Φpz, yq dµpzq

“

ż

X

ÿ

yPrzsH

Φpy, zq dµpzq

“

ż

X

ÿ

yPrzsH

ż

KN
ϕppy, fq, pz, fyÑzqq dµypfq dµpzq

“

ż

X

ÿ

yPrzsH

ż

KN
ϕppy, fzÑyq, pz, fqq dµzpfq dµpzq

“

ż

X

ż

KN

ÿ

yPrzsH

ϕppy, fzÑyq, pz, fqq dµzpfq dµpzq

“

ż

X

ż

KN

ÿ

py,gqPrz,fsHK

ϕppy, gq, pz, fqq dµzpfq dµpzq

“

ż

X

ż

XK

ÿ

py,gqPrx,fsHK

ϕppy, gqpx, fqq dpδz ˆ µzqpx, fq dµpzq

“

ż

XK

ÿ

py,gqPrx,fsHK

ϕppy, gq, px, fqq dµKpx, fq

“

ż

RHK

ϕ dpµKqr
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4 The Rokhlin Lemma

Now there are two natural candidates for graphing factor maps XK Ñ X and XK Ñ

G K
˚ . Let π : XK Ñ X be the projection on the first coordinate, and ρ : XK Ñ G K

˚ be

the map sending px, fq to the class of the rooted graph prxsH, xq, colored according to

f .

It is quite obvious that π is a graph factor map from its definition. The case of ρ is

a little bit more interesting. Note that for almost all px, fq P XK, f is injective so

by Lemma 2.13, ρpx, fq „ prρpx, fqsG K
˚
, ρpx, fqq, which exactly means that @˚px, fq P

XK, ρærx,fsHK
is a graph isomorphism.

Finally, let r, s P N, α P GK
r,s and β P Gr the underlying colorless graph.

Note that the Lebesgue probability of a coloring of β to give a colored graph isomorphic

to α is again
Aαβ

2s.|V pαq|
, thus we have

ρ˚µ
KpNαq “ µKptpx, fq P XK : ρpx, fq P Nαuq

“ µKptpx, fq P XK : x P VβpHq and f ˝ ϕx colors BHr pxq according to αuq

“

ż

VβpHq

Aαβ
2s.|V pαq|

dµ

“ µHpNβq.
Aαβ

2s.|V pαq|
dµ

“ µK
H pNαq

therefore ρ is pmp and as a consequence, it is a graphing factor map.

�

We conclude by using the Claim and Lemma 3.10 : H is hyperfinite if and only if HK is

hyperfinite, if and only if GµH is.

4 The Rokhlin Lemma

Recall that from now on, there is no more bound on degrees of graphs.

4.1 Measure preserving actions and Graphings

4.1.1 Classical Rokhlin Lemma

Rokhlin Lemma states that if τ is an aperiodic measure preserving transformation of a

standard probability space pX,µq, that is a bijection X Ñ X that preserves µ and such that

Supppτq “ tx P X : τpxq “ xu is null, then @n P N @ε ą 0 DA Ď X Borel such that the sets

A, τA, . . . , τn´1A are pairwise disjoint and µp
n´1
Ů

i“0

τ iAq ą 1´ ε.

What we present in this paper is not a generalization of Rokhlin Lemma itself but rather

of one of its important consequences :

Corollary 4.1 (”Rokhlin Lemma”). Any two aperiodic measure preserving transformations

τ1 and τ2 on standard probability spaces pX,µq and pY, νq are strongly equivalent, meaning

that @ε ą 0 there is a measure preserving bijection ρ : X Ñ Y such that

µptx P X : ρ ˝ τ1pxq “ τ2 ˝ ρpxquq ą 1´ ε.
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4.1 Measure preserving actions and Graphings

Before presenting the proof, we have to introduce cycles.

Definition 4.2. Let pX,µq be a standard probability space, a cycle c of period n P N is a

measure preserving Borel bijection X Ñ X such that DA Ď X Borel such that, up to a null

set, X “
n´1
Ů

i“0

ciA. We call such a A a base for the cycle c.

Lemma 4.3. Let pX,µq and pY, νq be standard probability spaces and cX , cY cycles of period

n respectively of X and Y . Then cX and cY are conjugated, that is Dρ : X Ñ Y a measure

preserving bijection such that @˚x P X cY ˝ ρpxq “ ρ ˝ cXpxq.

Proof. Let A and B be respective bases for cX and cY . By the definitions of cycles, it is

clear that µpAq “ 1
n “ νpBq so by uniqueness of the standard Borel space, there exists a

measure preserving bijection τ : AÑ B.

Now we extend τ into ρ : X Ñ Y by letting ρæciXA “ ciY ˝ τ ˝ c
´i
X . It is easy to check that

ρ is a measure preserving bijection that conjugates cX and cY .

We are ready for the proof of the Corollary of Rokhlin Lemma :

Proof of ”Rokhlin Lemma”. Let τX : X Ñ X and τY : Y Ñ Y be aperiodic measure

preserving bijections.

First, by the usual Rokhlin Lemma, for n P N˚, there is a Borel A Ď X (resp. B Ď Y )

such that µp
n
Ů

i“0

τ iXAq ě 1 ´ 1
n`1 (resp. νp

n
Ů

i“0

τ iYBq ě 1 ´ 1
n`1 ). Without loss of generality,

we may furthermore suppose that µp
n
Ů

i“0

τ iXAq “ νp
n
Ů

i“0

τ iYBq “ 1´ 1
n`1 .

Then we can define a cycle cX (resp. cY ) of period n` 1 on
n
Ů

i“0

τ iXA (resp.
n
Ů

i“0

τ iYB) by

setting

cX :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x P
n´1
Ů

i“0

τ iXA ÞÝÑ τpxq

x P τnXA ÞÝÑ τ´npxq

and cY :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y P
n´1
Ů

i“0

τ iYB ÞÝÑ τpyq

y P τnYB ÞÝÑ τ´npyq

Now, using Lemma 4.3, we can find a measure preserving bijection ρ :
n
Ů

i“0

τ iXA Ñ
n
Ů

i“0

τ iYB

that conjugates cX and cY and then extend it arbitrarily into a measure preserving bijection

ρ1 : X Ñ Y . It follows that

µptx P X : τY ˝ ρ
1pxq ‰ ρ1 ˝ τXpxquq

ď µptx P
n
ğ

i“0

τ iXA : τY ˝ ρpxq ‰ ρ ˝ τXpxqu `
2

n` 1

ď tx P
n
ğ

i“0

τ iXA : τXpxq ‰ cXpxqu ` ty P
n
ğ

i“0

τ iYB : τY pyq ‰ cY pyqu `
2

n` 1

ď
4

n` 1

An aperiodic measure preserving transformation can be viewed as a free action of Z.

The goal of this section is to generalize the latter Corollary to hyperfinite actions of the free

group having a given IRS (i.e. Invariant Random Subgroup, defined in subsection 4.1.3).
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4.1 Measure preserving actions and Graphings

4.1.2 Hyperfiniteness for measure preserving actions

An equivalence relation is called finite if its classes are finite.

Definition 4.4. Let R be a Borel equivalence relation on a standard probability space

pX,µq, we say that R is hyperfinite if there is a R-invariant connull subset of X on which

R is a countable union of finite Borel equivalence relations.

We say that a measure preserving action α of a countable group Γ on pX,µq is hyper-

finite if the induced equivalence relation Rα is hyperfinite.

It is obvious that any subequivalence relation of a hyperfinite equivalence relation is

hyperfinite. Conversely, we have the following :

Proposition 4.5 (Admitted,[Kec10]). The union of an increasing sequence of hyperfinite

equivalence relations on pX,µq is a hyperfinite equivalence relation on pX,µq.

Note that we defined the notion of hyperfiniteness relative to a standard probability

space and thus to a measure. If we ask that R is the union of an increasing sequence of finite

equivalence relations on the whole set X and not just on a connull subset, we obtain the

classic definition of Borel hyperfiniteness. For this notion of hyperfiniteness, it is not known

whether the union of an increasing sequence of hyperfinite equivalence relations is always

finite.

Now any countable group Γ is the increasing union of a sequence of finitely generated

subgroups, and so by Proposition 4.5 we get that a pmp action α of Γ is hyperfinite if and

only if for every finitely generated subgroup Λ the restriction of α to Λ, which is a pmp

action of Λ, is hyperfinite.

From now on, we focus our attention on pmp actions of finitely generated groups. We

write finitely generated groups as couples pΓ, Sq where Γ is a countable group and S is a

finite symmetric generating subset.

Definition 4.6. Let F be a finite set. A F -colored graphing on a standard probability

space pX,µq is a graphing GpX,µq endowed with a Borel map ϕG : EpGq Ñ F . For px, yq P

EpGq, we call ϕGpx, yq the color of px, yq.

We will simply write G and consider the color implicitely when dealing with colored

graphings.

Fix d P N. Let G F
˚ be the standard Borel space of rooted connected F -colored graphs of

degree bound at most d. For a F -colored graphing GpX,µq, we define a Borel probability

measure µFG on G F
˚ by letting π : X Ñ G F

˚ be the map that sends x to its F -colored

component rooted in x and setting µFG “ π˚µ.

Definition 4.7. Let GpX,µq and G 1pY, νq be two F -colored graphings. A colored graphing

factor map π : Y Ñ X is a pmp almost surjective map such that @˚y P Y, πærysH is an

isomorphism of F - colored graphs.

We say that G is a colored factor of G 1 and we write G Ď
c
G 1 if there is a colored factor

map π : Y Ñ X.

Let pΓ, Sq be a finitely generated group. Let us consider a measure preserving action

α : Γ ñ pX,µq. We define a PpSq-colored graphing Gα on pX,µq by px, yq P EpGαq if and
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4.1 Measure preserving actions and Graphings

only if Ds P S y “ sx and we color the edges of Gα by letting the color of an edge px, yq be

ts P S : y “ sxu.

Lemma 4.8. Let pΓ, Sq be a finitely generated group and let α : Γ ñ pX,µq be a pmp action.

Then α is hyperfinite if and only if Gα is hyperfinite.

Proof. Suppose α is hyperfinite and let ε ą 0. Let pRnq be an increasing sequence of finite

Borel equivalence relations on X such that, up to a null set, Rα “
Ť

nPN
Rn. Since by definition

EpGαq Ď Rα, we have, up to a null set, EpGαq “
Ť

nPN
EpGαq XRn.

Now the measure µE is finite (bounded by |S|) so lim
kÑ8

µEpEpGαqzEpGαq XRkq “ 0.

Thus for k big enough, the set EpGαqzEpGαq XRk has edge measure less than ε and by

removing this set from EpGαq we get a subgraphing H whose edges are contained in Rk,

which implies of course that H has finite components.

Conversely, suppose Gα is a hyperfinite graphing. For n P N, let Zn Ď EpGαq be a Borel

subset of edge measure less than 1
2n such that the graphing GαzZn has finite components.

For n P N, let Z 1n “
Ť

kěn

Zk. Then we have @n P N, µEpZ 1nq ě 1
2n´1 and GαzZ 1n Ď GαzZn

has finite components.

Therefore, setting Hn :“ GαzZ 1n, pRHnq is an increasing sequence of finite subequivalence

relations of RGα and by definition of Hn, RGα and
Ť

nPN
RHn differ only on a null set.

4.1.3 Invariant random subgroups

Let α : Γ ñ pX,µq be a measure preserving action of the countable group Γ. To this action

we can associate a probability measure on the Polish space of subgroups of Γ.

For Γ a countable group, t0, 1uΓ is a Polish space homeomorphic to the Cantor space.

We let SgpΓq be the closed subset of t0, 1uΓ consisting of the subgroups of Γ. Then SgpΓq

is of course a Polish space.

We have a natural map Stabα : X Ñ SgpΓq defined by x ÞÑ Stabαpxq “ tg P Γ : gαpxq “

xu and that gives us a probability measure Stabα˚µ P PpSgpΓqq that we call the Invariant

Random Subgroup (IRS in short) of α and denote by θα. Moreover, Γ acts on SgpΓq by

conjugation and the well known formula Stabαpgxq “ gStabαpxqg´1 implies that the map

Stabα is equivariant. Therefore, θα is a Γ-invariant measure on SgpΓq. In general, we define

an IRS of Γ to be a probability measure on SgpΓq invariant for conjugacy.

For a finitely generated group, an IRS and a random colored graph are the same things

in the way precised below :

Lemma 4.9. If pΓ, Sq is a finitely generated group, then there is a injective Borel map

Ψ : SgpΓq Ñ G
PpSq
˚ such that for all pmp action α : Γ ñ pX,µq, Ψ is a measure preserving

bijection pSgpΓq, θαq Ñ pG
PpSq
˚ , µ

PpSq
Gα q.

Proof. Let Ψ : SgpΓq Ñ G
PpSq
˚ that associates to Λ ď Γ the Cayley graph of Γ{Λ with

generators tsΛ : s P Su (these are classes in the quotient), colored on edges by the map

px, yq ÞÑ ts P S : sΛx “ yu.

21



4.1 Measure preserving actions and Graphings

Let α : Γ ñ pX,µq be a pmp action. By definition of Gα, the measure µ
PpSq
Gα is concen-

trated on the image of Ψ, thus we only need to prove that Ψ is injective to conclude that Ψ

is the desired injection.

We construct a left inverse for Ψ. For pG, oq P G
PpSq
˚ , define G1 as follows. For v P V pGq,

add a loop at v if Ds P S such that no edge starting at v contains s in its color, and color the

loop by the set of such s. Now in pG1, oq, for any s P S and v P V pG1q, there is a unique edge

starting at v that contains s in its color, so there is a bijection f between the set of walks in

G1 and the free group with |S| generators FS . Consider the unique morphism ϕ : FS Ñ Γ

extending cS Ñ s where FS is generated by the cS for s P S. Then let CW be the set of

closed walks in G1. Note that the map G ÞÑ ϕ ˝ fpCW q is a left inverse for Ψ.

If follows from the latter Lemma that two actions of pΓ, Sq have the same IRS if and

only if their respective graphings have same random PpSq-colored graph.

An immediate consequence is that for α, β pmp actions of pΓ, Sq, if θα “ θβ , then Gα
and Gβ have same random graphs, seen as uncolored graphings. Indeed, if π is the map

G
PpSq
˚ Ñ G˚ associating to a PpSq-colored graph its underlying uncolored graph, then the

local statistics of a colored graphing G can be obtained from the random colored graph

associated to G simply by the equality µG “ π˚µ
PpSq
G . It follows that for an IRS θ, by

Theorem 3.11, either every pmp action of Γ with IRS θ are hyperfinite or none is.

Moreover, it is proved in [TD15] that every IRS is the IRS associated to a pmp action.

These properties motivate us to call an IRS on a finitely generated group hyperfinite

if actions having this IRS are hyperfinite.

Furthermore, we can extend this definition to any countable group Γ and any θ IRS on Γ

: For Γ1 a finitely generated subgroup, let πΓ1 : SgpΓq Ñ SgpΓ1q defined by πΓ1pΛq “ ΛX Γ1

and let θΓ1 “ πΓ1˚θ. It is then clear that θΓ1 is an IRS on Γ1 such that the restriction to Γ1

of any pmp action α of Γ which has IRS θ has IRS θΓ1 . Therefore either θΓ1 is hyperfinite

for every Γ1 ď Γ finitely generated, and then by Proposition 4.5 every Γ-pmp action is

hyperfinite, or there is a finitely generated Γ1 ď Γ such that θΓ1 is not hyperfinite and in this

case for any pmp α : Γ ñ pX,µq, RαæΓ1 Ď Rα is a non-hyperfinite subequivalence relation,

witnessing the non-hyperfiniteness of Rα and therefore of α.

Definition 4.10. Let Γ be a countable group. An IRS θ on Γ is called hyperfinite if one

of the two equivalent following statements is satisfied :

1. There exists a hyperfinite pmp action which has IRS θ.

2. Every pmp action which has IRS θ is hyperfinite.

Definition 4.11. Let α : Γ ñ pX,µq and β : Γ ñ pY, νq. An action factor map π :

Y Ñ X is a measure preserving almost surjective map such that @˚y P Y @γ P Γ, πpγβyq “

γαπpyq.

We say that α is a factor of β and we write α Ď β if there exists an action factor map

π : Y Ñ X.

Lemma 4.12. Let α, β be hyperfinite actions of a finitely generated group pΓ, Sq on standard

probability spaces pX,µq and pY, νq such that α Ď β and θα “ θβ. Then we have Gα Ď
c

Gβ
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

as PpSq-colored graphings. Precisely, every action factor map is a colored graphing factor

map.

Proof. Let π be an action factor map Y Ñ X, as π is Γ-invariant, we have

@˚y Stabβpyq Ď Stabαpπpyqq. Suppose now that D˚y Stabβpyq Ĺ Stabαpπpyqq. By count-

ability of Γ, Dγ P Γ D˚y, γ P StabαpπpyqqzStabβpyq, thus

θβpNγq “ Stabβ˚νpNγq

ă pStabα ˝ πq˚νpNγq

“ Stabα˚pπ˚νqpNγq

“ Stabα˚µpNγq

“ θαpNγq

A contradiction. This proves that @˚y Stabβpyq “ Stabαpπpyqq. Applying the application

Ψ from Lemma 4.9 to Stabβpyq “ Stabαpπpyqq we see that the components of y and πpyq

respectively in Gβ and Gα are colored isomorphic.

Now we can state the generalization of Rokhlin Lemma that we prove in this paper :

Theorem 4.13 (Approximate conjugacy for pmp actions with a given hyperfinite IRS). Let

Γ be a countable group and θ a hyperfinite IRS on Γ. Two actions α : Γ ñ pX,µq and

β : Γ ñ pY, νq of Γ such that θα “ θβ “ θ are approximately conjugated, meaning that

@γ1, . . . , γn P Γ @ε ą 0 there is a measure preserving bijection ρ : X Ñ Y such that

µptx P X : @i ď n ρ ˝ γαi pxq “ γβi ˝ ρpxquq ą 1´ ε

Ornstein and Weiss showed that any pmp action of an amenable group is hyperfinite. As

being a free action means having IRS equal to δteu, the result we present here is indeed a

generalization of Rokhlin Lemma.

We can reformulate the latter theorem as follows : The uniform metric dupf, gq :“

µptx P X : fx ‰ gxuq on AutpX,µq makes it a Polish space, and therefore AutpX,µqΓ is

a Polish space for the product topology. For any enumeration Γ “ tγn : n P Nu, we get

a complete metric δupα, βq “
ř

nPN 2´ndupγ
α
n , γ

β
nq compatible with the product topology

on AutpX,µqΓ. Now we can see the space of pmp actions of Γ on pX,µq with IRS θ as a

subspace of AutpX,µqΓ and we call the induced topology on this space the uniform topology.

Then it becomes clear that the latter theorem is equivalent to

Theorem 4.14 (Approximate conjugacy for pmp actions with a given hyperfinite IRS

reformulated). If θ is hyperfinite, then every orbit of the conjugacy relation on the space of

pmp actions of Γ on pX,µq with IRS θ is dense for the uniform topology.

4.2 Approximate conjugacy for pmp actions with a given hyperfi-

nite IRS

We begin with the case where one of the actions is a factor of the other. In fact we prove a

stronger version involving the stability of Borel parameters.
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

Definition 4.15. Let F1, F2 be two finite sets. A pF1, F2q-bicolored graphing on a

standard probability space pX,µq is a graphing GpX,µq endowed with two Borel maps ϕG :

EpGq Ñ F1 and ψG : X Ñ F2. We call ψGpxq the vertex-color of x and ϕGpx, yq the edge-color

of px, yq.

Definition 4.16. Let GpX,µq and G 1pY, νq be two pF1, F2q-bicolored graphings. A bicol-

ored graphing factor map π : Y Ñ X is a F1-colored graphing factor map such that

ψG ˝ π “ ψG1 .

We say that G is a bicolored factor of G 1 and we write G Ď
2c
G 1 if there is a bicolored

factor map π : Y Ñ X.

Theorem 4.17 (Approximate parameterized conjugacy for factor actions). Let pX,µq and

pY, νq be standard probability spaces and A1, . . . , Ak Ď X, B1, . . . , Bk Ď Y be Borel subsets.

Let Γ be a countable group, θ be a hyperfinite IRS on Γ and α : Γ ñ pX,µq, β : Γ ñ pY, νq

be pmp actions of Γ with IRS θ and such that α Ď β for an action factor map π : Y Ñ X

such that @i ď k, π´1pAiq “ Bi. Then for ε ą 0 and γ1, . . . , γn P Γ, there exists a pmp

bijection ρ : X Ñ Y such that @i ď k, ρpAiq “ Bi and

µptx P X : @i ď n ρ ˝ γαi pxq “ γβi ˝ ρpxquq ą 1´ ε

Proof. We begin the proof with a claim about graphings.

Claim 4.17.1. Let GpX,µq and G 1pY, νq be hyperfinite pF1, F2q-bicolored graphings

such that GpX,µq Ď
2c
G 1pY, νq. Then for any ε ą 0 there exists a pmp bijection ρ : X Ñ

Y such that ψG “ ψG1 ˝ ρ and

µE

˜

ď

cPF1

ρ´1
`

EpG 1q X ϕ´1
G1 pcq

˘

4
`

EpGq X ϕ´1
G pcq

˘

¸

ă ε

Proof. Let π be a bicolored graphing factor map Y Ñ X. First take a Borel set

Z Ď EpGq of measure less than ε
d and M P N such that the graphing H “ GzZ has

components of size at most M . Let Z 1 “ π´1pZq and H1 “ G 1zZ 1, by definition of π

we know that H1 has components of size at most M .

Consider the set GM be the set of connected F1-colored graphs of size at most M . We

consider the two partitions X “
Ů

SPGM

CHS and Y “
Ů

SPGM

CH
1

S , where CHS is defined like

in Section 3. to be the set of vertices ofH whose component are (F1-colored) isomorphic

to S. Since π induces F1- colored graph isomorphisms, we have CH
1

S “ π´1pCHS q.

In order to define ρ, it suffices to define a measure preserving bijection ρS : CHS Ñ CH
1

S

preserving colored graph structures for each S P GM .

Indeed, the union of all these bijections would yield a measure preserving bijection

ρ : X Ñ Y preserving colors such that

@x P XzVincpZq, B
G
1 pxq “ BH1 pxq „ BH

1

1 pρpxqq “ BG
1

1 pρpxqq, hence
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

Vincp
Ť

cPF1

`

ρ´1EpG 1q X ψ´1
G1

˘

4 pEpGqqq Ď VincpZq, so

µE

˜

ď

cPF1

`

ρ´1EpG 1q X ψ´1
G1

˘

4 pEpGqq
¸

ď dµpVincpZqq ď dµEpZq ă ε

Take S P GM and let us define ρS . First we define a partition of CHS into Borel

transversals pTωqωPV pSq such that the elements of Tω occupy the same place in their

component forH that ω in S. Precisely, choose ω0 P S. We define the Borel transversals

Tω by induction.

Suppose that the Tω1 are already defined for ω1 P R where R is a proper subset of V pSq.

Take ω P V pSqzR incident to R and let ĂTω “ tx P C
H
S : prxsH, xq „R pS, ωqu. Here „R

means isomorphic over R, that is there exists an isomorphism f : prxsH, xq Ñ pS, ωq of

colored rooted graphs such that @ω1 P R, fprxsH X Tω1q “ tω
1u. Then let

nω “ |tω
1 P S : pS, ω1q „R pS, ωqu|. Since all Tω1 must have same measure, we must

choose Tω to be a subset of ĂTω of measure µpĂTωq
nω

. In fact it suffices to take any such

set as Tω. Then we let R1 “ RY tωu and we iterate the construction.

Again by definition of π, the family pπ´1pTωqqωPV pSq is a partition of CH
1

S into Borel

transversals such that the elements of π´1pTωq occupy the same place in their compo-

nent for H1 that ω in S. We may now define ρS :

– We start by taking a measure preserving bijection ρω0

S : Tω0 Ñ π´1pTω0q.

– Then for every ω P S, there is a unique way of extending ρω0

S to Tω while respecting

the graph structure of S. Indeed, take x P Tω, there is a unique x0 P rxsH X Tω0

and we want to define ρωSpxq P rρ
ω0

S px0qsH1 X π´1pTωq but again this intersection

is a singleton. Define ρS : CHS Ñ CH
1

S to be this unique extension of ρω0

S satisfying

the condition above.

As π is a colored graphing factor map, it is clear that ρS is a measure preserving

bijection such that @x P CHS ρS induces an isomorphism of colored graphs between

rxsH and rρSpxqsH1 .

�

We now want to apply the Claim to suitable graphings to conclude. Let

S “ tγ1, . . . , γn, γ
´1
1 , . . . , γ´1

n u and Γ1 :“ 〈S〉 be the subgroup of Γ generated by S. Let us

denote the respective restrictions of α and β to pΓ1, Sq by α1 and β1 and finally consider the

graphings Gα1 and Gβ1 .
For the spaces of colors, we choose F1 “ PpSq and F2 “ Ppt1, . . . , kuq. The way we

color edges has already been explained, for vertices, simply color a vertex x P X by

ψGαpxq “ ti ď k : x P Aiu and y P Y by ψGβ pyq “ ti ď k : y P Biu.

First, Gα1 and Gβ1 are indeed pPpSq,Ppt1, . . . , kuq-bicolored graphings, and are hyper-

finite since α1 and β1 are hyperfinite actions of a finitely generated group.

The next step is to prove that π considered in the statement of the theorem is a bicolored

factor map for the pPpSq,Ppt1, . . . , kuq-bicolored graphings Gα1 and Gβ1 .

• First, π is indeed a pmp almost surjective map Y Ñ X.
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

• Then for y P Y , we have

ψGα1 pπpyqq “ ti ď k : πpyq P Aiu “ ti ď k : y P Biu “ ψGβ1 pyq

• Finally, by Lemma 4.12, π is furthermore a colored graphing factor map between the

PpSq-colored graphings Gα1 and Gβ1 .

Applying the Claim gives us a pmp bijection ρ : X Ñ Y such that ψGα1 “ ψGβ1 ˝ ρ and

µEp
Ť

cPPpSq

`

EpGα1 X ψGα1
˘

4
´

ρ´1EpGβ1q X ψGβ1
¯

q ă ε. But then for 1 ď i ď k, ρpAiq “ Bi,

and by definitions of Gα1 and Gβ1 the set tx P X : Dγ P S ρ ˝ γαpxq ‰ γβ ˝ ρpxqu is contained

in Vincp
Ť

cPPpSq

`

EpGα1 X ψGα1
˘

4
´

ρ´1EpGβ1q X ψGβ1
¯

q so its measure is less than ε.

To conclude the proof of Theorem 4.13, we will use the transitivity of the approximate

conjugacy relation and show that for any two pmp actions α : Γ ñ pX,µq and β : Γ ñ pY, νq

of Γ such that θα “ θβ , there is a third pmp action ζ : Γ ñ pZ, ηq of IRS θ such that both

α and β are factors of ζ.

Proposition 4.18 (Disintegration theorem, Admitted). Let X,Y be Radon spaces, µ P

PpY q and π : Y Ñ X a Borel map. We let ν “ π˚µ. Then there is a ν-a.e. uniquely

determined family of Borel probability measures pµxqxPX P PpY q
X such that

1. For each Borel B Ď Y , the map x ÞÑ µxpBq is Borel measurable.

2. For ν-a.e. x P X, µx is concentrated on the fiber π´1pxq.

3. For every Borel map f : Y Ñ r0,8s,
ş

Y
fpyq dµpyq “

ş

X

ş

Y
fpyq dµxpyq dνpxq.

We then write µ “
ş

X
µx dν.

With the help of disintegration, we define the relative independent joining of two ergodic

systems over a common factor.

Definition 4.19. Let α : Γ ñ pX,µq and β : Γ ñ pX 1, µ1q be pmp actions, and let

ξ : Γ ñ pY, νq be a common factor of α and β for respective action factor maps π : X Ñ Y

and π1 : X 1 Ñ Y .

Since standard Borel spaces are in particular Radon spaces, we can disintegrate µ and

µ1 with respect to ν using the Borel maps π and π1 to get µ “
ş

Y
µy dν and µ1 “

ş

Y
µ1y dν.

Consider Z :“ X ˆ Y and η P PpZq defined by η “
ş

Y
µy ˆ µ

1
y dν.

We call the independent joining of α and β over ξ and we write α ˆ
ξ
β the pmp

action αˆ β : Γ ñ pZ, ηq.

The independent joining of α and β over ξ is a factor of both α and β respectively for

the projection on the first and second coordinates p1 and p2, which moreover makes the

following diagram commute, up to a null set :

αˆ
ξ
β

α β

ξ

p1 p2

π π1
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

Lemma 4.20. Let Γ be a countable group and θ be an IRS on Γ. Let α : Γ ñ pX,µq, β :

Γ ñ pY, νq be pmp actions of IRS θ. Then there is a standard probability space pZ, ηq and a

pmp ζ : Γ ñ pZ, ηq of IRS θ such that both α and β are factors of ζ.

Proof. Let θ be an IRS on Γ, we write θ for the measure preserving action Γ ñ pSgpΓq, θq.

Let α : Γ ñ pX,µq, β : Γ ñ pY, νq be pmp actions of IRS θ, then the maps Stabα : X Ñ

SgpΓq and Stabβ : Y Ñ SgpΓq are action factor maps.

Consider α ˆ
θ
β be the independent joining of α and β over θ. It only remains to prove

that its IRS is θ.

Claim 4.20.1. Let ζ : Γ ñ pZ, ηq be a joining of α and β, that is a pmp action such

that both α and β are factors of ζ. We have θζ “ θ if and only if, up to a null set, the

following diagram commutes :

ζ

α β

θ

p1 p2

Stabα Stabβ

Proof. All equalities in this proof are up to a null set.

Suppose the diagram commutes. For γ P Γ, we have

@˚px, yq, γx “ xô γy “ y ô γpx, yq “ px, yq. It follows that

@˚px, yq, Stabζpx, yq “ Stabαpxq or in other words, Stabζ “ Stabα ˝ p1. Therefore

θζ “ Stabζ˚η “ Stabα˚ pp1˚ηq “ Stabα˚µ “ θα “ θ.

Conversely, suppose θζ “ θ. Then p1 and p2 are action factor maps between two

actions with same IRS, thus repeating the proof of Lemma 4.12, we get

Stabα ˝ p1 “ Stabζ “ Stabβ ˝ p2. �

We conclude simply by definition of the independent joining over a common factor that αˆ
θ
β

is a suitable joining for the Lemma.

The proof of the big theorem easily follows :

Proof : Approximate conjugacy for pmp actions with a given hyperfinite IRS.

Let α : Γ ñ pX,µq and β : Γ ñ pY, νq two actions of Γ having IRS θ and consider the joining

ζ : Γ ñ pZ, ηq from Lemma 4.20.

Applying twice Theorem 4.17 with no Borel parameters we get two pmp bijections ρ :

X Ñ Z and ρ1 : Y Ñ Z such that

µptx P X : @i ď n, ρ ˝ γαi pxq “ γβi ˝ ρpxquq ą 1´
ε

2

and

νpty P Y : @i ď n, ρ ˝ γβi pyq “ γβi ˝ ρpyquq ą 1´
ε

2

Thus, ρ1´1 ˝ ρ : X Ñ Y witnesses the ε-approximate conjugacy of α and β.
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5 Model theory for hyperfinite actions

5 Model theory for hyperfinite actions

5.1 Probability algebras

The reference for countinuous model theory is [YBHU08]. We assume everything that is in

this article and we will use the same notations.

Definition 5.1. A probability algebra is a Boolean algebra pA,Y,X,c , 0, 1,Ď,4q en-

dowed with an application µ : AÑ r0, 1s satisfying the following :

1. µp1q “ 1.

2. @A,B P A, µpAXBq “ 0 ñ µpAYBq “ µpAq ` µpBq.

3. The application dµpA,Bq :“ µpAXBq is a complete metric.

Definition 5.2. An element A P A is an atom if @B P A, B Ď A ñ B P t0, Au. A

probability algebra is atomless if it has no atom.

Proposition 5.3 (Admitted). If a probability algebra A is atomless, then

@A P A @r P r0, µpAqs DB Ď A, µpBq “ r.

Proposition 5.4 (Admitted,[Fre02]). Let A be any probability algebra. Then there exists a

probability space pX,µq such that A is isomorphic to MAlgpX,µq. Moreover if A is separable

then pX,µq can be taken to be a standard probability space.

Take f : pX,µq Ñ pY, νq a measure preserving map then the map rf : MAlgpY, νq Ñ

MAlgpX, νq sending rAsν to rf´1pAqsµ is a probability algebra morphism. Moreover, if f is

a bijection, then rf is an isomorphism.

5.2 Model theory of atomless probability algebras

We can axiomatize the theory APA of atomless probability algebras in the signature

L “ tY,X,c , 0, 1u (Ď and 4 are defined as usual) by :

• The axioms of Boolean algebras :

– supx,y dpxY y, y Y xq “ 0

– supx,y dpxX y, y X xq “ 0

– supx dpxY 0, xq “ 0

– supx dpxX 1, xq “ 0

– supx dpxY x
c, 1q “ 0

– supx dpxX x
c, 0q “ 0

– supx,y,z dpxY py X zq, pxY yq X pxY zqq “ 0

– supx,y,z dpxX py Y zq, pxX yq Y pxX zqq “ 0

• The axioms for the measure :

– µp1q “ 1

– supx,y µpxX yq´ µpxq “ 0

– supx,y µpxq´ µpxY yq “ 0

– supx,y |pµpxq ´ µpxX yqq ´ pµpxY yq ´ µpyqq| “ 0
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5.3 Morphisms and liftings

• The link between the metric d and the measure : supx,y |dpx, yq ´ µpx4 yq| “ 0

• The lack of atoms : supx infy |µpxX yq ´ µpxX y
cq| “ 0

For pX,µq a probability space, we let MAlgpX,µq be the boolean algebra of Borel sub-

sets of X quotiented by the σ-ideal of null sets. For A Ď X Borel we denote its class in

MAlgpX,µq by rAsµ. We define an application µ : MAlgpX,µq Ñ r0, 1s by µprAsµq “ µpAq.

It is classic that MAlgpX,µq endowed with µ is a probability algebra.

Moreover, in the case where pX,µq is a standard probability space then MAlgpX,µq is

atomless and separable for the topology induced by dµ.

Proposition 5.5. The theory APA is separably categorical and therefore complete.

Proof. Take A,B separable probability algebras. We may suppose that there are standard

probability spaces pX,µq and pY, νq such that A “ MAlgpX,µq and B “ MAlgpY, νq. Now

by uniqueness of the standard probability space there exists a measure preserving Borel

bijection f : X Ñ Y , and that induces an isomorphism rf : B Ñ A.

Finally we give a characterization of types in the theory APA :

For A a probability algebra, we can define a Hilbert space L2pAq in which A embeds.

This construction can be done in many different ways (see [Fre02]) and in the end if A “
MAlgpX,µq, then the linear map L2pAq Ñ L2pX,µq sending A to 1A is an isometry.

Definition 5.6. Let A be a probability algebra and B a measure subalgebra of A. Then

the space L2pBq is a closed vector subspace of the Hilbert space L2pAq, we denote by PB the

orthogonal projection on L2pBq and we call it the conditional expectancy with respect

to B. Particularly, for A P A, A can be seen as an element of L2pAq and we call PBpAq the

conditional probability of A with respect to B.

By definition, the conditional probability of A with respect to B is the only B-measurable

function such that for any B-measurable function f , we have
ş

PBpAq.f “
ş

1A.f .

Proposition 5.7 (Admitted, [BH04]). Let M |ù APA, ā, b̄ be n-uples of elements of M

and

C Ď M . Then tppā{Cq “ tppb̄{Cq if and only if for every map σ : t1, . . . , nu Ñ t1, cu we

have PdclM pCq

ˆ

Ş

1ďiďn

a
σpiq
i

˙

“ PdclM pCq

ˆ

Ş

1ďiďn

b
σpiq
i

˙

, where x1 means x.

5.3 Morphisms and liftings

In general, given a morphism ϕ : MAlgpY, νq Ñ MAlgpX,µq there is no way to get a point

to point map f : X Ñ Y such that rf “ ϕ. However, with standard probability spaces, we

can do such constructions :

Proposition 5.8 (Admitted,[Fre02]). Let pX,µq and pY, νq be standard probability spaces.

1. Let ϕ be a morphism of probability algebras MAlgpY, νq Ñ MAlgpX,µq. Then there is

a lifting of ϕ, that is a measure preserving map f : X Ñ Y such that ϕ “ rf .

2. Let ϕ be an isomorphism of probability algebras MAlgpY, νq Ñ MAlgpX,µq. Then there

is a lifting of ϕ which is a bijection f : X Ñ Y .
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5.4 The theory Aθ

3. Let Γ be a countable group acting by automorphisms on MAlgpX,µq by an action α.

Then there is a lifting of α, that is an action β : Γ ñ X acting by measure preserving

transformations such that @γ P Γ γα “ Ăγβ.

5.4 The theory Aθ

Until now, we studied actions of any countable group. For the sake of simplicity, we now

restrict to F8 actions, where F8 denotes the countably generated free group. It is clear that

any action of a countable group can be represented as a F8-action.

We now expand the signature L with a countable set of function symbols tγ : γ P F8u.

We call this new signature L8. We begin by considering the theory AF8 consisting of the

following axioms :

• The axioms of APA.

• For γ P F8, the axioms expressing that γ is a morphism :

– supx,y dpγpxY yq, γxY γyq “ 0

– supx,y dpγpxX yq, γxX γyq “ 0

– supx |µpγxq ´ µpxq| “ 0

– supx infy dpx, γyq “ 0

• The axioms expressing that F8 acts on the probability algebra :

– supx dpex, xq “ 0

– For γ1, γ2 P F8 the axiom supx dpγ1pγ2xq, γ1γ2xq “ 0

By Proposition 5.8 any separable model of AF8 can be seen as the probability algebra

endowed with the action associated with a measure preserving action α : F8 ñ X where

pX,µq is a standard probability space. We denote the model of AF8 induced by such an

action α by Mα. Without loss of generality, from now on, whenever taking a separable

model of AF8 , we will take an action α and suppose our model is Mα.

For f any measure preserving bijection pX,µq Ñ pX,µq, where pX,µq is a standard

probability space. We call the support of f and we denote by Supp f the set tx P X : fx ‰

xu.

Lemma 5.9. There is a A P MAlgpX,µq such that rSupp f sµ “ f´1A Y A Y fA and

AX fA “ 0.

Proof. MAlgpX,µq is a probability algebra and therefore is complete as a Boolean algebra

so it has a maximal element A disjoint from its image by f .

Consider B “ f2Azpf´1AYAY fAq. We have

pAYBq X fpAYBq “ pAX fAq Y pAX fBq Y pB X fAq Y pB X fBq

Ď 0Y pAzAq Y pfAzfAq Y pf2Azf2Aq

“ 0

Thus A Y B is disjoint from its image. By maximality of A, we then have B Ď A, but by

definition B X A “ 0, so B “ 0, or in other words, f2pAq Ď f´1AY AY fA. Therefore by
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5.4 The theory Aθ

a simple induction, fpf´1A Y A Y fAq “ f´1A Y A Y fA, and thus the restriction of f to

rSupp f sµzpf
´1AYAY fAq is an endomorphism of MAlgpX,µqærSupp fsµzpf´1AYAYfAq.

Claim 5.9.1. Let g be a measure preserving transformation of a standard probability

space pY, νq such that νpSupp gq ą 0, then there exists a nonnull Borel C Ď Y disjoint

from its image by g.

Proof. Let pCn : n P Nq be a countable family of Borel subsets of Y separating the

points. For n P N, let C 1n “ CnzgpCnq. For y P Supp g, there is n such that y P Cn

and g´1pyq R Cn so y P C 1n and therefore µp
Ť

nPN
C 1nq ě µpSupp gq ą 0. Take a C 1n of

positive measure as the desired C. �

By the Claim it is clear that if Supp fzpf´1AYAY fAq ‰ 0 then DC P MAlgpX,µq disjoint

from its image and such that 0 ‰ C Ď rSupp f sµzpf
´1A Y A Y fAq, contradicting the

maximality of A. We conclude that rSupp f sµ Ď f´1AYAY fA.

Conversely, if A is disjoint from its image by f , then f´1A and fA have the same property

and thus f´1AYAY fA Ď rSupp f sµ.

This encourages the following definition.

Definition 5.10. Let pA , µq be a probability algebra, we can generalize the notion of

support to any pmp isomorphism f of A (and not only those coming from a pmp bijection

of a probability space) by letting Supp f “ sup tf´1A Y A Y fA : A P A , A X fA “ 0u.

The previous Lemma assures that if f is actually of the form rρ for ρ a pmp bijection of a

probability space, we have Supp f “ rSupp ρsµ.

Now we can prove that the IRS of a pmp action on a probability algebra is determined

by the theory of this action seen as a model of AF8 .

Definition 5.11. For γ P F8 we let tγpxq denote the term γ´1pxzγxq Y pxzγxq Y γpxzγxq.

It is clear from this definition that for M |ù AF8 , Supp γ “ supttγpAq : A PMu.

Lemma 5.12. Let M |ù AF8 and γ P F8, then the support of γ is definable without

parameters in the theory AF8 .

Proof. We need to prove that the distance to Supp γ is a definable formula. By definition

of the distance, we have @x PM, dpx, Supp γq “ µpxzSupp γq ` µpSupp γzxq.

On the one hand, µpxzSupp γq “ infy µpxztγpyqq so the first part is definable.

On the other hand, µpSupp γzxq “ supy µptγpyqzxq and therefore the second part is

definable as well.

Theorem 5.13. Let Mα,Mβ be two elementary equivalent separable models of AF8 , then

θα “ θβ.

Proof. As θα and θβ are measures on SgpF8q, they are determined by their values on the

sets NF,G “ tΛ ď F8 : F Ď Λ, GX Λ “ Hu where F and G are finite.
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5.5 Completeness and model completeness

Note that θαpNF,Hq “ µp
Ş

γPF

Supp γMαq and θβpNF,Hq “ µp
Ş

γPF

Supp γMβ q and by Lemma

5.12, µp
Ş

γPF

Supp γq is a definable sentence, thus by elementary equivalence, for every finite

F Ď F8, we have θαpNF,Hq “ θβpNF,Hq.

Now for F,G finite subsets of F8, write NF,G “ NF,Hz
Ť

γPG

NFYtγu,H. By the inclusion

exclusion principle, we then get

θαpNF,Gq “ θαpNF,Hq `

|G|
ÿ

i“1

p´1qi
ÿ

tJĎG : |J|“iu

θαpNFYJ,Hq

“ θβpNF,Hq `

|G|
ÿ

i“1

p´1qi
ÿ

tJĎG : |J|“iu

θβpNFYJ,Hq

“ θβpNF,Gq

For θ an IRS, let Aθ be the L8-theory consisting of :

• The axioms of AF8 .

• For F Ď F8 finite, the axiom suptxγ :γPF u µp
Ş

γPF

tγpxγqq “ θpNF,Hq.

Then the theory Aθ represents measure preserving actions of F8 of IRS θ.

5.5 Completeness and model completeness

Theorem 5.14. Let θ be a hyperfinite IRS on F8, then the theory Aθ is complete.

Proof. It suffices to show that any two separable models are elementary equivalent by the

Löwenheim-Skolem theorem.

Let Mα,Mβ be separable models of Aθ, where α acts on pX,µq and β on pY, νq. We will

prove by induction on formulas that for any L8 formula ϕpx̄q and ε ą 0, there is a pmp

bijection ρ : Y Ñ X such that @ā ĎMα,
ˇ

ˇϕMαpāq ´ ϕMβ prρāq
ˇ

ˇ ă ε.

Step 1 : We start with atomic formulas. Since the distance can be expressed with the

help of the measure symbol µ, µ is the only predicate in the language and therefore the

atomic formulas are of the form ϕpx̄q :“ µptpγ1x̄, . . . , γnx̄q, where tpūq is a L-term.

In continuous logic, all functions are uniformly continuous and thus so are the terms,

so we can choose δ ą 0 such that in any two tuples ū and v̄ in Mβ , if dνpū, v̄q ă δ then

dνpt
Mβ pūq, tMβ pv̄qq ă ε.

We can now apply our big theorem, Theorem 4.13, to get a pmp bijection ρ : Y Ñ X

such that

νpty P Y : @i ď n ρ ˝ γαi pyq “ γβi ˝ ρpyquq ą 1´ δ

32



5.5 Completeness and model completeness

In terms in probability algebra, we get @i P t1, . . . , nu @a P Mα, dνprργ
β
i a, γ

α
i rρaq so for any

tuple ā ĎMα we have

ˇ

ˇϕpāqMα ´ ϕprρāqMβ
ˇ

ˇ

“

ˇ

ˇ

ˇ
µptMαpγα1 ā, . . . , γ

α
n āqq ´ νpt

Mβ pγβ1 rρā, . . . , γ
β
nrρāqq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
νprρtMαpγα1 ā, . . . , γ

α
n āqq ´ νpt

Mβ pγβ1 rρā, . . . , γ
β
nrρāqq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
νptMβ prργα1 ā, . . . , rργ

α
n āqq ´ νpt

Mβ pγβ1 rρā, . . . , γ
β
nrρāqq

ˇ

ˇ

ˇ

ď dν

´

tMβ prργα1 ā, . . . , rργ
α
n āq, t

Mβ pγβ1 rρā, . . . , γ
β
nrρāq

¯

ă ε

Step 2 : The case of connectives is trivial : simply use uniform continuity.

Step 3 : For quantifiers, let us for example consider the case of a formula of the form

infx ϕpx, ȳq, knowing the result for ϕpx, ȳq.

Take a pmp bijection ρ : Y Ñ X such that @pa, b̄q Ď Mα,
ˇ

ˇϕMαpa, b̄q ´ ϕMβ prρa, rρb̄q
ˇ

ˇ ă ε.

Since rρ is surjective, we also have @b̄ Ď Mα,
ˇ

ˇinfx ϕpx, b̄q
Mα ´ infx ϕpx, rρb̄q

Mβ
ˇ

ˇ ă ε. Hence

the conclusion.

But now if ϕ is a L8-sentence, what we just proved shows that @ε ą 0,
ˇ

ˇϕMα ´ ϕMβ
ˇ

ˇ ă ε.

It follows that ϕMα “ ϕMβ and therefore Aθ is complete.

For model completeness, we need a version of the latter proof with parameters.

Theorem 5.15. Let θ be a hyperfinite IRS on F8, then the theory Aθ is model complete.

Proof. It suffices to show that any inclusion of two separable models is elementary. Indeed,

suppose this result and take any M Ď N |ù Aθ, ϕpx̄q a L8-formula and ā P M finite. By

Löwenheim-Skolem theorem, take M 1 ĺ M separable containing A. Again by Löwenheim-

Skolem theorem, take N 1 ĺ N separable and containing the separable structure M 1. Using

the hypothesis, M 1 ĺ N 1 so we finally get

ϕpāqM “ ϕpāqM
1

“ ϕpāqN
1

“ ϕpāqN

From there, the proof is similar to the one of completeness, except that we use Theorem

4.17 to stabilize Borel parameters.

Claim 5.15.1. For Mα and Mβ two separable models of Aθ, Mα ĎMβ if and only if

α Ď β.

Proof. Suppose α Ď β and let π : Y Ñ X be a corresponding action factor map. Then

rπ : Mα ãÑMβ is an embedding.

Conversely, suppose we have an embedding i : Mα ãÑMβ . By Proposition 5.8 we can

take a lifting π of i such that @γ P F8, γ
β ˝π “ π ˝γα and this lifting is then an action

factor map between α and β �

33



5.6 Elimination of quantifiers

To complete the proof, we consider two models Mα Ď Mβ of Aθ and we proceed by

induction on formulas, showing that for any L8 formula ϕpx̄, āq, where ā ĎMα, and ε ą 0,

there is a pmp bijection ρ : Y Ñ X such that @b̄ Ď Mα,
ˇ

ˇϕMαpb̄, āq ´ ϕMβ prρb̄, āq
ˇ

ˇ ă ε. The

cases of connectives and quantifiers are exactly the same so we focus on atomic formulas :

Let ā Ď Mα and ϕpx̄, āq :“ µptpγ1x̄, . . . , γnx̄, γ1ā, . . . , γnāq be an atomic formula, where

tpx̄q is a L-term. Let δ ą 0 be such that in any two tuples ū and v̄ in Mβ , if dνpū, v̄q ă δ

then dνpt
Mβ pūq, tMβ pv̄qq ă ε. Finally, let Ā be a tuple of Borel representatives of elements

of ā in pX,µq and consider the action factor map π given by the Claim. Let B̄ “ π´1pĀq,

so that B̄ is a tuple of Borel representatives of elements of ā in pY, νq.

Thanks to the Claim, we can now apply Theorem 4.17 to get a pmp bijection ρ : Y Ñ X

such that ρpĀq “ B̄ and

νpty P Y : @i ď n ρ ˝ γβi pyq “ γαi ˝ ρpyquq ą 1´ δ

In terms in probability algebra, we get rρā “ ā and @i P t1, . . . , nu @b PMα, dνprργ
α
i b, γ

β
i rρbq

so for any tuple b̄ ĎMα we have

ˇ

ˇϕpb̄, āqMα ´ ϕprρb̄, āqMβ
ˇ

ˇ

“

ˇ

ˇ

ˇ
µptMαpγα1 b̄, . . . , γ

α
n b̄, γ

α
1 ā, . . . , γ

α
n āqq ´ νpt

Mβ pγβ1 rρb̄, . . . , γ
β
nrρb̄, γ

β
1 ā, . . . , γ

β
n āqq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
νprρtMαpγα1 b̄, . . . , γ

α
n b̄, γ

α
1 ā, . . . , γ

α
n āqq ´ νpt

Mβ pγβ1 rρb̄, . . . , γ
β
nrρb̄, γ

β
1 ā, . . . , γ

β
n āqq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
νptMβ prργα1 b̄, . . . , rργ

α
n b̄, rργ

α
1 ā, . . . , rργ

α
n āqq ´ νpt

Mβ pγβ1 rρb̄, . . . , γ
β
nrρb̄, γ

β
1 rρā, . . . , γ

β
nrρāqq

ˇ

ˇ

ˇ

ď dν

´

tMβ prργα1 b̄, . . . , rργ
α
n b̄, rργ

α
1 ā, . . . , rργ

α
n āq, t

Mβ pγβ1 rρb̄, . . . , γ
β
nrρb̄, γ

β
1 rρā, . . . , γ

β
nrρāq

¯

ă ε

Now if ϕpāq is a L8-sentence with parameters ā, what we just proved shows that

@ε ą 0,
ˇ

ˇϕMαpāq ´ ϕMβ pāq
ˇ

ˇ ă ε. It follows that ϕMαpā “ ϕMβ pāq and therefore Aθ is model

complete.

5.6 Elimination of quantifiers

Proposition 5.16 (Admitted,[YBHU08]). Let T be a countable theory, then T admits quan-

tifier

elimination if and only if for any separable M,N |ù T , any substructure A ĎM and any em-

bedding f : A ãÑ N , there is an elementary extension N 1 of N and an embedding f̃ : M ãÑ N 1

extending f .

Definition 5.17. We say that a theory T admits amalgamation if for any M1,M2 |ù T and

any common substructure A, there is N |ù T and embeddings Mi ãÑ N (i “ 1, 2) such that

the following diagram commutes :

N

M1 M2

A
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Lemma 5.18. Let T be a theory. Then T admits quantifier elimination if and only if it

admits amalgamation and is model complete.

Proof. Suppose that T admits quantifier elimination. Let M1,M2 |ù T with a common

substructure A, applying Proposition 5.16 where f is the inclusion A ãÑ M2, we get N as

required.

Now let M Ď N be two models of T . By quantifier elimination, we only need to prove

that M |ù ϕpāq ô N |ù ϕpāq for atomic formulas ϕ and finite tuples ā of parameters in M .

But this is trivial by the definition of inclusion for models.

Conversely, suppose T admits amalgamation and is model complete and let M,N |ù T ,

A Ď M be a substructure, and f : A ãÑ N . By considering a monster model, we may

suppose that A Ď N and f is the identity. Then by amalgamation there is a model N 1 |ù T

and embeddings ϕ,ψ such that the following diagram commutes :

N 1

M N

A

ϕ ψ

Id Id

Again we may suppose that N Ď N 1 and ψ is the identity, thus by model completeness we

have N ĺ N 1. Furthermore, the diagram now exactly states that ϕ extends the inclusion

A ãÑ N .

In order to prove that our theories eliminate quantifiers, it only remains to prove that

they have amalgamation. However, the following example shows that it is not the case in

general.

Proposition 5.19. As we already saw, considering F8 actions allows us to study any Γ

action as well, when Γ is countable. Fix a surjective morphism F8 Ñ Γ. For θ an IRS on

Γ, denote by θ1 the IRS on F8 such that actions of Γ of IRS θ are represented by actions of

F8 of IRS θ1. We write AΓ,θ for Aθ1 .

Let θ “ 1
2δteu `

1
2δΓ be an IRS on Γ, then AΓ,θ does not have quantifier elimination.

Proof. Take any γ P Γzteu. We already saw in Lemma 5.12 that the support of γ was

definable in the theory Aθ. However, it is not definable with a quantifier free formula.

Indeed, suppose ϕpxq is a quantifier free formula equivalent to µpxXSupp γq :“ supy µpxX

pyzγy Y γpyzγyq Y γ2pyzγyqqq :

Let κ1 be a free pmp action on pr0, 1s, λq and κ2 be the trivial action on pr0, 1s, λq. Define

• α : Γ ñ pX “ r0, 1s ˆ t1, 2, 3, 4u, µ “ 1
4λˆ δ1 `

1
4λˆ δ2 `

1
4λˆ δ3 `

1
4λˆ δ4q that acts

like κ1 on r0, 1s ˆ t1u and r0, 1s ˆ t2u and acts like κ2 on r0, 1s ˆ t3u and r0, 1s ˆ t4u.

• β : Γ ñ pX “ r0, 1s ˆ t1, 2, 3, 4u, µ “ 1
4λˆ δ1 `

1
4λˆ δ2 `

1
4λˆ δ3 `

1
4λˆ δ4q that acts

like κ1 on r0, 1s ˆ t1u and r0, 1s ˆ t3u and acts like κ2 on r0, 1s ˆ t2u and r0, 1s ˆ t4u.
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5.6 Elimination of quantifiers

We have θα “ θβ “ θ.

Let M be the common substructure tA,Bu of Mα and Mβ , where A “ rr0, 1s ˆ t1, 2usµ,

B “ rr0, 1s ˆ t3, 4usµ.

As ϕpxq is quantifier free, we have ϕMαpAq “ ϕM pAq “ ϕMβ pAq, but in Mα,

AX Supp γ “ rr0, 1s ˆ t1, 2usµ and thus Mα |ù µpAX Supp γq “ 1
2 whereas in Mβ ,

AX Supp γ “ rr0, 1s ˆ t1usµ and thus Mα |ù µpAX Supp γq “ 1
4 . A contradiction.

In the case where Γ is amenable, this is an example of theory of the form Aθ which is

model complete but does not eliminate quantifiers.

In the other hand, we still have amalgamation for free actions of an amenable group Γ :

Proposition 5.20. If θ is the Dirac measure δteu on Γ an amenable group, then AΓ,θ admits

amalgamation and thus has quantifier elimination.

Proof. Let Mα,Mβ be two separable models of AΓ,θ and A a common substructure. Then

α and β are actions of Γ of IRS θ and the substructure A can be interpreted as an action ξ

of Γ on a probability space, which is a common factor of α and β.

Consider the relative independent joining ζ of α and β over the common factor ξ. Since

α Ď ζ, the stabilizers in ζ must be smaller than the ones in α, but these are always the

trivial group, hence ζ is a free action of Γ, and thus Mζ is a suitable model of AΓ,θ for

amalgamation over A.

We just saw that there are theories of the form Aθ for θ hyperfinite which admit quantifier

elimination and others that do not. The next question is thus :

For which θ does the theory Aθ admit quantifier elimination ? Is there a simple sufficient

condition on θ ?

At the time, we do not have any satisfying answer, however, we propose a conjecture.

Indeed our counterexample in Proposition 5.19 highly relies on non-ergodicity of the IRS.

We recall the definition of ergodicity.

Definition 5.21. Let α : Γ ñ pX,µq be an action of a group on a probability space. We

say that α is ergodic if every Γ-invariant (for α) measurable subset of X is either null or

connull.

For a given Borel action Γ Ñ X on a Polish space, we say that µ P PpXq is ergodic if

every Γ-invariant measurable subset of X is either null or connull (for µ).

For Invariant Random Subgroups, we consider the notion of ergodicity with respect to

the action Γ ñ SgpΓq by conjugation. Thus 1
2δteu `

1
2δΓ is one of the simplest examples

of non-ergodic IRS. In the proof of Proposition 5.19 we choose actions which decompose

in a very specific way, and that could not be done with an ergodic IRS. Moreover, the

same proof can be adapted to the case of many non-ergodic IRS, namely to any IRS in the

proper convex hull of two IRS concentrated on two disjoint Borel subsets of SgpΓq. All these

remarks suggest that ergodicity play a role in the quantifier elimination of Aθ. We therefore

also ask :

Does the theory Aθ admit quantifier elimination if and only if θ is ergodic ?

36



5.7 Stability and Independence

5.7 Stability and Independence

5.7.1 Definable closure in Aθ

Even though we do not know for which IRS θ the theory Aθ admits quantifier elimination,

another interesting question is to ask what we can add to the signature L8 to expand it

into a simple signature in which the theories Aθ always have quantifier elimination. One can

notice that in all this section, the supports of elements of the group play a big role. An idea

is then to add constants tSγ : γ P F8u to the signature L8 and to consider the theory A1θ

consisting of :

• The axioms of Aθ.

• For γ P F8, the axioms :

– supx dpSγ X tγpxq, tγpxqq “ 0.

– µpSγq “ θpNγq.

This theory expresses that for γ P F8, the constant Sγ must be interpreted as rSupp γαsµ

in the model Mα, as it contains the class of the support by the first axiom and has the same

measure by the second one.

Theorem 5.22. Let θ be a hyperfinite IRS, then the theory A1θ eliminates quantifiers in the

language F8 Y tSγ : γ P F8u.

Proof. We use Lemma 5.18.

First, take Mα ĎMβ two separable models and let us prove that Mα ĺMβ . In order to

repeat the proof from Theorem 5.15 we only need to include atomic formulas in which the

constants Sγ appear. But for ε ą 0 and ρ : Y Ñ X a pmp bijection such that

νpty P Y : ρ ˝ γαpyq “ γβ ˝ ρpyquq ą 1´ ε

we have dνprρS
Mα
γ , S

Mβ
γ q ă ε so by uniform continuity of formulas we conclude as we did in

Theorem 5.15.

Now for amalgamation we will use the constants Sγ . Indeed, take Mα and Mβ two

separable models of A1θ and A a common substructure. We interpret A as a F8 pmp action

ξ on a probability space which is a common factor of α and β for respective factor action

maps π1 and π2.

Consider ζ : F8 ñ pX ˆ Y, ηq the relative independent joining of α and β over ξ. By

definition, @˚px, yq P X ˆ Y π1pxq “ π2pyq, but moreover, since we added the constants Sγ ,

A being a common substructure implies in particular that π´1
1 pSAγ q “ SMα

γ and π´1
2 pSAγ q “

S
Mβ
γ . It follows that

@γ P F8 @
˚px, yq P X ˆ Y, x P Supp γα ô π1pxq P S

A
γ ô π2pyq P S

A
γ ô y P Supp γβ

and so for all γ P F8, up to a null set, Supp γζ “ π´1
1 pSupp γαq.
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5.7 Stability and Independence

Hence for any F Ď F8 finite, we get

θζpNF q “ ηp
č

γPF

Supp γζq

“ ηpπ´1
1 p

č

γPF

Supp γαqq

“ θαpNF q

“ θpNF q

We conclude as in Theorem 5.13 using the inclusion exclusion principle that θζ “ θ and thus

ζ is a witness that A1θ admits amalgamation.

Corollary 5.23. Let M |ù Aθ and A Ď M , then the definable closure of A in M is the σ-

algebra generated by elements of the form γM1 paq or γM1 pSupp γM2 q for a P A and γ1, γ2 P F8.

Proof. First A Ď dclM pAq and by Lemma 5.12, for γ P F8, Supp γM P dclM pAq. Moreover,

definable closure is stable by translates by elements of F8, complements and countable

reunion, thus we get the first inclusion.

In the other way, since A1θ expands Aθ, the definable closure of A in the theory Aθ is

contained in the definable closure of A in the theory A1θ, which is contained in the σ-algebra

generated by elements of the form γM1 paq or γM1 pSupp γM2 q for a P A and γ1, γ2 P F8 by

quantifier elimination.

Hence the conclusion.

5.7.2 The stable independence relation

Definition 5.24. Let κ be a cardinal. A κ-universal domain for a theory T is a κ-saturated

and strongly κ-homogeneous model of T . If U is a κ-universal domain and A Ď U , we say

that A is small if |A| ă κ.

Definition 5.25. Let U be a κ-universal domain for T . A stable independence relation on

U is a relation A K
C
B on triples of small subsets of U satisfying the following properties, for

all small A,B,C,D Ď U , finite ū, v̄ Ď U and small M ĺ U :

1. Invariance under automorphisms of U .

2. Symmetry : A K
C
B ðñ B K

C
A.

3. Transitivity : A K
C
BD ðñ A K

C
B ^A K

BC
D.

4. Finite character : A K
C
B if and only if ā K

C
B for every finite ā Ď A.

5. Extension : There exists A1 such that tppA1{Cq “ tppA{Cq and A1 K
C
B.

6. Local character : There exists B0 Ď B such that |B0| ď |T | and ū K
B0

B.

7. Stationarity of types : If tppA{Mq “ tppB{Mq and A K
M
C and B K

M
C then

tppA{M Y Cq “ tppB{M Y Cq.

Proposition 5.26 (Admitted, [YBHU08]). Let κ ą |T | and let U be a κ-universal domain.

Then the theory T is stable if and only if there exists a stable independence relation on

U , and in this case the stable independence relation is the independence relation given by

non-dividing.
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5.7 Stability and Independence

Thus, in order to prove that our theories are stable, we only need to define a stable

independence relation. The independence considered will be the classical independence of

events in probability theory.

Definition 5.27. From now on, we write 〈A〉 for dclU pAq.

Let A,B,C Ď U be small, we say that A and B are independent over C and we write

A K
C
B if @a P 〈A〉 , @b P 〈B〉, P〈C〉paq.P〈C〉pbq “ P〈C〉paX bq.

Lemma 5.28. Let A,B,C Ď U be small, then we have A K
C
B if and only if

@a P 〈A〉 , P〈BC〉paq “ P〈C〉paq.

Proof. Suppose that @a P 〈A〉 , P〈BC〉paq “ P〈C〉paq. Let a P 〈A〉, b P 〈B〉 and c P 〈C〉,

ż

c

P〈C〉paq.P〈C〉pbq “

ż

P〈C〉paq.P〈C〉pbq.1c

“

ż

P〈C〉paq.1b.1c

“

ż

P〈BC〉paq.1b.1c

“

ż

1a.1b.1c

“

ż

1aXb.1c

“

ż

c

P〈C〉paX bq

which proves that P〈C〉paq.P〈C〉pbq “ P〈C〉paX bq.

Conversely, suppose that A K
C
B. Let a P 〈A〉. The conditional probability P〈C〉 is

〈BC〉-measurable and moreover, for b P 〈B〉 and c P 〈C〉, we have

ż

bXc

P〈C〉paq “

ż

P〈C〉paq.1bXc

“

ż

P〈C〉paq.1b.1c

“

ż

P〈C〉paq.P〈C〉pbq.1c

“

ż

P〈C〉paX bq.1c

“

ż

1a.1b.1c

“

ż

bXc

1a

And thus for any 〈BC〉-measurable function f , we have
ş

P〈C〉paq.f “
ş

1a.f , therefore

P〈BC〉paq “ P〈C〉paq.

Theorem 5.29. If θ is a hyperfinite IRS, the relation of independence K defined above is a

stable independence relation. Consequently, the theory Aθ is stable and the relation K agrees

with non-dividing.
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5.7 Stability and Independence

Proof. 1. Invariance under automorphisms of U : If ρ is an automorphism of U , by

uniqueness of the orthogonal projection, we know that P〈ρpCq〉 “ ρ˝P〈C〉˝ρ
´1 and there-

fore P〈C〉paq.P〈C〉pbq “ P〈C〉paXbq if and only if P〈ρpCq〉pρaq.P〈ρpCq〉pρbq “ P〈ρpCq〉pρpaX

bqq.

2. Symmetry : The definition is symmetric.

3. Transitivity : Let A,B,C,D be small. First if A K
C
B and A K

BC
D then by Lemma

5.28, for a P 〈A〉, we have P〈BCD〉paq “ P〈BC〉paq “ P〈C〉paq so A K
C
BD.

In the other way, if A K
C
BD then P〈BCD〉paq “ P〈C〉paq, but that implies that P〈C〉paq

is a 〈C〉-measurable function such that for all 〈BCD〉-measurable function f we have
ş

P〈C〉paq.f “
ş

1a.f . We conclude that P〈BCD〉paq “ P〈BC〉paq “ P〈C〉paq, and there-

fore that A K
C
C and A K

BC
D.

4. Finite character : It is trivial by the definition.

5. Extension : Let A,B,C be small subsets of U . Let A “ 〈AC〉, B “ 〈BC〉 and C “ 〈C〉.
The three structures A, B and C can be seen as Boolean rings, and we can therefore

define the free product of Boolean algebras D “ Ab
C
B along with the product measure.

Then D can be seen as a probability probability algebra.

By universality of U and smallness of D, there is an embedding of D in U sending B
back to B. We denote A1 the image of A by this embedding. Of course C is sent back

to C so we have tppA1{Cq “ tppA{Cq.

Moreover, it is shown in [] that another characterization of independence is given by

A K
C
B ðñ A ^ B “ A b

C
B, where A ^ B is the probability algebra generated by A

and B. Thus, we have by construction A1 K
C
B.

6. Local character : Let ū “ pu1, . . . , unq Ď U be finite. Consider the conditional proba-

bilities P〈B〉puiq. These are 〈B〉-measurable functions with real values and so there is

a countably

generated σ-subalgebra of 〈B〉, say 〈B0〉 where B0 Ď B is countable, for which they

are all measurable. But then we have P〈B〉puiq “ P〈B0〉puiq, so by Lemma 5.28 ū K
B0

B.

7. Stationarity of types : We denote by tpLpx̄{Y q the type of a tuple x̄ over a set of

parameters Y in the language L. In other words, this is the type of x̄ over Y in the

underlying atomless probability algebra of U .

Let A,B,C Ď U be small and M ĺ U be small. Suppose that tppA{Mq “ tppB{Mq,

A K
M
C and B K

M
C.

We begin by proving that tpLpA{ 〈M Y C〉q “ tpLpB{ 〈M Y C〉q. Indeed, for a P

〈A〉L and b P 〈B〉L, we have P〈MYC〉paq “ PM paq and P〈MYC〉pbq “ PM pbq, but by

Proposition 5.7 types in APA can be fully described with conditional probabilities and

we know that tpLpA{Mq “ tpLpB{Mq so we get tpLpA{M Y Cq “ tpLpB{M Y Cq.
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Now Corollary 5.23 implies that tppA{M YCq (resp. tppB{M YCq) is determined by

tpL

¨

˚

˝

Ť

γ1PF8
γ2PF8

γ1AY tγ1pSγ2qu{ 〈M Y C〉

˛

‹

‚

(resp. tpL

¨

˚

˝

Ť

γ1PF8
γ2PF8

γ1B Y tγ1pSγ2qu{ 〈M Y C〉

˛

‹

‚

).

Thus, let A1 “
Ť

γ1PF8
γ2PF8

γ1AY tγ1pSγ2qu and B1 “
Ť

γ1PF8
γ2PF8

γ1B Y tγ1pSγ2
qu.

It is clear that tppA1{Mq “ tppB1{Mq, A1 K
M
C and B1 K

M
C and we can apply what we

proved just above to conclude that

tpL

¨

˚

˚

˝

ď

γ1PF8
γ2PF8

γ1AY tγ1pSγ2qu{ 〈M Y C〉

˛

‹

‹

‚

“ tpL

¨

˚

˚

˝

ď

γ1PF8
γ2PF8

γ1B Y tγ1pSγ2qu{ 〈M Y C〉

˛

‹

‹

‚

Hence the conclusion.
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