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Abstract. We establish a sharp sufficient condition for groups acting on trees to be highly
transitive when the action on the tree is minimal of general type. This give new examples of
highly transitive groups, including icc non-solvable Baumslag-Solitar groups, thus answering
a question of Hull and Osin.
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1. Introduction

Given a countably infinite group Γ, one is naturally led to the study of its transitive actions,
or equivalently of the homogeneous spaces Γ/Λ where Λ is a subgroup of Γ. A basic invariant
for such an action is being transitivity degree, namely the supremum of the n ∈ N such
that for any two n-tuples of distinct points, the first can be taken to the second by a group
element. Note that the transitivity degree of an action can be infinite, as is witnessed by the
natural action of the group of finitely supported permutations of a countably infinite set. One
can then lift the transitivity degree to a group invariant td(Γ) defined as the supremum of
the transitivity degrees of the faithful Γ-actions. The most transitive groups are the highly
transitive groups, namely those which admit a faithful action whose transitivity degree is
infinite. Note that such groups automatically have infinite transitivity degree. As noted by
Hull and Osin in [HO16], it is actually unknown whether there is a countable group Γ with
infinite transitivity degree, but which fails to be highly transitive.

1.1. Some highly transitive groups. Let us now give a brief overview of groups which
are known to be highly transitive. First, the group of finitely supported permutations of a
countably infinite set is highly transitive. Other examples of locally finite highly transitive
groups are provided by the forward orbit stabilizers of minimal Z-actions on the Cantor space,
such as the group of dyadic permutations, and by the Hall group.

For finitely generated amenable groups, one can upgrade the group Sf (Z) of finitely sup-
ported permutations of Z to the 2-generated group Sf (Z) o Z of permutations which are
translations except on a finite set. Other natural examples are provided by derived groups
of topological full groups of minimal Z-subshifts acting on an orbit (the fact that they are
finitely generated is due to Matui [Mat06], while their amenability is a celebrated result of
Juschenko and Monod [JM13]).

In the non-amenable realm, the first explicit examples of highly transitive groups are free
groups Fn for 2 ≤ n ≤ +∞, as was shown in 1976 by McDonough [McD77] (see also the work
of Dixon in [Dix90]). The case of a general free product has been studied Glass and McCleary
in [GM91] and later settled by Gunhouse [Gun92] and independently by Hickin [Hic92].
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In the last few years, many new examples of highly transitive groups have been discovered
such as surface groups [Kit12], Out(Fn) for n ≥ 4 [GG13], and non-elementary hyperbolic
groups with trivial finite radical [Cha12]. A vast generalization of these results was then
found by Hull and Osin.

Theorem ([HO16, Theorem 1.2]). Every countable acylindrically hyperbolic group admits a
highly transitive action with finite kernel. In particular, every countable acylindrically hyper-
bolic group with trivial finite radical is highly transitive.

Let us recall that a group is called acylindrically hyperbolic if it admits a non-elementary
acylindrical action on a hyperbolic space. For equivalent definitions, and for more background
on acylindrically hyperbolic groups, we refer the reader to [Osi16] or [Osi19].

On the other hand, examples which are not entirely covered by Hull and Osin’s result come
from groups acting on trees as in the work of the first, third and fourth authors [FMS15].
Other examples are provided by a recent result of Gelander, Glasner and Sŏıfer, which states
that any center free unbounded and non-virtually solvable countable subgroups of SL2(k) is
highly transitive, where k is a local field [GGS20].

Our main result is an optimal generalization of the aforementioned result of the first, third
and fourth authors.

Theorem A. Let Γ y T be a minimal action of general type of a countable group Γ on a
tree T . If the action on the boundary Γ y ∂T is topologically free, then Γ admits a highly
transitive and highly faithful action; in particular, Γ is highly transitive.

The above minimality assumption means that there are no nontrivial invariant subtrees,
while the topological freeness assumption means that no half-tree can be pointwise fixed
by a non-trivial group element (in particular, the action is faithful). An action on a tree is of
general type when there are two transverse hyperbolic elements (see Section 2.3). All these
hypotheses are necessary in Theorem A: for topological freeness this is discussed in the next
section, while for the type of the action and the minimality this is discussed in section 9.

Finally, high faithfulness is a natural strengthening of faithfulness introduced in [FMS15],
which states that the intersection of the supports of finitely many nontrivial group elements
is always infinite (see Section 2.1 for equivalent definitions). Let us remark that the group
of finitely supported permutations does not admit highly transitive highly faithful actions
[FMMM18, Remark 8.23], and that the natural highly transitive action of a topological full
group is never highly faithful. It would be interesting to understand whether the highly
transitive actions of acylindrically hyperbolic groups with trivial finite radical built by Hull
and Osin are highly faithful.

1.2. Obstructions to high transitivity. Let us now move on to obstructions to high tran-
sitivity, which will lead us to a reformulation of our main theorem as a series of equivalences
thanks to the work of Hull and Osin [HO16] and of Le Boudec and Matte Bon [LBMB19].

First, one can use the fact that the group of permutations of a countably infinite set is
topologically simple for the product of the discrete topology, and that high transitivity can
be reformulated as arising as a dense subgroup of this group. This yields the well-known
fact that in a highly transitive group, the centralizer of every non-trivial group element is
core-free (see Corollary 9.4). In particular, highly transitive groups cannot be solvable or
contain nontrivial commuting normal subgroups, and they must be icc (all their non-trivial
conjugacy classes are infinite).
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In another direction, Hull and Osin have shown that given a highly transitive faithful action
of a group Γ, the following are equivalent:

(1) There is a non-trivial group element with finite support;
(2) The alternating group over an infinite countable set embeds into Γ;
(3) The group Γ satisfies a mixed identity .

In particular, any simple highly transitive group which is not the alternating group over an
infinite countable set must be MIF (mixed identity free). Moreover, the fact that the highly
transitive actions of the groups we consider in Theorem A are highly faithful yields that those
groups are MIF. We refer the reader to [HO16, Sec. 5] for the definition of mixed identities,
and the proof of the above-mentioned result.

Finally, there are some groups for which one can actually classify sufficiently transitive
actions, and show that none of them are highly transitive. The first and only examples have
been uncovered by Le Boudec and Matte Bon , who proved the following remarkable result.

Theorem ([LBMB19]). Suppose a group Γ admits a faithful minimal action of general type
on a tree T which is not topologically free on the boundary. Then every faithful Γ-action of
transitivity degree at least 3 is conjugate to the restriction to one orbit of the Γ-action on the
boundary of T (whose transitivity degree is at most 3), and the group is not MIF.

They also proved a similar statement for groups acting on the circle, and provided examples
of groups, coming from [LB16, LB17], satisfying the above assumptions. Combining their
result with ours, we obtain a large class of groups for which high transitivity is completely
understood:

Theorem B. Let Γ y T be a faithful minimal action of general type on a tree T . The
following are equivalent

(1) td(Γ) ≥ 4;
(2) Γ is highly transitive;
(3) Γ is MIF;
(4) Γ y ∂T is topologically free.

Note that the topological freeness of the action on the boundary ∂T (item (4)) is a strength-
ening of the global assumption that the Γ action on the tree T is faithful.

In relation to the above quoted question by Hull and Osin, let us note that Theorem B
yields the equivalence between high transitivity and infinite transitivity degree for countable
groups admitting a faithful and minimal action of general type on a tree.

1.3. The cases of amalgams and HNN extensions. In order to prove Theorem A, we use
Bass-Serre theory and reduce the proof to the case of an HNN extension or an amalgamated
free product.

Let us first describe the case of an HNN extension Γ = HNN(H,Σ, ϑ). Let T be the Bass-
Serre tree of Γ (see section 2.5). Then it is easy to check that the action Γ y T is minimal
of general type if and only if Σ 6= H 6= ϑ(Σ).

The HNN extension case of Theorem A that we show in the present paper is the following.

Theorem C. Let Γ by an HNN extension Γ = HNN(H,Σ, ϑ) with Σ 6= H 6= ϑ(Σ). If the
action of Γ on the boundary of its Bass-Serre tree is topologically free, then Γ admits a highly
transitive and highly faithful action; in particular, Γ is highly transitive.
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Examples of HNN extensions which are not acylindrically hyperbolic and which do not
satisfy the hypothesis of [FMS15] are Baumslag-Solitar groups. A direct application of Theo-
rem C allows us to answer a question raised by Hull and Osin in [HO16, Question 6.3]: what
is the transitivity degree of the non-solvable icc Baumslag-Solitar groups? Given m,n ∈ Z∗,
recall that the Baumslag-Solitar group with parameter m,n is:

BS(m,n) := 〈a, b : abma−1 = bn〉.
It is not solvable if and only if |n| 6= 1 and |m| 6= 1, and icc if and only if |n| 6= |m|. As
noted by Hull and Osin, if a Baumslag-Solitar group is either solvable or not icc, then its
transitivity degree is equal to 1. We prove the following in Section 8.1.1, and provide more
new examples to which Theorem C applies in Sections 8.2.1 and 8.2.2.

Corollary D. All the non-solvable icc Baumslag-Solitar groups are highly transitive. In
particular, the group BS(2, 3) is highly transitive.

Then, let us describe the case of an amalgamated free product (or amalgam for short)
Γ = Γ1 ∗Σ Γ2, where Σ is a common subgroup of Γ1 and Γ2. Such an amalgam is said to be
non-trivial if Γ1 6= Σ 6= Γ2, and non-degenerate if moreover [Γ1 : Σ] ≥ 3 or [Γ2 : Σ] ≥ 3.

Let T be the Bass-Serre tree of the amalgam Γ (see Section 2.6). It easy to see that the
action Γ y T always minimal, is of general type if and only if the amalgam is non-degenerate,
and is faithful if and only if Σ is core-free in Γ. Let us now state our result in the case of an
amalgam.

Theorem E. Consider a non-degenerate amalgam Γ = Γ1 ∗Σ Γ2 and its Bass-Serre tree T . If
the induced Γ-action on ∂T is topologically free, then Γ admits a highly transitive and highly
faithful action; in particular, Γ is highly transitive.

Notice that, in the context of the theorem, if the induced Γ-action on ∂T is topologically
free, then obviously the action on T is faithful, hence Σ is core-free in Γ. Sections 8.1.2 and
8.2.3 provides new highly transitive examples obtained via Theorem E.

1.4. Comparison with former results. Here is a corollary of our result which does not
mention the action on the boundary, where given a subtree T ′ of T , we denote by ΓT ′ the
pointwise stabilizer of T ′ in Γ.

Corollary F. Let Γ y T be an action of a countable group Γ on a tree T , which is faithful,
minimal, and of general type. If there exist a bounded subtree B and a vertex u in B such
that ΓB is core-free in Γu, then, Γ admits an action on a countable set which is both highly
transitive and highly faithful. In particular, Γ is highly transitive.

This corollary encompasses all the previously known results of high transitivity for groups
with a minimal action of general type on a tree, which fall in two categories. The first
examples are the acylindrically hyperbolic ones, for which one can use the following result by
Minasyan and Osin, combined with the high transitivity for acylindrically hyperbolic groups
result of Hull and Osin. In its statement, we denote by [u, v] the geodesic between u and v.

Theorem. [MO15, Theorem 2.1] Let Γ be a group acting minimally on a tree T . Suppose
that Γ is not virtually cyclic, Γ does not fix any point in ∂T , and there exist vertices u, v of
T such that Γ[u,v] is finite. Then Γ is acylindrically hyperbolic.

We will check in Proposition 7.4, that all groups satisfying the hypotheses of the above
theorem, and having a trivial finite radical, also satisfy the hypotheses of Corollary F.
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Furthermore, as Hull and Osin noticed [HO16, Corollary 5.12], there are groups acting on
trees which are non-acylindrically hyperbolic, but highly transitive thanks to the following
result by the first, third, and fourth authors. In the terminology of the present article, the
assertion “Γe is highly core-free in Γv” means that the action Γv y Γv/Γe is highly faithful.

Theorem. [FMS15, Theorem 4.1] Let a countable group Γ act without inversion on a tree T ,
and let R ⊂ E(T ) be a set of representatives of the edges of the quotient graph Γ\T . Then
Γ is highly transitive, provided Γv is infinite and Γe is highly core-free in Γv, for every
couple (e, v) where e ∈ R and v is one of its endpoints.

The fact that the groups satisfying the hypotheses of the above theorem also satisfy those
of Corollary F is checked in Proposition 7.5.

There are examples of groups acting on trees which are highly transitive thanks to Corol-
lary F, but to which the previously known results do not apply. We also check that the icc
non-solvable Baumslag-Solitar groups provide examples of HNN extensions for which Theo-
rem A applies while Corollary F does not. All these examples can be found in Section 8.

1.5. About the proofs. In order to prove high transitivity for a general class of groups
without constructing an explicit highly transitive action, two approaches can be tried. The
first is by working in the space of subgroups of Γ, and proceeds by inductively building a
subgroup Λ ≤ Γ such that the associated homogeneous space Γ/Λ is highly transitive. To
our knowledge, this approach made its first appearance in a paper of Hickin [Hic88], and was
then made more explicit in [Hic92]. It was notably used by Chaynikov when proving that
hyperbolic groups with trivial finite radical are highly transitive, and also by Hull and Osin
in their aforementioned result.

The second approach, pioneered by Dixon, goes by fixing an infinite countable set X,
considering a well-chosen Polish space of group actions on X, and showing that in there, the
space of faithful highly transitive actions is a countable intersection of dense open sets, hence
not empty by the Baire category theorem. In this work, we follow this second approach,
using the same space of actions as the one considered in [FMS15], but with a much finer
construction in order to show density.

As explained before, the proof of the general result goes through the HNN and the amalgam
cases. The two proofs are actually very similar, so for this introduction we only explain in
more details what goes on for HNN extensions.

Given a non-degenerate HNN extension Γ = HNN(H,Σ, ϑ), the idea is to start with a free
H-action on a set X with infinitely many orbits, and then to turn it into a highly transitive
faithful Γ-action via a generic permutation. To be more precise, the Polish space under
consideration is the set of all permutations which intertwine the Σ and the ϑ(Σ)-actions, thus
yielding a natural Γ-action. The result is then that there is a dense Gδ of such permutations
which induce a highly transitive faithful Γ-action.

For this to work, the notion of high core freeness was handy in [FMS15]: it allows one to
“push” the situation by a group element in H so as to get to a place where both Σ and ϑ(Σ)
act in a more controllable way. Let us note that this approach was generalized in [FMMM18]
to show that all the groups considered in [FMS15] actually have a faithful homogeneous action
onto any bounded S-Urysohn space.

Here, we use a different approach, similar to the one due to the third and fourth named
authors when they re-discovered the characterization of free products of finite groups which
are highly transitive [MS13]. The main difficulty is that the group element that we use to
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“push” things out does not belong to H, in particular it can contain a number of powers of
the permutation at hand.

In order to solve this, we first modify the permutation so as to make sure such a push is
possible. The modification is actually very natural. Informally speaking, there are two steps:

(1) “erasing the permutation” outside a suitable finite set of Σ-orbits and ϑ(Σ)-orbits,
which leaves us with a partial bijection;

(2) make a “free globalization” of this partial bijection, which is obtained by gluing partial
bijections inducing portions of the Γ-action by right translations on itself.

This results in a new Γ-action satisfying a very natural universal property, which we state by
introducing the notion of pre-action of an HNN extension, see Theorem 3.18 (and Theorem
5.17 for its amalgam counterpart). The construction in step (2) allows us to use the topological
freeness of the left action on the boundary in order to find the further modification of the
permutation which yields high transitivity, following an approach close to the proof of [MS13,
Theorem 3.3]. We do not know if our approach can be generalized so as to obtain faithful
homogeneous action onto bounded S-Urysohn space.

1.6. Organization of the paper. Section 2 is a preliminary section in which we intro-
duce our notations and definitions concerning group actions, graphs, amalgams and HNN
extensions. Section 3 contains the main technical tools to prove Theorem C: the notion of a
pre-action of an HNN extension, its Bass-Serre graph and its free globalization. In Section 4
we prove Theorem C. Section 5 contains the main technical tools to prove Theorem E: the no-
tion of a pre-action of an amalgam, its Bass-Serre graph and its free globalization. In Section
6 we prove Theorem E while in Section 7 we prove Theorem A, Theorem B and Corollary F.
Section 8 is dedicated to concrete examples where our results apply. Finally, in Section 9 we
show that the minimality assumption in Theorem A is needed, and we discuss other types of
actions on trees.

1.7. Acknowledgments. Y.S. is grateful to ANR SingStar (ANR-14-CE25-0012-01) which
funded a visit to Paris dedicated to research presented in the current paper. He also warmly
thanks Julien Bichon for showing him an elementary argument to prove that the group of
finitely supported permutations on N is not linear.

We are grateful to Adrien Le Boudec and to Nikolay A. Ivanov for pointing out a mistake
in our examples from Section 8.3 and for explaining to us how to correct it. We also thank
Nikolay A. Ivanov, Adrien Le Boudec, Nicolás Matte Bon and Tron Omland for their useful
comments on other parts of the paper.

2. Preliminaries

The notation A b B means that B is a set and A is a finite subset of B.

2.1. Group actions. Throughout the article, we will use the symbol X to denote an infinite
countable set. Then, S(X) denotes the Polish group of bijections of X. Unless specified
otherwise, groups will act on X on the right. One of our motivations for doing so is that we
will associate paths to words in our groups, so it will be much easier to read both in the same
order (see for instance Section 3.3).

So given two permutations σ, τ ∈ S(X) and x ∈ X, the image of x by σ is denoted xσ,
and the product στ is the permutation obtained by applying σ first and then τ . This way,
S(X) acts on X on the right and any right G-action X xα G is equivalent to a morphism of
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groups α : G → S(X). The image of an element g ∈ G by α will be denoted by α(g) or gα,
or just g if there is no possible confusion. Similarly, the image of a subgroup H of G by α
will be denoted by α(H) or Hα, or just H.

Notice however that actions on other kinds of spaces, especially on Bass-Serre trees, will
be on the left.

Definition 2.1. An action X x G is highly transitive if, for any k ∈ N∗ and any k-tuples
(x1, . . . , xk), (y1, . . . , yk) ∈ Xk, each with pairwise distinct coordinates, there exists γ ∈ G
such that xiγ = yi for all i = 1 . . . , k.

Lemma 2.2. An action X x G is highly transitive if and only if, for every k ∈ N∗, and every
x1, ..., xk, y1, ..., yk all pairwise distinct, we can find g ∈ G such that xig = yi for i = 1, ..., k.

Proof. Take x1, ..., xk pairwise distinct, and z1, ..., zk pairwise distinct, we need to find γ such
that xiγ = zi for i = 1, ..., k. Since X is infinite, we find y1, ..., yk pairwise distinct and distinct
from all the xi’s and zi’s, then by our assumption there are both g and h such that for all
i = 1, ..., k we have xig = yi and yih = zi, so the element γ = gh is the element we seek. �

Given a bijection σ ∈ S(X), its support is the set suppσ = {x ∈ X : xσ 6= x}. Recall that
an action X x G is faithful if for every g ∈ G \ {1} the support of g is not empty.

Definition 2.3. An action X x G is called strongly faithful if, for any finite subset
F ⊆ G− {1}, the intersection of the supports of the elements of F is not empty. It is called
highly faithful if for every finite subset F ⊆ G−{1}, the intersection of the supports of the
elements of F is infinite.

Given a strongly faithful action X x G, and a finite subset F ⊆ G, it is easy to see that
there exists x ∈ X such that the translates xg, for g ∈ F , are pairwise distinct. Indeed, any
element x ∈

⋂
g,h∈F supp(gh−1) will do.

Let us check that our definition of high faithfulness coincides with the one given in [FMS15].

Lemma 2.4. An action X x G is highly faithful if and only if for every n ∈ N, if F is a
finite subset of X and X1, ..., Xn are subsets of X such that X = F ∪X1∪· · ·∪Xn, then there
is some k ∈ {1, ..., n} such that for every g ∈ G \ {1}, there is x ∈ Xk such that x · g 6= x.

Proof. We prove the lemma by the contrapositive in both directions.
Suppose that for a fixed n ∈ N, we can find a decomposition X = F ∪X1∪· · ·∪Xn such that

for all k ∈ {1, ..., n}, there is gi ∈ G whose support is disjoint from Xi. Then in particular,
the intersection of the supports of the gi’s is contained in F , hence finite, contradicting high
faithfulness.

Conversely, suppose that we found g1, ..., gn ∈ G whose supports have finite intersection.
Then the sets F =

⋂n
k=1 supp gk and Xk = X \ supp gk satisfy that for all k ∈ {1, ..., n}, there

is some g ∈ G (namely gk) such that for all x ∈ Xk, x · g = x. �

Of course, we have the implications:

free ⇒ highly faithful ⇒ strongly faithful ⇒ faithful

Let us now see that strong faithfulness and high faithfulness coincide in many cases.

Proposition 2.5. Given an action X x G of a nontrivial group G, the following assertions
are equivalent:

(1) the action is strongly faithful, but not highly faithful;
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(2) there are finite orbits in X on which G acts freely (in particular, G has to be finite),
but only finitely many of them.

Proof. Define the free part Xf of our action as the union of the orbits in X on which G acts
freely. Note that we can write Xf as

Xf =
⋂

g∈G−{1}

supp(g).

Assume first that (2) holds. In this case, Xf is a non-empty finite union of finite orbits,
hence a non-empty finite set. Therefore, the action is strongly faithful, since Xf is non-empty,
and it is not highly faithful, since G and Xf are finite.

Assume now that (1) holds, and take a sequence (gk)k≥0 whose image set is G−{1}. Since

the action is not highly faithful, there exists N ∈ N such that
⋂N
k=0 supp(gk) is finite. Now,

the sequence (Xn)n≥N given by

Xn =

n⋂
k=0

supp(gk)

is a decreasing sequence of finite sets, which are all non-empty, since the action is strongly
faithful. Note that we have

Xf =
⋂
k≥0

supp(gk) =
⋂
n≥N

Xn ,

hence Xf is finite and non-empty. Consequently, there are finite orbits in X on which G acts
freely, and their number is finite. �

Corollary 2.6. In case G is infinite, an action X x G is highly faithful if and only if it is
strongly faithful.

Let us end this section by remarking a reformulation of strong faithfulness which we won’t
use.

Remark 2.7. A transitive action is strongly faithful if and only if the stabilizer of every (or
equivalently, some) point is not a confined subgroup of the acting group (see Section 1.5 from
[Mat18] for a discussion of the notion of confined subgroup).

2.2. Graphs. First, let us recall the definition of a non-simple graph.

Definition 2.8. A graph G is given by a vertex set V (G), an edge set E(G), a fixed-point-
free involution ·̄ : E(G)→ E(G) called the antipode map, a source map s : E(G)→ V (G)
and a range map r : E(G)→ V (G) subject to the condition:

for all e ∈ E(G), s(ē) = r(e).

The graph G is oriented if a partition E(G) = E(G)+ tE(G)− such that E(G)− = E(G)+

is given. In this case, the edges in E(G)+ are called positive edges and the edges in E(G)−

are called negative edges.
Recall that a path ω in a graph G is a finite sequence of edges ω = (e1, . . . , en), such that,

for all 1 ≤ k ≤ n− 1, r(ek) = s(ek + 1). We call s(e1) the source of ω and r(en) the range
of ω. We also say that ω is a path from s(ω) := s(e1) to r(ω) := r(en). The inverse path
of ω is defined by ω := (en, . . . , e1). The integer n is called the length of ω and denoted by
`(ω). Similarly, an infinite path, also called a ray, is a sequence of edges ω = (ek)k≥1 such
that r(ek) = s(ek+1) for all k ≥ 1 and the vertex s(ω) := s(e1) is called the source of ω.
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Given a path ω = (ek)1≤k≤n, respectively an infinite path ω = (ek)k≥1, in G, we use the
notation ω(n) := r(en), for n ≥ 1 and ω(0) = s(e1) = s(ω). A couple (ek, ek+1) such that
ek+1 = ek, if there is one, is called a backtracking in ω. If ω has no backtracking, we also
say that it is a reduced path. One says that ω is geodesic in G if, for all i, j, the distance
in G between ω(i) and ω(j) is exactly |j − i|. Obviously, all geodesic paths are reduced.

A cycle in G is a reduced path c of length at least 1 such that s(c) = r(c), that is, a
reduced path c = (e1, . . . , en) such that n ≥ 1 and c(n) = c(0). Such a cycle is elementary
if moreover the vertices c(k), for 0 ≤ k ≤ n − 1, are pairwise distinct. Every cycle contains
an elementary cycle.

When G is oriented, a path ω = (ek)1≤k≤n, respectively an infinite path ω = (ek)k≥1, in G
is called positively oriented if ek ∈ E(G)+ for all k and negatively oriented if ek ∈ E(G)−

for all k; it is called oriented if it is either positively oriented or negatively oriented.

Definition 2.9. A morphism of graphs f : G → G′ is a couple of maps V (G)→ V (G′) and

E(G)→ E(G′), which will both be denoted by f for sake of simplicity, such that f(ē) = f(e),
f(s(e)) = s(f(e)), and f(r(e)) = r(f(e)) for all edges e in G.

The star at a vertex v is the set st(v) of edges whose source is v, and its cardinality is called
the degree of v. A morphism of graphs f : G → G′ is locally injective if, for all v ∈ V (G),
the restriction of f to the star of v is injective. Note that a locally injective morphism from
a connected graph to a tree is injective.

Definition 2.10. Given a graph G, and a set of edges E ⊆ E(G), we associate to this subset
the induced subgraph as the graph H such that V (H) = s(E)∪ r(E), E(H) = E ∪ Ē, and
the structure maps of H are the restrictions of those of G.

Definition 2.11. Given an edge e, its associated half-graph is the subgraph induced by the
set of edges f such that there is a reduced path starting by e, not using ē, and whose last
edge is equal to f .

Remark 2.12. Suppose G is connected and e is an edge, let He and Hē be the half-graphs
associated to e and ē. Then, one has V (G) = V (He) ∪ V (Hē) and E(G) = E(He) ∪ E(Hē).
Moreover, denoting by G0 the graph obtained by deleting the edges e, ē in G:

(1) if G0 remains connected, then one has He = G = Hē;
(2) if not, thenHe andHē are obtained by adding the edges e, ē to the respective connected

components of r(e) and s(e) in G0.

2.3. Trees and their automorphisms. For a more detailed account of what follows, we
refer the reader to [HP11]. A forest is a graph with no cycle and a tree is a connected forest.
In a forest, we recall that any reduced (finite or infinite) path is geodesic. Moreover, any two
vertices in a tree are connected by a unique reduced path.

There is a well-known classification (see e.g. [Ser80]) of the automorphisms of a tree T : if
g is such an automorphism, then:

• either g is elliptic, which means that g fixes some vertex of T ,
• or g is an inversion, which means that g sends some edge e onto its antipode ē,
• or g is hyperbolic, which means that g acts by a (non-trivial) translation on a bi-

infinite geodesic path, called its axis.

Definition 2.13. The boundary ∂T (or set of ends) of a tree T is the set of geodesic rays
quotiented by the equivalence relation which identifies two geodesic rays whose ranges differ
by a finite set.
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Note that since we are working in a tree, if we fix a vertex o then the set of geodesic rays
starting at o is in bijection with the boundary of the tree through the quotient map.

The boundary is equipped with the topology whose basic open sets UH are given by fixing
a half-tree H, and letting UH be the set of equivalence classes of geodesic rays whose range is
contained in H (so given a geodesic ray ω, its class belongs to UH if and only if some terminal
subpath of ω is contained in H).

Any g ∈ Aut(T ) induces a homeomorphism of ∂T , which yields a group homomorphism

Aut(T ) −→ Homeo(∂T ) .

In case g is hyperbolic, g fixes exactly two points in ∂T , which are the endpoints of its axis.
Let us also recall that every action on a tree Γ y T satisfies exactly one of the following:

• it is elliptic, which means that (the image of) Γ stabilizes some vertex, or some pair
of antipodal edges;
• it is parabolic, or horocyclic, that is, Γ contains no hyperbolic elements, without

being elliptic itself;
• it is lineal, that is Γ contains hyperbolic elements, all of them sharing the same axis;
• it is quasi-parabolic, or focal, that is Γ contains hyperbolic elements with different

axes, but all hyperbolic elements of Γ share a common fixed point in ∂T ;
• it is of general type, which means that Γ contains two hyperbolic elements with no

common fixed point in ∂T (such hyperbolic elements are called transverse).

In the parabolic case, it can be shown that every element of Γ is elliptic, and that Γ stabilizes
a unique point in ∂T . In the quasi-parabolic case, it can be shown that the common fixed
point in ∂T of the hyperbolic elements is unique and fixed by Γ. If Γ y T is of general type,
it is easy to produce infinitely many pairwise transverse hyperbolic elements. An action on a
tree is called minimal if there is no invariant subtree. Since we will be interested in faithful
minimal actions of infinite countable groups on trees, elliptic actions won’t occur. Moreover
every vertex will have degree at least 2, since otherwise we could trim off all vertices of degree
1 and get a proper invariant subtree.

Let us recall that the action Γ y ∂T by homeomorphisms is topologically free if the
trivial element in the only element in Γ which fixes a non-empty open subset of ∂T pointwise.
We will rather use the following concrete characterization.

Proposition 2.14. Let T be a tree with at least three ends. Given a faithful minimal action
of an infinite group Γ on T , the following are equivalent:

(i) the induced action Γ y ∂T is topologically free;
(ii) no element of Γ \ {1} can fix pointwise a half-tree in T .

Proof. The implication from (i) to (ii) is clear since half-trees do define open subsets for the
topology of ∂T .

Conversely, suppose that no non-trivial element fixes pointwise a half-tree. Suppose by
contradiction that we have γ ∈ Γ \ {1} whose set of fixed points on ∂T contains all the rays
whose range is contained in a half-tree H.

If the half-tree H contains at least two distinct rays, let us take any two such rays. Then
γ must fix the point of H at which they meet each other, and so γ must fix the two rays
pointwise. But every vertex has degree at least 2, so every element of H is contained in a ray
which is itself contained in H. We conclude that γ fixes H pointwise, a contradiction.

So we are left with the case H consists of a single ray. Since γ does not fix H pointwise,
γ is hyperbolic and this ray is a part of its axis. But since T has at least three ends, one
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of the two remaining ends must be taken by a large enough power of γ inside the open set
corresponding to H, contradicting that H consists of a single ray. �

Note that topological freeness of the action on the boundary is called slenderness by de la
Harpe and Préaux [HP11]. Although we won’t use it, let us mention that for a minimal action
of general type, the topological freeness of the action on the boundary is also equivalent to
the action on the tree itself being strongly faithful (see [BIO19, Prop. 3.8] for this and other
characterizations).

2.4. Treeing edges. Let us now turn to the link between half-graphs, seen in Section 2.2,
and trees.

Definition 2.15. An edge in a graph G is a treeing edge when its associated half-graph is
a tree, in which case we also call the latter its half-tree.

Here is an easy characterization of treeing edges that will prove useful.

Lemma 2.16. Let G be a graph, let e be an edge. Then the following are equivalent:

(i) the edge e is a treeing edge;
(ii) the map which takes a reduced path starting by e to its range is injective;

(iii) there is no reduced path from s(e) to s(e) starting by the edge e.

Proof. First note that (i) implies (ii) since when e is a treeing edge, all the reduced paths
starting by e must belong to its half-tree, and hence have distinct ranges.

We then show that (ii) implies (iii) by the contrapositive. If (iii) does not hold, let c be a
reduced path starting by the edge e from s(e) to s(e). Then c and the reduction of cc have
the same range, so (ii) does not hold.

Finally we show that (iii) implies (i) by the contrapositive. If e is not a treeing edge,
consider the following two cases:

• In the half-graph of e, the vertex s(e) has degree at least two. We then fix some e′ 6= e
such that s(e′) = s(e). If r(e′) = r(e) then the reduced path ee′ witnesses that (iii)
does not hold.

Otherwise by the definition of the half-graph we find a reduced path ω starting by e
whose last edge is either e′ or e′. If the last edge is e′, then ω witnesses that (iii) does
not hold. If the last edge of ω is e′, then write ω = ω′e′ and note that ω′ witnesses
that (iii) does not hold. So in any case, (iii) does not hold.
• In the half-graph of e, the vertex s(e) has degree 1. Then since e is not a treeing edge,

we find a non-empty reduced path ω starting and ending at r(e), and using neither e
nor ē. Then eωē witnesses that (iii) does not hold.

This finishes the proof of the equivalences. �

Note that if a reduced path uses a treeing edge at some point, then from that point on it
only uses treeing edges. Moreover, we have the following result.

Lemma 2.17. Let G be a connected graph admitting a treeing edge, and let ω be a reduced
path in G. Then ω can be extended to a reduced path ω′ whose last edge is a treeing edge.

Proof. Let e be the last edge of ω. If e is a treeing edge, we can take ω′ = ω. If not, by the
previous lemma there is a reduced path of the form ec from s(e) to s(e). Let e′ be a treeing
edge, and denote by C the set of vertices visited by the reduced path c.
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We then claim that s(e′) is strictly closer to C than r(e′). Indeed, otherwise, if we fix a
geodesic η from r(e′) to C, the geodesic η cannot start by ē′, and there exists a cycle κ based
at r(η) and whose vertices belong to C. Then the reduced path e′ηκη̄ē′ witnesses that e′ does
not satisfy condition (iii) from the previous lemma, so e′ is not a treeing edge, a contradiction.

Now let ξ be a geodesic from C to s(e′), by the previous claim we know that ξe′ is still a
reduced path. Let c′ be the initial segment of c which connects r(e) to the source of ξ, then
ω′ = ωc′ξe′ is the desired extension of ω. �

2.5. HNN extensions. Let H be a group, and let ϑ : Σ→ ϑ(Σ) be an isomorphism between
subgroups of H. The HNN extension associated to these data is the group defined by the
following presentation

HNN(H,Σ, ϑ) :=
〈
H, t | t−1σt = ϑ(σ) for all σ ∈ Σ

〉
, 1

where t is an extra generator, called the stable letter, not belonging to H. We refer the reader
to [Ser80, Chap. 1, Prop. 5] for the fact that the HNN extension defined above does contain
H as a natural subgroup. Note that the defining relation t−1σt = ϑ(σ) is different from the
one chosen in [FMS15, FMMM18]. This change is coherent with our choice to let groups act
on the right on sets.

We will denote this HNN extension by Γ. Recall that it is called ascending if one of the
subgroups Σ, ϑ(Σ) is equal to H.

Let us fix a set of representatives C+ of left Σ-cosets in H, and a set of representatives C−

of left ϑ(Σ)-cosets in H, which both contain 1, so that we have

H =
⊔
c∈C+

cΣ = Σ t
⊔

c∈C+−{1}

cΣ and H =
⊔
c∈C−

cϑ(Σ) = ϑ(Σ) t
⊔

c∈C−−{1}

cϑ(Σ) .

It is well-known, see e.g. [LS01], that every element γ ∈ Γ admits a unique normal form

γ = c1t
ε1 · · · cntεnhn+1,

where n ≥ 0, εi = ±1 for 1 ≤ i ≤ n, εi = +1 implies ci ∈ C+, εi = −1 implies ci ∈ C−,
hn+1 ∈ H, and there is no subword of the form tε1t−ε. Note that the case n = 0 corresponds
to elements in H.

The Bass-Serre tree of the HNN extension Γ is the oriented graph T defined by

V (T ) = Γ/H ; E(T )+ = Γ/Σ ; E(T )− = Γ/ϑ(Σ) ;

where the structural maps are given by the following formulas

γΣ = γtϑ(Σ) ; s(γΣ) = γH ; r(γΣ) = γtH ;

γϑ(Σ) = γt−1Σ ; s(γϑ(Σ)) = γH ; r(γϑ(Σ)) = γt−1H .

This graph is naturally endowed with a left Γ-action by graph automorphisms (respecting the
orientation), and classical Bass-Serre theory [Ser80] ensures it is a tree. The action is always
minimal since it is transitive on the vertices. Let us now recall what kind of action Γ y T
is, depending on the inclusions Σ ⊆ H and ϑ(Σ) ⊆ H. Note that the stable letter t always
induces a hyperbolic automorphism.

• If Σ = H = ϑ(Σ), then the Bass-Serre tree is a bi-infinite line (each vertex has degree
2), hence, the action is lineal.

1This notation means that HNN(H,Σ, ϑ) is the quotient of the free product H ∗ 〈t〉 by its smallest normal
subgroup containing all elements t−1σtϑ(σ)−1 where σ ∈ Σ.
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• If Σ = H and ϑ(Σ) 6= H, then there is exactly one positive edge and several negative
edges in the star at each vertex. Hence, to each vertex v, one can associate a reduced
infinite path ω+

v starting at v by taking the unique positive edge at each vertex. Given
two vertices u and v, the paths ω+

u and ω+
v share a common terminal subpath. Indeed,

this is obvious if u, v are linked by an edge, and then, denoting v0, . . . , vn the vertices
on the geodesic between u and v, all the paths ω+

vi share a common terminal subpath.

Now, let ξ ∈ ∂T be the common endpoint of all paths ω+
v . Given any hyperbolic

element g ∈ Γ, and any vertex v in T , we have g · ω+
v = ω+

gv since Γ preserves the
orientation, whence gξ = ξ. Therfore, all hyperbolic elements of Γ fix ξ.

On the other hand, it is easy to see that t and c−1tc don’t have the same axis.
Hence, the action is quasi-parabolic.
• Similarly, if Σ 6= H and ϑ(Σ) = H, then the action is quasi-parabolic.
• If the HNN extension is non-ascending, then taking h in C+−{1} and g ∈ C−−{1},

it is fairly easy to see that gt and th are transverse hyperbolic elements. Hence, the
action is of general type.

2.6. Group amalgams. Let ι1 : Σ → Γ1 and ι2 : Σ → Γ2 be injective morphisms of
countable groups. We will denote by Σj the image of ιj , and by ϑ : Σ1 → Σ2 the isomorphism
sending ι1(σ) to ι2(σ) for all σ ∈ Σ. The free product with amalgamation (or amalgam
for short) associated to these data is

Γ1 ∗Σ Γ2 := 〈Γ1,Γ2 | ι1(σ) = ι2(σ) for all σ ∈ Σ〉 = 〈Γ1,Γ2 |σ = ϑ(σ) for all σ ∈ Σ1〉 . 2

We will denote the amalgam Γ1∗ΣΓ2 by Γ. We will still denote by Σ,Γ1,Γ2 the images of these
groups in the amalgam Γ when there is no risk of confusion. In Γ, one has Γ1∩Γ2 = Σ. Recall
that such an amalgam is said to be non-trivial if Γj 6= Σj for j = 1, 2, and non-degenerate
if moreover [Γ1 : Σ1] ≥ 3 or [Γ2 : Σ2] ≥ 3.

Let us fix sets of representatives Cj of left Σj-cosets in Γj , for j = 1, 2, which both contain
1, so that we have

Γ1 =
⊔
c∈C1

cΣ1 = Σ1 t
⊔

c∈C1−{1}

cΣ1 and Γ2 =
⊔
c∈C2

cΣ2 = Σ2 t
⊔

c∈C2−{1}

cΣ2 .

Notice that the intersection of the images of C1 and C2 in Γ is just {1}. It is well-known, see
e.g. [Ser80], that any element γ ∈ Γ− Σ admits a unique normal form

γ = c1 · · · cnσ

where n ∈ N, c1, . . . , cn lie alternatively in C1 − {1} and C2 − {1}, and σ ∈ Σ.
The Bass-Serre tree of the amalgam Γ = Γ1 ∗Σ Γ2 is the oriented graph T defined by

V (T ) = Γ/Γ1 t Γ/Γ2 ; E(T )+ = Γ/Σ ; s(γΣ) = γΓ1 ; r(γΣ) = γΓ2

(the set of negative edges E(T )− just being Γ/Σ := {ē : e ∈ Γ/Σ}, which is another copy of
Γ/Σ). Again, this graph is naturally endowed with a left Γ-action by graph automorphisms
(respecting the orientation), and classical Bass-Serre theory [Ser80] ensures it is a tree. The
action is always minimal since Γ acts transitively on the set of positive edges. Let us now
recall what kind of action Γ y T is, depending on the inclusions Σj ⊆ Γj .

2More precisely, Γ1 ∗Σ Γ2 is the quotient of the free product Γ1 ∗ Γ2 by its smallest normal subgroup
containing all elements ι1(σ)ι2(σ)−1 where σ ∈ Σ.
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• If Σ1 = Γ1, then Γ = Γ2, and the vertex Γ2 of T is fixed. Hence the action is elliptic.
Similarly, if Σ2 = Γ2, then the action is elliptic.
• If the amalgam is non-trivial, and [Γ1 : Σ1] = 2 = [Γ2 : Σ2], then the Bass-Serre tree

is a bi-infinite line (each vertex has degree 2) and for any γj ∈ Γj − Σj , j = 1, 2, the
element γ1γ2 is hyperbolic. Hence, the action is lineal.
• If the amalgam is non-degenerate, then the action is of general type. Indeed, assuming

[Γ1 : Σ] ≥ 3, and taking g1 6= g2 in C1 − {1} and h ∈ C2 − {1}, it is fairly easy to see
that g1h and g2h are transverse hyperbolic elements. The case [Γ2,Σ] ≥ 3 is similar.

2.7. Partial actions. The pre-actions that we will define below are tightly linked with the
notion of partial action. Although the latter do not play an essential role in our construction,
we will see that every pre-action yields a natural partial action, so we feel these are worth
mentioning. For more details on partial actions, we refer the reader to [KL04].

Given a set X, we denote by I(X) the set of all partial bijections of X, which we think of
as subsets of X ×X whose vertical and horizontal fibers all have cardinality at most 1. We
have a natural composition law on subsets of X ×X given by: for all A,B ⊆ X ×X,

AB = {(x, z) : ∃y ∈ X, (x, y) ∈ A and (y, z) ∈ B},

and this restricts to a composition law on I(X). The inclusion provides us a natural partial
order on I(X). The projection on the first coordinate of a partial bijection τ is its domain
dom τ , and the projection on the second coordinate is its range rng τ . Finally, we define the
inversion map by σ−1 = {(y, x) : (x, y) ∈ σ}.

Definition 2.18. A (right) partial action of a group Γ on a set X is a map π : Γ→ I(X)
such that for all g, h ∈ Γ

(1) π(1Γ) = idX ;
(2) π(g)π(h) ⊆ π(gh);
(3) π(g)−1 = π(g−1).

The main example of a partial action is provided by the restriction of an action to a subset.
Conversely, every partial action is the restriction of a global action, and there is a universal
such global action provided by the following result.

Theorem 2.19 (see [KL04, Theorem 3.4]). Given a partial action of a countable group Γ on

a set X, there is a Γ-action on a larger set X̃ such that whenever Y x Γ is a Γ-action on a
set Y which contains X, there is a unique Γ-equivariant map f : X̃ → Y which restricts to
the identity on X.

The action X̃ x Γ from the previous theorem is called the universal globalization of
the partial Γ-action on X. It is tacit in the theorem that the Γ-actions on sets containing X
extend the initial partial Γ-action on X.

Definition 2.20. A partial actionX xπ Γ is called strongly faithful if for every F b Γ\{1},
there is x ∈ X such that for all g ∈ F , we have xπ(g) 6= x (in particular x ∈

⋂
g∈F domπ(g)).

Example 2.21. The partial action of the free group on two generator F2 on the set of reduced
words which begin by a is strongly faithful.
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3. Free globalizations for pre-actions of HNN extensions

For this section, as in Section 2.5, let us fix an HNN extension Γ = HNN(H,Σ, ϑ). Let
us also fix a set of representatives C+ of left Σ-cosets in H, and a set of representatives C−

of left ϑ(Σ)-cosets in H, which both contain 1, so that normal forms of elements of Γ are
well-defined. Let us also denote by Γ+, respectively Γ−, the set of elements whose normal
form leftmost letter is t, respectively t−1. Note that Γ+ is invariant by left Σ-multiplication,
while Γ is invariant by left ϑ(Σ)-multiplication. We then have Γ = H t C+Γ+ t C−Γ−.

3.1. Pre-actions of HNN extensions and their Bass-Serre graph. Given an action on
an infinite countable set X xπ H, and a bijection τ : X → X such that σπτ = τϑ(σ)π for all
σ ∈ Σ, there exists a unique action X xπτ Γ such that hπτ = hπ for all h ∈ H, and tπτ = τ .
If the action π is free, we obtain an example of the following situation.

Definition 3.1. A pre-action of the HNN extension Γ is a couple (X, τ) where X is an
infinite countable set endowed with a free action X xπ H, and

τ : dom(τ)→ rng(τ)

is a partial bijection where dom(τ), rng(τ) ⊆ X, and σπτ = τϑ(σ)π for all σ ∈ Σ.

Such a pre-action is called global if τ is a genuine permutation of X. In this case there
is an associated action X xπτ Γ as above. We will often identify global pre-actions and
Γ-actions.

Example 3.2. If X xπ Γ is an action, where H is acting freely, then denoting by X xπH H
its restriction, one obtains a global pre-action (X, tπ), where X is endowed with πH . The
action X xπτ Γ coincides with X xπ Γ in this case. In particular, the right translation
action Γ x Γ gives rise to a pre-action (Γ, tρ), where tρ : γ 7→ γt, called the translation
pre-action.

The relations σπτ = τϑ(σ)π are equalities between partial bijections. In particular σπτ and
τϑ(σ)π must have the same domain and the same range. As a consequence, for any pre-action
(X, τ), the domain of τ is necessarily Σ-invariant, its range is necessarily ϑ(Σ)-invariant, and
τ sends Σ-orbits onto ϑ(Σ)-orbits.

The above notion of pre-action is close to the notion of a partial action developed in [KL04]
as we will see. As seen before, actions of Γ (such that H acts freely) correspond to pre-actions
with a global bijection. Another source of examples of pre-actions is the following.

Definition 3.3. Given a pre-action (X, τ), and an infinite H-invariant subset Y ⊆ X, the
restriction of (X, τ) to Y is the pre-action (Y, τ ′), where Y is endowed with the restriction

of π, and the partial bijection is τ ′ = τ�Y ∩Y τ−1 . An extension of (X, τ) is a pre-action (X̃, τ̃)
whose restriction to X is (X, τ).

Example 3.4. The sets Γ+ and Γ− are H-invariant (by right multiplications), thus so are
T+ := Γ+ tH and T− := Γ− tH. The translation pre-action (Γ, tρ) admits the restrictions
(T+, τ+), and (T−, τ−), which we call the positive translation pre-action and the negative
translation pre-action respectively.

Let us compute the domains and range of the partial bijection τ+ corresponding to the
positive translation pre-action. Let x ∈ T+. If x belongs to Γ+, then so does xt, and so
τ+(x) is defined. But if x belongs to H instead, then xt 6∈ H, and xt ∈ Γ+ if and only if its
lefttmost letter is t, which happens if and only if x ∈ Σ. Reciprocally, one has yt−1 ∈ T+ for
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every y ∈ Γ+, and yt−1 /∈ T+ for every y ∈ H. We conclude that the domain of τ+ is ΣtΓ+,
while its range is Γ+.

The same computation can be made for the partial bijection τ− associated to the negative
translation pre-action on T−: the domain of τ− is equal to Γ−, and its range is equal to
Γ− t ϑ(Σ).

Let us now associate a graph to any Γ-pre-action (X, τ) as follows. Informally speaking,
we start with a graph whose vertices are of two kinds: the Σ-orbits in X, and the ϑ(Σ)-orbits
in X. Then we put an edge from xΣ to yϑ(Σ) when (xΣ)τ = yϑ(Σ), and finally we identify
all the Σ-orbits and all ϑ(Σ)-orbits that are in a same H-orbit. We may, and will, identify
H with its image in S(X) by the action X xπ H, since the action π is free, hence faithful.
Consequently, we don’t write superscripts π from now, as soon as there is no risk of confusion.

Definition 3.5. The Bass-Serre graph of (X, τ) is the oriented graph Gτ defined by

V (Gτ ) = X/H , E(Gτ )+ = dom(τ)/Σ , E(Gτ )− = rng(τ)/ϑ(Σ) ,

where the structural maps are given by the following formulas

xΣ = xτϑ(Σ) ; s(xΣ) = xH ; r(xΣ) = xτH ;

yϑ(Σ) = yτ−1Σ ; s(yϑ(Σ)) = yH ; r(yϑ(Σ)) = yτ−1H .

The Bass-Serre graph will also be denoted by BS(X, τ).

Example 3.6. (1) The Bass-Serre graph of the translation pre-action (Γ, tρ) is the clas-
sical Bass-Serre tree T of Γ.

(2) The Bass-Serre graph of the positive translation pre-action (T+, τ+) is the half-tree
of the edge Σ in T .

(3) The Bass-Serre graph of the negative translation pre-action (T−, τ−) is the half-tree
of the edge ϑ(Σ) in T .

(4) The Bass-Serre graph of a global Γ-pre-action is actually a forest if and only if the
associated Γ-action is free.

Example (1) is obvious. Examples (2) and (3), if not obvious yet, will become clear after
Remark 3.12. Example (4) will be seen in Remark 3.17.

Now, let us link the star at a vertex in a Bass-Serre graph BS(X, τ) to small normal forms
in Γ. Given a vertex in an oriented graph, let us denote by st+(v), respectively st−(v), the
set of positive, respectively negative, edges whose source is v, so that we have a partition
st(v) = st+(v) t st−(v) of the star at v. Given a point x ∈ X, there are natural (maybe
sometimes empty) maps

e+
x : {ct : c ∈ C+, xc ∈ dom(τ)} → st+(xH)

ct 7→ xcΣ
e−x : {ct−1 : c ∈ C−, xc ∈ rng(τ)} → st−(xH)

ct−1 7→ xcϑ(Σ)

and we notice that e+
x (ct) goes from xH to xcτH, while e−x (ct−1) goes from xH to xcτ−1H.

These maps are surjective, since the orbits xcΣ for c ∈ C+, respectively the orbits xcϑ(Σ)
for c ∈ C−, cover xH. Since the action X xπ H is free, we have xH =

⊔
c∈C+ xcΣ and

xH =
⊔
c∈C− xcϑ(Σ), so that e+

x , e
−
x are in fact bijective. Then, by merging e+

x and e−x , we
get a bijection

ex : {ct : c ∈ C+, xc ∈ dom(τ)} t {ct−1 : c ∈ C−, xc ∈ rng(τ)} → st(xH) .
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3.2. Morphisms and functoriality of Bass-Serre graphs. We shall now see that there
is a functor, that we will call the Bass-Serre functor, from the category of Γ-pre-actions to
the category of graphs, which extends Definition 3.5. Let us start by turning Γ-pre-actions
into a category.

Definition 3.7. A morphism of pre-actions from (X, τ) to (X ′, τ ′) is a H-equivariant
map ϕ : X → X ′, such that for all x ∈ dom τ , ϕ(xτ) = ϕ(x)τ ′.

Note that in particular, ϕ maps dom(τ) into dom(τ ′), and rng(τ) into rng(τ ′). Now, given a
morphism of pre-actions ϕ : (X, τ)→ (X ′, τ ′), and denoting by Gτ and Gτ ′ the corresponding
Bass-Serre graphs, let us define a map V (Gτ )→ V (Gτ ′) by

xH 7→ ϕ(x)H , for x ∈ X ,

and a map E(Gτ )→ E(Gτ ′) by

xΣ 7→ ϕ(x)Σ , for x ∈ dom(τ) and yϑ(Σ) 7→ ϕ(y)ϑ(Σ) , for y ∈ rng(τ) .

It is routine to check that these maps define a morphism of graphs, that we denote by Gϕ. For

instance, the image of xΣ is ϕ(x)Σ, the image of xΣ = xτϑ(Σ) is ϕ(xτ)ϑ(Σ) = ϕ(x)τ ′ϑ(Σ),

and one has ϕ(x)Σ = ϕ(x)τ ′ϑ(Σ) in Gτ ′ as expected.

Lemma 3.8. The assignments (X, τ) 7→ Gτ and ϕ 7→ Gϕ define a functor from the category
of Γ-pre-actions to the category of graphs.

We will denote this functor by BS and call it the Bass-Serre functor of Γ. The morphism
Gϕ will also be denoted by BS(ϕ).

Proof. First, given the identity morphism on a pre-action (X, τ) it is obvious that the asso-
ciated morphism of graphs is the identity on Gτ .

Now, take two morphisms of pre-actions ϕ : (X, τ)→ (X ′, τ ′) and ψ : (X ′, τ ′)→ (X ′′, τ ′′).
It is also clear that the composition of Gϕ followed by Gψ, and the morphism Gψ◦ϕ are both
given by the map V (Gτ )→ V (Gτ ′′) by

xH 7→ ψ ◦ ϕ(x)H , for x ∈ X ,

and the map E(Gτ )→ E(Gτ ′′) by

xΣ 7→ ψ ◦ ϕ(x)Σ , for x ∈ dom(τ) and yϑ(Σ) 7→ ψ ◦ ϕ(y)ϑ(Σ) , for y ∈ rng(τ) .

This completes the proof. �

To conclude this section, let us notice a consequence of freeness of the H-actions in the
definition of Γ-pre-actions.

Lemma 3.9. Every morphism on the form BS(ϕ) is locally injective. More precisely, its
restriction the star at a vertex xH, is the composition eϕ(x) ◦ e

−1
x , which is an injection into

the star at ϕ(x)H.

Proof. Consider a morphism of pre-actions ϕ : (X, τ) → (X ′, τ ′), and give names to the

actions involved: X xπ H, and X ′ xπ′ H. Let us also recall from Section 3.1 that the maps
ex and eϕ(x) are bijective, since these actions are free. Now, given x ∈ X and e ∈ st(xH) in
Gτ , one must have e = ex(ctε), that is:

• either e = xcπΣ for a unique c ∈ C+ satisfying xcπ ∈ dom(τ),
• or e = xcπϑ(Σ) for a unique c ∈ C− satisfying xcπ ∈ rng(τ).
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Then, in the graph Gτ ′ , one has:

• in the first case, ϕ(x)cπ
′

= ϕ(xcπ) ∈ dom(τ ′), so that

Gϕ(e) = ϕ(xcπ)Σ = ϕ(x)cπ
′
Σ = eϕ(x)(ct) = eϕ(x) ◦ e

−1
x (e) .

• in the second case, ϕ(x)cπ
′

= ϕ(xcπ) ∈ rng(τ ′), so that

Gϕ(e) = ϕ(xcπ)ϑ(Σ) = ϕ(x)cπ
′
ϑ(Σ) = eϕ(x)(ct

−1) = eϕ(x) ◦ e
−1
x (e) .

In other words, the restriction of Gϕ to the star at a vertex xH is the composition eϕ(x) ◦ e
−1
x .

Furthermore, the latter map is an injection into the star at ϕ(x)H. �

3.3. Paths in Bass-Serre graphs of global pre-actions. Let us turn to the case of a
global pre-action (X, τ). In this case, the bijections ex defined at the end of Section 3.1
become just:

ex : {ct : c ∈ C+} t {ct−1 : c ∈ C−} −→ st+(xH) t st−(xH) = st(xH) .

Given a point x ∈ X, and an element γ ∈ Γ−H with normal form c1t
ε1 · · · cntεnhn+1, where

n ≥ 1, we associate a sequence (x0, x1, . . . , xn) in X by setting x0 = x and xi = xi−1ciτ
εi for

1 ≤ i ≤ n, and notice that xnhn+1 = xγπτ . Then we associate a sequence (e1, ..., en) of edges
in the Bass-Serre graph using the bijections ex: for i = 1, . . . , n, we set

ei = exi−1(cit
εi) .

Notice that, for any i = 1, . . . , n − 1, one has r(ei) = xi−1ciτ
εiH = xiH = s(ei+1). Hence

(e1, . . . , en) is a path, that we denote by pathx(γ).

Remark 3.10. The vertices (vi)
n
i=0 visited by pathx(γ) are given by vi = xiH, where:

xi = xc1τ
ε1 · · · ciτ εi .

Moreover, defining Σ1 = Σ and Σ−1 = ϑ(Σ) one has e1 = xc1Σε1 and, for all 2 ≤ k ≤ n,

ek = xc1t
ε1 . . . ck−1t

εk−1ckΣεk .

Now, for 1 ≤ i ≤ n, let us remark the equivalence

ei+1 = ēi ⇔ (εi+1 = −εi and ci+1 = 1) .

Indeed, in case εi = 1, one has ei = xi−1ciΣ, therefore

ei+1 = ēi ⇔ exi(ci+1t
εi+1) = xi−1ciτ · ϑ(Σ) = xiϑ(Σ) ⇔ (εi+1 = −1 and ci+1 = 1)

and the case εi = −1 is similar. As we started with a normal form of γ, we obtain that
pathx(γ) is a reduced path. Moreover, given a reduced path (e′1, . . . , e

′
n) starting at xH, one

has pathx(γ) = (e′1, . . . , e
′
n) if and only if

for all i = 1, . . . , n, exi−1(cit
εi) = e′i .

Since the maps ex are bijective, there is exactly one element γ ∈ Γ − H, with normal form
c1t

ε1c2t
ε2 · · · cntεn such that pathx(γ) = (e′1, . . . , e

′
n).

Remark 3.11. For any x ∈ X, the map pathx, from Γ − H to the set of reduced paths
starting at the vertex xH, is surjective. Its restriction to the set of elements with normal
form c1t

ε1c2t
ε2 · · · cntεn is bijective.
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Let us say that γ ∈ Γ − H is a path-type element if its normal form has the form
tε1c2t

ε2 · · · cntεn where n ≥ 1, that is, if c1 = 1 and hn+1 = 1. It is said to be positive if ε1 = 1,
and negative if if ε1 = −1. When γ is a positive, respectively negative, path-type element,
the first edge of pathx(γ) is xΣ, respectively xϑ(Σ). If n ≤ k, we also say that an element γ̃
with normal form tε1c2t

ε2 · · · cktεk is a path-type extension of γ = tε1c2t
ε2 · · · cntεn . In this

case, pathx(γ̃) extends pathx(γ).

Remark 3.12. The map pathx induces bijections:

• between the subset of positive path-type elements in Γ, and the set of reduced paths
in BS(X, τ) whose first edge is xΣ;
• between the subset of negative path-type elements in Γ, and the set of reduced paths

in BS(X, τ) whose first edge is xϑ(Σ).

Hence, if xΣ (respectively xϑ(Σ)) is a treeing edge then, the images of the first (respectively
the second) bijection cover exactly the half-tree of Σ (respectively the half-graph of ϑ(Σ)) in
BS(X, τ).

Let us end this section by linking paths in Bass-Serre trees and Bass-Serre graphs so as to
understand which edges are treeing edges in the Bass-Serre graph.

Remark 3.13. Consider a global pre-action (X, τ), and a basepoint x ∈ X. There exists a
unique morphism of pre-actions

ϕ : (Γ, tρ)→ (X, τ)

from the translation pre-action, such that ϕ(1) = x. In fact, ϕ is the orbital map γ 7→ xγπτ

of the associated Γ-action. By restriction, one obtains morphisms

ϕ+ : (T+, τ+)→ (X, τ)

ϕ− : (T−, τ−)→ (X, τ)

from the positive and negative translation pre-actions.

Lemma 3.14. In the context of the above remark, the Bass-Serre morphism BS(ϕ), from
the Bass-Serre tree T to the Bass-Serre graph Gτ , sends pathT1Γ

(γ) onto pathGτx (γ).

Proof. Let us consider γ ∈ Γ − H, and write its normal form: γ = c1t
ε1 · · · cntεnhn+1. Let

us denote by (e1, . . . , en) the edges of pathT1Γ
(γ), and by (e′1, . . . , e

′
n) the edges of pathGτx (γ).

The auxiliary sequences in Γ and X used in the construction of the paths will be denoted by
(γ0, . . . , γn) and (x0, . . . , xn) respectively.

An easy induction shows that xi = ϕ(γi) for all i = 0, . . . , n. Then, we notice that the
source of eγi−1(cit

εi) is γi−1H for all i = 1, . . . , n. Thus, using Lemma 3.9, we get

Gϕ(ei) = eϕ(γi−1) ◦ e
−1
γi−1

(
eγi−1(cit

εi)
)

= exi−1(cit
εi) = e′i

for all i = 1, . . . , n. �

Therefore, if xΣ is a treeing edge then, the image of BS(ϕ+) is the half-tree of xΣ, while
if xϑ(Σ) is a treeing edge then, the image of BS(ϕ−) is the half-tree of xϑ(Σ).

Proposition 3.15. Consider a global pre-action (X, τ), and a basepoint x ∈ X. The following
are equivalent:

(i) the morphism of pre-actions ϕ+ : (T+, τ+)→ (X, τ) of Remark 3.13 is injective;
(ii) the morphism of graphs BS(ϕ+) is injective;

(iii) the edge xΣ in the Bass-Serre graph BS(X, τ) is a treeing edge.
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Proof. For all γ ∈ T+, recall that ϕ+(γ) = xγπτ , so that BS(ϕ+) sends vertices γH to xγπτH.
At the level of positive edges, it sends γΣ to xγπτΣ. Fixing γ, we get ϕ+(γh) = xγπτhπ for
h ∈ H; since X xπ H is free, ϕ+ realizes a bijection between γH and xγπτH, and also a
bijection between γΣ and xγπτΣ. Consequently, ϕ+ is injective if an only if γH 7→ xγπτH
and γΣ 7→ xγπτΣ are both injective. This proves that (i) and (ii) are equivalent. Note that
(iii) implies (ii) is obvious since, when xΣ is a treeing edge BS(ϕ+) is locally injective from
the half-tree of Σ to the half-tree of xΣ, hence BS(ϕ+) is injective. Finally assume (ii) and
let ω be a reduced path starting by the edge xΣ. By Remark 3.12 there exists a positive path
type element γ ∈ Γ+ such that ω = pathx(γ). By Lemma 3.14, ω is the image by BS(ϕ+)
of pathT1 (γ). Since BS(ϕ+) is supposed to by injective and since the last vertex of pathT1 (γ)
is not H, we deduce that the last vertex of ω is not xH. Hence, xΣ is a treeing edge by
Lemma 2.16. �

By a very similar argument, wet get also the following result.

Proposition 3.16. Consider a global pre-action (X, τ), and a basepoint x ∈ X. The following
are equivalent:

(i) the morphism of pre-actions ϕ− : (T−, τ−)→ (X, τ) of Remark 3.13 is injective;
(ii) the morphism of graphs BS(ϕ−) is injective;

(iii) the edge xϑ(Σ) in the Bass-Serre graph BS(X, τ) is a treeing edge.

Remark 3.17. Putting the two previous propositions together, one can show that given a
Γ-action where H is acting freely, the Bass-Serre graph of the associated pre-action is a forest
if and only if the Γ-action is free.

3.4. The free globalization of a pre-action of an HNN extension. Say that a pre-
action is transitive when its Bass-Serre graph is connected. Note that a global pre-action
(X, τ) is transitive if and only if the associated Γ-action is transitive. We will show that every
transitive pre-action has a canonical extension to a transitive action, which is as free as
possible. The construction is better described in terms of Bass-Serre graph: we are going to
attach as many treeing edges as possible to it.

Theorem 3.18. Every transitive Γ-pre-action (X, τ) on a non-empty set X admits a tran-

sitive and global extension (X̃, τ̃) which satisfies the following universal property: given any
transitive and global extension (Y, τ ′) of (X, τ), there is a unique morphism of pre-actions

ϕ : (X̃, τ̃)→ (Y, τ ′) such that

ϕ�X = idX .

Moreover, all the edges from the Bass-Serre graph BS(X, τ) to its complement in BS(X̃, τ̃)
are treeing edges.

In terms of Γ-actions, the extension (X̃, τ̃) of the theorem corresponds to an action X̃ x Γ
such that, given any action Y xα Γ satisfying X ⊆ Y as H-sets and ytα = yτ for all
y ∈ dom(τ), there exists a unique Γ-equivariant map ϕ : X̃ → Y extending idX .

Proof. We will obtain the Bass-Serre graph of the pre-action (X̃, τ̃) by adding only treeing
edges to the Bass-Serre graph of the pre-action.

First we enumerate the Σ-orbits which do not belong to the domain of τ as (xiΣ)i∈I .
Then, we take disjoint copies of (T+, τ+), for i ∈ I, also disjoint from X, which we denote as
(T+
i , τi). Similarly, we enumerate the ϑ(Σ)-orbits which do not belong to the range of τ as as
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(yjϑ(Σ))j∈J . We then take disjoint copies of (T−, τ−), for j ∈ J , also disjoint from X, which

we denote as (T−j , τj). Now, our extension (X̃, τ̃) is obtained as follows. We set

X̃ =

X t⊔
i∈I

T+
i t

⊔
j∈J

T−j

/
∼

where ∼ identifies the element xih ∈ X with h ∈ H ⊂ T+
i , for each i ∈ I and h ∈ H, and the

element xjh ∈ X with h ∈ H ⊂ T−j , for each j ∈ J and h ∈ H. Since the identifications just

glue some orbits pointwise and respect the H-actions, X̃ is endowed with a free H-action.
Then, we set

τ̃ = τ t
⊔
i∈I

τi t
⊔
j∈J

τj ,

which is possible since the domain of τi, for i ∈ I, intersects other components in X̃ only in
the orbit xiΣ, the range of τi, for i ∈ I, does not intersect other components in X̃, and the
situation is analogue for τj with j ∈ J . We have got a pre-action (X̃, τ̃).

This pre-action is transitive. Indeed, all pre-actions (X, τ), (T+
i , τi) and (T−j , τj) are, and

the identifications make connections between all these components in the Bass-Serre graph
BS(X̃, τ̃).

The pre-action is also global. Indeed, every Σ-orbit, respectively ϑ(Σ)-orbit, in T+
i , which

is not in the domain, respectively the range, of τi, has been identified with an orbit in X, and
the situation is similar for T−j . We conclude by noting that all every Σ-orbits and ϑ(Σ)-orbits
in X are now in the domain and in the range of τ̃ .

Moreover, the (oriented) edges from the Bass-Serre graph BS(X, τ) to its complement in

BS(X̃, τ̃) are exactly the edges xiΣ for i ∈ I, and the edges xjϑ(Σ) for j ∈ J . For each

i ∈ I, the morphism of pre-actions ϕ+ : (T+, τ+) → (X̃, τ̃) of Remark 3.13, with basepoint

xi ∈ X̃, is injective since it realizes an isomorphism onto (T+
i , τi), hence xiΣ is a treeing

edge by Proposition 3.15. One proves similarly that the edges xjϑ(Σ) are treeing edges using
Proposition 3.16.

It now remains to prove the universal property. To do so, take any transitive and global
extension (Y, τ ′) of (X, τ). The unique morphism of pre-actions ϕ from (X̃, τ̃) to (Y, τ ′) such
that ϕ�X = idX is obtained by taking the union of the morphisms ϕi : (T+

i , τi)→ (Y, τ ′) and

ϕj : (T−j , τj) → (Y, τ ′), coming from Remark 3.13 with respect to basepoints xi or xj , with

idX (all these morphisms are unique). �

It is straightforward to deduce from the universal property above that the global pre-action
we just built is unique up to isomorphism. We thus call it the free globalization of the
pre-action (X, τ).

Example 3.19. The free globalizations of the positive and negative translation pre-action
are equal to the right Γ-action on itself by translation. Indeed, this is true of any transitive
pre-action obtained as a restriction of the (global) Γ-pre-action on itself by right translation,
since the latter is universal among transitive Γ-actions.

Let us furthermore observe that we can always build this pre-action on a fixed set X̄
containing X, provided it contains infinitely many free H-orbits.

Theorem 3.20. Let X̄ be a countable set equipped with a free H-action, suppose X ⊆ X̄ is
H-invariant and X̄−X contains infinitely many H-orbits. Suppose further that τ is a partial
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bijection on X such that (X, τ) is a transitive pre-action of Γ. Then there is a permutation
τ̄ of X̄ such that (X̄, τ̄) is (isomorphic to) the free globalization of (X, τ).

Proof. Let (X̃, τ̃) be the free globalization of (X, τ). The fact that X̃ \X contains infinitely

many H-orbits and is countable implies that there exist a H-equivariant bijection ϕ : X̃ → X̄
whose restriction to X is the identity. Then, one can push forward the permutation τ̃ , to
obtain a permutation τ̄ : X̄ → X̄ defined by

ϕ(x)τ̄ := ϕ(xτ̃) for all x ∈ X̃ ,

which extends τ . Now, ϕ is an isomorphism of pre-actions between (X̃, τ̃) and (X̄, τ̄). �

3.5. Connection with partial actions and strong faithfulness.

Definition 3.21. Given a transitive pre-action of the HNN extension Γ on (X, τ), let us

denote by (X̃, τ̃) its free globalization. The partial action associated to (X, τ) is the

restriction to X of the action X̃ xπτ̃ Γ. We denote it by ατ .

In order to have shorter statements in what follows, we will also call the action X̃ xπτ̃ Γ
“free globalization” of (X, τ).

Remark 3.22. One could also construct the partial action directly as follows. Let us denote
by π the H-action on X. Given γ ∈ Γ with normal form c1t

ε1 · · · cntεnhn+1, define the partial
bijection γατ by

γατ := cπ1τ
ε1 · · · cπnτ εnhπn+1,

where we compose partial bijections as described in Section 2.7. The relation γατ1 γατ2 ⊆
(γ1γ2)ατ follows from the fact that in order to obtain the normal form of γ1γ2 from the
concatenation of the normal forms of γ1 and γ2, one only needs to iterate the following three
types of operations:

(1) replacing a subword h1σth2 by h1tϑ(σ)h2;
(2) replacing a subword h1ϑ(σ)t−1h2 by t−1σh2;
(3) deleting the occurrences of tt−1 or t−1t.

By the definition of a pre-action, types (1) and (2) do not affect the partial bijection that
we get in the end, while type (3) can only produce extensions (note that ττ−1 and τ−1τ are
restrictions of the identity on X).

We can now connect the free globalization that we constructed to the universal globalization
of Kellendonk-Lawson that was presented in Theorem 2.19.

Proposition 3.23. The free globalization of a transitive pre-action (X, τ) is equal to the
universal globalization of the partial action ατ .

Proof. There is a unique Γ-equivariant map g from the universal globalization Z constructed
by Kellendonk-Lawson to the free globalization X̃ because of its universal property. Moreover,
in the free globalization, we have that H acts freely, so it follows that H is also acting freely
on the universal globalization.

It is then straightforward to check that since the pre-action τ is transitive, the associated
partial action ατ is transitive, i.e. for every x, y ∈ X there is γ ∈ Γ such that y = xγατ . Since
the Γ-closure of X inside Z satisfies the same universal property as Z, we conclude that the
universal globalization is transitive.
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We can thus apply the universal property of the free globalization from Theorem 3.18 so
as to obtain a unique Γ-equivariant map f : X̃ → Z which restricts to the identity on X.
Recalling that g : Z → X̃ is the unique Γ-equivariant map provided by Kellendonk and
Lawson’s theorem, we conclude by uniqueness that both g ◦ f and f ◦ g are identity maps,
which concludes the proof. �

An important property of the partial action associated to a pre-action (X, τ) is that it
is contained in the partial action associated to any of the globalizations of (X, τ), in the
following sense.

Definition 3.24. Let X xα Γ and X xβ Γ be two partial actions. We say that α is
contained in β when for every γ ∈ Γ, we have α(γ) ⊆ β(γ).

Proposition 3.25. Let (X, τ) be a transitive Γ-pre-action, let X xατ Γ be the associated
partial action. Then for every global extension (Y, σ) of the pre-action, we have that the
restriction to X of the action Y xπσ Γ contains ατ .

Proof. Suppose (Y, σ) is a global extension of the pre-action (X, τ). Since (X, τ) is transitive,
up to shrinking (Y, σ) we may assume it it transitive. We can now apply Theorem 3.18: the

universal property gives a Γ-equivariant map ρ : X̃ → Y with respect to the actions π̃ := πτ̃
and πσ. Then, for every x ∈ X̃, and every γ ∈ Γ, we have ρ(xγπ̃) = ρ(x)γπσ . In particular,
for every x ∈ X such that xγπσ ∈ X, we obtain xγατ = xγπ̃ = xγπσ , which yields directly
the desired result. �

Let us now show that the free globalization of any non-global transitive pre-action is highly
faithful. We start with a lemma.

Lemma 3.26. The partial actions associated to the positive and negative translation pre-
action are strongly faithful.

Proof. Recall that the positive translation pre-action is obtained as the restriction of the
translation pre-action to the set Γ+ tH. By Example 3.19 and the previous proposition, it
suffices to show that for every F b Γ \ {1}, there is x ∈ Γ+ tH such that for all γ ∈ F , we
have xγ ∈ Γ+tH and xγ 6= x. The latter assertion is always true, and the former holds if we
take x ∈ Γ+ whose normal form is longer than the normal form of all the elements of F . We
conclude that the partial action associated to the positive translation pre-action is strongly
faithful.

A similar argument shows that the partial action associated to the negative translation
pre-action is strongly faithful. �

Proposition 3.27. The free globalization of any non-global transitive pre-action is highly
faithful.

Proof. Let π be the action associated to the free globalization of a non- global transitive
pre-action (X, τ). By Corollary 2.6, it suffices to prove that π is strongly faithful. But since
the pre-action (X, τ) is not global, its free globalization contains a copy of either the positive
or the negative translation pre-action. The partial actions of the latter being strongly faithful
by the previous lemma, we conclude using Proposition 3.25 that π itself is strongly faithful
because it contains a strongly faithful partial action. �

Remark 3.28. More generally, it follows from Propositions 3.15 and 3.16 that every Γ-action
whose Bass-Serre graph contains a treeing edge must be highly faithful.
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4. High transitivity for HNN extensions

As in Section 3, we fix an HNN extension Γ = HNN(H,Σ, ϑ), a set of representatives C+ of
left Σ-cosets in H, and a set of representatives C− of left ϑ(Σ)-cosets in H, which both contain
1, so that normal forms of elements of Γ are well-defined. From now on, we assume that
the HNN extension Γ is non-ascending, since this assumption will become essential. We
still denote by Γ+, respectively Γ−, the set of elements whose normal form first letter is t,
respectively t−1, so that we have Γ = H t C+Γ+ t C−Γ−.

4.1. Using the free globalization towards high transitivity. This section is devoted to
a key result which we will use towards proving high transitivity for HNN extensions. It will
allow us to extend any given transitive pre-action which is not an action to one which sends
one fixed tuple to another fixed tuple.

Proposition 4.1. Let X̄ xπ H be a free action, with infinitely many H-orbits, let X be a
finite union of H-orbits in X̄, and suppose that (X, τ) is a transitive non-global pre-action.
For any pairwise distinct points x1, ..., xk, y1, ..., yk ∈ X̄, there exists a transitive and global
extension (X̄, τ̃) of (X, τ) such that:

(1) the action X̄ xπτ̃ Γ is (transitive and) highly faithful;
(2) there is an element γ ∈ Γ satisfying xiγ

πτ̃ = yi for all i.

Proof. The set {x1, ..., xk, y1, ..., yk} will be denoted by F . First, by Theorem 3.20, we find a
permutation τ̄ ∈ S(X̄) such that (X̄, τ̄) is the free globalization of (X, τ). Given x ∈ X̄, and
a path-type element γ, we will denote by Hx(γ) the half-graph of the last edge of pathx(γ) in
the Bass-Serre graph of (X̄, τ̄).

Claim. There exists a path-type element γ in Γ−H such that for every x ∈ F , the last edge
of pathx(γ) is a treeing edge (that is, Hx(γ) is a tree).

Proof of the claim. Using the correspondence between path-type elements and reduced paths
established in Section 3.3, it follows from Lemma 2.17 that for every x ∈ X̄, and every path-
type element γ, there is a path-type extension γ′ of γ such that the last edge of pathx(γ′)
is a treeing edge. Now, it suffices to start with any path-type element γ0, to extend it to a
path-type element γ1 such that the last edge of pathx1

(γ1) is a treeing edge, then to extend
γ1 to a path-type element γ2 such that the last edge of pathy1

(γ2) is a treeing edge (note that
pathx1

(γ2) also ends with a treeing edge since it extends pathx1
(γ1)), . . . , and to iterate this

extension procedure until we reach an element γ2k such that all last edges of pathx(γ2k), for
x ∈ F , are treeing edges. �claim

Let us fix some element c ∈ C+ − {1} (here we use that Σ 6= H). Then, any path-type
element γ admits γct as a path-type extension.

Claim. There exists a path-type element γ in Γ − H such that for every x ∈ F , the last
edge of pathx(γ) is a treeing edge, and the half-trees Hx(γ), for x ∈ F , are pairwise disjoint
subgraphs, and disjoint from BS(X, τ).

Proof of the claim. We start with a path-type element γ such that for every x ∈ F , the last
edge of pathx(γ) is a treeing edge. Since X is a finite union of H-orbits, BS(X, τ) has finitely
many vertices. Hence, by extending further the path-type element γ, we may and will assume
that, for every x ∈ F , the half-tree Hx(γ) does not intersect BS(X, τ).
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We now notice that, given x, y ∈ F , if the half-trees Hx(γ) and Hy(γ) are disjoint, then so
are the half-trees Hx(γ′) and Hy(γ′) for every path-type extension γ′ of γ. Hence, it suffices
to prove that, for any x, y ∈ F , with x 6= y and such that Hx(γ) and Hy(γ) intersect, there
exists a path-type extension γ′ of γ such that Hx(γ′) and Hy(γ′) are disjoint. Indeed, an

easy induction gives then an extension γ(n) such that the half-trees Hx(γ(n)), for x ∈ F , are
pairwise disjoint.

Take now x, y ∈ F with x 6= y and such that Hx(γ) and Hy(γ) intersect. These half-trees
have to be nested. Indeed, if they aren’t, Hx(γ) contains the antipode of the last edge of
pathy(γ), hence contains BS(X, τ), which is impossible. Without loss of generality, we assume
Hx(γ) ⊆ Hy(γ). We now distinguish two cases.

• If Hx(γ) ( Hy(γ), there is a path-type extension γ′′ of γ, with γ′′ 6= γ, such that
pathx(γ) and pathy(γ

′′) have the same last edge. Since the HNN extension Γ is non-
ascending, there is another path-type extension γ′ of γ with the same length as γ′′.
Now, pathy(γ

′) and pathy(γ
′′) are distinct reduced paths extending pathy(γ), hence

Hy(γ′) and Hy(γ′′) = Hx(γ) have to be disjoint. Since Hx(γ′) ⊂ Hx(γ), the half-trees
Hy(γ′) and Hx(γ′) are disjoint.
• If Hx(γ) = Hy(γ), then pathx(γ) and pathy(γ) have the same terminal edge. Let us

assume that pathx(γct) and pathy(γct) have the same terminal edge, since otherwise
we are done with γ′ = γct. This edge is e := x′cΣ = y′cΣ, where x′ = xγπτ̄ and
y′ = yγπτ̄ . Consequently, one has y′c = x′cσ for some σ ∈ Σ−{1}. Consider now the
morphism from the translation pre-action

ϕ : (Γ, tρ)→ (X̄, τ̄) , with basepoint x′c

coming from Remark 3.13, and note that the left translation ψσ : γ∗ 7→ σγ∗ defines
an automorphism of (Γ, tρ). Using Lemma 3.14, one sees that, for any γ∗ ∈ Γ+:

– BS(ψσ) maps pathT1 (γ∗) onto pathTσ (γ∗) in the Bass-Serre tree T , and these paths
both start by the edge Σ hence, they are both in the half-tree of Σ.

– BS(ϕ) maps pathT1 (γ∗) onto pathx′c(γ
∗); and pathTσ (γ∗) onto pathy′c(γ

∗).
Since the left Γ-action on the boundary ∂T of its Bass-Serre tree is topologically

free, the identity is the only element of Γ fixing the half-tree of Σ in T pointwise.
Hence, there exists a path ω in this half-tree whose first edge is Σ, and such that ω
and σ ·ω have distinct ranges. Then, by Remark 3.12, there exists a path-type element
γ+ ∈ Γ+ such that pathT1 (γ+) = ω. We have pathTσ (γ+) = BS(ψσ)(ω) = σ ·ω, so that
pathT1 (γ+) and pathTσ (γ+) have distinct ranges.

Since the edge e is a treeing edge, the restriction ϕ+ of ϕ to the positive translation
pre-action (T+, τ+) is injective by Proposition 3.15, and so is BS(ϕ+). Consequently,
pathx′c(γ

+) and pathy′c(γ
+) diverge at some point in the half-tree of e in BS(X̄, τ̄).

Finally, for any path-type element γ∗ in Γ+, by construction, pathx(γcγ∗) is the
concatenation of pathx(γ) and pathx′c(γ

∗), and pathy(γcγ
∗) is the concatenation of

pathy(γ) and pathy′c(γ
∗). Hence pathx(γcγ+) and pathy(γcγ

+) diverge at some point

in the half-tree of e. Setting γ′ = γcγ+, we obtain that Hx(γ′) and Hy(γ′) are disjoint.

We are done in both cases. �claim

We then modify the bijection τ̄ to get the pre-action (X̄, τ̃) we are looking for. First,
given an element γ as in the previous claim, we consider, for each z ∈ F , the morphism of
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pre-actions from the negative translation pre-action coming from Remark 3.13:

ψz : (T−, τ−)→ (X̄, τ̄) with basepoint z′c ,

where z′ := zγπτ̄ . Note that the image of this morphism corresponds to the half-graph
opposite to the half-tree Hz(γct). Then, we define X ′ =

⋂
z∈F rng(ψz) ⊂ X̄, and take the

restriction (X ′, τ ′) of (X̄, τ̄). Informally speaking, we erase τ̄ on the Σ-orbits corresponding
to edges in the half-trees Hz(γct) for z ∈ F . Note that this leaves infinitely many H-orbits
in X̄ outside dom(τ ′) and rng(τ ′), and the pre-action (X ′, τ ′) is transitive. Now, we extend
τ ′. Pick some free orbits z1H, . . . , zkH in X̄ that we add to X ′, take c− ∈ C−−{1} (here we
use that ϑ(Σ) 6= H), and set

x′icστ
′ := ziϑ(σ) and y′icστ

′ := zic
−ϑ(σ)

for i = 1, . . . , k and σ ∈ Σ. This is possible since the ϑ(Σ)-orbits at points zi and zic
− are

pairwise disjoint (we use again the freeness of the H-action), and since the Σ-orbits at x′ic and
y′ic were not initially in the domain of τ ′. Note that the extended version of the pre-action
(X ′, τ ′) is still transitive. Then we apply Theorem 3.20 to get an extension τ̃ : X̄ → X̄
of τ ′ such that (X̄, τ̃) is the free globalization of (X ′, τ ′). A computation shows then that
xi(γctc

−(γct)−1)πτ̃ = yi for all i = 1, . . . , k. Finally, the action πτ̃ is highly faithful by
Proposition 3.27. �

4.2. High transitivity for HNN extensions. From now on, we fix free an action X xπ H
with infinitely many orbits. We then consider the space A of Γ-actions on X which extend
π, which can be written as

A = {τ ∈ S(X) : σπτ = τϑ(σ)π for all σ ∈ Σ} .

In other words, A is the set of permutations τ of X such that (X, τ) is a global pre-action
of Γ. The set A is clearly a closed subset of S(X) for the topology of pointwise convergence,
hence a Polish space. Recall that the action associated to a permutation τ ∈ A is denoted
by πτ .

Definition 4.2. Let us set

TA = {τ ∈ A : πτ is transitive};
HFA = {τ ∈ A : πτ is highly faithful};
HTA = {τ ∈ A : πτ is highly transitive}.

The subset TA is not closed for the topology of pointwise convergence. However, we have
the following result.

Lemma 4.3. The set TA is Gδ in A, hence it is a Polish space. Moreover, it is non-empty.

Proof. SinceX xπ H has infinitely many orbits, there is aH-equivariant bijection ϕ : Γ→ X.
It then suffices to push-forward the translation pre-action by ϕ to get an element of TA (its
Bass-Serre graph will be isomorphic to the classical Bass-Serre tree and πτ will be conjugated
to the translation action Γ x Γ).

To show that TA is a Gδ subset, we write TA =
⋂
x,y∈X Ox,y, where for x, y ∈ X,

Ox,y = {τ ∈ A : there exists γ ∈ Γ such that xγπτ = y}.

The latter sets are clearly open in A for all x, y ∈ X, thus finishing the proof. �
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We now show that our HNN extension Γ has a highly transitive highly faithful action, thus
proving Theorem C.

Theorem 4.4. The set HTA ∩HFA is dense Gδ in TA. In particular, Γ admits actions
which are both highly transitive and highly faithful.

Proof. For k ≥ 1 and x1, . . . xk, y1, . . . , yk ∈ X pairwise distinct, consider the open subsets

Vx1,...,xk,y1,...,yk = {τ ∈ TA : ∃γ ∈ Γ , xiγ
πτ = yi for all 1 ≤ i ≤ k}

Their intersection is the set HTA by Lemma 2.2, so HTA is Gδ in TA. Similarly, we can
write the set of strongly faithful actions as the intersection over all finite subsets F b Γ−{1}
of the open sets

WF = {τ ∈ TA : ∃x ∈ X , xfπτ 6= x for all f ∈ F}
Now, since strong faithfulness is equivalent to high faithfulness by Corollary 2.6, the set HFA
is Gδ in TA.

To conclude, it suffices to show that each set (Vx1,...,xk,y1,...,yk)∩HFA is dense in TA, since
this immediately implies that each open set (Vx1,...,xk,y1,...,yk) ∩WF is dense in TA. To do
this, let τ ∈ TA and let F ′ be a finite subset of X. Consider a finite connected subgraph G
of BS(X, τ) containing the edges zΣ for z ∈ F ′, and denote by τ0 the restriction of τ to the
union of the Σ-orbits in X corresponding to the edges of G.

Then, apply Proposition 4.1 to the transitive pre-action (dom(τ0) · H ∪ rng(τ0) · H, τ0),
whose Bass-Serre graph is G, to get an extension τ ′ such that τ ′ ∈ Vx1,...,xk,y1,...,yk ∩HFA.
Moreover, since F ′ ⊂ dom(τ0), it follows that τ and τ ′ coincide on F ′. �

Remark 4.5. We give below a direct proof that HFA∩HTA is dense in TA, without relying
on Baire’s Theorem.

Proof. Start with an element τ0 ∈ TA, consider the transitive and global pre-action (X, τ0),
and fix a finite subset F0 b X. What we have to prove is that there exists τ ′ ∈ HFA∩HTA
such that the restrictions of τ0 and τ ′ on F0 coincide.

Let us now take an enumeration (gn)n≥0 of Γ−{1}, and an enumeration (kn, x̄n, ȳn)n≥0 of
the set of triples (k, x̄, ȳ), where k is a positive integer and x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yk)
are k-tuples of elements of X such that x1, . . . , xk, y1, . . . , yk are pairwise distinct. Starting
with τ0 and F0, we construct inductively a sequence (τn)n≥0 in TA, and an increasing sequence
(Fn)n≥0 of finite subsets of X, as follows.

(1) We set F to be the union of Fn and the coordinates of x̄n and ȳn, and consider the
smallest connected subgraph G of BS(X, τn) which contains all edges zΣ for z ∈ F .
(This exists since (X, τn) is transitive).

(2) We take the restriction τ of τn on the union of the Σ-orbits in X corresponding to
edges in G, and get a transitive pre-action (dom(τ)·H∪rng(τ)·H, τ), whose Bass-Serre
graph is G, and such that τ coincides with τn on F .

(3) By Proposition 4.1, we get an extension τn+1 of τ , which lies in TA ∩ HFA, and

an element γn ∈ Γ such that x̄nγ
πτn+1
n = ȳn. Moreover, τn+1 coincides with τn on

Fn by construction. Let also vn be an element of X such that vng
πτn+1

k 6= vn for all
k = 0, . . . , n (which exists since πτn+1 is highly faithful).

(4) We take a finite subset Fn+1 b X which contains F , and all elements z ∈ X such
that zΣ, or its antipode, is in pathvn(gk) for some k ≤ n, or in pathu(γn) for some
coordinate u of x̄n. Now, for any τ∗ coinciding with τn+1 on Fn+1, one has x̄nγ

πτ∗
n = ȳn

and vng
πτ∗
k 6= vn for all k = 0, . . . , n.
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Theses sequences satisfy x̄mγ
πτn
m = ȳm and vmg

πτn
k 6= vm for all 0 ≤ k ≤ m < n. Moreover,

the subsets Fn exhaust X, and τn coincides with τm on Fm for all n > m. Consequently the
sequence (τn) converges to a bijection τ ′, such that πτ ′ is highly transitive by Lemma 2.2.
Notice finally that πτ ′ is also strongly faithful, since it satisfies vmg

πτ ′
k 6= vm for all k ≤ m.

Thus, πτ ′ is highly faithful by Corollary 2.6. �

5. Free globalization for pre-actions of amalgams

We now turn to the case of amalgams, where the notion of pre-action is a bit less intuitive
than for HNN extensions since it will involve two sets, reflecting the fact that the correspond-
ing graph of groups has two vertices. The results and proofs are very similar to those we have
proved for HNN extensions in Sections 3 and 4, but for the convenience of the reader we will
give full proofs.

For this section, as in Section 2.6, let us fix an amalgam Γ = Γ1 ∗Σ Γ2, and sets of rep-
resentatives Cj of left Σj-cosets in Γj such that 1 ∈ Cj , for j = 1, 2, so that normal forms
of elements of Γ are well-defined. Let us also denote by NCj the set of elements of Γ whose
normal form begins (from the left) with an element of Cj \ {1}, for j = 1, 2, so that we have
Γ = Σ tNC1 tNC2 .

5.1. Actions and pre-actions of amalgams, and Bass-Serre graphs. Given two actions
on infinite countable sets X1 xπ1 Γ1 and X2 xπ2 Γ2, and a bijection τ : X1 → X2 such that
σπ1τ = τϑ(σ)π2 for all σ ∈ Σ1, there exists a unique action X1 xπ1,τ Γ such that gπ1,τ = gπ1

for all g ∈ Γ1, and hπ1,τ = τhπ2τ−1 for all h ∈ Γ2. Similarly, there exists a unique action
X2 xπ2,τ Γ such that hπ2,τ = hπ2 for all h ∈ Γ2, and gπ2,τ = τ−1gπ1τ for all g ∈ Γ1. Of course,
these actions are conjugate: one has γπ2,τ = τγπ1,τ τ−1 for every γ ∈ Γ. Turning back to the
general case, if the actions π1, π2 are free, we obtain an example of the following situation.

Definition 5.1. A pre-action of the amalgam Γ is a triple (X1, X2, τ) where X1, X2 are
infinite countable sets endowed with free actions X1 xπ1 Γ1 and X2 xπ2 Γ2, and

τ : dom(τ)→ rng(τ)

is a partial bijection such that dom(τ) ⊆ X1, rng(τ) ⊆ X2, and σπ1τ = τϑ(σ)π2 for all σ ∈ Σ1.

Such a pre-action is called global if τ is a global bijection between X1 and X2. In this
case there are associated actions X1 xπ1,τ Γ and X2 xπ2,τ Γ as above.

Example 5.2. If X xπ Γ is an action, where Γ1 and Γ2 are acting freely, then denoting by
X xπ1 Γ1 and X xπ2 Γ2 its restrictions, one obtains a global pre-action (X,X, idX), where
the first copy of X is endowed with π1 and the second with π2. The actions X1 xπ1,τ Γ
and X2 xπ2,τ Γ both coincide with X xπ Γ in this case. In particular, the right translation
action Γ x Γ gives rise to a pre-action (Γ,Γ, id), called the (right) translation pre-action.

The relations σπ1τ = τϑ(σ)π2 are equalities between partial bijections. In particular σπ1τ
and τϑ(σ)π2 must have the same domain and the same range. As a consequence, for any
pre-action (X1, X2, τ), the domain of τ is necessarily Σ1-invariant, its range is necessarily
Σ2-invariant, and τ sends Σ1-orbits onto Σ2-orbits.

As seen before, actions of Γ (such that the factors act freely) correspond to pre-actions
with a global bijection. Another source of examples of pre-actions is the following.

Definition 5.3. Given a pre-action (X1, X2, τ), and infinite Γj-invariant subsets Yj ⊆ Xj ,
the restriction of (X1, X2, τ) to (Y1, Y2) is the pre-action (Y1, Y2, τ

′), where Yj is endowed
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with the restrictions of πj , and the partial bijection is τ ′ = τ�Y1∩Y2τ−1 . An extension of

(X1, X2, τ) is a pre-action (X̃1, X̃2, τ̃) whose restriction to (X1, X2) is (X1, X2, τ).

In the following important example of restrictions, for j ∈ {1, 2} we denote by by NCj

the set of elements of Γ whose normal form begins with an element of Cj , so that we have
Γ = Σ tNC1 tNC2 .

Example 5.4. The set NC2 is Γ1-invariant by right multiplication, and NC1 is Γ2-invariant
by right multiplication. Thus, by taking complements, Σ tNC1 is Γ1-invariant, and Σ tNC2

is Γ2-invariant. The translation pre-action (Γ,Γ, id) admits the restrictions (Γ1 t NC2 ,Γ2 ∪
NC2 , τ+), and (Γ1 ∪NC1 ,Γ2 tNC1 , τ−), which we call the positive translation pre-action
and the negative translation pre-action respectively. Notice that τ+ = id�ΣtNC2

and
τ− = id�ΣtNC1

.

Let us now associate a graph to any Γ-pre-action (X1, X2, τ) as follows. Informally speak-
ing, we start with a graph whose vertices are of two kinds: the Σ1-orbits in X1, and the
Σ2-orbits in X2. Then we put an edge from xΣ1 to yΣ2 when (xΣ1)τ = yΣ2, and finally
we identify all the Σj-orbits that are in a same Γj-orbit, for j = 1, 2. We may, and will,
identify the groups Γj ,Σj with their images by πj , since the actions π1, π2 are free, hence
faithful. Consequently, we don’t write superscripts π1, π2 from now, as soon as there is no
risk of confusion.

Definition 5.5. The Bass-Serre graph of (X1, X2, τ) is the oriented graph Gτ defined by

V (Gτ ) = X1/Γ1 tX2/Γ2 , E(Gτ )+ = dom(τ)/Σ1 , E(Gτ )− = rng(τ)/Σ2 ,

where the structural maps are given by the following formulas, for x ∈ dom(τ) and y ∈ rng(τ),

xΣ1 = xτΣ2 ; s(xΣ1) = xΓ1 ; r(xΣ1) = xτΓ2 ;

yΣ2 = yτ−1Σ1 ; s(yΣ2) = yΓ2 ; r(yΣ2) = yτ−1Γ1 .

The Bass-Serre graph will also be denoted by BS(X1, X2, τ).

Example 5.6. (1) The Bass-Serre graph of the translation pre-action (Γ,Γ, id) is the
classical Bass-Serre tree T of Γ.

(2) The Bass-Serre graph of the positive translation pre-action (Γ1 t NC2 ,Γ2 ∪ NC2 , τ+)
is the half-tree of the edge Σ1 in T .

(3) The Bass-Serre graph of the negative translation pre-action (Γ1 ∪NC1 ,Γ2 tNC1 , τ−)
is the half-tree of the edge Σ2 in T .

Given points x ∈ X1, y ∈ X2, there are natural (maybe sometimes empty) maps from some
coset representatives to the stars at xΓ1 and yΓ2:

e1,x : {c ∈ C1 : xc ∈ dom(τ)} −→ st(xΓ1)
c 7−→ xcΣ1

e2,y : {c ∈ C2 : yc ∈ rng(τ)} −→ st(yΓ2)
c 7−→ ycΣ2

These maps are are surjective, since, for j = 1, 2, the orbits xcΣj , for c ∈ Cj , cover xΓj .
Moreover, since the actions Xj xπj Γj are free, we have xΓj =

⊔
c∈Cj xcΣj , so that these

maps are in fact bijective.
If x ∈ X1 ∩X2, then by merging e1,x and e2,x, we get a bijection

ex : {c ∈ C1 : xc ∈ dom(τ)} t {c ∈ C2 : xc ∈ rng(τ)} → st(xΓ1) t st(xΓ2) .
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We also set ex = e1,x when x ∈ X1 −X2, and ex = e2,x when x ∈ X2 −X1.

5.2. Morphisms and functoriality of Bass-Serre graphs. We shall now see that there
is a functor, that we will call the Bass-Serre functor, from the category of Γ-pre-actions to
the category of graphs, which extends Definition 5.5. Let us start by turning Γ-pre-actions
into a category.

Definition 5.7. A morphism of pre-actions from (X1, X2, τ) to (X ′1, X
′
2, τ
′) is a couple

(ϕ1, ϕ2), where ϕj : Xj → X ′j is a Γj-equivariant map for j = 1, 2, and for all x ∈ dom τ ,

ϕ1(xτ) = ϕ2(x)τ ′.

Again, we have in particular that ϕ1 maps dom(τ) into dom(τ ′) and ϕ2 maps rng(τ) into
rng(τ ′).

Now, given a morphism of pre-actions (ϕ1, ϕ2) : (X1, X2, τ) → (X ′1, X
′
2, τ
′), and denoting

by Gτ and Gτ ′ the corresponding Bass-Serre graphs, let us define a map V (Gτ )→ V (Gτ ′) by

xΓ1 7→ ϕ1(x)Γ1 , for x ∈ X1 and yΓ2 7→ ϕ2(y)Γ2 , for y ∈ X2 ,

and a map E(Gτ )→ E(Gτ ′) by

xΣ1 7→ ϕ1(x)Σ1 , for x ∈ dom(τ) and yΣ2 7→ ϕ2(y)Σ2 , for y ∈ rng(τ) .

It is routine to check that these maps define a morphism of graphs, that we denote by G(ϕ1,ϕ2).

For instance, the image of xΣ1 is ϕ1(x)Σ1, the image of xΣ1 = xτΣ2 is ϕ2(xτ)Σ2 = ϕ1(x)τ ′Σ2,

and one has ϕ1(x)Σ1 = ϕ1(x)τ ′Σ2 in Gτ ′ .

Lemma 5.8. The assignments (X1, X2, τ) 7→ Gτ and (ϕ1, ϕ2) 7→ G(ϕ1,ϕ2) define a functor
from the category of Γ-pre-actions to the category of graphs.

We will denote this functor by BS and call it the Bass-Serre functor of Γ. The morphism
G(ϕ1,ϕ2) will also be denoted by BS(ϕ1, ϕ2).

Proof. First, given the identity morphism on a pre-action (X1, X2, τ) it is obvious that the
associated morphism of graphs id the identity on Gτ .

Now, let us consider two morphisms of pre-actions (ϕ1, ϕ2) : (X1, X2, τ)→ (X ′1, X
′
2, τ
′) and

(ψ1, ψ2) : (X ′1, X
′
2, τ
′)→ (X ′′1 , X

′′
2 , τ
′′). It is also clear that the composition of G(ϕ1,ϕ2) followed

by G(ψ1,ψ2), and the morphism G(ψ1◦ϕ1,ψ2◦ϕ2) are both given by the map V (Gτ )→ V (Gτ ′) by

xΓ1 7→ ψ1 ◦ ϕ1(x)Γ1 , for x ∈ X1 and yΓ2 7→ ψ2 ◦ ϕ2(y)Γ2 , for y ∈ X2 ,

and the map E(Gτ )→ E(Gτ ′) by

xΣ1 7→ ψ1 ◦ ϕ1(x)Σ1 , for x ∈ dom(τ) and yΣ2 7→ ψ2 ◦ ϕ2(y)Σ2 , for y ∈ rng(τ) .

This completes the proof. �

Let us notice a consequence of freeness of the Γj-actions in the definition of Γ-pre-actions,
analogous to Lemma 3.9.

Lemma 5.9. Every morphism of the form BS(ϕ1, ϕ2) = G(ϕ1,ϕ2) is locally injective. More
precisely, the restriction of BS(ϕ1, ϕ2) to the star at a vertex xΓ1, respectively yΓ2, is the
composition e1,ϕ1(x) ◦ e

−1
1,x, respectively e2,ϕ2(y) ◦ e

−1
2,y, which is an injection into the star at

ϕ1(x)Γ1, respectively ϕ2(y)Γ2.
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Proof. Consider a morphism of pre-actions (ϕ1, ϕ2) : (X1, X2, τ) → (X ′1, X
′
2, τ
′), and give

names to the Γ1-actions involved: X1 xπ1 Γ1, and X ′1 xπ′1 Γ1. Let us also recall from
Section 5.1 that maps of the form e1,x and e2,y are bijective, since the Γj-actions are free.
Now, given x ∈ X1 and e ∈ st(xΓ1) in Gτ , one has e = e1,x(c) = xcπ1Σ1 for a unique c ∈ C1

satisfying xcπ1 ∈ dom(τ). Then, one has ϕ(x)cπ
′
1 = ϕ(xcπ1) ∈ dom(τ ′), so that in Gτ ′ :

G(ϕ1,ϕ2)(e) = ϕ1(xcπ1)Σ1 = ϕ1(x)cπ
′
1Σ1 = e1,xϕ1(c) .

In other words, the restriction of G(ϕ1,ϕ2) to the star at xΓ1 is the composition e1,ϕ1(x) ◦ e
−1
1,x.

Furthermore, this map is an injection into the star at ϕ1(x)Γ1.
Similarly, one can prove that the restriction of G(ϕ1,ϕ2) to the star at a vertex yΓ2 is the

composition e2,ϕ2(y) ◦ e
−1
2,y, which is an injection into the star at ϕ2(y)Γ2. �

5.3. Paths in Bass-Serre graphs of global pre-actions. Let us turn to the case of a
global pre-action (X1, X2, τ). In this case, the bijections e1,x and e2,y, defined at the end of
Section 5.1, become just

e1,x : C1 −→ st(xΓ1) and e2,y : C2 −→ st(yΓ2) .

Given a point x ∈ X1 and an element γ ∈ NC2 with normal form γ = c1 · · · cnσ where n ≥ 1
and c1 ∈ C2 − {1}, we associate a sequence (x0, x1, . . . , xn+1) in X1 ∪ X2 and a sequence
(e0, e1, ..., en) of edges in the Bass-Serre graph as follows. We set x0 = x, c0 = 1 ∈ C1, and
then inductively for i = 0, . . . , n:

• for i such that ci ∈ C1, set ei = e1,xi(ci), and xi+1 = xiciτ ;
• for i such that ci ∈ C2, set ei = e2,xi(ci), and xi+1 = xiciτ

−1.

Notice that, for any i = 0, . . . , n − 1, if ci ∈ C1 (or equivalently if i is even), one has
r(ei) = xiciτΓ2 = xi+1Γ2 = s(ei+1) , and similarly if ci ∈ C2 we have r(ei) = s(ei+1). Hence
(e0, . . . , en) is a path, that we denote by path1,x(γ). Note that this path begins by the edge
e0 = xΣ1.

Let us check that path1,x(γ) is a reduced path. For 0 ≤ i ≤ n− 1 and ci ∈ C1, we have

ei+1 = ēi ⇔ xi+1ci+1Σ2 = xiciΣ1 ⇔ xiciτci+1Σ2 = xiciτΣ2 ⇔ ci+1 = 1

since X2 xπ2 Γ2 is free. Since c1 · · · cnσ is the normal form of γ, we cannot have ci+1 = 1, so
path1,x(γ) is reduced.

Finally, since the maps e1,x and e2,x are bijective, given a reduced path (e0, . . . , en) be-
ginning by xΣ1, there is exactly one normal form c1 · · · cn with c1 ∈ C2 − {1} such that
path1,x(c1 · · · cn) = (e0, . . . , en). The following remark is now clear.

Remark 5.10. For any x ∈ X1, the map path1,x is a surjection from NC2 to the set of
reduced paths starting by the edge xΣ1. It becomes a bijection if we restrict it to the subset
of elements γ ∈ NC2 whose normal form is c1 · · · cn with c1 ∈ C2 − {1}. So if xΣ1 is a treeing
edge, then the images path1,x(γ), for γ ∈ NC2 , cover exactly the half-tree of xΣ1 in Gτ .

We now give a definition of path-type elements which is analogous to the one for HNN
extensions, except that we only want to consider paths which end in X1. An element γ ∈ NC2

with normal form γ = c1 · · · cn such that c1 ∈ C2 − {1} and n ≥ 1 is odd will be called a
path type element of NC2 . Note that the corresponding path then has even length. If
γ′ = c1 · · · ck, for some k ≤ n, is a path type element in NC2 , then γ is called a path type
extension of γ′.
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Similarly, given a point x ∈ X2, we can associate to every element γ ∈ NC1 with normal
form γ = c1 · · · cnσ, where n ≥ 1 and c1 ∈ C1−{1}, a reduced path path2,x(γ) := (e0, e1, ..., en),
as follows. We set x0 = x, s0 = 1 ∈ C2, and then inductively for i = 0, . . . , n:

• for i such that ci ∈ C1, set ei = e1,xi(si), and xi+1 = xiciτ ;
• for i such that ci ∈ C2, set ei = e2,xi(si), and xi+1 = xiciτ

−1.

This defines a surjective map path2,x from NC1 to the set of reduced paths starting by the
edge xΣ2. Hence, if xΣ2 is a treeing edge then, the images path2,x(γ), for γ ∈ NC1 , cover
exactly the half-tree of xΣ2 in Gτ . Moreover, the map path2,x becomes a bijection if we restrict
it to the set of elements of with normal form γ = c1 · · · cn where n ≥ 1 and c1 ∈ C1 − {1},
and such elements will be called path type elements of NC1 when moreover n is odd. As
before, there is a notion of path type extension for path type elements in NC1 .

Remark 5.11. Let i, j ∈ {1, 2} with i 6= j and x ∈ Xj , γ ∈ NCi with normal form c1 · · · cnσ.

(1) By construction, pathj,x(γ) = pathj,x(c1 · · · cn) and, for every 1 ≤ k ≤ n, the path
pathj,x(c1 · · · cn) is an extension of pathj,x(c1 · · · ck).

(2) The source of pathj,x(γ) is s(xΣj) = xΓj .
(3) If γ = c1 · · · cn is a path type element, then the range of pathj,x(γ) is xγπj,τΓj .
(4) If for some 1 ≤ k ≤ n the last edge of pathj,x(c1 · · · ck) is a treeing edge, then for all

k ≤ l ≤ n the last edge of pathj,x(c1 · · · cl) is also a treeing edge.

Let us end this section by establishing a link between paths in Bass-Serre trees and Bass-
Serre graphs.

Remark 5.12. Consider a global pre-action (X1, X2, τ), and basepoints x1 ∈ X1 and x2 ∈ X2

such that x2 = x1τ . There exists a unique morphism of pre-actions

(ϕ1, ϕ2) : (Γ,Γ, id)→ (X1, X2, τ)

from the translation pre-action, such that ϕj(1) = xj for j = 1, 2. It satisfies ϕj(γ) = xjγ
πj,τ

for all j = 1, 2 and γ ∈ Γ. By restriction, one obtains morphisms

(ϕ1,+, ϕ2,+) : (Γ1 tNC2 ,Γ2 ∪NC2 , τ+)→ (X1, X2, τ)

(ϕ1,−, ϕ2,−) : (Γ1 ∪NC1 ,Γ2 tNC1 , τ−)→ (X1, X2, τ)

from the positive and negative translation pre-actions.

Lemma 5.13. In the context of the above remark, the Bass-Serre morphism BS(ϕ1, ϕ2),

from the Bass-Serre tree T to the Bass-Serre graph Gτ , sends pathTj,1Γ
(γ) onto pathGτj,xj (γ) for

all j ∈ {1, 2} and all γ ∈ NCi with i ∈ {1, 2} − {j}.

Proof. We make the proof in the case j = 1 only; the case j = 2 is similar.
Let us consider γ ∈ NC2 , and write its normal form: γ = c1t

ε1 · · · cntεnhn+1. Let us denote

by (e0, e1, . . . , en) the edges of pathT1,1Γ
(γ), and by (e′0, e

′
1, . . . , e

′
n) the edges of pathGτ1,x1

(γ).
The auxiliary sequences in Γ and X used in the construction of the paths will be denoted by
(γ0, . . . , γn+1) and (x0, . . . , xn+1) respectively.

An easy induction shows that xi = ϕ1(γi) when i even, and xi = ϕ2(γi) when i is odd.
Then, we notice that the source of ei = e1,γi(ci) is γiΓ1 when i even, and the source of
ei = e2,γi(ci) is γiΓ2 when i odd. Thus, using Lemma 5.9, we get

BS(ϕ1, ϕ2)(ei) = e1,ϕ1(γi)
◦ e−1

1,γi

(
e1,γi(ci)

)
= e1,xi(ci) = e′i
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when i is even, and

BS(ϕ1, ϕ2)(ei) = e2,ϕ2(γi)
◦ e−1

2,γi

(
e2,γi(ci)

)
= e2,xi(ci) = e′i

when i is odd. �

Therefore, if x1Σ1 is a treeing edge then, the image of BS(ϕ1,+, ϕ2,+) is the half-tree of
x1Σ1 while, if x2Σ2 is a treeing edge, the image of BS(ϕ1,−, ϕ2,−) is the half-tree of x2Σ2.

5.4. The free globalization of a pre-action of an amalgam. First, let us notice that,
for any σ ∈ Σ, there is an automorphism of pre-actions induced by left translation by σ

(γ 7→ σγ, γ 7→ σγ)

for each of the following pre-actions:

• the translation pre-action (Γ,Γ, id);
• the positive translation pre-action (Γ1 tNC2 ,Γ2 ∪NC2 , τ+);
• the negative translation pre-action (Γ1 ∪NC1 ,Γ2 tNC1 , τ−).

Indeed, all sets Γ,Γ1,Γ2,Σ, NC1 , NC2 are invariant by left translation by σ, hence the domains
and range of τ+ and τ− are invariant by left translation by σ. Then checking we have
morphisms of pre-actions is a straightforward computation, and invertibility is obvious.

Proposition 5.14. Consider a global pre-action (X1, X2, τ), and basepoints x1 ∈ X1 and
x2 = x1τ ∈ X2. The following are equivalent:

(i) the morphism of pre-actions (ϕ1,+, ϕ2,+) : (Γ1 t NC2 ,Γ2 ∪ NC2 , τ+) → (X1, X2, τ) of
Remark 5.12 is injective;

(ii) the morphism of graphs BS(ϕ1,+, ϕ2,+) is injective;
(iii) the edge x1Σ1 in the Bass-Serre graph BS(X1, X2, τ) is a treeing edge.

Proof. For all γ ∈ Γj ∪ NC2 , recall that ϕj,+(γ) = xjγ
πj,τ , so that BS(ϕ1,+, ϕ2,+) sends

vertices γΓj to xjγ
πj,τΓj , and edges γΣj to xjγ

πj,τΣj . Fixing γ, we get ϕj,+(γg) = xjγ
πj,τ gπj

for g ∈ Γj ; since Xj xπj Γj is free, ϕj,+ realizes a bijection between γΓj and xjγ
πj,τΓj ,

and also a bijection between γΣj and xjγ
πj,τΣj . Consequently, ϕj,+ is injective if an only if

γΓj 7→ xjγ
πj,τΓj and γΣj 7→ xjγ

πj,τΣj are both injective. This proves that (i) and (ii) are
equivalent.

The implication (iii) =⇒ (ii) follows from the fact that when x1Σ1 is a treeing edge
BS(ϕ1,+, ϕ2,+) is locally injective from the half-tree of Σ1 to the half-tree of x1Σ1, hence
BS(ϕ1,+, ϕ2,+) is injective.

Finally assume (ii) and let ω be a reduced path starting by the edge x1Σ1. By Remark
5.10 there exists γ ∈ NC2 such that ω = path1,x1

(γ). By Lemma 5.13, ω is the image by

BS(ϕ1,+, ϕ2,+) of pathT1,1Γ
(γ). Since BS(ϕ1,+, ϕ2,+) is supposed to be injective and since the

last vertex of pathT1,1Γ
(γ) is not Γ1, we deduce that the last vertex of ω is not x1Γ1. Hence,

x1Σ1 is a treeing edge by Lemma 2.16. �

By a very similar argument, we get also the following result.

Proposition 5.15. Consider a global pre-action (X1, X2, τ), and basepoints x1 ∈ X1 and
x2 = x1τ ∈ X2. The following are equivalent:

(i) the morphism of pre-actions (ϕ1,−, ϕ2,−) : (Γ1 ∪ NC1 ,Γ2 t NC1 , τ−) → (X1, X2, τ) of
Remark 5.12 is injective;

(ii) the morphism of graphs BS(ϕ1,−, ϕ2,−) is injective;
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(iii) the edge x2Σ2 in the Bass-Serre graph BS(X1, X2, τ) is a treeing edge.

Remark 5.16. Putting the two previous propositions together, one can show that, given a
global pre-action of Γ, its Bass-Serre graph is a forest if and only if the action X1 xπ1,τ Γ (or
equivalently X2 xπ2,τ Γ) is free.

Say that a pre-action is transitive when its Bass-Serre graph is connected. Note that a
global pre-action (X1, X2, τ) is transitive if and only if the action X1 xπ1,τ Γ, or equivalently
X2 xπ2,τ Γ, is a transitive action. We will show that every transitive pre-action has a
canonical extension to a transitive action, which is as free as possible. The construction
is again better described in terms of the Bass-Serre graph: we are going to attach as many
treeing edges as possible to it.

Theorem 5.17. Every transitive Γ-pre-action (X1, X2, τ) admits a transitive and global ex-

tension (X̃1, X̃2, τ̃) which satisfies the following universal property: given any transitive and
global extension (Y1, Y2, τ

′) of (X1, X2, τ), there exists a unique morphism of pre-actions

(ϕ1, ϕ2) : (X̃1, X̃2, τ̃)→ (Y1, Y2, τ
′) such that

(ϕ1�X1 , ϕ2�X2) = (idX1 , idX2).

Moreover, all the (oriented) edges from the Bass-Serre graph BS(X1, X2, τ) to its complement

in BS(X̃1, X̃2, τ̃) are treeing edges.

Proof. We will obtain the Bass-Serre graph of this action by adding only treeing edges to the
Bass-Serre graph of the pre-action. First enumerate the Σ1-orbits which do not belong to
the domain of τ as (xiΣ1)i∈I+ , and the Σ2-orbits which do not belong to the range of τ as
(xiΣ2)i∈I− , with disjoint index sets I+, I−. Then, we take copies (Y1,i, Y2,i, τi), of the positive
translation pre-action (Γ1 t NC2 ,Γ2 ∪ NC2 , τ+), for i ∈ I+, and copies (Y1,i, Y2,i, τi) , of the
negative translation pre-action (Γ1∪NC1 ,Γ2tNC1 , τ−), for i ∈ I−, which are pairwise disjoint
(by this, we mean Y1,i ∪ Y2,i is disjoint from Y1,i′ ∪ Y2,i′ whenever i 6= i′), and disjoint from
the original pre-action (X1, X2, τ). We set then

X̃1 =

X1 t
⊔
i∈I+

Y1,i t
⊔
i∈I−

Y1,i

/
∼1

and X̃2 =

X2 t
⊔
i∈I+

Y2,i t
⊔
i∈I−

Y2,i

/
∼2

where ∼1 identifies the element xig ∈ X1 with g ∈ Γ1 ⊂ Y1,i, for each i ∈ I+ and g ∈ Γ1, and
∼2 identifies the element xih ∈ X2 with h ∈ Γ2 ⊂ Y2,i, for each i ∈ I− and h ∈ Γ1. Since

the identifications just glue some orbits pointwise and respect the Γj-actions, X̃1 is endowed

with a free Γ1-action, and X̃2 is endowed with a free Γ2-action. Now, we set

τ̃ = τ t
⊔
i∈I+

τi t
⊔
i∈I−

τi ,

which is possible since the domain of τi, for i ∈ I+, intersects other components in X̃1 only
in the orbit xiΣ1, the range of τi, for i ∈ I+, does not intersect other components in X̃1, and
the situation is analogue for τi with i ∈ I−. We have got a pre-action (X̃1, X̃2, τ̃).

This pre-action is transitive, since all pre-actions (X1, X2, τ) and (Y1,i, Y2,i, τi) are, and the
identifications make connections between each (Y1,i, Y2,i, τi) and (X1, X2, τ) in the Bass-Serre
graph. It is also global, since every Σ1-orbit in Y1,i, respectively Σ2-orbit in Y2,i, which is
not in the domain, respectively the range, of τi has been identified with an orbit in X1,



36 PIERRE FIMA, FRANÇOIS LE MAÎTRE, SOYOUNG MOON, AND YVES STALDER

respectively X2, and every Σ1-orbit in X1, respectively Σ2-orbit in X2, is now in the domain,
respectively the range, of τ̃ .

Moreover, the (oriented) edges from the Bass-Serre graph BS(X1, X2, τ) to its complement

in BS(X̃1, X̃2, τ̃) are exactly the edges xiΣ1 for i ∈ I+, and the edges xiΣ2 for i ∈ I−. For
each i ∈ I+, the morphism of pre-actions (ϕ1,+, ϕ2,+) : (Γ1tNC2 ,Γ2∪NC2 , τ+)→ (X1, X2, τ)

of Remark 5.12, with basepoints xi ∈ X̃1 and xiτ̃ ∈ X̃2, is injective since it realizes an
isomorphism onto (Y1,i, Y2,i, τi), hence xiΣ1 is a treeing edge by Proposition 5.14. One proves
similarly that the edges xiΣ2 are treeing edges using Proposition 5.15.

It now remains to prove the universal property. To do so, take any transitive and global
extension (Y1, Y2, τ

′) of (X1, X2, τ). Then, the unique morphism of pre-actions (ϕ1, ϕ2) from

(X̃1, X̃2, τ̃) to (Y1, Y2, τ
′) such that (ϕ1�X1 , ϕ2�X2) = (idX1 , idX2) is obtained by taking the

union of (idX1 , idX2) with the morphisms (ϕ1,i, ϕ2,i) from (Y1,i, Y2,i, τi) to (Y1, Y2, τ
′) coming

from Remark 5.12 with respect to basepoints xi and xiτ̃
±1, which are unique. �

It is straightforward to deduce from the universal property above that the action we just
built is unique up to isomorphism. We thus call it the free globalization of the pre-
action (X1, X2, τ). The interested reader can establish a connection with the notion of partial
action, as we did in section 3.5 for HNN extensions. For the sake of brevity, we just observe
the following useful analogue of Proposition 3.27.

Remark 5.18. In the context of Theorem 5.17, if the pre-action (X1, X2, τ) is not global, then

the conjugate actions π1,τ̃ and π2,τ̃ induced by the free globalization (X̃1, X̃2, τ̃) are highly
faithful. Indeed, by Corollary 2.6, it suffices to prove that π1,τ̃ is strongly faithful. Notice

that (X̃1, X̃2, τ̃) contains a copy of the positive (or of the negative) translation pre-action,

which correspond to a half-tree in BS(X̃1, X̃2, τ̃). Now note that the positive translation
pre-action is strongly faithful, meaning that given F b Γ, we can find x ∈ Γ1 ∪NC1 such that
for all f ∈ F , we have xf 6= x and xf ∈ Γ1 ∪ NC1 (indeed it suffices to take x ∈ NC1 with
a sufficiently long normal form). Similarly, the negative translation is strongly faithful. It
follows that the free globalization is strongly faithful, hence highly faithful as wanted.

Let us furthermore observe that we can always build the free globalization on a fixed couple
of sets (X̄1, X̄2) with X̄j containing Xi, provided X̄j contains infinitely many free Γj-orbits.

Theorem 5.19. Let X̄j be a countable set equipped with a free Γj-action for j = 1, 2. Suppose
Xj ⊆ X̄j is Γj-invariant, and X̄j \ Xj contains infinitely many Γj-orbits. Suppose further
that we have a pre-action (X1, X2, τ). Then there is a bijection τ̄ : X̄1 → X̄2 which extends τ
such that (X̄1, X̄2, τ̄) is (isomorphic to) the free globalization of (X1, X2, τ).

Proof. Let (X̃1, X̃2, τ̃) be the free globalization of (X1, X2, τ). The fact that X̃j \Xj contains
infinitely many Γj-orbits and is countable implies that there exist Γj-equivariant bijections

ϕj : X̃j → X̄j whose restrictions to Xj are the identities. Then, one can push forward the
bijection τ̃ , to obtain a bijection τ̄ : X̄1 → X̄2 defined by

xϕ1τ̄ := xτ̃ϕ2 for all x ∈ X̃1 ,

which extends τ . Now, (ϕ1, ϕ2) is an isomorphism of pre-actions between (X̃1, X̃2, τ̃) and
(X̄1, X̄2, τ̄). �
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6. High transitivity for amalgams

As in Section 5, we fix an amalgam Γ = Γ1 ∗Σ Γ2, and sets of representatives Cj of left
Σj-cosets in Γj such that 1 ∈ Cj , for j = 1, 2, so that normal forms of elements of Γ are
well-defined. We still denote by NCj the set of elements of Γ whose normal form begins with
an element of Cj \ {1}, for j = 1, 2, so that we have Γ = Σ tNC1 tNC2 .

Non-degeneracy becomes now essential. Hence, we assume from now on that our
amalgam is non-degenerate.

6.1. Using the free globalization towards high transitivity. This section is devoted to
a key proposition which will allow us to extend any given transitive pre-action which is not
global to a global one such that the associated Γ-action sends one fixed tuple to another fixed
tuple.

Proposition 6.1. Suppose (X1, X2, τ) is a transitive non-global pre-action, that Xj is a finite
union of orbits of a free action X̄j x Γj, and that the complement X̄j−Xj contains infinitely
many Γj-orbits. Let x1, ..., xk, y1, ..., yk ∈ X̄1 be pairwise distinct points. Then (X1, X2, τ)
can be extended to a transitive and global pre-action (X̄1, X̄2, τ̃) so that there is an element
γ ∈ Γ such that xiγ

π1,τ̃ = yi, and the action π1,τ̃ is highly faithful.

Notice that the choice to work in X̄1 is arbitrary. We could prove a similar statement for
the Γ2-action on X̄2.

Proof. We will denote the set {x1, ..., xk, y1, ..., yk} by F . First, by Theorem 5.19, we find a
bijection τ̄ : X̄1 → X̄2 such that (X̄1, X̄2, τ̄) is the free globalization of (X1, X2, τ).

Claim. There exists a path-type element γ in NC2 such that for every x ∈ F , the last edge
of path1,x(γ) is a treeing edge.

Proof of the claim. Recall the correspondence established in Section 5.3 between path-type
elements and reduced paths of even length. Since BS(X̄1, X̄2, τ̄) is connected and has treeing
edges, it follows from Lemma 2.17 that for every x ∈ X̄1, and every path-type element
γ ∈ NC2 , there is a path-type extension γ′ of γ such that the last edge of path1,x(γ′) is a
treeing edge. Now, it suffices to start with any path-type element γ0 ∈ NC2 , to extend it to a
path-type element γ1 such that the last edge of path1,x1

(γ1) is a treeing edge, then to extend
γ1 to a path-type element γ2 such that the last edge of path1,y1

(γ2) is a treeing edge, . . . , and
iterate this extension procedure until we reach an element γ2k ∈ NC2 such that all last edges
of path1,x(γ2k), for all x ∈ F , are treeing edges (by Remark 5.11 (4)). �claim

Given x ∈ X̄1, and a path-type element γ in NC2 , we will denote by Hx(γ) the half-graph
of the last edge of path1,x(γ).

Claim. There exists a path-type element γ in NC2 such that for every x ∈ F , the last edge
of path1,x(γ) is a treeing edge, and the half-trees Hx(γ), for x ∈ F , are pairwise disjoint
subgraphs, and all disjoint from BS(X1, X2, τ).

Proof of the claim. We start with a path-type element γ in NC2 such that for every x ∈ F ,
the last edge of path1,x(γ) is a treeing edge. Since Xj is a finite union of Γj-orbits for j = 1, 2,
the Bass-Serre graph BS(X1, X2, τ) has finitely many vertices. Hence, by extending further
the path-type element γ, we can assume that for every x ∈ F , the half-tree Hx(γ) does not
intersect BS(X1, X2, τ).
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Notice that, given x, y ∈ F , if the half-trees Hx(γ) and Hy(γ) are disjoint, then so are
the half-trees Hx(γ′) and Hy(γ′) for every path-type extension γ′ of γ, since Hx(γ′) ⊆ Hx(γ)
and Hy(γ′) ⊆ Hy(γ). Hence, it suffices to prove that, for any x, y ∈ F with x 6= y and such
that Hx(γ) and Hy(γ) intersect, there exists a path-type extension γ′ of γ such that Hx(γ′)

and Hy(γ′) are disjoint. Indeed, an easy induction gives then an extension γ(n) such that the

half-trees Hx(γ(n)), for x ∈ F , are pairwise disjoint.
Take now x, y ∈ F with x 6= y and such that Hx(γ) and Hy(γ) intersect. These half-trees

have to be nested. Indeed, if they are not, Hx(γ) contains the antipode of the last edge of
pathy(γ), hence contains BS(X1, X2, τ), which is impossible. Without loss of generality, we
assume Hx(γ) ⊆ Hy(γ). We now distinguish two cases.

• If Hx(γ) ( Hy(γ), there is a path type extension γ′′ of γ such that path1,x(γ) and
path1,y(γ

′′) have the same last edge. We have the product of normal forms

γ′′ = γ · (c1 · · · cn) ,

where n ≥ 2 is even. Since the amalgam Γ is non-degenerate, we can obtain another
normal form γ′ = γ · (c′1 · · · c′n) by replacing a letter ci in the factor Γj such that
[Γj : Σj ] ≥ 3 by another letter c′i in Cj − {1}. This change has the effect that
path1,y(γ

′) and path1,y(γ
′′) are distinct reduced paths (which are both extensions of

the path1,y(γ)). Hence, since Hy(γ) is a tree, the sub-trees Hy(γ′′) and Hy(γ′) must
be disjoint. Since Hx(γ) = Hy(γ′′) we are done.
• If Hx(γ) = Hy(γ), then path1,x(γ) and path1,y(γ) have the same terminal edge, which

is

e := x′Σ1 = y′Σ1 , where x′ = xγπ1,τ̄ and y′ = yγπ1,τ̄ .

Consequently, one has y′ = x′σπ1,τ̄ for some σ ∈ Σ. Note that, since x 6= y, one
has σ 6= 1 and consider the morphism of pre-actions from the negative translation
pre-action (ϕ1,−, ϕ2,−) : (Γ1 ∪NC1 ,Γ2 tNC1 , τ−)→ (X̄1, X̄2, τ̄) coming from Remark
5.12, with basepoints x1 = x′ and x2 = x′τ̄ . Since e is a treeing edge, this morphism
is injective by Proposition 5.15. The half-tree Hx(γ) = Hy(γ) is thus isomorphic, via
BS(ϕ1,−, ϕ2,−), to the half-tree H of Σ2 in the Bass-Serre tree T .

Note that the left translation by σ (i.e. γ∗ 7→ σγ∗) defines an automorphism of the
negative translation pre-action, which we write as (σ1, σ2). The morphism of graphs
BS(σ1, σ2) maps pathT2,1Γ

(γ∗) to pathT2,σ(γ∗) in H by Lemma 5.13 (note that these
paths both have Σ2 as first edge). Since the left Γ-action on the boundary ∂T of
its Bass-Serre tree is topologically free, the left σ action does not fix the half-tree
H pointwise. Hence there exists an element γ∗ ∈ Σ tNC1 such that pathT2,1(γ∗) and

pathT2,σ(γ∗) have distinct ranges. Moreover, up to extending γ∗, we can further assume
that γ2 is a path type element of NC1 so that the element γ′ := γγ∗ is a path-type
element of NC2 .

Now, the images of pathT2,1(γ∗) and pathT2,σ(γ∗) by BS(ϕ1,−, ϕ2,−) are path2,x′τ̄ (γ∗)
and path2,y′τ̄ (γ∗) by Lemma 5.13, and these paths diverge in the half-tree Hx(γ) =
Hy(γ). Note finally that the starting edges of these paths are both equal to e; this
implies that path1,x(γ′) and path1,y(γ

′) don’t have the same range. Hence Hx(γ′) and
Hy(γ′) are disjoint.

We are done in both cases. �claim
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We then modify the bijection τ̄ to get the pre-action (X̄1, X̄2, τ̃) we are looking for. First,
given an element γ as in the previous claim, we consider for each z ∈ F the morphism of
pre-actions from the positive translation pre-action

(ψ1,z, ψ2,z) : (Γ1 tNC2 ,Γ2 ∪NC2 , τ+)→ (X̄1, X̄2, τ̄)

coming from Remark 5.12, with basepoints x1 = z′ := zγπ1,τ̄ and x2 = x1τ̄ . Note that the
image of this morphism corresponds to the half-graph opposite to the half-tree Hz(γ). Then,
we define X ′j =

⋂
x∈F rng(ψj,x) ⊂ X̄j , and consider the restriction (X ′1, X

′
2, τ
′) of (X̄1, X̄2, τ̄).

Informally speaking, we erase τ̄ on the Σ1-orbits corresponding to edges in the half-trees
Hx(γ) for x ∈ F . Note that this leaves infinitely many Γ1-orbits in X̄1 outside dom(τ ′),
respectively infinitely many Γ2-orbits in X̄2 outside rng(τ ′), and the pre-action (X ′1, X

′
2, τ
′)

is transitive.
We now extend τ ′. Pick some free orbits z1Γ2, . . . , zkΓ2 in X̄2 that we add to X ′2, take cj

in Cj−{1} for j = 1, 2, and set x′ic1στ
′ := ziϑ(σ) and y′ic1στ

′ := zic2ϑ(σ) for i = 1, . . . , k and
σ ∈ Σ1. This is possible since the Σ2-orbits of the points zi and zic2 are pairwise disjoint (we
use again the freeness of the Γ2-action), and since the Σ1-orbits at x′ic1, y′ic1 for 1 ≤ i ≤ k
are pairwise disjoint and were not initially in the domain of τ ′. Note that the extended
version of the pre-action (X ′1, X

′
2, τ
′) is still transitive. Then we apply Theorem 5.19 to get

an extension τ̃ : X̄1 → X̄2 of τ ′ such that (X̄1, X̄2, τ̃) is the free globalization of (X ′1, X
′
2, τ
′).

A computation shows then that xi(γc1c2c
−1
1 γ−1)π1,τ̃ = yi for all i = 1, . . . , k. Finally, the

action π1,τ̃ is highly faithful by Remark 5.18. �

6.2. Highly transitive actions of amalgams. From now on, we fix free actions X1 xπ1 Γ1

and X2 xπ2 Γ2 with infinitely many orbits. We endow the set of bijections from X1 onto X2

with the topology of pointwise convergence, which is a Polish topology. We then set

PA = {τ : X1 → X2 bijective : xστ = xτϑ(σ) for all σ ∈ Σ1} .
In other words, PA is the set of bijections τ : X1 → X2 such that (X1, X2, τ) is a (global)
pre-action of Γ. This is clearly a closed subset for the topology of pointwise convergence,
hence a Polish space. Recall that every τ ∈ PA induces an action Xj xπj,τ Γ for j = 1, 2.
We will focus on the action π1,τ , which we will abbreviate by πτ .

Definition 6.2. Let us set

TA = {τ ∈ PA : πτ is transitive} ;

HFA = {τ ∈ PA : πτ is highly faithful } ;

HTA = {τ ∈ PA : πτ is highly transitive } .

As in the HNN case, the subset TA isn’t closed for the topology of pointwise convergence,
but we have the following result.

Lemma 6.3. The set TA is Gδ in PA, hence a Polish space. Moreover, TA 6= ∅.

Proof. Since X1 xπ1 Γ1 and X2 xπ2 Γ2 have infinitely many orbits, there are Γj-equivariant
bijections ϕj : Γ→ Xj for j = 1, 2. It then suffices to push-forward the translation pre-action
by (ϕ1, ϕ2) to get an element of TA (its Bass-Serre graph will be isomorphic to the classical
Bass-Serre tree and πτ will be conjugated to the translation action Γ x Γ). Hence, TA is
non-empty. To show that TA is Gδ in PA, it suffices to write TA =

⋂
x,x′∈X1

Ox,y, where

for x, y ∈ X1, Ox,y = {τ ∈ PA : there exists γ ∈ Γ such that xγπτ = y}. Since Ox,y is
obviously open in PA for all x, y ∈ X1, this shows that TA is a Gδ subset of PA. �
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Here comes the theorem proving that our amalgam Γ admits a highly transitive highly
faithful action, thus proving Theorem E.

Theorem 6.4. The set HTA ∩HFA is dense Gδ in TA. In particular, Γ admits actions
which are both highly transitive and highly faithful.

Proof. For k ≥ 1 and x1, . . . xk, y1, . . . , yk ∈ X1 pairwise distinct, the sets,

Vx1,...,xk,y1,...,yk = {τ ∈ TA : ∃γ ∈ Γ , xiγ
πτ = yi for all 1 ≤ i ≤ k}

are obviously open in TA. Similarly, for finite subsets F of Γ− {1}, the sets

WF = {τ ∈ TA : ∃x ∈ X1 , xf
πτ 6= x for all f ∈ F}

are also obviously open in TA. Now, using Lemma 2.2, and since every strongly faithful
action of Γ is highly faithful by Corollary 2.6, we have

HTA ∩HFA =
⋂

FbΓ−{1}, k≥1, x1,...xk,y1,...,yk∈X
pairwise distinct

(Vx1,...,xk,y1,...,yk ∩WF ) .

To conclude, it suffices to show that each set (Vx1,...,xk,y1,...,yk)∩HFA is dense in TA, since
this immediately implies that each open set (Vx1,...,xk,y1,...,yk) ∩WF is dense in TA. To do
this, let τ ∈ TA and let F be a finite subset of X1. Fix a finite connected subgraph G of
BS(X1, X2, τ) containing the edges zΣ1 for z ∈ F , and denote by τ0 the restriction of τ to the
union of the Σ1-orbits in X1 corresponding to the edges of G. Then apply Proposition 6.1 to
the transitive pre-action (dom(τ0) ·Γ1, rng(τ0) ·Γ2, τ0), whose Bass-Serre graph is G, to get an
extension τ ′ such that τ ′ ∈ Vx1,...,xk,y1,...,yk ∩HFA. Moreover, since F ⊂ dom(τ0), it follows
that τ and τ ′ coincide on F . �

Remark 6.5. As in Remark 4.5, one can give a direct proof of the previous theorem without
relying on Baire’s theorem.

7. Highly transitive actions of groups acting on trees

7.1. Proofs of Theorem A and B. Let us begin with a few preliminaries.
Suppose we are given an action of a countable group G on a tree T , and a proper subtree

T ′ such that T ′ and gT ′, where g ∈ G, are either equal or disjoint subtrees.
We can then can form a “quotient” tree T̄ by shrinking each subtree gT ′ to a single vertex,

that we will denote by (gT ′). The tree T̄ is naturally endowed with a G-action and the
“quotient map” q : T → T̄ is G-equivariant. The image by q of a path in T is a path which is
obtained by shrinking each subpath contained in a subtree gT ′ to the vertex (gT ′) in T̄ . In
case of a geodesic ray, its image by q is either a geodesic ray in T̄ , or a geodesic which ends
at a vertex (gT ′). Hence q induces a map ∂q : ∂T → V (T̄ ) ∪ ∂T̄ .

Remark 7.1. The restriction of ∂q to (∂q)−1(∂T̄ ) is injective.

Proof. Given ξ, ξ′ ∈ ∂T such that ∂q(ξ) and ∂q(ξ′) lie in ∂T̄ , consider geodesic rays ω, ω′ in
T tending to ξ, ξ′. Each ray contains all edges of its image under q. Hence ∂q(ξ) = ∂q(ξ′)
implies that ω and ω′ have infinitely many common edges, and therefore ξ = ξ′. �

One can also notice, although we do not need this fact below, that ∂q is continuous at
each point ξ ∈ (∂q)−1(∂T̄ ). In case T ′ is bounded, one has in fact ∂q : ∂T → ∂T̄ , and ∂q is
continuous and injective.
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Lemma 7.2. In the context above, assume that Gy T is a minimal action. Then:

(1) if Gy T is of general type, then so is Gy T̄ ;
(2) if Gy ∂T is topologically free, then so is Gy ∂T̄ .

Proof. Assume first G y T is of general type, in order to prove (1). The hypotheses on T ′
guarantee the existence of an edge e in T which lies outside all translates gT ′. By minimality
of Gy T , there exists a hyperbolic element h ∈ G whose axis in T contains e. Pick g1, g2 ∈ G
which induce transverse hyperbolic automorphisms of T . For n sufficiently large, h1 = gn1hg

−n
1

and h2 = gn2hg
−n
2 induce transverse hyperbolic automorphisms of T . Moreover, their axes do

contain edges in the orbit of e, so that their images by q lie in ∂T̄ . Hence, by Remark 7.1,
h1 and h2 induce transverse hyperbolic automorphisms of T̄ . This proves that G y T̄ is of
general type.

Assume now that G y ∂T topologically free, in order to prove (2). Then assume that
g ∈ G fixes a half-tree H′ in T̄ , corresponding to some edge e in T ′, pointwise. Notice that e
is an edge of T that q does not shrink, and denote by H its half-tree in T . One has q(H) = H′.
By minimality of Gy T , the edges of the orbit G ·e which lie in H do generate H. Since they
also lie in H′, they are fixed pointwise by g, therefore the half-tree H itself is fixed pointwise
by g. Since Gy ∂T is topologically free, g has to be the trivial element, and this proves that
Gy ∂T̄ is topologically free. �

We now recall the statement of Theorem A before proving it.

Theorem. Let Γ y T be a minimal action of general type of a countable group Γ on a tree T .
If the action on the boundary Γ y ∂T is topologically free, then Γ admits a highly transitive
and highly faithful action; in particular, Γ is highly transitive.

Proof of Theorem A. Let us consider an edge e in T . The complement of the orbits Γ · e
and Γ · ē in E(T ) is either empty, or generates a disjoint union of subtrees of T . Since
each of these subtrees contains some endpoint of e, there are at most two orbits of subtrees.
Hence by applying Lemma 7.2 zero, one, or two times, one gets a tree T̄ endowed with a
Γ-action which is still of general type, and such that Γ y ∂T̄ is topologically free. Moreover,
the action on E(T̄ ) is transitive. Now, the quotient Γ\T̄ is either a segment or a loop, the
fundamental group of the corresponding graph of groups, which is either an amalgam or
an HNN extension, is isomorphic to Γ, and T is the associated Bass-Serre tree. Applying
Theorem E or Theorem C, we finally get that Γ admits a highly transitive and highly faithful
action. �

We can now also prove Theorem B, but let us first recall its statement.

Theorem. Let Γ y T be a faithful minimal action of general type of a countable group Γ on
a tree T . The following are equivalent

(1) td(Γ) ≥ 4;
(2) Γ is highly transitive;
(3) Γ is MIF;
(4) Γ y ∂T is topologically free.

Proof of Theorem B. The implication (2) =⇒ (1) is clear. The implication (1) =⇒ (4) is
Le Boudec and Matte Bon’s main result [LBMB19, Thm 1.4]. The implication (4) =⇒ (2)
is a consequence of Theorem A. So (1), (2) and (4) are all equivalent.
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To prove that these three statements are also equivalent to (3), note that Theorem A
shows moreover that, under the assumption (4), the group Γ admits a highly transitive highly
faithful action. So for such an action, all its elements have infinite support, which by [HO16,
Corollary 5.8] implies that Γ is MIF. The implication (4) =⇒ (3) thus holds. Finally, the
implication (3) =⇒ (4) follows from [LBMB19, Proposition 3.7] �

7.2. Corollary F and its implication of former results. We now turn to the proof of a
lemma which directly implies Corollary F via Theorem A, and then we check that Corollary
F applies to all groups acting on trees which can be proven to be highly transitive by previous
results quoted in the introduction.

Recall that, given a subtree U of T , we denote by GU the pointwise stabilizer of U in G.
The following lemma is a generalization of Prop. 19 (iv) and Prop. 20 (iv) from [HP11].

Lemma 7.3. Let Gy T be a faithful and minimal action such that G contains a hyperbolic
element h. If there exist a bounded subtree B and a vertex u in B such that GB is core-free
in Gu, then the induced action Gy ∂T is topologically free.

Proof. Let B′ be the union of the translates gB for g ∈ Gu. This is a subtree, since all gB
contain u, which is Gu-invariant and contained in the ball of radius diam(B) centered at u.
Let g0 be an element of G fixing a half-tree H pointwise. Up to conjugating by a suitable
power of h, we may and will assume that H contains B′, so that g0 is in GB′ . Now, as GB
is core-free in Gu, we have GB′ =

⋂
g∈Gu GgB =

⋂
g∈Gu gGBg

−1 = {1}. Thus, we get g0 = 1,
which proves that Gy ∂T is topologically free by Corollary 2.14. �

We now prove that Corollary F applies to all groups acting on trees which are highly
transitive via the combination of the results of Minasyan-Osin [MO15] and Hull-Osin [HO16].

Proposition 7.4. Let Γ be a countable group acting minimally on a tree T . Suppose that

(i) Γ is not virtually cyclic,
(ii) Γ does not fix any point of ∂T ,

(iii) there exist vertices u, v of T such that the stabilizer Γ[u,v] is finite;
(iv) the finite radical of Γ is trivial.

Then the action Γ y T is faithful, of general type, and there exists a bounded subtree B such
that ΓB is trivial. In particular, ΓB is core-free in Γu for every vertex u in B.

Proof. The action Γ y T cannot be elliptic. Indeed, if it would, then T would be a singleton,
Γ would be finite by (iii), and this contradicts (i). Furthermore, this action cannot be lineal,
because of (i) and minimality, nor parabolic, nor quasi-parabolic, because of (ii). Hence,
Γ y T is of general type.

Starting with a finite stabilizer Γ[u,v] given by (iii), one observes that
⋂
γ∈Γ γΓ[u,v]γ

−1 is

contained in the finite radical, hence trivial by (iv). In particular, Γ y T is faithful. Then,
there is a finite subset F b Γ, containing 1, such that

⋂
f∈F fΓ[u,v]f

−1 is already trivial,

hence
⋂
f∈F Γf ·[u,v] is trivial. Now, we are done by considering the smallest subtree B of T

containing the geodesics f · [u, v], for f ∈ F . �

Second, we prove that Corollary F applies to all groups which are highly transitive thanks
to [FMS15]. This is a straightforward consequence of the following result.

Proposition 7.5. Let a countable group Γ act without inversion on a tree T , and consider
a set R ⊂ E(T ) of representatives of the edges of the quotient graph Γ\T . Assume that Γv is
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infinite and Γe is highly core-free in Γv, for every couple (e, v) where e ∈ R and v is one of
its endpoints. Then, there exists a subtree T ′ of T such that:

(1) the action Γ y T ′ is faithful, of general type, and minimal;
(2) there exist a bounded subtree B of T ′ and u ∈ V (B) such that ΓB is core-free in Γu.

Proof. First, assume that γ ∈ Γ fixes T pointwise. Then, one has γ ∈ Γv for some endpoint
v of an edge e ∈ R. As Γe is highly core-free in Γv, the Γv-action on the orbit Γv · e, which is
conjugate to Γv y Γv/Γe, is highly faithful. Hence, we get γ = 1, so that Γ y T is faithful.

Second, let us consider any edge e ∈ R, and set v = s(e), w = r(e). By high core-freeness,
the indexes [Γv : Γe] and [Γw : Γe] are both infinite. Thus, there exist elements g1, g2 ∈ Γw
and h1, h2 ∈ Γv such that the edges e, g−1

1 e, g−1
2 e, h1e, h2e are pairwise distinct. Notice that

(g−1
1 e, ē, h1e) and (g−1

2 e, ē, h2e) are oriented paths. For j = 1, 2, the element hjgj is hyperbolic

and its axis contains (g−1
j e, ē, hje). We have got transverse hyperbolic elements h1g1, h2g2,

which proves that Γ y T is of general type.
In fact, Γv is infinite and Γe is highly core-free in Γv, for every couple (e, v) where e is any

edge of T and v is one of its endpoints. Notice this property passes to the smallest subtree
T ′ of T containing the axes of all hyperbolic elements in Γ. This subtree is Γ-invariant, and
the action Γ y T ′ is still faithful and of general type. Of course, it is also minimal, and
Assertion (2) is trivially satisfied when B is any segment (that is, any subtree with exactly
two vertices). �

Finally, we state two natural consequences of Corollary F when considering the natural
actions of HNN extensions (resp. amalgams) on their Bass-Serre tree.

Corollary 7.6. Consider a non-ascending HNN extension Γ = HNN(H,Σ, ϑ). If one of
the subgroups Σ, ϑ(Σ) is core-free in H, then Γ admits a highly transitive and highly faithful
action; in particular, Γ is highly transitive.

Proof. Apply Corollary F to the tree induced by the edge Σ and the vertex H, or to the tree
induced by the edge ϑ(Σ) and the vertex H. �

Corollary 7.7. Consider a non-degenerate amalgam Γ = Γ1 ∗Σ Γ2. If Σ is core-free in one
factor Γj, then then Γ admits a highly transitive and highly faithful action; in particular, Γ is
highly transitive.

Proof. Apply Corollary F to the tree induced by the edge Σ and the vertex Γj . �

8. Examples and applications

As mentioned in the Introduction, it is worth giving examples of groups which are highly
transitive thanks to Theorem A, or to its consequences, but for which previous results from
[MO15, HO16, FMS15, GGS20] do not apply. In particular, we will prove that some groups
are neither acylindrically hyperbolic nor linear. To that end, we will use the following well-
known results.

Proposition 8.1. [Osi16, Corollary 1.5] If a group Γ is acylindrically hyperbolic, then so is
any s-normal subgroup of Γ.

Let us recall that a subgroup Λ ≤ Γ is called s-normal if for every γ ∈ Γ, the subgroup
γΛγ−1 ∩ Λ is infinite. Every infinite normal subgroup is clearly s-normal.
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Proposition 8.2. Every acylindrically hyperbolic group contains a non-abelian free subgroup.
In particular, every acylindrically hyperbolic group is non-amenable.

The latter proposition can either be proved by a standard ping-pong argument, or deduced
from Theorem 6.8 and Theorem 8.1 in [DGO17], which imply that every acylindrically hy-
perbolic group is SQ-universal (see also the discussion around Conjecture 9.6 in the same
book).

Let us recall that a group is called linear over a field k if it is isomorphic to a subgroup
of GL(V ), where V is a finite dimensional k-vector space. Note that if k′ is an extension of
k then any group linear over k is linear over k′. Hence, if a group is linear over k then it is
also linear over the algebraic closure of k.

A group Γ is called linear if there exists a field k such that Γ is linear over k. It follows
from the preceding discussion that Γ is linear if and only if there exists an algebraically closed
field k such that Γ is linear over k.

8.1. Examples around Baumslag-Solitar groups.

8.1.1. Baumslag-Solitar groups themselves. Let us recall the definition: for any m,n ∈ Z∗,
the Baumslag-Solitar group with parameters m,n is

BS(m,n) := 〈a, b | abma−1 = bn〉.
Hull and Osin asked what the transitivity degree of Baumslag-Solitar groups is [HO16, Ques-
tion 6.3], and noted that it was actually unknown whether BS(2, 3) is highly transitive or not.
We completely answer this question in Proposition 8.8 and Corollary 8.12 below.

Notice that BS(m,n) is isomorphic to HNN(Z, nZ, ϑ), where ϑ(nq) = mq for all q ∈ Z, and
the isomorphism from HNN(Z, nZ, ϑ) to BS(m,n) is given by t 7→ a and q 7→ bq for q ∈ Z.
We will freely identify BS(m,n) to this HNN extension below without recalling it explicitly.
Hence, BS(m,n) has a natural action on the Bass-Serre tree of this HNN extension, which
we denote by Tm,n.

Remark 8.3. The following facts are well-known:

• BS(m,n) is solvable if and only if |m| = 1 or |n| = 1;
• BS(m,n) is icc if and only if |m| 6= |n|;
• BS(m,n) is residually finite if and only if |m| = 1, |n| = 1, or |m| = |n|; see [Mes72];
• BS(m,n) is non-linear whenever |m| 6= 1, |n| 6= 1, and |m| 6= |n|; this is a consequence

of the former fact and Malcev’s theorem [Mal40].

Remark 8.4. Hull and Osin observed that BS(m,n) is never acylindrically hyperbolic (for
m,n ∈ Z∗); this is [Osi16, Example 7.4]. Let us recall the argument: since the cyclic subgroup
〈b〉 is s-normal, the group BS(m,n) is not acylindrically hyperbolic by Proposition 8.1.

Let us note the following result for later use.

Lemma 8.5. For all m,n ∈ Z∗ and r ≥ 1, the subgroup 〈br〉 is s-normal in BS(m,n).

Proof. Let γ be any element of BS(m,n), with normal form bs0aε1bs1 · · · aεkbsk . It is easy to

check that γbrm
knkγ−1 is still a non-trivial power of b, say bs. Then, 〈br〉 ∩ γ〈br〉γ−1 contains

〈brmknks〉, hence is infinite. �

Let us now turn to a crucial lemma before stating our result. It is due to de la Harpe and
Préaux [HP11, Lem. 21], but we include a proof for the reader’s convenience.
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Lemma 8.6 (de la Harpe-Préaux). The action BS(m,n) y ∂Tm,n is topologically free if and
only if |n| 6= |m|.

Proof. (⇐=) Since |n| 6= |m|, either n - m or m - n. Assume that n - m and let d = gcd(n,m)
and n = dn0, m = dm0. Since n - m we have |n0| ≥ 2. In particular, we have Σ 6= H, hence
there are several positive edges in the star at any vertex in Tm,n. Consequently every half-
tree in Tm,n contains a a half-tree corresponding to a positive edge. Now, let γ ∈ BS(m,n),
suppose γ fixes pointwise a half-tree. Since the action of BS(m,n) is transitive on the positive
edges of Tm,n, we may assume that the fixed half-tree H contains the one given by the edge

Σ. For all k ≥ 1, one has path1(tk) ⊂ H, hence γ fixes path1(tk) pointwise. It follows that
γ ∈ Σ ∩ tkΣt−k = n0m

k
0dZ, for all k ≥ 1. Hence, γ = 1, since |n0| ≥ 2. In the case m - n the

proof is similar (we could also deduce this case from the isomorphism BS(m,n) ' BS(n,m)).
(=⇒) Suppose that |n| = |m|, so that Σ = ϑ(Σ) and ϑ = ±id. In this case, Σ is a non-trivial

normal subgroup of BS(m,n), and Tm,n itself is fixed pointwise by any element of Σ. �

Remark 8.7. The lemma immediately implies that 〈b〉 is a core-free subgroup of BS(m,n)
whenever |n| 6= |m|. Indeed, the action on BS(m,n) y ∂Tm,n being topologically free, the
action BS(m,n) y Tm,n is faithful. Hence 〈b〉 is core-free in BS(m,n), since the conjugates
of 〈b〉 in BS(m,n) are exactly the vertex stabilizers. See also Lemma 8.13.

Our first new examples of highly transitive groups are given by the following result.

Proposition 8.8. Let m,n ∈ Z∗. The following are equivalent:

(i) |m| 6= 1, |n| 6= 1, and |m| 6= |n|;
(ii) BS(m,n) admits a highly transitive and highly faithful action;

(iii) BS(m,n) is highly transitive;
(iv) BS(m,n) is non-solvable and icc.

Proof. The implication (i) =⇒ (ii) is a direct consequence of Theorem C and Lemma 8.6.
Then, (ii) =⇒ (iii) is trivial, (iii) =⇒ (iv) results from classical obstructions to high faithful-
ness recalled in the Introduction, and (iv) =⇒ (i) results from Remark 8.3. �

Remark 8.9. As reminded in Remark 8.3 and Remark 8.4, the highly transitive groups
arising in Proposition 8.8 are non-acylindrically hyperbolic and non-linear. Moreover, edge-
stabilizers are not highly core-free in their endpoints stabilizers (they have finite index).
Hence, results from [MO15, HO16, FMS15, GGS20] do not apply.

Remark 8.10. The following lemma proves that Corollary F cannot apply to the action
BS(m,n) y Tm,n. Consequently, Theorem A is stronger than Corollary F. Note Baumslag-
Solitar groups are our only examples which testify this fact.

Lemma 8.11. Set Γ := BS(m,n). If B is any bounded subtree of Tm,n and u is any vertex
of B, then the pointwise stabilizer ΓB is not core-free in Γu.

Proof. There exists a positive integer r such that B is contained in the ball B(r) of radius r
at 〈b〉. Then, every stabilizer Γv, where v ∈ V (B(r)), is a conjugate subgroup γ〈b〉γ−1, where
the normal form of γ contains at most r occurrences of a±1. Consequently γ−1bm

rnrγ is still
a power of b, so that bm

rnr lies in γ〈b〉γ−1 = Γv. This proves that bm
rnr lies in the pointwise

stabilizer ΓB(r). Now, for every γ ∈ Γu, one has γΓBγ
−1 = ΓγB ⊇ ΓB(r), since γB ⊆ B(r).

Thus all conjugates γΓBγ
−1 where γ ∈ Γu contain bm

rnr , so ΓB is not core-free in Γu. �
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Let us now complete the answer to Hull and Osin’s question. As they noticed in [HO16,
Lemma 4.2(b) and Corollary 4.6], infinite non-icc groups and infinite residually finite solv-
able groups have transitivity degree 1. Hence we can compute the transitivity degree of all
Baumslag-Solitar groups.

Corollary 8.12. Let m,n ∈ Z∗. The following hold.

(1) If |n| = 1 or |m| = 1 or |n| = |m|, then td(BS(m,n)) = 1.
(2) In the other cases, BS(m,n) is highly transitive, so td(BS(m,n)) = +∞.

Proof. (1) If |n| = 1 or |m| = 1, the group BS(m,n) is infinite, residually finite, and solvable,
hence td(BS(m,n)) = 1. If |n| = |m|, the group BS(m,n) is infinite and non-icc, hence
td(BS(m,n)) = 1.

(2) This follows from Proposition 8.8 directly. �

8.1.2. Amalgams with Baumslag-Solitar groups. Let us now turn to examples of highly tran-
sitive groups given by amalgams. Let us begin by some more preliminaries.

Lemma 8.13. Let m,n ∈ Z∗. If |n| 6= |m|, the subgroup 〈b〉 is highly core-free in BS(m,n).

Notice this is essentially the same example as the one given in [HO16, Corollary 5.12].
As the action on BS(m,n) y ∂Tm,n is topologically free, it is a particular case of a general
phenomenon described in the following lemma.

Lemma 8.14. Let Γ y T be a minimal action of a countable group Γ on a tree T . If
the action on the boundary Γ y ∂T is topologically free, then for every vertex v in T , the
stabilizer Γv is highly core-free in Γ.

Proof. We have to prove that the action Γ y Γ/Γv is highly faithful; by Corollary 2.6 it is
sufficient to prove it is strongly faithful. Notice the orbit Γv in T meets every half-tree in T
by minimality of the action Γ y T , and that Γ y Γv is conjugate to Γ y Γ/Γv.

Take any non-trivial elements γ1, . . . , γk ∈ Γ. Let us start with any half-tree H0. Then,
since the fixed points of γ1 form a subtree, and since Γ y ∂T is topologically free, there
exists a half-tree H1 ⊆ H0, all of whose vertices are moved by γ1. Then applying the same
argument to γ2, we get a half-tree H2 ⊆ H1, all of whose vertices are moved by γ1 and γ2.
And so on, and so forth, we finish with a half-tree Hk, all of whose vertices are moved by
all elements γ1, . . . , γk. Finally Hk contains a point of Γv, which is moved by all elements
γ1, . . . , γk. This proves that Γ y Γv is strongly faithful. �

We also need a general fact about s-normality in amalgams.

Lemma 8.15. Let us consider an amalgam Γ = Γ1 ∗Σ Γ2. If all infinite subgroups Σ′ < Σ
are s-normal in both Γ1 and Γ2, then they are also all s-normal in Γ.

Proof. Let Σ0 be any infinite subgroup of Σ, and let γ be any element of Γ, that we write as
a product γ = γ1 · · · γn of elements of Γ1 or Γ2. Set Σk = Σk−1 ∩ γ−1

k Σk−1γk for k = 1, . . . , n.
Let us prove by induction that Σk is infinite, and contained in Σ0 ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk)
for k = 0, . . . , n.

For k = 0, the group Σ0 has been supposed infinite, and it coincides with the intersection
Σ0 ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk) in this case. Then, for k ≥ 1, the subgroup Σk−1 is infinite by
induction hypothesis, therefore Σk−1 is s-normal in Γ1 and Γ2. Consequently, the subgroup
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Σk = Σk−1 ∩ γ−1
k Σk−1γk is infinite. Moreover, one has

Σk = Σk−1 ∩ γ−1
k Σk−1γk

⊆ Σ0 ∩ (γ1 · · · γk−1)−1Σ0(γ1 · · · γk−1) ∩ γ−1
k Σ0γk ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk)

by induction hypothesis, whence Σk ⊆ Σ0 ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk).
Finally, applying the result with k = n, we get that Σn is infinite and Σn ⊆ Σ0 ∩ γ−1Σ0γ,

which proves that Σ0 is s-normal in Γ, as desired. �

Let us finally turn to our examples of highly transitive amalgams.

Proposition 8.16. Let m,n, k ∈ Z∗, and let Λ be a countable group containing a proper
infinite cyclic subgroup 〈c〉. The amalgam Γ = BS(m,n)∗〈bk=c〉G has the following properties:

(1) if |n| 6= |m|, then Γ admits an action which is both highly transitive and highly faithful;
(2) if |n| 6= |m| and 〈c〉 is s-normal in Λ, then Γ is not acylindrically hyperbolic;
(3) if |m| 6= 1, |n| 6= 1, and |m| 6= |n|, then Γ is not a linear group.

Proof. (1) The amalgam Γ is non-degenerate. By Lemma 8.13, or Remark 8.7, 〈bk〉 is a core-
free subgroup of BS(m,n). Then Corollary F, or in this case Corollary 7.7, implies that Γ
admits an action which is both highly transitive and highly faithful.

(2) By Lemma 8.5, every non-trivial subgroup of 〈b〉 is s-normal in BS(m,n). Furthermore,
in Λ, for any λ ∈ Λ, the intersection 〈c〉 ∩λ〈c〉λ−1 is infinite cyclic, say generated by cλ, since
〈c〉 is s-normal in G. Then, for every l ≥ 1, one has 〈cl〉 ∩ λ〈cl〉λ−1 = 〈clλ〉, which is infinite.
Hence, every non-trivial subgroup of 〈c〉 is s-normal in Λ.

Then, Lemma 8.15 implies that every non-trivial subgroup of 〈bk〉 = 〈c〉 is s-normal in the
amalgam Γ. Now, 〈c〉 is cyclic, so it is not acylindrically hyperbolic by Proposition 8.2, so Γ
is not acylindrically hyperbolic either by Proposition 8.1.

(3) The group Γ contains a copy of BS(m,n), which is non-linear (see Remark 8.3). Hence
Γ cannot be a linear group. �

Remark 8.17. The previous proposition shows in particular that if |m| 6= 1, |n| 6= 1, |m| 6=
|n|, and if one chooses G such that 〈c〉 is not highly core-free in G (e.g. G = Z and c ≥ 2),
then results from [MO15, HO16, FMS15, GGS20] do not apply to prove that Γ is highly
transitive.

Remark 8.18. On the other hand, if |m| 6= 1, |n| 6= 1, |m| 6= |n|, and if one chooses G
such that 〈c〉 is highly core-free in G (e.g. G = BS(m,n) and c = bk), then Corollary B of
[FMMM18] shows that Γ admits homogeneous actions on bounded Urysohn spaces.

8.2. Examples around finitely supported permutations. We now turn to examples
constructed from the group of finite supported permutations on an infinite countable set.

8.2.1. Examples of HNN extensions over Sf (X). We denote by Sf (X) the subgroup of S(X)
consisting in finitely supported permutations.

The group Sf (X) is known to be not linear but we could not find any elementary proof in
the literature and this is why we have chosen to include a complete proof below. We thank
Julien Bichon for explaining to us the following argument.

Lemma 8.19. Let Γ be a group. If, for any prime number q and any N ∈ N∗, Γ contains a
subgroup G with G ' (Z/qZ)N then Γ is not linear.
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Proof. Let k be any algebraically closed field and denote by p its characteristic. Let us
recall some elementary facts. For n ∈ N∗, let us denote by Un(k) ⊂ k∗ the multiplicative
subgroup of n-th roots of unity. Elements of Un(k) are exactly the roots of the polynomial
P = Xn− 1 ∈ k[X]. Since P ′ = nXn−1 all the roots of P are simple if p = 0 or if p is a prime
number which does not divide n. Hence, if p = 0 or p is prime and does not divide n one has
|Un(k)| = n. To deduce the Lemma, it suffices to prove the following claim.

Claim. Let V be a finite dimensional vector space over an algebraically closed field k. If
GL(V ) contains a subgroup G isomorphic to (Z/qZ)N , where N ∈ N∗ and q is any prime
number with q 6= char(k) then N ≤ dim(V ).

Note that any element g ∈ G satisfies gq = 1 hence, the minimal polynomial µg of g
divides Xq − 1. Since q 6= char(k), Xq − 1 has only simple roots so µg has only simple
roots and g is diagonalizable with eigenvalues in Uq(k). Moreover, since G is finite abelian
and all its elements are diagonalisable, there exists a basis B = (e1, . . . , en) of V which
simultaneously diagonalises every element of G. Let us denote by λ(g) ∈ Uq(k)n the element
λ(g) = (λ1(g), . . . , λn(g)), where g(ek) = λk(g)ek. This defines an injective map G→ Uq(k)n,
g 7→ λ(g). It follows that |G| = qN ≤ |Uq(k)n| = qn, hence N ≤ n = dim(V ). �

Proposition 8.20. The group Sf (X) is not linear.

Proof. Let N ∈ N∗ and q be a prime number. Since X is infinite, one can choose q-cycles
σ1, . . . , σN in Sf (X) with pairwise disjoint supports. It is then easy to check that there is an
injective morphism of groups defined by

(Z/qZ)N → Sf (X) ; (x1, . . . , xn) 7→ σx1
1 · · ·σ

xN
N .

Hence, the proof follows from Lemma 8.19. �

For any subset F ⊆ X, let us denote by Σ(F ) the pointwise stabilizer of F in Sf (X), and
remark that whenever F is finite, the subgroup Σ(F ) is infinite, in fact isomorphic to Sf (X)

itself. We will abbreviate Σ({x}) as Σ(x). For any k ≥ 1, let X(k) denote the set of k-tuples
of pairwise distinct points in X.

Lemma 8.21. Let F be a non-empty subset of X. The following hold:

(1) the stabilizer Σ(F ) is a core-free subgroup of Sf (X), with infinite index;
(2) if F is finite, then Σ(F ) is not highly core-free in Sf (X);
(3) if F is finite, then Σ(F ) is s-normal in Sf (X).

Proof. (1) Let x ∈ F . Since the action X x Sf (X) is transitive (even highly transitive) and
faithful we have

⋂
g∈Sf (X) g

−1Σ(x)g =
⋂
g∈Sf (X) Σ(x · g) =

⋂
y∈X Σ(y) = {1}, hence Σ(x) is

core-free in Sf (X). A fortiori, Σ(F ) is core-free in Sf (X). Let us denote by τy ∈ Sf (X) is
the transposition τy = (x y) for y 6= x. The subgroup Σ(x) has infinite index since, for all
y, z ∈ X − {x}, one has τ−1

y τz ∈ Σ(x)⇔ y = z. A fortiori, Σ(F ) has infinite index in Sf (X).

(2) Let us write F = {x1, . . . , xk}, with x̄ = (x1, . . . , xk) ∈ X(k). The action X(k) x Sf (X)
is transitive, since the action X x Sf (X) is highly transitive, and the stabilizer of x̄ is

Σ(F ). Consequently, the action Σ(F )\Sf (X) x Sf (X) is conjugate to X(k) x Sf (X).

Now, X(k) x Sf (X) is not strongly faithful, since taking k + 1 permutations with pairwise

disjoint and finite supports in X, every point in X(k) will be fixed by at least one of them.
Consequently, Σ(F )\Sf (X) x Sf (X) is not highly faithful.
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(3) For any g ∈ Sf (X), we have Σ(F ) ∩ g−1Σ(F )g = Σ(F ∪ F · g), and F ∪ F · g is still
finite, hence Σ(F ) ∩ g−1Σ(F )g is infinite. �

Proposition 8.22. Let Y and Z be two distinct infinite proper subsets of X, let τ : Y → Z
be a bijection, and let ϑ = τ∗ : Sf (Y )→ Sf (Z) be the isomorphism defined by ϑ(σ) = τ−1στ .
Then, the HNN extension Γ = HNN(Sf (X), Sf (Y ), ϑ) has the following properties:

(1) it is not linear;
(2) it admits an action which is both highly transitive and highly faithful;
(3) if Y and Z are both cofinite, then it is not acylindrically hyperbolic;
(4) if Y and Z are both cofinite, then for every bounded subtree B of its Bass-Serre tree,

the pointwise stabilizer ΓB is not highly core-free in a vertex stabilizer Γu.

Proof. (1) Follows from Proposition 8.20.
(2) Note that Sf (Y ) = Σ(X − Y ). Thus, Sf (Y ) is a core-free subgroup of Sf (X) by

Lemma 8.21. Hence, Corollary F, or in this case Corollary 7.6, applies.
(3) As Y and Z are both cofinite and since the intersection of finitely many cofinite subsets

is cofinite, the powers τn, defined by composition of partial bijections in X (for n ∈ Z) all have
a cofinite domain and a cofinite range, that we will denote by Yn and Zn respectively. Let U be
any cofinite subset of X. For any g ∈ Sf (X), one has Sf (U)∩g−1Sf (U)g = Sf (U ∩U ·g), and
U ∩U ·g is still cofinite. Moreover, for any n ∈ Z, one has Sf (U)∩t−nSf (U)tn = Sf (U ∩Uτn),
where t ∈ Γ is the stable letter. Note that Uτn is cofinite since the bijection τn realizes a
bijection between U ∩ Yn and Uτn, so that the subset Uτn is cofinite in Zn, hence cofinite.
Therefore, U ∩ Uτn is cofinite.

Then, given γ ∈ Γ, one can write γ = γ1 · · · γk, where each γj is either a power of the
stable letter t, or an element of Sf (X), and an easy induction based on previous facts shows
that Sf (Y ) ∩ γ−1Sf (Y )γ contains Sf (V ) for some cofinite set V . This proves that Sf (Y ) is
a s-normal subgroup in Γ.

Furthermore, Sf (Y ) is an amenable group, hence it is not acylindrically hyperbolic by
Proposition 8.2. Finally, Proposition 8.1 implies that Γ is not acylindrically hyperbolic.

(4) Up to conjugating and to enlarging B, we may and will assume without loss of generality
that the stabilizer Γu is Sf (X), and that Γe = Sf (Y ) for some edge e in B. Since Γ acts
transitively on the positive edges, there exists γ1, . . . , γk ∈ Γ such that

ΓB = Sf (Y ) ∩
k⋂
j=1

γ−1
j Sf (Y )γj .

As in the proof of (2), we see that there exist cofinite sets V1, . . . , Vk such that the intersec-

tion Sf (Y ) ∩ γ−1
j Sf (Y )γj contains Sf (Vj) for every j, hence ΓB contains Sf (

⋂k
j=1 Vj), where⋂k

j=1 Vj is cofinite. Now, Sf (
⋂k
j=1 Vj) is not highly core-free in Γu = Sf (X) by Lemma 8.21,

hence ΓB is not either. �

Remark 8.23. When both Y and Z are cofinite in X, this proposition provides more explicit
new examples of highly transitive groups, since items (1), (3) and (4) show that the results
from [MO15, HO16, FMS15, GGS20] do not apply.

Remark 8.24. In the context of Proposition 8.22, notice that Γ obviously admits a highly
transitive action when τ can be extended to a permutation τ̃ ∈ S(X). Indeed, the Γ-action
defined by t 7→ τ̃ and σ 7→ σ for σ ∈ Sf (X) is highly transitive since its restriction to
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Sf (X) already is (in the terminology of Section 3, this action corresponds to the global pre-
action (X, τ̃)). Nevertheless, the Γ-action we obtain factors through the semi-direct product
Sf (X)o〈τ̃〉, which is amenable while Γ is not; hence the Γ-action is not faithful. Furthermore,
such an extension to a permutation τ̃ is not possible when X − Y and X − Z have different
cardinalities.

8.2.2. Examples of HNN extensions over Sf (Z) o Z. Let us now move to a modification of
former examples to get groups which are moreover finitely generated. For these examples, we
consider the permutation s ∈ Sf (Z) given by k · s = k+ 1. It is straightforward to check that
the subgroup 〈Sf (Z), s〉 < S(Z) is finitely generated, and isomorphic to a semi-direct product
of the form Sf (Z)oZ. As before, for any subset F ⊆ Z, let us denote by Σ(F ) the pointwise
stabilizer of F in Sf (Z). For some purposes, we will need the action

Z× Z x 〈Sf (Z), s〉 , (k, l) · sng := (ksng, lsn) = ((k + n)g, l + n)

for g ∈ Sf (Z) and n ∈ Z. Notice that this action is faithful, as is the action Z x 〈Sf (Z), s〉.
Moreover, given a subset F ⊆ Z, we observe that the pointwise stabilizer in 〈Sf (Z), s〉 of the
subset F × {0} ⊂ Z× Z is the subgroup Σ(F ) < Sf (Z).

Lemma 8.25. Let F be a non-empty subset of Z. The following hold:

(1) the stabilizer Σ(F ) is a core-free subgroup of 〈Sf (Z), s〉, with infinite index;
(2) if F is finite, then Σ(F ) is not highly core-free in 〈Sf (Z), s〉;

Proof. (1) The group Σ(F ) is already core-free and has infinite index in Sf (Z) by Lemma 8.21.
(2) Let us write F = {x1, . . . , xk}, with x1, . . . , xk pairwise distinct, and set

x̄ =
(
(x1, 0), . . . , (xk, 0)

)
∈ (Z× Z)(k) .

Let us denote by Ω the orbit of x̄ under 〈Sf (Z), s〉. As the action Z x Sf (Z) is highly

transitive, Ω is the union
⋃
n∈Z(Z× {n})(k). Furthermore, the stabilizer of x̄ is the pointwise

stabilizer of F ×{0}, that is, Σ(F ). Consequently, the action Σ(F )\〈Sf (Z), s〉x 〈Sf (Z), s〉 is
conjugate to Ω x 〈Sf (Z), s〉. Now, Ω x 〈Sf (Z), s〉 is not strongly faithful, since taking k+ 1

elements of Sf (Z) with pairwise disjoint supports, every point in Ω =
⋃
n∈Z(Z× {n})(k) will

be fixed by at least one of them. Consequently, Σ(F )\〈Sf (Z), s〉 x 〈Sf (Z), s〉 is not highly
faithful. �

Using Lemma 8.25 we can prove the following Proposition exactly as we proved Proposition
8.22.

Proposition 8.26. Let Y and Z be two distinct infinite proper subsets of Z, let τ : Y → Z
be a bijection, and let ϑ = τ∗ : Sf (Y )→ Sf (Z) be the isomorphism defined by ϑ(σ) = τ−1στ .
Then, the HNN extension Γ = HNN(〈Sf (Z), s〉, Sf (Y ), ϑ) has the following properties:

(1) it admits an action which is both highly transitive and highly faithful;
(2) it is finitely generated and not linear;
(3) if Y and Z are both cofinite in Z, then it is not acylindrically hyperbolic;
(4) if Y and Z are both cofinite in Z, then for every bounded subtree B of its Bass-Serre

tree, the pointwise stabilizer ΓB is not highly core-free in a vertex stabilizer Γu.

Remark 8.27. Again, when both Y and Z are cofinite in Z, this proposition provides explicit
new examples of groups which are highly transitive.
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Note that when the complements of Y and Z have the same cardinality, these groups
admit a natural highly transitive action, but it fails to be faithful. Indeed, the subgroup
〈Sf (Z), t〉 < Γ is isomorphic to the HNN extension HNN(Sf (Z), Sf (Y ), ϑ), and the action of
this subgroup is not faithful by Remark 8.24.

8.2.3. Examples of amalgams. We now switch to the context of amalgams. We will need a
refinement of Lemma 8.15.

Lemma 8.28. Let us consider an amalgam Γ = Γ1 ∗Σ Γ2. Assume there is a collection C of
infinite subgroups of Σ such that, for every Σ′ ∈ C and every γ ∈ Γ1 ∪ Γ2, the intersection
Σ′∩γ−1Σ′γ contains an element of C. Then, for every Σ′ ∈ C and every γ ∈ Γ, the intersection
Σ′ ∩ γ−1Σ′γ contains an element of C. In particular, all Σ′ ∈ C are s-normal subgroups of Γ.

Proof. Let Σ0 be any element of C, and let γ be any element of Γ, that we write as a product
γ = γ1 · · · γn of elements of Γ1 or Γ2. Let us prove by induction that, for k = 0, . . . , n, there
exists Σk ∈ C which is contained in Σ0 ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk).

For k = 0, the group Σ0 has been chosen in C, and it coincides with the intersection
Σ0 ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk) in this case. Then, for k ≥ 1, the subgroup Σk−1 ∩ γ−1

k Σk−1γk
contains some Σk ∈ C. Moreover, one has Σk−1 ⊆ Σ0 ∩ (γ1 · · · γk−1)−1Σ0(γ1 · · · γk−1) by
induction hypothesis, hence

Σk ⊆ Σk−1 ∩ γ−1
k Σk−1γk

⊆ Σ0 ∩ (γ1 · · · γk−1)−1Σ0(γ1 · · · γk−1) ∩ γ−1
k Σ0γk ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk)

whence Σk ⊆ Σ0 ∩ (γ1 · · · γk)−1Σ0(γ1 · · · γk).
Finally, for k = n, we get Σn ⊆ Σ0 ∩ γ−1Σ0γ with Σn ∈ C, as desired. �

Proposition 8.29. Let X,Y, Z be infinite countable sets such that Z is proper subset of
X ∩ Y . Then, the amalgam Γ = Sf (X) ∗Sf (Z) Sf (Y ) has the following properties:

(1) it admits an action which is both highly transitive and highly faithful;
(2) it is not a linear group;
(3) if Z is cofinite in both X and Y , then it is not acylindrically hyperbolic;
(4) if Z is cofinite in X (resp. Y ), then Sf (Z) is not highly core-free in Sf (X) (resp.

Sf (Y )).

Proof. Lemma 8.21 and Corollary 7.7 imply (1). Proposition 8.20 implies (2) while (4) follows
from Lemma 8.21. Let us prove (3). Let C be the collection of subgroups of the form Sf (U)
where U is cofinite in Z (hence cofinite in both X and Y ). For every Σ′ = Sf (U) ∈ C and
every γ ∈ Sf (X)∪Sf (Y ), one can check as in former proofs that the intersection Σ′∩γ−1Σ′γ
contains an element of C. Hence, Lemma 8.28 implies that Sf (Z) is s-normal in Γ. Since Sf (Z)
is amenable it is not acylindrically hyperbolic hence Γ is not acylindrically hyperbolic. �

Again, one can easily modify the previous examples to get groups which are moreover
finitely generated. The proof of the following Proposition is exactly the same as the proof of
Proposition 8.29 (by using Lemma 8.25). We can now provide one last new class of highly
transitive examples.

Proposition 8.30. Let Z be an infinite proper subset of Z and consider the amalgam
Γ := 〈Sf (Z), s〉 ∗Sf (Z) 〈Sf (Z), s〉. The following holds.

(1) Γ admits an action which is both highly transitive and highly faithful;
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(2) Γ is finitely generated and not linear;
(3) If Z is cofinite in Z, then Γ is not acylindrically hyperbolic and Sf (Z) is not highly

core-free in 〈Sf (Z), s〉.

8.3. Faithful actions which are non-topologically free on the boundary. Although
our main result provides a complete characterization of high transitivity for groups admitting
a faithful minimal action of general type on a tree, one may wonder if Corollaries 7.6 and 7.7
can hold in a wider context, namely, if the core-freeness assumption of the edge group in a
vertex group can be weakened to core-freeness in the whole group. We will see that it is not
the case.

Thanks to the quoted result from [LBMB19], this amounts to finding examples of amalgams
and HNN extensions whose action on their Bass-Serre trees are minimal of general type and
faithful, but the action on the boundary is not topologically free. By Bass-Serre theory, we
essentially need to find faithful edge transitive actions on trees without inversions which are
not topologically free on the boundary, but which in the amalgam case have two vertex orbits,
while in the HNN case they have only one vertex orbit.

Our examples belong to a class which was explored in depth by Le Boudec [LB16, LB17],
generalizing a construction of Bader-Caprace-Gelander-Mozes [BCGM12] which takes its roots
in the work of Burger-Mozes [BM00]. Such examples already appeared in Le Boudec and
Matte-Bon’s work on high transitivity, so our only contribution here is to point out that some
of those naturally decompose as amalgams or HNN extensions. We will focus on specific
easy examples instead of seeking large generality. For more examples, we refer the reader to
Ivanov’s recent work [Iva20].

8.3.1. An example of amalgam. Let Td be a d-regular tree of finite degree d ≥ 3. As in
[BM00], let us fix a coloring on the set of edges c : E(Td)→ {1, . . . , d} such that:

• every edge has the same color as its antipode;
• for any vertex v, the restriction of c to the star st(v) is a bijection onto {1, . . . , d}.

For any vertex v, any automorphism g ∈ Aut(Td) induces a bijection gv : st(v) → st(gv),
which itself induces a permutation σ(g, v) ∈ Sd, where Sd = Sym({1, . . . , d}). Let Cd be a
cyclic subgroup of Sd generated by a d-cycle. Then, the group, coming from [LB16],

G = G(Cd) = {g ∈ Aut(Td) : σ(g, v) ∈ Cd for all but finitely many vertices}

is countable (indeed, note that any automorphism g ∈ G(Cd) is completely determined by
the restriction of σ(g, ·) to the set of vertices v such that σ(g, v) 6∈ Cd).

In order to forbid inversions, recall there is a natural equivalence relation Reven on V (Td)
which relates any two vertices at even distance from each other, and that this equivalence
relation is preserved by any automorphism of Td. We then let

Γ = G+ = {g ∈ G : g does not exchange the two classes of Reven} .

It is fairly easy to see that the action Γ y Td is transitive on undirected edges, hence minimal,
of general type, and without inversion. Let us now fix some edge e0 from v1 to v2, and consider
the stabilizers Γ1, Γ2 and Σ of v1, v2 and e0 respectively (in Γ). By Bass-Serre theory, we
have the following.

Remark 8.31. The morphism Γ1 ∗Σ Γ2 → Γ given by inclusions is an isomorphism, and Td
is the Bass-Serre tree of Γ1 ∗Σ Γ2.
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The following result summarizes well-known properties of Γ showing that the hypothesis
that Γ y ∂T is topologically free cannot be relaxed in Corollary 7.7. We provide a proof for
the reader’s convenience.

Proposition 8.32. With the above notations:

(1) Σ is core-free in Γ, and the amalgam Γ1 ∗Σ Γ2 is non-degenerate;
(2) the Γ-action on ∂Td is not topologically free;
(3) Γ is not highly transitive;
(4) Γ is icc.

Proof. (1) The Γ-action on Td is faithful (by definition) and of general type, so that Σ is
core-free in Γ, and the amalgam Γ1 ∗Σ Γ2 is non-degenerate.

(2) Consider the half-tree H associated to e0. It suffices to prove that the pointwise
stabilizer of H is a non-trivial group.

To do so, we follow the proof of [LB17, Theorem C]. First, we take a non-trivial permutation
σ ∈ Sd which fixes the color of e0 (this exists since d ≥ 3; notice it lives in Sd − Cd). Then,
we define a non-trivial automorphism γ ∈ Γ fixing H pointwise as follows.

• The restriction of γ to H is the identity.
• Then, we let γ act on st(v1) so that σ(g, v1) = σ (this is possible since σ fixes the

color of e0, and will guarantee that γ is non-trivial since σ is non-trivial).
• Then, we extend the action inductively: given any vertex w outside H, we set w′ to

be the unique neigbour of w which is closer to H than w, and define the γ-action on
st(w) in terms of the (previously defined) γ-action on st(w′). Namely, denoting by ew
the edge from w to w′, the γ-action on st(w′) provides the edge γew. Then there is a
unique element σw ∈ Cd sending c(ew) onto c(γew), and we let γ act on st(w) so that
σ(g, w) = σw (note that σ(g, w) = σ(g, w′) as soon as σ(g, w′) was already in Cd).

(3) The Γ-action on Td is minimal, by edge-transitivity, and of general type. Consequently,
[LBMB19, Corollary 1.5] applies, and the transitivity degree of Γ is at most 2.

(4) Let γ0 be a non-trivial element of Γ and ξ be a point in ∂Td which is not fixed by γ0.
Given edges e, e′ with sources in the same class of vertices, such that e is on the geodesic
[ξ, s(e′)], there exists γ ∈ Γ such that γe = e′. This γ is a hyperbolic element whose axis
contains e and e′. Moreover, if we choose e close enough to ξ, then the repelling point ξ− of
γ in ∂Td is close enough to ξ so that γ0ξ

− 6= ξ−. Now, since ξ− is not fixed by γ0, the set of
fixed points of γnγ0γ

−n moves into smaller and smaller neighborhoods (in Td ∪ ∂Td) of the
attracting point of γ as n→ +∞. Thus, the set {γnγ0γ

−n : n ≥ 1} is infinite. �

8.3.2. An example of HNN extension. In the previous example, notice that even the subgroup

U(id) = {g ∈ Aut(Td) : σ(g, v) = id for every vertex v}
includes inversions, so that one cannot easily find a subgroup of G without inversion and
acting transitively on V (Td). Hence, we slightly modify the construction in order to get an
example of HNN extension.

Let Td,d be a (d, d)-biregular tree, where d ≥ 2 (by this, we mean an oriented tree in
which every star st(v) contains exactly d positive edges and d negative edges). Let us denote
st(v)+ = st(v)∩E(Td,d)+ and st(v)− = st(v)∩E(Td,d)−, and fix a coloring on the set of edges
c : E(Td,d)→ {1, . . . , 2d} such that:

• every edge has the same color as its antipode;
• for any vertex v, the restriction of c to the star st(v) is a bijection onto {1, . . . , 2d};
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• for any vertex v, the image c(st(v)+) is either {1, . . . , d} or {d+ 1, . . . , 2d}.
By Aut(Td,d), we mean the group of automorphisms of Td,d preserving the orientation. For any
vertex v, any automorphism g ∈ Aut(Td,d) induces bijections g±v : st(v)± → st(gv)±, which
themselves induces a permutation σ(g, v) ∈ S2d, where S2d = Sym({1, . . . , 2d}), preserving
the partition {1, . . . , d} t {d+ 1, . . . , 2d}. Let Fd be a the subgroup of S2d generated by the
commuting elements

σ1 = (1 2 · · · d)(d+ 1 d+ 2 · · · 2d),

σ2 = (1 d+ 1)(2 d+ 2) · · · (d 2d).

Then, the group,

Γ = G(Fd) = {g ∈ Aut(Td,d) : σ(g, v) ∈ Fd for all but finitely many vertices}
is countable (this is not hard to prove, using that Fd acts freely on {1, . . . , 2d}).

It is fairly easy to see that the action Γ y Td,d is transitive on positive edges, hence
minimal, of general type. It is moreover without inversion since it preserves the orientation.
Let us fix some vertex v, some positive edges e1, e2 such that r(e1) = v = s(e2), and some
automorphism τ ∈ Γ such that τ(e1) = e2. Now, consider the stabilizers H = Γv and Σ = Γe2 ,
and the isomorphism ϑ : Σ → Γe1 given by ϑ(σ)(x) = τ−1στ(x). By Bass-Serre theory, we
have the following.

Remark 8.33. The morphism HNN(H,Σ, ϑ) → Γ given by inclusions is an isomorphism,
and Td,d is the Bass-Serre tree of HNN(H,Σ, ϑ).

The following result summarizes well-known properties of Γ showing that the hypothesis
that Γ y ∂T is topologically free cannot be relaxed in Corollary 7.6. We omit the proof,
which is similar to the one of Proposition 8.32.

Proposition 8.34. With the above notations:

(1) Σ is core-free in Γ, and the HNN extension HNN(H,Σ, ϑ) is non-ascending;
(2) the Γ-action on ∂Td,d is not topologically free;
(3) Γ is not highly transitive;
(4) Γ is icc.

9. Other types of actions and necessity of the minimality assumption

We now discuss various natural extensions of Theorem A by considering other types of
actions (recall that group actions on trees are classified in five different types, see Section 2.3).
As we will see, non-general type actions which are topologically free on the boundary seem
to play no role regarding high transitivity. We will also see that the minimality hypothesis in
Theorem A cannot be avoided.

Proposition 9.1. Every infinite residually finite group admits an elliptic faithful action on
a tree such that the action on the boundary is both free and minimal.

Proof. Let Γ be a residually finite group, let Γn be a decreasing chain of finite index normal
subgroups with trivial intersection, where Γ0 = Γ. Then the disjoint union of the coset spaces
Γ/Γn has a natural tree structure where we connect each γΓn+1 to γΓn. Since the action is
transitive on each level of the tree, this action is minimal on the boundary. It is free because
the subgroups Γn are normal and intersect trivially. Finally it is elliptic because the vertex
Γ is fixed (it is moreover the only non-trivial invariant subtree). �
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Since there are both highly transitive residually finite groups (such as F2) and non-highly
transitive residually finite groups (such as Z), we see that there is no hope for a classification
of the transitivity degree of groups admitting an elliptic faithful action on a tree which is free
and minimal on the boundary. We can use also this construction in order to show that the
minimality assumption is needed in Theorem A.

Proposition 9.2. Let Γ be a group endowed with a faithful action of general type on a tree.
Then for every residually finite group Λ, the group Γ×Λ admits an action of general type on
a tree which is topologically free on the boundary.

Proof. Let T1 be a tree admitting a faithful Γ-action of general type. Let Λ y T2 be an
action provided by the previous proposition, let o be its unique fixed point. Our new tree T
is obtained by gluing over each vertex of T1 a copy of T2 at its origin o. To be more precise,
the vertex set is V (T ) = V (T1) × V (T2), and on the vertex set T1 × {o} we put a copy of
the edges of T1, while for each v ∈ V (T1), we put a copy of the edges of T2 on the vertex set
{v} × T2.

Then the Γ×Λ action on V (T ) given by (γ, λ)·x = (γ ·x, λ·x) is an action by automorphisms
on our new tree T . Noting that each half-tree contains a copy of T2, it is not hard to check that
this action is moreover topologically free. Moreover, it is of general type since the Γ-action
on T2 was of general type. �

This proposition yields many examples of non-highly transitive groups thanks to the fol-
lowing results.

Proposition 9.3. Let G be a non-abelian topologically simple group. If Γ is a dense subgroup
of G, then the centralizer of every non-trivial element of Γ is core-free.

Proof. Let γ ∈ Γ \ {1Γ}. If the centralizer of Γ is not core-free, then there exists a normal
subgroup N ≤ Γ such that every element of N commutes with γ. Since G is topologically
simple, N is dense in G, so by continuity of group multiplication we conclude that every
element of G commutes with γ. In particular, G has a non-trivial center, which contradicts
the topological simplicity of G since G is not abelian. �

Corollary 9.4. Let Γ be a highly transitive group. Then the centralizer of every non-trivial
element of Γ must be core-free, and Γ cannot be decomposed as a non-trivial direct product.

Proof. If Γ is highly transitive, it can be embedded as a dense subgroup of S(X) for some
infinite set X, and since the latter is topologically simple, the conclusion follows from the
previous result. Moreover, if Γ could be decomposed as a non-trivial direct product Γ1 × Γ2,
then if γ ∈ Γ1 \ {1Γ1}, the element (γ, 1Γ2) would commute with every element of the non-
trivial normal subgroup {1Γ1} × Γ2, a contradiction. �

Applying the above proposition for instance to Γ = BS(2, 3) and Λ = Z, we see that the
group BS(2, 3)×Z admits a (faithful) action of general type on a tree T which is topologically
free on the boundary, although it is not highly transitive because it decomposes as a direct
product. We see moreover that when restricting to the minimal component of this action
of a finitely generated group, we will loose the faithfulness of the action (in particular the
topological freeness), which is why Theorem A cannot be applied.

We now move on to showing that no general classification can be hoped for in the case of
parabolic actions (note that minimal parabolic actions only arise for non-finitely generated
groups).
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Lemma 9.5. Every non-finitely generated group admits a faithful parabolic action on a tree.

Proof. Since Γ is countable, it can be written as a countable increasing union of finitely
generated subgroups Γ =

⋃
n∈N Γn, where Γ0 = {1}. We now put a tree structure on the

vertex set
⊔
n Γ/Γn by connecting each γΓn to γΓn+1. Γ acts on this tree by left translation.

Since Γ0 = {1}, this action is faithful. Note that every group element g ∈ Γ is elliptic (with
fixed point Γn, where n ∈ N is such that g ∈ Γn). Since Γ is not finitely generated, this action
has no global fixed point, so we have a parabolic action. �

Note that the Γ-invariant subtrees of the action constructed above are exactly those of the
form tn≥mΓ/Γn for some m ≥ 0. So this action has no minimal globally invariant subtree,
as opposed to what happens for finitely generated groups.

Proposition 9.6. Let Γ be a non-finitely generated group, let Λ be a residually finite infinite
group. Then Γ× Λ admits a parabolic action on a tree such that the action on the boundary
is topologically free.

Proof. As before we use the Γ-action on a tree T1 provided by the previous lemma, and
Λ y T2 be an elliptic action provided by Proposition 9.1, whose unique fixed point is denoted
by o ∈ V (T2). This time, we glue a copy of T2 on each vertex at the level 0 of the tree
T1, thus yielding a Γ × Λ action which is easily seen to be elliptic. Moreover, the action on
the boundary is topologically free. Note furthermore that the action on the boundary has a
unique fixed point, corresponding to the unique element of the boundary of T1. �

As an example, we can take for Γ the group of finitely supported permutations, and for Λ
the group Z, and we get a non-highly transitive group with a parabolic action which is topo-
logically free on the boundary, and which has no minimal component. We do not know if there
is a highly transitive group with a parabolic action which is topologically free on the boundary.

Let us now treat the quasi-parabolic case. First, note that the Baumslag-Solitar groups
BS(1, n) for n ≥ 2 provide examples of groups admitting an action on a tree which is minimal
and quasi-parabolic (since it is an ascending HNN extension, cf. Sec. 2.5) and topologically
free on the boundary (by Lemma 8.6), but which are not highly transitive since they are
solvable.

Remark 9.7. Another example of a non-highly transitive group with a quasi-parabolic min-
imal action on a tree which is topologically free on the boundary is provided by Thompson’s
group F =

〈
x0, x1, x2, . . . |x−1

k xnxk = xn+1 for all k < n
〉
. F is not highly transitive since, by

[LBMB19, Corollary 5.3], it has transitivity degree at most 2. Let H be the subgroup gener-
ated by {xi : i ≥ 1} (which is isomorphic to F ), and ϑ be the endomorphism which takes xi to
xi+1 and observe that F = HNN(H,H, ϑ). By Section 2.5 the action of F on the associated

Bass-Serre tree is quasi-parabolic and minimal. Moreover, since x−k0 ϑ(H)xk0 = 〈xn |n ≥ k+2〉
for all k ≥ 1, it is not difficult to check that ϑ(H) is core-free in H hence, the action is also
topologically free on the boundary.

Coupled with the previous examples, the following proposition shows that for groups ad-
mitting minimal quasi-parabolic actions on a tree, the topological freeness of the action does
not play a role in their high transitivity.

Proposition 9.8. The finitely generated group Γ = Sf (Z)oZ is highly transitive and finitely
generated but admits a minimal quasi-parabolic action on a tree which is topologically free on
the boundary.
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Proof. We have already observed that Γ is highly transitive thanks to its natural action on
Z. We will first show that it can be written as an ascending HNN extension. Denote by τ the
translation on Z. Let ϑ be the corresponding inner automorphism of S(Z), i.e. ϑ(γ) = τ−1γτ .

Consider the subgroups H = Σ = Sf (N) which we view as subgroups of Sf (Z) < Γ. Note
that ϑ(Σ) is the stabilizer of 0 in Sf (N) i.e. ϑ(Σ) = Σ(0) < Sf (N) with the notations of
Section 8.2. We claim that Γ = HNN(H,Σ, ϑ).

First, Γ clearly satisfies the defining relations of the HNN extension HNN(H,Σ, ϑ), and
since it is generated by H and t, it is a quotient of HNN(H,Σ, ϑ) via a canonical map
π : HNN(H,Σ, ϑ)→ Γ. We need to show that π is injective.

In order to do so, we fix a set of representatives C− of left ϑ(Σ)-cosets in H, such as
C− = {(0 i) : i ≥ 1}. Let γ ∈ HNN(H,Σ, ϑ) \ {1}, we need to show π(γ) 6= 1Γ. Since
Σ = H, the normal form described in Section 2.5 for γ is

γ = c1t
ε1 · · · cntεnhn+1,

where n ≥ 0, εi = ±1 for 1 ≤ i ≤ n, εi = +1 implies ci = 1, εi = −1 implies ci ∈ C−,
hn+1 ∈ H, and there is no subword of the form tε1t−ε. Note that this implies that if εi = −1,
then εj = −1 for all j ≥ i.

The case n = 0 is the case γ ∈ H, for which π(γ) = γ, so we may as well assume n ≥ 1.
Denote by ε : Γ → Z the morphism coming from the decomposition of Γ as a semi-direct
product Sf (Z) o Z. Note that

ε[π(γ)] =
n∑
i=1

εi.

We now have two cases to consider for the normal form of γ ∈ HNN(H,Σ, ϑ) \ {1}.
• If ε1 = −1, then all the εi must be equal to −1, so ε(π(γ)) 6= 0, in particular π(γ) 6= 1Γ.
• If ε1 = +1, then the normal form of γ is

γ = 1t1t · · · 1tci+1t
−1 · · · cnt−1hn+1 = tici+1t

−1 · · · cnt−1hn+1.

Since ε[π(γ)] = −i+ (n− i), we only need to consider the case n = 2i. Observe that
for all c ∈ C− we have τcτ−1 = ϑ−1(c). We then have

π(tici+1t
−1 · · · cnt−1hn+1) = τ ici+1τ

−1 · · · cnτ−1hn+1

= ϑ−1
(
ϑ−1(· · · (ϑ−1(ϑ−1(ci+1)ci+2)ci+3) · · · )c2i

)
hn+1

A straightforward induction on the number of iterates of ϑ−1 in the above expres-
sion then shows that ϑ−1

(
ϑ−1(· · · (ϑ−1(ϑ−1(ci+1)ci+2)ci+3) · · · )c2i

)
does not fix the

element −i. Since hn+1 fixes all the negative elements, we conclude that π(γ) does
not fix −i, and hence it is not trivial.

So we do have Γ = HNN(H,Σ, ϑ), in particular it is an ascending non-degenerate HNN
extension. So as explained in Section 2.5, its action on its Bass-Serre tree is minimal and
quasi-parabolic. Finally, ϑ(Σ) = Σ(0) is core-free in H = Sf (N) by Lemma 8.21, so by Lemma
7.3 we conclude that the action on the boundary is topologically free as wanted. �

We finally mention the lineal case. Note that in this case, minimal actions are not inter-
esting with respect to high transitivity since no subgroup of the automorphism group of the
biinfinite line is highly transitive.

In the elliptic case, a natural weakening of the minimality assumption was provided by
asking that the action on the boundary is minimal. Here however, this is still too weak
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a condition since any lineal action will have the two ends corresponding to the axis as an
invariant set. We thus replace it by topological transitivity and observe that in this setup,
there seems to be no connection between high transitivity and lineal actions.

Proposition 9.9. Let Γ be a residually finite group, then the group Γ × Z admits a lineal
action on a tree which is both topologically free and topologically transitive on the boundary.

Proof. Let T be a tree equipped with an elliptic Γ-action which is minimal on the boundary,
let o be the fixed point. As in the previous constructions, we then glue a copy of T at the
vertex o on top of every element of Z, thus obtaining a tree with a natural Γ×Z-action which
is minimal on the boundary. �

The previous proposition provides us many non-highly transitive groups with a lineal action
on a tree which is both topologically free and topologically transitive on the boundary.

In the opposite direction, the group Sf (Z)oZ provides us an example of a highly transitive
group satisfying the assumptions of the previous proposition, thus showing that lineal actions
which are topologically free and topologically transitive on the boundary do not play a role
in high transitivity.

Proposition 9.10. The highly transitive group Sf (Z) o Z admits a lineal action on a tree
which is both topologically free and topologically transitive on the boundary.

Proof. Denote by ϑ the action of Z on Sf (Z) by shift which yields the direct product Sf (Z)oZ.
Consider the tree T whose vertex set

V (T ) = {0} × {∗} × Z t N∗ × Sf (Z)× Z

equipped with the following edges structure: for all n ∈ N, m ∈ Z and σ ∈ Sf (Z)

• we have an edge from (0, ∗,m) to (0, ∗,m+ 1);
• we have an edge from (0, ∗,m) to (1, σ,m);
• we have an edge from (n, σ,m) to (n+ 1, σ, n).

Then consider the left action of Sf (Z) o Z on V (T ) given by (σ, k) · (0, ∗,m) = (0, ∗,m+ k)

and (σ, k) · (n, τ,m) = (n, σϑk(τ),m + k). It is not hard to check that this action is both
topologically free and topologically transitive on the boundary. �
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