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Abstract

We initiate a quantitative study of measure equivalence (and orbit equivalence) between finitely
generated groups, which extends the classical setting of Lp measure equivalence. In this paper, our
main focus will be on amenable groups, for which we prove both rigidity and flexibility results.

On the rigidity side, we prove a general monotonicity property satisfied by the isoperimetric
profile, which implies in particular its invariance under L1 measure equivalence. This yields explicit
“lower bounds” on how integrable a measure coupling between two amenable groups can be. This
result also has an unexpected application to geometric group theory: the isoperimetric profile
turns out to be monotonous under coarse embedding between amenable groups. This has various
applications, among which the existence of an uncountable family of 3-solvable groups which
pairwise do not coarsely embed into one another.

On the flexibility side, we construct explicit orbit equivalences between amenable groups with
prescribed integrability conditions. Our main tool is a new notion of Følner tiling sequences. We
show in a number of instances that the bounds derived from the isoperimetric profile are sharp up to
a logarithmic factor. We also deduce from this study that two important quasi-isometry invariants
are not preserved under L1 orbit equivalence: the asymptotic dimension and finite presentability.
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1 Introduction

Gromov introduced measure equivalence between countable groups as a measured analogue of quasi-
isometry. A classical instance of a pair of measure equivalent groups is given by lattices in a common
locally compact group. Another source of examples is given by orbit equivalent groups. Recall that two
groups Γ and Λ are orbit-equivalent if they admit free measure-preserving actions on a same standard
probability space (X,µ) which share the same orbits, i.e. such that for almost every x ∈ X, Γ ·x = Λ ·x.

The notion of measure equivalence has been extensively studied over the past 20 years, and we refer
the reader to [Gab05, §2] for an overview of its main properties as well as its tight connections with
invariants such as cost or `2 Betti numbers. Various rigidity phenomenons have also been uncovered. A
famous example is Furman’s superrigidity results for lattices in higher rank semi-simple Lie groups
[Fur99], which implies for instance that any countable group which is measure-equivalent to a lattice
in PSL3(R) is commensurable up to finite kernel to another lattice in PSL3(R). Another example is
provided by Kida’s work on mapping class groups of surfaces: he showed that most surfaces can be
reconstructed from the measure equivalence class of their mapping class group [Kid08], and that every
group which is measure equivalent to a mapping class group must actually be commensurable up to
finite kernel to it [Kid10].

In the opposite direction of flexibility, a celebrated result of Ornstein and Weiss implies that all
infinite countable amenable groups are orbit equivalent and hence measure equivalent [OW80]. So
most coarse geometric invariants (such as volume growth) are not preserved under orbit equivalence.
Also, it is known that the class of groups measure equivalent to lattices in PSL2(R) is very diverse and
contains groups that are not virtually isomorphic to lattices of the latter (for instance, all free products
of infinite amenable groups belong to this class, see [Gab05, PME6]). But as we will now see, measure
equivalence admits natural refinements which capture meaningful coarse geometric invariants.

Assume for simplicity that we are given an orbit equivalence coupling of two finitely generated
groups Γ = 〈SΓ〉 and Λ = 〈SΛ〉 over a probability space (X,µ), i.e. two measure-preserving free actions
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of Γ and Λ on (X,µ) which share the same orbits. Then we can equip the space (X,µ) with the Schreier
graph metrics dSΓ

and dSΛ
, and consider for each γ ∈ Γ and each λ ∈ Λ the following distance maps

x 7→ dSΛ
(x, γ · x) and x 7→ dSΓ

(x, λ · x).

The fact that the two actions share the same orbits means that these functions do not take the value
+∞, in other words they belong to the space L0(X,µ,R) of measurable maps X → R. We then say
that Γ and Λ are Lp orbit equivalent when all these functions are in Lp(X,µ;R). A similar definition
can be given for measure equivalence, yielding the notion of Lp measure equivalence (see Section 2.4).

In the past ten years, L1 measure equivalence has been intensely investigated. In the context of
non-amenable groups, Bader, Furman and Sauer showed that any group that is L1 measure equivalent
to a lattice in SO(n, 1) for a given n > 2 must be virtually isomorphic to another such lattice [BFS13].
In particular, there is a L1-measure equivalence rigidity phenomenon for lattices in PSL2(R), as opposed
to the pure measure equivalence case. Somewhat more surprising is a result of Austin in the context of
amenable groups: he showed that L1 measure equivalent virtually nilpotent groups have bi-Lipschitz
asymptotic cones [Aus16]. Another important result is due to Bowen, who showed in the appendix of
Austin’s aforementioned paper that volume growth is invariant under L1 measure equivalence.

This paper is in the direct continuation of such results, but we also aim at a deeper understanding by
going in two new directions: finer integrability notions and asymmetric versions of measure equivalence.
For this introduction, let us however only give the definitions in the context of orbit equivalence (see
Sec. 2.4 for the measure equivalence versions and its asymmetric counterparts).

Assume again that we are given two orbit equivalent actions of two finitely generated groups
Γ = 〈SΓ〉 and Λ = 〈SΛ〉. Given any two unbounded increasing positive function ϕ,ψ : (0,∞)→ (0,∞),
we say that we have a (ϕ,ψ)-integrable orbit equivalence coupling from Γ to Λ if for each γ ∈ Γ and each
λ ∈ Λ, there are constants cγ , cλ > 0 such that the associated distance functions satisfy the following
conditions: ∫

X

ϕ

(
dSΛ

(x, γ · x)

cγ

)
dµ(x) <∞ and

∫
X

ψ

(
dSΓ

(x, λ · x)

cλ

)
dµ(x) <∞.

Two remarks are in order: since X has finite measure, the (ϕ,ψ)-integrability of the distance
functions is only sensitive to the speed at which ϕ and ψ tend to infinity. The constants cγ , cλ > 0 are
partly motivated by the fact that we want our notion of (ϕ,ψ)-integrability to be independent of the
choice of generating subset. We address these technical points in Section 2.4.

For consistency with the literature, we will often abbreviate integrability conditions as follows: for
p ∈ (0,∞) we write Lp instead of (t 7→ tp)-integrable. By extension, L∞ means that the distance maps
are essentially bounded. On the opposite, if no assumption is made on the distance maps we shall write
L0. For instance, an (L∞,L0) orbit coupling from Γ to Λ is an orbit equivalence coupling such that for
all γ ∈ Γ, the function x 7→ dSΛ(x, γ · x) is essentially bounded on X.

Saying that two groups are Lp orbit equivalent for some p > 1 means in our terminology that there
exists an (Lp,Lp) orbit equivalence coupling between them. Note that for p < 1, what one would
like to call Lp orbit equivalence fails to be a transitive relation, so we will refrain from using such a
terminology. Nevertheless, such a notion actually defines a very natural pseudo-distance on the space
of all finitely generated groups (see Sec. 1.3), and we will see for instance that the Heisenberg group
and Z4 are at distance zero, while the distance between Zn and Zm is equal to |log n− logm|.

The rest of this introduction contains a summarized description of our main results, and is organized
in three subsections. Section 1.1 contains a general rigidity result related to the isoperimetric profile,
while Section 1.2 has a flexibility flavor as it deals with constructions of concrete orbit equivalences.
Finally, in Section 1.3 we briefly discuss a point of view that emerges from the notion of (ϕ,ψ)-
integrability (this can be seen as an introduction to the results of Section 2).
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1.1 Monotonicity of the isoperimetric profile (and applications)

The isoperimetric profile. Bowen’s aforementioned result allows to distinguish groups with different
growth functions up to L1 measure equivalence. However this fails to address the case of solvable groups
that are not virtually nilpotent, as these have exponential growth. By contrast the isoperimetric profile
offers a fine invariant of amenable groups with exponential growth. Its asymptotic behavior has notably
been computed for a wide class of solvable groups. Let us start recalling its definition.

Let Γ be a finitely generated group, and let SΓ be a finite generating subset. Given a function
f : Γ→ R and p > 0 we define the Lp-norm of its left gradient by the equation∥∥∇lSΓ

f
∥∥p
p

=
∑

g∈Γ,s∈S
|f(sg)− f(g)|p.

Given a function f : Γ → R, its support is the set supp f = {g ∈ Γ: f(g) 6= 0}. Following [Cou00,
Now07, Tes08], we define for every 0 < p 6∞, the `p-isoperimetric profile1 of Γ as the non-decreasing
function

jp,Γ(n) = sup
| supp f |6n

‖f‖p∥∥∇lSΓ
f
∥∥
p

.

Of course this quantity depends on a choice of generating subset, but we will be interested in the
asymptotic behavior of jp,Γ, which does not.

Given two monotonous real-valued functions f and g we say that f is asymptotically less than g and
write f 4 g if there exists a positive constant C such that f(n) = O(g(Cn)) as n→∞. We say that f
and g are asymptotically equivalent and write f ≈ g if f 4 g and g 4 f . The asymptotic behavior of f
is its equivalence class modulo ≈.

Recall that for p = 1, the `1 isoperimetric profile is simply called the isoperimetric profile because
of the following geometric interpretation [Cou00]:

j1,Γ(n) ≈ sup
|A|6n

|A|
|∂A|

,

where ∂A = SΓA4A. Certain authors prefer to work with the Følner function, defined for all k > 1 as
follows

FølΓ(k) = inf

{
|A| : |∂A|

|A|
6 1/k

}
.

Note that the isoperimetric profile and the Følner function are generalized inverses of one another.
For p = 2, the asymptotic behavior of j2,Γ is intimately related to the probability of return of the

simple random walks on the Cayley graph (Γ, SΓ) as described in [CS93].
Note that a group is amenable if and only if its isoperimetric profile is unbounded. So the

isoperimetric profile can be interpreted as a measurement of amenability: the faster it tends to infinity,
the “more amenable” the group is. This is well illustrated by the following examples. For all p > 1 we
have2:

• jp,Γ(n) ≈ n1/d for a group of polynomial growth of degree d (e.g. for Γ = Zd) (see [Cou00]);

• jp,Γ(n) 4 log n for all amenable groups with exponential growth [CS93];

• jp,Γ(n) ≈ log n for a wide class of solvable groups with exponential growth including those that
are polycyclic, or the so-called “lamplighter” groups, i.e. group of the form F o Z, where F is a
finite non-trivial group [CGP01, Pit95, Pit00, Tes08];

• j1,Γ(n) ≈ (log n)1/d for a group of the form F oΣ, where F is a non-trivial finite group and Σ has
polynomial growth of degree d [Ers03].

1Note that in [BZ21], the isoperimetric profile is defined as Ip,Γ = 1
jp,Γ

.
2The notion of wreath product of groups (denoted by G oH) is recalled in Section 6.3.
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A general monotonicity result. Our first main result is the following theorem. We refer to
Definition 2.20 for the notion of (ϕ,ψ)-integrable measure equivalence coupling.

Theorem 1. Assume that there exists (ϕ,L0) measure equivalence coupling from a finitely generated
group Γ to a finitely generated group Λ. Then

• if ϕ(t) = tp for some p > 1, then
jp,Γ < jp,Λ;

• if ϕ and t 7→ t/ϕ(t) are increasing then

j1,Γ < ϕ ◦ j1,Λ.

In particular, the `p-isoperimetric profile is stable under Lp measure equivalence for all p > 1. As a
concrete application we deduce for instance that Z oZ is not L1 measure equivalence to Z/2Z oZ, nor to
any polycyclic group. Indeed, for these groups, the isoperimetric profile is < log n, while for Z o Z it is
≈ log n/ log log n [Ers03].

A special case of interest is when Λ = Z: since j1,Λ ≈ n, the second statement of Theorem 1 says in
this case that ϕ 4 j1,Γ. This triggers the following question asking for some kind of converse.

Question 1.1. Given an amenable finitely generated group Γ, does there exist a (j1,Γ,L
0) orbit

equivalence coupling from Γ to Z?

We shall see in the next subsection that this holds up to a logarithmic error in various examples. Let
us also mention that since the Følner function and the `1-isoperimetric profile are generalized inverses
of each other, Theorem 1 can be reformulated as follows for p = 1.

Corollary 2. Assume that there exists (ϕ,L0) measure equivalence coupling from a finitely generated
group Γ to a finitely generated group Λ. Then

• if ϕ(t) = t, then
FølΓ 4 FølΛ;

• if ϕ and t 7→ t/ϕ(t) are increasing then

FølΓ ◦ ϕ 4 FølΛ.

Remark 1.2. In particular we get that if Γ and Λ are L1 measure equivalent, then FølΛ ≈ FølΓ. This
strengthens the following unpublished result obtained by Bowen in 2013: assuming Γ and Λ are L1

orbit equivalent, he proved that there exists r > 1 such that FølΓ(k) 6 FølΛ(rk).

Application to regular maps. Theorem 1 turns out to be a special case of a more general
monotonicity property of the `p-isoperimetric profile (Theorem 4.3 and Theorem 4.4) which encompasses
its well-known monotonicity under subgroups and quotients [Tes08, Thm. 1]. Writing down this
statement motivated us to introduce and study natural “measured generalizations” of the notions of
subgroup, quotient, and subgroup of a quotient (see Sec. 2.2).

Let us mention here a striking application of this monotonicity result. Recall that a regular map
f : Γ→ Λ between two finitely generated groups is a Lipschitz map such that supλ∈Λ |f−1({λ})| <∞.
Particular cases of regular maps are Lipchitz injective maps and coarse embeddings. We recall that
a coarse embedding is a map f : Γ → Λ such that there exists two proper non-decreasing functions
ρ−, ρ+ : [0,∞)→ [0,∞) satisfying

ρ−(dΓ(γ, γ′)) 6 dΛ(f(γ), f(γ′)) 6 ρ+(dΓ(γ, γ′)),

for all γ, γ′ ∈ Γ. Note that since the distance on Λ is defined as the Cayley graph distance associated
to some generating set, we get that such a map is actually ρ+(1)-Lipschitz. Moreover, for all λ ∈ Λ,
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f−1({λ}) is contained a ball of radius r, for any r such that ρ−(r) > 0: hence a coarse embedding is
duly a regular map.

A trick essentially due to Shalom allows us to interpret the existence of a regular map from an
amenable group Γ to a group Λ as “Γ being an L∞ measure subgroup of Λ” (see Sec. 2.4). This enable
us to deduce from Theorem 4.3 the following rather unexpected fact.

Theorem 3 (see Cor. 5.6). For every 1 6 p 6∞, the `p-isoperimetric profile is monotonous under
regular maps between amenable groups.

The assumption that the groups are amenable is not an artefact of the proof: the statement becomes
false in general if the embedded group is not amenable. For instance the group Z/2Z o Z admits a
bi-Lipschitz embedded 4-regular tree (see for instance [Woe05]). Since the 4-regular tree can be seen
as the standard Cayley graph of the free group F2 on two generators, we deduce that F2 bi-Lipschitz
embeds into Z/2Z o Z. But F2 is non-amenable and therefore its isoperimetric profile is bounded, while
Z/2Z o Z is obviously amenable, so its isoperimetric profile tends to infinity.

Only very few geometric invariants are known to be monotonous under coarse embedding: these
are the volume growth, the asymptotic dimension, the separation profile [BST12], and more recently
the Poincaré profiles [HMT20]. All of these turn out to be monotonous under regular map as well
(see [BST12] for the case of asymptotic dimension). For solvable groups of exponential growth, the
asymptotic dimension is generally infinite, and the Poincaré profiles have only been computed in very
specific examples. By contrast, our theorem provides us with a powerful obstruction. As a concrete
application, it prevents the existence of a regular map from Z o Za to Z o Zb as soon as a > b (note that
these groups have infinite asymptotic dimension). Combining it with a construction of Erschler and
Zheng [EZ21, Cor. 3.3] (see also [BZ21, Thm. 1.1]) we obtain the following result.

Theorem 4 (see Cor. 5.8). There exists an uncountable family of 3-step solvable groups Γi that do not
pairwise regularly embed into one another, and that are pairwise non L1 measure equivalent. Moreover,
one can assume that these groups all have asymptotic dimension one.

We note that finding an uncountable family of groups that do not pairwise regularly embed
into one another can be done by other means. Indeed, one can produce an uncountable familiy of
groups of intermediate growth whose growth functions are pairwise incomparable (this can be done
exploiting [Gri85, Thm. 7.1], or more directly invoking [Bri14, Thm. 7.2]). Moreover by Lewis Bowen’s
theorem (see Theorem 3.1), these groups are pairwise non L1 measure equivalent. Other examples of
uncountable families of groups that pairwise do not coarsely embed into one another are due to Hume
[Hum17, Thm. 1.2]: they involve (non-amenable) groups that contain isometrically embedded families
of expanders. However none of these other methods can yield families of solvable (nor even elementary
amenable) groups.

No quantitative version of Orstein-Weiss. In a recent groundbreaking work, Brieussel and Zheng
managed to construct amenable groups with prescribed isoperimetric profiles [BZ21]. In particular,
they show that for every increasing unbounded function ϕ, there exists an amenable group whose
isoperimetric profile does not dominate ϕ. Combining this with Theorem 1, we deduce that Orstein-
Weiss’ orbit equivalence coupling between amenable groups can be as poorly integrable as possible.
More precisely, we obtain the following corollary.

Corollary 5 (see Sec. 4.6). For every amenable finitely generated group Λ and every increasing
unbounded function ϕ, there exists an amenable finitely generated group Γ such that there are no (ϕ,L0)
measure equivalence coupling from Γ to Λ.

Stability of Liouville property among lamplighter groups. Let G be a countable infinite group
and let µ be a probability measure on G whose support generates G (as a group). A function f : G→ R
is called harmonic if for all g ∈ G,

f(g) =
∑
g′∈G

µ(gg′).
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If all bounded harmonic functions are constant, then we say that (G,µ) has the Liouville property. In
what follows, to simplify the discussion, we shall say that a measure µ is admissible if it is symmetric,
and its support is finite and generates G. We refer to [KV83] for an introduction to this topic.

A well-known open question due to Itai Benjamini is whether Liouville property is “invariant under
quasi-isometry”. More precisely does there exist (G1, µ1) and (G2, µ2) such that the measures µi are
admissible, the groups Gi are quasi-isometric, and (G1, µ1) is Liouville while (G2, µ2) is not? Intuitively,
being Liouville is a property of “small groups”, so we might even expect it to be stable under coarse (or
even regular) embeddings. However, this is false in general as shown by the following counterexample:
being non-amenable, the free group on two generators is non-Liouville (with respect to any µ), while
(Z/2Z o Z, µ) is Liouville for any admissible measure µ (see [KV83]). But as noticed earlier, the free
group coarsely embeds into Z/2Z o Z.

By contrast, Theorem 4.3 can be used to prove that being Liouville is stable under regular embedding
(and under L1 measure equivalence) among lamplighter groups. More precisely, we obtain:

Theorem 1.3 (See Thm. 5.12). For i = 1, 2, let Fi be a non-trivial finite group, and let Hi be a finitely
generated group. Let µi be an admissible probability measure on Γi = Fi oHi. Assume either that

• Γ1 regularly embeds into Γ2,

• or there exists a (L1, L0) measure equivalence equivalence coupling from Γ1 to Γ2.

Then if (Γ2, µ2) is Liouville, then so is (Γ1, µ1).

1.2 Construction of measure couplings between amenable groups

Følner tilings. Most of the known examples of Lp measure equivalence couplings come from lattices
in semi-simple Lie groups. Here we introduce a general method for constructing orbit equivalent
couplings with prescribed integrability conditions between amenable groups. Our main tool is a notion
of Følner tiling, developed in Section 6.1. A Følner tiling sequence in a group Γ is a sequence of finite
subsets Tn satisfying conditions:

(i) (Tn) is a left Følner sequence for Γ,

(ii) each Tn is obtained as a union of right translates of Tn−1.

We note that Følner sequences Tn such that Γ can be obtained as a disjoint union of right translates of
Tn do exist in all elementary amenable groups and all residually finite amenable groups thanks to the
work of Weiss [Wei01]. Our second condition appears to be new, and is crucial in our construction. An
easy example of a Følner tiling sequence is provided by Tn = {1, ..., 2n} in Z.

Starting from a Følner tiling sequence for a group Γ, we construct a free measure preserving action
of Γ on the infinite product space

∏
n(Fn, νn), where Fn is a sequence of finite subsets of Γ such that

Tn =
⊔
γ∈Fn Tn−1γ, and where νn is the renormalized counting measure on Fn. We show that the

equivalence relation generated by the action is the co-finite equivalence relation (in the above example
the action is given by the dyadic odometer): two sequences are equivalent if they coincide except
possibly on finitely many indices. It follows from our construction that if another group Λ admits a
Følner tiling sequence whose basic tiles T ′n satisfy |Tn| = |T ′n|, then the corresponding action of Λ is
orbit equivalent to that of Γ. Moreover, the degree of integrability of this orbit equivalence is controlled
by the properties of the two Følner sequences (Tn) and (T ′n) (see Proposition 6.9).

Theorem 1 provided us with an obstruction for finding ϕ-integrable couplings with certain functions
ϕ between two amenable groups. We will now show that in many cases of interest (and especially in
the case of couplings from certain amenable groups to Z) this obstruction is close to being optimal.

Let us start with the case of groups with polynomial growth. We deduce from a straightforward
extension of Bowen’s theorem on volume growth (see Corollary 3.4), or alternatively from the monotonic-
ity of the isoperimetric profile (Corollary 4.7), that Zm and Zn do not admit Lp measure equivalence
couplings for p > m/n if n < m. We show that this threshold is sharp:
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Theorem 6 (see Thm. 6.12). For every pair of positive integers n < m, there exists an orbit equivalence
coupling between Zm and Zn that is Lp for every p < n/m.

Let us mention that these couplings between Zm and Zn were independently discovered by Matthieu
Joseph (unpublished result).

Note that the growth function of Zn being slower than that of Zm, we expect more constraint on
the integrability condition from Zm to Zn than from Zn to Zm. This is reflected by the more precise
statement of Theorem 6.12: the orbit equivalence coupling which is constructed from Zm to Zn is
(Lp,Lp

′
) for all p < n/m and p′ < m/n.

Finally, we point out that the Lp-integrability from Zm to Zn is almost sharp, as Corollary 3.4
implies that there is no (Lp,L0) measure equivalence coupling from Zm to Zn for p > n/m. The only
case that remains unclear is when p = n/m. More precisely, Theorem 6 leaves the following question
open (see also Question 6.14).

Question 1.4. Let n < m, are Zm and Zn Ln/m measure equivalent?

We may also consider the following asymmetric version of this question: is there a (Ln/m,L0)
measure coupling from Zm to Zn?

Regarding groups with same degree of polynomial growth, Austin proved that L1 measure equivalent
groups of polynomial growth have bi-Lipschitz asymptotic cones [Aus16]. Combined with a famous
theorem of Pansu [Pan89, Thm. 3], this implies for instance that a non-virtually abelian nilpotent
group cannot be L1 measure equivalent to an abelian group. The following result shows that this
rigidity statement cannot be extended to Lp for p < 1.

Theorem 7 (see Thm. 6.16). There exists an orbit equivalence coupling between Z4 and H(Z) that is
Lp for every p < 1.

In this paper, the actions we construct by means of Følner tiling sequences turn out to be (explicit)
profinite actions. To the best of our knowledge, this way of producing orbit equivalences between
amenable groups is new, and quite different from the much more abstract quasi-tiling machinery of
Ornstein and Weiss [OW87]. Note that latter allows them to prove that all free measure-preserving
ergodic actions of all amenable groups are orbit equivalent. This brings us to the complementary
problem of studying quantitatively orbit equivalence between actions of a fixed amenable group. This is
obviously a vast program, so we shall simply mention the following natural question, which is already
interesting for the group Z.

Question 1.5. Let Γ be an amenable finitely generated group. Does there exist a single unbounded
increasing function ϕ such that any two free measure-preserving ergodic actions actions of Γ are ϕ orbit
equivalent?

Orbit equivalence and wreath products. Many interesting solvable groups can be constructed
by means of (iterated) wreath products. By the work of Erschler [Ers03], their isoperimetric profile
can be estimated precisely. Hence those groups offer a useful playground to test the optimality of the
obstruction provided by Theorem 1. In Section 7, we define a natural notion of “wreath product of
orbit equivalence couplings”. This construction allows us to obtain orbit equivalence couplings between
wreath product of groups whose integrability conditions are best possible (see Corollary 7.3 for a precise
statement).

In this paragraph, we will focus on some concrete applications of this general result.

Theorem 8. For every pair of positive integers a < b, and every non-trivial finite group F there exists
an (Lp,L1/p) orbit equivalence coupling from F o Zb to F o Za for every p < a/b.

We refer to Corollary 7.5 for an iterated version of this result. By [Ers03], the isoperimetric profile
of F o Za is ≈ (log n)1/a. Hence we deduce from the second part of Theorem 1 that the existence of
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a (Lp,L0) measure equivalence coupling from F o Za to F o Zb forces the inequality p 6 a/b, which is
shown to be (almost) sharp by Theorem 8.

We now focus on the existence of couplings with Z. We first consider couplings from the lamplighter
group to Z. Since the isoperimetric profile of the lamplighter group grows like log n, we know that
a (ϕ,L0) coupling from the latter to Z must satisfy ϕ(t) 4 log t. This turns out to be sharp up to a
logarithmic error.

Theorem 9 (see Prop. 6.20). For every finite group F , there exits an orbit equivalence coupling from

F o Z to Z which is (ϕε, exp)-integrable for every ε > 0, where ϕε(x) = log(x)
log(log(x))1+ε .

This result is obtained by means of Følner tilings. Once again, the asymmetry of the condition
reflects the intuition that Z is a “small” group compared to F o Z.

More generally, one can consider iterated wreath products as follows. Let G0 = Z, and for all n > 1,
Gn = F oGn−1. By [Ers03], we know that the isoperimetric profile of Gk is asymptotically equivalent to
log◦n, namely the n-times iteration of log with itself. Similarly, using our wreath product construction
of orbit equivalences, we show that this is almost sharp: see Corollary 7.6.

Exponentially integrable couplings. The lamplighter group Z/kZ o Z and the Baumslag-Solitar
group BS(1, k) are known to have very similar geometries. Indeed the first one can be seen as a
horocyclic product of two (k + 1)-regular trees [Woe05], while the second is quasi-isometric to a
horocyclic product of a (k + 1)-regular tree with a hyperbolic plane [FM98, §3]. A consequence of this
description is that they have isometric asymptotic cones (this follows from the analysis in [Cor08, §9]).
They are also known to have same isoperimetric profile [CGP01] (or [Tes08, Thm. 4]). However they
are not quasi-isometric, as BS(1, k) is finitely presented, while Z/kZ o Z is not.

In Section 8.1, we construct a very natural orbit coupling between these groups, which satisfies a
very strong integrability condition.

Theorem 10 (see Thm. 8.1). For every k > 2, there exists an (L∞, exp) orbit equivalence coupling
from Z/kZ o Z to BS(1, k).

The asymmetry is not an artifact of the proof: indeed we could not have an (L∞, exp)-orbit
equivalence coupling from BS(1, k) to Z/kZ o Z as the asymptotic dimension is monotonous under
(L∞,L0) orbit equivalence (Corollary 5.5), and BS(1, k) has asymptotic dimension 2, while Z/kZ o Z
has asymptotic dimension 1.

The previous discussion also shows that the asymptotic dimension is not preserved under Lp orbit
equivalence for all p <∞. Considering slightly more sophisticated examples, we similarly show that
the finiteness of the asymptotic dimension is not preserved either.

1.3 A sort of “asymmetric distance” between finitely generated groups

We may view the functions ϕ and ψ for which there exists a (ϕ,ψ) measurable coupling from a group Γ
to a group Λ as an asymmetric way of quantifying how geometrically close these groups are from one
another. This is of course only interesting within a class of groups that are measure equivalent, such as
lattices (uniform and non-uniform ones) in a given locally compact group, or among amenable groups.

Let us illustrate this point of view in the following special case: given two finitely generated groups Γ
and Λ, let α(Γ,Λ) be the infimum of − log p over all p 6 1 such that there exists an (Lp,Lp) integrable
measure equivalence coupling between Γ and Λ. It follows from Proposition 2.26 that α satisfies the
triangle inequality. Therefore, it defines a pseudo-distance between (isomorphism classes of) finitely
generated groups. Note that Theorem 7 yields α(Z4,Heis(Z)) = 0, while Theorem 6 and the remark
that precedes imply α(Zn,Zm) = |log n− logm|.

It is interesting to note that for p > 1 (and more generally for convex functions ϕ), things behave
differently, as admitting an (Lp,Lp) integrable measure equivalence coupling is an equivalence relation.
This means that balls of radius 0 for α can be equipped with an ultrametric distance β(Γ,Λ) defined
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for instance by the infimum of 1/p over all p > 1 such that the groups are Lp measure equivalent. In
other words, we can distinguish two scales: a “large” scale measured by the pseudo distance α, and a
finer scale, measured by the ultrametric pseudo-distance β.

More generally, we will see in Section 2.5 that if the functions ϕ and ψ are concave, then (ϕ,ψ)-
integrable measurable equivalence couplings satisfy a natural composition rule, which we may view as
analogous to a “triangle inequality”. By contrast, for functions that grow faster than any polynomial,
e.g. t→ exp(ta) for a > 0, there is no clear composition rule. This led us to introduce a stronger version
of the integrability condition (which is automatic for Lp) to make it well-behaved under composition:
see Definition 2.28. As in the Lp case discussed above, we then obtain a composition rule that is
analogous to an “ultrametric inequality” when the functions are at least linear.

As a matter of fact, these composition rules are better stated in an even more asymmetric situation,
where the measure coupling is no longer a measure equivalence coupling. If we drop on one side
the finiteness of the measure of the fundamental domain, we obtain a natural notion of measured
subgroup, while if we drop the freeness for one of the actions, we obtain a measurable notion of quotient.
Combining them, we get a measurable notion of sub-quotient. In these situations, an integrability
condition only makes sense in one direction, so that we obtain notions of ϕ-integrable measurable
subgroups, quotients or sub-quotients, which we develop in the next section. To see how these notions
can be useful, note that Theorem 1 is a corollary of the monotonicity of the isoperimetric profile under
L1 measure quotient, while Theorem 3 involves the notion of L∞ measure subgroup.

1.4 Plan of the paper

In Section 2, we set the general framework of this paper. More precisely, in Section 2.1 we introduce new
notions of measured subgroups, quotients and sub-quotients that are defined via asymmetric couplings
where the actions of both groups are smooth but where the freeness or the finite covolume assumption
are dropped for one of the actions. Such notions satisfy natural composition rules that are gathered in
Proposition 2.9. In Section 2.4, we make these notions quantitative by adding integrability conditions.
The behavior of these integrability conditions under composition is studied in Section 2.5. Finally,
Section 2.6 is dedicated to similar notions in the orbit equivalence setting.

In Section 3, we prove a general monotonicity result for the volume growth under measured sub-
quotients satisfying certain integrability conditions. The proof is largely inspired (although different)
from Bowen’s original proof of the invariance of volume growth under L1 measure equivalence.

Section 4 focuses on two monotonicity results regarding the isoperimetric profile, namely Theorems
4.3 and 4.4, which generalize Theorem 1. In Section 4.1 a quick overview of their proofs is given.
Sections 4.2 to 4.5 are dedicated to the actual proofs of these theorems. This section ends with Section
4.6 where we prove Corollary 5.

In Section 5, we show that the existence of a regular map from an amenable finitely generated
group Γ to a finitely generated group Λ can be used to construct an L∞ subgroup coupling from Γ to
Λ. This allows us to deduce Theorem 3 from Theorem 4.3. We then exploit this result in Section 5.2 to
establish Theorem 4.

In Section 6 we show how Følner tilings can be used to produce orbit equivalent probability measure-
preserving actions of groups with a control on the integrability properties of the corresponding cocycles.
In Section 6.2 we give applications to groups with polynomial growth, and in Section 6.3 we treat the
case of Z and the Lamplighter group.

In Section 7, we study the behavior of orbit equivalence under wreath products, and we show that
the integrability conditions pass through. This enables us to construct couplings between Z and iterated
wreath products with nearly sharp integrability conditions.

Section 8 deals with properties that are “very” unstable. In Section 8.1, we construct a very explicit
exponential orbit equivalence coupling between BS(1, n) and Z/nZ oZ, proving that finite presentability
is not preserved. Section 8.2, we construct another explicit coupling between two solvable groups, one
with finite asymptotic dimension and the other not.
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Appart from Section 2, which contains all the relevant notions used throughout the paper, each
other section can be read independently.

Acknowledgments. We thank Matthieu Joseph for many helpful conversations around this project.
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of this work. We thank Lewis Bowen for sharing with us his unpublished note on the behavior of the
Følner function under L1 orbit equivalence. Finally, we are indepted to the anonymous referee for their
numerous remarks and corrections which greatly improved the quality of the exposition.

2 Variations on measure equivalence

Convention. Throughout the paper, we allow metrics and pseudo-metrics to take the value +∞.

2.1 Smooth actions and fundamental domains

A standard Borel space (Ω,B(Ω)) is a measurable space whose σ-algebra B(Ω) consists of the the
Borel subsets coming from some Polish (separable and completely metrizable) topology on Ω. The
elements of B(Ω) are called Borel, and so are called measurable maps between standard Borel spaces.
A standard measure space is a standard Borel space (Ω,B(Ω)) equipped with a nonzero σ-finite
measure µ on B(Ω). We simply denote such a space by (Ω, µ). A Borel subset Ω0 ⊆ Ω is said to be
conull or of full measure if µ(Ω \ Ω0) = 0 and a property that holds for all ω ∈ Ω0 is said to hold
almost surely or for almost every ω ∈ Ω. The space (Ω, µ) is said to be a standard probability
space if µ(Ω) = 1.

A measure-preserving action of a discrete countable group Γ on (Ω, µ), for short Γ y (Ω, µ),
is a Γ-action on Ω such that the action map (γ, x) 7→ γ · x is Borel and that µ(γ · E) = µ(E) for all
γ ∈ Γ and all Borel E ⊆ Ω. A measure-preserving action on a standard probability space is said to be
probability measure-preserving.

Since the groups that we are dealing with are countable, if we are given Γ y (Ω, µ), then every full
measure Borel subset A ⊆ Ω contains a Γ-invariant full measure Borel subset, namely the set

⋂
γ∈Γ γ ·A.

Moreover, since any full measure Borel subset of a standard measure space is a standard measure space,
there will be no harm in considering that some properties that hold almost everywhere actually hold
everywhere, so we will often do so without explicitly restricting to a full measure Borel subset. For
instance, one says that a measure-preserving Γ-action on (Ω, µ) is free if for all γ ∈ Γ \ {eΓ}, we have
γ · x 6= x for almost every x ∈ Ω. We may as well assume that the latter holds for every x ∈ Ω since
this becomes true once we restrict the action to a full measure Γ-invariant Borel set.

Finally, given Γ y (Ω, µ), the full pseudo-group of the action Γ y Ω is the set of all partially
defined Borel bijections ϕ : A→ B, where A and B are Borel subsets of Ω, such that for all x ∈ A, we
have ϕ(x) ∈ Γ · x. Every such element is measure-preserving, see [KM04, Prop. 2.1].

Definition 2.1. A fundamental domain for Γ y (Ω, µ) is a Borel set XΓ ⊆ Ω which intersects
almost every Γ-orbit at exactly one point: there is a full measure Γ-invariant Borel set Ω0 ⊆ Ω such
that for all x ∈ Ω0 we have that the intersection of the Γ-orbit of x with XΓ is a singleton

Equivalently, a Borel set XΓ ⊆ Ω is a fundamental domain if and only if after throwing away a null
set, the quotient map π : XΓ → Ω/Γ is a bijection. Note that since a fundamental domain for Γ y (Ω, µ)
intersects almost every orbit, the union of its translates has full measure, so every fundamental domain
must have strictly positive measure whenever this is the case with Ω.

Moreover, the existence of a Borel set XΓ ⊆ Ω that intersects every Γ-orbit exactly once is equivalent
to the fact that Ω/Γ is standard Borel, or in other words that the quotient map π : XΓ → Ω/Γ is a Borel
bijection between standard Borel spaces (see [KM04, Prop. 6.3]). In this case, the orbit equivalence
relation is said to be smooth, and we make the following definition.

Definition 2.2. A measure-preserving action of a countable group Γ on a standard measured space
(Ω, µ) is smooth if it admits a fundamental domain.
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Given a smooth action Γ y (Ω, µ), if X is a fundamental domain for the Γ-action, we denote by πX
the map which takes (almost) every ω ∈ Ω to the unique element of the Γ-orbit of ω which belongs to X.
Observe that by definition, if X1 and X2 are two measure-fundamental domains, then the restriction of
πX1 to X2 is an element of the full pseudo-group of the Γ-action whose inverse is the restriction of πX2

to X1.
In particular, X1 and X2 have the same measure, and so given any smooth action Γ y (Ω, µ), we

can unambiguously endow the quotient space Ω/Γ with the measure obtained by identifying it with
one of the fundamental domains. We will still denote this measure by µ.

Finally, given a fundamental domain X, we denote by ιX the inverse of the projection map X → Ω/Γ.

Convention. We shall use the notation “γ ∗x” instead of “γ ·x” for smooth Γ-actions. This distinction
will prove useful later on since we will also have induced actions on fundamental domains, which we
will denote by ·.

2.2 Asymmetric couplings

We start by recalling the notion of measure equivalence coupling, introduced by Gromov.

Definition 2.3. Let Γ and Λ be countable groups, a measure equivalence coupling from Γ to Λ is
a quadruple (Ω, XΓ, XΛ, µ), where (Ω, µ) is a standard Borel measure space equipped with commuting
measure-preserving smooth Γ and Λ actions such that

(i) both the Γ-action and the Λ-action are free;

(ii) XΛ (resp. XΓ) is a fixed fundamental domain for the Λ-action (resp. for the Γ-action);

(iii) XΛ and XΓ have finite measures.

When there exists such a coupling, we say that Γ and Λ are measure equivalent.

The most basic example of a measure equivalence coupling is the following. Given a countable group
Λ viewed as a standard measured space equipped with the counting measure c, we take Γ = Λ and we
have a measure equivalence coupling between Γ and Λ by making Γ act on Λ by left translation, and Λ
act on itself by right translation. A finite measure fundamental domain for both actions is given by
XΓ = XΛ = {e}, so (Γ, {eΛ}, {eΛ}, c) is a measure equivalence coupling between Γ and Λ. Motivated
by this example, we see that if Γ was only an infinite index subgroup of Λ, then the action cannot have
a finite measure fundamental domain, although it has an infinite measure fundamental domain. We
thus first relax the notion of measure equivalence coupling as the following asymmetric version.

Definition 2.4. Let Γ and Λ be countable groups. A measure subgroup coupling from Γ to
Λ is a triple (Ω, XΛ, µ), where (Ω, µ) is a standard Borel measure space equipped with commuting
measure-preserving smooth Γ and Λ actions such that

(i) both actions are free;

(ii) XΛ is a fixed fundamental domain for the Λ-action;

(iii) XΛ has finite measure.

When there exists such a coupling, we say that Γ is a measure subgroup of Λ.

As explained above, the basic example of a measure subgroup coupling is obtained when Γ 6 Λ: it
is the triple (Λ, {eΛ}, c) making Γ act by left-translation on Λ and Λ by right-translation on itself.

Remark 2.5. Being symmetric in Γ and Λ, measure equivalence couplings require the data of two
fundamental domains XΓ and XΛ. By contrast, for the above asymmetric notion and its latter variants,
only an explicit fundamental domain for the Λ-action is required. The latter will be crucial when
making these notions quantitative (see Section 2.4).
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Let us now tackle the case when Γ is a quotient of Λ. Here we can make Γ act on itself by
left translation, and Λ act on Γ by right translation via the quotient map. Compared to measure
subgroup couplings, we have lost the freeness of the Λ-action, but we gained that Γ has a finite measure
fundamental domain, arriving at the following other asymmetric definition.

Definition 2.6. Let Γ and Λ be countable groups. A measure quotient coupling from Γ to
Λ is a triple (Ω, XΛ, µ), where (Ω, µ) is a standard Borel measure space equipped with commuting
measure-preserving smooth Γ and Λ actions such that

(i) the Γ-action is free and admits a finite measure fundamental domain;

(ii) XΛ is a fixed fundamental domain for the Λ-action;

(iii) XΛ has finite measure.

When there exists such a coupling, we say that Γ is a measure quotient of Λ.

Finally, one can find a common denominator to measure subgroup couplings and measure quotient
couplings as follows.

Definition 2.7. Let Γ and Λ be countable groups. A measure sub-quotient coupling from Γ to
Λ is a triple (Ω, XΛ, µ), where (Ω, µ) is a standard Borel measure space equipped with commuting
measure-preserving smooth Γ and Λ actions such that

(i) the Γ action is free;

(ii) XΛ is a fixed fundamental domain for the Λ-action;

(iii) XΛ has finite measure.

When there exists such a coupling, we say that Γ is a measure sub-quotient of Λ.

It is a good exercise for the reader to describe how such a coupling arises when Γ is a subgroup of a
quotient of Λ.

Remark 2.8. Every measure equivalence coupling yields two measure sub-quotient couplings (one
from Γ to Λ, the other one from Λ to Γ) which are both subgroup and quotient couplings.

To lighten the presentation, and since there will be no ambiguity, we shall frequently remove the
word “measure” in front of the word “coupling” from here on. Let us end this section by pointing a few
nontrivial examples of couplings:

• We start with a concrete example: let G be a locally compact Polish group with a Haar measure
µ, Γ 6 G be a discrete subgroup and Λ 6 G be lattice. Let Λ and Γ act respectively by left and
right translations on G, and let XΛ be a fundamental domain for the Λ-action. Then (G,XΛ, µ)
is a measure subgroup coupling from Γ to Λ.

• An important instance of subgroup coupling arises via regular embeddings, using amenability. It
will be described in Section 5.

• Other examples arising from the notion of orbit equivalence will be given in Section 2.6.

• Another way to produce more sophisticated examples of couplings is to compose them, as we will
see now.
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2.3 Composition of asymmetric measure couplings

Our goal here is to extend the (classical) notion of composition of measure equivalence couplings to
our asymmetric setting (see for instance [BFS13] for compositions of measure equivalence couplings).
Starting from a triplet of groups Γ, Λ and Σ, a coupling from Γ to Λ and a coupling from Λ to Σ, we
would like to define a coupling from Γ to Σ. Such a composition rule should be coherent with those
holding for usual notions of subgroups, quotients... For instance we will get that a measure subgroup of
a measure subgroup is again a measure subgroup. Similarly, we will obtain that a measure subgroup of
a measure quotient is a measure sub-quotient (see Proposition 2.9). However, it is not true in general
that the composition of a measured quotient with another measure quotient remains a measure quotient
(see Remark 2.11).

Composition of couplings. Let Γ, Λ and Σ be three countable groups let (Ω1, X1,Λ, µ1) be a subgroup
coupling from Γ to Λ and let (Ω2, X2,Σ, µ2) be a sub-quotient coupling from Λ to Σ. The composition
of these two couplings (Ω3, X3,Σ, µ3) is the sub-quotient coupling from Γ to Σ obtained as follows.

• We consider the diagonal action Λ y (Ω1 ×Ω2, µ1 ⊗ µ2), which is smooth and commutes with
the Γ-action on the first coordinate and the Σ-action on the second coordinate.

• Then the measured space of the coupling is Ω3 := (Ω1 × Ω2)/Λ equipped with the induced Γ and
Σ-actions.

• Identifying Ω3 with a Λ-fundamental domain of Ω1 × Ω2, we define the measure µ3 as the
restriction of the product measure.

• We let X3,Σ = πΩ3(X1,Λ ×X2,Σ), where πΩ3 is the projection Ω1 × Ω2 → Ω3.

• Furthermore, letting X1,Γ (resp. X2,Λ) be fundamental domains for the action of Γ on Ω1 (resp.
for the action of Λ on Ω2), the subset X3,Γ = πΩ3

(X1,Γ × X2,Λ) of Ω3 defines a fundamental
domain for the action of Γ.

Proposition 2.9. Let Γ, Λ and Σ be three countable groups, let (Ω1, X1,Λ, µ1) be a subgroup coupling
from Γ to Λ and let (Ω2, X2,Σ, µ2) be a sub-quotient coupling from Λ to Σ. The composition of these
two couplings is a sub-quotient coupling from Γ to Σ.

If both couplings are subgroup (resp. equivalence) couplings, then their composition is also a subgroup
(resp. equivalence) coupling.

Finally if the coupling from Γ to Λ is a measure equivalence coupling and the coupling from Λ to Σ
is a quotient coupling, then their composition is a quotient coupling.

Before proceeding to the proof, we need to introduce some notation. Given a sub-quotient coupling
(Ω, XΛ, µ) from Γ to Λ, we denote their two commuting actions by ∗. We also have a natural action of
Γ on Ω/Λ which we call the induced action and denote by ·. Through the natural identification of
Ω/Λ to XΛ, this induced action can be described as follows: for all x ∈ XΛ, γ ∈ Γ,

{γ · x} = Λ ∗ γ ∗ x ∩XΛ.

Note that the induced Γ-action defines elements of the pseudo full group of the Λ-action on Ω, so it is a
measure-preserving action.

Proof of Proposition 2.9. First, the diagonal Λ-action on Ω1 × Ω2 is smooth because X1,Λ × Ω2 is a
fundamental domain for it. We then define Ω3 := (Ω1 × Ω2)/Λ, and we denote by µ3 the measure
induced on Ω3 from the product measure on Ω1 × Ω2. Finally, we denote by ? the induced actions of
both Γ and Σ on Ω3. Through the identification of Ω3 with the fundamental domain X1,Λ × Ω2 we see
that the induced Σ-action is given by:

σ ? (x, ω) = (x, σ ∗ ω),
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for all (x, ω) ∈ X1,Λ × Ω2 and all σ ∈ Σ. In particular, we see that X3,Σ := πΩ3
(X1,Λ × X2,Σ) is a

fundamental domain for it. If the Σ-action on Ω2 is free then so is the Σ-action on Ω3. Note that X3,Σ

has finite measure because X1,Λ and X2,Σ do. Finally, if we fix a fundamental domain X2,Λ for the
Λ-action on Ω2, then we also have a natural identification of Ω3 with Ω1 ×X2,Λ. This shows that the
Γ-action on Ω3 is free.

All the properties stated in the proposition can now directly be inferred from the two previous
paragraphs.

Remark 2.10. Keeping the notation of the proof, we can also describe the Γ-action on Ω3 when the
latter is identified with X1,Λ × Ω2 as follows:

γ ? (x, ω) = (γ · x, α(γ, x) ∗ ω),

where · denotes the induced Γ-action on X1,Λ, and where α : Γ×X1,Λ → Λ is the cocycle given by the
equation α(γ, x) ∗ γ ∗ x = γ · x (we shall come back to this important notion in the next section). Note
that the induced Γ-action (denoted by •) on the fundamental domain X3,Σ, identified to X1,Λ ×X2,Σ,
is then given by:

γ • (x, y) = (γ · x, α(γ, x) · y).

This point of view will be useful when we explore how integrability conditions behave under composition
of couplings.

Remark 2.11. The composition of a quotient coupling with any kind of coupling (even a measure
equivalence coupling) may not be itself a sub-quotient coupling, as shown by the following example: Let
Ω1 = {1} be the quotient coupling from the trivial group Γ = {1} to Λ = Z such that Γ acts trivially
on {1}, and let Ω2 = R be the measure equivalence coupling from Λ to Σ = Z where the Λ-action is
by translation by 1, and the Σ-action is by translation by

√
2. The composition of these couplings is

Ω3 = {1} × R/Z, where the action of Σ is trivial on Ω1, and by irrational translation on R/Z. This is
not a quotient coupling as the Σ-action is not smooth.

Remark 2.12. It is possible to relax the notions of Γ being a measure sub-quotient (resp. subgroup,
quotient) of Λ, by replacing the assumption that the Λ-action has a fundamental domain of finite
measure by the weaker assumption that the action has finite co-measure: there exists a subset A of
finite measure such that Λ ∗ A has full measure. Let us refer to this as Γ being a weak measured
subquotient of Λ. The proof of Proposition 2.9 shows that composition makes sense between weak
measured sub-quotients, and gives rise to a weak measured sub-quotient. In particular a composition
of two measured sub-quotients is itself a weak measured sub-quotient. Weak measured sub-quotients
seem to be interesting objects of study. Let us illustrate this by an example: let G be a locally compact
Polish unimodular group, Γ be a discrete subgroup of G, and Λ be a dense subgroup. One easily checks
that G equipped with its Haar measure defines a weak measure sub-quotient from Λ to Γ, letting Λ
act by left-translation and Γ by right-translation. We decided not pursue the study of weak couplings
here because we were not able to prove Theorem 4.3 under this generality (i.e. replacing sub-quotient
by its weak counterpart). In particular, when G is a unimodular locally compact Polish group with
Γ 6 G discrete and Λ 6 G dense, we do not know whether the isoperimetric profile of Γ is necessarily
asymptotically smaller than that of Λ.

2.4 Integrability conditions

We now come to the central notion studied in this paper. Our goal is to add quantitative constraints
on a coupling that extend the well-known Lp-integrability condition for measure equivalence couplings.
Classically (for measure equivalence couplings), this is done via the notion of cocycle. Given a subgroup
coupling (Ω, XΛ, µ) from Γ to Λ, we can define the cocycle α : Γ×XΛ → Λ via by the equation

α(γ, x) ∗ γ ∗ x = γ · x.

It is non-ambiguously defined for a.e. x ∈ XΛ, as we assume that the Λ-action is free.
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Definition 2.13. Given any non-decreasing map ϕ : R+ → R+ and a finite generating subset SΛ ⊆ Λ,
we say that the subgroup coupling (Ω, XΛ, µ) is ϕ-integrable if for all γ ∈ Γ there is cγ > 0 such that∫

XΛ

ϕ

(
|α(γ, x)|SΛ

cγ

)
dµ(x) < +∞.

This definition is very convenient but only makes sense when the Λ action is free. So we need to
find a substitute for measure quotients or measure sub-quotients. To that purpose, it will be useful to
work with Schreier graph metrics.

Definition 2.14. Let Λ be a finitely generated group acting smoothly on a standard measured space
(Ω, µ). We denote by dSΛ the Schreier graph metric on the Λ-orbits, namely for y ∈ Λ ∗ x, we let

dSΛ
(x, y) = min{n ∈ N : ∃s1, ..., sn ∈ SΛ, y = s1 · · · sn ∗ x}.

Observe that if we are given Λ y (Ω, µ) and two finite generating sets S1 and S2 for Λ, then there
is C > 0 such that for all x ∈ Ω and all y ∈ Λ ∗ x,

1

C
dS1

(x, y) 6 dS2
(x, y) 6 CdS1

(x, y). (1)

We recall that given a smooth action Λ y (Ω, µ) and a measure fundamental domain X, the map
ιX is the inverse of the (bijective) projection πΩ/Λ : X → Ω/Λ.

Definition 2.15. Given any non-decreasing map ϕ : R+ → R+ and two fundamental domains X1 and
X2 of a smooth Λ-action on (Ω, µ), we say that they are ϕ-equivalent if there is c > 0 such that∫

Ω/Λ

ϕ

(
dSΛ(ιX1(x), ιX2(x))

c

)
dµ(x) < +∞.

Note that this does not depend on the choice of the symmetric generating set SΛ by virtue of
inequality (1).

Remark 2.16. If ϕ satisfies that for every c > 0, there is a constant C > 0 such that for all x > 0,
ϕ(cx) 6 Cϕ(x), then X1 and X2 are ϕ-equivalent if and only if∫

Ω/Λ

ϕ (dSΛ(ιX1(x), ιX2(x))) dµ(x) < +∞,

which is then also equivalent to: for every c > 0 we have∫
Ω/Λ

ϕ

(
dSΛ(ιX1(x), ιX2(x))

c

)
dµ(x) < +∞.

This is the case if ϕ(x) = xp for some p > 0, or if ϕ is subadditive. An example where this is not true
is when ϕ is the exponential map.

In order to show that ϕ-equivalence is indeed an equivalence relation, we introduce the following
quantity: given a smooth Λ-action and two fundamental domains X1 and X2, we let

cϕ,SΛ
(X1, X2) = inf

{
c > 0:

∫
Ω/Λ

ϕ

(
dSΛ

(ιX1
(x), ιX2

(x))

c

)
dµ(x) < +∞

}
.

Proposition 2.17. The map cϕ,SΛ
is a pseudo-metric on the set of fundamental domains (recall that

pseudo-metrics are allowed to take the value +∞).

The proof relies on the following elementary observation.
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Lemma 2.18. Let ϕ : R+ → R+ be a non-decreasing function, let a, b > 0 and c, d > 0. Then

ϕ

(
a+ b

c+ d

)
6 ϕ

(a
c

)
+ ϕ

(
b

d

)
.

Proof. By symmetry, we may as well assume that a
c >

b
d , in which case a

c >
a+b
c+d , so we have

ϕ
(
a+b
c+d

)
6 ϕ

(
a
c

)
6 ϕ

(
a
c

)
+ ϕ

(
b
d

)
.

Proof of Proposition 2.17. The map cϕ,SΛ
is clearly symmetric and satisfies cϕ,SΛ

(X,X) = 0 for every
fundamental domain X, so we only need to check that it satisfies the triangle inequality.

To this end, let X1, X2 and X3 be fundamental domains, let c1 > cϕ,SΛ
(X1, X2) and c2 >

cϕ,SΛ
(X2, X3). We have for every x ∈ Ω/Λ that

dSΛ
(ιX1

(x), ιX3
(x))

c1 + c2
6
dSΛ

(ιX1
(x), ιX2

(x)) + dSΛ
(ιX2

(x), ιX3
(x))

c1 + c2
.

By the previous lemma, we thus have

ϕ

(
dSΛ

(ιX1
(x), ιX3

(x))

c1 + c2

)
6 ϕ

(
dSΛ

(ιX1
(x), ιX2

(x))

c1

)
+ ϕ

(
dSΛ

(ιX2
(x), ιX3

(x))

c2

)
.

By integrating and using our assumptions on c1 and c2, we then deduce that∫
Ω/Λ

ϕ

(
dSΛ(ιX1(x), ιX3(x))

c1 + c2

)
dµ(x) < +∞,

and so cϕ,SΛ
(X1, X3) 6 cϕ,SΛ

(X1, X2) + cϕ,SΛ
(X2, X3) as wanted.

Corollary 2.19. The notion of ϕ-equivalence is an equivalence relation between fundamental domains.

We are now ready to define our notion of ϕ-integrability for sub-quotient couplings.

Definition 2.20. Let ϕ,ψ : R+ → R+ be non-decreasing maps.

• A sub-quotient (resp. subgroup, quotient) coupling (Ω, XΛ, µ) from Γ to Λ is a called ϕ-integrable
if for every γ ∈ Γ we have that XΛ and γ ∗XΛ are ϕ-equivalent as fundamental domains of the
Λ-action. In that case, we call Γ a ϕ-integrable measure sub-quotient (resp. subgroup or
quotient) of Λ.

• A measure equivalence coupling (Ω, XΓ, XΛ, µ) from Γ to Λ is called (ϕ,ψ)-integrable when
the coupling (Ω, XΛ, µ) from Γ to Λ is ϕ-integrable and the coupling (Ω, XΓ, µ) from Λ to Γ is
ψ-integrable. We then say that Γ and Λ are (ϕ,ψ)-integrable measure equivalent, or simply
that they are (ϕ,ψ)-measure equivalent.

Remark 2.21. By spelling out what ϕ-integrability means, we see that a measure sub-quotient coupling
(Ω, XΛ, µ) from Γ to Λ is ϕ-integrable if and only if for every γ ∈ Γ, there is cγ > 0 such that∫

XΛ

ϕ

(
dSΛ(γ · x, γ ∗ x)

cγ

)
dµ(x) < +∞,

where ∗ denotes the Γ-action on Ω and · denotes the induced Γ-action on XΛ. We deduce that a
measure subgroup coupling from Γ to Λ is a ϕ-coupling if and only if the cocycle α : Γ×XΛ → Λ is
ϕ-integrable in the sense of Definition 2.13.

Proposition 2.22. A sub-quotient coupling (Ω, XΛ, µ) from Γ = 〈SΓ〉 to Λ is ϕ-integrable if and only
if for every s ∈ SΓ we have that XΛ and s ∗XΛ are ϕ-equivalent.
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Proof. Since the Γ-action commutes with the Λ-action, it must preserve the equivalence relation of
ϕ-equivalence, so for every γ ∈ Γ and every s ∈ SΓ we have that γ ∗XΛ and γs ∗XΛ are ϕ-equivalent.
From there, the statement follows by induction from Proposition 2.17.

Remark 2.23. It is not hard to see that being a ϕ-integrable sub-quotient coupling only depends on
the asymptotic behavior of ϕ. More precisely, if ϕ 4 ψ, then every ψ-integrable sub-quotient coupling
is also a ϕ-integrable.

For convenience and consistency with the literature, for p ∈ (0,∞) we talk about Lp couplings instead
of x 7→ xp-integrable couplings. We also say that we have an L∞ sub-quotient coupling from Γ to Λ
when the Γ-action satisfies for every γ ∈ Γ that the map Ω/Λ→ Λ: x 7→ dSΛ(γ · x, γ ∗ x) is essentially
bounded. Note that every L∞ sub-quotient coupling is ϕ-integrable for any increasing map ϕ : R+ → R+.

Let us now explain how various established notions fit into our asymmetric framework.

• Two finitely generated groups Γ and Λ are Lp measure equivalent in the sense of [BFS13] when
there is an (Lp,Lp) measure equivalence coupling from Γ to Λ.

• Two finitely generated groups Γ and Λ are uniform measure equivalent in the sense of [Sha04]
when there is an (L∞,L∞) measure equivalence coupling between Γ and Λ.

• Two finitely generated groups Γ and Λ are bounded measure equivalent in the sense of [Sau02]
when there is an (L∞,L∞) measure equivalence coupling from Γ to Λ which is cobounded in both
directions.

2.5 Composition of ϕ-integrable couplings

We study how integrability conditions behave under composition of couplings. We first consider the
case where ϕ : R+ → R+ is subadditive, e.g. when ϕ is concave. Our arguments will follow closely
those from [BFS13, Sec. A.2].

Lemma 2.24. Let Γ and Λ be two finitely generated groups, let ϕ : R+ → R+ be a non-decreasing
subadditive map and let (Ω, XΛ, µ) be a ϕ-integrable sub-quotient coupling from Γ to Λ. Then there is a
constant C > 0 such that for every γ ∈ Γ∫

XΛ

ϕ (dSΛ
(γ · x, γ ∗ x)) dµ(x) 6 C |γ|SΓ

.

Proof. Assume (Ω, XΛ, µ) is a ϕ-integrable sub-quotient coupling from Γ to Λ. Given two fundamental
domains X1 and X2 for the Λ-action, we define their ϕ-distance dϕ,SΛ(X1, X2) by

dϕ,SΛ(X1, X2) =

∫
Ω/Λ

ϕ (dSΛ(ιX1(x), ιX2(x))) dµ(x)

Note that this distance is symmetric and satisfies the triangle inequality, so it is a pseudometric as
soon as ϕ(0) = 0. Moreover, using Remark 2.16, we have for every γ ∈ Γ that

dϕ,SΛ(XΛ, γ ∗XΛ) < +∞,

while by Remark 2.21 we have dϕ,SΛ
(XΛ, γ ∗XΛ) =

∫
XΛ

ϕ (dSΛ
(γ · x, γ ∗ x)) dµ(x).

Let C = maxγ∈SΓ
dϕ,SΛ

(XΛ, γ ∗XΛ). The Γ-action on the set of Λ-fundamental domains preserves
dϕ,SΛ

because it commutes with the Λ-action, so for every s1, ..., sn ∈ SΓ we have by the triangle
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inequality

dϕ,SΛ
(s1 · · · sn ∗XΛ, XΛ) 6

n∑
i=1

dϕ,SΛ
(s1 · · · si ∗XΛ, s1 · · · si−1 ∗XΛ)

6
n∑
i=1

dϕ,SΛ
(si ∗XΛ, XΛ)

6 Cn,

which yields the desired result.

Remark 2.25. Note that when ϕ is subadditive and non-decreasing, we always have ϕ(x) 6 xϕ(1)+ϕ(1),
in particular every L1 sub-quotient coupling is ϕ-integrable.

Let us now study how couplings compose in the subadditive regime.

Proposition 2.26. Let ϕ,ψ : R+ → R+ be non-decreasing subadditive maps with ϕ moreover concave
and let Γ, Λ and Σ be three finitely generated groups. Let (Ω1, X1,Λ, µ1) be a ϕ-integrable subgroup
coupling from Γ to Λ and let (Ω2, X2,Σ, µ2) be a ψ-integrable sub-quotient coupling from Λ to Σ. Then
the composition of these two couplings is a ϕ ◦ ψ-integrable sub-quotient coupling from Γ to Σ.

Proof. Thanks to Lemma 2.24 we find C > 0 such that∫
X2,Σ

ψ (dSΣ
(λ · x, λ ∗ x))) dµ(x) 6 C|λ|SΛ

for every λ ∈ Λ. (2)

By scaling the measure µ2 we may assume that µ2(X2,Σ) = 1. Denote by α : Γ×X1,Λ → Λ the cocycle
defined by the equation α(γ, x) ∗ γ ∗ x = γ · x. By Remark 2.10 and the definition of the composition of
our two couplings, we need to show that the following quantity is finite:∫

X1,Λ

∫
X2,Σ

ϕ ◦ ψ (dSΣ(α(γ, x) · y, α(γ, x) ∗ y)) dµ2(y)dµ1(x).

Now by Jensen’s inequality, this is at most∫
X1,Λ

ϕ

(∫
X2,Σ

ψ (dSΣ
(α(γ, x) · y, α(γ, x) ∗ y)) dµ2(y)

)
dµ1(x),

which by inequality (2) is bounded above by
∫
X1,Λ

ϕ(C |α(γ, x)|SΛ
)dµ1(x). The latter is indeed finite

by our assumption on the first coupling and Remark 2.16.

The above result can be combined with Proposition 2.9 to obtain a ϕ ◦ ψ-integrable subgroup
coupling or a ϕ ◦ ψ-integrable quotient coupling by composition.

Remark 2.27. Given two finitely generated groups Γ and Λ, one could define

α(Γ,Λ) = − log (sup{p 6 1: Γ and Λ have an Lp measure equivalence coupling})

The previous proposition implies that this is a pseudo-metric on the space of isomorphism classes
of finitely generated groups. It would be interesting to understand this pseudo-metric further. For
instance, Theorem 6.12 implies that α(Zn,Zm) = |log n− logm|.

For non subadditive maps ϕ, we need a stronger notion of ϕ-integrability so that it behaves well
with respect to composition.
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Definition 2.28. Let ϕ : R+ → R+ be an increasing map. We say that a coupling (Ω, XΛ, µ) from Γ
to Λ is strongly ϕ-integrable or ϕ�-integrable if for every ε > 0 there are δ > 0 and C > 0 such that
for every γ ∈ Γ, ∫

XΛ

ϕ (δ dSΛ
(γ · x, γ ∗ x)) dµ(x) 6 Cϕ (ε|γ|SΓ

)

Note again that thanks to inequality (1) strong integrability does not depend on the choice of the
finite generating set SΛ. However, the above condition has to be checked on every element of Γ.

Proposition 2.29. Let ϕ : R+ → R+ be an increasing map and let Γ, Λ and Σ be three finitely
generated groups. Let (Ω1, X1,Λ, µ1) be an strongly ϕ-integrable subgroup coupling from Γ to Λ and let
(Ω2, X2,Σ, µ2) be a strongly ϕ-integrable sub-quotient coupling from Λ to Σ. Then the composition of
these two couplings is a strongly ϕ-integrable sub-quotient coupling from Γ to Σ.

Proof. Let ε > 0. As (Ω1, X1,Λ, µ1) is strongly ϕ-integrable, there are δΛ > 0 and CΓ > 0 such that∫
X1,Λ

ϕ (δΛdSΛ(γ · x, γ ∗ x)) dµ1(x) 6 CΓ ϕ
(
ε |γ|SΓ

)
for every γ ∈ Γ. (3)

and as (Ω2, X2,Σ, µ) is strongly ϕ-integrable, there exist δΣ > 0 and CΛ > 0 such that∫
X2,Σ

ϕ (δΣdSΣ
(λ · x, λ ∗ x)) dµ2(x) 6 CΛ ϕ (δΛ|λ|) for every λ ∈ Λ. (4)

By Remark 2.10 and the definition of the composition of our two couplings, we need to estimate the
following quantity: ∫

X1,Λ

∫
X2,Σ

ϕ (δΣdSΣ
(α(γ, x) · y, α(γ, x) ∗ y)) dµ2(y)dµ1(x).

By inequality (4), this is bounded above by∫
X1,Λ

CΛϕ(δΛ |α(γ, x)|SΛ
) 6 CΛCΓ ϕ (ε|γ|SΓ

)

as wanted, where the last inequality is a consequence of inequality (3), and the fact that by definition
|α(γ, x)|SΛ

= dSΛ
(γ · x, γ ∗ x).

For some maps ϕ we can weaken the strong integrability condition. Most notably for Lp couplings,
where p > 1.

Proposition 2.30. Let p > 1. Every Lp sub-quotient coupling from Γ to Λ is a strongly Lp sub-quotient
coupling.

Proof. We follow an approach similar to that of Lemma 2.24. For two fundamental domains X1 and
X2 for the Λ-action, we define their Lp distance by

dLp,SΛ(X1, X2) =

(∫
Ω/Λ

(dSΛ(ιX1(x), ιX2(x)))
p
dµ(x)

)1/p

It is not hard to check that dLp,SΛ
is a metric, and since the Γ-action commutes with the Λ-action, the

group Γ acts on the set of Λ-fundamental domains by isometries. Let XΛ be one of them. As in the
proof of Lemma 2.24, we find CΓ > 0 such that for every γ ∈ Γ, dLp,SΛ

(XΛ, γ ∗XΛ) 6 CΓ |γ|SΓ
. This

means that for all γ ∈ Γ, we have∫
XΛ

dSΛ(γ · x, γ ∗ x)pdµ(x) 6 CpΓ|γ|
p
SΓ
,
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from which the result easily follows: given ε > 0, we take δ = ε, C = CpΓ and note that∫
XΛ

(δdSΛ
(γ · x, γ ∗ x))

p
dµ(x) = δp

∫
XΛ

dSΛ
(γ · x, γ ∗ x)pdµ(x) 6 CpΓ(ε|γ|SΓ

)p

as wanted.

Say for p > 1 that two finitely generated groups are Lp measure equivalent when there is an
(Lp,Lp) measure equivalence coupling from Γ to Λ. We deduce from the two previous results that Lp

measure equivalence is an equivalence relation between finitely generated groups, as proven by Bader,
Furman and Sauer in [BFS13, Lemma A.2.]. Note however that this is not true anymore for p < 1;
counter-examples are provided by Theorem 6.12.

For exponentially integrable couplings, the next proposition states that it is enough to find a single
ε so as to witness strong exponential integrability.

Proposition 2.31. Let Γ and Λ be two finitely generated groups and let (Ω, XΛ, µ) be a sub-quotient
coupling from Γ to Λ. If there are ε′ > 0, δ′ > 0 and C ′ > 0 such that∫

XΛ

exp (δ′ dSΛ
(γ · x, γ ∗ x)) dµ(x) 6 C ′ exp (ε′|γ|SΓ

) for every γ ∈ Γ,

then the coupling is strongly exp-integrable.

Proof. Let ε > 0. If ε > ε′, we take C = C ′ and δ = δ′ and check that Definition 2.28 holds with these
constants. If ε < ε′, then take C = C ′

ε
ε′ and δ = δ′ε

ε′ . By rescaling the measure if necessary, we can
assume that µ(XΛ) = 1. Then, applying Jensen’s inequality, we have for every γ ∈ Γ that∫

XΛ

exp (δ dSΛ(γ · x, γ ∗ x)) dµ(x) =

∫
XΛ

exp (δ′ dSΛ(γ · x, γ ∗ x))
ε
ε′ dµ(x)

6

(∫
XΛ

exp (δ′ dSΛ
(γ · x, γ ∗ x)) dµ(x)

) ε
ε′

6 (C ′ exp(ε′|γ|))
ε
ε′

= C exp(ε|γ|).

Thus, the coupling is strongly exp-integrable as wanted.

Interesting examples of strongly (exp, exp)-integrable measure equivalence couplings will be provided
in Section 8.

2.6 Variations on orbit equivalence

We now turn our attention to orbit equivalence of groups, which implies measure equivalence. To make
the connection, we need to introduce measure-preserving equivalence relations (see [KM04] for details).

Definition 2.32. Given a measure-preserving action of a countable group Λ on a standard probability
space (X,µ), we associate to it a measure-preserving equivalence relation RΛ defined by

RΛ := {(x, λ · x) : x ∈ X,λ ∈ Λ}.

A key property of measure-preserving equivalence relations is that they can be endowed with a
natural σ-finite measure M . Namely, for R a measure-preserving equivalence relation, and A a Borel
subset of R, we let

M(A) =

∫
X

|Ax| dµ(x),
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where Ax = {y ∈ X : (x, y) ∈ A}. Such a measure is invariant under the flip map (x, y) 7→ (y, x) (see
[KM04, p. 34]), which means that

M(A) =

∫
X

|Ay| dµ(y),

where Ay = {x ∈ X : (x, y) ∈ A}.

Definition 2.33. Let Γ and Λ be two finitely generated groups.

• An orbit sub-quotient coupling from Γ to Λ is a triple (X,Y, µ) where

(i) (Y, µ) is a standard σ-finite space equipped with a measure-preserving Λ-action,

(ii) X is a Borel subset of Y of measure 1 equipped with a free measure-preserving Γ-action;

(iii) and finally for almost every x ∈ X we have that Γ · x ⊆ Λ · x.

• If the Λ-action is also free, we say that (X,Y, µ) is an orbit subgroup coupling of Γ with Λ.
If X = Y and for almost every x ∈ X we have that Γ · x = Λ · x, we say that (X,Y, µ) is an
orbit quotient coupling, which we then simply write as (X,µ). Finally, (X,µ) is an orbit
equivalence coupling of Γ with Λ if it is both an orbit quotient and an orbit subgroup coupling.

Remark 2.34. We note that admitting an orbit equivalence coupling agrees with the definitions of
orbit equivalence between countable groups in the literature.

Remark 2.35. An orbit sub-quotient coupling (X,Y, µ) from Γ to Λ such that for almost every x ∈ X
we have that Γ · x = Λ · x restricts to an orbit quotient coupling (X,X, µ).

Remark 2.36. To every orbit sub-quotient coupling is naturally associated a measure sub-quotient
coupling. We will see later that this statement admits some kind of converse (see Proposition 2.43).

• The coupling space is Ω := RΛ ∩ (X × Y ) equipped with the measure induced by M .

• The commuting actions are defined as follows: for every γ ∈ Γ, λ ∈ Λ and every (x, y) ∈ RΛ,

γ ∗ (x, y) = (γ · x, y) and λ ∗ (x, y) = (x, λ · y).

• The chosen Λ-fundamental domain is the diagonal: XΛ = {(x, x) : x ∈ X}.

• The Γ-action is smooth. Indeed, a Borel fundamental domain can be obtained as the intersection
with X × Y of a disjoint union of graphs of Borel choice functions for the subequivalence relation
(RΓ ∪∆Y ) 6 RΛ (see [IKT09, Sec. 2.(A)]).

Note furthermore that (XΛ,M) is naturally isomorphic to (X,µ) via x 7→ (x, x), and that the induced
Γ-action on XΛ is conjugate via the inverse of this map to the original action on (X,µ).

Definition 2.37. An orbit sub-quotient coupling from Γ to Λ is ϕ-integrable when it is ϕ-integrable
as a measure sub-quotient coupling.

Note that ϕ-integrability for an orbit sub-quotient coupling as above means that for all γ ∈ Γ, there
is cγ > 0 such that ∫

X

ϕ

(
dSΛ(x, γ · x)

cγ

)
dµ(x) < +∞.

Remark 2.38. When ϕ(x) = xp for some p > 1, this means that Γ is contained in the Lp full group of
the Λ-action, as defined in [LM18].
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Remark 2.39. Every orbit equivalence (resp. subgroup, quotient) coupling gives rise to a measure
equivalence (resp. subgroup, quotient) coupling. We can thus define similarly (ϕ,ψ)-integrable orbit
equivalence couplings. Finally, we can also define strong ϕ-integrability conditions for orbit couplings.

There is a well-known connection between orbit equivalence couplings and measure equivalence
couplings of the form (Ω, XΓ, XΛ, µ) with XΓ = XΛ := X of measure 1. This is not exactly a one-to-one
correspondence as the actions of Λ and Γ on X may not be free for such a mesure coupling. This mild
issue is taken care of by the following proposition.

Proposition 2.40. Let (Ω, XΛ, µ) be a measure sub-quotient coupling from Γ to Λ, let (Y, ν) be a
standard probability space equipped with a free Γ-action. Then (Ω × Y,XΛ × Y, µ ⊗ λ) is a measure
sub-quotient coupling from Γ to Λ, where Γ acts diagonally and Λ acts on the first coordinate. Moreover,
the induced Γ-action on XΛ × Y is free, the coupling (Ω× Y,XΛ × Y, µ⊗ λ) is ϕ-integrable if and only
if (Ω, XΛ, µ) was, and if XΓ was a fundamental domain for Γ y Ω, then XΓ × Y is a fundamental
domain for Γ y Ω× Y .

Proof. It is clear that XΛ × Y is a fundamental domain for the Λ-action. Since the Γ-action on Ω is
free, XΓ × Y is a fundamental domain for the new diagonal action. The induced Γ-action on XΛ × Y is
the diagonal action obtained from its induced action on XΛ and its action on Y . We deduce that this
action is free. Finally, the statement about ϕ-integrability follows directly from the fact that for every
y ∈ Y and every ω, ω′ ∈ Ω, we have dSΛ

((ω, y), (ω′, y)) = dSΛ
(ω, ω′).

Remark 2.41. Note that the above lemma can be applied to any countable group Γ: if Γ is infinite,
one can take (Y, ν) as a Bernoulli shift of Γ, and if Γ is finite, one can take Y = Γ acted upon by left
translation, equipped with the normalized counting measure.

Proposition 2.42. Let Γ and Λ be countable groups. If there is a (ϕ,ψ) measure equivalence (resp.
measure quotient) coupling from Γ to Λ where the two fundamental domains coincide, then there is a
(ϕ,ψ) orbit equivalence (resp. orbit quotient) coupling from Γ to Λ.

Proof. Let (Ω, XΓ, XΛ, µ) be a (ϕ,ψ)-integrable measure equivalence coupling from Γ to Λ, and denote
by X = XΓ = XΛ the common fundamental domain. Up to rescaling the measure (which does not
impact the integrability conditions), we may as well assume that X has measure 1. Using the previous
remark, we can apply the above proposition twice and see that without loss of generality, we can also
assume that the induced Γ- and Λ-actions on X are free. We denote them by ·.

Now observe that for every γ ∈ Γ and every x ∈ X, we have γ · x ∈ Λ ∗ γ ∗ x so there is λ ∈ Λ
such that γ · x = λ ∗ γ ∗ x = γ ∗ λ ∗ x. In particular λ · x = γ · x, so we conclude that Γ · x ⊆ Λ · x.
By symmetry, we also have Λ · x ⊆ Γ · x, so we conclude that (X,µ) is an orbit equivalence coupling.
Finally, the map (γ · x, x) 7→ γ ∗ x is a Γ× Λ-equivariant bijection from RΓ = RΛ to Ω which takes
{(x, x) : x ∈ X} to X, and thus the (ϕ,ψ)-integrability of the orbit coupling (X,µ) follows from that of
(Ω, XΓ, XΛ, µ).

The statement for orbit quotient couplings follows from the same argument, except we apply the
above proposition only once so as to make the induced Γ-action free.

Similar comparisons can be made for orbit subgroup and sub-quotient couplings. Observe that
an orbit sub-quotient coupling yields a measure sub-quotient coupling such that XΛ intersects every
Γ-orbit at most once. We have the following converse.

Proposition 2.43. Let Γ and Λ be two finitely generated groups. If there is a ϕ-integrable measure
sub-quotient (resp. measure subgroup) coupling (Ω, XΛ, µ) from Γ to Λ such that XΛ intersects every
Γ-orbit at most once, then there is a ϕ-integrable orbit sub-quotient (resp. orbit subgroup) coupling
from Γ to Λ.

Proof. We first assume that (Ω, XΛ, µ) is a ϕ-integrable measure sub-quotient coupling from Γ to Λ
such that XΛ intersects every Γ-orbit at most once. Up to scaling the measure and using Proposition
2.40, we may as well assume that µ(XΛ) = 1 and that the induced Γ-action on XΛ is free.
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We define Y := Ω/Γ and X := Ω/Λ, equipped with their respective actions of Λ and Γ. By
assumption the restriction of πΩ/Γ to XΛ is injective, so identifying X with π(Xλ) we may as well view
X as a subset of Y . To prove that this defines an orbit sub-quotient coupling, it remains to show that
Γ ·x ⊆ Λ ·x for every x ∈ X. For every γ ∈ Γ and x ∈ XΛ there is λ ∈ Λ such that γ ·x = λ∗γ ∗x ∈ XΛ.
Then γ ∗ (λ ∗ x) ∈ XΛ, so λ · x = γ ∗ (λ ∗ x) = γ · x. Thus, Γ · x ⊆ Λ · x, and (X,Y, µ) is indeed an orbit
sub-quotient coupling.

We now check that the map λ ∗ x 7→ (x, λ · x) from Ω to RΛ ∩X × Y is well-defined and bijective.
First, if λ ∗ x = λ′ ∗ x′ for some x, x′ ∈ XΛ and λ, λ′ ∈ Λ, we have x = x′ since XΛ is a fundamental
domain, and then by definition of the induced action we must have λ ·x = λ′ ·x′: our map is well-defined.
In order to show it is injective, assume that λ · x = λ′ · x, then λ−1λ′ · x = x, so there is γ ∈ Γ such
that λ−1λ′ ∗ x = γ ∗ x, so γ · x = x. By freeness of the induced Γ-action, we deduce that γ = eΓ, and so
λ ∗ x = λ′ ∗ x as wanted. Surjectivity is clear from the definition. Note that this map can be more
formally defined as (πΩ/Λ, πΩ/Γ). Its Γ× Λ-equivariance is obvious from that description. We conclude
that the orbit sub-quotient coupling that we obtained is ϕ-integrable if and only if our original coupling
was.

For the orbit subgroup case we proceed as before, except we first make sure that both induced
actions are free by using Proposition 2.40 twice.

Remark 2.44. The two previous propositions show that orbit couplings can be composed as in
Proposition 2.9. This is shown by combining Proposition 2.9 with Proposition 2.42 and Proposition
2.43. The integrability of this composition coupling satisfies the same results as in Proposition 2.26
and Proposition 2.29.

3 Revisiting Lewis Bowen’s monotonicity theorem for the vol-
ume growth

We let Γ be a finitely generated group equipped with a finite generating subset SΓ. By a slight abuse
of notation, we denote BΓ(γ, n) the ball of radius n centered at γ ∈ Γ for the left-invariant word metric
dSΓ

(therefore omitting the mention of SΓ). We also denote VΓ(n) = |BΓ(γ, n)|. The volume growth
of Γ is the asymptotic behavior of VΓ (which does not depend on a specific choice of SΓ). In [Aus16,
Thm. B2], Lewis Bowen proves that the volume growth is invariant under L1 measure equivalence3.
We strengthen his result as follows.

Theorem 3.1. Let ϕ be an increasing, subadditive function such that ϕ(0) = 0 and let Γ and Λ be
finitely generated groups. If Γ is a ϕ-integrable measure sub-quotient of Λ, then

VΓ(n) 4 VΛ(ϕ−1(n)),

where ϕ−1 denotes the inverse function of ϕ.

The following key lemma is stated in [Aus16] for free actions, but the proof works as well for non-free
actions.

Lemma 3.2 ([Aus16, Lemma B.11]). Let Γ be a finitely generated group. Let Γ y (X,µ) be a
measure-preserving action on a standard probability space, and let X0 ⊆ X. For x ∈ X0 let RX0(x) : =
{γ ∈ Γ: γ · x ∈ X0} be its associated return time set. Then, for every n ∈ N we have∫

X0

|RX0(x) ∩BΓ(eΓ, n)|
VΓ(n)

dµ(x) > 2µ(X0)− 1.

3Bowen actually proves a more general statement: he shows that the volume growth is monotonous under “integrable-
embedding”. His notion seems strongly related to that of L1-measure subgroup, although we did not investigate this
further.
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Proof of Theorem 3.1. Let (Ω, XΛ, µ) be a sub-quotient coupling from Γ to Λ such that for all s ∈ SΓ,∫
XΛ

ϕ(dSΛ(s · x, s ∗ x))dµ(x) <∞.

The set XΛ has finite measure, so by replacing µ by µ
µ(XΛ) , we may as well assume that µ(XΛ) = 1.

We let XΓ be a fundamental domain for the action of Γ. Since Γ ∗XΓ = Ω there exists R > 0 such that
the subset X0 = XΛ ∩BΓ(eΓ, R) ∗XΓ satisfies µ(X0) > 9

10 .
By Lemma 2.24 there exists C > 0 such that for every γ ∈ Γ,∫

XΛ

ϕ(dSΓ
(γ · x, γ ∗ x))dµ(x) 6 C|γ|. (5)

We then fix n ∈ N and define

X1 =

x ∈ XΛ :
∑

γ∈BΓ(eΓ,n)

ϕ(dSΛ(γ · x, γ ∗ x))

|γ|
6 10CVΓ(n)

 .

Note that by applying Markov’s inequality and then inequality (5), we have

µ(XΛ \X1) 6
1

10CVΓ(n)

∫
XΛ

∑
γ∈BΓ(eΓ,n)

ϕ(dSΛ
(γ · x, γ ∗ x))

|γ|
dµ(x) 6

1

10
.

For every x ∈ XΛ, we let

Γx = {γ ∈ BΓ(eΓ, n) : ϕ(dSΛ
(γ · x, γ ∗ x)) 6 60C|γ|}.

Applying Markov’s inequality to the finite probability space BΓ(eΓ, n) equipped with the normalized
counting measure and the definition of X1, we then have for all x ∈ X1

|Γx| >
5

6
VΓ(n). (6)

Defining X2 = X1 ∩X0, we have

µ(X2) >
8

10
. (7)

We deduce from Lemma 3.2 that∫
X2

|RX2
(x) ∩BΓ(eΓ, n)|
VΓ(n)

> 2µ(X2)− 1 >
6

10
. (8)

As Γx ⊆ BΓ(eΓ, n) we have that∫
X2

|RX2
(x) ∩ Γx|dµ(x) >

∫
X2

(
|RX2

(x) ∩BΓ(eΓ, n)|+ |Γx| − VΓ(n)
)
dµ(x)

> VΓ(n)

(
6

10
+

5

6
µ(X2)− µ(X2)

)
by (6) and (8)

>
13

30
VΓ(n).

On the other hand∫
X2

|RX2
(x) ∩ Γx|dµ(x) 6

∫
X2

|{γ ∈ RX2
(x) : ϕ(dSΛ

(γ · x, γ ∗ x)) 6 60Cn}| dµ(x)

6
∑

λ∈BΛ(eΛ,ϕ−1(60Cn))

∫
X2

|{γ ∈ RX2
(x) : λ ∗ γ ∗ x ∈ XΛ}|dµ(x)

6 VΛ

(
ϕ−1(60Cn)

)
VΓ(R)µ(X2),

where the last inequality results from the inclusion X2 ⊆ X0 together with the following claim (recall
that X0 = XΛ ∩BΓ(eΓ, R) ∗XΓ).
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Claim 3.3. Given λ ∈ Λ and x ∈ XΛ, the cardinality of {γ ∈ RX0
(x) : λ ∗ γ ∗ x ∈ XΛ} is at most

VΓ(R).

Proof. Indeed, let γ be in the above set. We have λ ∗ γ ∗ x = γ · x ∈ X0. In particular λ ∗ γ ∗ x ∈
BΓ(eΓ, R) ∗ XΓ, from which we deduce that γ ∈ BΓ(eΓ, R) ∗ λ−1 ∗ XΓ. The conclusion follows by
freeness of the Γ-action and the fact that λ−1 ∗XΓ is a fundamental domain for it.

Exploiting our upper and lower bounds for
∫
X2
|RX2

(x) ∩ Γx|dµ(x) we deduce that for all n ∈ N,

13

30
VΓ(n) 6 VΛ

(
ϕ−1(60Cn)

)
VΓ(R),

which yields the conclusion of the theorem.

Corollary 3.4. Assume that two groups Γ and Λ satisfy VΓ(r) ≈ ra and VΛ(r) ≈ rb, with a > b. Then
Γ is not an Lp measured sub-quotient of Λ if p > a/b.

Proof. Since a/b < 1, and Lp-integrability gets stronger as p increases, it is enough to check it for p 6 1.
In this case, Theorem 3.1 applies as x 7→ xp is subadditive.

4 Monotonicity of the isoperimetric profile

In this section we state and prove a general monotonicity result satisfied by the isoperimetric profile.
We obtain two different conclusions depending on whether the coupling is Lp for some p > 1, or if it is
ϕ-integrable for a sublinear function ϕ. However the first statement for p = 1 and the second one for
ϕ(t) = t have the same content. Roughly speaking the following theorem says that the isoperimetric
profile behaves well under measure quotient (and so in particular under measure equivalence). In order
to obtain a similar statement for measure sub-quotients, and in particular for measure subgroups, we
will need the following technical assumption.

Definition 4.1. Given m ∈ N, we say that a sub-quotient (resp. subgroup, resp quotient) coupling
(Ω, XΛ, µ) from Γ to Λ is at most m-to-one if for every x ∈ XΛ the map γ 7→ γ−1 ∗ (γ · x) ∈ Λ ∗ x
has pre-images of size at most m.

Remark 4.2. Equivalently, this condition says that for every λ ∈ Λ and x ∈ XΛ, there are at most m
elements γ such that γ ∗ x ∈ λ ∗XΛ. Indeed, by definition of the Γ-action on XΛ, γ ∗ x ∈ λ ∗XΛ if and
only if γ · x = λ−1 ∗ γ ∗ x, which is also equivalent to λ ∗ x = γ−1 ∗ (γ · x).

Theorem 4.3. Let p > 1, let Γ and Λ be finitely generated groups. Assume that we are in one of the
following situations.

(i) Γ is an Lp measure quotient of Λ;

(ii) Γ is an at most m-to-one Lp measure sub-quotient of Λ.

Then their `p isoperimetric profiles satisfy the following inequality:

jp,Γ < jp,Λ.

Theorem 4.4. Let ϕ : (0,∞)→ (0,∞) be a function such that ϕ and t 7→ t/ϕ(t) are non-decreasing,
let Γ and Λ be finitely generated groups. Assume that we are in one of the following situations.

(i) Γ is a ϕ-integrable measure quotient of Λ;

(ii) Γ is an at most m-to-one ϕ-integrable measure sub-quotient of Λ
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Then their isoperimetric profiles satisfy the following inequality:

j1,Γ < ϕ ◦ j1,Λ.

Remark 4.5. Formulated with the Følner function instead of the isoperimetric profile, we obtain
FølΓ ◦ ϕ 4 FølΛ.

Remark 4.6. We do not know whether the condition of being “at most m-to-one” is necessary.
Fortunately, we shall see in Section 5 that it is satisfied in a case of interest: when Γ admits a regular
map to Λ, then Γ turns out to be an at most m-to-one L∞ measure subgroup of Λ.

We deduce the following corollary.

Corollary 4.7. Assume that Γ and Λ have polynomial growth of degree b and a respectively, with b > a,
and let F and K be non-trivial finite groups. If p > a/b, then

• Γ is not an Lp measured quotient (nor an at most m-to-one Lp measured sub-quotient) of Λ;

• F o Γ is not an Lp measured quotient (nor an at most m-to-one Lp measured sub-quotient) of
K o Λ.

Proof. We recall the following estimates.

• j1,Γ(n) ≈ n1/d for a group of polynomial growth of degree d (e.g. for Γ = Zd) (see [Cou00]);

• j1,Γ(n) ≈ (log n)1/d for a group of the form F o Σ, where F is a non-trivial finite group, and Σ
has polynomial growth of degree d [Ers03].

We obtain both statements by confronting Theorem 4.4(ii) to these estimates (and using the monotonicity
of p-integrability).

Remark 4.8. The first item is slightly weaker than the conclusion of Corollary 3.4 obtained by
comparing the volume growths (as the latter does not require the at most m-to-one assumption).

We end this section discussing some important situations where the condition of being at most
m-to-one is satisfied.

Proposition 4.9. A measure sub-quotient coupling (Ω, XΛ, µ) from Γ to Λ is at most 1-to-one if and
only if XΛ intersects every Γ-orbit at most once.

Proof. Suppose first that XΛ intersects each Γ-orbit at most once. Let x ∈ XΛ, suppose that γ−1
1 ∗γ1 ·x =

γ−1
2 ∗ γ2 · x. Then γ1 · x and γ2 · x are two elements of the same Γ-orbit which belong to XΛ. So by our

assumption they are equal. Since the Γ-action on Ω is free, we conclude that γ1 = γ2 as wanted.
Conversely, suppose that the coupling is at most 1-to-one. Let x ∈ XΛ, suppose that γ ∗ x ∈ XΛ for

some γ ∈ Γ. Then γ · x = γ ∗ x, so γ−1 ∗ γ · x = x, and so by injectivity γ = eΓ. We conclude that
γ ∗ x = x, so XΛ intersects each Γ-orbit at most once as announced.

An important example of at most 1-to-one coupling is provided by the notion of orbit sub-quotient
couplings (see Section 2.6). In fact, Proposition 2.43 implies that every at most 1-to-one measure
sub-quotient coupling can be turned into such a coupling after making the induced action free. In
particular, we have

Corollary 4.10. Let ϕ : (0,∞)→ (0,∞) be a function such that ϕ and t 7→ t/ϕ(t) are non-decreasing.
Assume that Γ is a ϕ-integrable orbit sub-quotient of Λ. Then j1,Γ < ϕ ◦ j1,Λ.
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4.1 Overview of the proof

Let us start describing the main steps of the proof when the Λ-action is free.
The first step is to start from a finitely supported function f on Λ with small right gradient and

extend it to a function f̃ on the coupling space Ω through its identification with XΛ × Λ. In other
words, we identify Ω to a field copies of Λ which are pointed at XΛ. The key observation is that the
function f̃ has small gradient with respect to the Γ-action. This is because each element γ ∈ Γ induces
an isomorphism of Λ-spaces, only shifting the basepoint by an amount which is precisely controlled by
our integrability condition: γ takes the field of copies of Λ pointed at XΛ to the field of copies of Λ
pointed at γ ∗XΛ. The precise statement which allows to control the difference between γ · f̃ and f̃ is
provided by Lemma 4.13.

Once this is established, we identify Ω with Γ×XΓ and view f̃ as a family (fx) of finitely supported
functions on Γ. By the previous fact, the gradient of these functions is well behaved on a large measure
subset of XΓ. We need to simultaneously control from below the `p-norm of the function, and control
from above the size of the support of these functions. Let us describe the simpler situation where the
coupling is assumed to be at most m-to-one. This condition immediately implies that the size of the
support of fx is (almost surely) at most m times the size of the support of f . On the other hand, a
pigeonhole argument allows us to find a set of positive measure of XΓ on which the lower bound on the
norm is satisfied simultaneously with the upper bound on the gradient. This is enough to conclude for
the existence of a subset of positive measure for which fx satisfies all three conditions simultaneously
and therefore for the proof of the theorem.

If we do not assume that the coupling is at most m-to-one, a difficulty arises that is overcome in
Section 4.5. What remains possible using pigeonhole arguments is the following: we can find a subset
of XΓ with measure—say at least 1/2—where an upper bound on both the size of the support of fx

and the norm of its gradient hold simultaneously. However, the issue comes from the lower bound on
the norm of fx, which may be only valid on a subset of arbitrarily small measure. The solution that
we find is rather subtle and consists in slightly modifying f in such a way that the lower bound on the
norm of fx is actually satisfied on a subset of XΓ of relatively large measure (see Remark 4.22 for a
more detailed overview of the argument).

Finally, when the action of Λ is not free, we still find a way to define a function f̃ on Ω which in
some sense extends f . The rest of proof is identical.

4.2 Λ-gradients on Λ-spaces

It will be convenient to define a notion of gradient on functions defined on measure spaces equipped
with a measure-preserving group action.

Definition 4.11. Let Λ be a finitely generated group equipped with a finite symmetric generating set
SΛ. Given any standard measured Λ-space (Ω, µ) and any function f ∈ Lp(Ω, µ), define its gradient to
be the function ∇SΛf : SΛ × Ω→ R defined by

∇SΛ
f(s, x) = f(x)− f(s−1 ∗ x).

Remark 4.12. We have

‖∇SΛf‖
p
p =

∫
Ω

∑
s∈SΛ

∣∣f(ω)− f(s−1 ∗ ω)
∣∣p dµ(ω) =

∑
s∈SΛ

‖f − s ∗ f‖pp ,

where s ∗ f(x) = f(s−1 ∗ x). Note that by symmetry of SΛ, we also have

‖∇SΛ
f‖pp =

∫
Ω

∑
s∈SΛ

|f(ω)− f(s ∗ ω)|p dµ(ω)
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There are two natural ways to view Λ as a Λ-space (action by left or right multiplication), so we
define the left SΛ-gradient f as the function ∇lSΛ

f : SΛ × Λ→ R by the formula

∇lSΛ
f(s, λ) = f(λ)− f(s−1λ);

and the right SΛ-gradient f by
∇rSΛ

f(s, λ) = f(λ)− f(λs).

The isoperimetric profile can be alternatively defined using the left or right gradient. This clearly does
not change its value as the inverse map intertwines the actions by left and right multiplication. We will
exploit this remark in our proof as follows: we will start with a function on Λ with small right gradient
and induce on Γ a function of comparable support with small left gradient.

In the following lemma, we consider a Γ-space X. Starting with a function defined on Λ, we define
a function on X depending on some basepoint x. The main objective of the lemma is to control the
Lp-norm of the difference between functions associated to different base points. It is reminiscent of the
fact that right Reiter functions on a group Λ can be pushed to Reiter functions on any equivalence
relation induced by a Λ-action (see e.g. [KM04, Prop. 9.2]).

Lemma 4.13. Let X be a transitive Λ-set and let x0 ∈ X. Let p > 1. The map RΛ → RX which
associates to every f ∈ RΛ the function fx0

given by

fx0(y) =

 ∑
λ : γ∗x0=y

|f(λ)|p
1/p

satisfies ‖fx0
‖p = ‖f‖p. Moreover, if SΛ is a finite generating set for Λ and if f ∈ `p(Λ) then for all

x1 ∈ X,
‖fx0 − fx1‖p 6 dSΛ(x0, x1)

∥∥∇rSΛ
f
∥∥
p
. (9)

Proof. The verification that ‖fx0
‖p = ‖f‖p is immediate. To obtain the inequality (9), note that for

each s ∈ SΓ and x0 ∈ X, we have by the triangle difference inequality

‖fx0 − fs·x0‖
p
p =

∑
y∈X

∣∣∣∣∣∣∣
 ∑
λ : λ∗x0=y

|f(λ)|p
1/p

−

 ∑
λ : λs∗x0=y

|f(λ)|p
1/p

∣∣∣∣∣∣∣
p

=
∑
y∈X

∣∣∣∣∣∣∣
 ∑
λ : λ∗x0=y

|f(λ)|p
1/p

−

 ∑
λ : λ∗x0=y

|f(λs−1)|p
1/p

∣∣∣∣∣∣∣
p

6
∑
y∈X

∑
λ : λ∗x0=y

|f(λ)− f(λs−1)|p

6
∑
λ∈Λ

∣∣f(λ)− f(λs−1)
∣∣p ,

so by the definition of the gradient we have ‖fx0
− fs∗x0

‖p 6
∥∥∇rSΛ

f
∥∥
p
. The conclusion now follows

using the triangle inequality for the Lp-norm and the fact that Γ is acting by isometries on `p(X).

We also need the following variant of Lemma 4.13.

Lemma 4.14. Let ϕ : (0,∞)→ (0,∞) be a function such that both ϕ and t 7→ t/ϕ(t) are non-decreasing.
Given a transitive Λ-set X and a point x0 ∈ X, the map RΛ → RX which associates to every f ∈ RΛ

the function fx0
given by

fx0(y) =
∑

λ : λ∗x0=y

|f(λ)|

29



satisfies ‖fx0
‖1 = ‖f‖1. Moreover, if SΛ is a finite generating set for Λ, x0, x1 ∈ X and f is a finitely

supported function on Λ such that
∥∥∇rSΛ

f
∥∥

1
= 1, then

‖f‖1
‖fx0

− fx1
‖1
>

ϕ(‖f‖1)

2ϕ(dSΛ
(x0, x1))

. (10)

Proof. By triangle inequality, we obtain

‖fx0 − fx1‖1 6 2 max
i=0,1

‖fxi‖1 = 2 ‖f‖1 .

Using the monotonicity of t/ϕ(t) we have

‖fx0 − fx1‖1 = ϕ(‖fx0 − fx1‖1)
‖fx0

− fx1
‖1

ϕ(‖fx0
− fx1

‖1)
6 ϕ(‖fx0

− fx1
‖1)

2 ‖f‖1
ϕ(2 ‖f‖1)

.

Now, since ‖∇f‖1 = 1, by applying Lemma 4.13 for p = 1 and using the monotonicity of ϕ we get

‖fx0 − fx1‖1 6 2ϕ(dSΓ(x0, x1))
‖f‖1

ϕ(‖f‖1)

So the lemma follows.

4.3 The induction technique

In this section, we shall prove that if p > 1 and Γ is an Lp measure sub-quotient of Λ, then every `p

function on Λ induces a function on Ω whose SΓ-gradient is well behaved (and a similar statement
for ϕ-integrable measure sub-quotient). To deal with sub-quotients, we need a non-free analogue of
the fact that if Λ is acting freely on Ω and XΛ is a fundamental domain, the map (x, λ) 7→ λ ∗ x is a
measure-preserving bijection between XΛ × Λ and Ω.

Lemma 4.15. Suppose XΛ is a fundamental domain for a measure-preserving Λ-action on a standard
measured space (Ω, µ). Then for every Borel A ⊆ Ω, we have

µ(A) =

∫
XΛ

|(Λ ∗ x) ∩A| dµ(x).

In particular, for every measurable function f : Ω→ R, we have∫
Ω

f dµ =

∫
XΛ

∑
y∈Λ∗x

f(y) dµ(x).

Proof. Since every subset of Ω can be written as a countable disjoint union of Λ-translates of Borel
subsets of XΛ, it suffices to show that the right term defines a Borel measure on Ω which is Λ-invariant
and coincides with µ when restricted to XΛ. The fact that the formula

m(A) =

∫
XΛ

|(Λ ∗ x) ∩A| dµ(x).

defines a Borel measure follows from the fact that the map x 7→ |(Λ ∗ x) ∩A| is Borel. Λ-invariance is
clear, and the fact that the two measures coincide when restricted on XΛ is also straightforward to
check.

Proposition 4.16 (Monotonicity of the `p-gradient under Lp measured sub-quotient). Let p > 1. If
Γ is an Lp measure sub-quotient of Λ via a coupling (Ω, XΛ, µ), and if f ∈ `p(Λ), then the induced

function f̃ on Ω defined by f̃(ω) =
(∑

λ : λ−1∗ω∈XΛ
|f(λ)|p

)1/p
satisfies∥∥∥f̃∥∥∥p

p
= ‖f‖pp µ(XΛ),
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and ∥∥∥∇SΓ
f̃
∥∥∥p
p
6 C

∥∥∇rSΛ
f
∥∥p
p
,

where C = |SΓ|max
s∈SΓ

∫
XΛ

dSΛ
(s · x, s ∗ x)pdµ(x).

Proof. The first equality is obvious. For all (x, y) ∈ Ω2 such that y ∈ Λ ∗ x, we let

fx(y) =

 ∑
λ : λ∗x=y

|f(λ)|p
1/p

.

Identifying Ω with the set of pairs (x, y) such that x ∈ XΛ and y ∈ Λ ∗ x, we have

f̃(x, y) = fx(y).

For every γ ∈ Γ,
f̃(γ ∗ (x, y)) = fγ·x(γ ∗ y).

Note that since the actions of Γ and Λ commute, we have for all γ ∈ Γ

fγ∗x(γ ∗ y) = fx(y).

Hence, denoting γ−1 ∗ f̃ : ω 7→ f̃(γ ∗ ω),

γ−1 ∗ f̃(x, y)− f̃(x, y) = fγ·x(γ ∗ y)− fγ∗x(γ ∗ y).

We can now invoke Lemma 4.13: letting s ∈ SΓ, we have∑
y∈Λ∗x

∣∣∣s−1 ∗ f̃(x, y)− f̃(x, y)
∣∣∣p =

∑
y∈Λ∗x

|fs·x(s ∗ y)− fs∗x(s ∗ y)|p

=
∑

y∈Λ∗s∗x
|fs·x(y)− fs∗x(y)|p

6 dSΛ
(s · x, s ∗ x)p

∥∥∇rSΛ
f
∥∥p
p

We can now use Lemma 4.15 to compute for all s ∈ SΓ∥∥∥s−1 ∗ f̃ − f̃
∥∥∥p
p

=

∫
XΛ

∑
y∈Λ∗x

∣∣∣s−1 ∗ f̃(x, y)− f̃(x, y)
∣∣∣p dµ(x)

6
∫
XΛ

dSΛ
(s · x, s ∗ x)p

∥∥∇rSΛ
f
∥∥p
p
dµ(x)

The desired inequality now follows by the definition of ∇SΓ
f̃ and the symmetry of SΓ.

Proposition 4.17 (Monotonicity of the `1-gradient under ϕ-integrable measured sub-quotient). Let
ϕ : (0,∞) → (0,∞) be a function such that ϕ and t/ϕ(t) are non-decreasing. If Γ is a ϕ-integrable
measure sub-quotient of Λ via a coupling (Ω, XΛ, µ), and if f is a finitely supported function on Λ such
that

∥∥∇rSΛ
f
∥∥

1
= 1, then the induced function f̃ on Ω defined by f̃(ω) =

∑
λ : λ−1∗ω∈XΛ

f(λ) satisfies∥∥∥∇SΓ
f̃
∥∥∥

1∥∥∥f̃∥∥∥
1

6
2C

ϕ(‖f‖1)
,

where C =
|SΓ|
µ(XΛ)

max
s∈SΓ

∫
XΛ

ϕ(dSΛ(s · x, s ∗ x))dµ(x).
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Proof. The proof is similar to that of Proposition 4.16: using Lemma 4.14 applied to fx(y) :=∑
λ : λ∗x=y |f(λ)|, we obtain∑

y∈Λ∗x

∣∣∣s−1 ∗ f̃(x, y)− f̃(x, y)
∣∣∣

‖f‖1
6

2ϕ(dSΛ(s · x, s ∗ x))

ϕ(‖f‖1)
,

which together with Lemma 4.15 and the fact that ‖f̃‖1 = µ(XΛ) ‖f‖1 yields the desired inequality.

Remark 4.18. Using Fubini’s theorem and the natural identification of XΓ × Γ with Ω given by

(x, g) 7→ g ∗ x, we may rewrite
∥∥∥∇SΓ

f̃
∥∥∥p
p

as

∥∥∥∇SΓ
f̃
∥∥∥p
p

=

∫
XΓ

∑
s∈SΓ

∑
γ∈Γ

∣∣∣f̃(γ ∗ x)− f̃(sγ ∗ x)
∣∣∣p dµ(x).

Now for each x ∈ XΓ, the function f̃ defines a function fx on Γ given by fx(γ) = f̃(γ ∗ x), and the
previous equality may thus be rewritten as∥∥∥∇SΓ

f̃
∥∥∥p
p

=

∫
XΓ

∥∥∇lSΓ
fx
∥∥p
p
dµ(x).

So the conclusion of the two previous propositions is that under the right assumption, any function
f on Λ of small right `p-gradient induces functions fx on Γ which have on average a small left `p

gradient. From there on, as we will see in the next section, it is not hard to conclude the proof that the
isoperimetric profile goes down for p > 1 under the assumption that the coupling is finite-to-one.

But without the finite-to-one assumption, we lose the uniform control on the size of the support of
the functions fx. We will circumvent this by simultaneously controlling the size of the support of fx

and bounding its norm from below on a large portion of the fundamental domain of Γ. This will be
done in Section 4.5.

4.4 Monotonicity under at most m-to-one measure sub-quotients

In this section we shall prove the second items of Theorem 4.3 and Theorem 4.4.
The common feature between these statements is that the coupling is supposed to be at most

m-to-one. This has the following consequence.

Lemma 4.19. Let (Ω, XΛ, µ) be an at most m-to-one measure sub-quotient coupling between Γ and
Λ. Let XΓ be a fundamental domain for the Γ-action. Let f be a function on Λ whose support has
cardinality at most K, and let (fx)x∈XΓ be the family of functions on Γ defined by

fx(γ) =

 ∑
λ : λ∗(γ∗x)∈XΛ

|f(λ)|p
1/p

,

for some p > 0. Then for each x ∈ XΓ, the function fx has support of cardinality at most mK.

Proof. Let x ∈ XΓ, let λ0 ∈ Λ such that λ0 ∗ x ∈ XΛ. By definition for every γ ∈ Γ and λ ∈ Λ we have
λ ∗ (γ ∗ x) ∈ XΛ if and only if λ ∗ (γ ∗ x) = γ · (λ0 ∗ x), which since the Γ and Λ-actions on Ω commute
is in turn equivalent to λ ∗ x = γ−1 ∗ (γ · (λ0 ∗ x)). So we have

fx(γ) =
∑

λ : λ∗x=γ−1∗(γ·(λ0∗x))

f(λ).

The conclusion now follows from our assumption that the map γ 7→ γ−1 ∗ (γ · (λ0 ∗ x)) is at most
m-to-one.
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Proof of Theorem 4.3(ii). We start with a function f that realizes the Lp-isoperimetric profile of Λ,
and we consider the function f̃ on Ω defined in Proposition 4.16. By Proposition 4.16, there exists C ′

only depending on the coupling such that

‖∇SΓ
f̃‖pp

‖f̃‖pp
6 C ′

∥∥∇rSΛ
f
∥∥p
p

‖f‖pp
. (11)

This implies that on a set of positive measure, the function fx on Γ satisfies

‖∇lSΓ
fx‖pp

‖fx‖pp
< 2C ′

∥∥∇rSΛ
f
∥∥p
p

‖f‖pp
. (12)

Indeed, assume by contradiction that the reverse inequality holds on a subset Z ⊆ XΓ of full measure.
This means that for all x ∈ Z,

‖∇lSΓ
fx‖pp > 2C ′

∥∥∇rSΛ
f
∥∥p
p

‖f‖pp
‖fx‖pp.

But integrating over x ∈ Z, we get a contradiction with (11). On the other hand, by Lemma 4.19,

the support of fx has size at most m| supp(f)|. Hence we deduce that jp,Γ(mn) > jp,Λ(n)
2C′ , so we are

done.

Remark 4.20. Note that the previous argument does not provide any information on the measure of
the set on which inequality (12) holds.

Proof of Theorem 4.4(ii). As before we start with a function f that realizes the L1-isoperimetric profile
of Λ. We then normalize f such that

∥∥∇rSΛ
f
∥∥

1
= 1 and consider the function f̃ on Ω defined in

Proposition 4.16. We deduce from Proposition 4.17 that

‖∇SΓ
f̃‖1

‖f̃‖1
6

C ′

ϕ(‖f‖1)
,

and the rest of the proof is identical.

4.5 Monotonicity under measure quotients

In this section we prove the first items of Theorem 4.3 and Theorem 4.4. On rescaling the measure, we
may assume that XΓ has measure 1. Note that since XΛ intersects every Λ-orbit, we can then find a
finite subset W of Λ so that Z := (W ∗XΛ) ∩XΓ has measure at least 3/4. Let us fix once and for all
such a set W .

Given n > 1, we let f1 be a function that realizes the (right) isoperimetric profile of Λ at n. We
start modifying it as follows. We define a function f2 on Λ by

f2(λ) =

(∑
w∈W

|f1(wλ)|p
)1/p

.

The important fact is that f2 “almost” realizes the isoperimetric profile of Λ: the support of f2 has size
at most |W | times the support of f1, and we have ‖f2‖p > ‖f1‖p. Using the same inequalities as in the
proof of Lemma 4.13 we obtain

‖∇rSΛ
f2‖pp 6 |W | ‖∇rSΛ

f1‖pp. (13)

For all p > 0, we set

f̃2(ω) =

( ∑
λ : λ∗ω∈XΛ

f2(λ)p

)1/p

.
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As in the previous section, this provides for each x ∈ XΓ a function fx2 on Γ given by

fx2 (γ) = f̃2(γ ∗ x) =

 ∑
λ : λ∗γ∗x∈XΛ

f2(λ)p

1/p

.

Therefore, under the assumption that p > 1 (in order to prove Theorem 4.3.(i)), Proposition 4.16 and
Remark 4.18 imply that for all ε > 0, we find two subsets V and V ′ of XΓ of measure 1− ε, such that
for all x ∈ V , ∥∥∇lSΓ

fx2
∥∥p
p
6
C

ε

∥∥∇rSΓ
f2

∥∥p
p
,

and for all x ∈ V ′

| supp(fx2 )| 6 1

ε
µ(XΛ)| supp(f2)|.

For the proof of Theorem 4.4, we normalize f2 such that ‖∇SΓf2‖1 = 1. Using Proposition 4.17 instead
of Proposition 4.16, we find two subsets V and V ′ of XΓ of measure 1− ε, such that for all x ∈ V ,∥∥∇lSΓ

fx2
∥∥

1∥∥∥f̃2

∥∥∥
1

6
2C

εϕ(‖f2‖1)
,

and for all x ∈ V ′

| supp(fx2 )| 6 1

ε
µ(XΛ)| supp(f2)|.

In what follows, it will be sufficient to take ε = 1/5. The proof of Items (i) of Theorem 4.3 and
Theorem 4.4 will be finished if we can find a subset Y ⊆ XΓ of measure > 2/5 on which the `p-norm of
fx2 satisfies a uniform lower bound linear in ‖f2‖p. Indeed, this ensures that for all x in the non-empty
set V ∩ V ′ ∩ Y , the function fx2 gives the required bound on the (left) isoperimetric profile of Γ.
The existence of such a subset is given by the following lemma, whose proof occupies the rest of the
subsection. This is where we use our initial assumption that the set Z = (W ∗XΛ) ∩XΓ has measure
at least 3/4.

Lemma 4.21. There exists a measurable subset Y ⊆ XΓ of measure at least 1/2 such that for all
x ∈ Y ,

‖fx2 ‖
p
p >

1

4
‖f1‖pp .

Remark 4.22. Before proceeding to the proof of the lemma, let us briefly explain its main idea. The
issue that prevents us from obtaining such a lower bound directly from the lower bound on the norm of
f̃2 comes from the fact that we cannot rule out the possibility that in the integral∥∥∥f̃2

∥∥∥p
p

=

∫
XΓ

‖fx2 ‖
p
p dµ(x),

most of the contribution comes from a very tiny portion of XΓ where ‖fx2 ‖p is much bigger than

‖f2‖p. If we could combine this lower bound with an uniform upper bound ‖fx2 ‖
p
p 6 K ‖f2‖pp, then

this problem would not arise. The reason why such an upper bound is a priori not available is due
to the fact that the Γ-orbit of x ∈ XΓ could potentially meet many times a same translate of XΛ. In
other words, when writing ‖fx2 ‖

p
p =

∑
γ

∑
λ : λ∗γ∗x∈XΛ

f2(λ)p =
∑
λ nx(λ)f2(λ)p, the “multiplicities”

nx(λ) ∈ N might be very large. Therefore, our strategy consists in replacing this expression by a sum
where all the multiplicities are at most one. To be more precise, we will replace it by

∑
λ:λ·x∈Z |f1(λ)|p.

We first have to make sure that this new expression is controlled from above by
∥∥∥f̃2

∥∥∥p
p

(Inequality 14)

and check that after integrating over XΓ, this new expression still captures a reasonable fraction of
‖f1‖pp (Inequality 15). The conclusion will then follow by confronting this lower bound on the integral

with the pointwise trivial upper bound
∑
λ:λ·x∈Z |f1(λ)|p 6 ‖f1‖pp (Claim 4.23).
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Proof. We start by establishing the following upper bound.∑
λ:λ·x∈Z

|f1(λ)|p 6 ‖fx2 ‖
p
p . (14)

First note that for all x ∈ XΓ and λ ∈ Λ such that λ·x ∈ Z, there is γ ∈ Γ such that λ∗γ∗x ∈W ∗XΛ.
Indeed, this follows by inspection of the definitions: λ · x ∈ Z means that there exists γ ∈ Γ such that
λ ∗ γ ∗ x ∈ Z, and therefore that λ ∗ γ ∗ x ∈W ∗XΛ.

We deduce the following crude inequality, which we then rewrite by exchanging orders of summation:∑
λ : λ·x∈Z

|f1(λ)|p 6
∑
λ

∑
γ : λ∗γ∗x∈W∗XΛ

|f1(λ)|p

6
∑
γ

∑
λ : λ∗γ∗x∈W∗XΛ

|f1(λ)|p .

We can bound the above sum by∑
γ

∑
w∈W

∑
λ : w−1λ∗γ∗x∈XΛ

|f1(λ)|p =
∑
γ

∑
w∈W

∑
λ : λ∗γ∗x∈XΛ

|f1(wλ)|p

=
∑
γ

∑
λ : λ∗γ∗x∈XΛ

f2(λ)p

= ‖fx2 ‖
p
p .

Putting this together with the previous inequality, we obtain (14).
We then have the following inequality, using our initial assumption that the set Z = (W ∗XΛ)∩XΓ

has measure at least 3/4: ∫
XΓ

∑
λ:λ·x∈Z

|f1(λ)|p dµ(x) >
3

4
‖f1‖pp . (15)

Indeed, the following chain of inequalities hold:∫
XΓ

∑
λ:λ·x∈Z

|f1(λ)|p dµ(x) >
∫
XΓ

∑
λ∈Λ

|f1(λ)|p 1λ−1·Z(x)dµ(x)

=
∑
λ∈Λ

(
|f1(λ)|p

∫
XΓ

1λ−1·Z(x)dµ(x)

)
= ‖f1‖pp µ(Z) >

3

4
‖f1‖pp ,

so (15) is proved. We now use this inequality in our final claim.

Claim 4.23. There is a subset Y ⊆ XΓ of measure at least 1/2 such that for all x ∈ Y ,∑
λ : λ·x∈Z

|f1(λ)|p > 1

4
‖f1‖pp .

Proof. Indeed, assume by contradiction that∑
λ : λ·x∈Z

|f1(λ)|p < 1

4
‖f1‖pp
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for all x in a set U ⊆ XΓ of measure strictly larger than 1/2. Then by Inequality (15), we have

3

4
‖f1‖pp 6

∫
U

∑
λ : λ·x∈Z

|f1(λ)|p dµ(x) +

∫
Uc

∑
λ : λ·x∈Z

|f1(λ)|p dµ(x)

<
1

4
‖f1‖pp +

1

2
‖f1‖pp

<
3

4
‖f1‖pp ,

which is a contradiction.

Putting the above claim together with Inequality (14) we deduce that for all x ∈ Y ,∑
γ∈Γ

|fx2 (γ)|p >
∑

λ : λ·x∈Z

|f1(λ)|p > 1

4
‖f1‖pp

as wanted.

4.6 Can there be a quantitative version of the Ornstein-Weiss theorem?

In this section, we first observe that any two amenable groups admit a (ϕ,ϕ)-integrable orbit equivalence
coupling for some ϕ which grows slower than the logarithm, and then that there cannot be a universal
such ϕ, thus proving Corollary 5 from the introduction.

Proposition 4.24. For every orbit equivalence coupling between two finitely generated groups Γ and
Λ, there exists a concave increasing unbounded function ϕ with ϕ(0) = 0 and a (ϕ,ϕ)-integrable orbit
equivalence coupling between them. Moreover one can assume that ϕ(t)/ log t is non-increasing on
[1,∞).

Proof. Denote by α : Γ×X → Λ and β : Λ×X → Γ the two cocycles associated to our orbit equivalence.
Let

k(t) = µ

({
x ∈ X; max

s∈SΓ

|α(s, x)|SΛ
> t

})
+ µ

({
x ∈ X; max

s∈SΛ

|β(s, x)|SΓ
> t

})
.

Since k tends to zero at infinity, there exists an increasing sequence of positive integers (an) such
that a0 = 0, and k(an) 6 2−n. Up to taking a subsequence, we can assume that an+1 − an and log an

n
are non-decreasing. Let ϕ be the continuous piecewise linear function with breakpoints an satisfying
ϕ(an) = n. Note that ϕ is increasing, concave and such that ϕ(t)/ log t is non-increasing on [1,∞).
Moreover we have for all s ∈ SΓ,∫

ϕ(|α(s, x)|SΛ)dµ(x) 6
∑
n>0

ϕ(an+1)µ ({x ∈ X; |α(s, x)|SΛ > an})

6
∑
n>0

(n+ 1)k(an)

6
∑
n>0

2−n(n+ 1) <∞,

The same computation shows that for all s ∈ SΛ,∫
ϕ(|β(s, x)|SΓ

)dµ(x) <∞.

So we are done.
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We deduce the following quantitative version of Ornstein and Weiss’s theorem.

Corollary 4.25. Let Γ and Λ be infinite finitely generated amenable groups. There exists a concave
increasing unbounded function ϕ satisfying ϕ(0) = 0 and ϕ(t)/ log t is non-increasing on [1,∞) such
that there is a (ϕ,ϕ)-integrable orbit equivalence coupling between them.

Recall the following theorem from [BZ21, Thm. 1.1].

Theorem 4.26. Let F be an increasing function such that F (t)/ log t is non-increasing on [1,∞).
Then there exists a finitely generated group Γ whose isoperimetric profile satisfies j1,Γ ≈ F .

We deduce the following corollary, which is in sharp contrast with Corollary 4.25.

Corollary 4.27. For every concave increasing unbounded function ψ such that ψ(t)/ log t is non-
increasing on [1,∞) there exists a finitely generated amenable group Γ with the following property: for
every concave function ϕ such that ϕ(0) = 0, if Γ is a ϕ-integrable measure quotient (or an at most
m-to-one measure sub-quotient) of Z, then ϕ 4 ψ.

Proof. Consider the function F (t) = ψ(t), then F (t)/ log t = ψ(t)/ log t, so it is non-increasing on
[1,+∞). We can then apply Theorem 4.26 and find a finitely generated group Γ whose isoperimetric
profile satisfies j1,Γ ≈ F .

Now let ϕ be a concave non-decreasing function such that ϕ(0) = 0, then by concavity we have that
t/ϕ(t) is non-decreasing. If there is a ϕ-integrable measure quotient coupling from Γ to Z, then we can
apply Theorem 4.4, and since j1,Z(n) ≈ n and j1,Γ ≈ ψ we get that ϕ 4 ψ as wanted.

Proof of Corollary 5. Let Γ be a finitely generated amenable groups, and let ϕ be a positive, unbounded
increasing function. Reasoning as in the proof of Corollary 4.25, we find ϕ′ 6 ϕ that is increasing,
unbounded, concave and such that ϕ′(0) = 0. By Corollary 4.25, there exists a concave increasing
function θ and a (θ,L0) measure equivalence coupling from Λ to Z. Note that the two conditions: f is
increasing and t/f(t) is non-decreasing are stable under composition. Hence the function ψ = log ◦ϕ′ ◦θ
satisfies those conditions. We now find a group Γ, which satisfies the conclusion of Corollary 4.27 for
our function ψ.

Now assume by contradiction that there exists a (ϕ,L0)-integrable measure equivalence coupling
from Γ to Λ. Such a coupling is also (ϕ′,L0)-integrable. Hence, composing these couplings yields a
(ϕ′ ◦ θ,L0)-integrable measure equivalence coupling from Γ to Z. Since ψ is strictly slower than ϕ′ ◦ θ,
this contradicts Corollary 4.27.

5 L∞ measure subgroups

In this section we discuss the notion of at most m-to-one L∞-measure subgroups. We shall see that for
amenable groups this notion is equivalent to that of regular map, which will allow us to deduce various
results stated in the introduction.

5.1 L∞ measure subgroups and regular maps

The following proposition can be extracted from the proof of [Sha04, Thm. 2.1.2], and provides a useful
way of building measured subgroup couplings from Borel sub-quotient couplings.

Proposition 5.1. Let Ω be a standard Borel space, suppose that we have a Γ×Λ-action on Ω with the
following properties:

• the Λ-action is free and admits a Borel fundamental domain XΛ,

• there exists a Γ-invariant probability measure µ for the induced action on XΛ.
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Then µ has a unique Λ-invariant extension to a σ-finite invariant measure m on Ω which is Γ-invariant
as well. In particular, if the Γ-action on Ω is free and has a Borel fundamental domain, then Γ is a
measure subgroup of Λ.

Proof. Since every Borel subset of Ω is a countable disjoint union of Λ-translates of Borel subsets of
XΛ, the Λ-invariant extension of µ is unique. We build it by letting

m(A) =
∑
λ∈Λ

µ((λ ∗A) ∩XΛ).

By definition, the measure m is Λ-invariant, let us show that it is Γ-invariant as well. Let γ ∈ Γ, if A is
a Borel subset of XΛ, by the definition of the induced action on XΛ we have

γ ·A =
⊔
λ∈Λ

(λ ∗ γ ∗A) ∩XΛ

and so m(γ ∗A) = µ(γ ·A) = µ(A) = m(A). Now for an arbitrary λ ∈ Λ and a Borel subset A ⊆ XΛ,
we have

m(γ ∗ (λ ∗A)) = m(λ ∗ (γ ∗A)) = m(γ ∗A) = m(A) = m(λ ∗A),

and since every Borel subset of Ω is a countable disjoint union of Λ-translates of Borel subsets of XΛ,
we conclude that the Γ-action on Ω preserves m.

Recall the following definition from [BST12].

Definition 5.2. Let Γ and Λ be two countable finitely generated groups, a map f : Γ→ Λ is a regular
map if it is Lipschitz and there exists m ∈ N such that the preimages of f have size at most m for some
m ∈ N, i.e. supλ∈Λ |f−1({λ})| 6 m. When there exists such a map, we say that Γ regularly embeds in
Λ.

Remark 5.3. Coarse embeddings are special cases of regular maps.

The second part of the following theorem is a slightly generalized version of [Sha04, Thm. 2.1.2]
(which was proved for coarse embeddings).

Theorem 5.4. Let Γ and Λ be finitely generated groups.

• Assume that Γ is an at most m-to-one L∞ measure subgroup of Λ. Then Γ regularly embeds into
Λ.

• Conversely, if Γ regularly embeds into Λ and Γ is amenable, then there exists m ∈ N such that Γ
is an at most m-to-one L∞ measure subgroup of Λ.

We deduce from the first statement of Theorem 5.4 and the fact that asymptotic dimension is
monotonous under regular map (see [BST12]) the following corollary.

Corollary 5.5. The asymptotic dimension is monotonous under taking at most m-to-one L∞ measure
subgroups.

And from the second part of the theorem, we deduce the following result, which we announced in
the introduction.

Corollary 5.6. For every 1 6 p 6 ∞, the isoperimetric profile is monotonous under regular map
between amenable groups.

Proof. Let Γ and Λ be finitely generated amenable groups. By the previous theorem, the existence of a
regular map from Γ to Λ implies that there is an at most m-to-one L∞ measure subgroup coupling from Γ
to Λ. Such a coupling is in particular L1, so the result follows from the second item in Theorem 4.3.
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The rest of this subsection is dedicated to the proof of the theorem.

Proof of Theorem 5.4. To prove the first statement, we let (Ω, XΛ, µ) be an m-to-one L∞ subgroup
coupling from Γ to Λ, and consider the associated cocycle α : Γ×XΛ → Λ. Let K > 0 be such that
|α(s, x)|SΛ 6 K for all s ∈ SΓ and a.e. x ∈ X. The assumptions imply that for a.e. x ∈ XΛ, the map
α(·, x) : Γ→ Λ is at most m-to-one and K-Lipschitz, hence is a regular map.

We now prove the second statement of the theorem. We let K > 1 and m ∈ N such that there is
an m-to-one K-Lipschitz maps Γ→ Λ. We then let F be a finite set of cardinality m, and denote by
πΛ : Λ× F → Λ the projection on the first coordinate. Our coupling space is

Ω := {f : Γ→ Λ× F : f is injective and πΛ ◦ f is K-Lipschitz}

Note that since F has cardinality m, every at most m-to-one map Γ→ Λ can be lifted to an injective
map Γ → Λ × F , so Ω is not empty. The Lipschitz condition and the fact that balls in Λ are finite
ensures that Ω is locally compact for the product topology, and hence is a standard Borel space. We
have a Γ× Λ-action given by (γ, λ) · f(g) = λf(γ−1g), and a compact fundamental for the Λ-action is
given by XΛ = {f ∈ Ω: πΛ(f(1Γ)) = 1Λ}. A Borel fundamental domain XΓ for the Γ-action can be
obtain as follows: we fix a well-order < on Λ× F , and let XΓ be the set of functions f which attain
their <-minimum at 1Γ.

The cocycle α : Γ × XΛ → Λ is given by α(γ, f) = πΛ(f(γ−1))−1, and the injectivity condition
implies that Γ acts freely. Finally for each γ ∈ Γ, the Lipschitz condition implies that α(γ, ·) is bounded,
and since Γ is amenable we may find a Γ-invariant measure on XΛ which we extend via Proposition 5.1
in order to get the desired L∞ subgroup coupling. Finally, the definition of α and the fact that f is at
most m-to-one ensures that the coupling is at most m-to-one.

5.2 A continuum of 3-solvable groups

In this section we prove the following result, announced in the introduction.

Theorem 5.7. There exists an uncountable family of groups Γi, such that

(i) Γi = Ni o Z, where Ni is locally finite, and 2-step nilpotent;

(ii) for any i 6= j and any m > 1, Γi is not an at most m-to-one L1-measure sub-quotient (nor an
L1-measure quotient) of Γj.

Note that (i) implies in that Γi is 3-step solvable and has asymptotic dimension 1. Indeed, the
asymptotic dimension of an extension is less or equal than that of quotient plus that of kernel [DS06,
Thm. 2.3], and the asymptotic dimension of a locally finite group is 0 [DS06, Thm. 2.1.]. We deduce
the result announced in the introduction.

Corollary 5.8. There exists an uncountable family of groups Γi, such that

(i) Γi = Ni o Z, where Ni is locally finite, and 2-step nilpotent;

(ii) for any i 6= j and any m > 1, Γi does not regularly embed into Γj.

Proof of Theorem 5.7. To prove the theorem, we shall use [EZ21, Corollary 3.3] which is phrased
in terms of Følner function. Since the Følner function is equal to to the generalized inverse of the
L1-isoperimetric profile, i.e. FølΓ(k) = inf {n : j1,Γ(n) > k}, Corollary 5.6 implies that it is monotonous
under regular maps between amenable groups.

Now by [EZ21, Corollary 3.3], for any non-decreasing function τ : [1,∞) → [1,∞) such that
τ(n+ 1)− τ(n) 6 n and τ(n) > n, there exists a group as in (i) whose Følner function is asymptotically
equivalent to exp(τ(n)). Let us now explain how to get uncountably many asymptotically incomparable
such functions.
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Claim 5.9. For every 1 < a < b < 2, there is a non-decreasing function τa,b : N→ N such that for all
n ∈ N we have

τa,b(n) > n and τa,b(n+ 1)− τa,b(n) 6 n, (*)

and the following three conditions are met:

(1) for all but finitely many n ∈ N we have na 6 τa,b(n) 6 nb;

(2) there are infinitely many n ∈ N such that τa,b(n) = nb;

(3) the set of n ∈ N such that τa,b(n) = na contains arbitrarily large intervals.

Moreover, for every 1 < a′ < a < b < b′ < 2, the functions exp(τa,b) and exp(τa′,b′) are asymptotically
incomparable.

Proof of the claim. Let us start by proving the existence of τa,b as above for 1 < a < b < 2. First, we
fix N ∈ N such that for all n > N , we have (n+ 1)b − nb 6 n, so in particular (n+ 1)a − na 6 n. Since
b < 2, we can find N0 > N such that

N0−1∑
n=0

n > N b
0 .

We then define τa,b by induction on the interval [0, N0] letting τa,b(0) = 0 and for all n < N0,

τa,b(n+ 1) = min(τa,b(n) + n,N b
0).

Observe that by the previous inequality τa,b(N0) = N b
0 .

Suppose now by induction τa,b has been defined on an interval [0, Nk], satisfies (*) and satisfies
τa,b(Nk) = N b

k , then it suffices to explain how to extend its definition to a bigger interval [0, Nk+1] so
that it still satisfies (*) and

(1’) for all n ∈ (Nk, Nk+1] we have na 6 τa,b(n) 6 nb;

(2’) τa,b(Nk+1) = N b
k+1;

(3’) there is an interval Ik of size k such that for all n ∈ Ik, τa,b(n) = na.

In order to do so, let Mk be the first integer such that (Mk)a > N b
k . We then let τa,b(n) = N b

k for all
n ∈ (Nk,Mk), and then for all n ∈ [Mk,Mk + k] we let τa,b(n) = na, which takes care of condition (3’).

Then, since b < 2, we may and do define Nk+1 as the least integer such that

τa,b(Mk + k) +

Nk+1−1∑
n=Mk+k

n > N b
k+1.

We now define by induction on n ∈ [Mk + k,Nk+1)

τa,b(n+ 1) = min(n+ τa,b(n), nb),

which by the previous inequality guarantees that τa,b(Nk+1) = N b
k+1, so (2’) is satisfied. Finally, since

for all n > Nk, we have (n+ 1)a − na 6 n, an inspection of the definition shows that condition (*) is
still satisfied, and (1’) is clearly satisfied. This finishes the construction of the desired τa,b.

We now prove the incomparability statement. First note that we cannot have exp(τa′,b′) asymptoti-

cally bounded by exp(τa,b) since we have τa′,b′(n) = nb
′

for infinitely many n ∈ N but τa,b(n) 6 nb for
all but finitely many n ∈ N and b < b′.
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Conversely, suppose that there is C ∈ N such that for all n ∈ N, we have exp(τa,b(n)) 6
C exp(τa′,b′(Cn)). Note that the set {Cn : n ∈ N} has to intersect infinitely many times any set
which contains arbitrarily large intervals. Since τa′,b′ satisfies condition (3) we thus find infinitely may

n ∈ N such that τa′,b′(Cn) = (Cn)a
′
. On the other hand for all but finitely many n ∈ N we have

τa,b(n) > na. We conclude that there are infinitely many n ∈ N such that

exp(na) 6 C exp((Cn)a
′
),

a contradiction. �claim

We now fix for every 1 < a < b a function τa,b as above. Then it satisfies the assumption of [EZ21,
Corollary 3.3], so there is a group Γa,b satisfying (i) whose Følner function is asymptotically equivalent
to exp(τa,b).

Now, as explained right before the previous claim, the Følner function is monotonous under regular
embeddings. So by the claim for all 1 < a′ < a < b < b′ < 2, the groups Γa,b and Γa′,b′ are not regularly
embeddable one another. Therefore the family (Γ1+ε,2−ε)0<ε<1/2 is the uncountable family we were
looking for.

5.3 Stability of the Liouville property for lamplighter groups

The Liouville property is now completely understood for lamplighter groups.

Theorem 5.10. Let F be a non-trivial finite group, and let H be a finitely generated group. Let µ be a
probability measure on Γ = F oH whose support is finite and generates Γ, and let µ̄ be the projected
probability on H. Then (Γ, µ) is Liouville if and only if (H, µ̄) is recurrent.

This result is due to Kaimanovich [Kai85] when F is abelian, and to Lyons and Peres in the general
case [LP20]. By a celebrated result of Varopoulos (see [Gri18, §6.2]), if µ is an admissible probability
measure on G, (G,µ) is recurrent if and only if G has at most quadratic volume growth. Therefore, we
deduce the following corollary.

Corollary 5.11. Let F be a non-trivial finite group, and let H be a finitely generated group. Let µ be
an admissible probability measure on Γ = F oH. Then (Γ, µ) is Liouville if and only if H has at most
quadratic volume growth.

We immediately deduce that for lamplighter groups, the Liouville property is independent on the
(admissible) measure µ. We now state the main result of this subsection.

Theorem 5.12. For i = 1, 2, let Fi be a non-trivial finite group, and let Hi be a finitely generated
group. Let µi be a probability measure on Γi = Fi oHi whose support is finite and generates Γi. Assume
that Γ1 is either an at most m-to-one L1 measure sub-quotient, or an L1 measure quotient of Γ2. Then
if (Γ2, µ2) is Liouville, then so is (Γ1, µ1).

A well-known open question asked by Benjamini in [Ben12] is whether Liouville property is “invariant
under quasi-isometry”. We suggest the following variant.

Question 5.13. Let G1 and G2 be finitely generated groups equipped with admissible probability
measures µ1 and µ2. Assume that (G2, µ2) is Liouville and that G1 regularly embeds into G2. Must
(G1, µ1) be also Liouville?

This question is motivated by the following immediate corollary of Theorem 5.12 and Theorem 5.4,.

Corollary 5.14. For i = 1, 2, let Fi be a non-trivial finite group, and let Hi be a finitely generated
group. Let µi be a probability measure on Γi = Fi oHi whose support is finite and generates Γi. Assume
that Γ1 regularly embeds into Γ2. Then if (Γ2, µ2) is Liouville, then so is (Γ1, µ1).
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Proof of Theorem 5.12. By [Ers03, §2], there exist constants c, C > 0 such that the Følner function of
Γi satisfies

cecFølHi (cn) 6 FølΓi(n) 6 CeCFølHi (Cn).

This implies that
log FølΓi(n) ≈ FølHi(n).

On the other hand, by Remark 4.5, we have

FølΓ1
� FølΓ2

,

from which we deduce that
FølH1

� FølH2
.

By Corollary 5.11, we know that Γ2 has at most quadratic growth. Hence by [Cou00], we have
FølH2 � n2, and therefore FølH1 � n2. Hence by [Cou00], H1 has at most quadratic growth and so is
recurrent. So we conclude thanks to Corollary 5.11.

6 Følner tilings

6.1 Følner tiling sequences and orbit equivalence

Definition 6.1. Let Γ be an amenable group and (Fk) be a sequence of finite subsets of Γ. We call
(Fk) a (left) Følner tiling sequence if the sequence of tiles (Tk) defined inductively by by T0 = F0

and Tk+1 = TkFk+1 satisfies the following conditions:

(i) (tiling condition) for all k ∈ N, Tk+1 is a disjoint union:

Tk+1 =
⊔

γ∈Fk+1

Tkγ;

(ii) (Følner condition) (Tk) is a left Følner sequence: for all γ ∈ Γ, lim
k→+∞

|γTk \ Tk|
|Tk|

= 0.

If in addition there exists a decreasing sequence of finite index subgroups Γk such that each Fk is a set
of left coset representatives of Γk−1 modulo Γk, then we call (Fk) a profinite Følner tiling sequence
associated to (Γk).

Remark 6.2. The first condition amounts to saying that every element of Tk can uniquely be written
as f0 · · · fk where each fi belongs to Fi.

Remark 6.3. In some examples it will be more convenient to consider right Følner tiling sequences
(Fk), i.e. sequences such that (F−1

k ) is a left Følner tiling sequence. Nevertheless, every Følner tiling
sequence will be a left Følner tiling sequence unless specified otherwise.

To every Følner tiling sequence (Fk), we associate a measure-preserving Γ-action constructed as
follows. We consider the standard Borel probability space (X =

∏
k Fk, µ), where each factor is equipped

with the normalized counting measure, and µ is the product measure. Each element x = (xk)k∈N of X
defines a sequence (gk(x))k∈N of elements of Γ given by

gk(x) = x0 · · ·xk ∈ Tk

Observe that by condition (i), each gk is an equidistributed random element of Tk. In other words,
the map gn defines an isomorphism from the finite product (Xn =

∏n
k=0 Fk, µn) to Tn equipped with

the renormalized counting measure.
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Since (Tk) is a left Følner sequence, we deduce that for every γ ∈ Γ and almost every x ∈ X, there
is n such that γgn(x) ∈ Tn. We can then write uniquely γgn(x) = x′0 · · ·x′n where x′i ∈ Fi, and we then
define

γ · (xk)k∈N = (x′0, ..., x
′
n, xn+1, xn+2, ...).

Note that this does not depend on the choice of n because we have γgn+1(x) = γgn(x)xn+1 ∈ Tn+1. In
other words, the action of Γ on X is such that for every γ ∈ Γ and a.e. x ∈ X, for all n large enough,

gn(γ · x) = γgn(x). (16)

We claim that up to measure zero, this group action induces the equivalence relation of equality up
to a finite set of indices, also called the cofinite equivalence relation Ecof . In particular the action is
measure preserving: indeed the cofinite equivalence relation can be realized through the natural action
of the direct sum

⊕
kS(Fk), which is obviously measure preserving.

Indeed, we have just seen that for almost every x ∈ X and all γ ∈ Γ, x and γ · x are equal up to
a finite set of indices. Conversely, if x and x′ are such that xj = x′j for all j > k + 1, the element

γ = gk(x)gk(x′)−1 ∈ G satisfies γgk(x) = gk(x′) ∈ Tk, and hence γ · x = x′.
We deduce from this discussion the following proposition.

Proposition 6.4. Assume that (Fk) is a Følner tiling sequence for Γ. Then Γ has a measure-preserving
action on the infinite product probability space (X =

∏
k Fk, µ), which almost surely generates the

co-finite equivalence relation on this product.

Example 6.5. For instance, if Γ = Z, Fk = {0, 2k}, the tiles are Tk = {0, ..., 2k+1 − 1} and for this
example we get the usual odometer, up to renaming each Fk as {0, 1}.

The previous example generalizes as follows.

Proposition 6.6. If (Fk) is a profinite Følner tiling sequence associated to (Γk), then the action given
in Proposition 6.4 is isomorphic to the profinite action of Γ on lim←−Γ/Γk.

Proof. It follows from the assumption that Tn ' Xn is a set of left coset representatives of Γ modulo
Γn. Hence the restriction of the projection Γ→ Γ/Γn to Tn induces a bijection Φn : Xn → Γ/Γn. Note
that since Fn ⊆ Γn−1, we have πn−1(gn(x)) = πn−1(gn−1(x)) for all x ∈ X. Hence, the sequence (Φn)
induces a map Φ : X → proj lim Γ/Γk, x 7→ (πn(gn(x))), which is an isomorphism of probability spaces.
By Equation (16), for a.e. x ∈ X and all γ ∈ Γ we have gn(γ ·x) = γgn(x) for all large enough n. Hence
Φ intertwines the two Γ-actions and we are done.

Consider the following (possibly infinite) measurable distance on X given by

ρ(x, x′) = inf{n ∈ N : ∀k > n, xk = x′k}

Observe that x and x′ are equal up to a finite set of indices if and only if ρ(x, x′) < +∞. Also, by the
definition of our action, for every γ ∈ Γ and almost every x ∈ X we have that ρ(γ · x, x) > k if and
only if γgk(x) 6∈ Tk. In particular,

µ ({x, ρ(γ · x, x) > k}) =
|Tk \ γ−1Tk|
|Tk|

=
|γTk M Tk|

2|Tk|
. (17)

In order to obtain quantitative statements, we introduce the following parameters.

Definition 6.7. Let (εk) be a non-increasing sequence of strictly positive numbers tending to 0, and
(Rk) be a sequence of positive reals. Say that a Følner tiling sequence (Fk) of a finitely generated group
Γ equipped with a finite generating set SΓ is an (εk, Rk)-Følner tiling sequence if

(i) each tile Tk has dSΓ
-diameter at most Rk,
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(ii) every s ∈ SΓ satisfies |Tk \ sTk| 6 εk|Tk|.

We shall need the following key observation.

Lemma 6.8. Let (Fk) be (εk, Rk)-Følner tiling sequence of a finitely generated group Γ equipped with
a finite generating set SΓ. Then

(i) for all s ∈ SΓ, we have for all k > 0 that µ ({x ∈ X : ρ(s · x, x) > k}) 6 εk;

(ii) for almost every x ∈ X, if |γ|SΓ > 2Rk, then ρ(γ · x, x) > k.

Proof. The first item follows from Equation (17). To prove the second item, we simply observe that if
|γ|SΓ

> 2Rk, then γTk ∩ Tk = ∅ as diam(Tk) 6 Rk.

Consider two amenable groups Γ and Γ′ admitting respective Følner tiling sequences (Fk) and (F ′k)
such that |Fk| = |F ′k|. Then Proposition 6.4 provides us with free measure-preserving actions of Γ and
Γ′ on X =

∏
k{1, . . . , |Fk|}, with same orbits. The following proposition relates the parameters of the

Følner tiling sequences with the integrability of the cocycles.

Proposition 6.9. Suppose that (Fk) is an (εk, Rk) Følner tiling sequences for Γ and (F ′k) is an
(ε′k, R

′
k) Følner tiling sequence for Γ′, such that |Fk| = |F ′k| for all k ∈ N. Let ϕ : [0,∞)→ [0,∞) be a

non-decreasing function such that the sequence (ϕ(2R′k)(εk−1 − εk))k∈N is summable. Then the orbit
equivalence coupling constructed above from Γ to Γ′ is (ϕ,L0)-integrable: for all s ∈ SΓ∫

X

ϕ(dSΓ′ (x, s · x))dµ(x) < +∞.

Proof. By Lemma 6.8, for all s ∈ SΓ and for all k ∈ N,

µ
(
{x ∈ X : dSΓ′ (x, s · x) > 2R′k}

)
6 µ ({x ∈ X : ρ(s · x, x) > k}) 6 εk.

We then exploit the fact that ϕ is increasing: for s ∈ SΓ we have that∫
X

ϕ(dSΓ′ (x, s · x))dµ(x) 6 ϕ(2R′0) +

∞∑
k=1

ϕ(2R′k)µ
(
{x ∈ X : 2R′k−1 < dSΓ′ (x, s · x) 6 2R′k}

)
6 ϕ(R′0) +

∞∑
k=1

ϕ(2R′k)(εk−1 − εk),

which is finite by assumption.

6.2 Applications to groups with polynomial growth

We start applying Proposition 6.9 to torsion-free abelian groups.

Proposition 6.10. Let n be a positive integer. The group Zn (equipped with its standard generating set)
admits a profinite (εk, Rk)-Følner tiling sequence (Fk), with |Fk| = 2n, Rk = n2k+1 and εk = 2−(k+1)

for any k > 0.

Proof. We let Fk = {0, 2k}n for any k > 0. One can check that Tk = {0, 1, . . . , 2k+1 − 1}n, which is a
coset representative for the finite index subgroup Γk = (2k+1Z)n. The diameter of Tk is bounded by
n2k+1 and its size equals 2n(k+1). Finally take s a generator of Zn. Without loss of generality, we can
assume that s is the first basis vector in Zn. Then, we have

Tk \ ((1, 0, . . . , 0) + Tk) = {0} × {0, 1, . . . , 2k+1 − 1}n−1,

whose cardinality is 2k+1 smaller than that of Tk, so we are done.
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Corollary 6.11. Let n and m be positive integers. The group Zn (equipped with its standard generating
set) admits a (εk, Rk)-Følner tiling sequence (F ′k), with |F ′k| = 2nm, Rk = n2m(k+1) and εk = 2−m(k+1)

for any k > 0.

Proof. Let (Fk)k be the Følner tilling sequence given in Proposition 6.10 and for any k > 0 let F ′k =
FmkFmk+1 . . . Fmk+m−1. Note that F ′k = {0, 2mk, 2·2mk, . . . , (2m−1)2mk}n and T ′k = {0, 1, . . . , 2mk+m−
1}n.

As T ′k is the set Tmk+m−1 from Proposition 6.10 we have that the diameter of T ′k is at most n2mk+m

and the set T ′k \ (s+ T ′k) has cardinality at most 2−mk−m|T ′k| for any standard generator s of Zn.

The following theorem is almost sharp since by our extensions of Bowen’s theorem (Theorem 3.1),
if n < m and p > n

m , then there cannot be an Lp measure sub-quotient coupling from Zm to Zn.

Theorem 6.12. For every n and m, there exists an orbit equivalence coupling from Zm to Zn which is
for every ε > 0 a (ϕε, ψε)-integrable coupling, where

ϕε(x) =
xn/m

log(x)1+ε
and ψε(x) =

xm/n

log(x)1+ε
.

In particular if n < m, then then there is an (Lp,Lp
′
) orbit equivalence coupling from Zm to Zn for all

p < n
m and p′ < m

n .

Proof. Applying Corollary 6.11, we find a (εk, Rk)-Følner tiling sequence (Fk)k for Zm with |Fk| = 2nm,
Rk = m2n(k+1) and εk = 2−n(k+1)+1. Similarly, we find a (ε′k, R

′
k)-Følner tiling sequence (F ′k)k for

Zn with |F ′k| = 2nm , R′k = n2m(k+1) and ε′k = 2−m(k+1)+1. Note that ϕε(R
′
k)εk−1 = O(k−(1+ε)) and

ψε(Rk)ε′k−1 = O(k−(1+ε)). Thus, by Proposition 6.9, we obtain an orbit equivalence coupling from
Zm to Zn which is (ϕε, ψε)-integrable. Finally if n < m then for all p < n/m we both have that
xp = o(ϕε(x)) and xp

′
= o(ψε(x)) as x→ +∞ so our coupling is also (Lp,Lp

′
).

Remark 6.13. The expert reader will recognize in the above proof an explicit orbit equivalence
between the dyadic Zn and Zm odometers. Moreover, using this point of view it can be shown that
this coupling is not ψ0-integrable, so we ask the following refinements of question 1.4.

Question 6.14. Let n < m, is there a (ϕ,L∞)-integrable measure equivalence coupling from Zm to

Zn, where ϕ(x) = xn/m

log(x) ? What about a (ϕ,L0)-integrable measure equivalence coupling ?

Recall that the Heisenberg group is the 2-step torsion-free nilpotent group that can be defined as
the group of triples (x, y, z) ∈ Z3 equipped with the group operation

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + yx′),

which comes from its identification with the group of matrices of the form

1 0 0
x 1 0
z y 1

. We equip it

with the standard generating set S = {E±1
1 , E±1

2 }, where E1 = (1, 0, 0) and E2 = (0, 1, 0).

Proposition 6.15. The Heisenberg group admits a profinite (εk, Rk)-Følner tiling (Fk) such that
|Fk| = 16, Rk = 10 · 2k+2 , and εk = 2−k for any k > 0.

Proof. For every k > 0 let

Fk =
{

(2kx, 2ky, 4kz) : x, y ∈ {0, 1}, z ∈ {0, 1, 2, 3}
}
.

We claim that (Fk) is the profinite left Følner tiling we are looking for.
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First note that our sequence is profinite because the set Fk is a right coset representative of Γk−1

modulo Γk, where Γk−1 is the (non normal) finite index subgroup

Γk−1 =
{

(x, y, z) : x ≡ y ≡ 0 mod 2k, z ≡ 0 mod 4k
}
.

We then check that (Fk) satisfies the tiling condition. Let A = (xA, yA, zA) ∈ Tk. By our definition
of Tk, we can write A as

A = (x0, y0, z0)(2x1, 2y1, 4z1) · · · (2kxk, 2kyk, 4kzk) (18)

with xi, yi,∈ {0, 1}, and zi ∈ {0, 1, 2, 3}, which yields

xA =

k∑
i=0

2ixi, yA =

k∑
i=0

2iyi, and zA =

k∑
i=0

4izi +

k∑
i=1

2ixi

i−1∑
j=0

2jyj (19)

We thus see that we can recover the finite sequences (xi)
k
i=0 and (yi)

k
i=0 from the coefficients (xA, yA, zA)

of A as the binary expansions of xA and yA respectively, and then similarly ((zi)
k
i=0) is also completely

determined by (xA, yA, zA). Therefore the above decomposition of A as an element of F0 · · ·Fk is
unique for every element in Tk.

We now check that the diameters of the tiles are as claimed. Let B ∈ Fk, we have B =
(2kx, 2ky, 4kz) for some x, y ∈ {0, 1}, z ∈ {0, 1, 2, 3} and a straightforward computation shows

B = E2kx
1 E2ky

2 [E2k

1 , E2kz
2 ]. We thus have that Fk is contained in the ball of radius 10 · 2k around the

identity. Hence Tk is contained in a ball of radius 10 · 2k+1, and so has diameter at most 10 · 2k+2 as
claimed.

We finally check the quantitative Følner condition. We first estimate |Tk \E1Tk|. To do so, let us
consider an element A ∈ Tk such that E1A ∈ Tk. We decompose A according to (18):

A = (x0, y0, z0)(2x1, 2y1, 4z1) · · · (2kxk, 2kyk, 4kzk) = (xA, yA, zA).

We have E1A = (xA + 1, yA, zA), so if the latter belongs to Tk, then by Equation (19) one of the xi’s
must vanish. We let m be the least i such that xi = 0 and we will now count the number of possible
A’s for a given m ∈ {0, . . . , k}.

First note that there are 2k−m possibilities for x0, . . . , xk since we must have x0 = . . . = xm−1 = 1
and xm = 0. There are 2k+1 possibilities for y0, . . . , yk, and we now have to understand precisely
what are the conditions on the zi’s: we will bound from below the number of possible parameters
z0, ..., zk ∈ {0, 1, 2, 3} such that the element

A = (x0, y0, z0)(2x1, 2y1, 4z1) · · · (2kxk, 2kyk, 4kzk) = (xA, yA, zA)

satisfies E1A ∈ Tk. We have E1A = (xA + 1, yA, zA), so if the latter belongs to Tk, then by Equation
(19) its decomposition

E1A = (x′0, y
′
0, z
′
0)(2x′1, 2y

′
1, 4z

′
1) · · · (2kx′k, 2ky′k, 4kz′k)

is given by x′i = 0 for i < m, x′m = 1 and x′i = xi for i > m, y′i = yi for all i ∈ {0, ..., k}, and finally the
z′i’s are subject to the equation

k∑
i=0

4iz′i +

k∑
i=1

2ix′i

i−1∑
j=0

2jyj =

k∑
i=0

4izi +

k∑
i=1

2ixi

i−1∑
j=0

2jyj .
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We thus have:

k∑
i=0

4iz′i =

k∑
i=0

4izi +

k∑
i=1

2i(xi − x′i)
i−1∑
j=0

2jyj , (20)

Now recall that x′i = 0 for i < m, x′m = 1 and x′i = xi for i > m, so we can rewrite the last term as

k∑
i=1

2i(xi − x′i)
i−1∑
j=0

2jyj =

m∑
i=1

2i
i−1∑
j=0

2jyj − 2m
m−1∑
j=0

2jyj

We deduce that
∑k
i=1 2i(xi − x′i)

∑i−1
j=0 2jyj is negative, and its absolute value is strictly less than 4m.

Hence (20) has a solution, and thus E1A ∈ Tk, as soon as
∑k
i=0 4izi > 4m. Taking the contrapositive,

we see that there are at most 4m possibilities for the sequence (zi)
k
i=0 so that E1A 6∈ Tk.

We conclude that for a fixed m, we have 2k−m possible xA’s, 2k+1 possible yA’s and at most 4m

possible zA’s such that E1A /∈ Tk, which yields a total of 2k−m2k+14m = 22k+12m possibilities. When
xi = 1 for every i, we never have E1A ∈ Tk, and then this adds 2k+14k+1 = 23k+3 possibilities.

We conclude that there are at most 23k+3 +

k∑
m=0

22k+12m < 23k+4 choices of A such that E1A /∈ Tk,

which means that |E1Tk \ Tk| < 23k+4.
To estimate the cardinality of E2Tk \ Tk, we proceed similarly. We consider A ∈ Tk such that

E2A ∈ Tk. We let m be such that y0 = · · · = ym−1 = 1, ym = 0. Similarly as before, if E2A ∈ Tk we
may write it as

E2A = (xA, yA + 1, xA + zA) = (x′0, y
′
0, z
′
0)(2x′1, 2y

′
1, 4z

′
1) · · · (2kx′k, 2ky′k, 4kz′k).

So by Equation (19) for all i ∈ {0, ..., k} we have x′i = xi, y
′
0 = · · · = y′m−1 = 0, y′m = 1 and y′i = yi for

all i > m. Finally the z′i’s satisfy

k∑
i=0

4iz′i +

k∑
i=1

2ixi

i−1∑
j=0

2jy′j =

k∑
i=0

2ixi +

k∑
i=0

4izi +

k∑
i=1

2ixi

i−1∑
j=0

2jyj .

We may rewrite our previous equation as

k∑
i=0

4iz′i −
k∑
i=0

4izi =

k∑
i=1

2ixi

i−1∑
j=0

2j(yj − y′j) +

k∑
i=0

2ixi

We then decompose the first sum in the right term, noting that for all i > m,
∑i−1
j=0 2j(yj − y′j) = −1 :

k∑
i=0

4iz′i −
k∑
i=0

4izi =
m∑
i=1

2ixi

i−1∑
j=0

2j −
k∑

i=m+1

2ixi +

k∑
i=0

2ixi

=

m∑
i=1

2ixi(2
i − 1) +

m∑
i=0

2ixi

=

m∑
i=1

4ixi + x0

< 22m+1

So for these xA and yA there exists at most 22m+1 values of zA such that E2A /∈ Tk (namely those such

that
∑k
i=0 4izi + 22m+1 > 4k+1) and as before we conclude that there exists at most

2k+14k+1 +

k∑
m=0

2k+12k−m22m+1 < 23k+4
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choices of A such that E2A /∈ Tk. Thus, altogether we have that |EiTk \ Tk| 6 23k+4 for i ∈ {1, 2}, and
since |Tk| = 24k+4 we conclude that

|EiTk \ Tk| 6 2−k|Tk|,

so that we can indeed pick εk = 2−k.

Theorem 6.16. There exists an orbit equivalence coupling between Z4 and Heis(Z) which is (ϕε, ϕε)-
integrable for all ε > 0, where

ϕε(x) =
x

log(x)1+ε
.

In particular the coupling is (Lp,Lp) for all p < 1.

Proof. This follows from Proposition 6.9, using the Følner tilings provided by Proposition 6.10 and
Proposition 6.15.

Remark 6.17. As explained in the introduction, there cannot be an L1 measure equivalence coupling
between Z4 and Heis(Z). We thus ask the following question.

Question 6.18. Is there a (ϕ0, ϕ0)-integrable measure equivalence coupling between Z4 and Heis(Z),
where ϕ0(x) = x

log(x) ?

6.3 A coupling between Z and the lamplighter groups

Given two countable groups Λ, Γ and a function f : Γ → Λ, the support of f is given by supp f =
{γ ∈ Γ: f(γ) 6= eΛ}. The space ΛΓ is a group for pointwise multiplication. We then define

⊕
γ∈Γ Λ

as the subgroup of ΛΓ consisting of all functions which have finite support. Finally, we the wreath
product Λ o Γ is by definition the semi-direct product

Λ o Γ :=
⊕
γ∈Γ

Λ o Γ,

where the group multiplication is given by (f, γ) · (f ′, γ′) = (f(γ · f ′), γγ′) and γ · f(g) = f(γ−1g).
When the group Λ is finite and non-trivial, such groups are sometimes referred to as lamplighter groups.
Here we shall consider the special case Z/mZ o Z, for which a standard generating set is provided by

the pair {(0, 1), (δ0, 0)} where δ0(n) =

{
1 if n = 0
0 otherwise.

The lamplighter point of view consists in viewing each element (f, n) of the group as a pair where f
is a configuration of lamps (off at position i if f(i) = 0), and where n is the position of the “lamplighter”.
Multiplying (f, n) on the right by the first generator amounts to moving the lamplighter from position
n to n+ 1. Multiplying it by the second generator amounts to switching the light at position n.

Proposition 6.19. Let m > 2 be a positive integer. The group Z/mZoZ (equipped with the generating set

S = {(0, 1), (δ0, 0)}) admits a (εk, Rk)-Følner tiling sequence (Fk)k, with |F0| = 2m2, and |Fk| = 2 ·m2k ,
Rk = (m+ 1)2k+1 and εk = 2−(k+1) for k > 1.

Proof. Given the convention used to define the wreath product, it will be more convenient to construct
a right Følner tiling sequence (Fk). Recall that (F−1

k ) will then be a left Følner tiling sequence.
We define F0 = {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ {0, 1}, n ∈ {0, 1}} and

Fk =
{

(f, 0) ∈ Z/mZ o Z : supp(f) ⊆ [2k, 2k+1 − 1]
}

∪
{

(f, 2k) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k − 1]
}
.
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By induction, we show that Tk = {(f, n) ∈ Z/mZ oZ : supp(f) ⊆ [0, 2k+1−1], n ∈ [0, 2k+1−1]}. Indeed,
we have that

Tk+1 = Fk+1Tk

= {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+2 − 1], n ∈ [0, 2k+1 − 1]}
∪ {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+2 − 1], n ∈ [2k+1, 2k+2 − 1]}

= {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+2 − 1], n ∈ [0, 2k+2 − 1]}.

A straightforward cardinality computation then shows that the Fk+1-translates of Tk must be pairwise
disjoint, so the tiling condition is satisfied.

To bound the diameter of Tk, observe that to join two elements (f, n) and (f ′, n′) in Tn, the
lamplighter may travel from position n to n′, passing through the whole interval [0, 2k+1 − 1], while
possibly switching all the lamps (at most once) along the way. Since switching each lamp uses the
generator (δ0, 0) at most bm2 c times, such a path has length at most bm2 c2

k+1 + 2(2k+1 − 1). Hence the
diameter of Tk is at most bm2 c2

k+1 + 2(2k+1 − 1), which is less than (m+ 1)2k+1.
Finally, in order to prove the quantitative Følner condition, it suffices to show that |Tks \ Tk| 6

2−(k+1) |Tk| for all s ∈ S. If s = (δ0, 0), then Tks \ Tk = ∅. If s = (0, 1), then

Tks \ Tk = {(f, 2k+1) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+1 − 1]}.

So either way, |Tks \ Tk| 6 m2k+1

= 2−(k+1)|Tk|, which finishes the proof of the proposition.

Proposition 6.20. For any integer m > 2, there exists an orbit equivalence coupling from Z to

Z/mZ o Z which is (exp, ϕε)-integrable for all ε > 0, where ϕε(x) = log(x)
log(log(x))1+ε .

Proof. Let (Fk)k be the Følner tiling sequence of Z/mZ o Z constructed in Proposition 6.19. And let
(F ′k)k the Følner tiling sequence of Z defined by F ′0 = [0, 2m2 − 1] and

F ′k = |Tk−1|
[
0, |Fk| − 1

]
= {0,m2k2k, 2m2k2k, . . . , (2m2k − 1)m2k2k}.

Note that T ′k = [0, |Tk|−1]. So (F ′k)k is a (ε′k, R
′
k)-Følner tiling sequence with R′k = |T ′k|−1 6 m2k+1

2k+1

and ε′k = 2
|T ′k|

= 1

m2k+12k
. Proposition 6.9 yields an explicit orbit equivalence coupling (X,µ) between

the groups Γ′ = Z and Γ = Z/mZ o Z. Moreover, defining z > 1 as the solution of the equation

z23(m+1)/m = 1, we have

z2Rkε′k−1 6
z2(m+1)2k+2

m2k2k−1
= (z23(m+1)/m)2k 1

2k−1
=

1

2k−1
,

so we deduce from Proposition 6.9 that for every s ∈ SΓ,∫
X

zdSΓ′
(x,s·x)dµ(x) < +∞.

On the other hand, we have

ϕε(2R
′
k)εk−1 6

2k+1 logm+ (k + 2) log 2

log(2k+1 logm+ (k + 2) log 2)1+ε

1

2k
= O

(
1

k1+ε

)
.

Hence we deduce from Proposition 6.9 that for every s ∈ SΓ′ ,∫
X

ϕ(dSΓ(x, s · x))dµ(x) < +∞.

This concludes the proof of the proposition.
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7 Almost optimal couplings between Z and iterated wreath
products

In this section, we show that taking wreath products is well-behaved with respect to ϕ-integrable orbit
equivalence, and use this to find almost optimal orbit equivalence couplings between Z and iterated
wreath products.

7.1 Wreath products of measure-preserving equivalence relations

In this section, we develop the concept of wreath products of measure-preserving equivalence relations
in order to obtain a natural proof of the following statement: if Γ1, Γ2 are orbit equivalent, and
Λ1, Λ2 are orbit equivalent, then Λ1 o Γ1 is orbit equivalent to Λ2 o Γ2. The measure-preserving
equivalence relation that witnesses that they are orbit equivalent will be the wreath product S oR of the
equivalence relation R witnessing the orbit equivalence between Γ1 and Γ2 with the equivalence relation
S witnessing the orbit equivalence between Λ1 and Λ2. We will follow the conventions concerning
wreath products of groups given at the beginning of Section 6.3. Let us also recall from Definition 2.32
that a measure-preserving equivalence relation is an equivalence relation which comes from the orbits
of a measure-preserving action of a countable group, in particular it has countable classes.

Let R be a measure-preserving equivalence relation on (X,µ), let S be a measure-preserving
equivalence relation on (L, ν). Consider the space LR which consists of couples (x, (ly)y∈[x]R) where
ly ∈ L for every y ∈ [x]R. This space can be equipped with a natural standard Borel space structure
which we do not make explicit for now since in our concrete case it will be easy to describe. Moreover,
one can endow it with the following probability measure η given by

η =

∫
X

ν⊗[x]R dµ(x).

We then equip the space (LR, η) with the wreath product S o R of S by R defined by saying two
couples (x, (ly)y∈[x]R) and (x′, (l′y)y∈[x]R) are S o R-equivalent as soon as (x, x′) ∈ R and the following
two conditions are satisfied:

• for all but finitely many y ∈ [x]R, we have ly = l′y;

• for all y ∈ [x]R, we have (ly, l
′
y) ∈ S.

One can check that S o R is indeed a measure-preserving equivalence relation.
Let us make all this completely explicit in the case of interest to us: we now suppose that R comes

from a fixed free Γ-action. We then have a cocycle map c : R → Γ which takes (x, y) ∈ R to the unique
γ ∈ Γ satisfying γ · x = y. The standard Borel space structure on LR then comes from its natural
identification to the standard Borel space X × LΓ given by the bijection Φ: X × LΓ → LR defined by

Φ(x, (lg)g∈Γ) = (x, (lc(x,y))y∈[x]R).

The inverse map is given by Φ−1(x, (ly)y∈[x]R) = (x, (lg·x)g∈Γ). Note that Φ∗(µ⊗ ν⊗Γ) = η. We have a
natural Γ-action on LR given by γ · (x, (ly)y∈[x]R) = (γ · x, (ly)y∈[x]R). The corresponding action on
X × LΓ is given by

γ · (x, (lg)g∈Γ) = (γ · x, (lgγ)g∈Γ).

Finally, suppose that the equivalence relation S comes from a free Λ-action on L. We then also
have a natural

⊕
γ∈Γ Λ-action on X × LΓ given by: for all f ∈

⊕
γ∈Γ Λ,

f · (x, (lg)g∈Γ) = (x, (f(g−1) · lg)g∈Γ),

or from the LR viewpoint, f · (x, (ly)y∈[x]R) = (x, (f(c(y, x)) · ly)y∈[x]R).
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Let us check that the Γ and
⊕

γ∈Γ Λ-actions actually extend to a measure-preserving action of Λ o Γ
on LR via the following formula:

(f, γ) ·
(
x, (ly)y∈[x]R

)
=
(
γ · x, (f (c (y, γ · x)) · ly)y∈[x]R

)
. (21)

On the one hand, we have

(f1, γ1) ·
[
(f2, γ2) ·

(
x, (ly)y∈R

)]
= (f1, γ1) ·

(
γ2 · x, (f2 (c (y, γ2 · x)) · ly)y∈[x]R

)
=
(
γ1γ2 · x, (f1 (c (y, γ1γ2 · x)) f2 (c (y, γ2 · x)) ly)y∈[x]R

)
,

while on the other hand

[(f1, γ1) (f2, γ2)] ·
(
x, (ly)y∈R

)
=
(
γ1γ2 · x,

(
f1 (c (y, γ1γ2 · x)) f2

(
γ−1

1 c (y, γ1γ2 · x)
)
· ly
)
y∈[x]R

)
.

Since γ−1
1 c(y, γ1γ2 ·x) = c(y, γ2 ·x), the last terms of the two above equations are equal, thus we do have

an action of the wreath product Λ oΓ on LR. Since the Λ-action induces the equivalence relation S while
the Γ-action induces the equivalence relation R, the equivalence relation induced by this Λ o Γ-action is
equal to S oR. Moreover this action is measure-preserving, so S oR is a measure-preserving equivalence
relation. Finally, note that this action is free as a direct consequence of the freeness of the initial Γ and
Λ-actions. We have shown the following result.

Proposition 7.1. Let Γ y (X,µ) freely, let Λ y (L, ν) freely, where (X,µ) and (L, ν) are two
standard probability spaces and the actions are measure-preserving. Denote by R and S the respective
associated equivalence relations, and by c : R → Γ the cocycle defined by c(x, γ · x) = γ. Then the
measure-preserving free Γ o Λ-action on LR given by

(f, γ) ·
(
x, (ly)y∈[x]R

)
=
(
γ · x, (f (c (y, γ · x)) · ly)y∈[x]R

)
induces the equivalence relation S o R.

7.2 Wreath products and quantitative orbit equivalence

It follows directly from the previous proposition that when Γ1, Γ2 are orbit equivalent, and Λ1, Λ2 are
orbit equivalent, then Λ1 o Γ1 is orbit equivalent to Λ2 o Γ2. We now give a quantitative version of this
fact.

For this, it is useful to identify Γ and Λ to subgroups of Γ oΛ as follows: first we embed Λ in
⊕

γ∈Γ Λ
by associating to every λ ∈ Λ the function

ι(λ) : γ 7→
{
λ if γ = eΓ

eΛ otherwise.

Then we embed Λ in Λ o Γ via λ 7→ (eΓ, ι(λ)), and we embed Γ into Λ o Γ via γ 7→ (γ, ι(eΛ)). It is well
known that if SΓ is a generating set for Γ and SΛ is a generating set for Λ, then through the above
identification SΛ ∪ SΓ is a generating set for the wreath product Λ o Γ.

Proposition 7.2. Let (X,µ) be an orbit equivalence coupling between finitely generated groups Γ1 =
〈SΓ1
〉 and Γ2 = 〈SΓ2

〉, and let (L, ν) be an orbit equivalence coupling between Λ1 = 〈SΛ1
〉 and Λ2 = 〈SΛ2

〉.
Denote by R the equivalence relation generated by the Γi-action.

Then the orbit coupling LR satisfies that for every (x, l) ∈ LR, every γ1 ∈ Γ1 and every λ1 ∈ Λ1,

dSΛ2
∪SΓ2

((x, l), γ1 · (x, l)) = dSΓ2
(x, γ1 · x)

dSΛ2
∪SΓ2

((x, l), λ1 · (x, l)) = dSΛ2
(leΓ , λ1 · leΓ)
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Proof. By definition for all i ∈ {1, 2}, all γi ∈ Γi, and all (x, l) ∈ LR, we have γi · (x, l) = (γi · x, l), so
the first equation is clear. The second equation follows similarly by noting that if λi ∈ Λi, then their
action on (x, l) only changes the value at eΓ of l according to the λi-action on L.

Corollary 7.3. If Γ1 and Γ2 admit a (ϕ,ψ)-integrable orbit equivalence coupling, and if Λ1 and Λ2

admit a (ϕ,ψ)-integrable orbit equivalence coupling, then the wreath products Λ1 o Γ2 and Λ2 o Γ2 also
admit a (ϕ,ψ)-integrable orbit equivalence couplings.

In combination with Theorem 6.12 we find the following:

Corollary 7.4. Let a, b ∈ N with a < b and let ∆ be any finitely generated group, then there is an
(Lp,L1/p)-orbit equivalence coupling from ∆ o Zb to ∆ o Za for every p < a

b .

More generally, we have:

Corollary 7.5. Given d > 1, and a sequence of finitely generated groups ∆n, we define Hn(d) inductively
as follows: H0(d) = Zd and Hn+1(d) = ∆n+1 o Hn(d). Then if a < b, there is an (Lp,L1/p)-orbit
equivalence coupling from Hn(b) to Hn(a) for every p < a

b .

Recall that we denote by log◦n the function log composed with itself n times. Now assume that
∆n = Z/2Z for all n > 1. By [Ers03], the isoperimetric profile of Hn(d) is ≈ (log◦n)1/d. Hence deduce
from the second part of Theorem 1 that the existence of a (Lp,L0) measure equivalence coupling from
Hn(b) to Hn(a) forces the inequality p 6 a/b: this shows that Corollary 7.5 is (almost) sharp in that
case.

We denote by L<∞ the intersection of Lp for all 1 6 p <∞.

Corollary 7.6. Let m > 2, and let Gn be defined inductively by G0 = Z, and Gn+1 = Z/mZ oGn. For
any integer n > 1, there exists an orbit equivalence coupling from Z to Gn which is (L<∞, ϕn,ε)-integrable

for every ε > 0, where ϕn,ε = log◦n /(log◦(n+1))1+ε.

Proof. We first claim that for all n > 1, there exists an orbit equivalence coupling from Gn−1 to Gn
which is (L<∞, ϕ1,ε)-integrable for all ε > 0: this follows by induction using Proposition 7.2, the case
n = 1 resulting from Proposition 6.20.

We now pass to the proof of the corollary, which we also do by induction on n. The base case n = 1
follows from the claim, so we take n > 2 and assume that we have a orbit equivalence coupling from Z to
Gn−1 which is (L<∞, ϕn−1,ε)-integrable for all ε > 0. Using Proposition 2.26, we compose this coupling
with the coupling from the claim between Gn−1 and Gn, and obtain a (ϕn−1,ε ◦ ϕ1,ε,L

<∞)-coupling
from Z to Gn. Note that for all k > 1

log◦k ◦ϕ1,ε(t) = log◦k(log t/(log◦2(t))1+ε) ∼ log◦(k+1)(t)

as t tends to +∞. Hence, ϕn−1,ε ◦ ϕ1,ε(t) ∼ ϕn,ε(t), and we are done.

8 Unstable properties under exponential couplings

8.1 Finite presentability is unstable

In this section we prove that being finitely presented is not preserved by strongly exponentially
integrable orbit equivalence couplings (see Definition 2.28). We do this by constructing an explicit
strongly exponentially integrable orbit coupling between the wreath product Z/kZ oZ and the Baumslag-
Solitar group BS(1, k), for every k > 2.

Recall from the previous section that Z/kZ oZ =
⊕

Z Z/kZoZ where Z acts by a shift on
⊕

Z Z/kZ,
that is

((xi)i∈Z,mx)((yi)i∈Z,my) = ((xi + yi−mx)i∈Z,mx +my).
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Also recall that BS(1, k) = Z[1/k] o Z, where Z[1/k] = { x
km : x,m ∈ Z} and Z acts on Z[1/k] by

multiplication by 1/k, that is( x

kmx
, nx

)( y

kmy
, ny

)
=
( x

kmx
+

y

kmy+nx
, nx + ny

)
.

It is well known that the second group is finitely presented, while the first one is not by a result of
Baumslag [Bau61]. In particular these groups are not quasi-isometric.

We will consider actions of these two groups on the standard Borel space X =
∏

Z Z/kZ equipped
with the measure µ defined as the infinite product of the normalized counting measure. The action of
Z/kZ o Z is the standard one, that is

((xi)i∈Z,m) · (yi)i∈Z = (xi + yi−m)i∈Z.

For the Baumslag-Solitar group BS(1, k) we first define the action of the subgroup Z[1/k] =
〈(km, 0) : m ∈ Z〉 as follows: for all m ∈ Z, we decompose the space X as

X =
∏
i<m

Z/kZ×
∏
i>m

Z/kZ,

and then (km, 0) acts trivially on the first factor, and as the k-adic odometer on the second factor. To
be completely explicit, (km, 0) · (xi)i∈Z = (yi)i∈Z, where:

• xi = yi for every i < m;

• if xi = k − 1 for every i > m, then yi = 0 for every i > m;

• else, letting N be the smallest integer > m such that xN 6= k − 1, we let yi = 0 for m 6 i < N ,
yN = xN + 1, and yi = xi for i > N .

Note that this action is realized by letting Z[1/k] act on Qk by addition and extending this action to
the bi-infinite product X =

∏
Z Z/kZ. Also note that the equivalence relation generated by the action

of Z[1/k] is the cofinite relation up to measure zero.
As with Z/kZ o Z we then let Z act by (0, 1) · (xi)i∈Z = (xi−1)i∈Z. This defines an (essentially) free

measure preserving action of the group Z[1/k] o Z on (X,µ). Since the natural action of ⊕ZZ/kZ
induce the cofinite equivalence relation, we deduce that the two actions we have built yield an orbit
equivalence coupling (X,µ) from Z/kZ o Z to BS(1, k).

Theorem 8.1. The orbit equivalence coupling (X,µ) we just constructed is an (L∞, exp�) orbit
equivalence coupling from Z/kZ o Z to BS(1, k).

Proof. We equip Z/kZ o Z with the generating subset S = {δ0, 1Z} and BS(1, k) with the generating
subset T = {1Z[1/k], 1Z}. We denote by S± = S ∪S−1 and T± = T ∪ T−1 the corresponding symmetric
generating sets.

Let us start by showing that our orbit equivalence coupling is L∞ as a coupling from Z/kZ o Z to
BS(1, k). For this, we only need to check that dT±(s · x, x) is uniformly bounded for all s ∈ S. Note
that the generator of the Z copy in the two groups acts exactly the same. So for s = 1Z, we have
dT±(s · x, x) = 1. Then observe that the generator δ0 changes only x0, which is achieved by the action
of sm for some m ∈ {−k + 1, · · · , k − 1}, where s = 1Z[1/k]. Hence dT±(δ0 · x, x) 6 k − 1, which proves
that our coupling is L∞ in one direction.

To prove that the coupling is strongly exponential in the other direction, we need to obtain estimates
for every g ∈ BS(1, k). So let g ∈ BS(1, k) , we will show that g satisfies the following estimate: for all
M > 0,

µ
(
{x ∈ X : dS±(g · x, x) > (k + 1) (2 |g|T + 2M + 3)}

)
6 k−M+1 (22)
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Let n = |g|T± , write g = (z, j), with |j| 6 n and z ∈ Z[1/k]. Observe that |(0, j)|S± = |j|. Hence, for
a.e. x ∈ X, dS±((0, j) · x, x) = |j|. By the triangle inequality, it is therefore sufficient to prove that

µ
(
{x ∈ X : dS±(z · x, x) > k(2|g|T + 2M + 3)}

)
6 k−M+1 (23)

By symmetry we may assume that z > 0. A straightforward induction on n then shows that we can
always write z as z =

∑n
i=−n aik

i, where ai ∈ {0, ..., k − 1}.
Let x ∈ X. Observe that the coefficients of z · x that differ from those of x are contained in the

interval [−n,∞). Given m > M , consider the event (z · x)n+m+2 6= xn+m+2, and observe that its
occurrence forces the coefficients of xn+i for i = 1, 2, . . . ,m+ 1 to be equal to k − 1. Letting

E = {x ∈ X | there exists m >M such that (z · x)n+m+2 6= xn+m+2},

we thus have µ(E) 6
∑
m>M k−m 6 k−M+1.

Now note that |f |S± 6 k(2n+M + 2) for every f ∈
⊕

Z Z/kZ with supp(f) ⊆ [−n, n+M + 1], so

{x ∈ X : dS±(z · x, x) > k(2|g|T + 2M + 3)} ⊆ E.

Thus the estimate (23) holds, and hence so does (22).
Let us finally check that this estimate yields the desired result. For a given δ > 0 and g ∈ BS(1, k),

by the integration by slices inequality and (22) we have∫
X

exp(δdS±(x, g · x)dµ(x) 6
∑
M>0

k−M+1 exp
(
δk(2 |g|T + 2M + 3)

)
=
∑
M>0

k exp
(
δk(2 |g|T +M(2− log k/δ) + 3)

)
= k exp(3δk) exp

(
2δk |g|T

) ∑
M>0

exp
(
δkM(2− log k/δ)

)
So given ε > 0, we take δ such that 2δk < ε and 2 − log k/δ < 0, and then we will have a positive
constant C > 0 such that for every g ∈ BS(1, k),∫

X

exp(δdS±(x, g · x))dµ(x) < C exp(ε |g|T ),

which finishes the proof that the coupling is strongly exp-integrable from BS(1, k) to Z/kZ o Z.

Corollary 8.2. Finite presentability is unstable under the equivalence relation of strongly exponential
orbit equivalence. In particular, it is unstable under L<∞ orbit equivalence.

8.2 Finite asymptotic dimension is unstable

We now consider the following group:

Γ1 =
⊕
Z

Z[1/k] o Z2,

where the first coordinate of Z2 acts by shift on the direct sum ⊕ZZ[1/k], and the second coordinate
multiplies each factor by the corresponding power of k. Recall the action of Z[1/k] on X =

∏
Z Z/kZ as

defined in section 8.1 induces the cofinite equivalence relation up to measure zero. For every n ∈ Z, we let
Xn be a copy of X. We deduce an action of the direct sum ⊕n∈ZZ[1/k] on Y =

∏
n∈ZXn =

∏
Z2 Z/kZ

which induces the cofinite equivalence relation up to measure zero. The cofinite equivalence relation is
also induced by the natural action of the group ⊕Z2Z/kZ on Y .
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Combining these actions with the Bernoulli action of Z2 produces an orbit equivalence coupling
between Γ1 and the wreath product

Γ2 = Z/kZ o Z2.

We equip Γ1 with the generating subset S1 = {±1Z[1/k]0}∪SZ2 , and Γ2 with S2 = {δ0}∪SZ2 , where
SZ2 is the canonical generating set of Z2.

Theorem 8.3. The coupling we just defined is an (L∞, exp)-integrable orbit equivalence coupling from
Γ2 to Γ1. Actually the exponential integrability from Γ1 to Γ2 is uniform in the following sense: there
exists a constant c > 0 such that for all g ∈ Γ1∫

X

exp(cdS2
(x, g · x))dµ(x) < +∞.

Proof. The proof that the coupling is L∞ from Γ2 to Γ1 is exactly the same as in the proof of Theorem
8.1, so we don’t write it down. Also similar to the proof of Theorem 8.1, we observe that the two
respective copies of Z2 act the same. As a warm up, let us prove the exponential integrability from
Γ1 to Γ2. Thanks to Proposition 2.22 only needs to consider the action of the generators ±1Z[1/k]0 .
Observe that the coupling induces on every Xn an orbit-equivalence coupling between Z[1/k]0 and
⊕Z×{0}Z/kZ that coincides with that of section 8.1. Hence the result follows from Theorem 8.1.

The uniform exponential integrability requires a bit more work. It will result from the following
statement: given g ∈ Γ1 and M > 0 we have that

µ ({y ∈ Y : dS2
(y, g · y) > (k + 1) (2M + (2|g|+ 5)(2|g|+ 1)) + |g|}) 6

∫ +∞

M

t2|g|+1k−tdt, (24)

where we write |g| instead of |g|S1 in order to simplify notation. Let us first see why the result follows
from this inequality. Denoting C = (k + 1)(2|g|+ 5)(2|g|+ 1) + |g| and T = 2(k + 1)M , we obtain that
for all T > 0,

µ ({y ∈ Y : dS2
(y, g · y) > T + C}) 6

∫ +∞

T/(2k+2)

t2|g|+1k−tdt.

For all ε > 0, the latter is at most k−( 1−ε
2k+2 )TKε, where Kε =

∫ +∞
0

t2|g|+1k−εtdt < +∞. Integrating
over T > 0, it follows that∫ +∞

0

(
k( 1−2ε

2k+2 )Tµ ({y ∈ Y : dS2
(y, g · y) > T + C})

)
dT 6 Kε

∫ +∞

0

k−( ε
2k+2 )T dT < +∞.

Using the change of variable T ← T + C and the integration by slice formula, we deduce that∫
X

k( 1−2ε
2k+2 )dS2

(x,g·x)dµ(x) < +∞,

Since ε is arbitrary, we finally deduce that∫
X

ecdS2
(x,g·x)dµ(x) < +∞,

for all c < log k/(2k + 2).
We now prove that (24) holds. We will use the fact that the nth copy Z[1/k] and ⊕{n}×ZZ/kZ have

the same orbits. Moreover they only act non-trivially on the nth factor Xn, and their actions are those
defined in Section 8.1. Let y = (yi,j) and g = ((xi), (m,n)). Note that |n|+ |m| 6 |g|. Hence

dS2
(y, g · y) 6 |g|+

|g|∑
i=−|g|

dT ((yi−n,j−m)j∈Z, xi · (yi−n,j−m)j∈Z),
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where T is the generating subset of Z/kZ oZ from Section 8.1. Now for every −|g| 6 i 6 |g|, let Mi ∈ R
be such that

dT ((yi−n,j−m)j∈Z, xi · (yi−n,j−m)j∈Z) = (k + 1)(2|g|+ 2Mi + 5).

We deduce that
∑|g|
i=−|g|Mi > M . Note that |g| > |(xi)i∈Z|S , where S is the generating subset of

BS(1, k) from Section 8.1. On the other hand, by (22) we have that for all (ti) ∈ R2|g|+1
+ ,

µ ({y ∈ Y : dT ((yi−n,j−m)j∈Z, xi · (yi−n,j−m)j∈Z) > (k + 1)(2|g|S + 2ti + 5)}) 6 k−ti .

For every t > 0 and m ∈ N, denote by vm(t) = Vol{(ti) ∈ Rm+ ,
∑
i ti = t}, and observe that vm(t) 6 tm.

Finally, integrating over all values for ti = max{Mi, 0} for which t =
∑
i ti >M , we obtain

µ ({y ∈ Y : dS2
(y, g · y) > (k + 1)(2M + (2|g|+ 5)(2|g|+ 1)) + |g|}) 6

∫
t>M

k−tv2|g|+1(t)dt

6
∫
t>M

t2|g|+1k−tdt

which ends the proof of (24) and therefore of the theorem.

Recall that if H is a subgroup of a countable group G, then asdimH 6 asdimG [BD08, Cor. 63].
We deduce that Γ1 has infinite asymptotic dimension, as it contains a subgroup isomorphic to

⊕
n∈N Z,

which has infinite asymptotic dimension by [BD08, Thm. 74]. On the other hand, by [DS06, Thm. 3.4]
the asymptotic dimension of Γ2 is at most 2. It is actually equal to 2, as Γ2 contains Z2, which has
asymptotic dimension 2 by [BD08, Thm. 74]. We deduce the following corollary.

Corollary 8.4. There exist a group with asymptotic dimension 2, and a group of infinite asymptotic
dimension that admit an exponential-integrable orbit equivalence measure coupling.
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