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Abstract

We first explain how to endow the space of subequivalence relations of any
non-singular countable equivalence relation with a Polish topology, extending the
framework of Kechris’ recent monograph on subequivalence relations of probabil-
ity measure-preserving countable equivalence relations. We then restrict to p.m.p.
equivalence relations and discuss dense orbits therein for the natural action of the
full group and of the automorphism group of the relation. Our main result is a
characterization of the subequivalence relations having a dense orbit in the space of
subequivalence relations of the ergodic hyperfinite p.m.p. equivalence relation. We
also show that in this setup, all full groups orbits are meager. We finally provide
a few Borel complexity calculations of natural subsets in spaces of subequivalence
relations using a natural metric we call the uniform metric. This answers some
questions from an earlier version of Kechris’ monograph.

1 Introduction
Measured group theory can roughly be defined as the study of countable groups through
the partitions into orbits associated to their free probability measure preserving (p.m.p.)
actions on standard probability space. A fundamental notion there is that of that of an
orbit subgroup: a countable group Λ is an orbit subgroup of another countable group Γ
when Λ admits a free p.m.p. action all of whose orbits are contained in those of a free p.m.p.
action of Γ. In this more flexible framework, while the Ornstein-Weiss theorem tells us
that all countable infinite amenable subgroups are orbit subgroups of one another [OW80],
the Gaboriau-Lyons theorem characterizes non amenable groups as being exactly those
which admit the free group on two generators as an orbit subgroup. Their result has had
many applications, allowing to extend results which were only known for groups containing
free subgroups to the optimal class of all non-amenable groups, see e.g. [IKT09, Sew14].

This motivates the following more general question: given a partition of the space
into orbits, what are the possible subpartitions into orbits? In more precise terms, let us
call an equivalence relation on a standard probability space (X,µ) non-singular when it
comes from an action of a countable group which preserves µ null-sets, and p.m.p. when
it comes from an action of a countable group which actually preserves the measure µ.
We can now ask our precise question: given a non-singular equivalence relation, what
are its possible subequivalence relations? A fundamental tool towards answering such
questions is Kechris’ remarkable result that the space of subequivalence relations can be
endowed with a natural Polish topology when the ambient equivalence relation is p.m.p.,
allowing the use of many tools from descriptive set theory. We first extend his result to
the non-singular case.
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Theorem A. Let R be a non-singular equivalence relation on a standard probability
space. Then its space Sub(R) of subequivalence relations is a Polish space for the topology
induced by the measure algebra of R.

The measure that we put onR is the usual measure obtained by integrating cardinality
of vertical fibers, which allows us to make sense of its measure algebra. Note that this
means that we are identifying subequivalence relations which coincide on a conull set. We
refer the reader to Section 2 for details. Our description of the topology on the space of
subequivalence relations was already known to Kechris in the p.m.p. case, see [Kec, Sec.
4.4(1)].

We actually provide two proofs of Theorem A. The first one is very short and uses the
fact that in a measure algebra, converging sequences always admit subsequences whose
limit is actually equal to their lim inf (see Proposition 2.3). This observation provides a
unifying viewpoint to some special cases noted by Kechris, see [Kec, Thm. 5.1 and Thm.
18.3]. The second proof is somehow more natural in that we directly show that the various
axioms of being a subequivalence relation define closed subsets in the measure algebra.
Along the way, we study a natural non-Hausdorff topology on the measure algebra that
we call the lower topology. This topology has some nice continuity property which also
allow us to give a slick proof of the fact that the map which associates to a subset of an
equivalence relation the equivalence relation it generates is Baire class one (see Proposition
3.19, which is a natural generalization of [Kec, Prop. 19.1]).

Our next result is in the p.m.p. setup, and was motivated by the question of dense
orbits in the space of subequivalence relations, asked by Kechris in his monograph. Indeed,
it is very natural to try to understand subequivalence relations up to isomorphism, and this
is precisely what the action of the automorphism group of R on subequivalence relations
of R encodes. As it turns out, when R is the ergodic hyperfinite p.m.p. equivalence
relation we obtain the following complete characterization of dense orbits for the natural
actions of both the full group [R] and the automorphism group Aut(R).

Theorem B (see Cor. 4.13). For a subequivalence relation S of the hyperfinite ergodic
p.m.p. equivalence relation R0, the following are equivalent:

(i) S is aperiodic and has everywhere infinite index in R0;

(ii) The [R0]-orbit of S is dense in Sub(R0);

(iii) The Aut(R0)-orbit of S is dense in Sub(R0).

In this theorem, S being everywhere of infinite index in R means that for every A ⊆ X
of positive measure, the restriction of S to A has infinite index in the restriction of R to
A (almost every R�A-class splits into infinitely many S�A-classes; see the end of Section
4.1 for more on this).

Example 1.1. View R0 as the cofinite equivalence relation on X = {0, 1}N endowed with
the probability measure µ = (1

2
(δ0 + δ1))⊗N, namely ((xn), (yn) ∈ R0 iff there is N ∈ N

such that xn = yn for all n > N . Define S by ((xn), (yn)) ∈ S iff there is N ∈ N such that
x2n = y2n for all n > N . Then S is both aperiodic and has everywhere infinite index in
R0 (see Proposition 4.6), so by the above theorem it has a dense orbit in Sub(R0).

Example 1.2. View R0 as the equivalence relation on X = {0, 1}Z2 endowed with the
probability measure µ = (1

2
(δ0 +δ1))⊗Z

2 generated by the Bernoulli shift of Z2. Then since
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the shift is mixing, the subequivalence relation S generated by Z 6 Z2 is ergodic. By
construction S is of infinite index, so since it is ergodic it is everywhere of infinite index.
By the above theorem S has a dense orbit in Sub(R0). Note that by [Kec, Thm. 10.1],
ergodic subequivalence relations actually form a Gδ set, so the Baire category theorem
provides us with a dense Gδ subset consisting of ergodic subequivalence relations of R0

satisfying the equivalent conditions of Theorem B.

Our approach to Theorem B is very much inspired by a joint work in preparation with
Fima, Mukherjee and Patri where we similarly characterize dense orbits in the space of
von Neumann subalgebras of the hyperfinite type II1 factor. In this setup, we have to rely
on a difficult result of Popa which characterizes the subalgebras which have a sequence of
unitary conjugates converging to the trivial subalgebra, see Lem. 2.3 from [Pop19]. Here,
we similarly first need to understand which subequivalence relations have a sequence of
translates converging to the trivial subequivalence relations ∆X = {(x, x) : x ∈ X}, which
is the content of our next result.

Theorem C (see Thm. 4.7). Let R be an aperiodic p.m.p. equivalence relation on a
standard probability space (X,µ). Let S ∈ Sub(R) be a subequivalence relation. The
following are equivalent:

(i) S has everywhere infinite index in R;

(ii) the closure of the [R]-orbit of S contains ∆X ;

(iii) the closure of the Aut(R)-orbit of S contains ∆X .

The proof of Theorem C relies on an inductive construction, using a countable dense
subgroup of the full group and the fact that such a subgroup acts highly transitively on
almost every orbit, a result due to Eisenmann and Glasner [EG16, Thm. 1.19].

Once this is done, we prove Theorem B using the fact that finite equivalence relations
are dense in Sub(R0) and that they can always be translated inside any aperiodic sube-
quivalence relation. This allows us to apply Theorem C on a fundamental domain of the
finite subequivalence relation we want to approximate. A more general statement on the
closed subspace of hyperfinite subequivalence relations can actually be proved this way,
see Corollary 4.12.

Using Ioana’s intertwining of subequivalence relations [Ioa12, Lem. 1.7] and the two
above examples of subequivalence relations, we moreover have the following result, which
again follows from a more general statement on the space hyperfinite subequivalence
relations (see Theorem 4.16).

Theorem D (see Cor. 4.17). Let R0 be the ergodic p.m.p. hyperfinite equivalence relation.
Then all [R0]-orbits are meager in Sub(R0).

It then follows from Mycielcki’s theorem (see e.g. [Gao09, Thm. 5.3.1]) that R0 con-
tains a continuum of aperiodic subequivalence relations of infinite index which are in
pairwise disjoint full group orbits. Moreover, by [Kec, Prop. 10.1] and Example 1.2, such
a continuum can be found inside ergodic subequivalence relations. We leave the following
question open.

Question 1.3. Can Sub(R0) contain a comeager Aut(R0)-orbit?
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This question can also be asked for equivalence relationsR different fromR0, although
the existence of dense Aut(R)- or [R]-orbits in their space of subequivalence relations is
already an open problem (see the remark preceding Corollary 4.13 for some examples
where there are no dense orbits though). Also note that if R is a type II∞ or type III
ergodic non-singular equivalence relation, it is not hard to show that there are always
dense full group orbits in Sub(R) (see the remark right before Section 4.4 for a sketch of
proof), but the question of comeager orbits is completely open there.

Our paper concludes with a few complexity calculations, answering some questions
from an earlier version of [Kec]. Let us highlight here a way of understanding Kechris’
uniform topology on the space of subequivalence relations which we use: given two non-
singular equivalence relations R1 and R2, denote by C(R1,R2) the set of Borel subsets A
of X such that R1�A = R2�A, and define

du(R1,R2) = 1− sup
A∈C(R1,R2)

µ(A)

This defines a metric that we propose to call the uniform metric since it induces the
uniform topology defined in [Kec, Sec. 4.6], although it looks finer a priori (to see that
the two topologies coincide, one needs to use [IKT09, Thm. 1]).

Let us finish by outlining the paper: along with basic preliminaries, Section 2 provides
a first proof of Theorem A using the lim inf. Section 3 contains the second proof, which
relies in a more direct way on the topology of the measure algebra, using as well the lower
topology that we define and study therein. Section 4 is devoted to the proof of Theorem
B and D in their more general form, and contains in particular the proof of Theorem C in
Subsection 4.2. Finally, Section 5 contains our complexity computations, which use the
uniform metric.

Acknowledgements. I would like to thank Alekos Kechris for his remarks and encour-
agements on this paper, and Todor Tsankov for discussions around this topic. I am very
much indebted to my coauthors Pierre Fima, Kunal Mukherjee and Issan Patri for many
of the ideas in this paper, which were developped in the parallel framework of subalgebras
of finite von Neumann algebras. I am also thankful to Damien Gaboriau for his comments.

2 The Polish topology on the space of subequivalence
relations in the non-singular setup

The main purpose of this section is to extend the topology on the space of subequivalence
relations from [Kec] to the non-singular setup. To do so, we use the framework of measure
algebras, which does yield the right topology for the probability measure-preserving case
as noted in [Kec, Sec. 4.4(1)]. This direct approach also sheds a new light on some results
from [Kec], such as Theorem 5.1 and Proposition 4.27.

2.1 The measure algebra of a standard σ-finite space

Let (Y, λ) be a standard σ-finite measured space, i.e. a standard Borel space endowed
with a σ-finite atomless measure. Such spaces are always isomorphic either to R endowed
with the Lebesgue measure or a finite length interval, also endowed with the Lebesgue
measure. The measure algebra of (Y, λ) is the space MAlg(Y, λ) of all Borel subsets of
X, where we identify A,B ⊆ X Borel as soon as λ(A4B) = 0.
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In order to endow MAlg(Y, λ) with a complete metric, we first have to choose some
finite measure µ in the same class as λ, i.e. sharing the same measure zero sets. Note
that this does not change the definition of the measure algebra. We can then equip the
measure algebra MAlg(Y, λ) = MAlg(X,µ) with the metric dµ(A,B) = µ(A4B).

Lemma 2.1. Let µ and µ′ be two finite measures on Y in the same equivalence class.
Then dµ and dµ′ are uniformly equivalent: given any ε > 0, there is δ > 0 such that for
all A,B ∈ MAlg(Y, µ), dµ(A,B) < δ implies dµ′(A,B) < ε and vice-versa.

Proof. By symmetry, given ε > 0 it suffices to find a δ such that the direct implication
holds. But this is a direct consequence of the fact that µ and µ′ are in the same class:
indeed by [Coh13, Lem. 4.2.1], there actually is δ > 0 such that whenever µ(C) < δ, we
must have µ′(C) < ε.

In particular, the above lemma yields that even when λ is infinite, its measure algebra
is endowed with a natural topology, independent of the choice of some µ finite in the class
of λ. The fact that that dµ is complete is usually proved via the following lemma, which
is important to us on its own.

Lemma 2.2. Let (An) be a sequence of elements of MAlg(Y, µ) such that
∑

n µ(An 4
An+1) < +∞. Let lim inf An =

⋃
N

⋂
n>N An, then the sequence (An) converges to

lim inf An.

Proof. By the Borel-Cantelli lemma, for almost all x ∈ X there is N such that for all
n > N , x 6∈ An4An+1. Let ε > 0, we then find N and a set X0 such that µ(X0) > 1− ε
and for all x ∈ X and all n > N , we have x 6∈ An 4 An+1. Now observe that for all
n > N , we have An ∩X0 = lim inf An ∩X0, in particular An4 lim inf An ⊆ X \X0 which
has measure less than ε as wanted.

Proposition 2.3. Let (An) be a sequence of elements of MAlg(Y, µ) which converges to
some A ∈ MAlg(Y, µ). Then we can find a subsequence (Ank

) such that

A = lim inf Ank
=

⋃
N

⋂
k>N

Ank

Proof. Since (An) converges, it is Cauchy, in particular it admits a subsequence (Ank
)k

such that for all k ∈ N, dµ(Ank
, Ank+1

) < 1
2k
. We thus have by the previous lemma

Ank
→ lim inf Ank

= A.

Proposition 2.4. The metric dµ is complete, and MAlg(Y, µ) is separable.

Proof. Let (An) be a Cauchy sequence, it suffices to show that it has a convergent sub-
sequence. But because the sequence is Cauchy we may find a subsequence (Ank))k such
that for all k ∈ N, µ(Ank

4 Ank+1
) < 2−k. Then

∑
k µ(Ank

4 Ank+1
) < +∞ and we get

the desired result by applying the previous lemma.
Towards proving separability, first note that since (Y, µ) is standard, we may as well

assume it is an interval of finite length endowed with the Lebesgue measure. The regularity
of the Lebesgue measure can then be used to show that finite unions of open intervals with
rational endpoints are dense in the measure algebra, thus yielding the desired countable
dense subset.
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2.2 The space of subequivalence relations

Given an action of a countable group Γ by Borel bijections on X standard Borel, we obtain
the associated equivalence relation RΓ = {(x, γx) : x ∈ X, γ ∈ Γ} whose equivalence
classes are exactly the Γ-orbits. This equivalence relation is a Borel subset of X×X, and
its classes are countable: RΓ is by definition a countable Borel equivalence relation
(CBER, which can conveniently be read as “seeber"). Conversely, the Feldman-Moore
theorem ensures us that every CBER comes from a Borel action of a countable group, see
for instance [KM04, Thm. 1.3].

Given such an equivalence relation, define its Borel pseudo full group as the set
of all partial bijection ϕ : dom ϕ ⊆ X → rngϕ ⊆ X such that for all x ∈ A, we have
(x, ϕ(x)) ∈ R. By definition, the Borel full group is the group made of elements of the
Borel pseudo full group whose domain and range is equal to X.

If (X,µ) is now a standard probability space, we say that a CBER is non-singular (or
that µ is quasi-invariant, or that R is null-preserving) if for all ϕ in its Borel pseudo full
group, we have µ(dom ϕ) = 0 iff µ(rngϕ) = 0. The main (and only by the Feldman-Moore
theorem) source of such equivalence relations is the following:

Definition 2.5. An action of a countable group Γ by Borel bijections on X is called
non-singular (or null-preserving, or quasi-preserving µ) if for all A ⊆ X Borel, we have
µ(A) = 0 iff µ(γA) = 0.

Remark. By Lemma 2.1, non-singular actions yield action by uniformly continuous home-
omorphisms on the measure algebra MAlg(X,µ).

Given Γ y (X,µ) non-singular the associated CBER RΓ is non-singular, and con-
versely any non-singular CBER arises in this manner (see [KM04, Prop. 8.1]).

Now let R be a non-singular CBER. We equip R with the left measure M defined by

M(A) =

∫
X

|Ax| dµ(x)

for all A ⊆ R Borel. Let m be an equivalent probability measure, then the measure
algebra of R with respect to M is equal to that of R with respect to m. This measure
is σ-finite since R can be covered by the graphs of the elements of a countable group Γ
such that R = RΓ (each such graph has measure 1).

It then follows from Proposition 2.4 that MAlg(R,M) is a Polish space. Moreover
by Lemma 2.1 the topology (and actually the uniform structure) do not depend on the
choice of m. Since the measure m is not canonical, we will most of the time write our
topological space as MAlg(R,M).

A Borel subset ofR is called a Borel subequivalence relation if it defines an equivalence
relation on X. An element of MAlg(R,M) is called a subequivalence relation if its
equivalence class contains an equivalence relation. Denote by Sub(R) ⊆ MAlg(R,M)
the space of subequivalence relations of R. We can now easily prove the following result
of Kechris (our proof is moreover motivated by [Kec, Thm. 5.1], which we have essentially
recast as Proposition 2.3).

Theorem 2.6 (Kechris, [Kec, Sec. 4.4.(1)]). The space Sub(R) of subequivalence relations
of R is a closed subset of MAlg(R,M), hence Polish.

Proof. Observe that the lim inf of any sequence of equivalence relations is an equivalence
relation. By Proposition 2.3 the result follows.
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Observe that we did not even use that R was non-singular in the above. However, we
need non-singularity for our space to encode the right notion of equality of subequivalence
relations as follows.

Proposition 2.7. Let S1, S2 be two Borel subequivalence relations of a non-singular
CBER R, suppose M(S14S2) = 0. Then there is a full measure S1 and S2-invariant set
onto which S1 and S2 are the same.

Proof. By definition for almost all x we have [x]S1 = [x]S2 . Since S1 is non singular we
find a smaller S1-invariant set X0 for which the same conclusion holds (if S1 = RΓ we let
X0 =

⋂
γ∈Γ

γX1, where X1 = {x ∈ X : [x]S1 = [x]S2}). This finishes the proof.

We will also see in the next section that non-singularity is important if we want to
concretely see our space of subequivalence relations as a closed set, i.e. to say that the
axioms of subequivalence relations each define closed sets.

3 Strong and lower topologies
In this section, we first study the strong topology on the space of subequivalence relations
as defined in [Kec], which will be useful towards establishing our orbit density result
(Theorem B). We then use a lower topology on the measure algebra so as to obtain
a natural proof of the fact that the space of subequivalence relations is closed in the
measure algebra, and of the fact that the map which takes a graphing to the equivalence
it generates is Baire class one [Kec, Prop. 19.1].

3.1 Topologies on measure algebras of σ-finite spaces

We first go back to measure algebras of σ-finite spaces, which we now write as (Y,M),
motivated by our previous example where Y is a non-singular CBER.

Proposition 3.1. Let (Y,M) be a standard σ-finite space. Let (Yn) be a countable family
of finite measure subsets of Y such that

⋃
n Yn = Y . Then the map Φ : MAlg(Y,M) →∏

n MAlg(Yn,MYn) which takes A to the sequence (A ∩ Yn) is a homeomorphism onto its
image.

Proof. Observe that the probability measure

m(A) :=
∑
n

1

2n+1M(Yn)
M(A ∩ Yn)

is equivalent toM and thus the associated metric dm induces the topology of MAlg(Y,M).
Now the space

∏
n MAlg(Yn,MYn) can be endowed with a compatible metric d̃ given by

d̃((An), (Bn)) =
∑
n

1

2n+1M(Yn)
M(An4Bn),

It is then straightforward to check that Φ is an isometry for the metric dm on its domain
and d̃ on its range.
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We now go on to obtain a more precise version of this result, following Kechris’ ap-
proach to the strong topology on Sub(R).

Observe that every element ϕ of the Borel pseudo full group of a CBERR is completely
determined by its graph, namely the set {(x, ϕ(x))}, which is a Borel subset of R. From
now on, we identify elements of the Borel pseudo full group to their graph. Doing this up
to measure zero when R is nonsingular, we arrive at the following definition.

Definition 3.2. The pseudo full group of a non-singular equivalence relation R on
(X,µ) is the quotient of the Borel pseudo full group by the equivalence relation which
identifies ϕ1, ϕ2 when M(ϕ1 4 ϕ2) = 0. It is denoted by [[R]], and for ease of notation
we still write its elements as ϕ’s. Finally the full group of R denotes all the elements of
[[R]] with full measure domain and range.

It is a direct consequence of the definition of M that M(ϕ14 ϕ2) = 0 iff µ(dom ϕ14
dom ϕ2) = 0 and for almost all x ∈ dom ϕ1 ∩ dom ϕ2, we have ϕ1(x) = ϕ2(x). The Borel
pseudo full group is stable under countable increasing unions and arbitrary countable
intersections, so it is stable under taking lim inf. Following the same approach as for
the proof of Theorem 2.6, one obtains that [[R]] is a closed subset of MAlg(R,M), in
particular it is Polish. Note however that [R] is not closed for this topology (see Example
3.6).

We now make a modification of Kechris’ uniquely generating sequences of involutions.
Let us say that an element ϕ of the Borel pseudo-full group is a moving partial invo-
lution if dom ϕ = rngϕ and for all x ∈ dom ϕ, we both have ϕ(x) 6= x and ϕ(ϕ(x)) = x.

Definition 3.3. A sequence (ϕn) of moving partial involutions of the Borel pseudo-full
group of a CBER R is called a uniquely generating sequence of moving partial
involutions if

R \∆X =
⊔
n

ϕn,

where ∆X = {(x, x) : x ∈ X} is the equality relation.

Proposition 3.4. Every CBER R admits a uniquely generating sequence of moving par-
tial involutions.

Proof. Let (Tn) be a uniquely generating sequence of involutions for R as in [Kec, Prop.
4.6], and let ϕn be the restriction of Tn to its support.

Remark. The disjointness of the graphs of the ϕn’s simplifies a bit the arguments we
carry out in this paper since it guarantees that all the ϕi(x) are distinct whenever they
are defined (see in particular the proof of (i)⇒ii in Theorem 4.7). The disjointness also
allows us to upgrade Proposition 3.1 and obtain that the map

MAlg(R,M)→ MAlg(∆X ,M∆X
)×

∏
n∈N

MAlg(ϕn,Mϕn))

which takes A to the sequence (A∩Yn) is not only a homeomorphism onto its image, but
actually surjective.

The following corollary is a slight reformulation of [Kec, Thm. 4.13] which identifies
the strong and the weak topology on the space of subequivalence relations.
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Corollary 3.5. Let R be a non-singular equivalence relation, let (ϕn) be a uniquely gen-
erating sequence of moving partial involutions. Then the map

Sub(R)→
∏
n∈N

MAlg(ϕn,Mϕn))

which takes S to the sequence (S ∩ ϕn)n is a homeomorphism onto its image.

Proof. This is a direct consequence of the definition of uniquely generating sequences of
moving partial involutions and of Proposition 3.1 once we note that every equivalence
relation contains ∆X .

Following the above corollary and Kechris’ terminology, we now call strong topology
the topology induced by dm on Sub(R), which is Polish by Theorem 2.6.

3.2 Lower topologies on measure algebras

Let us first work a bit more on the relationship betweenM andm. Observe thatM defines
a lower-semi continuous function on MAlg(Y,M) (possibly taking +∞ as a value). Indeed
if M(A) > α, we have a δ > 0 such that M(C) < M(A)− α whenever C is a subset of A
satisfying m(C) < δ, and so as soon as m(A \ B) < δ we have M(B) > α. In particular
for every k ∈ N the set of elements with measure 6 k is closed.

Let us denote by MAlgf (R,M) the Fσ subset of elements of MAlg(R,M) with finite
M -measure. It can be endowed with the metric dM(A,B) = M(A 4 B) which clearly
refines the topology induced by dm. Moreover, the proof of Proposition 2.4 can easily
be adapted to show that dM is complete separable (see [LM22, Lem. 2.1] for a complete
proof). Let us see why dm and dM yield different topologies on MAlgf (R,M).

Example 3.6. Going back to the case Y = R, observe that if T in the full group of R is
aperiodic, then T n → ∅ for dm while it stays in the sphere around 1 for dM . In particular
dm does not refine dM (here again we identified an element of the full group to its graph).
Let us also mention that [R] is dM -closed, and that the metric induced by dM on [R] is
the well-known uniform metric du(S, T ) = µ({x ∈ X : S(x) 6= T (x)}), endowing [R] with
a Polish group topology.

Despite the above example, M and m share the same lower topologies when restricted
to MAlgf (Y,M). These lower topologies are not Hausdorff, however they have nice con-
tinuity properties.

Definition 3.7. Let (Y,M) be a σ-finite measured space (the measure M can be finite).
We endow its measure algebra with the lower M-topology which is defined by taking
as neighborhoods of an element A ∈ MAlg(Y,M) all sets of the form

{B ∈ MAlg(Y,M) : M(A \B) < ε}

for some ε > 0.

This neighborhood system does satisfy the axiom that implies that it is a basic neigh-
borhood system for the topology it induces, namely every neighborhood V contains a
smaller neighborhood all of whose elements admit V as a neighborhood (axiom (VIV) in
[Bou98, Chap. 1, §1.2]). This is simply because if M(A \B) < ε

2
and M(B \C) < ε

2
then

M(A \ C) < ε ).
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Note that the only neighborhood of the emptyset is the whole measure algebra, while
Y is contained in every neighborhood of every point. Moreover, {∅} is closed, and more
generally M is lower semi-continuous for the lower M -topology.

Lemma 3.8. If M is a σ-finite measure on Y and m is an equivalent finite measure,
then the measures M and m induce the same lower topology on the space MAlgf (Y,M)
of finite M-measure subsets.

Proof. Take A such that M(A) < +∞. Because M and m, when restricted to A, are
equivalent, we find δ such that every subset of A of m measure less than δ hasM -measure
less than ε. Then {B : m(A \ B) < δ} ⊆ {B : M(A \ B) < ε}. So the lower m-topology
refines the lower M -topology. The other inequality works the same.

Let us note that the space of infinite measure subsets is open for the lowerM -topology,
while it is not for the lower m-topology. Indeed if A has infinite measure, the set of B
such that M(A \B) < 1 does not contain any m-neighborhood, because there are subsets
of A of very small m-measure but still with infinite measure.

We will now list various interesting properties of the lower topology, and then relate
it to the usual topology in the last two lemmas.

Lemma 3.9. Let M be a σ-finite measure on Y . Then the intersection map (A1, A2) 7→
A1 ∩ A2 is continuous, where we put the M-lower topology everywhere.

Proof. Let ε > 0. Note that (A1 ∩A2) \ (B1 ∩B2) ⊆ (A1 ∩A2) \B1)∪ ((A1 ∩A2) \B2) ⊆
(A1 \ B1) ∪ (A2 \ B2), so if if M(A1 \ B1) < ε and M(A2 \ B2) < ε, then M((A1 ∩ A2) \
(B1 ∩B2)) < 2ε as wanted.

Lemma 3.10. Let m be a finite measure on Y . Then the countable union map (An)n∈N 7→⋃
n∈NAn is continuous for the m-lower topology everywhere.

Proof. Let (An)n∈N be a family of elements of the measure algebra, then since m is finite
we may find N such that µ((

⋃
nAn) \

⋃
n<N An)) < ε. Now if we take B0, ..., BN−1 such

that m(Ai \ Bi) < ε/N , and any BN , BN+1, ..., we see that µ((
⋃
nAn) \ (

⋃
nBn)) < 2ε as

wanted.

Remark. Note that the countable union map is not continuous if we put the usual
topology everywhere (indeed X can easily be obtained as a limit of reunions of sequences
of sets which converge coordinatewise to ∅). Here in nevertheless a positive result for the
usual topology which will be useful later on.

Lemma 3.11. Let m be a finite measure on Y , let (Yj)j∈N be a disjoint family of mea-
surable subsets of Y . Then the restriction of the countable union map to the set

{(An) ∈ MAlg(Y,m)N : ∀n ∈ N, An ⊆ Yn},

is continuous for the dm-topology.

Proof. Since the Yn’s are disjoint and m is finite, given any ε > 0 we can find N such that
m(

⋃
n>N Yn) < ε, in particular if (An) satisfies An ⊆ Yn for every n then its union is up

to an ε error independent of (An)n>N . The conclusion thus follows from the continuity of
finite unions for the dm-topology.
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We now relate the Hausdorff topology associated to the metric dm and to the corre-
sponding lower m-topology.

Lemma 3.12. Let m be a finite measure on Y , denote by τ lm the lower m-topology and
by τm the topology induced by the metric dm. Then the identity map (MAlg(Y,m), τml )→
(MAlg(Y,m), τm) is Baire class one.

Proof. We begin by noting some useful continuity properties for the lowerm-topology. By
definition, for every A ∈ MAlg(Y,m) the map B 7→ m(A\B) is upper semi-continuous for
the lower topology. Since m(B) = m(X)−m(X \ B), we deduce that m defines a lower
semi-continuous map (MAlg(Y,m), τ lm)→ R+. By Lemma 3.9, for every A ∈ MAlg(Y,m)
the map B 7→ m(A ∩B) is thus lower semi-continuous as well.

We finally observe that

dm(A,B) = m(A4B) = m(A) +m(B)− 2m(A ∩B),

so dm(A, ·) is an Baire class one function on (MAlg(Y, ν), τ lm) → R+, being the sum of
two Baire class one functions. In particular, dm-open balls are Fσ for τ lm. Since every
τm-open set is a countable union of open balls by separability, the conclusion follows.

We conclude this section by a lemma which interwines the two topologies we have
defined in presence of a finite measure.

Lemma 3.13. Let m be a finite measure on Y . The space of all (A,B) such that A ⊆ B
is closed if we put on the first coordinate the m-lower topology, and on the second the
usual measure algebra topology.

Proof. Suppose that A 6⊆ B, let ε = m(A\B). Then if m(A\A′) < ε/2 and m(B′4B) <
ε/2, we still have A′ 6⊆ B′.

3.3 Seeing that the space of subequivalence relations is closed

We now provide a more concrete proof that the space of subequivalence relations is Polish
by seeing that the conditions which make an equivalence relation define closed sets in
MAlg(R,M) for the topology induced by dm. First note that reflexivity means containing
∆X , and hence defines a closed set by Lemma 3.13.

Let us fix a non-singular equivalence relationR, we recall thatm is some finite measure
equivalent to the measure M obtained by integrating the cardinalities of vertical fibers.
Observe that the flip σ : (x, y) 7→ (y, x) quasi-preserves M (this is one characterization
of non-singularity, see [KM04, Prop. 8.2]), in particular it quasi-preserves m and hence
induces a homeomorphism on MAlg(R,M).

This implies that the space of graphings onR (symmetric subrelations ofR) is closed
in MAlg(R,M), because it is the set of fixed points of σ. In particular, we recover the
following fact from [Kec, Chap. 18].

Proposition 3.14. The space of graphings is Polish for the topology induced by the mea-
sure algebra MAlg(R,M).

Remark. This could also be seen through the same approach as for Theorem 2.6, noting
that the liminf of any sequence of graphings is a graphing.
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To see that the space of subequivalence is closed, we need to deal with transitivity.
Observe that on the space of measurable subsets of R, we have an operation ◦ defined
by A ◦ B := {(x, z) : ∃y ∈ X : (x, y) ∈ A and (y, z) ∈ B}. Note that ◦ extends the
composition of elements of the pseudo full group of R, and that it is well defined only
because we are in the non-singular setup.

Lemma 3.15. On the pseudo full group of R, the composition is continuous for the
M-lower topology, and hence for the m-lower topology.

Proof. Note that the M -measure of the graph of an element of the pseudo full group is
the µ-measure of its domain, so by Lemma 3.8, we only need to check the continuity for
the lower M -topology.

Now fix ϕ0, ψ0 ∈ [[R]], let ε > 0, find δ such that whenever µ(A) < δ we have
µ(ψ−1

0 (A)) < ε/2. Take ϕ such that M(ϕ \ ϕ0) < δ, then µ({x ∈ dom (ϕ0) : ϕ(x) 6=
ϕ0(x)}) < δ (in the definition we consider that ϕ0(x) is different from ϕ(x) if x 6∈ dom ϕ).
Then take ψ such that M(ψ \ ψ0) < ε/2, the set X1 = {x ∈ dom ψ0 : ψ(x) = ψ0(x)}
contains dom ψ0 up to an ε/2 error, and

ψ−1
�X1

({x ∈ dom (ϕ0) : ϕ(x) 6= ϕ0(x)}) = ψ−1
0�X1

({x ∈ dom (ϕ0) : ϕ(x) 6= ϕ0(x)})

has thus measure at most ε/2. We conclude that the set of x ∈ dom ϕ0ψ0 such that
ϕψ(x) = ϕ0ψ0(x) contains dom ϕ0ψ0 up to an ε/2 + ε/2 = ε error as wanted. The fact
that the continuity also holds for the m-lower topology is then a direct consequence of
Lemma 3.8 since elements of [[R]] have M -measure at most 1.

Lemma 3.16. The map A,B 7→ A ◦ B is continuous if we put everywhere the lower
m-topology.

Proof. Fixing a countable group Γ such that R = RΓ, the desired continuity follows from
the previous lemma along with the formula

A ◦B =
⋃

γ,γ′∈Γ

γ ∩ A ◦ (γ′ ∩B)

and the fact that finite intersections and countable unions are continuous maps for the
lower topology (Lemma 3.9 and 3.10).

We thus arrive at the desired result saying that the space of transitive subrelations is
closed.

Proposition 3.17. The space of A ⊆ R such that A ◦ A ⊆ A is closed in the Polish
topology on MAlg(R,M).

Proof. This follows directly from the previous lemma along with Lem. 3.13.

Theorem 3.18. Sub(R) is a closed subset of MAlg(R,M) for the dm-topology.

Proof. We already observed that being reflexive exactly means containing ∆X and thus
is a closed condition by Lemma 3.13. The fact that symmetry is a closed condition is
a reformulation of the fact that graphings form a closed set (Proposition 3.14). Finally
transitivity is a closed condition by the previous proposition. So Sub(R) is the intersection
of three closed subsets, hence closed itself.
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We also have the following nice consequence of our work on the lower topology, which
generalizes Proposition 19.1 from [Kec].

Proposition 3.19. The map which takes a measurable subset of R to the equivalence
relation it generates is continuous in the lower topology, in particular it is Baire class one
for the strong topology (induced by dm).

Proof. This map associates to a A ⊆ R the equivalence relation
⋃
n∈N(∆X ∪A∪ σ(A))◦n,

so it is a continuous map by the continuity of σ, of countable unions (Lemma 3.10) and
of composition (Lemma 3.16). The statement about the strong topology then follows
directly from Lemma 3.12.

We can finally obtain the following strengthening of Proposition 4.27 from [Kec].

Corollary 3.20. The map which takes a sequence (Rn) to the equivalence relation
∨
nRn

it generates is continuous in the lower topology, in particular it is Baire class one for the
strong topology.

Proof. This is a direct consequence of the previous result along with the fact that taking
countable unions is continuous in the lower topology (Lemma 3.10).

4 Dense orbits for hyperfinite subequivalence relations
in the p.m.p. case

In the present section, we exclusively work in the probability measure preserving setup,
so R is a p.m.p. equivalence relation on (X,µ). Recall that Aut(R) is the group of all
T ∈ Aut(X,µ) such that T × T (R) = R. Observe that Aut(R) acts on MAlg(R,M)
by T · (x, y) = (T (x), T (y)) and preserves the measure M . The group Aut(R) contains
the full group of R, and it is a Polish group for the topology induced by the group
Aut(R,M) of all measure-preserving bijections of (R,M) (see [Kec10, Prop. 6.3] where
Aut(R) is denoted N [R]). The trivial subequivalence relation will play an important role;
we denote it by ∆X = {(x, x) : x ∈ X} (given our identification of full groups elements to
their graphs, we could also write it as the identity map idX).

4.1 Preliminaries on conditional measures and index

In order to work in the p.m.p. setup, we have to understand which sets can be taken to
other sets by (pseudo) full group elements up to measure zero. This is done here through
the concept of conditional measures, a low-tech version of the ergodic decomposition which
was already present in Dye’s founding paper [Dye59]. We already used them in a previous
paper on non-ergodic p.m.p. equivalence relations, see [LM16, Sec. 2], but we recently
gave a more detailed exposition for general full groups in a joint work with Slutsky which
we use here as a reference (see Appendix D in [LMS23]).

Definition 4.1. Let R be a p.m.p. equivalence relation on (X,µ), denote by MR the
closed subalgebra of (X,µ) consisting of [R]-invariant subsets, and by ER the projection
L2(X,µ) → L2(X,MR, µ). Given A ∈ MAlg(X,µ), its MR-conditional measure µR is
the MR-measurable function

µR(A) = EMR(χA).
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It can be checked that µR takes values in [0, 1], satisfies the usual axioms of a measure,
and that elements of [R] preserve µR (see [LMS23, Prop. D.6]). Say that R is ergodic
when MR = {∅, X}, then R is ergodic iff µR = µ. By [LMS23, Prop. D.10], we moreover
have:

Lemma 4.2. Let A,B ∈ MAlg(X,µ), let R be a p.m.p. equivalence relation on (X,µ).
The following are equivalent:

(i) there is ϕ ∈ [[R]] such that dom ϕ = A and rngϕ = B;

(ii) µR(A) = µR(B).

We finally note the following important consequence of aperiodicity (having only in-
finite classes) for a p.m.p. equivalence relation (it is actually a characterization, but we
don’t need that).

Proposition 4.3 (Maharam’s Lemma, see [LMS23, Thm. D.12]). Let R be a p.m.p. ape-
riodic equivalence relation, let A ∈ MAlg(X,µ), let f : X → [0, 1] be an MR-measurable
function such that 0 6 f 6 µR(A). Then there is B ⊆ A such that µR(B) = f .

We finish this section by recalling some important definitions on the index of sube-
quivalence relations.

Definition 4.4. Let R be a non-singular equivalence relation on (X,µ). We say that
S ∈ Sub(R)

• has infinite index in R if for almost all x ∈ X, the R-equivalence class of x
contains infinitely many distinct S-classes.

• has finite index in R if for almost all x ∈ X, the R-equivalence class of x is the
reunion of a finite set of S-classes.

• has everywhere infinite index in R if for all A ⊆ X such that µ(A) > 0, the
restriction of S to A has infinite index in the restriction of R to A.

Remark. It might not be clear at first sight that having infinite index is not the same
as having everywhere infinite index. Here is the simplest example of an infinite index
S ∈ Sub(R), not everywhere of infinite index: take R ergodic, let A ⊆ X of positive non
full measure, and let S = R�A t∆X\A.

Let us note that when R is ergodic, since the number of S-classes inside the R-class
of x ∈ X is R-invariant, it is constant almost everywhere, and hence S either has finite
or infinite index in R. Similarly if S is ergodic and of infinite index, then it is everywhere
of infinite index because the S-class of almost every x ∈ X intersects A. We finally
note the following non-ergodic way of producing everywhere infinite index subequivalence
relations.

Lemma 4.5. Let R1 and R2 be non-singular aperiodic equivalence relations on respective
standard probability spaces (X1, µ1) and (X2, µ2). Then R1×∆X2 is everywhere of infinite
index in R1 ×R2.

Proof. Let A ⊆ X1×X2 of positive measure, by Fubini’s theorem for almost all (x1, x2) ∈
A the vertical section Ax1 = {x′2 ∈ X2 : (x1, x

′
2 ∈ A)} has positive measure, and hence

by aperiodicity the R2-class of x2 intersects Ax1 in an infinite set. This implies that the
(R1 ×R2)�A-class of (x1, x2) contains infinitely many (R1 ×∆X2)�A classes.
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Proposition 4.6. The equivalence relation S from Example 1.1 is everywhere of infinite
index in R0.

Proof. The even-odd partition of N induces a bijection {0, 1}N → {0, 1}N×{0, 1}N under
which R0 becomes R0 ×R0 and S becomes R0 ×∆{0,1}N , so the result follows from the
previous lemma.

4.2 Approximating the diagonal

Recall that ∆X denotes the equality relation on X. We will now characterize equiva-
lence relations whose orbit closure contains ∆X , mirroring Popa’s result on asymptotic
orthogonalization of subalgebras of a finite factor [Pop19, Lem. 2.3].

Theorem 4.7. Let R be an aperiodic p.m.p. equivalence relation. Let S ∈ Sub(R) be a
subequivalence relation. The following are equivalent:

(i) S has everywhere infinite index in R;

(ii) the closure of the [R]-orbit of S contains ∆X ;

(iii) the closure of the Aut(R)-orbit of S contains ∆X .

Proof. The implication (ii) =⇒ (iii) is clear since [R] 6 Aut(R).

Let us then check that (iii) implies (i) by proving the contrapositive: assuming that
S does not have infinite index everywhere, we need to show that the Aut(R)-orbit of S
does not contain ∆X .

By assumption, we have a subset A ⊆ X of positive measure such that the restriction
S�A has finite index in R�A. Shrinking A further if necessary, we may assume the index
of the restriction of S to A in the restriction of R to A is constant equal to k. Let N ∈ N
such that 1/N < µ(A).

By aperiodicity and Maharam’s lemma with f = 1
2kN

(see Proposition 4.3), we can
partition X in 2kN pieces of equal R-conditional measure. Using Lemma 4.2, we thus
have B ⊆ X and ϕ1, ..., ϕ2kN ∈ [[R]] with domain B such that ϕ1 = idB and the sets
ϕ1(B), ..., ϕ2kN(B) partition X.

Let B0 be the set of x ∈ B such that there are at least k + 1 distinct indices i ∈
{1, . . . , 2kN} such that ϕi(x) ∈ A. Write A0 = {x ∈ A : ∃i, ϕ−1

i (x) ∈ B0}, then since
A0 is covered by the disjoint translates of B0 we have µ(A0) 6 2kNµ(B0). Letting
A1 = A \ A0, we again have that A1 is covered by the disjoint translates of B1 = B \B0,
but by definition for every x ∈ B1 there are at most k indices i ∈ {1, . . . , 2kN} such that
ϕ(x) ∈ A1, so that

µ(A1) 6 kµ(B1) 6
k

2kN
.

Since A = A0 t A1, we then have µ(A) 6 k
2kN

+ 2kNµ(B0). But 1/N < µ(A) so
1/2N < 2kNµ(B0) and hence

µ(B0) >
1

2kN2
.

Now for all x ∈ B0, because the index of S�A in R�A is k, we must have two distinct i, j
such that (ϕi(x), ϕj(x)) ∈ S. In particular,∑

16i<j62N

M(ϕ−1
i ϕj ∩ S) >

1

2kN2
.
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The latter estimate will actually be valid for every translate of S by T ∈ Aut(R) because
T (A) will still satisfy 1/N < µ(T (A)), so for every T ∈ Aut(R),∑

16i<j62N

M(ϕ−1
i ϕj ∩ T · S) >

1

2kN2
.

This inequality defines a closed set of subequivalence relations, but it is not satisfied by
∆X , which finishes the proof of (iii)⇒(i).

We finally prove that (i) implies ii. We fix S ∈ Sub(R) everywhere of infinite index.
Let us also fix a uniquely generating sequence (ϕk) of moving partial involutions of R
as provided by Proposition 3.4. Applying Proposition 3.1 to the sequence of M -finite
measure subsets ϕk, it suffices to show that given some k ∈ N and ε > 0, we can find
T ∈ [R] such that for all i ∈ {1, . . . , k},

M((T−1 · S) ∩ ϕi) < ε.

We will actually do better and construct T ∈ [R] such that for all i ∈ {1, . . . , k},M((T−1 ·
S) ∩ ϕi) = 0. Observe that it now suffices (and it is necessary) to build T such that that
for almost all x ∈ dom ϕi and all i ∈ {1, . . . , k},

(T (x), Tϕi(x)) 6∈ S.

Our construction makes a crucial use of a result of Eisenmann and Glasner: letting
Γ = {γn : n ∈ N} be a dense subgroup of [R], by [EG16, Prop. 1.19] we have that Γ
acts highly transitively on the orbit of almost every x ∈ X, and we may as well restrict
ourselves to the set of all such x’s.

We can now start building T inductively as the increasing union of elements ψn of the
pseudo full group defined as follows.

First, ψ0 is the restriction of γ0 to the set of all x ∈ X such that for all i ∈ {1, . . . , k},
we have (γ0x, γ0ϕi(x)) 6∈ S. Then, assuming ψn has been built, we extend it as ψn+1 by
letting ψn+1(x) = γn+1x if x 6∈ dom ψn and γn+1x 6∈ rngψn and for all i ∈ {1, . . . , k}

• if ψnϕi(x) is defined then (γn+1x, ψnϕi(x)) 6∈ S.

• if ψnϕi(x) is not defined then (γn+1x, γn+1ϕi(x)) 6∈ S

Let ψ =
⋃
n ψn, we need to argue that ψ has full domain. Assume not, observe first that

for almost all x in the complement of the domain of ψ, the R-class of x intersects of the
complement of the range of ψ, because otherwise we have a positive measure R-invariant
set such that ψ−1 takes it into a subset of itself of smaller measure, contradicting that R
is measure-preserving.

Now take x ∈ X \ dom ψ as above. Let i1, ..., il ∈ {1, . . . , k} be the indices such that
ψϕi1(x), . . . , ψϕil(x) is defined, denote by j1 . . . jk−l the remaining indices. Since S has
infinite index in X \ rngψ there is z ∈ [x]R ∩X \ rngψ and z1, . . . , zk−l ∈ [x]R ∩X \ rngψ
such that

• for all m ∈ {1, . . . , l} we have (z, ψnϕim(x)) 6∈ S and

• for all m ∈ {1, . . . , k − l} we have (z, zm) 6∈ S.
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By high transitivity, there are infinitely many γ ∈ Γ such that

γx = z and ∀m ∈ {1, · · · , k − l}, γϕjm(x) = zm.

This shows that almost all x ∈ X \ dom ϕ there is n ∈ N such that γn+1x 6∈ rngψ and for
all i ∈ {1, . . . , k}, we have :

• if ψϕi(x) is defined then (γn+1x, ψϕi(x)) 6∈ S, and

• if ψϕi(x) is not defined then (γn+1x, γn+1ϕi(x)) 6∈ S.

Let n be the first integer such that the set of x ∈ X \ dom ϕ satisfying the above two
conditions is non null. By the definition of ψ, this set should be contained in the domain
of ψn+1 and hence of ψ, a contradiction.

So ψ is everywhere defined; we just need to check that the full group element T = ψ
is as wanted. Let x ∈ X, take n > −1 such that T (x) was defined at stage n + 1 as
T (x) = ψn+1(x) = γn+1x.

Let i ∈ {1, . . . , k}. If ψnϕi(x) was already defined, then (ψnϕi(x), γn+1x) 6∈ S by
construction, which means that (Tϕi(x), T (x)) 6∈ S. If ψnϕi(x) was not defined, there are
two possibilites:

• Either we defined at the same time ψn+1(ϕi(x)) = γn+1ϕi(x), in which case the
second condition (γn+1x, γn+1ϕi(x)) 6∈ S guarantees (ψnϕi(x), γn+1x) 6∈ S and hence
(Tϕi(x), T (x)) 6∈ S.

• Or we defined ψm+1(ϕi(x)) = γm+1(ϕi(x)) at a later stager m > n, but then the
first condition (γm+1ϕi(x), ψmϕiϕi(x)) 6∈ S and the fact that ϕi is involutive imply
that (ψm+1ϕi(x), ψm(x)) 6∈ S and hence (Tϕi(x), T (x)) 6∈ S.

Since in all cases we reached the desired conclusion (Tϕi(x), T (x)) 6∈ S, the proof is
finished.

4.3 Dense orbits in the space of hyperfinite subequivalence rela-
tions

By definition a CBER is called finite when all its equivalence classes are finite.

Definition 4.8. Let R be a CBER, say that R is hyperfinite if it can be written as an
increasing union of finite Borel subequivalence relations.

In the measured context, hyperfiniteness can be characterized in full group terms as
follows: R is hyperfinite iff for all T1, . . . , Tn ∈ [R] and ε > 0, after throwing away a set
X ′ of measure ε, the equivalence relation generated by the restrictions T1�X\X′ , ..., Tn�X\X′

is finite.

Remark. The above definition is Dye’s original notion of approximate finiteness for full
groups [Dye59] (see also [LM14, Prop. 1.57] or [KM04, Lem. 10.4] for a proof of the
aforementionned equivalence).

Definition 4.9. Given a non-singular equivalence relation R on (X,µ), let us denote by
Subhyp(R) its space of hyperfinite subequivalence relations.
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Using lim inf’s as in the proof of Theorem 2.6 and the fact that the class of non-singular
hyperfinite equivalence relations is stable under countable increasing unions, one can show
that that Subhyp(R) is closed in Sub(R) (see [Kec, Thm. 8.1]). Let us observe that this
can also be seen as a consequence of the characterization via approximate finiteness: if S
is not hyperfinite as witnessed by some ε > 0 and T1, ..., Tn its in full group, any S ′ which
contains the Ti’s in its full group up to an ε/2n error will also fail to be hyperfinite.

Before we state our main result on dense orbits in Subhyp(R), we need a preparatory
well-known lemma on finite subequivalence relations.

Lemma 4.10. Let R be an ergodic p.m.p. equivalence relation. Then two finite subequiv-
alence relations S1 and S2 of R are in the same [R]-orbit iff for all n ∈ N

µ({x ∈ N : |[x]S1| = n}) = µ({x ∈ N : |[x]S2| = n}). (1)

Proof. The direct implication is clear. Assume conversely that (1) holds. Let us fix some
notation by letting, for i ∈ {1, 2} and n > 1

X i
n = {x ∈ N : |[x]Si | = n}.

Our assumption then becomes: the equality µ(X1
n) = µ(X2

n) holds for every n > 1. Let
< be a Borel linear order on X. We can then define for all i ∈ {1, 2} and j ∈ {1, . . . , n}
the Borel set

Y i
n,j = {x ∈ X i

n : x is the j’th element of [x]Si}
For i ∈ {1, 2}, and j1, j2 ∈ {1, . . . , n}, we have ϕin,j1,j2 : Y i

n,j1
→ Y i

n,j2
defined by taking

x ∈ Y i
n,j1

to the j2’th element of its Si-class, then ϕin,j1,j2 ∈ [[Si]] ⊆ [[R]]. In particular
since R is p.m.p., we have that µ(Y i

n,j1
) = µ(Y i

n,j2
). Since X i

n is partitioned by (Y i
n,j)

n
j=1,

we conclude
nµ(Y 1

n,1) = µ(X1
n) = µ(X2

n) = nµ(Y 2
n,1)

so that µ(Y 1
n,1) = µ(Y 2

n,1).
SinceR is ergodic, for every n ∈ N we can fix some ϕn ∈ [[R]] such that dom ϕn = Y 1

n,1

and rngϕn = Y 2
n,1. We then extend simultaneously these ϕn as T ∈ [R] by letting for

every n > 1, j ∈ {1, . . . n} and x ∈ X1
n,j:

T (x) = ϕ2
n,1,jϕnϕ

1
n,j,1(x)

In other words, given x ∈ X whose S1-class has cardinality n, we look at the first element
y of the S1-class of x, and then T (x) is the element of the S2-class of ϕn(y) which is in
the same position as x. Then by construction T · S1 = S2 as wanted.

Theorem 4.11. Let R be a p.m.p. ergodic equivalence relation, let S ∈ Sub(R) be aperi-
odic and have everywhere infinite index. Then the closure of the [R]-orbit of S contains
Subhyp(R).

Proof. It follows from the definition of hyperfiniteness that finite equivalence relations are
dense in Subhyp(R), so it suffices to approximate every finite subequivalence relation of
R by an element of the [R]-orbit of S. Let R0 be such a finite equivalence relation. For
each n let

Xn = {x ∈ X : |[x]R0| = n}.
Because S is aperiodic, we can find an element of the [R]-orbit of R0 contained in S.

Indeed, by Maharam’s lemma we first have a partition of X into pieces (Yj,n)16j6n such
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that µS(Yj,n) = µ(Xn)
n

. We then have for every 2 6 j 6 n some ϕj,n ∈ [[S]] such that
dom ϕj,n = Y1,n and rngϕj,n = Yj,n.

Now let Y1 =
⊔
n Y1,n, ψ1 = idY1 and for all j > 2, ψj =

⊔
n>j ϕj,n. Note that the

ranges of the ψj’s partition X. Denoting by S0 the equivalence relation generated by all
the ψj’s, we then have

S0 =
⊔
n

n⊔
i,j=1

ϕn,i × ϕn,j(∆Y1,n) =
⊔
i,j

ψi × ψj(∆Y1 ∩ (dom ψi × dom ψj)),

In particular the S0-class of every x ∈
⊔n
j=1 Yn,j has cardinality n, and so by Lemma 4.10

we can fix some T ∈ [R] such that T · S0 = R0.
By Theorem 4.7, we find a sequence (Tk)k in the full group of the restriction of R to

Y1 such that Tk · S�Y1 → ∆Y1 . We then let T̃k(x) = ψjTkψ
−1
j (x) for all x ∈ rngψj.

By construction T̃k · S =
⊔
i,j

ψi×ψj(Tk · S�Y1 ∩ (dom ψi× dom ψj)), so by Lemma 3.11

T̃k · S →
⊔
i,j

ψi × ψj(∆Y1 ∩ (dom ψi × dom ψj)) = S0

which yields the desired result since we then have T T̃k · S → T · S0 = R0.

Remark. By [IKT09, Cor. 5.4 (ii)], ifR is aperiodic and comes from a measure-preserving
action of a property (T) countable group, then there are no dense orbits in the space of
subequivalence relations because any S with a dense orbit would have to have finite
index in some restriction of R, and hence cannot contain ∆X in its orbit by Theorem
4.7. The general fact is that there cannot be dense orbits in the space of subequivalence
relations of R as soon as R is not approximable as defined by Gaboriau and Tucker-Drob
in [GT16]. Indeed if S has a dense orbit Lemma 2.2 provides a sequence Sn such that
R = lim inf Sn, while non approximability forces some restriction of

⋂
n>N Sn to coincide

with R on a positive measure subset A, contradicting the density of the orbit of S by
Theorem C. For more examples of non approximable equivalence relations, the reader
can consult the paper of Gaboriau and Tucker-Drob, where they obtain for instance a
quantitative version of non-approximability for some equivalence relations coming from
actions of product groups (see [GT16, Thm. 2.4]).

Corollary 4.12. Let R be an ergodic p.m.p. equivalence relation, let S ∈ Sub(R). The
following are equivalent:

(i) S is aperiodic and has everywhere infinite index in R;

(ii) S is aperiodic and the closure of the [R]-orbit of S contains ∆X ;

(iii) S is aperiodic and the closure of the Aut(R)-orbit of S contains ∆X ;

(iv) The closure of the [R]-orbit of S contains Subhyp(R);

(v) The closure of the Aut(R)-orbit of S contains Subhyp(R).

Proof. The equivalence of the first three items (i), (ii) and (iii) is a direct consequence
of Theorem 4.7. The implication (i) =⇒ (iv) is exactly Theorem 4.11, and (iv) clearly
implies (v). Finally, let us prove (v) =⇒ (iii): assume the closure of the Aut(R)-orbit of
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S contains Subhyp(R). Since ∆X is hyperfinite, we have that ∆X belongs to the closure of
the Aut(R)-orbit of S, so we only have to show S is aperiodic. Assume by contradiction
that S is not aperiodic, then for some n ∈ N we have µ({x ∈ X : |[x]S | 6 n}) > 0.
Let δ = µ({x ∈ X : |[x]S | 6 n}), then S belongs to the Aut(R)-invariant set B of all
S ′ ∈ Sub(R) such that

sup
T1,...,Tn+1∈[R]

M(S ′ ∩ (T1 ∪ · · · ∪ Tn+1)) 6 δn+ (1− δ)(n+ 1).

Note that the intersection map is continuous for the lowerM -topology by Lemma 3.9 and
that M is lower semi-continuous for the lower M -topology. Since arbitrary supremums of
lower semi-continuous function are lower semi-continuous, the Aut(R)-invariant set B is
closed for the lower M -topology, in particular it is closed for the strong topology. Since
the closure of the Aut(R)-orbit of S ∈ B contains Subhyp(R), we have B ⊆ Subhyp(R).

However B is disjoint from the set of aperiodic subequivalence relations since for T
aperiodic we can find T1, ..., Tn+1 in the full group of T with disjoint graphs, so that
M(T ∩ (T1tT2t · · ·tTn+1)) = n+ 1. Since Subhyp(R) contains aperiodic subequivalence
relations, we reached the desired contradiction. So S is aperiodic and hence (iii) holds as
wanted.

Corollary 4.13. For a subequivalence S of the hyperfinite ergodic p.m.p. equivalence
relation R0, the following are equivalent:

(i) S is aperiodic and has everywhere infinite index in R0;

(ii) S is aperiodic and the closure of the [R0]-orbit of S contains ∆X ;

(iii) S is aperiodic and the closure of the Aut(R0)-orbit of S contains ∆X ;

(iv) The [R0]-orbit of S is dense in Sub(R0);

(v) The Aut(R0)-orbit of S is dense in Sub(R0).

Proof. This is a direct consequence of the previous corollary since every subequivalence
relation of a hyperfinite equivalence relation is hyperfinite.

Remark. In the non-singular ergodic type II∞ or type III case, one can show that there
are always dense orbits in the space of subequivalence relations. Let us sketch the proof:
first enumerate a dense subset of Sub(R) as (Sn) and note that there is a sequence (ϕn)
of elements of [[R]] such that for all n, dom ϕn = X but X =

⊔
n rngϕn. Then the

equivalence relation S =
⊔
n ϕn · Sn has a dense full group orbit, as one can see by

approximating each ϕn by a full group element in the dM metric.

4.4 Meagerness of full group orbits

In this section, we use Ioana’s intertwining for subequivalence relations in order to show
that full groups orbits are always meager in the space of hyperfinite subequivalence re-
lations. In what follows, we use the uniform metric on the full group of a p.m.p.
equivalence relation R, defined by

du(T1, T2) = µ({x ∈ X : T1(x) 6= T2(x)}) = dM(T1, T2),
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which is biinvariant, complete and separable, thus endowing [R] with a Polish group
topology. We will use without mention the well-known fact that if M(S ∩ T ) > 1 − ε,
then there is S ∈ [S] such that du(S, T ) < ε (to see this, note that S ∩ T ∈ [[S]], hence it
can be extended to an element S of the full group of S by Lemma 4.2).

Definition 4.14 (Ioana). Let S, T be two subequivalence relations of a p.m.p. equivalence
relation R, write S ≺ T if there is no sequence (Tn) in the full group of T such that for
all U1, U2 ∈ [R], we have

M(S ∩ U1TnU2)→ 0.

We leave it to the reader to check that ≺ is [R]-invariant, meaning that if S ≺ T and
U1, U2 ∈ [R], then U1 · S ≺ U2 · T . Also note that we always have S ≺ S.

Lemma 4.15. The relation ≺ defines a Fσ subset of Sub(R)× Sub(R).

Proof. We show that the complement of ≺ in Sub(R) × Sub(R) is Gδ. Let us fix (Ui)
dense in R. It is then not hard to check that S 6≺ T iff there is a sequence (Tn) in the full
group of T such that M(S ∩ UiTnUj)→ 0 for all i, j ∈ N (this is essentially the first step
of the proof of [Ioa12, Lem. 1.7]). It follows that S 6≺ T if and only if for every k ∈ N
and ε > 0, we can find T ∈ [T ] such that

∀i, j ∈ {1, . . . , k}, M(S ∩ UiTUj) < ε. (2)

Now by density of (Ui), we finally have S 6≺ T iff for every k ∈ N and ε > 0, there is l ∈ N
such that M(T ∩ Ul) > 1− ε and for all i, j ∈ {1, . . . , k}:

M(S ∩ UiUlUj) < ε.

It is now straightforward to check that this last condition defines a Gδ set, so we are
done.

Theorem 4.16. Let R be an ergodic p.m.p. equivalence relation, consider the [R]-action
on the Polish space Subhyp(R) of hyperfinite subequivalence relations of R. Then all [R]-
orbits in Subhyp(R) are meager.

Proof. Assume by contradiction there is a non meager [R]-orbit. Since there is a dense
[R]-orbit in Sub(R), the topological 0-1 law yields that there is a comeager orbit. Denoting
by E the equivalence relation generated by the [R]-action on Sub(R), we deduce that E
is comeager in Subhyp(R)× Subhyp(R).

By [Dye59, Thm. 4], the p.m.p. equivalence relation R contains an ergodic hyperfinite
subequivalence relation S. Let T be an aperiodic subequivalence relation of S with diffuse
ergodic decomposition such as the one coming from example 1.1 once we identify S to
R0. The following claim will essentially finish our proof.

Claim. We have S 6≺ T .

Proof of the claim. Suppose S ≺ T . Then by [Ioa12, Lem. 1.7], there is a nonzero ϕ ∈
[[R]] and k ∈ N such that if A = dom ϕ and B = rngϕ, then every ϕ·S�A-class is contained
in the union of at most k classes of T�B. Since T has diffuse ergodic decomposition, we can
find C1, . . . , Ck+1 partitioning B which are all T�B-invariant and have measure 1

(k+1)µ(B)
.

Since S is ergodic, the ϕ·S�A-class of almost every x ∈ B intersects all the Ci, and since
they are T�B-invariant, we conclude that almost every ϕ · S�A-class cannot be contained
in less than k + 1 classes of T�B, a contradiction. �claim
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Since ≺ is [R]-invariant, its complement also is. This complement is moreover Gδ by
Lemma 4.15, and by the above claim it contains the subset [R] · S × [R] · T , which is
dense in Subhyp(R)× Subhyp(R) by Theorem 4.11. So the complement of ≺ is comeager,
and it should thus intersect E. This means that one can find a subequivalence relation S
and T ∈ [R] such that S 6≺ T · S, a contradiction.

Remark. Our proof is inspired by the Glasner-Weiss proof that Aut(X,µ) does not have
comeager conjugacy classes, replacing Rokhlin’s lemma by Theorem 4.11 and Del Junco’s
disjointness by Ioana’s interwining relation 6≺ (see [GW08, Sec. 3]).

Corollary 4.17. Let R0 be the hyperfinite ergodic p.m.p. equivalence relation. Then all
the [R0]-orbits are meager in Sub(R0)

Proof. Again this follows directly from the above theorem since every subequivalence
relation of a hyperfinite equivalence relation is hyperfinie.

5 The uniform metric and complexity calculations
We begin this final section by introducing a natural metric on the space of all non-singular
equivalence relations. Given two non-singular equivalence relations R1 and R2, denote
by C(R1,R2) the set of all A ∈ MAlg(X,µ) such that R1�A = R2�A. Define

du(R1,R2) = 1− sup
A∈C(R1,R2)

µ(A) = inf
A∈C(R1,R2)

1− µ(A).

Let us check that this is indeed a metric. Symmetry is clear. For Hausdorffness, if
du(R1,R2) = 0 then we find (Xn) with µ(Xn) > 1 − 2−n and R1�Xn = R2�Xn . By the
Borel-Cantelli lemma almost every x ∈ X is in all but finitely many Xn, which yields a
full measure set restricted to which R1 and R2 coincide.

We finally need to show that the triangle inequality holds. Observe that if A1 ∈
C(R1,R2) and A2 ∈ C(R2,R3), then A1 ∩ A2 ∈ C(R1,R3), moreover

X \ (A1 ∩ A2) ⊆ (X \ A1) ∪ (X \ A2),

so by taking measures and infimums we get the desired triangle inequality.

Lemma 5.1. The uniform metric refines the strong topology.

Proof. The uniform metric clearly refines the uniform topology defined in [Kec, Sec. 4.6],
which in turn refines the strong topology.

Remark. The results from [IKT09, Thm. 1] applied to the subequivalence relationR1∩R2

yield that the uniform metric actually induces the uniform topology.

Proposition 5.2. Suppose R is an aperiodic non-singular equivalence relation. There
is a continuous reduction from the set of finite subsets of N to the complement of the
set of subequivalence relations which are of infinite index, and to the set of finite index
subequivalence relations, both for the uniform metric.

Proof. Let (Xn) be a partition of X into sets which intersect almost every R-class (e.g.
obtained via Maharam’s lemma as sets ofR-conditional measure constant equal to 2−n−1).
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Let B ⊆ N. We associate to B the set YB =
⋃
n∈N\BXn and let the reduction be B 7→ RB

where
RB = (R∩ YB × YB) t

⋃
n∈B

R∩ (Xn ×Xn)

The continuity of our reduction for the uniform metric is clear from the definition (if two
subsets B and B′ coincide on the first n integers, then the associated equivalence relations
coincide on

⋃
k<nXk). Moreover, if B is finite we see that RB has finite index equal to

|B|+ 1, and if not it has infinite index as wanted.

Corollary 5.3. Let R be a non-singular aperiodic equivalence relation. The set of sube-
quivalence relations of R with infinite index is Gδ-hard in the uniform metric, in particular
it is Gδ-complete in the strong topology.

The next statements are all about the strong topology.

Proposition 5.4. Let R be a nonsingular aperiodic equivalence relation. The space of
finite index subequivalence relations is Fσδ-hard if and only if E has infinitely many ergodic
components, otherwise it is Fσ-complete.

Proof. Denote by Sub[<∞](R) the space of finite index subequivalence relations. Note that
by ergodicity, if E has only finitely many ergodic components, then the space of finite
index subequivalence relations is equal to the reunion over k ∈ N of the spaces Sub[6k](R)
of all subequivalence relations whose index is uniformly less than k.

Let us show that for each k ∈ N, the set Sub[6k](R) is closed. Suppose S /∈ Sub[6k](R),
then there is a positive measure set of x ∈ X such that [x]R contains at least k+1 distinct
S classes. We thus find A ⊆ X of positive measure and ϕ1, ...ϕk ∈ [[R]] with common
domain A and such that A, rngϕ1, . . . , rngϕk are and S is disjoint from the reunion of the
graphs of the ϕiϕ−1

j . In other words we find a finite subequivalence relation of R which
is disjoint from S (after of course removing ∆X) and all whose non trivial classes have
cardinal > k + 1.

Now let Sn → S, since

M(ϕ1 t · · · t ϕk ∩ Sn) =

∫
A

|{i ∈ {1, . . . , k} : (x, ϕi(x)) ∈ Sn}| dµ(x)→ 0,

for n large enough there will be a positive measure set of x ∈ A such that for all
i ∈ {1, . . . , k}, (x, ϕi(x)) /∈ Sn, in particular Sn has somewhere index > k. So Sub[6k](R)
is closed and hence Sub[<∞](R) =

⋃
k∈N Sub[6k](R) is Fσ. Moreover, Sub[<∞](R) =⋃

k∈N Sub[6k](R) is Fσ-complete by virtue of the preceding proposition.
Now if R has infinitely many ergodic components, let (Xn) be a partition of X into

R-invariant sets of positive measure. Denote by Pf (N) ⊆ {0, 1}N the set of finite subsets
of N, viewed as finitely supported functions N→ {0, 1}.

For every n ∈ N, let Φn :→ Sub(R�Xn) be the reduction from the previous proposition,
and for a sequence (xn) of elements of {0, 1}N, let Φ(xn) =

⊔
n Φn(xn) ∈ Sub(R). By

Lemma 3.11 Φ is continuous, and by construction Φ−1(Sub[<∞](R)) =
∏

n∈NPf (N). Being
a (countable) infinite product of Fσ-hard sets, the latter is Fσδ-hard, so the set of finite
index subequivalence relations is Fσδ-hard.

Remark. It follows from [Kec, Prop. 9.4] that Sub[<∞](R) is always Fσδ (the proof in the
nonsingular case works the same), so when R is aperiodic and has infinitely many ergodic
components, Sub[<∞](R) is actually Fσδ-complete.
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We finally use a similar approach to show that the set of finite subequivalence relations
is always Fσδ-complete (for R aperiodic), by first directly showing that the space of finite
subequivalence relations if Fσ-hard. In the remainder of the paper, we set

Γ0 =
⊕
N

Z/2Z = {f : N→ Z/2Z | f(n) = 0 for all but finitely many n ∈ N}.

Lemma 5.5. The space Subfin(Γ0) of finite subgroups of Γ0 is an Fσ-complete subset of
the space Sub(Γ0) of subgroups of Γ0.

Proof. The set of finite subgroups is countable, in particular it is Fσ. It is Fσ-complete
via the continuous reduction B ⊆ N 7→ ΛB :=

⊕
n∈B Z/2Z 6 Γ of the Fσ-complete set of

finite subsets of N to Subfin(Γ0).

Remark. The above lemma can also be proven by first noting that by the Baire category
theorem, the countable dense set Subfin(Γ0) cannot be Gδ in the perfect zero-dimensional
Polish space of subgroups of Γ0, and then applying Wadge’s theorem (see [Kec95, Thm.
22.10]).

The following lemma is probably well-known and true as well in the non-singular case,
but for simplicity we stick to the p.m.p. setup.

Lemma 5.6 (Dye). For every aperiodic p.m.p. equivalence relation R, there is a free
Γ0-action which induces a subequivalence relation of R.

Proof. By Maharam’s lemma, we may build by induction a partition (An)n>0 of X into
subsets such that for all n ∈ N, their conditional measure satisfies µR(An) = 1

2n+1 . For
n ∈ N, let now Bn = X \

⊔
m6nAm, which also satisfies µR(An) = 1

2n+1 . Moreover, for
every n we have Bn = An+1 tBn+1 by construction.

By Lemma 4.2, for every n ∈ N there is ϕn ∈ [[R]] such that dimϕn = An and
rngϕn = Bn. We will extend these to involutions so as to have a free Γ0-action. Letting
Gn = {f ∈

⊕
N Z/2Z : ∀m > n, f(m) = 0}, we can write Γ0 as the increasing union

Γ0 =
⋃
nGn, and we have Gn = 〈s0, . . . , sn〉, where si(k) = 0 if i 6= k, and si(k) = 1 if

i = k. Our inductive construction of the action will be so that for all n,

X =
⊔
g∈Gn

g ·Bn (3)

We begin by letting s0 · x = ϕ0(x) if x ∈ A0, and s0 · x = ϕ−1
0 (x) if x ∈ B0 = X \ A0,

then X = B0ts0 ·B0. And then, assuming that the action of Gn has been defined so that
X =

⊔
g∈Gn

g ·Bn, we begin by defining the sn+1 action on Bn by letting sn+1 ·x = ϕn+1(x)

if x ∈ An+1 and sn+1(x) = ϕ−1
n+1(x) if x ∈ Bn+1. Since we want sn+1 to commute with Gn

and we have X =
⊔
g∈Gn

g · Bn, we are then forced to extend sn+1 to the whole of x by
letting, for every x ∈ Bn and every g ∈ Gn,

sn+1(g · x) = g · sn+1 · x.

It is then not hard to check that this does define a Gn+1 action with X =
⊔
g∈Gn+1

g ·Bn+1,
which provides us a Γ0-action by induction in the end. This action is free since Equation
3 implies that the action restricted to each Gn is free, which finishes the proof.
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Remark. It follows from [Dye59, Thm. 3] that whenR is p.m.p. hyperfinite and aperiodic,
one can even ask that R is equal to the equivalence relation generated by the Γ0-action.
This led Dye to formulate the question wether any p.m.p. equivalence relation should
come the free action of some countable group (see the paragraph right before Lemma 6.5
in [Dye59]). This question was answered in the negative 40 years later by Furman [Fur99].

Given a non-singular equivalence relationR, we denote by Subfin(R) the space of finite
subequivalence relations of R.

Proposition 5.7. Let R be an aperiodic p.m.p. equivalence relation. Then Subfin(R) is
Fσδ-complete.

Proof. Partition X into (Xn) where each Xn has positive measure. The restriction of R
to each Xn is aperiodic, by the previous lemma it thus contains a subequivalence relation
coming from a free Γ0-action αn. Now consider the map

∏
n Sub(Γ0) → S(E) which

takes any sequence (λn) to the equivalence relation
⊔
nRαn(Λn). This is a topological

embedding by Lemma 3.11, and it reduces the Fσδ-complete set Subfin(Γ0)N to the set of
finite equivalence relations, which is thus Fσδ-hard. Since by [Kec, Thm. 8.5], Subfin(R)
is Fσδ, it is Fσδ-complete as wanted.

Remark. Endowing Sub(R) with its strong topology and the uniform metric, we get a
Polish topometric space in the sense of Ben Yaacov [BY08], and our remark preceding
Corollary 4.12 can be upgraded to the fact that if R has property (T), then R is a
metrically isolated point of Sub(R) (see also [GT16] for more examples). I don’t know
whether the action of the full group or automorphism group of the hyperfinite ergodic
p.m.p. equivalence relation admits a metrically generic orbit, as characterized in [BYM23].
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