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1 Introduction

(1.1) Throughout this paper k always denotes a finite field F, with g elements, and
¢ a prime number not dividing g. The algebraic closure of a field K is denoted by K.
Let ¢:k—C" be a nontrivial additive character, and £, the Q,-sheaf on
A} associated to Y and the Artin-Schreier covering t¢ — t = x. For a morphism
f: X - A}, with X a scheme of finite type over k, one considers the exponential sum
S(f) =Y xexw ¥ (f(x)). By Grothendieck’s trace formula we have

S(f) =2 (= D'Tr(F, H(X @ k.f*2y)) ,

where F denotes the (geometric) Frobenius action. In the present paper we will
determine the absolute values of the eigenvalues of this Frobenius action when X is
a torus and f is nondegenerate with respect to its Newton polyhedron at infinity.
Obviously this implies good bounds on the absolute value of S(f).

(1.2) For any commutative ring A, we denote the n-dimensional A-torus
Spec A[X1,. .., X, X1 1. oo, %0 11by T4, Let £ T% — A} be an A-morphism, thus
we can write f as a Laurent polynomial f= Y ;cz» ¢;x’. The Newton polyhedron
A, (f) of f at infinity is the convex hull in Q" of {ie Z"|¢; # 0} U {0}. For any face
1 of A, (f) we put f, = Y ;.. ¢;x". Call f nondegenerate with respect to A,(f) if for
every face 7 (of any dimension) of 4,(f) that does not contain the origin, the
subscheme of T} defined by

is empty. When 4 (f) has dimension n, we denote its volume by Vol(4(f)).
The first result of the present paper is the following
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(1.3) Theorem. Supposethat f: T] — A} is nondegenerate with respect to A4, (f) and
that dim 4, (f) = n. Then

(a) H(TE, f*2,)=0if i+ n, and

(b) dim H2(TE, f*£) = n! Vol(4.,(f)).

If in addition the origin is an interior point of A,,(f) then

(c) HX(TE f*L,) is pure of weight n (i.e. all eigenvalues of the Frobenius action have
absolute value g"'?).

This theorem was proved by Adolphson and Sperber [AS1, AS2] for ailmost all p,
and they conjectured it to be true for all p. In contrast with their work, our proofis
purely /Z-adic and based on toroidal compactification.

(1.4) By Deligne’s fundamental results [De] each eigenvalue of the Frobenius
action on HX(TE, f*£,) has absolute value ¢g*2 with we N, w < n. In the present
paper we use intersection cohomology to determine the number e,, of eigenvalues
with absolute value g*/? (counting multiplicities). In other words we determine the
polynomial :
E(Tf)= ) e ™.
w=0

This problem was posed by Adolphson and Sperber [AS3] who also treated some
special cases. To state our formulas we first need some more notation.

(1.5) To any convex polyhedral cone ¢ — Q" with vertex (at the origin) one
associates a polynomial a(g) in one variable 7, which only depends on the
combinatorial type of ¢, and which can be calculated by a recursion formula, see
(6.1). If ¢ is a simplicial cone (i.e. generated by vectors which are linearly indepen-
dent), then a(¢) = 1. The polynomials a(g) were first studied by Stanley [S], and are
related to intersection cohomology: the coefficient of T in «(o) equals the dimen-
sion of the cohomology in degree i — dimog of the stalk at the origin of the
intersection complex on the affine toric variety associated to the cone g, see (6.2).
A special role will be played by the value of a(s) at T = 1, which will be denoted by
a(o) (1).

(1.6) For any convex polyhedral cone ¢ = Q" with vertex we define poly ¢ as the
intersection of o with a hyperplane in Q", not containing the origin, which
intersects each one-dimensional face of ¢. Note that the convex polytope poly o is
defined up to combinatorial equivalence. Next, let 4 be any convex polyhedron in
Q" and 7 a face of 4. We denote by cone,t the convex polyhedral cone in Q"
generated by 4 — 1= {x — y|xe4, yet}. Moreover we define conejr as the
convex polyhedral cone with vertex obtained by intersecting cone,t with a plane
through the origin which is complementary to the plane generated by t — 7. Note
that conejr is only defined up to affine equivalence.

(1.7) Let 4 be a convex polytope in Q" with integral vertices. For any face 1 of
A4 we denote by Vol(t) the volume of 7 so normalized that a fundamental domain of
the lattice Z" n (affine space of 7) has unit volume. To the polytope 4 we associate
a number

(1.7.1)  ¢(4):= (dim 4)!Vol(4) +
Y (= nhima=dimey(dim 7)1 Vol(r)a(conei ) (1) ,

tface of 4
Oet+4
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and a polynomial E(4) in one variable T which is inductively defined by

(17.2)  E(d):=e(d)Tém4 — Y (—1)%ima=dimsg(r)q(conest) .
7 face of 4
Oet+ A

The polynomial E(4) has degree < dim A and its coefficient of T9™4 equals e(4).
Now we can state the second result of this paper:

(1.8) Theorem. Suppose that f:Tp— A} is nondegenerate with respect to
A = A,(f), and that dim A = n. Then E(T},f) = E(4) and e, = e(A).

Actually Adolphson and Sperber [AS3] conjectured a different formula for the e,,.
Our result implies that their conjecture is true for n < 4, but false forw = n = 5and
a polyhedron 4, (f) all whose proper faces are simpiices (cf. (8.4)).

Section 2 contains preliminaries on toric schemes over an arbitrary ring.
Theorem 1.3 is proved in Sect. 3, assuming some results on tame ramification which
are proved in Sect. 4. Section 5 recalls well known facts on intersection cohomology
and introduces the formalism of Poincaré polynomials. The intersection cohomol-
ogy of a toric variety associated to a convex polytope is calculated in Sect. 6. This
can be read independently, after 2.1, 2.4 and Sect. 5. Theorem 1.8 is proved in Sect.
7. Section 8 contains explicit formulas to calculate the e,, in special cases, namely
when A4, (f) is simple at the origin or when n < 4. Moreover Theorem 8.5 shows
that the smailest d with w, # 0 equals the dimension of the smallest face of 4,,(f)
which contains the origin and gives simple formulas for ¢; and e, ., (assuming the
hypothesis of 1.8). Finally, in Sect. 9 we treat exponential sums on T x A"

2 Toric schemes

(2.1) Let A be a commutative ring. To any convex polyhedral cone ¢ in Q" one
associates the affine toric A-scheme X 4(c):= Spec A[o N Z"]. Moreover, to any
(finite) fan X in Q" one associates a toric A-scheme X 4(X), obtained by gluing
together the schemes X (&), 0 € Z, where & denotes the dual of ¢. This construction
is given in [Da, §5] in case A is a field, but it is obvious how to generalize. The
scheme X ,(X) is smooth over A if and only if the fan X is regular, it is proper over
A if and only if the union of the cones of X equals Q", cf. [Da, §5]. To any
r-dimensional cone ¢eX one associates an n —r dimensional A-torus
X%(2):= X 4(cospan &) = X 4(6) = X 4(%), where cospang denotes the largest
linear subspace of Q" contained in & (cf. [Da, 5.7]). These tori form a partition of
X 4(%). Taking ¢ = {0}, we see that X () contains T} as an open dense sub-
scheme. The closure of X%(Z)in X 4(Z) will be denoted by X 5(Z). Note that X5(2)
is a toric 4-scheme and equal to the union of all X%(2) with ye Z, ¢ < y. Finally
for an arbitrary convex polyhedral cone o and a face v of ¢ we put
X5(6):= X 4(t — 1) = X 4(cone,t) = X 4(0). These tori X}(g) form a partition of
X 4(0) which agrees with the partition introduced above, cf. [Da, 2.7].

(2.2) Definition. Let Y be a scheme over 4, and ye Y. We say that Y is toroidal over
A at y if Y has an etale neighbourhood which is isomorphic over 4 to an etale
neighbourhood of some point in an affine toric A-scheme X 4(0).
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The following lemma is well known when A is a field. The general case is proved
in a similar way.

(2.3) Lemma. Let Z be an effective Cartier divisor of X ,(X)and ze Z. Let o be the
unique cone of X with ze X3(Z). Suppose that the scheme theoretic intersection
Z N X5(Z) is smooth over A at z, and not equal to X (X)) at z. Then Z is toroidal over
A at z. If in addition X is regular, then Z is smooth over A at z.

Proof. Notice that r:= dim ¢ < n, otherwise X3(Z) = Spec 4 and the hypothesis
about Z n X%(2) would be false. Consider the open subscheme X 4(5) of X ,(2). We
have

& = (cospand) ® w, X 4(F) = T " x4 X 4(w), and X3(Z) = T3 "x {0},

for some convex polyhedral cone w with vertex. Let g be a regular function on an
open neighbourhood U of z in X 4(§) which defines Z, and let yq,. . ., y,—, be the

0
standard coordinates on T}~ ". The hypothesis implies that %(z) %+ 0 for some i,

say i = 1. Then the A-morphism

6:U — A.i XATA';_’_I XAXA(w):(yl, R x) and (g(y’ X)’ V2o oo VYn—rs X)

is etale at z. Hence Z n U is etale over T 7"~ ! x , X ,(w) at z, which proves the first
assertion. If X is regular, then w is generated by part of a basis for Z" and X 4(w) is
smooth over A.

(2.4) Let Abea convex polytope in Q" of dimension n. The first meet locus F4(b) of
a vector be Q" is the set of all x € A4 for which b - x is minimal. It is a face of 4. For
o < Q" put F4(o) = ﬂ ves Fa(b). Two vectors of Q" are called equivalent if they have
the same first meet locus. The closures of the associated equivalence classes form
a fan in Q" which is called the fan associated to A and denoted by X(4). Note that
there is a 1 — 1 correspondence between the cones g€ Z(4) and the faces 7 of 4,
given by g — F4{0). Moreover if t = F 4{0), then ¢ = cone, 1. The toric 4-scheme
X 4(Z(4)) associated to the fan X (4) will often be denoted by X ,(4). Note that
X 4(4)is proper over A. For o € Z(4) we will often write X §(4) instead of X (2 (4)).
Moreover for a face T of 4 we will denote by X%(4) the unique X4(4) with
Fs(0)=1.

(2.5) Next we discuss a relative version of a well known construction which goes
back to Khovanskii [Kh1]. Let G = Y ;czraix' € A[Xy,. . ., X x7 1, ..., x; 1] be
a Laurent polynomial over A. The Newton polyhedron A(G) of G is the convex hull
in Q" of {ieZ"| a; % 0}. For each face = of 4(G) we put G, = Y ;.. a;x". Assume that
dim A(G) = n, and let X be any fan which is a subdivision of 2 (4(G)). We denote by
Y the scheme-theoretic closure in X 4(2) of the locus of G = 0 in T}. Note that
X 4(2) and Y are proper over A.

Let o be an r-dimensional cone of X, put 7 = Fy)(0), and choose any vertex
Pet. Note that on the open subscheme X 4(6) of X,(X), Y is the locus of
x~PGe A[6 n Z"]. (To see this use the argument in the proof of Proposition 3.2 of
[Da].) Moreover Y n X5(X) is the locus of x FG,e A[cospan & n Z"]. Choose
a basis ey,...,e,_, for the lattice (cospand)nZ”, and put y; = x® Then
Vis. - Var are coordinates for X5(Z) = T4™", and x PG, = Gi(y1,. . ., Yu-,) for
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a_suitable Laurent polynomial G, over A. Thus Yn X 4(2) is the locus of
Gt(yl’ LIRS | yn—r) m T;_r-

(2.6) Definition. A Laurent polynomial G(xi,...,x,) over A is called 0-non-
degenerate with respect to A(G) if for any face © of 4(G), including T = A(G), the
subscheme of T defined by G, = 0 is smooth over A. (cf. [Kh1, §2]).

The following theorem is due to D. Bernstein, A.G. Kushnirenko and A.G.
Khovanskii (when K = C).

(2.7) Theorem. Let G(xy,. .., x,) be a Laurent polynomial over a field K which is
0-nondegenerate with respect to A(G). Then

UT& N G™10), Qo) = (= 1)""n!Vol(4(G)),

where y denotes the Euler characteristic with respect to {-adic cohomology
(¢ #+ charK).

Proof. The theorem is true when K has characteristic zero, by [BKKh, Kh2], and
the comparison theorem between singular and etale cohomology. We may suppose
that dim 4(G) = n, otherwise after a suitable change of coordinates (on the torus)
G depends on less than n variables and the Euler characteristic is zero. Let R be
a discrete valuation ring with fraction field L of characteristic zero and residue field
K. We can lift G to a Laurent polynomial G over R which is 0-nondegenerate with
respect to A4(G) = A(G). This is possible because 0-nondegenerateness is a generic
condition in characteristic zero, cf. [Khl, §2]. Choose a regular fan X which is
a subdivision of X(4(G)), cf. [Da, §8]. Let ¥ be the subscheme of T defined by
G =0, and let Y be the closure of ¥ in Xx(X). Note that Y is proper and smooth
over R, by (2.3) with 4 = R and (2.5). Thus (Y ®xr L, Q;) = x(Y ®r K, Qy).
Hence, using the partition of Xx(Z) into tori and induction on n, we obtain
x(V®grL, Q) = x(V®grK, Q,). This yields the theorem since L has characteristic
ZErO. O

3 Proof of Theorem 1.3

(3.1) Proposition. Let Y be a scheme of pure dimension n over k and g: Y - Ag
a proper k-morphism. Suppose that g is locally acyclic (in the sense of [SGA 4%, p.
541) outside a finite number of points, and that R'g, Q, has tame ramification at
infinity for each i. Then

(3.1.1) H{(Y®k,g*2,)=0 foralli>n, and

(3.1.2) the natural maps H:(Y ® k, g*®,) » H(Y ® k, g*&,) are isomorphisms for
all i.

If in addition Y is smooth over k, then
(3.1.3) H(Y®k,g*2,) =0 foralli=+n,and

(3.1.49 HY @k, g*8,) is pure of weight n.
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Proof. Let ij be a generic geometric point of A}, and § an arbitrary geometric point
of A}. Since g is proper we have a long exact sequence [SGA 7, XIII. 2.1.8.97:

o HI(Y, Q) — Hi(Yy, Q) — HI(Y;, RO(Q)) = - -

where R®(Q,) is the complex of vanishing cycles on Y; of the constant sheaf Q,.
The cohomology sheaves of this complex vanish at each point where g is locally
acyclic. Hence

H/(Y;, RO(Q/) = @ (RID(Qy)), ,

yeE

where E  Y; is finite. Since R’®(Q,) = 0 when j = n, we conclude that 6; is an
isomorphism if j > n, and surjective if j = n (cf. [SGA 7, 1.4.2 and 4.3]). Hence, for
j>n, Rig, Q, is locally constant, and for j = n it is an extension of a locally
constant sheaf by a punctual sheaf. By our hypothesis on tame ramification, these
locally constant sheaves are constant on Az. Thus

(3.15) H{A} (Rig,Q)N®8,)=0 ifj>ni=0o0rifj=ni>0.

The tame ramification at infinity also implies (see [Ka, 4.8.2]), that the natural
maps

(3.1.6) Hi(AL, (R7g, Q) ® £,) ~ H'(A%, (Rg, Q) ® £,)

are isomorphisms for all i, j. Hence (3.1.5) also holds for i > 2 and all j. Assertion
(3.1.1) follows now from the Leray spectral sequence

(3.1.7) HIAL, (Rig, Q) ® 8,) = HI Y (Y @k, g*2,) .

Assertion ('3.1.2) follows directly from the isomorphisms (3.1.6) and the spectral
sequences (3.1.7) and

H'(A} (R1g, Q) ® 8,) = HH (Y ® F g*2,) .

Finally, when Y is smooth, assertions (3.1.3) and (3.1.4) are implied by (3.1.1), (3.1.2)
and Poincaré duality. O

The following proposition is well known, see e.g. [Ka, p. 156]:

(3.2) Proposition. Let Y be a scheme of finite type over k, and g: Y — Al a k-
morphism. Suppose that R*¢,Q, has tame ramification at infinity for each i. Then

XY ®Kk g*8)) = x(Y®k,Qs) — x.lg7*(7), Qs) »

where 1] is a generic geometric point of A}.

(3.3) Toroidal compactification

Let f: TP - A} be nondegenerate with respect to 4 = 4,(f) and assume that
dim A = n. For any fan X which is a subdivision of X(4) we will construct
a compactification gy of f as follows: Put A = k[T], where T is one variable. Note
that T4 = Tf x Al is an open dense subscheme of X ,(X)= X,(Z)xA}. Put
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G = f — T, and consider it as a Laurent polynomial over A. Notice that 4(G) = 4.
We denote by Y5 the scheme-theoretic closure in X 4(2) of the locus of G = 0in T,
and by gy the proper morphism gy: Yz — A} induced by the projection
X 4(Z) - Spec A = A}. Because the graph of fis the locus of G = 0 in T, we see
that T} is an open subscheme of Ys and that the restriction of gy to T} is f. Thus
gs 1s a compactification of f For oeX we put Yi:=YsnX%(2) and
Y¢:= Yy n X5(2). Notice that Y¢ has pure dimension n-dim o, if it is nonempty.

(3.4) Key Lemma. Assume the notation of (3.3). Suppose for each g € £ with Q€ F 4(0)
that 0 € Z(4). Then Ys is toroidal over k[T at all but a finite number of points. In
particular gy is locally acyclic outside a finite number of points.

Proof. The assertion about the local acyclicity follows directly from the first
assertion and [SGA 4 1/2, Th. finitude 2.16, p. 243], because the first assertion
implies that, at all but a finite number of points, g5 is locally a projection
X x Al - A}, with X a toric k-scheme.

Let 6 € X be arbitrary, and put r = dim g, © = F4(¢). We will use notation from
(3.3) and (2.5). In view of Lemma 2.3 and the material in (2.5) we have to show that
the locus of G, =0in T 7] is smooth over k[ T'] outside a finite number of points. If
0¢ 7 then G, = f, and the above mentioned locus is smooth over k[T ] because f is
nondegenerate. Thus suppose that Oez. Then we can take P = 0 in (2.5). Hence
G, =f~t — Tand f.(y) = f.(x). Clgarlyf:( Y15+ - - » Vu—r) 18 nondegenerate with respect
to 4,(f;). Moreover dim 4,(f,) = dimt = n — r because ¢ Z(4). The assertion
follows now from Lemma 3.5 below.

(3.5) Lemma. Let f: TZ — A} be a K-morphism, where K is any field. Suppose that
fis nondegenerate with respect to A, (f) and that dim 4 () = n. Then f is smooth
outside a finite number of points.

Proof. Put A = A,(f) and £ = X(4). Let 1, be the smallest face of 4 which
contains the origin, and let ¢, be the unique cone of X with Fy(6,) = 7. We have

0
TZ < Xk(Gy) = Xx(2). Let ¥ be the locus in Tf of x,-a—xf =0,i=1,...,n We
denote by ¥ the closure of ¥ in X¢(Z). Since V is proper and X (6o) is affine, it
suffices to prove that ¥ < Xg(&,). Hence it suffices to show that V' n X§(2) = &
for any oeX with 0¢ F4(g). But this follows from the nondegenerateness of f,
because an argument similar to (2.5) shows that V' n Xg(2) = & whenever the

a T a T . .
locus in Tg of x, i ==X, /. = (, with © = F4(0), is empty. O
0x4 0x,,

(3.6) Remark. Assume the hypothesis of the Key Lemma 34, and let 6 € 2. Then
the restriction of g5 to Y% is locally acyclic outside a finite set E of points. Moreover

if 0 ¢ F4(0) then we can take E empty. These assertions are proved in the same way
as (3.4).

(3.7) Remark. The scheme Y5 is always toroidal over k at all points. Moreover if
X is regular then Y is smooth over k. This follows from the argument in (3.4) and
a straightforward variant of (2.3).

(3.8) Let Y be a scheme of finite type over k, and § a constructible Q,-sheaf on Y.
Let J be a finite index set, and Y;, jeJ, closed subschemes of Y. We use the
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following notation, for I < J:

Y; = [ Y;, with the convention that Yy = Y,
jel
Y=Y\ ¥, and ¥, = Y\ ;.
jel jel
With this notation we have:

(3.8.1) Lemma. Suppose for all Icl'cJ with F+Y. &Y, that
dimY, <dimY;. If H(Y;®kF =0 for all I<J, i>dimY;, then
H{(Y®K &) =0 forall i >dim?Y.

Proof. LetleJandput ¥' = U; +1 ¥;. By induction on # J, the lemma is true for
Y replaced by Y\ Y’ and for Y, Y replaced by Y;, V1\(Y; n Y"). If ¥, = ¥ then
there is nothing to prove. If ¥; & Y then dim ¥; < dim Y and the lemma follows
from the exact sequence

s HENN\(M N Y) @k §) > H(Y® & §) » H(Y\Y)Q Kk §) - - '-D

Now we can prove Theorem 1.3, using the results on tame ramification from Sect.
4 below.

(3.9) Proof of Theorem 1.3

(a) PutZ = 2(4,(f)). Apply Lemma 3.8.1to Y = Y5, & = g5 2,, and the family of
closed subschemes Y% with dimg = 1. We recall from (3.3) that Y¢ has pure
dimension n-dim ¢ whenever it is nonempty. This implies that the first hypothesis
in Lemma 3.8.1 is indeed satisfied. The second hypothesis also holds because of
Proposition 3.1.1, the Key Lemma 3.4, (3.6), and Corollary 4.4 below. Indeed the
assumption in the Key Lemma holds by our special choice for 2. Thus Lemma
3.8.1 yields assertion (a) of Theorem 1.3 when i > n. The case i < nis trivial because
T} is affine and smooth.

(b) follows directly from (a) using Proposition 3.2, Theorem 2.7 and Theorem 4.2
below.

(c) Now we assume that the origin is an interior point of 4 = A (f). This implies
that any subdivision £ of Z(4) satisfies the assumption of the Key Lemma 3.4. Thus
we can take for Z a regular subdivision (cf. [Da, §8]), so that Y5 is smooth over k by
(3.7). Hence by (3.14) for Y=Y and (44), it suffices to show that
Hi(D @k, g¥2,) = 0for all i, where D = Y5\ T}. But this follows from the Mayer-
Vietoris sequence because D = | Jo¢r, () Y%, the origin being an interior point of 4.
Indeed H(Y§®k,g¥2,) =0 if 0¢F,(0), because then R'(gx|7s)4Q, is locally
constant for all i by the second assertion in (3.6) and hence constant on A; by
4.4). O

4 Tame ramification

(4.1) Proposition. Let R be a discrete valuation ring of characteristic zero with
residue field k. Let § be a Q-sheaf on A} which is locally constant outside a closed
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subscheme S — A} which is proper over R. Then §| A; has tame ramification at
infinity.

Proof. This is a direct consequence of [SGA 1, XIIL.2.3.a] with X = P}\§,
U = A}\S. Indeed P\ S is open in P}, because S is proper over R. O

(4.2) Theorem. Suppose that f: T — A}l is nondegenerate with respect to A.(f).
Then R'fiQ, has tame ramification at infinity, for all i.

Proof. We may assume that dim 4,,( f) = n, otherwise after a suitable change of
coordinates on the torus, f depends only on » = dim 4, (f) variables and we can
apply the Kiinneth formula.

Let R be a discrete valuation ring of characteristic zero with residue field k. We
can lift f to a Laurent polynomial f over R which is nondegenerate with respect to
Ao (f) = 4,(f). This is possibie because nondegenerateness with respect to 4,,(f)
is a generic condition in characteristic zero, cf. [Ko, 6.1]. Choose a regular fan
Z which is a subdivision of X (4, (f)), cf. [Da, §8]. Put 4 = R[T], where T is one
variable. Let Y be the scheme-theoretic closure in X 4(Z) of the locus of f-T=0
inT} and §: Y — A} be induced by the projection X 5(2) — Spec A. Clearly Tk is
an open subscheme of ¥, and § is a compactification of f: T} — A (compare with
(3.3)). The map ¢ is smooth outside g~ *(S), for some S = A} which is proper over
R. Indeed this can be verified by an argument which is entirely similar to the proof
of the Key Lemma 3.4, but now using the second assertion of Lemma 2.3 and
Lemma 4.3 below instead of (3.5). This argument also shows that we can choose
S such that the restriction of § to ¥ n X 3(2) is smooth outside §~*(S), for all g € Z.
Hence, outside § ~*(S), the divisor ¥\ T} of ¥ has normal crossings relative to A},
Thus by [SGA7, X1I1.2.1.11 and 2.1.8.9] we conclude that R'/Q, is locally constant
outside S. The theorem follows now from Proposition 4.1. ]

(4.3) Lemma. Let R be any commutative ring, and f: Tp — Ak an R-morphism which
is nondegenerate with respect to A (f). Then there exists a closed subscheme S — A L
which is proper over R, such that f is smooth outside f ~*(S).

Proof. We may assume that dim 4, (f) = n, because otherwise after a suitable
change of coordinates f depends on less than n variables. Put 4 = 4,(f) and
3 = Z(4). Let 7, be the smaliest face of 4 which contains the origin, and let o, be
the unique cone of £ with F4(o,) = 1o. We have Tk © Xg(6o) = Xg(2). Notice that
A = &g, hence fe R[§o N Z"] and f extends to a morphism f': Xg(60) > A} Let
V be the locus in T} of x,-g =0,i=1,...,n Wedenote by ¥ the closure of ¥ in
Xgx(Z). Since ¥ is proper over R, it suffices to prove that ¥ < X(&o), because then
we can take S = f'(¥). Hence it suffices to show that V'n X3(2) = Jforanyoel
with 0¢ F4(o). But this follows from the nondegenerateness of £, as in the proof of
Lemma 3.5.

(4.4) Corollary. Suppose that f: T} — A} is nondegenerate with respect to 4,(f)
and that dimA,(f)=n. Let X be any subdivision of Z(4,(f)), c€Z, and
gs: Ys — A} the compactification of f associated to X as in (3.3). Then R*(gx), Q¢ and
R¥(g5|72),Q; have tame ramification at infinity for all i.

Proof. This is an easy consequence of Theorem 4.2, of some of the material in the
proof of (3.4), and of Lemma 4.5 below, with ¥; of the form Y% and Y; of the form
Ys. 0



284 J. Denef and F. Loeser

(4.5) Lemma. Assume the notation of (3.8), and let g: Y — Al be a k-morphism. If
R¥(g | 3,1 & has tame ramification at infinity for all I < J and all i, then R' g\ & has tame
ramification at infinity for all i.

Proof. Use induction on #J and the long exact sequence associated to the
cohomology of a closed subscheme (cf. the proof of (3.8.1)). O

S Preliminaries on intersection cohomology and weights

All schemes considered are assumed to be separated.

(5.1) The intersection complex

Let X be a scheme of finite type over k = F, of pure dimension n. Let & be
a constructible locally constant Q,-sheaf on some dense open smooth subscheme
U of X. Then there exists a unique object K*e D?(X, Q,) (in the derived category,
see [De, 1.1.3]) with K*|y = &[n] such that both K* and its Verdier dual DK"*
satisfy

(5.1.1) H'K*=0 foralli< —n, and
(5.1.2) dimSuppH'K* < —i foralli> —n,

see [BBD, Proposition 1.4.14]. This unique object is called the intersection complex
on X associated to § and is denoted by I%(%). When § = Q, we will write
Iy instead of I%(Q,). The hypercohomology H!(X ® k, Ix[— n]) is called the
intersection cohomology of X.

(5.2) Poincaré duality

The unique characterization (5.1) of Ix(&) directly implies that

(52.1) DU@) = L@ (),

where & denotes Hom(g, Q). Hence Verdier duality yields the Poincaré duality
(52.2) H'(X ® k, Ix(F) [~ n]) = Hom(H> (X @ k Ix(F [~ n] (), Q) .

(5.3) Let X, Y, Z be pure-dimensional schemes of finite type over k. We will
frequently use the following well known facts which follow directly from the unique
characterization 5.1 (see [GM]):

(5.3.1) Let n: X — Y be a locally trivial fibration with respect to the etale topology.
Suppose that the fibers of f are smooth of pure dimension d. Then Iy = n*Iy[d].

(5.3.2) Let Z = X be a closed subscheme of X. Assume that locally for the etale
topology at each closed point of Z, the pair (Z, X) is isomorphic to the pair (Z, Z x Y),
with Y smooth of pure dimension d. Then Iz = Ix[— d]|z.

We will use the following fundamental theorem of Gabber (see [BBD, Corollaire
5.3.2):
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(5.4) Purity Theorem. Assume the notation of (5.1) and the terminology of [De, 6.2].
If & is pure of weight w, then Ix($&) is pure of weight w + n.

(5.5) Poincaré polynomials

Let C*eD}(Speck, Q;), thus we can consider C* as a complex of Q, vector spaces
with Gal(k, k) action. Suppose that C* is mixed in the sense of [De, 6.2], then we
associate to C* the Laurent polynomial in one variable 7.

P(C.) = ZZ ( ZZ(— l)icw,i> T* s

where c,, ; is the number of eigenvalues with absolute value ¢*/? of the (geometric)
Frobenius action on H¥(C*) (counting multiplicities). We call P(C*) the Poincaré
polynomial of C*. It is easy to see that P is additive on triangles and multiplicative
on tensor products, i.e. P(C; ® C3) = P(C1)P(C3). Moreover the Poincaré duality
5.2.2 implies

(5.5.1) PRI (X, I%)) = T*¥™¥P(RI(X, Ix)(T™1),
for any pure-dimensional scheme X of finite type over k.
(56) If F is a Laurent polynomial in one variable 7 and meZ, then

trunc < ,, (F) denotes the Laurent polynomial obtained from F by omitting all
monomials of degree > m.

6 Intersection cohomology of toric varieties

(6.1} The polynomials o and p

For any convex polyhedral cone ¢ in Q" with vertex, and for any convex polytope
4 in Q" we define in an inductive way polynomials a(g) and f(4) in one variable

T by

(6.1.1) a(6) = trunc < gimo — 1 (1 — T?)p(poly o)), ifdime >0,

(6.1.2) B(A) =(T? = 1dimd4 4 3 (T2 — )%™ a(conej 1),
rf?c::%m
(6.1.3) a({0})=1.

Here poly o and conej t are as defined in (1.6), and trunc as in (5.6). Clearly a(a),
B(4) only depend on the combinatorial type of o, 4. Moreover they only contain
even powers of T. These polynomials were first studied by Stanley [S]. One verifies
by induction that a(c) = 1 when ¢ is a simplicial cone.

(6.2) Theorem. Let 6 be a convex polyhedral cone in Q" with vertex, and A a convex
polytope in Q", both of dimension n. As always let k = F, and assume the notation of
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(2.1), (2.4) and (5.1). Then for ail i we have

6.2.1) dim H¥((I%, [ — n1)o) = coefficient of T' in a(c), and
6.2.2) dim H'(X ¢(4), I, [ — n]) = coefficient of T' in B(4) ,
where the subscript O denotes the stalk at the origin. Moreover
(6.2.3) (I%,.(0))o is pure of weight n .

Assertion (6.2.2) for k = € was stated without proof by Stanley [S] and attributed
to J.N. Bernstein, A.G. Khovanskii, and R.D. MacPherson. In this section we give
a complete proof of Theorem 6.2. After a preliminary version of our paper was
written, we received a preprint of Fieseler [F] proving (6.2.1) and (6.2.2) for k = €.
His proof is based on equivariant Morse theory and the decomposition theorem.
Note that (6.2) for finite k formally implies the case k = C.

(6.3) Assuming (6.2.3) and using (5.4) and [De, 6.2.6], we see that the assertions
(6.2.1) and (6.2.2) are equivalent with respectively

6.3.1) P((Ix.(e))o) = (— 1)"a(0), and
(6.3.2) P(RI'(X(4), I, (4)) = (— 1)"B(4) .

(6.4) Lemma. Let 4 = Q" be a convex polyhedral cone or an n-dimensional convex
polytope, and < a face of A. Then Ix, (4 is constant on the torus Xi{4) (notation from
(2.1) and (2.4)) with fiber

(64.1) U)o [dim1] ,
where w, is a cone which is affinely equivalent with conejt.

Proof. Put y = cone,t. Note that X(4) = Xi(cospany) is a closed subscheme of
X, (y) which is open in X;{4). Thus we have to study the restriction of Iy, to
Xi(4). Clearly y = cone,t = Q¥ @ w, and X, (y) = Td™* x X, (w,), for some con-
vex polyhedral cone w, which is affinely equivalent with conejz. Consider now the
following diagram

X% — Xy
2 i 12 x

lemt X {0} | o= Tdm" x Xi(@;) — Xi(w,) .

By (5.3.1) the intersection complex on Ti™* x X (w.) equals 7* I, (, [dim t]. Thus
the restriction of this complex to TE™ x {0} is constant with fiber (6.4.1) because
noiis the constant map onto the origin. |

(6.5) Lemma. Let X be a pure dimensional scheme of finite type over k. Let be X (k),
Xo =X\ {b} and h: X x A} = X a k-morphism. Suppose that

@ A b)) =X x{0}u {b} x A}, and

(ii) ho: XoXxTE - XoxTh: (x, t) > (h(x, 1), t) is an isomorphism of k-schemes.

Then H'(X @ k, Iy) = H'((I%),), for all i.

Proof. Tt suffices to show for all i that H(X ®k, j1I},) = 0, where j is the
open immersion j: X, G X. Let 6 be the morphism 0: X g X x A}: x — (x, 1).
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From (ii) it follows that ho8: X - X is an isomorphism. Hence it suffices to
prove that H{(X xAg, h*jl%,)=0 for all i, because h<# induces an
1somorphlsm H{(X ®k,jil XO)——»H'(X ®k, (ho0)*ji1 Xo) which factors through
HY(X x AL, h* JiIx,)- Let my: Xo x T} — X, be the projection. We have

(B*j T x0) xox1t = (jmoho)*jilx, = FE & I%y = R Ixowmy[— 1]
= Ix,xm:[— 1] = I%,&8Q,,

because of (5.3.1) and (ii). Moreover (i) implies that h* ]yI %, 18 zero outside X, x T4,
Hence h*jily, = jil %2 Q,, where u is the open immersion T} s Al. Since
H' (Ak , Q) = 0 for all i, the lemma follows now from the Kiinneth formula. 0

Actually we will only need the following corollary, which appears without proof
in [KL, 4.5.a].

(6.6) Corollary. Let X be a pure dimensional closed subscheme of Al" containing the
origin. Suppose that X is invariant under the action of T} on A" defined by
AVis .o Ym) =A%y, .., A%y,), where ay,...,a,e N\{0}. Then H'(X ®k,
I%) = H'((Ix)o), for all i.

Proof. Apply Lemma 6.5 with b =0 and h((y1,. .., Ym)h A = A% y1.. .., A% y,).

(6.7) Lemma. Let X = X, (o), where o is an n-dimensional convex polyhedral cone in
Q" with vertex. Then we have:

(@) H'((Ix)o) = H'(X ® k, Iy), for all i,

(b) H{((Ix)o) = H'(X ® k\{0}, I%), for all i < 0, and

() P((Ix)o) = trunc ¢, P(R['(X ® k\{0}, Ix)), whenn = 1.

Proof. (a) Choose generators by, . .., b, + 0for the semi-group ¢ n Z", and a vec-

tor ye Z" in the interior of &. Consider X (o) as a closed subscheme of Af" by setting

yr=xb Ly = xbm Apply now Corollary 6.6 with a; = b;*y >0,i=1,...,m
(b) By (a) and Poincaré duality 5.2.2, assertion (b) is equivalent with

Hi{(X @k Iy) 2 H(X ® k\{0}, I3), foralli= 1.

But this last assertion follows directly from the long exact sequence associated to
the pair (X\ {0}, X). Indeed H'((Ix)o) = O for all i = 0, when n = 1, by (5.1.2).

(c) By the Purity Theorem 5.4, H'((I})o) is mixed of weight < + i. Thus
because of assertion (b) and the last sentence in its proof, it suffices to prove that
HY(X ® k\ {0}, Iy) is mixed of weight = n + i, for all i. But this follows directly
from (5.4), [De], and Poincaré duality. Note that this argument also proves that
(I%.(@)o is pure of weight n. O

Remark. Combining (6.4) with Lemma 4.5(b) of [KL] and using induction, one
gets a direct simple proof of the Purity Theorem 5.4 for toric varieties.
(6.8) Proof of Theorem 6.2

Assertion (6.2.3) follows from the proof of Lemma 6.7(c). Hence by (6.3) it suﬁ‘ic'es. to
prove (6.3.1) and (6.3.2). For this, we use induction on n. Using the decomposition
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of X, (o) into tori, the additivity and multiplicativity of P, Lemma 6.4, and the
induction hypothesis we obtain

PRI(Xo\ {0}, I, ) = Y PRI(Xi0), Ixus)

tga;e{c())f}a
= Y (= DI PRITE™, Q) P((I3,wy)o)
T+ {0}
=(—1" ) (T?-1)% a(conei()).
T+ {0}

Indeed % only depends on the combinatorial type, dimw, =n —dim<, and
PRI(T;™, Q) = (T? — 1)%™°_ Hence, by the definition (6.1.2) of f we get

(6.8.1) P(RE(Xe0)\{0}, Ix,0)) = (— D"(T? — 1)B(polyo) .

The induction hypothesis implies
P(RT (Xg(poly 0), I poty)) = (— 1)~ ' B(poly o) .

Hence (5.5.1) yields T2~ Y g(poly ¢)(T ~*) = B(poly o), since X, (poly o) is proper.
Using (5.5.1) again and (6.8.1) we obtain

PRI (X (0)\{0}, Ix,0)) = (— )"0 — T*)T 2"~ D B(poly o(T™*)

=(— 1)"1 — T*)B(polyo) .

Assertion (6.3.1) follows now directly from Lemma 6.7(c) and the definition (6.1.1).
To prove (6.3.2) we use the partition of X (4) into tori and Lemma 6.4, yielding

PRIXi4), Inuw) = Y PRIXHA) Ixw)

tface of 4

=Y (= DI PRI(TE™, Q)P (I (wy)o)

= (= D)"Y (T? — D)™ a(conej(1)) = (— 1)"B(4) . U

7 Proof of Theorem 1.8

(7.1) Proposition. Let Y be a scheme of pure dimension n over k and g: ¥ — A}
a proper k-morphism. Suppose that, outside a finite number of points, g is locally
acyclic relative to Iy (in the sense of [SGA 44, p. 242]), and that R'g, Iy has tame
ramification at infinity for each i. Then

(@) H(Y® kI3 [—n]®g*L,) =0, for all i + n, and
(b) H(Y @ k, Iy[ — n] ® g* &) is pure of weight n.

Proof. Straightforward adaptation of the proof of Proposition 3.1 replacing every-
where the constant sheaf Q, by the complex I3[ — n]. Indeed now we have the
Poincaré duality 5.2.2 with § = g* &,. (Note that I3(g*&,) = I} ® g*£,.) For (b)
we also need the Purity Theorem 5.4 and Deligne’s result [De] to insure that the
weights are £ n. Nevertheless we still have to show that R/ &(Iy[ — n]) = 0 when
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j = n. This follows directly from the fact [B, 2.3.9] that R@(F*[— 11) is perverse
whenever F* is perverse. Since we did not find a complete proof of this fact in the
literature we give an alternative argument: Applying Proposition 4.4.2 of [BBD] to
Iy[— 1]y, yields R7¥(Iy) = 0 for all j 2 0. But R/®(I3) = R/¥(I3) when j 20,
because of (5.1.2) and the triangle

UP)ly.— R¥(Iy) > RO(13) . .

(7.2) Let f: T! — A} be nondegenerate with respect to 4 = 4,.(f) and assume
that dim 4 = n. For any subdivision X of X (4) we constructed in (3.3) a compactifi-
cation gx: Y5 — A{ of f. From now on we take X = X(4) and put ¥ = Yy, and
g =gsw. Thus Y < X ,(4), where A=k[T] For a face v of 4 we put
Y = Y X5(4). Note that the Y* form a partition of Y.

(7.3) Lemma. Let Y and g be as in (7.2). Then, outside a finite number of points, g is
locally acyclic relative to Iy.

Proof. From the Key Lemma 3.4 it {follows that, at all but a finite number of points,
g is locally a projection X x A} —» A}, with X a toric k-scheme. We have
Iy xar = Ix[11®8Qy, by (5.3.1). The lemma follows now from the fact [SGA 4%, Th.
finitude 2.16 p. 243] that any scheme X over k is universally locally acyclic relative
to any complex in D2(X, Q). O

(7.4) Lemma. Let Y = X 4(4) be as in (7.2). Then locally for the etale topology at
each point of Y, the pair (Y, X 4(4)) is k-isomorphic with the pair (Y, Y x A{).

Proof. The Cartier divisor Y intersects each stratum X §(4) transversally (over k).
Apply now the same ideas as in the proof of Lemma 2.3.

(7.5) Lemma. Assume the notation of (1.2). Let t be a face of A which 1does not
contain  the origin. T hen Ri(gly-)Iy is constant on Ap, and
H(Y'®k, Iy ®g*2,) =0, for all i.

Proof. From (2.5) it follows that Y* is the locus in X7}(4) of G, =0, where
G = f— T. Because O¢ 7, we have G, = ﬁ Since f, does not contain the variable 7,
we see that Y* = Z x A}, for some closed subscheme Z of X}(4). We consider the
following diagram of natural maps, where h = g|y-:

0
X, (4) = Xe(A) x AL > Y=ZxAl — Al
l= I .

X,(4) —> z s speck
From Lemma 7.4 and (5.3.2) it follows that Iy = I s[— 1]ly. Hence by (5.3.1)
Iyly = Ix [ — 1lzxal = @* Lxa)lzxa = 18U, a)2) -
Thus base change yields
RilIy = RindIx,wlz) = p* R Ak, 4)2) »

which proves the first assertion of the lemma. The second assertion follows now
directly from the Leray spectral sequence for h. ]

(7.6) Letfand 4 be as in (7.2), and < a face of 4 of dimension d with O 7. Then we
can write f, = f;(xel, ..., x%), where f, is a Laurent polynomial in d variables and
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ey,...,e; form a basis for the lattice Z"  (affine space of 7). Clearly fi is non-
degenerate with respect to 4, ( £7). Moreover there is a volume preserving bijection
between the faces of 4, (f;) and .

(7.7) Lemma. Assume the notation of (7.2) and (7.6). Let t be a face of A which
contains the origin. Then Y* = T™* with gly- corresponding to f,. Moreover Iy is
constant on Y* ® k with fiber (6.4.1).

Proof. Let o€ X(4) be such that F4(g) = 1. Notice that Y* = Y n X5(4) is a closed
subscheme of Y n X ,(&) which is open in Y. From (2.5) (taking the origin for the
vertex P e1) it follows that ¥ n X ,() is the locus of f(x) — T = 0 in X ,(¢). Hence
Y n X (6) = X,(#). Under this isomorphism Y* corresponds to X;(4) = T&™, and
Iy}y- to Ix,)lxy4)- Apply now Lemma 6.4. I

(7.8) Lemma. Let Y and g be as in (1.2). Then R'g, I} has tame ramification at
infinity for all i.

Proof. By Lemma 4.5 (for complexes) it suffices to show that R'(g|y<) I has tame
ramification at infinity, for each face T of 4. When 0¢t, this is clear by Lemma 7.5.
When 0 e, this follows from Lemma 7.7, Theorem 4.1, and the spectral sequence

Ri(gly ) H(I71y) =R (gly )5 . a

(7.9) Proof of Theorem 1.8

We use the notation of (7.2), in particular g: ¥ — A, is the toroidal compactifica-
tion of f associated to X(4). Proposition 7.1 applies to this situation, because of
Lemmas 7.3 and 7.8. Hence using the formalism of Poincaré polynomials 5.5 we
have P(RI(Y® k, [y[ — n] ® g*8,)) = bT" for some be Z. From the additivity of
P we get

(79.1) P(RI(TE,f*2y) =bT"~ 3 PRLY'®kL[-n]®g*e)).
tface of 4
TF

By Lemma 7.7, (6.3.1), and the multiplicativity of P we have for any face 7 of 4 with
Oer that
(7.9.2) PRI(Y* ®k, I3[ — n] ® g*8,)) = PRI(TE™, f*L,))a(conesr) .

Indeed dim w, = n — dim* and « only depends on the combinatorial type. Com-
bining (7.9.1) and (7.9.2) and Lemma 7.5, we obtain

P(RL(TEf*2,))=bT"— ¥ P(RI(TE™,J*8,))a(conesr) .
t face of 4
Oet+ 4

Together with Theorem 1.3 this yields

(7.9.3) E(Tef)=(=1bT"— Y (= 1P 4meE(Tm, fa(conest) .
Oet+4

By Theorem 1.3, the value of E(T™*, f;) at T = 1 equals (dim 7)! Vol(z). Evaluating
(79.3) at T=1 we get (— 1)"b = e(4). Hence E(T?,f)= E(4) by (7.9.3) and
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induction on n. From (6.1.1) it follows that deg E(tr)a{conejt) < n when 7 =% 4.
Thus e, = e(4). O

8 Explicit formulas

(8.1) Throughout this section let f: Tf — A; be nondegenerate with respect to
4 =A4,(f) and assume that dim4 =n. We will give explicit formulas for the
e,, (defined in 1.4) in some special cases. Put

Vi= Y  Vol(@).
tface of 4
Oert,dimt=1i

For any face t of 4 we denote by F,(i) the number of i-dimension faces of
A containing 1. Let 7 be the smallest face of 4 containing the origin. We say that
4 is simple at the origin if F; (n — 1) = n — dimt,. We will write F(i) instead of
F,(0).

(8.2) Theorem. Assume the notation of (8.1) and suppose that A is simple at the
origin. Then for w=0,1,. .., n we have

hid Lofn—i
= —_ W"l" -
o igo( b l'(" - W) €

This theorem was proved by Adolphson and Sperber [AS 3] for almost all p, by
using p-adic methods. Note that 4 is simple at the origin if n < 2.

Proof. The hypothesis implies that a(conejt) = 1 for any face 7 of 4 with Oe . The
case w = n follows directly from Theorem 1.8. When w < n induction on n reduces
us to prove that for any face o of 4, with Oeo and ¢:= dimo < w, we have

nel k—¢ —¢
(=1 Y (- 1)"F,(k><k _ w) - (: - w) -

w

But this follows easily from

k—¢ n—{f\(k—¢ n—f\(n—-w
- = . 0
Fak) (k - w) (n - k)(k — w) (n - w) (k - w)
(8.3) For any convex polyhedral cone o of dimension n < 4 with vertex we have

a(@)=1+@A—nT?,

where A denotes the number of faces of o with dimension n — 1. A rather long
calculation using Theorem 1.8 yields the following formulas for n = 3, 4.

Casen=3
e3 =6V~ 21, + Vi — (Fo(1) - 2V »
e, =2V, — 2V, + (2Fo(1) = 3) Vo,
e, =V —Fo()Vs,

eo="V.
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Case n=4
eq =24V, — 63 + 21, — (W = 2W) + (Fo(3) — 3) Vo,
e3 =63 — 41 + QW — 3V) — (Fo(3) + Fo(2) — O) Vo,
e2 =2V, — Wi + (Fo(2) + Fo(1) - 9 Vo,
e; =V —Fo()¥,
e =",

where

W= Y. F.(3)Vol(r).
7 face of 4
Oet,dimz=1
(8.4) Adolphson and Sperber [AS3, Conjecture 1.13] conjectured a formula for
the e,,. The above formulas (8.3) show that their conjecture is true for n £ 4.
Actually they proved this for n £ 3 for almost all p (unpublished). We will now
show that their conjecture is false for some S-dimensional simplicial Newton
polyhedra (i.e. all whose proper faces are simplices), and w = 5.

Assume the origin is a vertex of A and suppose their conjecture is true forw = n
and all Newton polyhedra which are combinatorially equivalent with 4. Applying
this to md, meN\{0}, we get a polynomial in m with constant term
(— 1)"(Fg(n — 1) — n + 1). Comparing with Theorem 1.8 we obtain

(8.4.1) a(cone 0)(1)=Foy(n —1)—n+1.
But this is not true in general. Indeed for n = 5 and 4 simplicial one has
a(cone,0)(1) = 6 + SFy(4) — 3F,(2) .

Hence (8.4.1) implies 3f; — 4f; — 10 = 0, where f; is the number of i-dimensional
faces of the 4-dimensional polytope poly cone,0. But this last equation does not
hold for all 4-dimensional simplicial polytopes, since it is independent of the
Dehn-Sommerville relations (cf. [MS, p. 103]).

(8.5) Theorem. Assume the notation of (8.1), in particular t4 is the smallest face of
4 containing the origin. Put d = dimt,. Then

(@) e,=0ifw<d,

(b) e, = d!Vol(zy), and

(C) €i+1 = (d + 1)! I/,1+1 — Fo(d + 1)d!V01(’ro)

Proof. Using Euler’s theorem on polytopes and induction one verifies that the
constant term of a(c) and f(4) is 1. Assertion (a) follows from Theorem 1.8 and
induction. Then (b) is obtained by induction and Euler’s theorem for poly conejtq.
To prove (c), use again induction, Euler’s theorem and the fact that a(s) only
contains even powers of 7. We leave the details to the reader. Ol

Remark. Assume the notation of Theorem 8.5. An analysis of the proof of
Theorems 8.5, 1.8 and 6.2 shows that the eigenvalues of welght d of HY(TE,f*2,)
are precisely the eigenvalues of H? (Tk, f 2,), where f,o is as in (7.6).
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9 Exponential sums on T} x A} "

(9.1) Throughout this sectionlet V=T, x A} ", withO < r < n,andletf: V > A}
be a k-morphism. The Newton polyhedron 4,(f) of f at infinity is defined as
before. Call f nondegenerate with respect to A (f) if its restriction to T is such.
ForanyB< {1,2,...,n} weput Qg = {(t;,...,t,)eQ"t; = Oforeach ie B}. We
call f commode if dim(4,(f)nQp)=n— #Bforall B<{r+1,...,n}. When
r = 0 this means that f contains for each i =1,...,n a monomial ¢;x* with
m; e IN\ {0}, a;€ k\ {0}. Finally we define E(V, f) as in (1.4) with T} replaced by V.

(9.2) Theorem. Suppose that f: V — A} is commode and nondegenerate with respect
to A =A,(f) Then
(@) H(V®k,f*2,)=0ifi+n, and
(b) dim HX(V @ k, f*2,) = ) (= )*B(n — # B)!Vol(4 N Qj).
Bcoc{r+1,...,n
If r = 0 or if the origin is an interiér point O}A N QL4 1,... ) then
(c) HI{(V ® k,f*L,) is pure of weight n.

A somewhat weaker version of this theorem was proved by Adolphson and Sperber
[AS1, AS2] for almost all p, and they conjectured the theorem for all p when r = 0.
The condition that f is commode cannot be removed. Indeed a straightforward
calculation with Gaussian sums shows that |y . , e ¥(z® + xz + yz)| = g7, which
would contradict (9.2.a). We will prove the theorem in (9.4) by partitioning V into
tori.

(9.3) Lemma. Assume the notation of (3.8) and let neN. If Hﬁ(i’, ®k, &) = 0 for all
IcJ,i>n— #I,then H(Y®k, & =0 for all i > n.

Proof. Let 1€J. By induction on #J we have H{((Y\Y;) ® k,¥ =0wheni>n
and H(Y, ® k, §) = Owhen i > n — 1. The lemma follows now from the long exact
sequence associated to the pair (Y, Y). 0

(9.4) Proof of Theorem 9.2

(a) Because of Theorem 1.3(a) and the hypothesis that fis commode we can apply
Lemma 9.3 with J = {r+1,...,n} and ¥, the locus of (x; = O);e; in V, so that the
Y; are tori. This yields assertion (a) if i > n. When i < n the assertion is clear since
V is smooth and affine.

(b) follows directly from (a), Theorem 1.3(b), and the additivity of the Euler
characteristic.

(c) Clearly E(V,f)= E(T},f)mod T". Hence by Theorem 1.8 it suffices to
prove that dim H*(V ® k, f * £,) equals e(4). But this follows from (b) and (1.7.1).
Indeed the hypothesis implies that all faces 7 of 4 which contain the origin are of
the form 4 n Q} with B< {r + 1,...,n}, and conezt is simplicial for such .

(9.5) Theorem. Suppose that f: V — A} is commode and nondegenerate with respect
t0 A= A,(f). Then

EWV,f)=ed)T" =Y (— 1) 4™ E(t)a(conej1) ,

where the summation runs over all proper faces t of A which contain the origin and are
not of the form AN Qj with B< {r+1,...,n}.
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Proof. Using the decomposition of V into tori and the additivity of Poincaré
polynomials we get

EW.y=ETLN+ Y (=1 " ETE™f),

t=4nQ§
where B runs over all nonempty subsets of {r + 1,.. ., n}. The corollary follows
now from (1.7.2) and Theorem 1.8, since cone T is simplicial whenever t = 4 N Q3,
Bco{r+1,...,n}. O

{9.6) Remark. Assertion (c) of Theorem 9.2 can be proved without using Theorem
1.8, by adapting the argument in (3.9c). In the present case X(4) contains the
positive octant of Q" ~". Choose a regular subdivision X of X(4) which still contains
this octant. Then X satisfies the assumption of the Key Lemma 3.4 and V'is an open
subscheme of Ys. To prove the assertion, we proceed now as in (3.9¢) replacing
T; by V.
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