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1 Introduction 

(1.1) Throughout  this paper k always denotes a finite field Fq with q elements, and 
E a prime number not dividing q. The algebraic closure of a field K is denoted by / ( .  
Let ~b: k--+ C • be a nontrivial additive character, and ~ ,  the Qt-sheaf on 
A~ associated to ~ and the Artin-Schreier covering t q - t = x. For a morphism 
f :  X --+ A~, with X a scheme of finite type over k, one considers the exponential sum 
S(f )  = ~Xtk)~b(f(x)). By Grothendieck's trace formula we have 

S(f)  = ~ (--  1)'Tr(F, H~(X | k,f* P'o)) , 
i 

where F denotes the (geometric) Frobenius action. In the present paper we will 
determine the absolute values of the eigenvalues of this Frobenius action when X is 
a torus and f is nondegenerate with respect to its Newton polyhedron at infinity. 
Obviously this implies good bounds on the absolute value of S(f). 

(1.2) For any commutative ring A, we denote the n-dimensional A-torus 
Spec A [xl . . . . .  xn, xi- 1 . . . . .  x~- 1] by T~]. Let f :  T~ -+ A~ be an A-morphism, thus 
we can write f as a Laurent polynomial f =  ~/ez"  c~x i. The Newton polyhedron 
A~( f )  o f f  at infinity is the convex hull in Q" of {i~Z"[c, =i = 0} w {0}. For any face 
z of A~(f )  we put f,  = ~i~, cix i. Callfnondegenerate with respect to A~( f )  if for 
every face z (of any dimension) of A~o(f) that does not contain the origin, the 
subscheme of T,] defined by 

o 
Oxt gx. 

is empty. When A oo ( f )  has dimension n, we denote its volume by Vol(A ~o(f)). 
The first result of the present paper is the following 
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(1.3) Theorem. Suppose that f :  T~ ~ A 1 is nondegenerate with respect to A oo ( f )  and 
that dimdoo(f)  = n. Then 
(a) H~(T~,f*~0) = 0 if i ~: n, and 
(b) dim H~"(T~,f* ~g,) = n! Vol(A oo (f)). 
I f  in addition the origin is an interior point of A ~ ( f )  then 
(c) H ~ ( T ~ , f * ~ )  is pure of weight n (i.e. all eigenvalues of the Frobenius action have 
absolute value qa/2). 
This theorem was proved by Adolphson and Sperber [AS1, AS2] for almost all p, 
and they conjectured it to be true for all p. In contrast with their work, our proof is 
purely f-adic and based on toroidal compactification. 

(1.4) By Deligne's fundamental results [De] each eigenvalue of the Frobenius 
action on H~"(T~,f* ~ , )  has absolute value qW/2 with weN,  w < n. In the present 
paper we use intersection cohomology to determine the number ew of eigenvalues 
with absolute value qW/2 (counting multiplicities). In other words we determine the 
polynomial 

e ( T ; , f ) =  ~, ewT w. 
w = O  

This problem was posed by Adolphson and Sperber [AS3] who also treated some 
special cases. To state our formulas we first need some more notation. 

(1.5) To any convex polyhedral cone a ~ Q" with vertex (at the origin) one 
associates a polynomial ct(a) in one variable T, which only depends on the 
combinatorial type of a, and which can be calculated by a recursion formula, see 
(6.1). If a is a simplicial cone (i.e. generated by vectors which are linearly indepen- 
dent), then ~(a) = 1. The polynomials ~(a) were first studied by Stanley [S], and are 
related to intersection cohomology: the coefficient of T ~ in ~(a) equals the dimen- 
sion of the cohomology in degree i -  dim a of the stalk at the origin of the 
intersection complex on the affine toric variety associated to the cone tr, see (6.2). 
A special role will be played by the value of ~(a) at T = 1, which will be denoted by 
~(tx) (1). 

(1.6) For  any convex polyhedral cone a c Q" with vertex we define poly ~ as the 
intersection of a with a hyperplane in Q", not containing the origin, which 
intersects each one-dimensional face of a. Note that the convex polytope poly ~ is 
defined up to combinatorial equivalence. Next, let A be any convex polyhedron in 
Q" and ~ a face of A. We denote by cone~  the convex polyhedral cone in Q" 
generated by A - z  = { x - y t x ~ A , y ~ z } .  Moreover we define cone]z as the 
convex polyhedral cone with vertex obtained by intersecting cone~ z with a plane 
through the origin which is complementary to the plane generated by z - z. Note 
that cone] v is only defined up to affine equivalence. 

(1.7) Let A be a convex polytope in Q" with integral vertices. For any face z of 
A we denote by Vol(z) the volume of z so normalized that a fundamental domain of 
the lattice Z" n (affine space of z) has unit volume. To the polytope A we associate 
a number 

(1.7.1) e(A):= (dim A)!Vol(A) + 

( -  1)dim~-dim~(dim z)!Vol(z)~(cone]~)(1), 
face  of A 
0 E z ~ A  
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and a polynomial E(A) in one variable T which is inductively defined by 

( 1 . 7 . 2 )  E(A):= e ( A ) T  dima - 
f a c e  of AI 
O ez  + A 

(-- 1)dima-dim~ E(z)O~(cone] z) . 

The polynomial E(A) has degree < dim A and its coefficient of T dima equals e(d). 
Now we can state the second result of this paper: 

(1.8) Theorem. Suppose that f : T ~ A k  i is nondegenerate with respect to 
A = A~( f ) ,  and that dim A = n. Then E(T~,f)  = E(A) and e, = e(A). 

Actually Adolphson and Sperber [AS3] conjectured a different formula for the ew. 
Our  result implies that their conjecture is true for n < 4, but false for w = n = 5 and 
a polyhedron A |  all whose proper faces are simplices (cf. (8.4)). 

Section 2 contains preliminaries on toric schemes over an arbitrary ring. 
Theorem 1.3 is proved in Sect. 3, assuming some results on tame ramification which 
are proved in Sect. 4. Section 5 recalls well known facts on intersection cohomology 
and introduces the formalism of Poincar6 polynomials. The intersection cohomol- 
ogy of a toric variety associated to a convex polytope is calculated in Sect. 6. This 
can be read independently, after 2.1, 2.4 and Sect. 5. Theorem 1.8 is proved in Sect. 
7. Section 8 contains explicit formulas to calculate the e~ in special cases, namely 
when Am(f )  is simple at the origin or when n < 4. Moreover Theorem 8.5 shows 
that the smallest d with Wd 4= 0 equals the dimension of the smallest face of A ~ ( f )  
which contains the origin and gives simple formulas for ee and ed+ 1 (assuming the 
hypothesis of 1.8). Finally, in Sect. 9 we treat exponential sums on Tf, x A~, - ' .  

2 Toric schemes 

(2.1) Let A be a commutative ring. To any convex polyhedral cone a in Q" one 
associates the affine toric A-scheme XA(O):= SpecA[-a c~ Z"]. Moreover, to any 
(finite) fan 2; in Q" one associates a toric A-scheme XA(Z), obtained by gluing 
together the schemes Xa(b), a s 2;, where b denotes the dual of a. This construction 
is given in IDa, w in case A is a field, but it is obvious how to generalize. The 
scheme XA(X) is smooth over A if and only if the fan Z is regular, it is proper over 
A if and only if the union of the cones of 2; equals Q", cf. [Da, w To any 
r-dimensional cone asS ,  one associates an n - r  dimensional A-torus 
X, ] (S) :=  XA(cospan#) c Xa(b) ~ Xa(S), where cospanb denotes the largest 
linear subspace of Q" contained in ~ (cf. [Da, 5.7]). These tori form a partition of 
XA(Z). Taking a = {0}, we see that XA(Z) contains T~ as an open dense sub- 
scheme. The closure of X~(Z) in XA(Z) will be denoted by )?~(Z). Note that )(~(Z) 
is a toric A-scheme and equal to the union of all X~(X) with 7 s Z ,  a c 7. Finally 
for an arbitrary convex polyhedral cone o and a face v of tr we put 
X~(a ) :=  Xa(z - z) c Xa(cone~z) c Xa(a). These tori X~a(a) form a partition of 
XA(a) which agrees with the partition introduced above, of. [Da, 2.7]. 

(2.2) Definition. Let Ybe a scheme over A, and y e  Y. We say that Yis toroidal over 
A at y if Y has an etalr neighbourhood which is isomorphic over A to an etale 
neighbourhood of some point in an affine toric A-scheme XA(a). 
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The following lemma is well known when A is a field. The general case is proved 
in a similar way. 

(2.3) Lemma. Let Z be an effective Cartier divisor of X a(Z) and z e Z. Let a be the 
unique cone of Z with z eX] (Z ) .  Suppose that the scheme theoretic intersection 
Z n X](,F,) is smooth over A at z, and not equal to X](,F,) at z. Then Z is toroidal over 
A at z. I f  in addition Z is regular, then Z is smooth over A at z. 

Proof. Notice that r : =  dim tr < n, otherwise X~(Z) = Spec A and the hypothesis 
about Z n X~(2~) would be false. Consider the open subscheme Xa(b) of Xa(Z). We 
have 

b = (cospan b) ~) o9, XA(~) = T ] - '  XaXa(og), and X~(Z) = T~ -~ x {0} , 

for some convex polyhedral cone o9 with vertex. Let g be a regular function on an 
open neighbourhood U of z in XA(b) which defines Z, and let Yt . . . . .  y,_,  be the 

standard coordinates on T]  -~. The hypothesis implies that ~.(z)  ~ 0 for some i, 

say i = 1. Then the A-morphism 

O: U "-* A1 "lPn-r-1 rxA XAJtA • . . . . .  Yn-r, X) ~'~ (g(y, X), Y2 . . . . .  Yn-r, X) 

is etale at z. Hence Z n U is etale over T ] - ' -  ~ xAXA(Og) at z, which proves the first 
assertion. If ~ is regular, then o9 is generated by part of a basis for Z" and Xa(o9) is 
smooth over A. [] 

(2.4) Let A be a convex polytope in Q" of dimension n. Thefirst meet locus Fa(b) of 
a vector b e Q" is the set of all x e A for which b" x is minimal. It is a face of A. For 
a c Q" put F~ (a) = ~ b~, Fa (b). Two vectors of Q" are called equivalent if they have 
the same first meet locus. The closures of the associated equivalence classes form 
a fan in Q" which is called the fan associated to A and denoted by S(A). Note that 
there is a 1 - 1 correspondence between the cones tre 2(A) and the faces z of A, 
given by a ~ F~(a). Moreover if r = F~(a), then b = cone~r. The toric A-scheme 
Xa(S,(A)) associated to the fan Z(A) will often be denoted by Xa(A). Note that 
Xa(A) is proper over A. For  a e Z(A) we will often write X~(A) instead of X](E(A)). 
Moreover for a face z of A we will denote by X](A) the unique X~(A) with 
F ~ ( a )  = r .  

(2.5) Next we discuss a relative version of a well known construction which goes 
back to Khovanskii [Khl] .  Let G = ~iEz" a~xieA[x l , .  �9  x,, x~-1 . . . .  , x~-1] be 
a Laurent polynomial over A. The Newton polyhedron A (G) of G is the convex hull 
in Q" of {i e Z" [ at * 0}. For  each face r of A (G) we put G~ = ~ i ~  aix i. Assume that 
dim A (G) = n, and let Z be any fan which is a subdivision of S,(A (G)). We denote by 
Y the scheme-theoretic closure in XA(E) of the locus of G = 0 in T~. Note that 
Xa(Z) and Y are proper over A. 

Let tr be an r-dimensional cone of Z, put r = Fz(~)(a), and choose any vertex 
P e r .  Note that on the open subscheme Xa(~) of Xa(Z), Y is the locus of 
x - e G  ~ A [-b n Z"]. (To see this use the argument in the proof of Proposition 3.2 of 
[Da].) Moreover Y n X ~ ( X ) i s  the locus of x - e G ~ A [ c o s p a n ( r n Z " ] .  Choose 
a basis el . . . . .  e,_, for the lattice ( cospanb)nZ" ,  and put y~ = x ~'. Then 
Yl . . . . .  y ._ ,  are coordinates for X,~(Z) ~ T,]- ' ,  and x-eG~ = G,(Yl . . . . .  y ,_,)  for 
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a suitable Laurent polynomial G~ over A. Thus YnX~a(27) is the locus of 
G,(y~ . . . . .  y,_,)  in T ]  -~. 

(2.6) Definition. A Laurent polynomial G(xl . . . . .  x,) over A is called O-non- 
degenerate with respect to A(G) if for any face z of A(G), including z = A(G), the 
subscheme of T~] defined by G~ = 0 is smooth over A. (cf. [Khl,  w 

The following theorem is due to D. Bernstein, A.G. Kushnirenko and A.G. 
Khovanskii (when K = C). 

(2.7) Theorem. Let G(xl . . . . .  x,)  be a Laurent polynomial over afield K which is 
O-nondegenerate with respect to A (G). Then 

z ( T )  c~ G-  1(0), Qe) = (-- 1)"- ln!Vol(A(G)) ,  

where Z denotes the Euler characteristic with respect to ~-adic cohomology 
(~ 4= char K). 

Proof The theorem is true when K has characteristic zero, by [BKKh, Kh2], and 
the comparison theorem between singular and etale cohomology. We may suppose 
that dim A (G) - n, otherwise after a suitable change of coordinates (on the torus) 
G depends on less than n variables and the Euler characteristic is zero. Let R be 
a discrete valuation ring with fraction field L of characteristic zero and residue field 
/s We can lift G to a Laurent polynomial G over R which is 0-nondegenerate with 
respect to A (G) = A (G). This is possible because 0-nondegenerateness is a generic 
condition in characteristic zero, cf. [Khl,  w Choose a regular fan 27 which is 
a subdivision of 27(A ((~)), cf. IDa, w Let V be the subscheme of TI  defined by 

= 0, and let Y be the closure of V in XR(E). Note that Y is proper and smooth 
over R, by (2.3) with A = R  and (2.5). Thus x(Y| Q t ) = ; ~ ( Y |  
Hence, using the partition of XR(27) into tori and induction on n, we obtain 
X( V @R/S, Qr = x(V @R/s Qt). This yields the theorem since L has characteristic 
zero. [] 

3 Proof of Theorem 1.3 

(3.1) Proposition. Let Y be a scheme of pure dimension n over k and g: Y ~ A~ 
a proper k-morphism. Suppose that g is locally acyclic (in the sense of I-SGA 4�89 p. 
54-]) outside a finite number of points, and that R~g. Qr has tame ramification at 
infinity for each i. Then 

(3.1.1) H~(Y|  k, g*~o) = 0 for all i > n, and 

(3.1.2) the natural maps H~( Y | k, g* ~ ,  ) ~ Hi (Y@ k, 9" ~ ,  ) are isomorphisms for 
all i. 

I f  in addition Y is smooth over k, then 

(3.1.3) 

(3.1.4) 

H~(Y| = 0 for all i 4= n, and 

Hn~(Y | k, g*~,o) is pure of weight n. 
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Proof Let ~/be a generic geometric point of Ak t , and g an arbitrary geometric point 
of Ak ~. Since g is proper we have a long exact sequence [SGA 7, XIII. 2.1.8.9]: 

Oj 
" ' "  -~ Hi(Y~, Qe) ~ HJ(Y#, Qt) ~ Hi(Y~, R~(Qe)) ~ " "  

where Rr162 is the complex of vanishing cycles on Y~ of the constant sheaf Qt- 
The cohomology sheaves of this complex vanish at each point where g is locally 
acyclic. Hence 

HJ(Ye, R~(Qt)) - 0) (R~(Qt ) )y ,  
yEE 

where E c Y~ is finite. Since RJr = 0 when j __> n, we conclude that 0~ is an 
isomorphism if j  > n, and surjective if j  = n (cf. I-SGA 7, 1.4.2 and 4.3]). Hence, for 
j > n, Rig .  Ql is locally constant, and for j = n it is an extension of a locally 
constant sheaf by a punctual sheaf. By our hypothesis on tame ramification, these 

1 locally constant sheaves are constant on AIZ. Thus 

(3.1.5) i 1 Hc(A~,(RJo, Q t ) | 1 6 3  if j > n, i __> 0, o r i f j = n , i > 0 .  

The tame ramification at infinity also implies (see [Ka, 4.8.2]), that the natural 
maps 

(3.1.6) ~ 1 i 1 Hc(A~, (Rig, Qt) | s ~ H (Ar (R~g, Q~) | P~) 

are isomorphisms for all i,j. Hence (3.1.5) also holds for i > 2 and all j. Assertion 
(3.1.1) follows now from the Leray spectral sequence 

(3.1.7) H~(A~, (R~g, Qe) | s  ~ H~+~(Y| k, g* ~,) .  

Assertion (3.1.2) follows directly from the isomorphisms (3.1.6) and the spectral 
sequences (3.1.7) and 

i 1 n (At, (Rig, Q~) | ~,)=:-H'+J(Y | k, g* ~ , ) .  

Finally, when Yis smooth, assertions (3.1.3) and (3.1.4) are implied by (3.1.1), (3.1.2) 
and Poincar6 duality. [] 

The following proposition is well known, see e.g. [Ka, p. 156]: 

(3.2) Proposition. Let Y be a scheme of finite type over k, and 9: Y-~ A~ a k- 
morphism. Suppose that Ri g!Qe has tame ramification at infinity for each i. Then 

z,(Y|  k, g*~,)  = z , (Y|  Q~) - Z~(g- l(rl), Qt ) ,  

where F 1 is a generic geometric point of A~. 

(3.3) Toroidal compactification 

Let f :  T~ ~ A ~  be nondegenerate with respect to A = Ago(f) and assume that 
dim A = n. For any fan ~ which is a subdivision of 2~(A) we will construct 
a compactification 9~ of f as follows: Put A = k[T], where T is one variable. Note 
that T]  ~ T~'xA~ is an open dense subscheme of XA(Z)~ Xk(,~)xA~. Put 
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G = f -  T, and consider it as a Laurent polynomial over A. Notice that A(G) = A. 
We denote by Yz the scheme-theoretic closure in Xa (Z) of the locus of G = 0 in T] ,  
and by gz the proper morphism gz: Yx~Ak ~ induced by the projection 
Xa(S)  -~ SpecA = A~. Because the graph o f f  is the locus of G = 0 in T~, we see 
that T~ is an open subscheme of Yz and that the restriction of gz to Tf  is f Thus 
gz is a compactification of f For a e S  we put Y}:= Yzc~X~(s and 
Y}:= Yz n )f](Z).  Notice that Y} has pure dimension n-dim a, if it is nonempty. 

(3.4) Key Lemma. Assume the notation of(3.3). Suppose for each a e S, with 0 e F A (a) 
that creZ(A). Then Yz is toroidal over k i T ]  at all but a finite number of points. In 
particular gz is locally acyclic outside a finite number of points. 

Proof The assertion about the local acyclicity follows directly from the first 
assertion and [SGA 4 1/2, Th. finitude 2.16, p. 243], because the first assertion 
implies that, at all but a finite number of points, gz is locally a projection 
X x Ak 1 ~ A~, with X a toric k-scheme. 

Let a e Z be arbitrary, and put r = dim a, ~ = F~ (a). We will use notation from 
(3.3) and (2.5). In view of Lemma 2.3 and the material in (2.5) we have to show that 
the locus of G~ = 0 in T~)]  is smooth over k [T ]  outside a finite number of points. If 
0r  ~ then t~ = ~  and the above mentioned locus is smooth over k[T] becausef is  
nondegenerate. Thus suppose that 0 ~ z. Then we can take P = 0 in (2.5). Hence 
(7~ = ~ ~ T and ~(y)  = f~(x). Clearlyj~(y~ . . . . .  y, _,)is nondegenerate with respect 
to A~o(fO. Moreover dim Aoo(f~) = dimz = n - r because aeS(A).  The assertion 
follows now from Lemma 3.5 below. 

(3.5) Lemma. Let f :  T~ --* A~ be a K-morphism, where K is any field. Suppose that 
f is nondegenerate with respect to A~ ( f )  and that dim A ~( f )  = n. Then f is smooth 
outside a finite number of points. 

Proof Put A = Ao~(f) and 2; = Z(A). Let ro be the smallest face of A which 
contains the origin, and let ao be the unique cone of 2; with F~(ao) = ~o. We have 

T~ c X~(~o) c Xt~(Z). Let V be the locus in T~: of Xi~x J, = 0, i = 1 . . . . .  n. We 

denote by I ? the closure of V in X~(Z). Since I7 is proper and XK(8O) is affine, it 
suffices to prove that l? c XK(#O). Hence it suffices to show that l?n  X[(Z)  = (2~ 
for any a t  X with 0 ~ F~(a). But this follows from the nondegenerateness of f 
because an argument similar to (2.5) shows that l?n  X[ (S)  = ~ whenever the 

0f~ ~f~ . . . . .  x , - -  = 0, with z = Fd (a), is empty. [] locus in T~ of x~ 8xl 8x, 

(3.6) Remark. Assume the hypothesis of the Key Lemma 3.4, and let a e Z. Then 
the restriction of gz to Y~: is locally acyclic outside a finite set E of points. Moreover 
if 0 ~ Fz (a) then we can take E empty. These assertions are proved in the same way 
as (3.4). 

(3.7) Remark. The scheme Yz is always toroidal over k at all points. Moreover if 
is regular then Yz is smooth over k. This follows from the argument in (3.4) and 

a straightforward variant of (2.3). 

(3.8) Let Y be a scheme of finite type over k, and ~ a constructible 0C-sheaf on Y. 
Let J be a finite index set, and Y~, j e J, closed subschemes of Y. We use the 
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following notation, for I c J: 

YI = ~ Yj, with the convention that Y~ = Y, 
j~I  

]" = Y \  ~ Yj, and Yx = Y~\ U Y~. 
j~J  j (! l 

With this notation we have: 

(3.8.1) Lemma. Suppose for all 1 ~ 1' ~ d with (~ :4: Yr ~ Y~, that 
d i m Y r < d i m Y ~ .  I f  Hi~(Y~|  for all I = J ,  i>d im Y ~,  then 
H'~( Y | k, ~) = O for all i > dim Y. 

Proof Let 1 ~ J and put Y' = UJ ~ 1 Yj. By induction on # J, the lemma is true for 
Y replaced by Y\ Y' and for Y, Y replaced by Y~, Ya\(Y~ ~ Y'). If Y~ = Y then 
there is nothing to prove. If Yx ~ Y then dim Y~ < dim Y and the lemma follows 
from the exact sequence 

�9 " - +  H~-'((Y~\(Y~ n Y')) | k, ~) -+ H~(~"| fi~, ~) -+ H~((Y\ Y') | k, ~) --+. . . .  
[] 

Now we can prove Theorem 1.3, using the results on tame ramification from Sect. 
4 below. 

(3.9) Proof  o f  Theorem 1.3 

(a) Put r = 2;(A~(f)). Apply Lemma 3.8.1 to Y = Yz, ~ = g~ ~0, and the family of 
closed subschemes Y} with dim a = 1. We recall from (3.3) that Y~ has pure 
dimension n-dim a whenever it is nonempty. This implies that the first hypothesis 
in Lemma 3.8.1 is indeed satisfied. The second hypothesis also holds because of 
Proposition 3.1.1, the Key Lemma 3.4, (3.6), and Corollary 4.4 below. Indeed the 
assumption in the Key Lemma holds by our special choice for Z. Thus Lemma 
3.8.1 yields assertion (a) of Theorem 1.3 when i > n. The case i < n is trivial because 
Tg is affine and smooth. 

(b) follows directly from (a) using Proposition 3.2, Theorem 2.7 and Theorem 4.2 
below. 

(c) Now we assume that the origin is an interior point of A = Ao~(f). This implies 
that any subdivision 2; of ~(A) satisfies the assumption of the Key Lemma 3.4. Thus 
we can take for 2; a regular subdivision (cf. IDa, w so that Yz is smooth over k by 
(3.7). Hence by (3.1.4) for Y =  Y~ and (4.4), it suffices to show that 
H~(D |  g~ ~q,) = 0 for all i, where D = Ys\Tr,. But this follows from the Mayer- 
Vietoris sequence because D = U 0r ta) Y~, the origin being an interior point of A. 
Indeed H i { Y ~ Q k ,  g ~ ) c ~  z = 0 if 0eFt(a) ,  because then Ri(gz[?~),Qr is locally 
constant for all i by the second assertion in (3.6) and hence constant on A~ by 
(4.4). [] 

4 Tame ramification 

(4.1) Proposition. Let R be a discrete valuation ring of characteristic zero with 
residue field k. Let ~ be a Qr on A~ which is locally constant outside a closed 
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subscheme S ~ A~ which is proper over R. Then q~ I A/ has tame ramification at 
infinity. 

Proof This is a direct consequence of [SGA 1, XIII.2.3.a] with X---pRI\S, 
U = ARI\S. Indeed P ~ \ S  is open in P~, because S is proper over R. [] 

(4.2) Theorem. Suppose that f :  T~ ~ A~ is nondegenerate with respect to A~(f) .  
Then R i f Q t  has tame ramification at infinity, for all i. 

Proof. We may assume that dim A ~ ( f )  = n, otherwise after a suitable change of 
coordinates on the torus, f depends only on r = dim d ~ ( f )  variables and we can 
apply the Kiinneth formula. 

Let R be a discrete valuation ring of characteristic zero with residue field k. We 
can l i f t f to  a Laurent polynomial fover  R which is nondegenerate with respect to 
A| ( f )  = A~ (f).  This is possible because nondegenerateness with respect to A| ( f )  
is a generic condition in characteristic zero, cf. [Ko, 6~1]. Choose a regular fan 

which is a subdivision of 2(A~(f ) ) ,  cf. [Da, w Put A = R[T],  where Tis one 
variable. Let I7" be the scheme-theoretic closure in X j ( 2 )  of the locus of f -  T = 0 
in T] ,  and 0: 17"~ A~ be induced by the projection Xj (S )  ~ SpecA. Clearly T~ is 
an open subscheme of Y, and 0 is a compactification o f f :  T~ ~ A~ (compare with 
(3.3)). The map 0 is smooth outside 0-1(S), for some S c A~ which is proper over 
R. Indeed this can be verified by an argument which is entirely similar to the proof 
of the Key Lemma 3.4, but now using the second assertion of Lemma 2.3 and 
Lemma 4.3 below instead of (3.5). This argument also shows that we can choose 
S such that the restriction of 0 to 1 ? n X~(2) is smooth outside 0-1 (S), for all a s 2. 
Hence, outside 0-1 (S), the divisor ]7"\T~ of I ~ has normal crossings relative to A~. 
Thus by [SGA7, XIII.2 1.11 and 2 1 8.9] we conclude that R~fQt is locally constant 
outside S. The theorem follows now from Proposition 4.1. [] 

(4.3) Lemma. Let R be any commutative ring, and f:  T~ ~ A~ an R-morphism which 
is nondegenerate with respect to A~ (f).  Then there exists a closed subscheme S ~ A~ 
which is proper over R, such that f is smooth outside f - i  (S). 

Proof We may assume that dim A~ ( f )  = n, because otherwise after a suitable 
change of coordinates f depends on less than n variables. Put A = d ~ ( f )  and 
S, = S(A). Let Zo be the smallest face of A which contains the origin, and let ao be 
the unique cone o f f  with F~(ao) = Zo. We have T~ c XR(?rO) c XR(2). Notice that 
A c 6"o, hence feR[~ro n Z"]  and f extends to a morphism f ' :  XR(6o) ~ AR 1. Let 

of V be the locus in T~ of xi ~x /=  0, i = 1 . . . . .  n. We denote by 17 the closure of V in 

X~(S). Since 17is proper over R, it suffices to prove that 17 c XR(&o), because then 
we can take S = f ' ( /?) .  Hence it suffices to show that I? n XI  (2;) = ~ for any a s 2 
with 0 r F~(tr). But this follows from the nondegenerateness o f f  as in the proof of 
Lemma 3.5. 

(4.4) Corollary. Suppose that f :  Tg ~ A~ is nondegenerate with respect to A|  
and that dimAoo(f )=  n. Let 2 be any subdivision of 2(A~o(f)), a s S ,  and 
gz: Yz ~ A~ the compactification o f f  associated to S, as in (3.3). Then Ri(gz). Qr and 
W(gz l f~). Qr have tame ramification at infinity for all i. 

Proof. This is an easy consequence of Theorem 4.2, of some of the material in the 
proof of (3.4), and of Lemma 4.5 below, with Yf of the form Y~: and ~ of the form 
y~. [] 
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(4.5) Lemma. Assume the notation of(3.8), and let 9: Y - '  A~ be a k-morphism. I f  
Ri (g [L)! ~ has tame ramification at infinity for all I c J and all i, then Rig! ~ has tame 
ramification at infinity for all i. 

Proof. Use induction on # J  and the long exact sequence associated to the 
cohomology of a closed subscheme (cf. the proof of (3.8.1)). [] 

5 Preliminaries on intersection cohomology and weights 

All schemes considered are assumed to be separated. 

(5.1) The intersection complex 

Let X be a scheme of finite type over k = Fq of pure dimension n. Let ~ be 
a constructible locally constant Qt-sheaf on some dense open smooth subscheme 
U of X. Then there exists a unique object K ~ ~ Db~(X, Qt) (in the derived category, 
see [De, 1.1.3]) with K~ = ~[n]  such that both K" and its Verdier dual ~ K "  
satisfy 

(5.1.1) HIK" = 0 for all i < -- n, and 

(5.1.2) d i m S u p p H i K  " < - i for all i > - n ,  

see [BBD, Proposition 1.4.14]. This unique object is called the intersection complex 
on X associated to ~ and is denoted by 1](~). When ~ = Qe we will write 
I~ instead of I~c(Or The hypercohomology HI(X @ k, I ~ [ - n ] )  is called the 
intersection cohomology of X. 

(5.2) Poincarb duality 

The unique characterization (5.1) of I ] (~)  directly implies that 

(5.2.1) ~(I~(i~)) = I~(qS)(n), 
where i~ denotes n o  m(~, 0~). Hence Verdier duality yields the Poincar6 duality 

(5.2.2) I-Ii(X | ~ I~(~)[ - -  n]) ~ Hom(H2n-i (X | k, I ~ ( ~ ) [ -  n](n)), 0 r  

(5.3) Let X, Y, Z be pure-dimensional schemes of finite type over k. We will 
frequently use the following well known facts which follow directly from the unique 
characterization 5.1 (see [GM]):  

(5.3.1) Let 72: X ~ Y be a locally trivial fibration with respect to the etale topolooy. 
Suppose that the fibers of f a r e  smooth of  pure dimension d. Then I} = ~*l~[d].  

(5.3.2) Let Z c X be a closed subscheme of X. Assume that locally for the etale 
topology at each closed point of Z, the pair (Z, X)  is isomorphic to the pair (Z, Z x Y), 
with Y smooth of pure dimension d. Then I'z = I~c[ -d]  Iz. 

We will use the following fundamental theorem of Gabber (see [BBD, Corollaire 
5.3.2]): 
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(5.4) Purity Theorem. Assume the notation of(5.1) and the terminology of[De, 6.2]. 
I f  ~ is pure of weight w, then I~(~) is pure of weight w + n. 

(5.5) Poincarb polynomials 

Let C" eD~(Spec k, QE), thus we can consider C" as a complex of Q/vector  spaces 
with Gal(k, k) action. Suppose that C ~ is mixed in the sense of [De, 6.2], then we 
associate to C" the Laurent polynomial in one variable T. 

P ( C ' ) =  ~ ( ~ i~z 

where cw,~ is the number of eigenvalues with absolute value q W / 2  of the (geometric) 
Frobenius action on HI(C ") (counting multiplicities). We call P(C') the Poincar6 
polynomial of C ~ It is easy to see that P is additive on triangles and multiplicative 
on tensor products, i.e. P(C'~ | C'z) = P(C'a)P(C~). Moreover the Poincar6 duality 
5.2.2 implies 

(5.5.1) P(RF(X,  I})) = T2d~xp(RF~(X, I } ) ) ( r - 1 ) ,  

for any pure-dimensional scheme X of finite type over k. 

(5.6) If F is a Laurent polynomial in one variable T and m e Z, then 
trunc 6 m (F) denotes the Laurent polynomial obtained from F by omitting all 
monomials of degree > m. 

6 Intersect ion c o h o m o l o g y  of  toric variet ies  

(6.1) The polynomials ~ and fl 

For any convex polyhedral cone a in Q" with vertex, and for any convex polytope 
A in Q" we define in an inductive way polynomials e(~r) and fl(A) in one variable 
T by 

(6.1.1) 

(6.1.2) 

ct(a) = trunc<dima- l ((1 -- T2)fl(polya)), if dimtr > 0 ,  

fl(A) = (T z - -  1) dimA + ( T  2 - 1)dim~e(cone]  z) , 
"r face of A 

'r=kd 

(6.1.3) e({O}) = 1. 

Here poly tr and cone] r are as defined in (1.6), and trunc as in (5.6). Clearly e(~r), 
3(A) only depend on the combinatorial type of ~, A. Moreover they only contain 
even powers of T. These polynomials were first studied by Stanley [S]. One verifies 
by induction that e(a) = 1 when a is a simplicial cone. 

(6.2) Theorem. Let a be a convex polyhedral cone in Q" with vertex, and A a convex 
polytope in Q", both of dimension n. As always let k = Fq and assume the notation of 
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(2.1), (2.4) and (5.1). Then for all i we have 

(6.2.1) dimHi((l~(o)[ - n])o) = coefficient o f T  ~ in ~(tr), and 

(6.2.2) dim H~(Xk-(A), I~(a) l - -  n]) = coefficient of T i in fl(A) , 

where the subscript 0 denotes the stalk at the origin. Moreover 

I" (6.2.3) ( x~(o))0 is pure of weight n 

Assertion (6.2.2) for k = II~ was stated without proof by Stanley I-S] and attributed 
to J.N. Bernstein, A.G. Khovanskii, and R.D. MacPherson. In this section we give 
a complete proof of Theorem 6.2. After a preliminary version of our paper was 
written, we received a preprint of Fieseler IF] proving (6.2.1) and (6.2.2) for k = ~. 
His proof is based on equivariant Morse theory and the decomposition theorem. 
Note that (6.2) for finite k formally implies the case k = C. 

(6.3) Assuming (6.2.3) and using (5.4) and [De, 6.2.6], we see that the assertions 
(6.2.1) and (6.2.2) are equivalent with respectively 

(6.3.1) P((I~(o))o) = ( -  1)"~(a), and 

(6.3.2) P(RF(X~A) ,  l~:~(a))) = ( -  1)"fl(A). 

(6.4) Lemma. Let d c Q" be a convex polyhedral cone or an n-dimensional convex 
polytope, and z a face of A. Then I]~(a) is constant on the torus X~-(A) (notation from 
(2.1) and (2.4)) with fiber 

(6.4.1) (I~(,o,))o [dim z] , 

where r t is a cone which is affinely equivalent with cone] z. 

Proof Put 7 = coneA~. Note that X~(A) = Xk(Cospan ~) is a closed subscheme of 
Xk(7) which is open in Xk(A). Thus we have to study the restriction of 1~(r) to 
XT,(A). Clearly ~ = coneaz = Qdim~ ~)  fo~ and Xk(7) ~ T dim~ • Xk((O~), for some con- 
vex polyhedral cone ~o~ which is affinely equivalent with cone] z. Consider now the 
following diagram 

x ~ ( A )  r , x~ (~ )  

T ~  im~ X ( 0}  r-  , Tkdim' • Xk(O)~ ) , Xk(09~ ) . 

dlm~ ~ �9 By (5.3.1) the intersection complex o n  Tk" • Xk(og~) equals rc Ix~(o,,) [dim ~]. Thus 
the restriction of this complex to T~ T M  x {0} is constant with fiber (6.4.1) because 
n o i is the constant map onto the origin. [] 

(6.5) Lemma. Let X be a pure dimensional scheme of finite type over k. Let b ~ X (k), 
Xo = X \  {b} and h: X x A~ ~ X a k-morphism. Suppose that 

(i) h-  ~(b) = X x {0} u {b} x A~, and 
(ii) ho: Xo x Tk 1 ~ Xo x Tkt: (x, t) ~-~ (h(x, t), t) is an isomorphism of k-schemes. 

Then Hi (X  | k, I~) ~ ni((l~)b), for all i. 

Proof It suffices to show for all i that W(X | k,j!I;:o)= 0, where j is the 
open immersion j: Xo ~ X. Let 0 be the morphism 0: X ~ X x Ak ~ : x ~ (x, 1). 
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From (ii) it follows that hoO: X ~ X  is an isomorphism. Hence it suffices to 
i 1 prove that H ( X •  h*j!I;:o)=O for all i, because hoO induces an 

isomorphism HI(X | k,j!I~:o) ~ W(X | k, (h o O)*j!I~o) which factors through 
H~(X • A~, h*j!I]o). Let too: Xo x Tk x ~ Xo be the projection. We have 

*" �9 ~ ~ ' * ~ * r .  ~ ' ,  �9 (h J!Ixo)lXox'r~ (j~oho)*j!I~o = = = holxo• 1] u O  J~O l X o  

= IL• 1] = t~,o~Oe, 

because of (5.3.1) and (ii). Moreover (i) implies that h'j!  I~o is zero outside Xo x T~. 
Hence h*j,I]~ =j!l~co~U!(~r , where u is the open immersion T~ ~ A~. Since 

i 1 - -"  - H (As u!Qe) = 0 for all i, the lemma follows now from the Kfinneth formula. [] 

Actually we will only need the following corollary, which appears without proof 
in [KL, 4.5.a]. 

(6.6) Corollary. Let  X be a pure dimensional closed subscheme of  A~ containing the 
origin. Suppose that X is invariant under the action of T~ on A~ defined by 
2(Yl . . . . .  Ym)=(~,a~Yl . . . .  ,),a'yra), where ax . . . . .  ameN\{0}. Then W(X| 
I ~ )  i �9 -~ H ((Ix)o), for all i. 

Proof  Apply Lemma 6.5 with b = 0 and h((yl . . . . .  y,,), 2 )  = (2a'y 1 . . . . .  2a'ym). 

(6.7) Lemma. Let  X = Xk(a), where a is an n-dimensional convex polyhedral cone in 
Q" with vertex. Then we have: 

(a) ni((I~:)o) ~ H i ( x  | k, I'x),for all i, 
(b) Hi((I~r ~_ H i (X  |  I~r all i < O, and 
(c) P((I'x)o) = trunc 6 n - 1 P ( R F ( X  |  {0}, I~r when n > 1.  

Proof  (a) Choose generators b~ . . . . .  bm 4= 0 for the semi-group a c~ Z", and a vec- 
tor 7 e Z" in the interior of& Consider Xk(tr) as a closed subscheme of A~' by setting 
Yl = x b', . . . .  Ym = X b'. Apply now Corollary 6.6 with ai = b~" y > 0, i = 1 . . . . .  m. 

(b) By (a) and Poincar6 duality 5.2.2, assertion (b) is equivalent with 

H~(X | k, 1}) ~ H~(X @ k-\ {0}, I]), for all i > 1. 

But this last assertion follows directly from the long exact sequence associated to 
the pair (X\{0}, X). Indeed Hi((I~r = 0 for all i > 0, when n > 1, by (5.1.2). 

(c) By the Purity Theorem 5.4, H~((I'x)o) is mixed of weight < n + i. Thus 
because of assertion (b) and the last sentence in its proof, it suffices to prove that 
H~(X | k-\{0}, I~r is mixed of weight > n + i, for all i. But this follows directly 
from (5.4), [De], and Poincar6 duality. Note that this argument also proves that 
(I~r is pure of weight n. [] 

Remark. Combining (6.4) with Lemma 4.5(b) of [KL] and using induction, one 
gets a direct simple proof of the Purity Theorem 5.4 for toric varieties. 

(6.8) Proo f  of  Theorem 6.2 

Assertion (6.2.3) follows from the proof of Lemma 6.7 (c). Hence by (6.3) it suffices to 
prove (6.3.1) and (6.3.2). For this, we use induction on n. Using the decomposition 
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of Xk(a) into tori, the additivity and multiplicativity of P, Lemma 6.4, and the 
induction hypothesis we obtain 

P(RFc(Xk-(a)\{O}, I ~ ( . ) ) )  = ~ P(RFc(X~(a), I~(,))) 
f a c e  of  a 

+ {0} 

= ~ ( -  1)dim'p(RFr im',Qr 
* {0} 

= ( -  1)" Y' (T 2 -- 1)oim'ct(cone~(z)). 
, {0} 

Indeed a only depends on the combinatorial type, dim o~, = n -  dim z, and 
d i m r  : __ 1 ) d i m ~ "  P(RF~(Tg ,0~)) (T 2 Hence, by the definition (6.1.2) of fl we get 

(6 .8 .1)  P(RI'~(Xk-(a)\{O}, I~(,))) = (-- 1)'(T 2 - 1)fl(poly a).  

The induction hypothesis implies 

P(RF(X~(poly a), I~(ooly,))) = (-- 1) ~- 1 fl(poly a) .  

Hence (5.5.1) yields T 2(n- 1)fl(poly a)(T- 1) = fl(poly a), since Xk(poly a) is proper. 
Using (5.5.1) again and (6.8.1) we obtain 

P(RF(X~a)  \ {0}, I~(,))) = ( -  1)"(1 - -  T 2 )  T 2("  - ~)fl(poly a)(T- ~) 

= ( -  1)"(1 -- T2)fl(polya). 

Assertion (6.3.1) follows now directly from Lemma 6.7(c) and the definition (6.1.1). 
To prove (6.3.2) we use the partition of Xk(A) into tori and Lemma 6.4, yielding 

P(RF(Xk-(A), I~(~)) = ~ P(RF~(X'k-(A), I]~(~))) 
face  of A 

= E ( - -  l " ~ d i m r D / O r ' i ' r  d i m r  --  * ~ ~ , ~ k  , Qt) )P(( I~(o~, ) )o)  

= ( -  1)"~ (T 2 - 1)dim~(conej(z)) = (-- 1)nil(A). [] 

7 Proof of Theorem 1.8 

(7.1) Proposition. Let Y be a scheme of pure dimension n over k and g: Y ~ A~ 
a proper k-morphism. Suppose that, outside a finite number of points, g is locally 
acyclic relative to I~ (in the sense of I-SGA 4�89 p. 242]), and that Rig.  I~ has tame 
ramification at infinity for each i. Then 

(a) H~(Y| ~ I } [ -  n] | g*~q,) = O, for all i # n, and 
(b) H~n(Y| k, I ~ [ -  n] | g* ~q,) is pure of weight n. 

Proof Straightforward adaptation of the proof of Proposition 3.1 replacing every- 
where the constant sheaf Qe by the complex I~ , [ -  n]. Indeed now we have the 

�9 * g *  Poincar6 duality 5.2.2 with ~ = g* ~, .  (Note that Ir(g ~ )  = I} | 9.r For (b) 
we also need the Purity Theorem 5.4 and Deligne's result [De] to insure that the 
weights are < n. Nevertheless we still have to show that R ~ ( I } [  - n]) = 0 when 
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j => n. This follows directly from the fact [B, 2.3.9] that R ~ ( F ' [ - -  1]) is perverse 
whenever F" is perverse. Since we did not find a complete proof of this fact in the 
literature we give an alternative argument: Applying Proposition 4.4.2 of [BBD] to 
I~ , [ -  1][r~ yields RJ~(I~)  = 0 for all j > 0. But RJ~(I{,) = R~P(I{,) when j > 0, 
because of (5.1.2) and the triangle 

(/{,)[v~-' R~(I{.)  - .  R~(I~.) . [] 

(7.2) Let f :  T~ --, A~ be nondegenerate with respect to d = zt~o(f) and assume 
that dim A = n. For any subdivision 22 of I;(/I) we constructed in (3.3) a compactifi- 
cation gz: Yz ~ A~ off.  From now on we take 2; = 1;(d) and put Y = Yz(a), and 
g=gx(~) .  Thus YCXA(A), where A = k i T ] .  For  a face ~c of A we put 
Y~ = Yc~ X~(A). Note that the Y~ form a partition of Y. 

(7.3) Lemma. Let Y and g be as in (7.2). Then, outside a finite number of  points, g is 
locally acyclic relative to I{.. 

Proof. From the Key Lemma 3.4 it follows that, at all but a finite number of points, 
g is locally a projection X x A~ ~ A~, with X a toric k-scheme. We have 
I;: • A~ = I} [1] [] Qe, by (5.3.1). The lemma follows now from the fact [SGA 4�89 Th. 
finitude 2.16 p. 243] that any scheme X over k is universally locally acyclic relative 
to any complex in D~(X, Qt). [] 

(7.4) Lemma. Let Y ~ XA(A) be as in (7.2)�9 Then locally for the etaIe topology at 
each point of  Y, the pair (Y, XA(A)) is k-isomorphic with the pair (I7, Y x A~). 

Proof. The Cartier divisor Y intersects each stratum X~(A) transversally (over k). 
Apply now the same ideas as in the proof of Lemma 2.3. 

(7.5) Lemma. Assume the notation of  (7.2). Let z be a face of  A which does not 
contain the origin. Then Ri(g[r,)!I~ , is constant on A~, and 
H~(Y ~ | k, I~, | g*!~0) = O, for all i. 

Proof. From (2.5) it follows that Y~ is the locus in X~(A) of G~ = 0, where 
G = f - -  T. Because 06~, we have G~ = ~ .  SinceJ~ does not contain the variable T, 
we see that I "~ = Z x A~, for some closed subscheme Z of XI,(A). We consider the 
following diagram of natural maps, where h = g[~-: 

h 

X a ( d ) = X k ( A ) x A ~  , -~ Y * = Z x A 2  ., A~ 

,t 

Xk(A) ~ -~ Z , Speck 

From Lemma 7.4 and (5.3.2) it follows that I[, = I~ , (~) [ -  1]lr. Hence by (5.3.1) 

/~[r~ = I~(~) [ -  1] [z • M = (re* Ix~id))[z • AI = rCo (Ix~(~)lz) �9 

Thus base change yields 

R i h ~ i { ,  i , �9 = �9 = R h!~o(Ix,(~)[z) p*Ri'~!(I~(A)lz) 
which proves the first assertion of the lemma. The second assertion follows now 
directly from the Leray spectral sequence for h. [] 

(7.6) L e t f a n d  A be as in (7.2), and z a face of A of dimension d with 0 e z. Then we 
can write f~ =J~(x ~, . . . .  x~,), where ~ is a Laurent polynomial in d variables and 
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ex . . . . .  ed form a basis for the lattice Z" n (affine space of z). Clearly ~ is non- 
degenerate with respect toA ~o (J~). Moreover there is a volume preserving bijection 
between the faces of A~o(fi) and z. 

(7.7) Lemma. Assume the notation of (7.2) and (7.6). Let z be a face of A which 
contains the origin: Then Y" ~- Tk di~' with 91r' corresponding to f,. Moreover I~, is 
constant on Y" | k with fiber (6.4.1). 

Proof Let tr e E(A) be such that Fd (a) = ~. Notice that Y' = Y n X](A) is a closed 
subscheme of Yc~ XA(#) which is open in Y. From (2.5) (taking the origin for the 
vertex P e z) it follows that Yc~ XA(#) is the locus off(x) - T = 0 in Xa(t~). Hence 
Yc~ Xa(6) ~- Xk((r). Under this isomorphism Y~ corresponds to X~(A) ~- T~ ira', and 
I~,ly, to I'x~(a)lx~(a). Apply now Lemma 6.4. [] 

(7.8) Lemma. Let Y and 9 be as in (7.2). Then Ri g.I~, has tame ramification at 
infinity for all i. 

Proof By Lemma 4.5 (for complexes) it suffices to show that R~(g[r,)!l~, has tame 
ramification at infinity, for each face z of d. When 0 r z, this is clear by Lemma 7.5. 
When 0e  z, this follows from Lemma 7.7, Theorem 4.1, and the spectral sequence 

Ri(g[Y')! Hi(I~'lr ") = R i + J(g I Y')! I~,. [] 

(7.9) Proof of Theorem 1.8 

We use the notation of (7.2), in particular g: Y--+ A~ is the toroidal compactifica- 
tion o f f  associated to E(A). Proposition 7.1 applies to this situation, because of 
Lemmas 7.3 and 7.8. Hence using the formalism of Poincar6 polynomials 5.5 we 
have P(RFc( Y | k, I~ [ -  n] | g* 9.,)) = b T n for some b e Z. From the additivity of 
P we get 

(7.9.1) " * P(RI'~(T~,f ~q,)) = bT" - ~. P(RI'~(Y' | k, I~,[- n] | g*~ , ) ) .  
f a c e  of  .4 

x 4 : A  

By Lemma 7.7, (6.3.1), and the multiplicativity of P we have for any face z of A with 
0 e z that 

d i m ~  ~ $  o (7.9.2) P(RFc(Y" | k, I~,[-  n] | g*P-~,)) = P(RFc(Tf ,f~ p-~,))0t(cone~z). 

Indeed dim oJ, = n - dim z and ~ only depends on the combinatorial type. Com- 
bining (7.9.1) and (7.9.2) and Lemma 7.5, we obtain 

n , d i m ~  $ P(RF~(Tf , f  P,q,)) = bT" - ~ P(RF~(Tf ,f, p-,))~(cone~z). 
t face  o f  A 

Together with Theorem 1.3 this yields 

n d a m ~  d l m ~  o (7.9.3) E(T~,f)  = ( -  1)"bT a -  ~ ( -  1) - " E(Tk" ,f,)ct(conedz). 
O ~ 4 A  

d l m z  By Theorem 1.3, the value of E(Tk' ,f~) at T = 1 equals (dim z)! Vol(z). Evaluating 
(7.9.3) at T =  1 we get ( - 1 ) " b  = e(A). Hence E ( T ~ , f ) =  E(A) by (7.9.3) and 
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induct ion  on n. F r o m  (6.1.1) it follows that  degE(z)~(cone]z)  < n when z ~ A. 
Thus e. = e(A). [] 

8 Explicit formulas 

(8.1) Throughou t  this sect ion let f :  T~ ~ A~ be nondegenera te  with respect to 
A = A ~ ( f )  and assume tha t  d imA = n. We will give explicit  formulas  for the 
ew (defined in 1.4) in some special  cases. Pu t  

v,= y~ Vol(~). 
z f a c e  of  A 

O c t ,  d i m  z = i 

F o r  any face z of A we denote  by  F~(i) the number  of / -dimension faces of 
A conta in ing  z. Let  Zo be the smallest  face of A conta in ing the origin. We say that  
A is simple at the origin if F~o(n - 1) = n - d imzo.  We will write Fo(i) ins tead of 
F~o(i). 
(8.2) Theorem. Assume the notation o f  (8.1) and suppose that A is simple at the 
orioin. Then for  w = O, 1 . . . .  , n we have 

ew = ( -  1)w-ii! V~. 
i = 0  

This theorem was proved  by Ado lphson  and Sperber  [AS 3] for a lmost  all p, by 
using p-adic  methods .  No te  tha t  A is simple at  the origin if n < 2. 

Proof. The hypothes is  implies that  ~(cone] z) = 1 for any face r of A with 0 e ~. The 
case w = n follows direct ly from Theorem 1.8. When  w < n induct ion  on n reduces 
us to prove  tha t  for any  face a of A, with 0 e a and  f : = d im a < w, we have 

( - -  1) " -a  ~ ( -  1)kV,(k) = . 
k = W  

But this follows easily from 

(8.3) F o r  any convex po lyhedra l  cone a of d imension  n < 4 with vertex we have 

~(a) = 1 + ( 2 -  n)T z , 

where 2 denotes  the number  of  faces of a with d imension n - 1. A ra ther  long 
calcula t ion using Theorem 1.8 yields the following formulas  for n = 3, 4. 

Case n = 3 

e3 = 6Vs - 2Vz + V~ - (Fo(t)  - 2)Vo, 

e2 = 2V2 - 21/1 + (2Fo(1) - 3)Vo, 

el  = 1/i - Fo(1) Vo, 

co- - - - -  V 0 . 
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Case n = 4 

e,, = 24V4 - 6V3 + 2V2 - (W~ - 2V1) + (Fo(3) - 3)Vo, 

e3 = 6V3 - 4V2 + (2W~ - 3V1) - (Fo(3) + Fo(2) - 6)Vo, 

ez = 2V2 - W~ + (Fo(2) + Fo(1) - 4)Vo, 

el = 111 - Fo(1) Vo, 

eo= Vo, 

where 

W I : =  ~ F~(3)Vol(z) . 
f a c e  of  A 

O~'t,  d i m  z =  1 

(8.4) Adolphson  and Sperber  [AS3, Conjecture 1.13] conjectured a formula  for 
the ew. The above  formulas  (8.3) show tha t  their conjecture is true for n < 4. 
Actually they proved  this for n < 3 for a lmost  all p (unpublished). We will now 
show that  their  conjecture is false for some 5-dimensional  simplicial Newton  
polyhedra  (i.e. all whose proper  faces are simplices), and w = 5. 

Assume the origin is a vertex of A and suppose their conjecture is true for w = n 
and all Newton  polyhedra  which are combinator ia l ly  equivalent with A. Applying 
this to mA, m e N \ { 0 } ,  we get a po lynomia l  in m with constant  term 
( -  1)"(Fo(n - 1) - n + 1). C o m p a r i n g  with Theorem 1.8 we obtain  

(8.4.1) ~(cone~0)(1) = Fo(n - 1) - n + 1 . 

But this is not  true in general. Indeed for n = 5 and  A simplicial one has 

a(coned0)(1) = 6 + 5Fo(4) - 3Fo(2). 

Hence (8.4.1) implies 3f~ - 4f3 - 10 = 0, where f~ is the number  o f / -d imens iona l  
faces of  the 4-dimensional  poly tope  poly cone~0. But this last equat ion does not  
hold for all 4-dimensional  simplicial polytopes,  since it is independent  of the 
Dehn-Sommervi l le  relations (cf. [MS,  p. 103]). 

(8.5) Theorem. Assume the notation of(8.1), in particular Zo is the smallest face of 
d containing the origin. Put d = dim Zo. Then 

(a) ew = 0 / f  w < d, 
(b) ed = d!Vol(zo),  and 
(c) ed+l = (d + 1)lVa+l - Fo(d + 1)d!Vol(zo). 

Proof Using Euler 's  theorem on polytopes  and induct ion one verifies that  the 
constant  term of a(a) and fl(A) is 1. Assertion (a) follows f rom Theorem 1.8 and 
induction. Then  (b) is obta ined  by induction and Euler 's  theorem for poly cone~ Zo. 
To  prove  (c), use again induction,  Euler 's theorem and the fact that  a(a) only 
contains  even powers  of  T. We leave the details to the reader. [] 

Remark. Assume the no ta t ion  of Theorem 8.5. An analysis of  the p roof  of 
Theorems  8.5, 1.8 and 6.2 shows tha t  the eigenvalues of weight d of  H ~ ( T ~ , f *  2 , )  

d d , ~  are precisely the eigenvalues of  Hc(Tk,~o ,), whereJ~ 0 is as in (7.6). 
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9 Exponential sums on T[ x Af-~ 

(9.1) Throughout  this section let V = T[ • A~,-r, with 0 _< r < n, and let f :  V--* Ak x 
be a k-morphism. The Newton polyhedron A ~ ( f )  of f at infinity is defined as 
before. Call f nondegenerate with respect to A~ ( f )  if its restriction to Tg is such. 
For  any B ~ {1, 2 . . . . .  n} we put Q$ = {(tl . . . . .  t,)eQ"lt~ = 0 for each i~B} .  We 
c a l l f c o m m o d e  if dim(Ao~(f)c~ Q~) = n - # B  for all B c {r + 1 . . . . .  n}. When 
r = 0 this means that f contains for each i = 1 . . . . .  n a monomial a~x~' with 
m ~ N \ { 0 } ,  a~e k\{0}. Finally we define E ( V , f )  as in (1.4) with T~ replaced by V. 

(9.2) Theorem. Suppose that f :  V--* A~ is commode and nondegenerate with respect 
to A = Ao~(f). Then 

(a) H~(V | F~,f* ~q,) = 0 if  i # n, and 
(b) dimH~"(V| k , f * ~ o ) =  ~ ( -  1 )#B(n -  #B)!Vol(A c~ Q~). 

B c  {r+ 1 . . . . .  n} 
I f  r = 0 or if the origin is an interior point of  A n Q~  + t . . . . .  ,}, then 

(c) H~(V | k , f * g w )  is pure o f  weight n. 

A somewhat weaker version of this theorem was proved by Adolphson and Sperber 
[AS1, AS2] for almost all p, and they conjectured the theorem for all p when r --- 0. 
The condition that f is commode cannot be removed. Indeed a straightforward 
calculation with Gaussian sums shows that [ ~ , y , ~ k  ~(Z 2 + XZ + yz)[ = q2, which 
would contradict (9.2.a). We will prove the theorem in (9.4) by partitioning V into 
tori. 

(9.3) Lemma. Assume the notation of(3.8) and let n ~ N. l f  H~( J'~ | E, ~)  = O for  all 
I c J, i > n - # I ,  then H ~ ( Y |  k, ~) = O for all i > n. 

Proof. Let 1 e J .  By induction on # d  we have H~((Y \  I11)| ~) = 0 when i > n 
and H~(Y~ |  ~) = 0 when i > n - 1. The lemma follows now from the long exact 
sequence associated to the pair (II1, Y). [] 

(9.4) Proo f  o f  Theorem 9.2 

(a) Because of Theorem 1.3(a) and the hypothesis that f is commode we can apply 
Lemma 9.3 with J = {r + 1 . . . . .  n} and Yx the locus of (xl = 0)i~i in V, so that the 

are tori. This yields assertion (a) if i > n. When i < n the assertion is clear since 
V is smooth and affine. 

(b) follows directly from (a), Theorem 1.3(b), and the additivity of the Euler 
characteristic. 

(c) Clearly E ( V , f ) -  E ( T ~ , f ) m o d T " .  Hence by Theorem 1.8 it suffices to 
prove that dim H~"(V |  f *  ~ )  equals e(A). But this follows from (b) and (1.7.1). 
Indeed the hypothesis implies that all faces z of A which contain the origin are of 
the form A c~ Q~ with B c {r + 1 , . . . ,  n}, and cone]T is simplicial for such ~. 

(9.5) Theorem. Suppose that f :  V ~ A~ is commode and nondegenerate with respect 

to A = Ao~(f). Then 

E ( V , f )  = e(A)T" - ~ ( -  |)"-dim~E(z)~(cone]'r) , 

where the summation runs over all proper faces ~ o f  A which contain the origin and are 
not o f  the form A r~ Q$ with B c {r + 1, . . . , n}. 
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Proof. Using the decomposi t ion of V into tori and the additivity of Poincar6 
polynomials  we get 

E(V,f) = E ( T ~ , f )  -F ~ (-- 1)n-dlm*E(Tk~im*,f~), 
'r = A c ~ Q ~  

where B runs over all nonempty  subsets of {r + 1 . . . .  , n}. The corollary follows 
now from (1.7.2) and Theorem 1.8, since cone]z  is simplicial whenever z = A c~ Q~, 
B = { r + l  . . . . .  n}. []  

(9.6) Remark. Assertion (c) of Theorem 9.2 can be proved without  using Theorem 
1.8, by adapt ing the argument  in (3.9c). In the present case 2;(A) contains the 
positive octant  of Q"-r .  Choose a regular subdivision 2; of  2;(A) which still contains 
this octant. Then S satisfies the assumption of the Key Lemma 3.4 and Vis an open 
subscheme of  Ys. To prove the assertion, we proceed now as in (3.9c) replacing 
T~' by V. 
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