THÉORIE SPECTRALE - EXERCICES

Spectre

Exercice 1. Soient E, F des espaces de Banach complexes, $S \in \mathcal{L}(E, F)$ et $T \in \mathcal{L}(F, E)$ des applications linéaires continues.

- 1. Soit $\lambda \in \mathbb{C} \{0\}$.
 - a) Démontrer que S induit une bijection de $\ker(TS \lambda id_E)$ sur $\ker(ST \lambda id_F)$. Démontrer que $ST \lambda id_F$ est injective si et seulement si $TS \lambda id_E$ est injective.
 - b) Démontrer que l'image de $ST \lambda id_F$ est dense si et seulement si l'image de $TS \lambda id_E$ est dense.
 - c) Démontrer que $ST \lambda id_F$ est surjective si et seulement si $TS \lambda id_E$ est surjective (si $TS \lambda id_E$ est surjective, on démontrera que, pour tout $y \in F$, STy est dans l'image de $ST \lambda id_F$).
- 2. On suppose que TS est bijective. Démontrer que, si T est injective, S et T sont bijectives. Démontrer que si ST n'est pas bijective, elle n'est pas injective.
- 3. Démontrer que le spectre résiduel et le spectre continu de ST sont contenus dans le spectre de TS. Démontrer que $\{0\} \cup \operatorname{Sp}ST = \{0\} \cup \operatorname{Sp}TS$.

Exercice 2. Soit E un espace de Banach. Démontrer que pour toute partie ouverte U de \mathbb{C} , l'ensemble $\Omega_U = \{x \in \mathcal{L}(E), \ \operatorname{Sp} x \subset U\}$ est ouvert dans $\mathcal{L}(E)$.

Exercice 3. Soit $(e_n)_{n\in\mathbb{N}}$ la base hilbertienne canonique de $\ell^2(\mathbb{N})$. Notons $T\in\mathcal{L}(\ell^2(\mathbb{N}))$ défini par $Te_0=0,\ Te_n=2^{1-k}e_{n-1}$ si $n=2^kp$ avec $p\in\mathbb{N}$ impair.

- 1. Quel est le spectre de T?
- 2. Pour $k \in \mathbb{N}$, notons $T_k \in \mathcal{L}(\ell^2(\mathbb{N}))$ défini par $T_k e_n = 0$, si $n \in 2^k \mathbb{N}$ et $T_k e_n = T e_n$ sinon. Démontrer que T_k est nilpotent et que T_k converge vers T.

Espace hilbertien

Exercice 4. Soit T un opérateur d'un espace hilbertien H.

- 1. Démontrer que le noyau de T^* est l'orthogonal de l'image de T.
- 2. Démontrer que si T est normal et surjectif, il est bijectif.
- 3. Démontrer que les conditions suivantes sont équivalentes :
 - (i) T^* est surjectif;
 - (ii) Il existe c > 0 tel que pour tout $x \in H$ on ait $||Tx|| \ge c||x||$. Pour les questions qui suivent, on suppose que T est normal.
- 4. Soit $\lambda \in \mathbb{C}$. Démontrer que $\lambda \in \operatorname{Sp}T$ si et seulement $\inf\{\|Tx \lambda x\|/\|x\|, \ x \neq 0\} = 0$.
- 5. Démontrer que $||T|| = \sup\{|\langle x, Tx \rangle|, x \in B\}$, où B est la boule unité de H.
- 6. Supposons que l'application $x \mapsto |\langle x, Tx \rangle|$ atteint son maximum en un point $x \in B$. Démontrer que x est vecteur propre.

Exercice 5. On note C([0,1]) l'espace de Banach des application continues de [0,1] à valeurs dans \mathbb{C} (muni de la norme $f \mapsto ||f||_{\infty} = \sup\{|f(t)|, t \in [0,1]\}$).

Notons $j: C([0,1]) \to L^2([0,1])$ l'application qui à toute fonction continue f associe sa classe dans L^2 . Soit E un sous-espace vectoriel de C([0,1]) tel que j(E) soit un sous-espace fermé de $L^2([0,1])$.

- 1. Démontrer que la réciproque $\varphi: j(E) \to E$ de la restriction de j est continue. En déduire qu'il existe $M \in \mathbb{R}_+$ tel que, pour tout $f \in E$ on ait $||f||_{\infty} \leq M||j(f)||_2$.
- 2. Démontrer que, pour tout $t \in [0,1]$, il existe un unique élément $g_t \in j(E)$ tel que, pour tout $f \in E$ on ait $\langle g_t | j(f) \rangle = f(t)$. Démontrer que $||g_t||_2 \leq M$.
- 3. Soit (f_1, \ldots, f_n) une suite d'éléments de E telle que $(j(f_1), \ldots, j(f_n))$ soit un système orthonormal de j(E). Démontrer que, pour tout $t \in [0, 1]$, $\sum_{k=1}^{n} |f_k(t)|^2 \leqslant ||g_t||_2^2$.
- 4. En déduire que la dimension de E est finie.

Exercice 6. On note T l'opérateur de Voltera : T est l'opérateur de l'espace de Hilbert $L^2([0,1])$ des fonctions de carré intégrable pour la mesure de Lebesgue sur [0,1] donné par la formule $(Tf)(x) = \int_0^x f(t)dt$.

- 1. Démontrer que T est continu et calculer T^* .
- 2. Quel est le spectre de T?
- 3. Quel est le spectre de $T + T^*$?
- 4. Quel est le spectre de $T T^*$?

Exercice 7. Soit P un idempotent de $\mathcal{L}(H)$. Établir l'équivalence $P = P^* \iff ||P|| \leqslant 1 \iff \ker f = (\operatorname{im}_f)^{\perp}$. (On dit alors que P est un projecteur orthogonal).

- **Exercice 8.** 1. Soient E, F, H des espaces hilbertiens $S \in \mathcal{L}(H, E)$ et $T \in \mathcal{L}(H, F)$ deux opérateurs tels que $S^*S = T^*T$. Démontrer qu'il existe un opérateur $u \in \mathcal{L}(E, F)$ tel que T = uS et $S = u^*T$.
 - 2. Soit $T \in \mathcal{L}(H)$ un opérateur normal. Démontrer que les opérateurs T et T^* ont même noyau et même image.

Exercice 9. Soit H un espace hilbertien et soient $S, T \in \mathcal{L}(H)$. On suppose que S est autoadjoint et T est positif.

- 1. Démontrer que $\operatorname{Sp} ST \subset \mathbb{R}$ on pourra comparer ce spectre à celui de $T^{1/2}ST^{1/2}$.
- 2. Démontrer que $(id_H + iST)^*(id_H + iST)$ et $(id_H + iST)(id_H + iST)^*$ ont même spectre.
- 3. En déduire que $ST^2S + i(ST TS)$ est positif si et seulement si $TS^2T + i(ST TS)$ est positif.

Exercice 10. Soient H un espace hilbertien $T \in \mathcal{L}(H)$ un opérateur autoadjoint.

- 1. Établir l'équivalence des conditions suivantes.
 - (i) Il existe $k \in \mathbb{R}_+$ tel que $||T kid_H|| \leq k$.
 - (ii) T est positif. Pour montrer (ii) \Rightarrow (i), on pourra poser k = ||T||.
- 2. Démontrer que les conditions suivantes sont équivalentes.

- (i) Il existe $k \in \mathbb{R}_+$ tel que $||T k \mathrm{id}_H|| < k$.
- (ii) T est positif et inversible.
- 3. Notons φ l'application de $\mathcal{L}(H)$ dans $\mathcal{L}(H)$ définie par $\varphi(S) = ST + TS$.
 - a) On suppose que T est positif et inversible. Démontrer qu'il existe $k \in \mathbb{R}_+$ tel que $\|\varphi 2k \operatorname{id}_{\mathcal{L}(H)}\| < 2k$. En déduire que φ est bijective.
 - b) On suppose que T n'est pas inversible. Démontrer que φ n'est pas bijective.
- **Exercice 11.** 1. Soit $(T_n)_{n\in\mathbb{N}}$ une suite décroissante (*i.e.* telle que T_n-T_{n+1} est positif) d'opérateurs positifs agissant sur un espace hilbertien H. Démontrer que T_n converge faiblement (*i.e.* qu'il existe $S \in \mathcal{L}(H)$ tel que pour tout $x, y \in H$ on ait $\lim \langle x, T_n y \rangle = \langle x, Sy \rangle$).
 - 2. Soit T un opérateur positif agissant sur un espace hilbertien H tel que $||T|| \leq 1$.
 - a) Démontrer que la suite T^n converge faiblement vers le projecteur orthogonal p de H sur $\ker(1-T)$.
 - b) (ajouté) Démontrer que, pour tout $x \in E$, on a $T^n x \to p(x)$.
 - 3. Soient p et q deux projecteurs orthogonaux de H. Démontrer que $(pq)^n$ converge faiblement et calculer sa limite.

Exercice 12. Soit H un espace hilbertien.

- 1. Soit $T \in \mathcal{L}(H)$ avec $T = T^*$. Démontrer qu'il existe un unique élément hermitien $S \in \mathcal{L}(H)$ tel que $S^3 = T$.
- 2. Soit $T \in \mathcal{L}(H)$. Démontrer qu'il existe un unique $S \in \mathcal{L}(H)$ tel que $SS^*S = T$

Exercice 13. On note $(e_n)_{n \in \mathbb{Z}}$ la base orthonormale canonique de l'espace hilbertien $\ell^2(\mathbb{Z})$. Soit U l'opérateur unitaire sur $\ell^2(\mathbb{Z})$ tel que, pour tout $n \in \mathbb{Z}$ on ait $Ue_n = e_{n+1}$.

- 1. On pose $A = \{f(U); f \in C(\operatorname{Sp}U)\}$. Démontrer que le vecteur e_0 est totalisateur pour A, c'est à dire que $\{ae_0, a \in A\}$ est dense dans $\ell^2(\mathbf{Z})$.
- 2. Pour toute fonction continue f sur l'espace compact \mathbb{U} des nombres complexes de module 1 on pose $\mu(f) = \langle e_0 | f(U) e_0 \rangle$. Démontrer que μ est une mesure positive et la déterminer. En déduire le spectre, la mesure spectrale et la multiplicité de l'opérateur unitaire U.
- 3. Soit $R \in \mathcal{L}(\ell^2(\mathbf{Z}))$ un opérateur qui commute à U (*i.e.* UR = RU). Démontrer qu'il existe $f \in L^{\infty}(\mathbf{T}, \mu)$ tel que R = f(U).
 - Notons P le projecteur orthogonal de $\ell^2(\mathbf{Z})$ dont l'image est le sous-espace engendré par $(e_n)_{n\in\mathbb{N}}$, identifié à $\ell^2(\mathbf{N})$. On note S la restriction de U à $\ell^2(\mathbb{N})$.
- 4. Démontrer que, pour toute fonction continue $f \in C(\mathbf{T})$, l'opérateur f(U)P Pf(U) est compact.
- 5. Pour $f \in L^{\infty}(\mathbf{T}, \mu)$ on note $T_f \in \mathcal{L}(\ell^2(\mathbb{N}))$ l'opérateur qui à $x \in \ell^2(\mathbb{N})$ associe Pf(U)x.
 - a) Démontrer que, pour tout $f \in L^{\infty}(\mathbf{T}, \mu)$, on a $T_f = S^*T_fS$.
 - b) Calculer l'adjoint de T_f .
- 6. Pour $n \in \mathbb{N}$, notons $R_n \in \mathcal{L}(\ell^2(\mathbb{Z}))$ l'opérateur qui à $x \in \ell^2(\mathbb{Z})$ associe $U^{-n}T_fPU^nx$. Démontrer que, pour toute paire x, y de vecteurs de $\ell^2(\mathbb{Z})$, la suite $\langle x, R_n y \rangle$ converge vers $\langle x, f(U)y \rangle$. En déduire que $||T_f|| = ||f(U)||$.
- 7. Soient R un opérateur normal d'un espace hilbertien H et $\lambda \in \mathbb{C}$. Démontrer que $\lambda \in \operatorname{Sp} R$, si et seulement si $\inf\{\|(R-\lambda)x\|, x \in H, \|x\|=1\}=0$. En déduire que, pour tout $f \in L^{\infty}(\mathbf{T},\mu)$ le spectre de T_f contient celui de f(U).
- 8. Soit $T \in \mathcal{L}(\ell^2(\mathbb{N}))$ un opérateur tel que $T = S^*TS$. Démontrer qu'il existe $f \in L^{\infty}(\mathbf{T}, \mu)$ tel que $T = T_f$.

Solutions des exercices

Exercice 1.

1. a) Pour $x \in \ker(TS - \mathrm{id}_E)$, on a $(ST - \mathrm{id}_F)(S(x)) = S(TS - \mathrm{id}_E)(x) = 0$, donc $S(x) \in \ker(ST - \mathrm{id}_F)$. Notons $S_1 : \ker(TS - \mathrm{id}_E) \to \ker(ST - \mathrm{id}_F)$ l'application déduite de S. De même, notons $T_1 : \ker(ST - \mathrm{id}_F) \to \ker(TS - \mathrm{id}_E)$ l'application déduite de T. Pour $x \in \ker(TS - \mathrm{id}_E)$, on a $T_1S_1(x) = \lambda x$ et pour $x \in \ker(ST - \mathrm{id}_F)$, on a $S_1T_1(x) = \lambda y$; donc S_1 est bijective et $(S_1)^{-1} = \lambda^{-1}T_1$.

La deuxième assertion s'en déduit immédiatement.

- b) On applique a) à tT et à tS : on a donc les équivalences: l'image de $ST - \lambda \mathrm{id}_F$ est dense $\iff {}^tT^tS - \lambda \mathrm{id}_{F'}$ est injective $\iff {}^tS^tT - \lambda \mathrm{id}_{E'}$ est injective \iff l'image de $TS - \lambda \mathrm{id}_E$ est dense.
- c) Supposons que $TS \lambda id_E$ est surjective. Soit $y \in F$. Alors il existe $z \in E$ tel que $T(y) = (TS \lambda id_E)(z)$; alors $(ST \lambda id_F)(S(z)) = S(TS \lambda id_E)(z) = ST(y)$, donc

$$y = -\lambda^{-1}(ST - \lambda id_F)(y) - \lambda^{-1}ST(y) = (ST - \lambda id_F)(-\lambda^{-1}(y + S(z))).$$

Donc $ST - \lambda id_F$ est surjective.

- 2. Si TS est bijectif, alors T est sujectif. Si de plus T est injectif, alors il est bijectif, donc $ST = T^{-1}(TS)T$ aussi. Par contraposée, si ST n'est pas bijectif, alors T n'est pas injectif donc ST non plus.
- 3. Dans la question 1, on a vu que les spectres ponctuels résiduels et continus de ST et TS ont même intersection avec C*. En partiulier, {0} ∪ SpST = {0} ∪ SpTS.
 Si 0 n'est pas dans le spectre de TS, alors, d'après 2, ou bien il n'est pas dans celui de ST, ou bien il esta dans le spectre ponctuel de ST : il n'est donc pas dans le spectre résiduel ou continu de ST. Par contraposée, si 0 est dans le spectre résiduel ou continu de ST, alors 0 est dans le spectre de TS.

Exercice 2. Soit $S \in \Omega_U$. Posons $F = \mathbb{C} \setminus U$. C'est une partie fermée de \mathbb{C} . L'application $\lambda \mapsto \|(S - \lambda \mathrm{id}_E)^{-1}\|$ est continue sur F et tend vers 0 à l'infini (si $F = \emptyset$, il n'y a rien à démontrer). Elle atteint donc son maximum M sur F. Si $M\|S - T\| < 1$, alors, pour tout $\lambda \in F$, on a $T - \lambda \mathrm{id}_E = (S - \lambda \mathrm{id}_E)(\mathrm{id}_E - (S - \lambda \mathrm{id}_E)^{-1}(S - T))$ et puisque $\|(S - \lambda \mathrm{id}_E)^{-1}(S - T)\| \leqslant M\|S - T\| < 1$, $T - \lambda \mathrm{id}_E$ est inversible. Cela prouve que $\mathrm{Sp}T \subset U$. Donc Ω_U est un voisinage de S. Enfin Ω_U est ouvert : c'est un voisinage de chacun de ses points.

Exercice 3. Réponse un peu moins rapide... Pour $n \in \mathbb{N}^*$, notons k(n) la puissance de 2 dans n, i.e. $n = 2^{k(n)}m$ avec m impair. Remarquons que 1 - k(n) = j(n) - j(n-1) où j(n) est le nombre de 1 dans l'écriture de n en binaire.

En effet, l'écriture en binaire de n se termine par 1 suivi de k(n) zéros. Celle de n-1 a le même début, et se termine par 0 suivi de k(n) uns.

Posons $\lambda_n = 2^{1-k(n)}$. On a donc $\lambda_1 \dots \lambda_n = 2^{j(n)}$. En particulier, $1 \le \lambda_n \le n+1$ (on a j(n)=1 si et seulement si n est une puissance de 2 et j(n)=n+1 si et seulement si n+1 est une puissance de 2).

Soit $\lambda \in \mathbb{C}$. Si $|\lambda| < 1$ alors la suite (x_n) avec $x_n = \frac{\lambda^n}{\lambda_1 \dots \lambda_n}$ est un élément de $\ell^2(\mathbb{N})$ et $T(x) = \lambda(x)$.

On a $T^n(e_k) = 0$ si k < n et $T^n(e_k) = \lambda_k \lambda_{k-1} \dots \lambda_{k-n+1} e_{k-n}$ si $k \ge n$.

Remarquons que, pour $k \ge n$, on a $\lambda_k \lambda_{k-1} \dots \lambda_{k-n+1} = \frac{\lambda_1 \dots \lambda_k}{\lambda_1 \dots \lambda_{k-n}} = 2^{j(k)-j(k-n)}$ et comme $j(p+q) \le j(p) + j(q)$, il vient $\lambda_k \lambda_{k-1} \dots \lambda_{k-n+1} \le \lambda_1 \dots \lambda_n$.

On a donc sup $||T^n(e_k)|| = \lambda_1 \dots \lambda_n = ||T^n(e_n)|| \le ||T^n||$.

Comme les $T^k(e_n)$ sont deux à deux orthogonaux, on a, pour $\xi = (x_k) = \sum_{k=0}^{+\infty} x_k e_k$,

$$||T^n(\xi)^2|| = \sum_{k=0}^{+\infty} ||T(x_k e_k)||^2 = \sum_{k=0}^{+\infty} |x_k|^2 ||T(e_k)||^2 \leqslant (\lambda_1 \dots \lambda_n)^2 \sum_{k=0}^{+\infty} |x_k|^2 ||= (\lambda_1 \dots \lambda_n)^2 ||\xi||^2.$$

Il vient $||T^n|| \leq \lambda_1 \dots \lambda_n$, d'où l'égalité. Donc $\rho(T) = \lim(\lambda_1 \dots \lambda_n)^{1/n} = 1$.

Le spectre de T est fermé, contenu dans le disque unité fermé et contient le disque unité ouvert : c'est le disque unité fermé.

Exercice 4.

- 1. Cette question est traitée dans le cours : on a $x \in \ker T^* \iff \forall y \in H, \ \langle y|T^*x\rangle = 0 \iff x \in \operatorname{im} T^{\perp}$.
- 2. Si T est normal, alors pour tout $x \in H$, on a $||Tx||^2 = \langle x|T^*Tx\rangle = ||T^*x||^2$, donc ker $T = \ker T^*$. Si T est surjectif, alors, comme d'après la question 1, ker $T^* = (\operatorname{im} T)^{\perp}$, il vient ker $T = \ker T^* = \{0\}$.
- 3. Écrivons T=u|T| (décomposition polaire et donc $T^*=|T|u^*$). On a les implications suivantes : T^* surjectif $\Rightarrow |T|$ surjectif $\Rightarrow |T|^2 = T^*T$ surjectif $\Rightarrow T^*$ surjectif. Ce sont donc des équivalences.

Par ailleurs, on a les équivalences :

(ii)
$$\Leftrightarrow$$
 il existe $c > 0$ tel que, pour tout $x \in H$, on ait $\langle x | T^*Tx \rangle \geqslant c^2 \langle x | x \rangle$
 \Leftrightarrow il existe $c > 0$ tel que $T^*T - c^2 \mathrm{id}_H \geqslant 0$
 \Leftrightarrow il existe $c > 0$ tel que $\mathrm{Sp}\,T^*T \subset [c^2, +\infty[$
 $\Leftrightarrow 0 \not\in \mathrm{Sp}T^*T$
 $\Leftrightarrow T^*T$ bijectif.

Or, d'après la question 1, on a T^*T surjectif $\Leftrightarrow T^*T$ bijectif.

4. L'endomorphisme $(T - \lambda id_H)^*$ est normal. On a donc l'équivalence (d'après les question 2 et 3) :

$$\lambda \not\in \operatorname{Sp} T \Leftrightarrow (T - \lambda \operatorname{id}_H)^*$$
 est bijectif
$$\Leftrightarrow (T - \lambda \operatorname{id}_H)^* \text{ est surjectif}$$

$$\Leftrightarrow \text{ il existe } c > 0 \text{ tel que, pour tout } x \in H, \text{ on ait } \|(T - \lambda \operatorname{id}_H)(x)\| \geqslant c \|x\|.$$

- 5. Pour $x \in B$, on a $|\langle x, Tx \rangle| \leq ||x|| ||Tx|| \leq ||T|| ||x||^2$, donc ||T|| majore $\{|\langle x, Tx \rangle|, x \in B\}$. Par ailleurs, ||T|| est le rayon spectral de T et il existe donc $\lambda \in \operatorname{Sp} T$ tel que $|\lambda| = ||T||$. D'après la question 4, on a alors $\inf\{||Tx - \lambda x||, ||x|| = 1\} = 0$. Il existe donc une suite (x_n) de vecteurs de norme 1 telle que $||Tx_n - \lambda x_n|| \to 0$. On a alors $|\langle x_n|Tx_n \rangle - \lambda| = |\langle x_n|Tx_n - \lambda x_n \rangle| \leq ||x_n|||T - \lambda x_n||$. Donc $\langle x_n|Tx_n \rangle \to \lambda$ et donc $|\langle x_n|Tx_n \rangle| \to ||T||$.
- 6. Pour $x \in B$, on a $|\langle x, Tx \rangle| \leq ||x|| ||Tx|| \leq ||T|| ||x||^2$. Si $|\langle x|Tx \rangle| = ||T||$, alors ces inégalités sont des égalités. Donc (si $T \neq 0$) on a ||x|| = 1 et, puisque l'inégalité de Cauchy-Schwarz est une égalité, x et Tx sont colinéaires, donc X est un vecteur propre.

Exercice 5.

- 1. L'application $j: E \to j(E)$ est linéaire bijective et continue. Comme j(E) est fermé dans $L^2[0,1]$, il est complet. Comme j est injective, $E=j^{-1}(j(E))$, et puisque j est continue, E est fermé dans C([0,1]), donc complet. D'après le théorème de Banach, $\varphi: j(E) \to E$ est continue. Il existe donc $M \in \mathbb{R}_+$ $(M = ||\varphi||)$ tel que, pour tout $f \in E$ on ait $||f||_{\infty} \leq M||j(f)||_2$.
- 2. Notons $q_t: E \to \mathbb{C}$ l'application $f \mapsto f(t)$. L'espace j(E) est un espace de Hilbert. L'application $\ell_t = q_t \circ \varphi$ est une forme linéaire continue, donc il existe $g_t \in j(E)$ tel que l'on ait $\ell_t(\xi) = \langle g_t | \xi \rangle$. Pour $f \in E$, on a $\langle g_t | j(f) \rangle = \ell_t(j(f)) = f(t)$. De plus, on a $||g_t|| = ||\ell_t|| = ||q_t|| ||\varphi|| \leqslant M$.
- 3. Le projeté orthogonal de g_t dans le sous-espace vectoriel de j(E) engendré par $(j(f_1), \ldots, j(f_n))$ est $\sum_{k=1}^{n} \langle j(f_k) | g_t \rangle j(f_i)$. On a donc $||g_t||^2 \geqslant \sum_{k=1}^{n} |\langle j(f_k) | g_t \rangle|^2 = \sum_{k=1}^{n} |f_k(t)|^2$.
- 4. On a donc $\sum_{k=1}^{n} |f_k(t)|^2 \leqslant M^2$, donc $\int_0^1 \sum_{k=1}^{n} |f_k(t)|^2 dt \leqslant M^2$. Or pour tout k, on a $\int_0^1 |f_k(t)|^2 dt = ||j(f_k)||^2 = 1$. Il vient $n \leqslant M^2$. Cela prouve que tout système orthonormé a au plus M^2 éléments, donc $\dim(j(E)) \leqslant M^2$.

Exercice 6.

1. On a $T(f)(x) = \langle \mathbf{1}_{[0,x]} | f \rangle$. Donc T(f)(x) est bien défini pour tout $f \in L^2$ et tout $x \in [0,1]$ et $|T(f)(x)| \leq ||\mathbf{1}_{[0,x]}||_2 ||f||_2 = \sqrt{x} ||f||_2$. De plus, pour x < y, on a $T(f)(y) - T(f)(x) = \langle \mathbf{1}_{[x,y]} ||f\rangle$; donc $|T(f)(y) - T(f)(x)| \leq ||\mathbf{1}_{[x,y]}||_2 ||f||_2 = \sqrt{y-x} ||f||_2$.

En conclusion, T(f) est continue et $||T(f)||_2 \leq ||T(f)||_{\infty} \leq ||f||_2$. Cela prouve que T est bien définie et continue de $L^2([0,1])$ dans lui-même.

Posons
$$S(f)(x) = \int_x^1 f(t) dt$$
. Pour $f, g \in C([0, 1])$ on a

$$\langle S(f)|g\rangle = \langle f|T(g)\rangle = \int_{0 \le s \le t \le 1} \overline{f(t)}g(s) \, ds dt$$

donc $T^* = S$.

2. Pour f continue, $T^n(f)$ est la fonction F de classe C^n dont la dérivée n-ième est f et telle que F ainsi que ses n-1 premières dérivées sont nulles en 0. Par la formule de Taylor avec reste intégrale, on a $T^n(f)(x) = \frac{1}{n!} \int_0^x f(t)(x-t)^{n-1} dt$. Cette formule reste vraie pour f quelconque dans L^2 par continuité.

On a donc $|T^n(f)(x)| \leq \frac{\|f\|_2}{(n-1)!}$ et $\|T^n\| \leq \frac{1}{(n-1)!}$. On en déduit que $\sum T^n \lambda^n$ converge pour tout n, donc pour tout $\lambda \in \mathbb{C}$, $\mathrm{id}_E - \lambda T$ est inversible et $\mathrm{Sp}(T) \subset \{0\}$; comme le spectre n'est pas vide $\mathrm{Sp}T = \{0\}$.

- 3. On a $(T+T^*)(f) = \langle \mathbf{1}|f\rangle \mathbf{1}$ où $\mathbf{1}$ est la fonction constante égale à 1. Donc $T+T^*$ est le projecteur orthogonal sur $\mathbb{C}\mathbf{1}$. Son spectre est $\{0,1\}$.
- 4. Remarquons que pour tout $f \in L^2([0,1])$, la fonction $(T-T^*)(f)$ est continue et $(T-T^*)(f)(1) = \int_0^1 f(t)dt = (T^*-T)(0)$. Si f est continue, $(T-T^*)(f)$ est donc l'unique primitive F de 2f telle que F(1) + F(0) = 0.

Soit $\lambda \in \mathbb{C}^*$. Si $(T - T^*)(f) = \lambda f$, alors f est continue (puisque T(f) et $T^*(f)$ le sont) et, comme $\lambda f(x) = 2 \int_0^x f(t) \, dt - \int_0^1 f(t) \, dt$, on en déduit que f est de classe C^1 , $\lambda f'(x) = 2f(x)$ et f(0) + f(1) = 0. Cela a lieu si et seulement si f est proportionnelle à $x \mapsto e^{(2/\lambda)x}$ et f(1) = -f(0).

On trouve donc que $\frac{2}{\lambda} = (2k+1)i\pi$, avec $k \in \mathbb{Z}$. Posons donc $e_k(x) = e^{(2k+1)i\pi x}$ et $\lambda_k = \frac{2}{(2k+1)i\pi}$ pour $k \in \mathbb{Z}$. On a bien $T(e_k) = \lambda_k e_k$.

Comme $\lim_{k \to \infty} \lambda_k = 0$ et $\operatorname{Sp}(T - T^*)$ est compact, il vient $0 \in \operatorname{Sp}(T - T^*)$.

Rappelons (Fourier) que, l'ensemble des fonctions $f_k: t \mapsto e^{2ik\pi t}$ $(k \in \mathbb{Z})$ forment une base hilbertienne de $L^2([0,1],dx)$. Comme l'application $U: \xi \mapsto e_0\xi$ est un unitaire de $L^2([0,1],dx)$, l'image (e_k) de (f_k) est aussi une base hilbertienne de $L^2([0,1],dx)$.

Soit alors $\lambda \in \mathbb{C}^*$ qui n'est pas de la forme $\frac{2}{(2k+1)i\pi}$. Comme $\lim_{k \to \infty} |\lambda - \lambda_k| = |\lambda|$, l'ensemble des $k \in \mathbb{Z}$ tels que $|\lambda - \lambda_k| \le |\lambda|/2$ est fini (ou vide), donc $\inf_k |\lambda - \lambda_k| > 0$. Posons $M = \sup_k |\lambda - \lambda_k|^{-1}$.

Pour
$$\xi \in L^2([0,1])$$
, posons $R(\xi) = \sum_{k \in \mathbb{Z}} \frac{\langle e_k | \xi \rangle}{\lambda_k - \lambda} e_k$. Comme $\sum_{k \in \mathbb{Z}} \left| \frac{\langle e_k | \xi \rangle}{\lambda_k - \lambda} \right|^2 \leqslant M^2 \sum_{k \in \mathbb{Z}} |\langle e_k | \xi \rangle|^2 = 1$

 $\|\xi\|_2^2 < +\infty$, cette série converge et l'application linéaire R ainsi définie est continue. On a $R(e_k) = \frac{1}{\lambda_k - \lambda} e_k$, de sorte que $(T - T^* - \lambda \mathrm{id}) \circ R(e_k) = R \circ (T - T^* - \lambda \mathrm{id})(e_k) = e_k$. Par linéarité et continuité, on trouve que $(T - T^* - \lambda \mathrm{id}) \circ R = R \circ (T - T^* - \lambda \mathrm{id}) = \mathrm{id}$, donc $\lambda \notin \mathrm{Sp}(T - T^*)$.

Cela prouve que Sp $(T - T^*) = \{\lambda_k; k \in \mathbb{Z}\} \cup \{0\}.$

Exercice 7. Deux idempotents sont égaux si et seulement s'ils ont même noyau et même image. Par ailleurs, si P est idempotent, on a im $P = \ker(\mathrm{id}_H - P)$ donc imP est fermée. On a donc $\ker P^* = (\mathrm{im}P)^{\perp}$ et im $P^* = (\ker P)^{\perp}$. Finalement, $P = P^*$ si et seulement si $\ker P = (\mathrm{im}P)^{\perp}$ (et alors $\mathrm{im}P = (\ker P)^{\perp}$). Si $\mathrm{im}P = (\ker P)^{\perp}$, alors pour tout $x \in H$, on a x = Px + (x - Px) et puisque $Px \in \mathrm{im}P$ et $x - Px \in \ker P$, ces vecteurs sont orthogonaux donc $\|x\|^2 = \|Px\|^2 + \|x - Px\|^2 \geqslant \|Px\|^2$, donc $\|Px\| \leqslant \|x\|$, et $\|P\| \leqslant 1$.

Pour tout $x \in (\ker P)^{\perp}$, on a Px = x + (Px - x) et, puisque $Px - x \in \ker P$ et $x \in (\ker P)^{\perp}$, on a $\|Px\|^2 = \|x\|^2 + \|Px - x\|^2$. Si $\|P\| \le 1$, alors $\|Px\| \le \|x\|$, donc Px - x = 0, et donc $x \in \operatorname{im} P$. Il vient $(\ker P)^{\perp} \subset \operatorname{im} P$. Dans ce cas, si $x \in \operatorname{im} P$, écrivons x = y + z avec $y \in (\ker P)^{\perp} \subset \operatorname{im} P$ et $z \in \ker P$. Alors $z = x - y \in \operatorname{im} P \cap \ker P = \{0\}$. cela prouve que $\operatorname{im} P = \ker P^{\perp}$.

Exercice 8.

1. Pour $x \in H$, on a $||S(x)||^2 = \langle x|S^*S(x)\rangle = \langle x|T^*T(x)\rangle = ||T(x)||^2$. Posons $G = \{(S(x), T(x)); x \in H\}$. Les applications $p_1 : (x,y) \mapsto x$ et $p_1 : (x,y) \mapsto y$ sont des bijections linéaires de G sur $\operatorname{im}(S)$ et $\operatorname{im}(T)$ respectivement. Posons $u_0 = p_2 \circ p_1^{-1}$. Remarquons que $u_0(\underline{S(x)}) = \underline{T(x)}$, donc u_0 est isométrique et se prolonge en une application linéaire isométrique $u_1 : \operatorname{im}(S) \to \operatorname{im}(T)$. L'application u_0^{-1} est aussi isométrique et se prolonge donc en une application linéaire isométrique $u_1' : \overline{\operatorname{im}(T)} \to \overline{\operatorname{im}(S)}$. L'application $u_1' \circ u_1$ coïncide avec l'identité sur $\operatorname{im}S$, donc sur $\overline{\operatorname{im}(S)}$ et de même $u_1 \circ u_1' = \operatorname{id}_{\overline{\operatorname{im}(T)}}$. Il vient $u_1' = u_1^{-1}$.

Comme u_1 est isométrique, il vient $\langle u_1(x)|u_1(y)\rangle = \langle x|y\rangle$ (par polarisation), donc $\langle x|u_1^*u_1(y)\rangle = \langle x|y\rangle$, donc $u_1^*u_1(y) = y$. Enfin $u_1^* = u_1^{-1}$.

Notons $p \in \mathcal{L}(E, \overline{\operatorname{im}(S)})$ le projecteur orthogonal et $u \in \mathcal{L}(E, F)$ l'application $x \mapsto u_1(p(x))$. Soient $y \in \overline{\operatorname{im}(S)}, z \in (\operatorname{im}(S))^{\perp}$ et $y' \in \overline{\operatorname{im}(T)}, z' \in (\operatorname{im}(T))^{\perp}$.

On a p(y+z)=y, donc $\underline{u(y+z)}=u_1(y)$. Donc $\langle y+z|u^*(y'+z')\rangle=\langle u_1(y)|y'+z'\rangle$; comme $z'\in \operatorname{im}(T)^{\perp}$ et $u_1(y)\in \overline{\operatorname{im}(T)}$, on a $\langle u_1(y)|z'\rangle=0$, donc $\underline{\langle y+z|u^*(y'+z')\rangle}=\langle u_1(y)|y'\rangle=\langle y|u_1^*(y')\rangle=\langle y+z|u_1^*(y')\rangle$ (puisque $z\in \operatorname{im}(S)^{\perp}$ et $u_1^*(y)\in \overline{\operatorname{im}(S)}$).

On a donc $u^*(y' + z') = u_1^*(y')$.

- Enfin, pour $x \in H$, on a $u(S(x)) = u_1(S(x)) = u_0(S(x)) = T(x)$ et $u^*(T(x)) = u_1^*(T(x)) = u_1^{-1}(T(x)) = S(x)$.
- 2. On a $||T(x)||^2 = \langle x|T^*T(x)\rangle = \langle x|TT^*(x)\rangle = ||T^*(x)||^2$ donc $\ker T = \ker T^*$. D'après 1, on peut écrire $T^* = vT$ et $T = v^*T^*$, donc, prenant les adjoints, $T = T^*v^*$ (donc $\operatorname{im} T \subset \operatorname{im} T^*$) et $T^* = Tv$ (donc $\operatorname{im} T \subset \operatorname{im} T$).

Exercice 9.

- 1. D'après l'exercice 1, $\text{Sp}((ST^{1/2})T^{1/2}) \cup \{0\} = \text{Sp}(T^{1/2}(ST^{1/2})) \cup \{0\}$ et puisque $T^{1/2}ST^{1/2}$ est autoadjoint, $\text{Sp}(T^{1/2}ST^{1/2}) \subset \mathbb{R}$.
- 2. D'après 1, $i \notin \operatorname{Sp}(ST)$, donc $i(ST i\operatorname{id}_H)$ est inversible. Pour $\lambda \in \mathbb{C}$, on a $(\operatorname{id}_H + iST)^*(\operatorname{id}_H + iST) \lambda \operatorname{id}$ inversible si et seulement si $(\operatorname{id}_H + iST)(\operatorname{id}_H + iST)^* \lambda \operatorname{id} = (\operatorname{id}_H + iST) \Big((\operatorname{id}_H + iST)^*(\operatorname{id}_H + iST) \lambda \operatorname{id}_H \Big) (\operatorname{id}_H + iST)^{-1}$ l'est.
- 3. Or $(id_H + iST)^* = id_H iTS$, donc $(id_H + iST)^*(id_H + iST) = id_H + TS^2T + i(ST TS)$ et $(id_H + iST)(id_H + iST)^* = id_H + ST^2S + i(ST TS)$. Comme ces opérateurs ont même spectre, les opérateurs autoadjoints $ST^2S + i(ST TS)$ ont même spectre $TS^2T + i(ST TS)$. L'un est positif si et seulement si l'autre l'est.

Exercice 10.

- 1. Pour $k \in \mathbb{R}_+$, comme $T a \mathrm{id}_H$ est autoadjoint donc normal, sa norme est égale à son rayon spectral, donc $||T k \mathrm{id}|| \leq k \iff \operatorname{Sp}(T) \subset [0, 2k]$. Cela implique que T est positif. Pour k = ||T||, il vient $||T k \mathrm{id}|| \leq k \iff \operatorname{Sp}T \subset [0, 2||T||] \iff \operatorname{Sp}T \subset \mathbb{R}_+ \iff T$ est positif.
- 2. On a de même $||T kid|| < k \iff \operatorname{Sp}(T) \subset]0, 2k[$, d'où l'équivalence.
- 3. a) Avec k donné par la question 2, notons m_g (resp. m_d) l'endomorphisme $S \mapsto (T k \mathrm{id}_H) S$ et m_d (resp. $S \mapsto S(T k \mathrm{id}_H)$) de $\mathcal{L}(H)$. Comme $||ab|| \le ||a|| ||b||$, il vient $||m_g|| \le ||T k \mathrm{id}_H|| < k$ et $||m_d|| < k$. Donc $\varphi 2k \mathrm{id}_{\mathcal{L}(H)} = m_g + m_d$ et $||m_g + m_d|| < 2k$. Donc φ est inversible (d'inverse $\sum_{n=0}^{+\infty} (2k)^{-n-1} (m_g + m_d)^n$).
 - b) Si $x \in \ker T$, alors notons P le projecteur orthogonal d'image $\mathbb{C}x$. On a TP = 0 et $PT = (TP)^* = 0$, donc $P \in \ker \varphi$. Plus généralement, si T n'est pas inversible, il existe une suite x_n de vecteurs de norme 1 tels que $||Tx_n|| \to 0$ (exerc. 4). Si on note P_n le projecteur orthogonal d'image $\mathbb{C}x_n$, on a $TP_n(x) = \langle x_n | x \rangle T(x_n)$, donc $||TP_n(x)|| \leq ||x|| ||x_n|| ||T(x_n)|| = ||T(x_n)|| ||x||$ et donc $||TP_n|| \to 0$. Or $P_nT = (TP_n)^*$, donc $||TP_n|| = ||P_nT||$ et $\varphi(P_n) \to 0$, et, comme $||P_n|| = 1$, l'application φ n'est pas un homéomorphisme. Elle n'et donc pas bijective (théorème de Banach).

Exercice 11.

1. Pour $x \in H$, la suite $(\langle x|T_nx\rangle)$ est décroissante, minorée par 0, donc convergente (dans \mathbb{R}_+). Pour $(x,y) \in H$, la suite $(\langle x|T_ny\rangle)$ est convergente par polarisation. Posons $B(x,y) = \lim(\langle x|T_ny\rangle)$. Comme chaque application $(x,y) \mapsto \langle x|T_ny\rangle$ est sequilinéaire, il en va de même pour B. De plus, pour $(x,y) \in H^2$ on a $|\langle x|T_ny\rangle| \leq ||x|| ||y|| ||T_n|| \leq ||x|| ||y|| ||T_0||$ (par décroissance). On en déduit que $|B(x,y)| \leq ||T_0|| ||x|| ||y||$. Pour tout $y \in H$, l'application $\ell_y : x \mapsto B(y,x)$ est une forme linéaire continue et $||\ell_y|| \leq ||T_0|| ||y||$. Il existe donc un unique vecteur S(y) tel que l'on ait $S(y,x) = \langle S(y)|x\rangle$. Comme $S(y) \mapsto S(y,x)$ et $S(y) \mapsto S(y,x)$ et $S(y) \mapsto S(y)$ sont antiniléaires, l'application $S(y) \mapsto S(y)$ est linéaire. Et comme $S(y) \mapsto S(y)$ en déduit que $S(y) \mapsto S(y)$ est autoadjoint et positif.

- 2. a) Comme la suite de fonctions $t \mapsto t^n$ est décroissante sur $\operatorname{Sp} T \subset [0,1]$, la suite T^n est décroissante. Notons S sa limite faible. Si $x \in \ker(\operatorname{id}_H T)$, on a $T^n x = x$ pour tout n, donc Sx = x.
 - Par ailleurs soit $x \in H$. Pour tout $y \in H$, on a $\langle y|TSx \rangle = \langle Ty|Sx \rangle = \lim \langle Ty|T^nx \rangle = \lim \langle y|T^{n+1}x \rangle = \langle y|Sx \rangle$. On en déduit que TSx = Sx, donc TS = S. Il vient $\operatorname{im} S \subset \ker(\operatorname{id}_H T)$ et puisque pour $x \in \ker(\operatorname{id}_H T)$ on a Sx = x, il vient $S^2 = S$ et $\operatorname{im} S = \ker(\operatorname{id}_H T)$. Comme de plus $S = S^*$, S est le projecteur orthogonal d'image $\ker(\operatorname{id}_H T)$.
 - b) La suite de fonctions $t \mapsto t^n(1-t)$ converge uniformément vers 0 sur l'intervalle [0,1] (on calcule le maximum en dérivant). Or $||T^n T^{n+1}||$ est le rayon spectral de $T^n T^{n+1}$ c'est à dire le sup de $t^n t^{n+1}$ sur le spectre de T. Il vient $||T^n T^{n+1}|| \to 0$. Si $x \in \operatorname{im}(\operatorname{id}_H T)$, il existe $y \in H$ avec $(\operatorname{id}_H T)y = x$, donc $T^n x = (T^n T^{n+1})y \to 0$. Donc Sx = x. Par continuité de S, on a Sz = 0 pour $z \in \operatorname{im} T$. Or, puisque $\operatorname{id}_H T$ est autoadjoint, on a $\operatorname{im}(\operatorname{id}_H T)^\perp = \ker T$, donc S est le projecteur orthogonal d'image $\operatorname{ker}(\operatorname{id}_H T)$. Soit $x \in H$ et soit $\varepsilon > 0$. Écrivons x = y + z avec $y \in \overline{\operatorname{im}(\operatorname{id}_H T)}$ et $z \in \operatorname{ker}(\operatorname{id}_H T)$. On a Sx = z. Il existe $u \in \operatorname{im}(\operatorname{id}_H T)$ avec $||-u y|| \leqslant \varepsilon/2$. Il vient $T^n x Sx = T^n y = T^n u + T^n (y u)$. Or $||T^n|| \leqslant 1$ donc $||T^n u|| \leqslant \varepsilon/2$; comme $T^n y \to 0$, il existe n_0 tel que, pour $n \geqslant n_0$ on a $||T^n u|| \leqslant \varepsilon/2$, et donc $||T^n x x|| \leqslant \varepsilon$.
- 3. Remarquons que $(pq)^{n+1} = p(qpq)^n$. Posons qpq = T et notons S le projecteur orthogonal d'image $\ker(\mathrm{id}_H T)$. Alors $T = (pq)^*pq$ est positif et $||T|| \leqslant 1$. D'après la question 2, pour $x \in H$, la suite $(pq)^n x$ converge vers pSx. Par ailleurs, si x = qpqx, alors qx = qpqx = x et, puisque $||x|| = ||qpqx|| \leqslant ||pqx|| \leqslant ||qx|| = ||x||$, il vient ||pqx|| = ||qx||, donc $qx \in \mathrm{im}p$. Il vient x = px = qx. Donc $\ker(\mathrm{id}_H T) = \mathrm{im}p \cap \mathrm{im}q$. On en déduit que S est le projecteur orthogonal d'image $\mathrm{im}p \cap \mathrm{im}q$. Donc qS = S.

Exercice 12.

- 1. Notons $f: \mathbb{R} \to \mathbb{R}$ l'application $t \mapsto t^3$ et $g: \mathbb{R} \to \mathbb{R}$ son application réciproque. Pour $S, T \in \mathcal{L}(H)$ autoadjoints, on a $T = f(S) \iff S = g(T)$.
- 2. On munit l'espace $H \times H$ du produit scalaire $\langle (x, x') | (y, y') \rangle = \langle x | y \rangle + \langle x' | y' \rangle$. Muni de ce produit scalaire, $H \times H$ est un espace hilbertien. Notons $\widetilde{T} \in \mathcal{L}(H \oplus H)$ l'application $(x, x') \mapsto (Tx', T^*x)$. On vérifie immédiatement que \widetilde{T} est autoadjoint.

Si $SS^*S = T$, notons $\widetilde{S} \in \mathcal{L}(H \times H)$ l'application $(x, x') \mapsto (Sx', S^*x)$. On a $\widetilde{S}^3 = \widetilde{T}$ donc $\widetilde{S} = g(\widetilde{T})$, d'où l'unicité de S.

Écrvons $g(\widetilde{T})(x,x')=(ax+bx',cx+dx')$, où $a,b,c,d\in\mathcal{L}(H)$. Puisque $g(\widetilde{T})$ est autoadjoint, on trouve $a=a^*,\ d=d^*$ et $c=b^*$.

Notons $V \in \mathcal{L}(H \times H)$ l'application $(x,x) \mapsto (x,-x')$. On a $V^2 = V$ et $V\widetilde{T}V = -\widetilde{T}$, donc $\left(-Vg(\widetilde{T})V\right)^3 = \widetilde{T}$. Par unicité, dans a), il vient $-Vg(\widetilde{T})V = g(\widetilde{T})$ et donc a = d = 0, de sorte que S = b convient.

Exercice 13.

- 1. Pour $n \in \mathbb{N}$, on a $U^n e_0 = e_n$, donc l'espace $Ae_0 = \{f(U)e_0; f \in C(\operatorname{Sp}U)\}$ contient la base hilbertienne $(e_n)_{n \in \mathbb{Z}}$, donc le sous espace vectoriel qu'elle engendre. Donc Ae_0 est dense.
- 2. On sait que μ est une forme linéaire positive sur $C(\operatorname{Sp}U)$. C'est donc une mesure borélienne sur $\operatorname{Sp}U$.

Notons \mathbb{U} l'ensemble des nombres complexes de module 1. On a $\operatorname{Sp} U \subset C(\mathbb{U})$. Si $f \in \mathbb{U}$, on note encore $f \in C(\operatorname{Sp} U)$ sa restriction. Notons $z \in C(\mathbb{U})$ la fonction $\lambda \mapsto \lambda$. On a $\mu(z^n) = \langle e_0 | e_n \rangle = 0$ si $n \neq 0$ (et $\mu(z^0) = \mu(1) = 1$). Les formes linéaires $f \mapsto \mu(f)$ et $f \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) dt$ sur $C(\mathbb{U})$

coïncident sur les fonctions z^n . Comme le sous-espace de A engendré par les z^n est dense dans A, il vient $\mu(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) dt$ pour tout $f \in C(\mathbb{U})$.

On en déduit que le spectre de U, qui contient le support de la mesure μ est tout le cercle \mathbb{U} ; puisque A a un vecteur totalisateur, sa mesure spectrale est la mesure associée à e_0 et la multiplicité spectrale est 1. Nous n'avons pas abordé ces notions dans le cours.

3. Pour $k \in \mathbb{Z}$, notons $f_k \in L^2(\mathbb{U}, \mu)$ la classe de la fonction z^k . Les $(f_k)_{k \in \mathbb{Z}}$ forment une base hilbertienne de $L^2(\mathbb{U}, \mu)$. Notons $V : \ell^2(\mathbb{Z}) \to L^2\mathbb{U}, \mu$ l'isomorphisme d'espaces hilbertiens tel que $Ve_k = f_k$ pour tout k. On a $VUV^* = m_z$ (multiplication par l'application z - en effet $VUV^*f_k = f_{k+1} = zf_k$).

Posons $R' = VRV^*$. On a donc $R'm_z = m_zR'$. Posons $f = R'f_0 \in L^2(\mathbb{U}, \mu)$. Pour $g \in C(\mathbb{U})$, on a $R'm_qf_0 = m_qR'f_0 = m_qf = fg$.

Notons $m_f: L^2(\mathbb{U}, \mu) \to L^1(\mathbb{U}, \mu)$ l'application $g \mapsto fg$ et j l'application qui à $g \in L^2(\mathbb{U}, \mu)$ associe g vu comme élément de $L^1(\mathbb{U}, \mu)$. Les applications continues, $j \circ R'$ et m_f coïncident sur $C(\mathbb{U})$, donc elles sont égales.

Comme j est injective, on en déduit que, pour tout $g \in L^2(\mathbb{U}, \mu)$, on a $fg \in L^2(\mathbb{U}, \mu)$ et R'g = fg. En particulier $||fg||_2 \le ||R'|| ||g||_2$. Prenons pour g la fonction \mathbb{I}_B où $B = \{u \in \mathbb{U}; |f(u)| > ||R'||\}$; posons $h(u) = |f(u)g(u)|^2 - ||R'||^2 |g(u)|^2$. On a $h(u) \ge 0$ pour tout u et $\int_{\mathbb{U}} h(u) d\mu(u) = ||fg||_2^2 - ||R'||^2 ||g||_2^2 \le 0$, donc h(u) = 0 pour presque tout u. Or h(u) > 0, donc B est μ -négligeable. Donc $f \in L^{\infty}(\mathbb{U}, \mu)$. On a $R' = m_f = f(m_z)$. Par unicité du calcul fonctionnel borélien, on a donc $h(U) = V^* m_h V$ pour toute fonction borélienne bornée h.

- 4. L'application $f \mapsto f(U)P Pf(U)$ est linéaire et continue et $\mathcal{K}(\ell^2(\mathbb{Z}))$ est un sous-espace vectoriel de $\mathcal{L}(\ell^2(\mathbb{Z}))$, donc $A = \{f \in C(\mathbb{U}); \ f(U)P Pf(U) \in \mathcal{K}(\ell^2(\mathbb{Z}))\}$ est un sous-espace vectoriel fermé de $C(\mathbb{U})$.
 - Si $f, g \in A$, on a (fg)(U)P P(fg)(U) = f(U)(g(U)P Pg(U)) + (f(U)P Pf(U))g(U), et puisque $\mathcal{K}(\ell^2(\mathbb{Z}))$ est un idéal bilatère de $\mathcal{L}(\ell^2(\mathbb{Z}))$, on en déduit que $fg \in A$.
 - Si $n \ge 0$, on a $UPe_n = e_{n+1} = PUe_n$. Si n < -1, on a $UPe_n = 0 = PUe_n$. (Et $(UP PU)(e_{-1}) = -e_0$.) On en déduit que UP PU est nul sur l'orthogonal de e_{-1} ; il est de rang 1, donc compact.
 - De plus $U^{-1}P PU^{-1} = U^{-1}(PU UP)U^{-1}$ est aussi de rang 1.

Alors, B est une sous-algèbre fermée de $C(\mathbb{U})$ qui contient z et z^{-1} , c'est tout $C(\mathbb{U})$.

5. a) On considère $\ell^2(\mathbb{N})$ comme sous-espace de $\ell^2(\mathbb{Z})$. Notons $J:\ell^2(\mathbb{N})\to\ell^2(\mathbb{Z})$ l'inclusion $(\xi\mapsto\xi)$. L'application $J^*:\ell^2(\mathbb{Z})\to\ell^2(\mathbb{N})$ est l'application $\xi\mapsto P(\xi)$. On a donc $T_f=J^*f(U)J$, $S=J^*UJ$. On remarque que $J^*J=\mathrm{id}_{\ell^2(\mathbb{N})}$ et que $JJ^*=P$ est le projecteur orthogonal d'image de $\ell^2(\mathbb{Z})$ d'image $\ell^2(\mathbb{N})$. Comme $U\ell^2(\mathbb{N})\subset\ell^2(\mathbb{N})$ il vient PUJ=UJ, donc

$$S^*T_fS = J^*U^*JJ^*f(U)JJ^*UJ = (PUJ)^*f(U)(PUJ) = (UJ)^*f(U)(UJ) = J^*U^*Uf(U)J = T_f.$$

- b) Bien sûr $T_f^* = J^* f(U)^* J$, donc $T_f^* = T_{\overline{f}}$.
- 6. Par définition, on a $R_n = U^{-n}Pf(U)PU^n = P_nf(U)P_n$ où $P_n = U^{-n}PU^n$ est le projecteur orthogonal dont l'image est le sous-esapce vectoriel engendré par $(e_k)_{k\geqslant -n}$. Pour $x\in \ell^2(\mathbb{Z})$, $P_n(x)\to x$ (puisque la série $\sum \langle e_k|x\rangle e_k$ converge (vers x) les restes $\sum_{k>n}\langle e_k|x\rangle e_k$ et $x-P_n(x)=$

$$\sum_{k \in \mathbb{Z}} \langle e_k | x \rangle e_k \text{ tendent vers } 0).$$

Par continuité de f(U) et du produit scalaire, il vient $\langle P_n y | f(U) P_n x \rangle \to \langle y | f(U) x \rangle$. On a $T_f = J^* U(f) J$ et puisque $||J|| \leq 1$, il vient $||T_f|| \leq ||U(f)||$. On a

$$||U(f)|| = \sup\{|\langle y|f(U)x\rangle; \ (x,y) \in \ell^2(\mathbb{Z})^2, ||x|| = ||y|| = 1\}.$$

Pour $(x,y) \in \ell^2(\mathbb{Z})^2$ tels que ||x|| = ||y|| = 1, on a $\langle y|f(U)x\rangle = \lim \langle x|U^{-n}JT_fJ^*U^ny\rangle$. Or pour tout $n \in \mathbb{N}$, on a

$$|\langle x|U^{-n}JT_fJ^*U^ny\rangle| \leq ||x||||U^{-n}|||J|||T_f|||J^*|||U^n|||y|| = ||T_f||,$$

donc $||f(U)|| \leq ||T_f||$.

7. La première question est la question 4 de l'exercice 4.

Soit $\lambda \in \operatorname{Sp} f(U)$. Il existe une suite x_n de vecteurs de norme 1 tels que $f(U)x_n - \lambda x_n \to 0$. Pour tout n, il existe m_n tel que $||x_n - P_{m_n}x_n|| \leq 2^{-n}$. Posons $y_n = PU^{m_n}x_n = U^{m_n}P_{m_n}x_n$. On a

$$T_f y_n - \lambda y_n = Pf(U)y_n - Pf(U)U^{m_n}x_n + Pf(U)U^{m_n}x_n - \lambda PU^{m_n}x_n.$$

Or $Pf(U)y_n - Pf(U)U^{m_n}x_n = Pf(U)(P_{m_n}x_n - x_n) \to 0$ et $Pf(U)U^{m_n}x_n - \lambda PU^{m_n}x_n = PU^{m_n}(f(U)x_n - \lambda x_n) \to 0$. Donc $(T_f - \lambda \mathrm{id}_{\ell^2(\mathbb{N})})y_n \to 0$, alors que $y_n \parallel \to 1$, donc $(T_f - \lambda \mathrm{id}_{\ell^2(\mathbb{N})})$ n'est pas un homéomorphisme. Il vient $\lambda \in \mathrm{Sp}T_f$.

8. Pour $n \in \mathbb{N}$, définissons $R_n \in \mathcal{L}(\ell^2(\mathbb{N}))$ par $R_n = U^{-n}JTJ^*U^n$. Pour $m, n \in \mathbb{N}$ avec $m \ge n$, on a $JU^mP_n = S^{m-n}JU^nP_n$ et, puisque $(S^*)^{m-n}TS^{M-n} = T$, il vient $P_nR_nP_n = P_nR_mP_n$. On a donc $R_m - R_n = (\mathrm{id}_{\ell^2(\mathbb{Z})} - P_n)(R_m - R_n) + P_n(R_m - R_n)(\mathrm{id}_{\ell^2(\mathbb{Z})} - P_n)$.

Soient $x, y \in \ell^2(\mathbb{Z})$; on a donc $\langle x | (R_m - R_n) y \rangle = \langle (x - P_n x) | (R_m - R_n) P_n y \rangle + \langle P_n x | (R_m - R_n) (y - P_n y) \rangle$ et puisque $x - P_n x \to 0$ et $y - P_n y \to 0$, on en déduit que la suite $\langle x | R_n y \rangle$ est de Cauchy. Par sesquilinéarité et continuité, on en déduit qu'il existe $R \in \mathcal{L}(\ell^2(\mathbb{Z}))$ tel que $\langle x | R_n y \rangle \to \langle x | R_y \rangle$.

On a $U^{-1}R_nU = R_{n+1}$, donc $\langle x|U^{-1}RUy\rangle = \lim\langle x|R_{n+1}y\rangle = \langle x|Ry\rangle$, donc $U^{-1}RU = R$. Donc il existe $f \in L^{\infty}(\mathbb{U}, \mu)$ tel que R = f(U) (d'après la question 3).

Pour $n \in \mathbb{N}$, on a $J^*R_nJ = J^*U^{-n}JTJ^*U^nJ = (U^nJ)^*JTJ^*(U^nJ)$. Or $U^nJ = JS^n$ et $J^*J = \mathrm{id}_{\ell^2(\mathbb{N})}$, et donc $J^*R_nJ = (JS^n)^*JTJ^*JS^n = (S^n)^*T(S^n) = T$.

Pour $\xi, \eta \in \ell^2(\mathbb{N})$, on a $\langle \xi | T_f \eta \rangle = \langle J \xi | f(U) J \eta \rangle = \lim_{n \to \infty} \langle J \xi | R_n J \eta \rangle = \langle \xi | T \eta \rangle$ et donc $T = T_f$.