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EXACT SEQUENCES FOR THE KASPAROV GROUPS 
OF GRADED ALGEBRAS 

GEORGE SKANDALIS 

Introduction. In [11] G. G. Kasparov defined the "operator K-functor" 
KK(Ay B) associated with the graded C*-algebras A and B. If 
the algebras A and B are trivially graded and A is nuclear he proves six 
term exact sequence theorems. He asks whether this extends to the graded 
case. 

Here we prove such "six-term exact sequence" results in the graded 
case. Our proof does not use nuclearity of the algebra A. This condition is 
replaced by a completely positive lifting condition (Theorem 1.1). 

Using our result we may extend the results by M. Pimsner and D. 
Voiculescu on the K groups of crossed products by free groups to KK 
groups [15]. We give however a different way of computing these groups 
using the equivariant AX-theory developed by G. G. Kasparov in [12]. 
This method also allows us to compute the KK groups of crossed products 
by PSL2(Z). 

I would like to express my gratitude to J. Cuntz for many helpful 
discussions. Also I would like to thank G. G. Kasparov who asked the 
question of proving exact sequences for graded algebras. 

This research was made during my stay at Queen's University. I would 
like to thank E. J. Woods for his kind invitation and, together with M. 
Khoshkam and T. Giordano, for various discussions. 

Notations. We use here essentially the definitions of the KK theory and 
notations of [17] which are slightly different from the original ones [11]. 

If A is a C*-algebra and X is a locally compact space we use the 
notation A (X) (rather than A 0 C0(X) ) to denote the continuous 
functions vanishing at oo on X with values in A. 

A shorter and more conceptual proof of Theorem 1.1 is in preparation 
jointly with J. Cuntz. 

1. Statement of the theorem. In this section we state our main theorem 
and make some reductions. We then compute the connecting maps 
appearing in the theorem. 
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Let 

i p A j q B 
0-> I ^ A ^ - ->0 and 0 -* J +> B -^ - 0 

be the grading preserving exact sequences associated with the graded 
ideals / ç A and J Q B. 

1.1. THEOREM, a) Assume that A is separable and that the quotient map p 
admits a completely positive, grading preserving, cross-section of norm 1. 
Then we have the six-term exact sequence 

« & * ) 
P-* KK(A, B) !-* KK(I, B) 

KK\I, B) «- KK\A, B) «- KK (£•) 
b) Assume that A is separable and q admits a completely positive, grading 

preserving, cross-section of norm 1. Then we have the six-term exact 
sequence 

KK(A, J) J-$ KK(A, B) ^ KK 

8' 

KK (-5) 

(-5) 
I 

J . 

8' 

-1/ -1/ KK\A, B) <- KK\A,J) 
j * 

1.2. Remarks, a) One can weaken the hypothesis in part b) of Theorem 
1.1 (see remark 3.6). 

b) (cf [11] p. 569). Let s0:— -^> A\or — —> Bj be a completely positive 
/ V J 

cross-section, which is not necessarily grading preserving. Put 

so(x{y]). 
It is still completely positive and now it is grading preserving. If s0 is of 
norm 1, so is s. 

We may note that the proof of Lemmas 4 and 5 of Section 7 of [11] 
needs no change to get: 

1.3. LEMMA. Let L be a homotopy invariant functor (covariant or 
contr avariant) from the category of graded C*-algebras {or separable graded 
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C*-algebras) to the category of abelian groups. Assume that for each short 
exact sequence 

/ p A 

/ 

such that p admits a completely positive lifting of norm 1 the sequence 

L(i) L(p) 
L(I)—i L(A) —+ L (7) 

is exact. Then every such exact sequence gives rise to a long exact 
sequence: 

L(A(R"))—UL T ( R " ) ^ L ( / ( R " - ' ) ) 
L(i) L(p) (A \ ô , 

L(0 r,.^n~U.LiP) .L(A(R"-1)). 

(the other way for L contravariant). 

Hence to prove Theorem 1.1 we just have to prove exactness of the 
sequences (using Bott periodicity [11] Section 5) 

KK\ -,B)P-+ KK(A, B) ^ KK(I, B) 

KK(A9 J)J-^ KK(A, B) ^ KK(A, - J . 
J 

This will be done in Sections 2 and 3. The end of the present section is 
devoted to computing the connecting maps. 

We recall that the connecting maps in Lemma 1.3 (and thus also in 
Theorem 1.1) are constructed in the following way ( [11], Section 7 Lemma 
5): 

Let 

Sp = { ( * , / ) , xeA,fe y[0, l ) , / (0) = p(x) 

be the cone of p. Let 

e:I -> Sp9 (e(a) = (a, 0) ) and 

y:y(0, 1)-> 5p U(f) = (0J)) 
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be the inclusions. 
The map L(e):L(I) —» L(Sp) is an isomorphism. One then puts 

S = L(e)-loL(j) 

(L(j) ° L(e)~] in the contravariant case). We may notice that if x e 
KK(I, B),x = \j ®j x where lr is the unit of KK(I, I). Hence 

8(x) = 8 (1 , )®,* 

where 

8(1,) e KK(^(R\I). 

In the same way, if x e .Or! V4, —(R) ) and — is separable then 

x = x Q9fl//(R) lfi//(R). 

Hence 

8'(x) = x ®B/J{R) 8(\B/J{R)). 

We now give an explicit form for 8(\f) and 8f(\B/J^). 
Let 

J P 0-^B^D^A-^O 

be a short exact sequence of graded algebras with A separable. To a 
grading-preserving completely positive cross-section s of norm 1 of p, 
there corresponds, thanks to Kasparov's "generalized Stinespring theo
rem" ( [10], Theorem 3), a graded countably generated D module <̂ 0 and a 
grading preserving unital *-homomorphism 

m\A ->&(D ©<Q, 

such that s(x) = Qir(x)Q for all x <E A (Q denotes the projection on the 
summand D ). 

We may note that if we require that <f0 be generated by (1 — Q) 
7r(x)Qy, x e A, y G. D, <f0 and 77 are uniquely determined by s. Denote 
by E = C*(Â9 Q) Q ^(D © <*f0) the C*-algebra generated by TT(A) and Q. 
Let ./ Q E be the ideal generated by [ir(A), Q] in E. Let êA = J -
(D © 4 ) be the submodule of 5 © <̂ 0 generated by 

{JC£|JC e J; J e 5 © 4 } . 

Let ^ = ^ g be the first Clifford algebra and let e e ^ be an 
orientation of ^ ( ^ = **, ^ = 1, 9̂  = 1). 

Put 
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S = Sx 0 *?„ 

F = ( 2 g - 1 ) 0 * e j ^ ^ ( < f ) . 

1.4. LEMMA, a) The module S is a B 0 ^ module) i.e. 

v| e <c <f, o G ^ 0 «; £ 5 0 «i. 
b) The pair {S, F) is a Kasparov {A, B 0 ^ ) bimodule. 
c) Le/ ^ J Ç D ® ^0 contain Sx and be stable under the action of A and Q. 

Suppose that S\ is a countably generated B module. Then the pairs (S, F) and 
(S\ ® % (2Q - 1) 0 S) define the same element of KKX{A, B). 

d) The class 8 of (S, F) in KKl(A, B) does not depend upon the 
cross-section s. 

Proof, a) One has: 

((i - e M * ) ô U i - Q)<x)Qi) 

= £*(s(x*x) - s(x)*s(x) )£ G B 

for all x G A, £ G Z). Hence ^ is a i? module. 
b) As Q G j f (i) 0 <?0), J c JT(5 0 4 ) . Hence Sx is countably generated 

and J c J T ^ J ) ( [18], Lemma 1.11). Hence S is countably generated and 

[a, F] = 2[<n(a), Q] 0 e G jf(<f) for all A in v4. 

Moreover i7 = 1 and F = F*. 
c) is a consequence of [5], Remark A.6.2. 
d) The set of the completely positive grading preserving cross-sections 

of p which extend unitarily to A —» D is convex. 

Note that the proof of a) shows that S0 is a 5 module. If 5 rias a 
countable approximate unit one may take instead of S (B ffi S0) 0 ^ 
(thanks to c). 

This shows that in the non graded case 8 is the element of KK\A, B) 
corresponding to the exact sequence 

/ P 
0-> B A D £> A ^ 0 

through the identification 

Ext(^, B)~] = KKX(A,B) 

( [11], Section 7, Theorem 1). 

1.5. LEMMA. ( [11], Section 7, Remark 3). Let 

0^ Bx -> DX^>AX ^ 0 

Z?e another short exact sequence with Ax separable and px admitting a 
completely positive cross-section of norm 1. 
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Let <i>'.D\ —> D be a grading preserving homomorphism with <$>(B\) - B. 
Call 4>:Bi —> B and <$>"'.AX —> A the induced maps. One has 

*"*(«„) = ^(8p). 

Proof. Put 

E = D®AAX = {(x,y)\x e D,y e Al9p(x) = <f>"0>) }• 

Let q.E —» v4j be the projection g(;c, j ) = j \ The kernel of q identifies 
with I. Let sx and s be suitable cross-sections of pl and/?. Put 

s\(y) = (^s^ylyl s'(y) = (s<t>"(y), y), (y e Ax). 

Using the cross-section s\ of q we get 

«, = *'*(«„)• 
Using 5' we get 

« , = * " * ( « , ) • 

We may now use the proofs of Lemmas 6 and 8 of Section 7 of [11] to 
get: 

1.6. PROPOSITION, a) The connecting map 

8:KK(I, B) -> KK] G-') 
in Theorem 1.1 « g/'ve« by 

x^8p®, x. 

b) If — w separable the connecting map 

S'IKKIA, - J -> ^A:](V4, / ) 

1.7. Remark. In the language of [11], Section 7, p. 569 we have just 
constructed a map 

Ext(A, B)~l -» KK](A9 B) 

A P 
(the map which to the exact sequence 0 —» 5 ® Jf—» Z) —> 4̂ —> 0 asso
ciates Sp). This map is an (obvious) extension to the graded case of the 
isomorphism constructed by G. G. Kasparov in the non graded case ([11], 
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Section 7, Theorem 1). But in the graded case this map is no longer an 
isomorphism ( [11], p. 569). 

2. Exactness of A —> KK(A, B). In this section we prove: 

2.1. PROPOSITION. Let 

/ p A 

/ 

be an exact sequence of separable graded C*-algebras. Assume that p admits 
a completely positive, grading preserving cross-section of norm 1. Let B be a 
graded C*-algebra. Then the sequence 

(A \ p* /'* 
KKi - , B J -> KK(A, B) -> KK(L B) 

is exact. 

Obviously i*p* = 0. 
To prove the inclusion Ker /* Q Im p* let us make the following 

observation: 

2.2. LEMMA. ( [11], Theorem 1, Section 6). Let (<f, F) <= &(A, B) be such 
that i*(ê, F) is the zero element of KK(I, B). Then there exists (<f', F ) e 
SD(y4, B) such that i*(<o © S", F © F) is operatorially homotopic to an element 
of^(LB). 

Proof. Let (<?, F) be a homotopy 

(<?,F) €= ©(/, F[0, 1]) 

such that 

(<?„ F,) = /*(<£ F) for f G [0, 1/2] 

and <sf, = 0 (cf [17], Remark 3a). 
Set 

r = ( / G I [ O , i ] | / ( o G /, t^{}. 

Let F act naturally in ê and put <̂  = Vê. F admits an F connexion F. 
We can change Ft in [0, 1/2) by adding a continuous family of zero 
connexions, in order to obtain F 0 = F. 

Replacing (<f, F ) by (<f, F) we may thus assume that A acts on <f. 
Let HQ and Hj be the zero graded (C[0, 1], C) bimodules H0 = H} = C; 

the action of C[0, 1] in H0 is given b y ^ - /(0)£ and in Hxhyfl= /(1)£. 
Let (#£, FJ), (#',, F 0 G ®(C[0, 1], C) be such that (H0 © H'Q, 0 © FJ>) and 
(# ! © H\, 0 © F|) are operatorially homotopic ( [11], Section 6, Theorem 
1, see also [1], Theorem 2.14, [9], Section 2). 
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Then any Kasparov product of (<f, F ) by (H0 © H'0, 0 ffi_ JF£) is 
operatorially homotopic in KK(I, B) to any Kasparov product of (<f, F ) by 
(//, e f f , , O 0 F,) ( [17], Theorem 12). 

Put then 

g" =g®mi](B®c(H0®H'0)) 

= SQ © S ®5[o,i] (P ® c H'o) 

= ê@ff. 

Put also 

F = 1 ®*[0,i] 0 ® *o) e ^ n 

Then (<f © i \ F © F') is operatorially homotopic to a Kasparov product of 

(<?, F ) by (H0 ®H'0, 0 © F0) (cf proof of [17], Theorem 12). Moreover 

((f, F) G S)(J2W, 5). 

We may hence consider it as an element of 55(̂ 4, B). 
Also 

^ ® B [ 0 , l ] ( f l ® # l ) = ^ 1 = 0 . 

So that 

(^ ®*[0,1] (B ® #'l)> 1 0 ( 1 ® Fj) ) G ®(/, 5 ) 

is operatorially homotopic to a Kasparov product of (^, F ) by (//, © /Fj, 
0 © F,). 

As the class of (<f, F) in KK(A, B) does not change when adding (^, F') 
we may suppose that there exists a norm continuous path (F,)/G[0,i]> 
Ft G &(ê) such that: 

F = F0, (^, F,) G ©(/, B\ (<?, F,) G 3)(/, B). 

We next construct an operatorial homotopy Gp Gt G JS?(<?) such that 

(«?, G,) G © ( ^ , 5 ) and (G, - Ft)I G jf(<f). 

To do so we need the following lemma. 

2.3. LEMMA. F<?/ 

J ^ = {x G j ^ ( ^ ) | [x, a] G jf(<T), Va G ,4], 

stf' = [x G ^(<f) | [je, a] G Jf(«f), Va G / } , 

^ = {JC G J^'IJCÛ G jf(<sf), Va G / } . 

F/z£tf 6>«e has s# + ^ = stf*'. 

Proof. Let x G # b e homogeneous for the grading. 
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Put E = X(S\ Ex = I H- jf{S) Ç £{g\ 
Let E2 be the C*-subalgebra of £P(S) generated by [x, a] (a G A), and 

let S be the vector space generated by x and A 
We see that E ç Eh [g, £ ] ç £, [g, £ J ç £} . Also if a e A, a' e I are 

homogeneous we get 

a\a, x] = [afa, x] - (-\fxda [a\ x]a G Jf(<f). 

Hence Ex - E2 Q E. 
Applying Theorem 4 of Section 3 of [11] we get M and Af with M + N 

= 1, M ^ 0, JV ^ 0, [M, g] Ç Jf(<?), M • Ex Q Jf(<?), N • E2 Q Jf(<f). 
Hence Mx G f and Nx ^ s/. 

2.4. LEMMA. Assume that (ê, F) G ©(̂ 4, 5 ) and that (Et)t^^^ is an 
operatorial homotopy (<f, Ft) G ©(/, 5 ) 5"wc/i //z^/ F0 = F. 

Then there exists an operatorial homotopy Gt such that 

(<?, Gt) G ©(^, 5) , G0 = F flwd 

(Gt - Ft)a G JT(<?), VA G /, V/ G [0, 1]. 

Proof. Define 

/ = {x G j^ |x f l G j f(<f), V a G i } . 

Put 

_ si _, J / ' 
^ = - 0' = _ . 

Lemma 2.3 asserts that the map 

q 

(induced by the inclusions stf Q s#' ,fl Q </') is onto. 
Call / the image of F( G S/) in Se a n d / the images of Ft( G J ^ ' ) in <%'. We 

have / 2 = 1 , / = / * , 3 / = 1 a n d / 2 = 1,/, = / * 3 / = 1. 
Choose a sequence 0 = a 0 < « ] < . . . < an = 1 such that 

||/, - 411 si ± for t e K , a, + 1] (* = 0, 1, . . . , n - 1). 

Assume constructed the continuous path (g^rG[o,a ] (A: = 0, 1, . . . , 
n — 1), gt G ^ such that: 

?(&) = /r. g] = hgt = g* 9ft = 1» go = /• 

Choose then a continuous path (g't)t G [a , a ] such that 

?(g;) = //, g; = g;*> 9g; = u g«, = gak
 a n d 
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lift ft* J' — V 

Then 

Hlg;l - HI ^ \ (lg«J = D-

Put then gt = g't\g'tr
]. 

By induction we thus construct (gt)t e m n with 

4(ft) = JP S] = 1» 3ft = 1» ft = g* go = /• 

Let then (G?) / e [01] be a continuous lifting of degree 1 of gt in j^such 
that G() = F. 

Now (ê, Gj) is operatorially homotopic to (Sy F) and 

/(G, - F,) G Jf(<f). 

The proof of Proposition 2.1 will be complete after the following: 

2.5. LEMMA. Let (<f, G) G (S(A, B) and F e &{g) be such that 

(<f, F) €= $ ( / , 5 ) a/w/ / • (F - G) Q Jf(<sf). 

Then the class of (<C F) in KK(A, B) is in the image ofp*. 

Proof. Let 

A 
s:- ~> A 

I 

be a grading preserving, completely positive norm decreasing cross-section 
of the map p. Extend 

Â 7 
s:— -» A 

I 
putting s(\) = 1. 

Thanks to Kasparov's "generalized-Stinespring theorem" ( [10], Theo
rem 3), there exist a separable graded Hilbert A module ^ and a grading 
preserving *-homomorphism 

A ~ 
m\— -+£>(A 0<sfo) 

such that 

A 
Qn(a)Q = s(a\ for all a e —, 
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where Q e ^(A © <f0) is the projection in the summand A. 
Replace *f0 by the Hilbert A module generated by 

(1 - QMa)è ( a E ^ G A). 

Note that 

<(1 - Q)ir(a% (1 - Q)ir(a)è) = £*(s(a*a) ~ s(a*)s(a))£ e /. 

Hence S§ is an / module. 

Let now ê, F, G be as in the statement. Let S be the (—, B J bi-

module 

ê = (A © 4 ) 0 i S = S® {SQ 0 / S\ 

As (<f, F) <= ®(/, 5 ) , 1 0 F makes sense in J^(^0 0 7 <f ). Put 

F - G © (1 0 F) G JSP(^e 4 0 / <?) = J 2 ^ ) . 

i7 is an 4̂ © <f0 connexion for G. 
Moreover 

(<?, F ) G ©(^(0 © <?0) © X(A © 4 ) , 5 ) . 

But as 

.(f) c 

(H so that (ê, F) defines an element of 61 —, B I. Let us prove that/?*((^, i7) 

and (<̂ , G) define the same element of KK(A, B). Note that given an 
algebra D and a completely positive \p:D -^ A (\p of norm 1) such that 

,4 

/ 

is a * homomorphism we thus get an element 

$*(£, G, F) G 6(Z), 5) . 

Let then :̂̂ 4 -* A[Q, 1] be defined by 

T/<U)(0 = (1 - t)a + ts°p(a) (a e A,t e [0, 1] ). 

Now 
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if<V[0, 1], G ® 1, F ® 1) G ©(^, £[0, 1] ) 

is a homotopy between (<f, G) and/?*(<f, F) . 

3. Exactness of i? —» KK(A, B). In this section we prove: 

3.1. PROPOSITION. Lef 

0 - ^ J ^ B ^ - - > 0 
/ 

èe tf/7 ex#c/ sequence of graded C*-algebras. Assume that q admits a 
completely positive, grading preserving, cross-section of norm 1. Let A be 
a separable graded C*-algebra. Then the sequence 

KK(A, J) J~^ KK(A9 B) ^ KK\A9 - \ 

is exact. 

Obviously q*j* = 0. 

We first prove the inclusion Ker q* ç Imy* assuming B separable. 

3.2. LEMMA. Let (<f, F) G &(A9 B) be such that 

qMF) G @yA,-). 

Then the class of (£9 F) in KK(A, B) is in the image ofj*. 

Proof. Let 

<f C ^ = { { G <£<£,£> e / } . 

Put 

£ = {£ G «f [0, 1], $(1) G <f }. 

Notice that as 

q*(g9 F) G ®L4, - J , for alla Œ A 

[a, F]9 a(F2 - 1), a(F - F*) are elements of Jf(<sf) Ç jf(<f). Hence 

(<?, F ® 1) G ©(^, £[0, 1]) 

(asJT(«f) ® 1 ç jf(«?)). But 

( 4 ( F ® 1)0) = (%F) and 

(#„ (F 0 1)0 = (<f, F) G M<$(A, J) ). 
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3.3. LEMMA. Assume that {ê, F) G (S(A, B) and that (F r) rer01i is an 
operatorial homotopy 

such that F 0 1 = F0. 
Then there exists an operatorial homotopy Gt such that 

(<f, Gt) G <&(A, B), G0 = F andGt® 1 = Ft. 

Proof. Define 

sf= {x G &(£)\[x, a] G Jf(^), Va G ^ } 

j ^ r = {x G ̂ f < r 0 £ - ) | [ . x , A] G J f h f 0 f l - V Va G ^ } 

/ = {.X G j^|xtf G j f(«f) , V f l G ^ } 

f = {X G j/'|jCtf G J f ( < ? ® £ - J , Vu G ^ } 

In view of the proof of Lemma 2.4 it is enough to show that the map 
Q) —» i^' is onto. This follows from: 

3.4. LEMMA. The map q*\s?^>stf' is onto (q*(x) = x ® 1). 

Proof. The map 

is onto. (In fact with the notations of Lemma 3.2 

^U®B -) = Jf(<f)/Jr(<f) ). 

As Jf(<f) is separable it follows from [13], Proposition 3.12.10 (using [10], 
Theorem 1) that the map 

is onto. 

Let x G j / ' and j> G .£?(<?) such that <?*(J0 = x. Put 

£ = X(ê'\ Fx = X(ê\ g = A © Cy(0) © Cy(1) 
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(y = y ) + y ) 1S ^ e decomposition of j for the grading). 
Let also E'2 be the C*-subalgebra of &(S) generated by [y(0\ a], 

[y{l\ a](a G A). Put 

£ 2 = (Jf(<f) 4- F>) n Ker 4*. 

Note that 

Ker ^ = {z G ^(<f) |z • £ , ç £, £ , • z ç £ } . 

We may hence apply Theorem 4 of Section 3 of [11] to get M, TV ̂  0, 
8W = 0, M + N = 1, M£j ç £, (M G Ker q*\ N • E2 Q E, [N, g] Ç 
F 

Then q*(Ny) = x. Moreover for all a ^ A 

[a, Ny] = [a, N]y + #[<*,>>]. 

But 

4*[^] G j r ( ^ ê ^ ) . 

So that there exists z G jT((f ) with 

q*W,y] = 4*0). 

Then ( [a, >>] — z) G 1^. We thus get 

[a, Ny] G jf(<?) and Ny ^ st. 

Following the same procedure as in Section 2 the proof of Proposition 
3.1 will be complete for separable B after the following: 

3.5. LEMMA. For all {g, F) G £ )M, - J fAere emte (<f, F ) G ®(^, £ ) 

4*(<f, F ) = £ F). 

Proof. As in Lemma 2.5, we use Theorem 3 of [10] to construct a 
separable graded Hilbert J module <f0 and a grading preserving 
* homomorphism 

B 77 

such that 

Qir(b)Q = s (ft) for all ô G - , 

where Q G ii?(i? ffi <f0) is the projection in the summand 5 . 
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Put then 

ff = £®B/J (B © 4 ) a n d F' = F® \. 

Then obviously (<f, F) <= <&(A9 B). Note that 

Also, for ail 7 e ^(«?), 

(T®B/J ^B®S) ®B 1B/J = T' 

Hence gr*(<̂ \ F) = (S, F). 

End of the proof of Proposition 3.1. Let (<f, F) e @(̂ 4, 2?) be such that 

q*{%F) = 0 i n ^ ( ^ , - J . 

Let 

(IF) G g ( ,4 ,* [0 , 1]) 

be a homotopy between ^(«f, F) and (0, 0). Then the pair ( (<?, F), (<?, F ) ) 
defines an element x e KK(Ay S ) where 

^ = {(* , / ) |6 e B,f e *[0, l ) , / (0) = ?(&) 

is the cone of the map q. 
Let Z> ç Sq be a separable subalgebra and y <E KK(A, D) be such that 

**(.y) = * where z:D —» S is the inclusion ( [18], Remark 3.2). 
Each element d of Z) is given by an element 

<K<0 G B and ^ ) G - [0 , 1). 

Let Bx be the (separable) subalgebra of B generated by 

{<S>(d\s^(d)(t)\d e Dt e [0, 1)}. 

Set / j = Bx n / . Let 

be the quotient map. Note that it admits the completely positive lifting 
s\ . Let 

la,/./, 

7,:-/, -> * „ /:/ , - / , / ':*, -» 5, i,:D -> 5 
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be the inclusions and 

p:Sq-> B,P]:Sq] -> Bx 

be the projections. Put 

A s i , E px(KK(A, S ) ), q\^(xx) = 0. Hence applying Proposition 3.1 to 
the separable algebra Bx we get x\ e JX withy'] (x\) = xx. But l*xx = x 
and /' °j\ = j ° I. 

Hence x = j*(Ux\). 

3.6. Remark. It is of course obvious that Proposition 3.1 (and hence 
Theorem 1.1) holds if we just assume the existence of a completely 
positive, grading preserving cross-section of norm 1 for any separable 

B 
subalgebra Bx of —. 

In fact we only used this assumption in Lemma 3.5. Let ^ be the first 

Clifford algebra. An element of®lv4,— I is a * homomorphism 

We want to ensure that such a ir admits a completely positive lifting 

A 0 <ex -+£fptrB). 

This condition is also satisfied if the algebra A is nuclear [2]. 

4. Crossed products. Let us first note that the "mapping torus exact 
sequence" ( [3], Section 5, Corollary 6) has the completely positive lifting 
property. Hence no nuclearity assumptions are needed in the exact 
sequence of [8] Theorem 3. 

We may next notice that in M. Pimsner and D. Voiculescu's work on 
crossed-products by free groups [15] the exact sequence 

0 -*X® A -> (£w ->A X F „ ^ 0 

( [15], Lemma 1.1] ) has also this property. Observe then that the element 
A that they construct ( [15], Lemma 2.1) is actually an element of 

inverse to the element 

d*(le) G KK(A><IF„_U 6„). 
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Hence their results for reduced crossed-products extend to the KK 
groups. Thanks to J. Cuntz's results on "K amenability" ( [7], Theorems 
2.1 and 2.4) this is also true for the full crossed-products. 

We now give another proof of this result. We also give exact sequences 
allowing to compute the KK groups of the crossed-products by PSL2(Z). 

To do so we use the equivariant KK theory defined by Kasparov in 
[12]. 

Let G = PSL2(R) and let K be the maximal compact subgroup of G. 
Let 

a e J T C c ( c ( | ) , c ) and fi e KKG(c, c ( | ) ) 

be the elements defined by Kasparov in [12], Section 5, definition 3, 4 (see 
also [4], Section 12). One has 

a®cP = \C(G/K) and rGK(/3 ®C(G/K) a) = 1 

( [12], Section 5, Theorem 2). Here 

rGJ(:KKc{C, C) -» KKK(C, C) 

is the restriction map. 

4.1 LEMMA. Set V = PSL2(Z) Q PSL2(R) = G. Then 

rGX(P ®C(G/K) «) = I-

Proof. Let ht:T —> G(t G [0, 1] ) be a continuous family of continuous 
group homomorphisms where T and G are second countable locally 
compact groups. 

Let 

h?:KKG(C, C) -» KKT(C, C) 

be the restriction map associated to the homomorphism ht. Then obviously 
= / 

Put 

n0 - nx. 

"•- (-Î i) 

4 2 

Let a = al9 b = bx be the generators of 
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r Z Z 

r = — * —. 
2 3 

The families av btt e [0, 1] determine a continuous family ht of 
homomorphisms T —» G. Hence 

rc,rG8 ® a) = AftS ® a) = /z0*(£ ® a) = ^ * rc^(j8 ® a) = 1 

where AQ is the homomorphism /j0:r —» G seen as a homomorphism from F 
to K (as A0(r) ç K). 

4.2. COROLLARY. Le/ F„ be the free group with n generators embedded in 
PSL2(R) in the usual way. One has 

rGJPn(P ®c(G/K) «) = 1. 

Proof. One has Fw ç PSL2(Z). 

We may also note that the usual embedding of ¥n in PSL2(R) is 
homotopic to the trivial map as PSL2(R) is connected. 

Let us also notice that one could deduce this result from J. Cuntz's 
results in [6]. From this result we know that KK(C*(Fn), C) 
( = KKF (C, C) ) is isomorphic to Z (as a group) and that the map 

i* 
iO:(C*(F„), C) -> KK(C9 C) 

induced by the inclusion 

C ^ C*(FW) 

is an isomorphism. Note then that 

i*(P ®C(G/K) «) = 1 e KK(C, C). 

4.3. COROLLARY. Let T be PSL2(Z) or ¥n embedded in PSL2(R). Let p be 
a grading preserving T action on the graded algebra A. Let B be a graded 
algebra. One has: 

a) KK(A X r , B) = KK(A X T, B) = KK\A\-\ X , I\ B) 
p ps \ \K' P ' 

{A separable) 

b) KK(B9 A X I D = KK(B, A X I T) = KK\B,A\-\ X , V] 
p ps \ \K' P ' 

(B separable). 

( The action p' is defined by 

(P'(g)f)(x) = p(g)f(g-]x) 
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for ail g G T,f e A\- j and * e - j . 

Proof. Assume A is separable. Put 

« = ir(^(''G,r(«) ) ) e ^(^(f) T3 r' A *? r) 

( [12], Theorem 1, Section 6) 

& = MTA(rG,T<ji))) e KK(A x r, ^ ( f ) ><a r ) 

( [12], Theorem 1, Section 6 and remark 2, Section 6). 
Let 

p p,r 

be the quotient map. We have 

P*(P ®A(G/K)xzpx «) = ^xipr>/>*(£ ® 5) = \Ax*PJr 

and 

a - ^ x ^ r P * ( P ) = ^A(G/K)X^P>T 

( [12], Theorems 4 and 5, Section 4 and 1, Section 6). The result follows 
then from [11], Theorem 6, Section 4 for A separable. To prove b) for non 
separable A argue as in [18], 3.3. 

4.4. Remark. The isomorphisms 

KK(A X T, B) = KK(A X T, B) and 
p p,' 

icx(£, ^ x r ) = KK(B, ^ x r ) 
p p,>* 

were proved by J. Cuntz in [7], Theorem 2.1. 
Let us now show how one may compute 

H4(f)7 ]r'*) and **(ilM(f)>?r)-
Let first T be F2. 
Taking fundamental domains one gets that 

^xl^r 



212 GEORGE SKANDALIS 

is Morita equivalent to the subalgebra A' of A( [0, 1] X [0, 1] ): 

A' = {/l/(0, 0) = / ( 0 , 1) = / ( l , 0) = / ( l , 1) = 0, 

/ ( / , 0) = p(fl)/(0, 0, 

/ ( l , t) = p(b)f(t, 1) } 

(where a and 6 are the generators of F2). 
One thus gets the following exact sequence: 

0 ->y l ( (0 , 1) X (0, l))-*A'-^A(09 1 ) 0 , 4 ( 0 , 1)-> 0 

where 

< ? ( / ) = / ( - , 0 ) + / ( i , - ) . 

This exact sequence obviously satisfies the completely positive lifting 
property. 

We may compute the corresponding element 

8q <E ##1(,4(0, 1 ) 0 , 4 ( 0 , l)9A((0, 1) X (0, 1 ) ) ) 

assuming that A is separable. This is done (using Lemma 1.5) as in [8], 
Lemma p. 12. We thus get: 

Sq = (id* - fta)*yrA(0A)(h) + (id* - pWK^o.nCS,) 

where 

0, e KK\C, C(R)) 

is the Bott element ( [11], p. 546). (This decomposition of 8 corresponds 
to the equality 

KK\A(0, 1 )0 .4 (0 , l),A((09 1) X (0, 1 ) ) ) 

= KK\A(0, 1 M ( ( 0 , 1) X (0, 1) ) ) 

e KK\A(O9 i),^((o, i) x (o, i))) 
[11], Corollary 1, Section 4). We thus get: 

4.5. THEOREM. ( [15], Theorem 3.5). If (A9 F2, p) is a (graded) C* 
dynamical system and B is a (graded) C*-algebra we have the following exact 
sequences: 

(id* - p(fl)*, id* - p(fe)* 
KK(A X I F2, B) -» # # 0 4 , ^ ) * ##(,4, B) 0 # # ( ^ , 5 ) 

p 
A I 

KKX(A9 B) 0 KK\A, B) <- ##!(v4, 5 ) <- # # V X I F2, 5 ) 
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if A is separable and 

KK(B, A ) 8 KK(B, A ) -» KK(B, A ) -> AX(£, A X F2) 
p 

A I 

KK(B, i X F 2 ) ^ - KK\B,A) <- ^ ! ( # , ^ ) 0 ^ ( ^ -4) 
p 

z/i? /s separable. The same is true for the reduced crossed-products. 

To get the same results for the free group with n generators, one may 
proceed similarly. Let J b e a polygon with In sides. Call (Sk)k = x 2n

 t n e 

sides. For j = 1 . . . « , « is an identification of S2;-\ with S2; which 
preserves the intersection vertex. Let X = X\{vertices}. Then 

is Morita equivalent to the subalgebra Af of A(X) 

A' = {/l/(«,-(0) = P(«,-) -fit), t e 5 2 7 _„ j = 1 . . . n) 

(ax . . . an are the generators of ¥n). 
One has the exact sequence 

0-*A(X") ^A'^A(0, 1 ) ^ 0 

(X" = interior of X is homeomorphic to R ). We get 

Sp e KKl(A(0, l)n,A(R2)) = KK(A,A)n 

8p = ( ( - i y ' ( l - (fly)*1) )7-=1... n-

Thus we get the generalization of the Pimsner-Voiculescu exact 
sequence (to the KK groups). 

4.6. Remark. Another way of getting this result is to embed Fn in F2 

mapping ak to bk~xabx~k (k = 1, . . , n — 1) and an to bn~\ 
If (A, Fw, p) is a C*-dynamical system, we induce p to an action of F2. 

We then obtain the action p of F2 in An~ given by: 

p(a)(xx, ...,xn_x) = (p(ax)xl9 . . . , p(an_x)xn_x) 

p(b)(xx,. ..,xn_x) = (x2, . . . , * „ _ „ p(an)xx). 

As A x i F is Morita equivalent to 
p 

A n ~ x F 
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we now just have to apply Theorem 4.5 in order to compute the "KK 
groups" of A X 3 F . 

p 

Let us now come to the case T = PSL2(Z). 
Let 

a = ( - i o)-b = (1 ~\)>c = ab = (J !)• 

Taking first in account the points of G/K which have non trivial stabilizer 
we get the exact sequence: 

o ->A, ® x-> A\- ) x a r ^ l ^ x i — e ^ x i —) ® jf->o 
1 \K' P' V p(a) 2Z P(*>) 3Z / 

where X is the algebra of the compacts and A x is the subalgebra of 
^ ( [ 0 , 1] X [0, 1]) 

A\ = { / l / (0 ,0) = / ( l , 1) = / ( 0 , 1) = / ( l , 0 ) = 0; 

/(*, 0) = P(a)f(0, 0 ; / ( l , 0 = P(c)f(t, 1) }. 

We then get the exact sequence: 

0 -> A( (0, 1) X (0, \))-+Al -^ ,4(0, 1) 0 ,4(0, 1) -» 0. 

Both these exact sequences satisfy the completely positive lifting 
property. The element 

8q G KK{(A(0, 1 ) 0 , 4 ( 0 , 1 M ( ( 0 , 1) X (0, 1) ) ) 

= KK(A,A) 0 KK(A,A) 

is easy to compute. We get 

Ôq = (1 - p(fl)*l, 1 - p(c)*l). 

4.7. THEOREM. //"(^, PSL2(Z), p) w <z (graded) C*-dynamical system and 
B is a (graded) C*-algebra we have the following exact sequences: 

a) 

KK(A X PSL2(Z\ B) -> KK(v4,, 5 ) - ^ J T 1 ^ X Z 2 9 v 4 X Z 3 , 5 ) 

A I 

I V 

^ u x z 2 e ^ x z 3 , 5 ) ^ - K K \ A X , B ) < - o : 1 ^ xPSL2(Z),B) 
p 
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KK(A}, B) -> KK(A, B) -+KK(A ®A, B) 

KK\A ®A9 B)< 1 KK\A, B) <- KK\A^ B) 

for A separable. 

b) 

KK(B, Ax3Z2®AX\Z3)^> KK(By Ax) -> KK(B, A X PSL2(Z) ) 

KKl(B, A X PSL2(Z) ) <- KKX(B,AX) <- ^ ( £ , i X Z 2 9 ^ X Z 3 ) 

£#(#, V4 e >4) _ ^ A X ( # , ^ ) -> KK(B, AX) 

KKl(B, AX) <- i ^ ( 5 , ^ ) <- ^ ( 5 , v4 0 A) 

(B separable). 

4.8. Remark, a) If the actions p(a) and p(Z>) commute with each other, 
these results are obtained by J. Cuntz, in [6] (see remark at the end of 
[7]). 

b) One would like to extend this method to other subgroups of PSL2(R). 
However this method fails if we take for instance T Q PSL2(R) to be the 
fundamental group of a Riemann surface of genus ^ 2 . In that case the 
usual map T ^ PSL2(R) is not homotopic to the trivial map r ^ l ç 
PSL2(K). However this method works to give an easy proof of [12], 
Lemma 4, Section 5: One notices that the identity map of the proper 
motion group is homotopic to the map 

G -* S0„ <=+ G 

where T(f) is the tangent linear map associated with the affine 
transformation T. 
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c) Our results allow one to extend the "universal coefficient formula" of 
[16] to a larger class of algebras which are not nuclear. 
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