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Let A be a C*-algebra with unit, let ct : F ~ A u t ( A )  be an action of some (discrete) 
group F on A and let B = A ~ F be the corresponding reduced crossed product. It 

~t,t 

would be desirable to understand the ideal structure of B in terms of the data; less 
ambitiously, we are interested here in criteria for B to be simple. This is a popular 
problem: it is for example discussed for F abelian at the end of [13], or for a outer 
in the introduction of [5]. 

The present work concentrates on cases where F is a so-called Powers' group 
(we recall the definition after Proposition 2 below), but where ct is arbitrary. 

Recall from [8] that the following are Powers' groups: 
1) non abelian free groups, and more generally free products which are neither 

trivial nor (Z/2Z) * (Z/2Z); 
2) non amenable subgroups of PSL(2, C); 
3) SL(3, Z), and more generally subgroups of SL(3, C) containing SL(3, Z). 
For  the two next theorems, ct is an action of a Powers' group F on a C*-algebra 

A with 1 and 

e : B = A  ~ F ~ A  
r 

i~ the canonical conditional expectation. 

Theorem L I f  the only F-invariant ideals in A are trivial, then B is simple. In 
i~articular if  A is simple, then B is simple for  any possible action ~. 

Theorem II. Any  trace ~ on B can be written as a o e where a is a F-invariant trace on 
A. In particular, i f  A has a unique trace, then B has a unique trace for  any possible 
action ~. 

The example with A = C and F free non abelian is that of Powers' original 
paper [14]. Examples show that Theorem I would not hold if A was without unit. 

In the first section, we introduce a property of a pair (A, z) where A is a 
C*-algebra with unit and where ~ is a faithful trace on A. This property implies that 
A is simple and that z is the unique trace on A. Examples are provided by reduced 
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C*-algebras of Powers' groups. We check also that this property is not shared by 
nuclear algebras, despite the fact that many of them are simple and have a unique 
trace. 

In the second section, we prove the theorems above and we discuss the 
particular case given by A abelian. 

Theorem I suggests the following 

Problem. Let A be a simple C*-algebra with unit, let F be a group with reduced 
C*-algebra C*(F) simple, and let a be an action of F on A. Is it true that the 
reduced crossed product A ~ F is simple? 

0t, r 

The answer is known to be yes in several cases, including that of a trivial action 
[16]. 

1. Powers' Property Revisited 

We consider a C*-algebra A with unit and a faithful trace z on A. By a trace, we 
mean here a positive linear functional normalized by z(1)= 1, such that z(xy) 
=z(yx) for x, y ~ A. We denote by L2(A, ~) or simply by H the Hilbert space 
obtained by completion of A for the scalar product (x[y)= z(y*x). Left multiplica- 
tion by x in A extends to a bounded operator on H, denoted by x again. Thus, we 
identify A to a subalgebra of the algebra L(H) of all bounded operators on H. Also 
z extends to a linear form on H, denoted by ~ again. For  any pair (A, z) as above 
and for any integer n __ 2, we define 

Property P,. For any x ~ A and for any ~ > 0, there exist a projection p e L(H) and 
unitaries (Uk) l_<k_<, in A such that 

(1) IIp(x-z(x))Pll <~ 
(2) the projections Uk(1 --p)u~ are pairwise orthogonal for k = 1 .. . . .  n. 
Given a dense subset ~/  of A, observe one does not change P, upon replacing "for 

any x r A" by "for any x ~ d " .  

Lemma 1. Let (A, z) be a pair which satisfies P3 and let c be a real number with 

0.9714,,~ 3 + 2 V 2  < c < l .  
6 

Let x c A  with x* = x  and z(x)=O. Then there exist unitaries ul, u2, u3 ~ A with 

~ ukxu* < 2 + c  
k = l  _ - - - ~  Ilxll  9 

Proof. We may assume Ilxll = 1. Choose ~ such that 

1__1 f l / ~ - 1  =<c 

1 3 
and let p, ul, u2, us be as in the definition of P 3. Define y = ~ )Z UkXU ~ and choose 
~ e n  with [l~[I = 1; we want to estimate I(y~101. k=t 
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Projections Uk(1 --p)u* being pairwise orthogonal, there existsj e {1, 2, 3} with 
Ilu~(1 - p)u*~ II 2 <• =3,  we may assume j = 1, and we set r = Ul*~. As I1(1 -p)r 112 < 89 
one has IIPr >2  and Ilpx(1 -P)~I  II z__<~. Consequently 

2> ]]P~I ] l -  ]]px(1 -P)r ]]pxpr 11 2> 1/~1/~ 1 --e = 6 
I "  

where the last equality defines 3. As 

IIx~l - ~1112 = [Ix~l [[2 + II~l II 2-2(xr162 < 2(1  - ( X ~ x [ ~ l )  ) 

it follows that 

Now 

(x~1]~1)~ 1- 89 2<: 1 -  8 9  

(y~l~)~(x~xl~l)+ ~llu2xu~l111~}12+ lllu3xu~l111~11 z 
c + 2  

< Ilxll 
3 

and the same argument with - x  shows that 

c + 2  
I(Y~I~)I < T Ilxl[  9 

As ~ may be any vector of norm 1, this ends the proof. [] 

It follows immediately from Lemma 1 that, if (A, z) satisfies P3, then A has the 
l)ixmier property (see [1, 7]), so that the next proposition is completely standard. 
We repeat it for the reader's convenience. 

Proposition 2. Let (A, z) be a pair which satisfies P3" Then A is simple and z is the 
r.mique trace on A. 

Proof. Let J be a non-zero two-sided ideal in A. Choose y 4:0 in J ;  upon changing 
from y to z(y*y)- ly.y,  we may assume that y* = y and that z(y) = 1. By Lemma 1 
applied several times (firstly to x = y -  1), there exist unitaries ul . . . .  , uN e A with 

Y~ ukyu*-  < (*) 1 1 
l < k < N  

1 
= ~ UkyU*, and J = A. Consequently J contains the invertible element z N l_<k_<N 

[lence A is simple. 
Let a be a trace on A. By increasing N, one may assume that the left-hand side 

of (.) is arbitrarily small, so that a ( z -  1)= 0, and a (y )=  a(z)= 1 = z(y). As a and z 
agree on hermitian elements, a = T. [] 

The proof that property P,  implies the simplicity of A and the unicity of z may 
be found (with minor variations) for n = 20 in [14], n = 6 in [9] and n = 5 in [8]. But 
P2 is not sufficient (even if phrased with e = 0), as the next example shows. 
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Let A be the C*-algebra COC,  multiplication being 

(2, ~)(,V, ~') -- (22', #~') 

and let  9 be the trace (2, # )~2  +/~. This A is not simple because # = 0 defines a two- 
sided ideal. But (A, ~) satisfies P2. Indeed, any x ~ A with z(x)=0 is a scalar 
multiple of (1, - 1). Define a projection p by p(2, #) = ( 89 #),  89 2)), so that 
pxp=O. Set ul =(1, 1) and u2 = (1, -1) .  Then u*(1-p)ul  = 1-p  is orthogonal to 
u*(1 - p ) u 2  = p .  

Let F be a group (without topology). We denote by C*(F) the reduced 
C*-algebra of F and by z the canonical trace, defined by z(SZ 2ouo) = 21. Recall from 
[8] the 

Definition. The group F is a Powers' group if the following holds. Given any non 
empty finite subset F C F - { 1 }  and any integer n > l ,  there exist a partition 
F=DI_ I  E and elements gl . . . . .  g , ~ F  such that 

(1) f D n D = 0  for any f ~ F  
(2) gjEngkE = 0 for j, k ~ { 1 ... . .  n} with j =~ k. 

It is easy to check [8] that a Powers' group F is not amenable, and that each 
conjugacy class in F - { 1 }  is infinite. With this terminology, part of Powers' 
original paper is the proof that non abelian free groups are Powers' groups. It is 
also easy to check that one obtains the same notion when, in the definition, 
" F C F - { 1 } "  is replaced by " F C F "  and (I) by 

(1') fDnf 'D=O for any f , f ' E F  with f + f ' .  

Proposition 3. Let F be a Powers' 9roup. Then (C*(F), z) satisfies property P, for any 
n>2 .  

Proof. The space H = LZ(C*(F), z) is simply 12(F). Let sr be the dense subalgebra 
of C*(F) consisting of finite sums ~ 2gu 9. Given x ~ ~r we are going to find a 
projection peL(H) and unitaries ul . . . . .  u, in A such that (1) and (2) in the 
definition of P,  hold (with e = 0). 

Let F be the finite subset of F consisting of those g such that 20 +0, where 
x -  r(x) 1 = Z 2guo. Let F = D 11 E and let 91 . . . . .  O, be as in the definition of F being 
a Powers' group. Let p be the projection of H onto IZ(D). Then fDnD = 0 for f ~ F 
implies p(x-T(x))p=O. Let uk=uo~ for k=l,.. . ,n. Then uk(1-p)u ~ is the 
projection of H onto lZ(gkE), and these are pairwise orthogonal because the gkE's 
are pairwise disjoint. [] 

One may also find a simple C*-algebra A with unit having a unique trace 
(which is faithful) such that (A, ~) does not satisfy P3. Before giving examples, we 
recall some definitions. 

Let A be a C*-algebra with unit, let r be a faithful trace on A, and identify as 
above A with a subalgebra of L(H), where H = LZ(A, ~). Denote by W*(A, ~) the 
weak closure of A in L(H). The trace ~ is factorial if W*(A, r) is a factor; for 
example, if  9 is the unique trace on A, then ~ is factorial (because ~ is obviously 
extremal in the appropriate sense - see [4, Theorem 6.7.3 and No. 6.8]). The trace 
is a hypertrace if there exists a positive linear form T: L ( H ) ~ C  extending z such 
that T(xY)=T(Yx) for any x~A and for any Y~L(H). The main theorem in 
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Connes' classification ofinjective factors states that W*(A, z) is injective if and only 
ifz is a hypertrace (see [3, Theorem 5.1, and also Remark 5.34]). The algebra A is 
said to be nuclear if its enveloping von Neumann algebra A** is injective; if this 
holds, then W*(A, z) is also injective because it is an epimorphic image of A**; for a 
review of nuclearity, see [10]. 

The next proposition generalizes the fact that an amenable group is not a 
Powers' group. 

Proposition 4. Let A be a nuclear C*-algebra with unit, not isomorphic to C, and let z 
be a faithful factorial trace on A. Then (A, z) does not satisfy property P3. 

Proof. As A is nuclear, z is a hypertrace and there exists T: L(H)-*C as above. 
Assuming that (A, z) satisfies P3, we shall deduce a contradiction. 

Let e > 0. We claim first that there exists a unitary x e A with I~(x)l < ~, Indeed, 

there exists a unitary y ~ W*(A, ~) with z(y)=0 because dimc(W*(A, z))> 1, and 
the unitary group of A is strongly dense in that of W*(A, z) by Kaplansky's density 
theorem (Theorem 2.3.3 in [12]). 

Let p, ul, u2, u3 be as in the definition of P3, satisfying 

(1) [Ip(x-v(x))pll = ~, so that Ilpxpll <~ 

(2) the Uk(1 --p)u~ are pairwise orthogonal (k = 1,2, 3). 
By (2) one has r(1 -p)__<~ and thus r(p)> 2. By (1) one has I[x*pxp[] __<e; as 

r (p)  ( r (p)  - 2e) N ( r (p)  - e)  2 ~ IT((1 -- x*px)p)[ 2 

it follows from Cauchy-Schwarz inequality (Theorem 3.1.3 in [12]) that 

T(p)(T(p)- 2e) __< T(1 - x*px) T(p) = (1 - T(p))T(p) 

and finally T(p)=< 89 This is absurd when 6 e < l .  [] 

It is well-known that there is an abundance of nuclear C*-algebras with unit 
which are simple with a unique trace. 

In the spirit of Proposition 3, one may prove the following: if F is a Powers' 
group and if U is a UHF-algebra, then A = C*(F)| U has property P,  for all n > 2. 
Ifz A is the (unique) trace on A, this shows an example of a pair (A, ZA) such that the 
factor W*(A, TA) is McDuff. On the other hand, the factor associated to (C*(F), z) 
is full when F is free non abelian (or more generally when F is any of the groups in 
Sect. 3 of [2]). 

It is also possible to construct a Powers' group F with associated factor W*(F) 
having "property gamma" of Murray and yon Neumann. For  example, define 
inductively a group F, by F1 = C2 (the group with 2 elements denoted by 1 and j) 
and F~ + 1 = (F, x C2) * C 2  (where x indicates a direct product and * a free product), 
and set F = lira F.. Set y. = (1,j) e F, x C2 C F.+ ~. For  any ~ e F one has 7~. = 7.Y for n 
large enough, so that W*(F) has property gamma (Lemma 6.1.1 in [11]); in 
other words, W*(F) is not full [3]. As F is locally a non trivial free product, F is 
a Powers' group. 
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2. Crossed Products with Powers' Groups 
Let ~ : F ~ A u t ( A )  and let B = A >4 F be as in the introduction. When appropriate, 

we may assume that A acts faithfully on a Hilbert space H; then B acts faithfully on 
the Hilbert space K of square summable functions from F to H according to the 
usual formulas (Theorem 7.7.5 in [-12]) 

( X r  ( g )  = 1~ -  l ( X ) ~ ( g )  X e A 
~ E K  g ~ F  

(UhO(g)=~(h-'g) h ~ F  

and any x ~ B can be written in a unique way as 

x =  ~ XaU o 
oEF 

where x g e A  for all g e F .  We identify A and {x~Blx=xaUl};  the canonical 
conditional expectation e:B--*A is given by e(Z xou o) = Xr 

We want to show firstly examples where B has a unique trace, and secondly 
examples where B is simple. In both cases, we prove a general proposition, and 
specialize then to abelian A's. 

Lemma 5. Assume F to be a Powers' group. Consider a finite subset F of F - { 1 } and 
an element x ~ B of the form 

X = ~ XfUf X ~0 ~- X 
f~F 

Then there exist gl, g2, g3 ~ F such that (with Uk = Ug k) 

) < -  + 2  Ilxll 
k = l  ~ 6 " 

Proof. As in the proof of Lemma i, we may assume Ilxll = 1. As F is a Powers' 
group, there exist a partition F = D  L [ E  and elements g~, g2, g3 6 F with 

(1) f D n D = O  for any f ~ F  

(2) gjEc~gkE=O for j ,  ke{1 ,2 ,3}  w i t h j # k .  
Let K = 12(F, H) be as above. The orthogonal sum 

K =/2(D, H)OI2(E, H) 

is invariant by A. Let p be the orthogonal projection from K onto/2(D, H). One has 
pxp = 0 by (1), and the projections 1 - UEPU~ are pairwise orthogonal for k = l, 2, 3 
by (2). The inequality to be proved follows as in Lemma 1. [] 

Proposition 6. Assume F to be a Powers' group. For any trace z on B, there exists a 
F-invariant trace a on A with z = ire. 

Proof. Let x = Y~ xgu o ~ B. As 3 + 2V2 < 6, Lemma 5 implies that the closed convex 
hull of 

{y ~ B]y = ug(x - xOu* for some g ~ F} 

contains 0. Consequently z ( x - x 0 = 0 ,  and the proposition follows. [] 
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Corollary. 7. I f  F is a Powers' group and if there exists a unique F-invariant trace on 
A, then there exists a unique trace on B. 

Let us particularize to the case where A is abelian. By Gelfand's theory 
A = c~(X) for a compact space X (the spectrum of A) and ~ may be viewed as an 
action of F on X by homeomorphisms. In this case, the existence of a unique 
F-invariant trace on A means that the action of F on X is uniquely ergodic (for 
some probability Radon measure). Corollary 7 becomes: 

Corollary 8. I f  a Powers' group F acts in a uniquely ergodic way by homeomor- 
phisms on a compact space X ,  then the reduced crossed product B = (~(X) :4 F 
has a unique trace. 

Corollary 8 does not hold for an arbitrary group: think of F = Z acting on X a 
point, so that B=C*(Z)=~(S1) .  

Digression. Let F be a countable group (not necessarily a Powers' group) acting by 
homeomorphisms on a compact space X in a uniquely ergodic way, for some 
probability Radon measure #. Let 

X x = { w ~ X l g e F  with g w = w  implies g =  1} 

be the subspace of points without isotropy. As F is countable, X x is Borel; as X1 is 
F-invariant , /~(X0e {0, 1}. Claim: if # ( X 0 =  1, then B=(g(X) ~ F has a unique 
trace, r 

Indeed, let ~ be a trace on B. By unique ergodicity one may identify zinC(X) with 
#. It is enough to show that z(xug)=0 for any x~Cg(X) and for any g ~ F - { 1 } .  
Denote by X g the fixed point set {w ~ Xigw = w} ; as XgnX~  = 0 one has /4X g) = 0. 
Suppose first that supports are such that Supp(x)c~ 9 Supp(x)=0;  as one may 
write x = x lxz  for xj ~ cg(X) with Supp(xj)= Supp (x) for j = 1,2, one has 

~( xu  o) = ~( x2ugx l u*u.) = ~( x ~ . (  x l )u~) = 0 

because xEc~9(x~)= 0. Suppose more generally that S u p p ( x ) n X a =  0; as one may 
write x = Z xj (finite sum) with Supp(xj)c~g Supp(xj) = 0, one has again z(xug)= O. 
Let finally x be arbitrary; for any e > 0 there exists x' e (g(X) with Supp(x')c~X g = 0 
and I Ix-x ' ld l t  < e (because X ~ has measure 0); then z(x'uo)= 0 as above and 

X 

Iz((x-x)uo)l=~(Ix-x'l) I I x - x ' l d ~ < ~  
X 

by Cauchy-Schwarz; consequently r(xug)= 0. The claim is proved. 

Let again A be an arbitrary C*-algebra with unit and let ~ : F--,Aut(A) be an 
action of a group F on A. Recall that A is F-simple if any ~(F)-invariant closed two- 
sided ideal in A is either {0} or A. (As A has a unit, one could suppress "closed" 
without changing the notion.) 

Lemma 9. Assume that A is F-simple. Let x ~ A with x >__ 0 and x *  O. There exist 
g~ .... .  gn e F and z 1 .. . .  , zneA  such that 

zjctj(x)z* => I where ~j = o%. 
j = l  
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Proof. As the two-sided ideal generated by (%(x))oE r is A, there exist 
g~ . . . .  , g. 6 F and xa, y~, ..., x., y, ~ A with 

x f j ( x ) y*  1 
j = l  : - 2 "  

Set zj = x i + yj for j = 1 . . . . .  n. Then 

~-~ (ZjO{j(X)Z~ - -  xj~j(x)y* - yjocj(x)x*) = ~ (xj~j(x)x* + yjo~j(x)y*) ~ 0 
j = l  j = l  

and thus 
zj~j(x)z'/> xfj(x)y~f + xjo~j(x)y* = 1 

j=l j=l j=l 

as claimed. [] 

P r o p o s i t i o n  10. Assume F to be a Powers' group. I f  the unital C*-algebra A is 
F-simple, then B = A >~ F is simple. 

~t,r 

Proof. Let J be a two-sided ideal in B and assume that J contains x = Z xgug 4= O. 
Upon replacing x by x 'x ,  we may assume that x>___0, Xa>=0, x l + 0 .  By 
Lemma 9, there exist gl . . . . .  g, e F and z 1 . . . . .  z, ~ A such that (with ~j= % )  

zj~j(xa)z* > 1. 
j = l  

Consequently, upon replacing x by ~ zjujx(zjuj)*, we may furthermore assume 
that x x > 1. J = 

By Lemma 5 applied several times, there exist ha, ..., hN ~ F such that 

If  we set 

one has 

k (X--XOV* < ~  with Vj=Uhj. 

l N 
r= ~ Z VkXV*= ~, rgug~J 

k= l g~r 

1 1 
r l = ~ Z v k x l v ~ l  and I[r-r11[~ ~. 

It  follows that r is invertible, and thus that J = B. [] 

C o r o l l a r y  11. I f  F is a Powers' group and if A is simple, then B is simple. 

Let us particularize to the case where A is abelian. 

L e m m a  12. Let F be a group acting by homeomorphisms on a compact space X, and 
thus on the algebra A = ~(X). Then F is minimal on X if and only if A is F-simple. 

Proof. Closed ideals in A are in bijcction with closed subset of X by Gelfand's 
theory; the lcmma follows. [] 
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Corollary 13. I f  a Powers' group F acts minimally by homeomorphisms on a compact 
space X, then the reduced crossed product B = ~(X) >~ F is simple. 

ct ,  [ 

Observe first that Corollary 13 does not hold for an arbitrary group. For  
example, if an amenable group F acts on a point, then B = C*(F) is not simple. 

Observe also that Proposit ion 10 does not hold for A without unit, and in 
particular that Corollary 13 does not hold for a locally compact  space X. Indeed, 
let F be a Powers '  group, let H be an amenable subgroup of F (necessarily of infinite 
index in F), and consider the canonical action of F on X = F/H. Then A = co(X) is 
the algebra of functions X ~ C  vanishing at infinity, and A >~ F is known to be 

Gt, r 

Morita equivalent to C*(H); see [15, Example 1]. It follows that A >4 F is not 
at~r 

simple, f i t  is known that A >~ F is isomorphic to the tensor product of C*(H) by 
\ ~t,r  

the compact  operators on 12(F/H); see Theorem 4.1 in I-6].] 
/ 

In this last example, let ,4 be the algebra obtained by adding a unit to A. Then 
has a unique non trivial F-invariant ideal, which is A; but A ~ F may have a lot of 

a t , r  

non trivial ideals, and indeed the ideal A >~ F which is Mori ta  equivalent to ~(S 1) 
~t , r  

in case H ~ Z. This shows that the elementary methods of the present work cannot 
solve the problem alluded to in the introduction, of understanding in general the 
ideal structure of reduced crossed products by Powers '  groups. 

Consider finally the situation of a previous digression: F is an arbitrary 
countable group acting by homeomorphisms on a compact  space X, now in a 
minimal way. If 

XI = { w e X I g e F  with gw=w implies g =  1} 

is not empty, then it can be shown that ~r >4 F is simple. We refer to [5]. 
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