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TOEPLITZ ALGEBRAS ASSOCIATED WITH
ENDOMORPHISMS

AND PIMSNER-VOICULESCU EXACT SEQUENCES

M. Khoshkam and G. Skandalis

Let A be a C∗-algebra and α a ∗-endomorphism of A. The
analogue of Pimsner-Voiculescu exact sequences are obtained
for the pair (A,α). We prove that the corresponding Toeplitz
algebra remains KK-equivalent to A.We also consider the sit-
uation where a semigroup (αt)t∈R+ of ∗-endomorphisms is act-
ing on A and formulate similar exact sequences. In this part
we use the language of Connes-Higson E-theory.

Introduction.

One of the most celebrated results in the K-theory of C∗-algebras is the exact
sequence proved by M. Pimsner and D. Voiculescu ([10]). This sequence
allows one to compute the K-groups of a crossed product C∗-algebra AoαZ,
from a six term exact sequence involving K-groups of A, obtained from the
K-theory sequence associated with an extension of AoαZ by A ⊗ K(H)
where α ∈ Aut (A). This extension referred to as the generalized Toeplitz
extension, is given by a C∗-algebra denoted by Tα, called the Toeplitz algebra
associated with the pair (A,α). Pimsner and Voiculescu proved that the
natural inclusion of A in Tα induces an isomorphism at the level of K-
groups. This allows one to obtain a six term exact sequence involving only
the K-groups of A and the crossed product AoαZ. Later, in [5], using a
generalization of Connes’ “Thom isomorphism”, T. Fack and G. Skandalis
obtained the same exact sequence for KK-groups.

In this article we are concerned with extending Pimsner Voiculescu Exact
Sequence to the situation where α is an Endomorphism. Our first task will
be to define an appropriate notion of the Toeplitz algebra and an extension
from which the K-theory sequence can be obtained. It is proved that this
generalized Toeplitz algebra is still KK-equivalent to A. We then obtain
similar results in the case of semigroups (indexed by R+) of endomorphisms.

While this work was almost finished, we received a remarkable preprint
by Mihai Pimsner ([9]), who considers the same Toeplitz algebra and proves
the same extension and KK-theory results as ours in a much more general
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situation than that of a single endomorphism: Pimsner considers a Hilbert
A-module E which is ‘generating’ in that sense that the closed ideal spanned
by the scalar products 〈x, y〉, x, y ∈ E is A itself and a morphism ϕ from
A into L(E). An endomorphism is then just the particular case E = A and
ϕ(A) ⊂ A = K(A) ⊂ L(A) =M(A)1 .

We think however that our paper may help understanding Pimsner’s more
general and interesting point of view. Moreover, our results may be used
to give an alternate proof of Pimsner’s (when ϕ(A) ⊂ K(E)). Indeed, the
condition on E means that K(E) and A are Morita equivalent; hence K(H)⊗
K(E) is isomorphic to K(H) ⊗ A (at least in the separable case). We then
get a morphism from K(H)⊗A into itself which brings us to our case.

The organization of this paper is as follows.
— In Section 1, the Toeplitz algebra Tα for a pair (A,α) with α ∈ End (A) is
defined and the basic properties are established. In particular, we show that
Tα is a full corner of a crossed product. This will be useful in realization of
certain semigroup C∗-algebras.
— In Section 2, we deal with KK-groups and construction of an invertible
element in the group KK(A, Tα).
— Section 3 is concerned with extending our results of Sections (1) and (2)
to a semigroup (αt)t∈R+ of endomorphisms of a C∗-algebra A. An appropri-
ate notion of Toeplitz algebra is defined and the corresponding extension is
formulated. In the continuous case, the Toeplitz algebra is K-Theoretically
trivial.

One possible application for these results is in the study of semigroup C∗-
algebras ([3]). From the basic theory if S is a simple inverse semigroup, then
it has a decomposition into a type of semi-direct product (known as Bruck
Reilly product) of a group G with the bicyclic semigroup C. The action of
C on G is given by an endomorphism α of G. It can be proved that C∗(S)
the C∗-algebra of S is ∗-isomorphic to the Toeplitz algebra associated with
the pair (C∗(G), α). These ideas will be pursued elsewhere.

Finally, we point out that in ([4]), Ruy Excel obtains a generalization of
Pimsner-Voiculescu Exact Sequence. But he considers a different situation
dealing with ideals and C∗-algebras equipped with an action of S. The
only overlap is that we both obtain Pimsner Voiculescu Exact Sequence as
a special case. However, our methods are independent.

1Even in that case, our Toeplitz algebra differs slightly from Pimsner’s. This will be
explained at the end of the first section.
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1. The Toeplitz algebra Tα.

Notation. Recall that if A is a C∗-algebra, E,F are Hilbert A-modules,
x ∈ E, and y ∈ F , we denote by θx,y : F → E the operator z 7→ x〈y, z〉.
An operator from F to E is said to be compact if it belongs to the closure
K(F,E) of the vector space spanned by θx,y for x ∈ E, y ∈ F .

Let A be a C∗-algebra and α an endomorphsm of A. Let HA be the
Hilbert A-module `2(N, A), i.e., the set of sequences (xn)n∈N such that the
series

∑
n∈N x

∗
nxn is norm convergent.

Let S ∈ L(HA) be the forward shift: i.e., S
(
(xn)n∈N

)
= (yn)n∈N ∈ HA

where, for n 6= 0, yn = xn−1 and y0 = 0.
Define the faithful ∗-representation πα of A in HA setting for a ∈ A and

(xn)n∈N ∈ HA
πα(a)((xn)n∈N) = (αn(a)xn)n∈N ∈ HA.

For all a ∈ A, πα(a)S = Sπα(α(a)). It follows that the closed vector span
of {Snπα(a)S∗m : m,n ∈ N, a ∈ A} is a C∗-subalgebra of L(HA).
Definition 1.1. The C∗-subalgebra of L(HA) generated by {Snπα(a)S∗m :
m,n ∈ N, a ∈ A} is denoted by Tα and is called the Toeplitz algebra
associated with (A,α). We denote by dα or just d the morpism πα as a
morphism from A to Tα.

If A is unital and α(1) = 1, then πα(1) is the identity element of L(HA),
thus S ∈ Tα and Tα is the C∗-subalgebra of L(HA) generated by S and
dα(A). In general, let Ã be the C∗-algebra obtained from A by adjoining an
identity. Let α̃ : Ã → Ã be the unital extension of α to Ã. Then Tα sits in
Tα̃ as a two sided ideal.

The construction of the Toeplitz algebra Tα satisfies the following natural-
ity. Let A, and B be C∗-algebras with endomorphisms α and β respectively.
To any ∗-homomorphism ϕ : A → B such that ϕ ◦ α = β ◦ ϕ there cor-
responds a ∗-homomorphism τϕ : Tα → Tβ given by τϕ(Sndα(a)S∗m) =
Sndβ(ϕ(a))S∗m.
– If A and B are unital and ϕ(1) = 1, we have an identification HA ⊗A B ∼=
HB thus a morphism L(HA)→ L(HB) which maps Tα into Tβ.
– In particular, let ε : Ã → C be the morphism with kernel A. Then τε is
a morphism from Tα̃ to the Toeplitz algebra T associated with the identity
morphism of C whose kernel is Tα.
– To prove the existance of the morphism τϕ in the general case, extend ϕ
to a unital morphism ϕ̃ : Ã→ B̃; the corresponding morphism τϕ̃ : Tα̃ → Tβ̃
maps Tα ⊂ Tα̃ into Tβ ⊂ Tβ̃.

Let us explore the structure of the Toeplitz algebra Tα:
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Let a, b ∈ A and n,m ∈ N; let ξ, η ∈ HA be the elements defined by
ξ(n) = a, ξ(k) = 0 for k 6= n, η(m) = b and η(k) = 0 for k 6= m. Then,
θξ,η = Sndα(ab∗)(1 − SS∗)S∗m ∈ Tα. Since the elements of the above form
span K(HA), it follows that K(HA) ⊂ Tα. As Tα ⊂ L(HA) =M(K(HA)) it
follows that K(HA) = K(H)⊗A is contained in Tα as an essential ideal.

We next “compute” the quotient TA/K(HA):
Let (An)n∈N be the sequence of C∗-algebras with An = A for every n ∈ N.

For m ≥ n set ϕm,n = αm−n : An → Am. Let A∞ = limAn be the direct
limit C∗-algebra. Let hn : A → A∞ be the canonical map from A = An to
the direct limit. Define α∞ : A∞ → A∞ by setting α∞(hn(x)) = hn(α(x)) for
x ∈ A. This is compatible with ϕm,n’s and extends to A∞. Since α∞ ◦ hn =
hn ◦ α = hn ◦ ϕn,n−1 = hn−1 it follows that α∞ is an automorphism of A∞
(and α−1

∞ ◦ hn = hn+1).

We set h = h0. The algebra A∞ admits the following abstract character-
ization.

Proposition 1.2. We keep the above notation. Let B be a C∗-algebra,
σ : A → B a ∗-homomorphism and β an automorphism of B such that
σ ◦ α = β ◦ σ. Then there exists a unique ∗-homomorphism σ∞ : A∞ → B
such that σ∞ ◦ α∞ = β ◦ σ∞ and σ∞ ◦ h = σ. Moreover, A∞ and α∞ are
uniquely determined by these conditions.

Proof. If σ∞ : A∞ → B is a ∗-homomorphism satisfying the above condi-
tions, then βn◦σ∞◦hn = σ∞◦αn∞◦hn = σ∞◦h = σ, whence σ∞◦hn = β−n◦σ,
which shows the uniqueness of σ∞.

Define σm = β−m ◦ σ : A→ B. If m ≥ n, then

σm ◦ ϕm,n = σm ◦ αm−n = β−m ◦ σ ◦ αm−n
= β−m ◦ βm−n ◦ σ = β−n ◦ σ = σn.

By the universal property of direct limit there exists a ∗-homomorphism
σ∞ : A∞ → B. Moreover, for all n we have σn ◦α = β ◦σn, hence σ∞ ◦α∞ =
β ◦ σ∞.

Let D be a C∗-algebra with an automorphism δ, and let j : A→ D be a
∗-homomorphism such that j ◦ α = δ ◦ j. Assume that if B is a C∗-algebra,
σ : A → B a ∗-homomorphism and β an automorphism of B such that
σ ◦ α = β ◦ σ, then there exists a unique ∗-homomorphism σ′ : D → B
such that σ′ ◦ j = σ and σ′ ◦ δ = β ◦ σ′. Then there exist (unique) ∗-
homomorphisms I : D → A∞ and J : A∞ → D intertwining δ with α∞ and
such that h ◦ I = j and j ◦ J = h. The uniquness statements imply that
I ◦ J = idA∞ and J ◦ I = idD, whence D is canonically ∗-isomorphic with
A∞.



TOEPLITZ ALGEBRAS ASSOCIATED WITH ENDOMORPHISMS 319

It follows from this proposition that the construction of the pair (A∞, α∞)
is functorial: Let B be another C∗-algebra endowed with an endomorphism
β. To any ∗-homomorphism ϕ : A → B such that ϕ ◦ α = β ◦ ϕ there
corresponds a ∗-homomorphism ϕ∞ : A∞ → B∞ such that ϕ∞ ◦ α∞ =
β∞ ◦ϕ∞. In particular, let α̃ be the unital endomorphism of Ã extending α.
The corresponding inductive limit C∗-algebra is the algebra Ã∞ obtained by
adjoining a unit to A∞ endowed with the unital automorphism α̃∞ extending
α∞.

In what follows, we consider A∞ as a C∗-subalgebra of A∞oα∞Z.

Corollary 1.3. Assume that A is unital and that α(1) = 1. Let B be a
unital C∗-algebra, σ : A→ B a unital ∗-homomorphism and v a unitary in
B such that σ(α(x)) = vσ(x)v∗, for all x ∈ A. Then there exists a unique
∗-homomorphism σ̂ : A∞oα∞Z → BoβZ such that σ̂(d(x)) = σ(x) for all
x ∈ A, and σ̂(u) = v where β is the inner automorphism of B associated
with v and u is the unitary of A∞oα∞Z defining the crossed-product.

Proof. Let σ∞ : A∞ → B be the associated ∗-homomorphism (Proposition
1.2). We have σ∞(α∞(x)) = vσ∞(x)v∗, for all x ∈ A∞. By the universal
property of the crossed product, there exists a unique ∗-homomorphism
σ̂ : A∞oα∞Z→ BoβZ such that σ̂(x) = σ∞(x) for all x ∈ A∞ and σ̂(u) = v.

Moreover, hn(x) = u−nh(x)un for all x ∈ A and n ∈ N, so that A∞oα∞Z
is generated by h(A) and u; the uniqueness of σ̂ follows immediately.

Corollary 1.4. There exists a unique ∗-homomorphism Ψ : A∞oα∞Z →
Tα/K(HA) such that, for all a ∈ A , Ψ(h(a)) is the image of d(a) ∈ Tα in
the quotient and, for all x ∈ A∞ , Ψ(ux) = vψ(x), where u is as above and
v is the image of S∗ ∈M(Tα) in M(Tα/K(HA)).

Proof. If A is unital and α(1) = 1, this is an immediate consequence of
Corollary 1.3.

In the non unital case, let α̃ be the unital endomorphism of Ã extending
α. By the unital case, we get a homomorphism Ψ̃ : Ã∞oα̃∞Z→ Tα̃/K(HÃ).
Note that moreover A∞oα∞Z is the kernel of the map Ã∞oα̃∞Z → C∗(Z)
corresponding to the unital equivariant morphism Ã∞ → C and that
Tα/K(HA) is the kernel of the morphism Tα̃/K(HÃ) → T /K(`2(N)). Since
the diagram

Ã∞oα∞Z
Ψ̃−→ Tα̃/K(HÃ)y y

C∗(Z) −→ Ti/K(H)
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is commutative, it follows that Ψ̃(A∞oα∞) ⊂ Tα/K(HA).
Furthermore, any Ψ : A∞oα∞Z→ Tα/K(HA) satisfying the conditions of

the statement, extends to a morphism from Ã∞oα̃∞Z to Tα̃/K(HÃ) mapping
u to v, from which the uniqueness of Ψ follows.

Theorem 1.5. The ∗-homomorphism Ψ of Corollary 1.4 is an isomor-
phism. In other words, we have an exact sequence

0→ A⊗K(H)→ Tα → A∞oα∞Z→ 0.

Proof. For x ∈ A, m, n ∈ N, the image of Smd(x)S∗n in Tα/K(HA) is
Ψ(umh(x)u∗n), whence Ψ is onto.

To show that Ψ is one to one, we may assume that A is unital and
α(1) = 1. Let (en)n∈N denote the canonical basis of `2(N) and set bn =
en⊗1 ∈ `2(N, A) = HA. The set of T ∈ L(HA) such that the sequence α−n∞ ◦
h(〈bn, T bn〉) converges in norm in A∞ is a closed subspace of L(HA). More-
over, for all x ∈ A , m, n, k ∈ N we have α−k∞ (〈bk, Smd(x)S∗nbk〉) = α−m∞ ◦h(x)
if k ≥ m = n and to 0 otherwise. Consequently, T 7→ limn→+∞ α−n∞ ◦
h(〈bn, T bn〉) is a completely positive map E : Tα → A∞, such that, for all
x ∈ A , m, n ∈ N , E(Smd(x)S∗n) = 0 if m 6= n and E(Smd(x)S∗m) =
α−m∞ ◦ h(x). Clearly limn→+∞ α−n∞ ◦ h(〈bn, T bn〉) = 0 for all T ∈ K(HA), so
that E defines a completely positive map Φ : Tα/K(HA)→ A∞. The compo-
sition Φ◦Ψ is easily seen to be the conditional expectation A∞oα∞Z 7→ A∞
which is the identity on A∞ and maps ukx to 0 for all x ∈ A∞ and k 6= 0.
As this conditional expectation is faithfull, Ψ is one to one.

When α is an automorphism of A we see immediately that A∞ identifies
with A; therefore, the exact sequence of Theorem 1.5 is a generalization of
the Toeplitz exact sequence of [10].

The following theorem characterizes the ∗-representations of the Toeplitz
algebra Tα. If π is a non degenerate ∗-representation of Tα, then π ◦d is a ∗-
representation σ of A and T = π̃(S) is an isometry, where π̃ is the extension
of π to the multiplier algebra. For all a ∈ A we have σ(a)T = Tσ(α(a)).
The converse is also true:

Theorem 1.6. Let B be a C∗-algebra and H be a Hilbert B-module. Let
σ : A → L(H) be a ∗-representation of A on H and let T ∈ L(H) be an
isometry such that σ(a)T = Tσ(α(a)). Then, there exists a ∗-representation
π : Tα → L(H) such that for all x ∈ A, m, n ∈ N, π(Smd(x)S∗n) =
Tmσ(x)T ∗n. Moreover, π is faithful if and only if the restriction of σ to the
kernel of T ∗ is faithful.

Proof. Up to passing to Ã, we may assume that A is a unital C∗-algebra
and that α and σ are unital morphisms. We first treat the case B = C.
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Put H0 = ker T ∗ and let H ′ be the closure in H of the union of ker T ∗n

(n ∈ N). As T ∗nσ(a) = σ(αn(a))T ∗n, the subspaces H0 and H ′ are invariant
under σ(A). Denote by σ0 the restriction of σ to H0. Moreover, H ′ admits
the orthogonal decomposition H ′ =

⊕
n∈N T

nH0, therefore there exists an
isomorphism of Hilbert spaces U : HA ⊗σ0 H0 → H ′ such that U((en ⊗
a) ⊗ x) = T nσ0(a)x = T nσ(a)x for all n ∈ N , a ∈ A , x ∈ H0 (where
(en)n∈N is the canonical basis of `2(N)). Also U(S ⊗ 1) = TU and for all
a, b ∈ A , n ∈ N , x ∈ H0

U(d(a)⊗ 1)((en ⊗ b)⊗ x) = U((en ⊗ αn(a)b)⊗ x)

= T nσ(αn(a)b)x

= σ(a)T nσ(b)x

= σ(a)U((en ⊗ b)⊗ x).

Since, the restriction of T to H
′⊥ is a unitary operator v; by Corollary 1.3,

there exists a ∗-representation π′ : A∞oα∞Z 7→ L(H
′⊥) such that π′ ◦ h

is the restriction of σ to H
′⊥ and π′(u) = v. Then, the ∗-representation

π : x 7→ U(x⊗1)U∗+π′◦q(x) satisfies the requirements of the theorem, where
q : Tα → A∞oα∞Z is the composition of the quotient map Tα → Tα/K(HA)
with Ψ−1 of Corollary 1.4.

Now, as K(HA) is an essential ideal in Tα, the representation π is faithful
if and only if its restriction to K(HA) is faithful, which happens if and only
if the representation a 7→ π(p ⊗ a) is faithful, where p ∈ K is a minimal
projection which, by a good choice of p means that a 7→ π(d(a)(1−SS∗)) =
σ(a)(1− TT ∗) is faithful.

We finally come to the general case (B 6= C). We may embed L(H) in
some L(E) where E is a Hilbert space. Then, by the case B = C, there
exists a ∗-representation π : Tα → L(E) whose image is obviously contained
in L(H) ⊂ L(E).

We end this section with a theorem showing that Tα is a full corner of a
crossed product. Let Cb(Z, A) be the C∗-algebra of norm bounded sequences
(an)n∈Z of elements of A under pointwise operations and infinity norm. For
each p ∈ Z let jp : A → Cb(Z, A) be the morphism such that jp(a) is the
sequence whose nth term is zero if n < p and αn−p(a) if n ≥ p. Let D be the
C∗-subalgebra of Cb(Z, A) generated by the elements jp(a) for a ∈ A and
p ∈ Z. The shift on Cb(Z, A) induces an automorphism β of D such that
β ◦ jp = jp−1, so that D is the smallest subalgebra of Cb(Z, A) containing
j0(A) and invariant under the shift.

Lemma 1.7. The C∗-subalgebra C0(Z, A) of Cb(Z, A) consisting of the
sequences vanishing at infinity is contained in D as an essential ideal. There
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is a ∗-isomorphism ϕ : D/C0(Z, A) → A∞ such that ϕ ◦ q ◦ j0 = h and
ϕ ◦ q ◦ β = α∞ ◦ ϕ ◦ q, where q : D → D/C0(Z, A) is the quotient map.

Proof. For a ∈ A and p ∈ Z, the only nonzero term of the sequence jp(a)−
jp+1(α(a)) is a in pth position. Consequentely C0(Z, A) ⊂ D and as D ⊂
Cb(Z, A) =M(C0(Z, A)), C0(Z, A) is contained in D as an essential ideal.

Note that D is the inductive limit of the algebras Dp = C0(Z, A) +
jp(A). Therefore, a bounded sequence (an)n∈Z is in D, if and only if,
limn→−∞ ‖an‖ = 0 and, for every ε > 0, there exists n ∈ Z such that,
for every m ∈ N, ‖an+m − αm(an)‖ ≤ ε.

Moreover, for every p ∈ Z, let ϕp : D → A∞ be the map (an)n∈Z 7→
α−p∞ ◦ h(ap). Clearly ϕp ◦ jk = α−k∞ if p ≥ k. Therefore, for all x ∈ D the
sequence ϕp(x) converges to some element ϕ(x), when p→ +∞. Obviously,
ϕ is a ∗-homomorphism whose kernel contains C0(Z, A) and whose image
is invariant under α∞ and contains h(A); therefore ψ is surjective. Let
x = (an)n∈Z ∈ ker ϕ. For every ε, there exists n ∈ Z such that for every
m ∈ N , ‖an+m − αm(an)‖ ≤ ε. Then

‖h(an)‖ = ‖α−n∞ ◦ h(an)‖
= ‖α−n∞ ◦ h(an)− ϕ(x)‖
= lim

m→+∞ ‖α
−n−m
∞ ◦ h(αm(an)− an+m)‖ ≤ ε.

Therefore lim supm→+∞ ‖αm(an)‖ ≤ ε, whence lim supm→+∞ ‖an+m‖ ≤ 2ε.
It follows that ker ϕ = C0(Z, A); therefore ϕ induces the desired isomor-
phism.

Theorem 1.8. Let v ∈ L(`2(Z, A)) be the backward shift: i.e., v
(
(xn)n∈Z

)
=

(yn)n∈Z ∈ `2(Z, A) where, for yn = xn+1. Moreover let ρ : D → L(`2(Z, A))
be the ∗-representation such that ρ

(
(an)n∈Z

)(
(xn)n∈Z

)
= (anxn)n∈Z. The pair

(ρ, v) is a covariant representation of (D,β) and the corresponding represen-
tation of DoβZ is faithful. Identify DoβZ with its image in L(`2(Z, A));
the projection P of `2(Z, A) onto `2(N, A) is a multiplier of DoβZ and
P (DoβZ)P is the Toeplitz algebra Tα; it is a full corner in DoβZ.

Proof. It is clear that the pair (ρ, v) is a covariant representation of (D,β).
The restriction of the corresponding representation of DoβZ to C0(Z, A)oβZ
is the canonical isomorphism of C0(Z, A)oβZ with the algebra of compact
operators in `2(Z, A). As C0(Z, A) is an essential ideal in D, C0(Z, A)oβZ is
an essential ideal in DoβZ therefore the representation of DoβZ associated
with (ρ, v) is faithful.

As P is a multiplier of ρ(D), it is a multiplier of DoβZ. Moreover, (1 −
P )ρ(D) ⊂ K(`2(Z, A)) so that (1− P )(DoZ) ⊂ K(`2(Z, A)); it follows that
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DoZ = Tα + K(`2(Z, A)); as K(`2(N, A)) ⊂ P (DoβZ)P and K(`2(N, A)) is
a full corner in K(`2(Z, A)), it follows that P (DoβZ)P is a full corner in
DoβZ.

Now for all m,n ∈ N, and a ∈ A, we have v∗mρ ◦ j0(a)vn = P (v∗mρ ◦
j0(a)vn)P and acts on `2(N, A) as Smd(a)S∗n. It follows that P (DoβZ)P
contains Tα. Now DoβZ is generated by vkρ ◦ jp(a) where p, k ∈ Z , a ∈
A. Moreover, if n ∈ N , ρ(jp−n(a) − jp(αn(a))) ∈ K(`2(N, A)) ⊂ Tα; it is
enough to show that P (vkρ ◦ jp(a))P ∈ Tα when p ≥ 0 and p − k ≥ 0. But
vkρ ◦ jp(a) = vk−pρ ◦ j0(a)vp and the result follows.

2. KK-Groups.

In ([10]) it is proved that, when α is an automorphism, the canonical inclu-
sion of A in Tα induces an isomorphism at the K-theory level, and deduced
a six term exact sequence computing the K-groups of a crossed-product by
Z. Here we prove that this holds in general, by showing that the same map
considered as an element of the group KK(A, Tα) is invertible. As a con-
sequence of this fact, we obtain a generalized version of Pimsner-Voiculescu
exact sequence for endomorphisms.

Recall (cf. [6]) that if A and B are C∗-algebras, an element of KK(A,B)
is given by the homotopy class of a triple (E , π, F ), where E is a Z/2Z-
graded Hilbert B-module, π : A→ L(E) is a ∗-representation of A on L(E)
as degree zero operators, and F ∈ L(E) has degree 1 such that for all a ∈ A,
[π(a), F ] ∈ K(E), π(a)(F − F ∗) ∈ K(E) and π(a)(1− F 2) ∈ K(E).

Given a ∗-homomorphism ϕ : A → B we denote by [ϕ] the element of
KK(A,B) given by the class of (B,ϕ, 0).

We keep the notation of the first section. In particular d : A→ Tα is the
embedding of A into Tα. Set E (0) = `2(N, A) and let E (1) = `2(N \ {0}, A) be
the subspace of E (0) with zero in the first coordinate. Let Q : E (0) → E (1) be
the orthogonal projection. Let E denote the Z/2Z-graded Hilbert A-module
E (0) ⊕ E (1).

By Theorem 1.6, there is a ∗-representation of π− : Tα̃ → L(E (1)) such
that π− ◦ d is the restriction of d to the invariant subspace E (1) of E (0) and
π−(S) = QSQ = SQ. In fact π−(x) = Sτα(x)S∗ where τα : Tα → Tα is the
map induced by α : A→ A. Let π : Tα → L(E) be the ∗-representation such
that for x ∈ Tα, ξ ∈ E (0) η ∈ E (1) we have π(x)(ξ, η) = (xξ, π−(x)η). Let
F ∈ L(E) be defined for ξ ∈ E (0) η ∈ E (1) by F (ξ, η) = (η,Qξ).

Lemma 2.1. The triple (E , π, F ) defines an element of KK(Tα, A).

Proof. Clearly F = F ∗ and 1−F 2 is the projection (ξ, η) 7→ ((1−Q)ξ, η), so
that (1− F 2)Tα ⊂ K(E). If a ∈ A, then π ◦ d(a) and F commute. Moreover
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(Fπ(S) − π(S)F )(ξ, η) = (Sη − Sη,QSξ − SQξ) = (0, S(1 − Q)ξ), so that
(Fπ(S)− π(S)F )Tα ⊂ K(E).

Definition 2.2. We denote by [d] the class of the morphism d inKK(A, Tα)
and by β the class of the triple (E , π, F ) in KK(Tα, A).

Theorem 2.3. We have [d]⊗T α β = 1A ∈ KK(A,A) and β⊗A [d] = 1T α ∈
KK(Tα, Tα). In particular, the C∗-algebras A and Tα are KK-equivalent.

Proof. Here the Kasparov products are easily computed: We have [d]⊗T αβ =
d∗(β) and β ⊗A [d] = d∗(β). Since π ◦ d commutes with F and F is a self
adjoint partial isometry it follows that the class of (E , π◦d, F ) coincides with
the class of ((1−F 2)E , i, 0) where i is the restriction of π◦d to (1−F 2)E = A
and is therefore given by the identity map A→ A = K(A), hence d∗(β) = 1A.

Now d∗(β) is given by (F , σ,G) where F = E ⊗A Tα, G = F ⊗ 1 and,
for all x ∈ Tα, σ(x) = π(x) ⊗ 1. Therefore F (0) = `2(N, Tα), F (1) =
`2(N \ {0}, Tα), σ = σ(0) ⊕ σ(1) where σ(0) : Tα → L(`2(N, Tα)) and σ(1) :
Tα → L(`2(N \ {0}, Tα)) are defined by σ(i)(d(a))ξ(n) = d(αn(a))ξ(n) for
a ∈ A and σ(i)(S)ξ(n) = ξ(n− 1) if n > i and σ(i)(S)ξ(i) = 0 ( i = 0, 1).

For each t ∈ [0, π
2
] let Tt ∈ L(F (0)) be defined by

(Ttξ)(n) =


ξn−1 if n ≥ 2
(cos t)ξ0 if n = 1
(sin t)Sξ0 if n = 0.

Then,

(T ∗t ξ)(n) =

{
ξn+1 if n ≥ 1
(cos t)ξ1 + (sin t)S∗ξ0 if n = 0.

One checks immediately that Tt is an isometry such that σ(0)(d(a))Tt =
Ttσ

(0)(d(α(a))) for every a ∈ A. Hence, by Theorem 1.6, there exists a ∗-
representation σ

(0)
t : Tα → L(F (0)) defined by σt(S) = Tt and σ

(0)
t (d(a)) =

σ(0)(d(a)). Moreover, for every x ∈ Tα, σ(0)
t (x) − σ(0) ∈ K(F (0)). Conse-

quentely, (F , σ(0)
t ⊕ σ(1), G) is a homotopy connecting the elements d∗(β)

and (F , σ(0)
π/2 ⊕ σ(1), G).

Now F (0) admits the decomposition F (0) = Tα ⊕ F (1) which is invari-
ant under σ(0)

π/2. It follows that (F , σ(0)
π/2 ⊕ σ(1), G) is the sum of 1Tα and a

degenerate element. We conclude that d∗(β) = 1Tα .
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Lemma 2.4. Let θ : A → Tα be defined by θ(a) = d(a)(1 − SS∗). Then,
[θ]⊗Tα β = 1A − [α] ∈ KK(A,A).

Proof. The element [θ]⊗T α β = θ∗(β) is defined by (E , π ◦ θ, F ). Given ξ ∈
E (0) = `2(N, A) we have (π ◦ θ(a)ξ)(n) = π(d(a)(1− SS∗))ξ(n) = 0 if n 6= 0
and (π ◦ θ(a)ξ)(0) = a ξ(0). On the other hand, if ξ ∈ E (1) = `2(N \ {0}, A),
then (π ◦ θ(a)ξ)(n) = π(d(a)(1−SS∗))ξ(n) = 0 if n 6= 1 and (π ◦ θ(a)ξ)(1) =
α(a) ξ(1). Hence, up to a degenerate module θ∗(β) is represented by the
triple (E ′, µ, 0) where E ′(0) = E ′(1) = A and, for a ∈ A, µ(a) is given by the

matrix =

(
a σ
0 α(a)

)
.

Using exactness of Connes-Higson’s E-theory ([2]), Theorem 2.3 to re-
place Tα by A in the exact sequence of E-groups associated with the ex-
tension of C∗-algebras of Theorem 1.5 and Lemma 2.4 to compute the map
from E(D,A) (resp. E(A,D)) into itself, we get:

Theorem 2.5. Let A,α, and α∞ be as in 1.6. Then we have exact sequences
of Connes-Higson’s E-groups

E(D,A) 1−α∗−→ E(D,A) −→ E(D,A∞oα∞Z)x y
E1(D,A∞oα∞Z) ←− E1(D,A) 1−α∗−→ E1(D,A)

and
E(A,D) 1−α∗←− E(A,D) ←− E(A∞oα∞Z, D)y x

E1(A∞oα∞Z, D) −→ E1(A,D) 1−α∗−→ E1(A,D).

Remarks 2.6.
(a) When α is an automorphism, we recover Pimsner-Voiculescu’s exact

sequences ([10]).
(b) The same result holds of course with the “KKnuc”-groups of [11]

instead of E-groups.
(c) We may compare the two Toeplitz extensions comming from α and

α∞. We get a diagram of the form:
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E(D,A) 1−α∗−→ E(D,A)
↗ ↘

E1(D,A∞oα∞Z) h∗

y h∗

y E(D,A∞oα∞Z)
↘ ↗
E(D,A∞) 1−α∞∗−→ E(D, Tα∞)

for which both top and bottom lines are exact. It follows in particular that
h∗ induces an isomorphism from the kernel of 1 − α∗ onto the kernel of
1−α∞∗ and from the cokernel of 1−α∗ onto the cokernel of 1−α∞∗. Note
that when D = C, the group E(D,A∞) = K0(A∞) is the inductive limit of
(K0(A), α∗) and it is clear that h∗ induces isomorphisms at these kernel and
cokernel levels.

3. Semigroup of Endomorphisms.

In this section we define the Topelitz algebra associated with a semigroup of
endomorphisms of a C∗-algebra A and formulate the corresponding Toeplitz
extension.

By a semigroup of endomorphisms of a C∗-algebra A we mean a mor-
phism α : t 7→ αt from the (additive) monoid R+ to the monoid End(A) of
endomorphisms of a A satisfying α0 = idA and t 7→ αt(a) is continuous for
every a ∈ A. As α, is a morphism for all s, t ∈ R+, we have αt+s = αt ◦ αs.

Note that we have:

Lemma 3.1. Let (αt)t∈R+ be a semigroup of endomorphism of a C∗-algebra
A. If αt is an automorphism of A for some t > 0, then αs ∈ Aut (A) for
every s ∈ R+.

The continuous analogue of the Toeplitz algebra of Section 1 is defined as
follows.

Let πα : A→ L(L2(R+)⊗A) be defined by πα(a)ξ(t) = αt(a)ξ(t) for every
ξ ∈ L2(R+)⊗ A = L2(R+, A) and every a ∈ A. Let St ∈ L(L2(R+)⊗ A) be
defined by (Stξ)(s) = ξ(s− t) if s ≥ t and (Stξ)(s) = 0 if s < t.

Clearly (St)t∈R+ is a semigroup of isometries of L(L2(R+)). Moreover, for
every a ∈ A and every t ∈ R+ we have πα(a)St = Stπα(αt(a)).

It follows that the integrals
∫∞

0

∫∞
0 Ssπα(a(s, t))S∗t dsdt where (s, t) 7→ a(s, t)

is a continuous function from R+ × R+ to A with compact support form a
∗-subalgebra of L(L2(R+)⊗A).
Definition 3.2. Let A and α be as above. The associated Toeplitz algebra,
denoted by Tα, is the closure in L(L2(R+)⊗A) of the algebra formed by the
integrals ∫ ∞

0

∫ ∞
0

Ssπα(a(s, t))S∗t dsdt
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where (s, t) 7→ a(s, t) from R+ × R+ to A is continuous with compact sup-
port.
Remarks.
(a) By density of continuous functions with compact support in L1-func-

tions, for every a ∈ L1(R+ × R+;A),
∫∞

0

∫∞
0 S
∗
sπα(a(s, t))St dsdt ∈ Tα.

(b) Let b : t 7→ b(t) be a continuous function from R+ to A with compact
support; for s, t ∈ R+ set a(s, t) = αt(b(s − t)) when t ≤ inf(1, s) and
a(s, t) = 0 otherwise. Then∫ ∞

0

∫ ∞
0

Ssπα(a(s, t))S∗t dsdt =
∫ 1

0

dt

(∫ ∞
s

SsS
∗
t πα(b(s− t)) ds

)
=
∫ ∞

0

Ssπα(b(s)) ds.

It follows that
∫∞

0 Ssπα(b(s)) ds ∈ Tα. Clearly Tα is the C∗-subalgebra of
L(L2(R+)⊗A) generated by these elements.

As in the case of a single endomorphism we have:

Proposition 3.3. The Toeplitz algebra Tα contains the ideal of compact
operators of L2(R+)⊗A.

Proof. Set V = 1 − 2
∫∞

0 e
−tSt dt. It is an isometry and the kernel of V ∗n is

formed by the functions t 7→ e−tP where P is a polynomial of degree less
than n. It follows that Tα contains the elements kπα(a)k′ for every k, k′ ∈
K(L2(R+)) and a ∈ A. Let k ∈ K(L2(R+)) and a ∈ A; by continuity of the
mapping t 7→ αt(a) given ε > 0 there exists η > 0 such that ‖αt(a)− a‖ < ε
whenever t ≤ η. But we can choose x, y ∈ K(L2(R+)) such that k = xy
and x has support in [0, η]. It follows that ‖xπα(a)y − k ⊗ a‖ < ε, whence
k ⊗ a ∈ Tα.

Next we show that Tα is a full corner of an appropriate crossed product.

Let A∞ be the C∗-algebra as defined in section 1 corresponding to the
endomorphism α1 of A, and let h : A→ A∞ be the canonical map. Then α1

induces an automorphism on A∞ which we denote by α1
∞. Since α1 ◦ αt =

αt ◦ α1 each αt induces an endomorphism, αt∞ of the algebra A∞. Hence,
by Lemma 3.1 we obtain an action of R on A∞ corresponding to the family
(αt∞)t∈R+ which will be denoted by α∞.

Let Cb(R, A) be the C∗-algebra of bounded functions from R to A. Let
D ⊂ Cb(R;A) be the subalgebra of elements a ∈ Cb(R, A) such that
limt→−∞ ‖a(t)‖ = 0, and for every ε > 0, there exists t ∈ R such that
for every s > 0, ‖a(s+ t)− αs(a(t))‖ ≤ ε. Let β : R → Aut (D) be defined
by (βtf)(s) = f(s− t). Clearly D contains C◦(R, D) as an ideal.
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Lemma 3.4. There exists a ∗-isomorphism ϕ : D/C0(R, A) → A∞ such
that for every a ∈ D we have ϕ ◦ q(a) = limt→+∞ α−t∞ ◦ h(a(t)), where q :
D → D/C0(R, A) is the quotient map.

Proof. It is easy to see that for every a ∈ D, the function t 7→ α−t∞ ◦ h(a(t))
admits a limit when t → +∞. It follows that ϕ is well defined on the
quotient. For each a ∈ A let â(t) = αt(a). Then, â ∈ D and limt→+∞ α−t∞ ◦
h(â(t)) = h(a) . It follows that ϕ is surjective.

Moreover, if a ∈ ker ϕ ◦ q, for every ε, there exists t ∈ R such that for
every s ∈ R+ , ‖a(s + t) − αs(a(t))‖ ≤ ε. Choose t such that ‖h(a(t))‖ =
‖α−t∞ ◦h(a(t))−ϕ◦h(a)‖ ≤ ε. Therefore lim sups→+∞ ‖αs(a(t))‖ ≤ ε, whence
lim sups→+∞ ‖a(s + t)‖ ≤ 2ε. It follows that ker ϕ ◦ q = C0(R, A). Hence ϕ
is an isomorphism.

Theorem 3.5. Let vt ∈ L(L2(R, A)) be defined by (vtξ)(s) = ξ(s+t). More-
over let ρ : D → L(L2(R, A)) be the ∗-representation such that (ρ(a)ξ)(s) =
asξs. The pair (ρ, v) is a covariant representation of (D,β) and the corre-
sponding representation of DoβR is faithful. Identify DoβR with its image
in L(L2(R, A)); the projection P of L2(R, A)onto L2(R+, A) is a multiplier
of DoβZ and P (DoβR)P is the Toeplitz algebra Tα; it is a full corner in
DoβR.

Proof. It is clear that the pair (ρ, v) is a covariant representation of (D,β).
The restriction of the corresponding representation ofDoβR to C0(R, A)oβR
is the canonical isomorphism of C0(R, A)oβR with the algebra of compact
operators in L2(R, A). As C0(R, A) is an essential ideal in D, C0(R, A)oβR is
an essential ideal in DoβR therefore the representation of DoβR associated
with (ρ, v) is faithful.

Let f be a continuous function on R such that f(t) = 1 if t < 0 and
f(t) = 0 if t > 1. As f is a multiplier of D and fD ⊂ C0(R, A), f defines a
multiplier of DoβR and f DoβR ⊂ K(L2(R, A)). As (1− P ) is a multiplier
of K(L2(R, A)) and (1 − P ) = (1 − P )f , it follows that P is a multiplier of
DoβR and (1− P )DoβR ⊂ K(L2(R, A)). As K(L2(R+, A)) ⊂ P (DoβR)P,
it follows that P (DoβR)P is a full corner in DoβR.

Let D0 ⊂ D be the set of b ∈ D such that for all u ≥ 0, b(u) = αu(b(0)).
Let (s, t) 7→ a(s, t) be a continuous function from R+×R+ to A with compact
support. Let b : R+ × R+ → D0 be a function such that for every s, t ∈
R+, b(s, t)(0) = a(s, t). Then

∫ ∞
0

∫ ∞
0

v∗sPb(s, t)vt dsdt ∈ P (DoβR)P
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and acts on L2(R+, A) as∫ ∞
0

∫ ∞
0

Ssπα(a(s, t))S∗t dsdt.

It follows that P (DoβR)P contains Tα.
Now DoβR is generated by integrals over s, t of terms of the form

vsβ
t(a(s, t)) = vs−ta(s, t)vt, where for s, t ∈ R, a(s, t) ∈ D0. Moreover,

since ∪βt(D◦) is dense in D and βt(D0) increases with t, we may assume
t > 0 and t ≥ s. Moreover

∫∞
0

∫ t
−∞vs−t(1−P )b(s, t)vt dsdt ∈ K(L2(R, A)) and

hence P
(∫∞

0

∫ t
−∞vs−tb(s, t)vt dsdt

)
P is the sum of

P

(∫ ∞
0

∫ t

−∞
vs−t(1− P )b(s, t)vt dsdt

)
P ∈ K(L2(R+, A))

and ∫ ∞
0

∫ t

−∞
vs−tPb(s, t)vt dsdt ∈ Tα

and the result follows.

Remark. Note that any isomorphism of L2(R, A) with L2(R+, A) which
is the identity on L2((k,+∞);A) (for k large enough) obviously induces an
isomorphism between DoβR and Tα.

Corollary 3.6. The quotient algebra Tα/K(L2(R+, A)) is naturally isomor-
phic with A∞oα∞R. In other words, there is an exact sequence

0→ K(L2(R+, A))→ Tα → A∞oα∞R→ 0.

Proof. By Theorem 3.5, since (1 − P )DoβR is contained in K(L2(R, A))
it follows that Tα + K(L2(R, A)) = DoβR. Hence, Tα/K(L2(R+, A)) is
canonically isomorphic to DoβR/K(L2(R, A)) = DoβR/C0(R, A)oβR; it is
therefore isomorphic to (D/C0(R, A))oα∞R, i.e., to A∞oα∞R (see Lemma
3.4).

Let us now come to K-theoretic considerations.

Theorem 3.7. The morphism h : A → A∞ is an isomorphism in E-
theory. The C∗-algebras D and Tα are contractible in E-theory, i.e., for
any C∗-algebra B the groups E(Tα, B), E(D,B), E(B, Tα) and E(B,D) are
trivial.

Proof. Set D+ = D/C0((−∞, 0), A). The exact sequence 0 → C0(R+, A) →
D+ → A∞ → 0 is an asymptotic morphism ϕ from A∞ to A.
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Note that for every C∗-algebra B, the identity element of the ring E(B,B)
is given by the asymptotic morphism associated with the exact sequence
0→ C0(R+, B)→ C(R+ ∪ {+∞}, B)→ B → 0.

We have a commuting diagram

0→ C0(R+, A) → C(R+ ∪ {+∞}, A) → A → 0

β

y y h

y
0→ C0(R+, A) → D+ → A∞ → 0

h′
y y id

y
0→ C0(R+, A∞)→ C(R+ ∪ {+∞}, A∞)→ A∞ → 0

where β : C0(R+, A) → C0(R+, A) is given by (β(f))(t) = αt(f(t)) for
every continuous function f : R+ → A and h′ : C0(R+, A) → C0(R+, A∞)
is given by (h′(f))(t) = ht(f(t)) for every continuous function f : R+ →
A (recall that ht = α−t∞ ◦ h). As β is homotopic to the identity among
C0(R+)-linear endomorphisms of C0(R+, A), the compositions h∗(ϕ) defines
the identity element of E(A,A); as h′ is homotopic to the map f 7→ h ◦ f
among C0(R+)-linear homomorphisms of C0(R+, A) into C0(R+, A∞), h∗(ϕ)
defines the identity element of E(A∞, A∞).

It follows from the six term exact sequence of E-theory that D is E-
contractible. By Connes’ analogue of the Thom isomorphism it follows
that DoR is E-contractible and by Theorem 3.5, Tα is also E-contractible.
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