TOEPLITZ ALGEBRAS ASSOCIATED WITH ENDOMORPHISMS AND PIMSNER-VOICULESCU EXACT SEQUENCES

M. KHOSHKAM AND G. SKANDALIS

Let A be a C^* -algebra and α a *-endomorphism of A. The analogue of Pimsner-Voiculescu exact sequences are obtained for the pair (A, α) . We prove that the corresponding Toeplitz algebra remains KK-equivalent to A.We also consider the situation where a semigroup $(\alpha^t)_{t \in \mathbb{R}_+}$ of *-endomorphisms is acting on A and formulate similar exact sequences. In this part we use the language of Connes-Higson E-theory.

Introduction.

One of the most celebrated results in the K-theory of C^* -algebras is the exact sequence proved by M. Pimsner and D. Voiculescu ([10]). This sequence allows one to compute the K-groups of a crossed product C^* -algebra $A \rtimes_{\alpha} \mathbb{Z}$, from a six term exact sequence involving K-groups of A, obtained from the K-theory sequence associated with an extension of $A \rtimes_{\alpha} \mathbb{Z}$ by $A \otimes K(H)$ where $\alpha \in \text{Aut}(A)$. This extension referred to as the generalized Toeplitz extension, is given by a C^* -algebra denoted by \mathcal{T}_{α} , called the Toeplitz algebra associated with the pair (A, α) . Pimsner and Voiculescu proved that the natural inclusion of A in \mathcal{T}_{α} induces an isomorphism at the level of Kgroups. This allows one to obtain a six term exact sequence involving only the K-groups of A and the crossed product $A \rtimes_{\alpha} \mathbb{Z}$. Later, in [5], using a generalization of Connes' "Thom isomorphism", T. Fack and G. Skandalis obtained the same exact sequence for KK-groups.

In this article we are concerned with extending Pimsner Voiculescu Exact Sequence to the situation where α is an Endomorphism. Our first task will be to define an appropriate notion of the Toeplitz algebra and an extension from which the K-theory sequence can be obtained. It is proved that this generalized Toeplitz algebra is still KK-equivalent to A. We then obtain similar results in the case of semigroups (indexed by \mathbb{R}_+) of endomorphisms.

While this work was almost finished, we received a remarkable preprint by Mihai Pimsner ([9]), who considers the same Toeplitz algebra and proves the same extension and KK-theory results as ours in a much more general situation than that of a single endomorphism: Pimsner considers a Hilbert A-module E which is 'generating' in that sense that the closed ideal spanned by the scalar products $\langle x, y \rangle$, $x, y \in E$ is A itself and a morphism φ from A into $\mathcal{L}(E)$. An endomorphism is then just the particular case E = A and $\varphi(A) \subset A = \mathcal{K}(A) \subset \mathcal{L}(A) = \mathcal{M}(A)^1$.

We think however that our paper may help understanding Pimsner's more general and interesting point of view. Moreover, our results may be used to give an alternate proof of Pimsner's (when $\varphi(A) \subset \mathcal{K}(E)$). Indeed, the condition on E means that $\mathcal{K}(E)$ and A are Morita equivalent; hence $\mathcal{K}(H) \otimes$ $\mathcal{K}(E)$ is isomorphic to $\mathcal{K}(H) \otimes A$ (at least in the separable case). We then get a morphism from $\mathcal{K}(H) \otimes A$ into itself which brings us to our case.

The organization of this paper is as follows.

— In Section 1, the Toeplitz algebra \mathcal{T}_{α} for a pair (A, α) with $\alpha \in \text{End}(A)$ is defined and the basic properties are established. In particular, we show that \mathcal{T}_{α} is a full corner of a crossed product. This will be useful in realization of certain semigroup C^* -algebras.

— In Section 2, we deal with KK-groups and construction of an invertible element in the group $KK(A, \mathcal{T}_{\alpha})$.

— Section 3 is concerned with extending our results of Sections (1) and (2) to a semigroup $(\alpha_t)_{t \in \mathbb{R}^+}$ of endomorphisms of a C^* -algebra A. An appropriate notion of Toeplitz algebra is defined and the corresponding extension is formulated. In the continuous case, the Toeplitz algebra is K-Theoretically trivial.

One possible application for these results is in the study of semigroup C^* algebras ([3]). From the basic theory if S is a simple inverse semigroup, then it has a decomposition into a type of semi-direct product (known as Bruck Reilly product) of a group G with the bicyclic semigroup C. The action of C on G is given by an endomorphism α of G. It can be proved that $C^*(S)$ the C^* -algebra of S is *-isomorphic to the Toeplitz algebra associated with the pair $(C^*(G), \alpha)$. These ideas will be pursued elsewhere.

Finally, we point out that in ([4]), Ruy Excel obtains a generalization of Pimsner-Voiculescu Exact Sequence. But he considers a different situation dealing with ideals and C^* -algebras equipped with an action of S. The only overlap is that we both obtain Pimsner Voiculescu Exact Sequence as a special case. However, our methods are independent.

¹Even in that case, our Toeplitz algebra differs slightly from Pimsner's. This will be explained at the end of the first section.

1. The Toeplitz algebra \mathcal{T}_{α} .

Notation. Recall that if A is a C^* -algebra, E, F are Hilbert A-modules, $x \in E$, and $y \in F$, we denote by $\theta_{x,y} : F \to E$ the operator $z \mapsto x\langle y, z \rangle$. An operator from F to E is said to be compact if it belongs to the closure $\mathcal{K}(F, E)$ of the vector space spanned by $\theta_{x,y}$ for $x \in E, y \in F$.

Let A be a C^* -algebra and α an endomorphism of A. Let \mathcal{H}_A be the Hilbert A-module $\ell^2(\mathbb{N}, A)$, i.e., the set of sequences $(x_n)_{n \in \mathbb{N}}$ such that the series $\sum_{n \in \mathbb{N}} x_n^* x_n$ is norm convergent.

Let $S \in \mathcal{L}(\mathcal{H}_A)$ be the forward shift: i.e., $S((x_n)_{n \in \mathbb{N}}) = (y_n)_{n \in \mathbb{N}} \in \mathcal{H}_A$ where, for $n \neq 0$, $y_n = x_{n-1}$ and $y_0 = 0$.

Define the faithful *-representation π_{α} of A in \mathcal{H}_A setting for $a \in A$ and $(x_n)_{n \in \mathbb{N}} \in \mathcal{H}_A$

$$\pi_{\alpha}(a)((x_n)_{n\in\mathbb{N}}) = (\alpha^n(a)x_n)_{n\in\mathbb{N}} \in \mathcal{H}_A.$$

For all $a \in A$, $\pi_{\alpha}(a)S = S\pi_{\alpha}(\alpha(a))$. It follows that the closed vector span of $\{S^n\pi_{\alpha}(a)S^{*m} : m, n \in \mathbb{N}, a \in A\}$ is a C*-subalgebra of $\mathcal{L}(\mathcal{H}_A)$.

Definition 1.1. The C^* -subalgebra of $\mathcal{L}(\mathcal{H}_A)$ generated by $\{S^n \pi_\alpha(a) S^{*m} : m, n \in \mathbb{N}, a \in A\}$ is denoted by \mathcal{T}_α and is called the Toeplitz algebra associated with (A, α) . We denote by d_α or just d the morphism π_α as a morphism from A to \mathcal{T}_α .

If A is unital and $\alpha(1) = 1$, then $\pi_{\alpha}(1)$ is the identity element of $\mathcal{L}(\mathcal{H}_A)$, thus $S \in \mathcal{T}_{\alpha}$ and \mathcal{T}_{α} is the C^{*}-subalgebra of $\mathcal{L}(\mathcal{H}_A)$ generated by S and $d_{\alpha}(A)$. In general, let \tilde{A} be the C^{*}-algebra obtained from A by adjoining an identity. Let $\tilde{\alpha} : \tilde{A} \to \tilde{A}$ be the unital extension of α to \tilde{A} . Then \mathcal{T}_{α} sits in $\mathcal{T}_{\tilde{\alpha}}$ as a two sided ideal.

The construction of the Toeplitz algebra \mathcal{T}_{α} satisfies the following naturality. Let A, and B be C^* -algebras with endomorphisms α and β respectively. To any *-homomorphism $\varphi : A \to B$ such that $\varphi \circ \alpha = \beta \circ \varphi$ there corresponds a *-homomorphism $\tau_{\varphi} : \mathcal{T}_{\alpha} \to \mathcal{T}_{\beta}$ given by $\tau_{\varphi}(S^n d_{\alpha}(a)S^{*m}) = S^n d_{\beta}(\varphi(a))S^{*m}$.

- If A and B are unital and $\varphi(1) = 1$, we have an identification $\mathcal{H}_A \otimes_A B \cong \mathcal{H}_B$ thus a morphism $\mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_B)$ which maps \mathcal{T}_{α} into \mathcal{T}_{β} .

– In particular, let $\varepsilon : A \to \mathbb{C}$ be the morphism with kernel A. Then τ_{ε} is a morphism from $\mathcal{T}_{\tilde{\alpha}}$ to the Toeplitz algebra \mathcal{T} associated with the identity morphism of \mathbb{C} whose kernel is \mathcal{T}_{α} .

- To prove the existance of the morphism τ_{φ} in the general case, extend φ to a unital morphism $\tilde{\varphi}: \tilde{A} \to \tilde{B}$; the corresponding morphism $\tau_{\tilde{\varphi}}: \mathcal{T}_{\tilde{\alpha}} \to \mathcal{T}_{\tilde{\beta}}$ maps $\mathcal{T}_{\alpha} \subset \mathcal{T}_{\tilde{\alpha}}$ into $\mathcal{T}_{\beta} \subset \mathcal{T}_{\tilde{\beta}}$.

Let us explore the structure of the Toeplitz algebra \mathcal{T}_{α} :

Let $a, b \in A$ and $n, m \in \mathbb{N}$; let $\xi, \eta \in \mathcal{H}_A$ be the elements defined by $\xi(n) = a, \ \xi(k) = 0$ for $k \neq n, \ \eta(m) = b$ and $\eta(k) = 0$ for $k \neq m$. Then, $\theta_{\xi,\eta} = S^n d_\alpha(ab^*)(1 - SS^*)S^{*^m} \in \mathcal{T}_\alpha$. Since the elements of the above form span $\mathcal{K}(\mathcal{H}_A)$, it follows that $\mathcal{K}(\mathcal{H}_A) \subset \mathcal{T}_\alpha$. As $\mathcal{T}_\alpha \subset \mathcal{L}(\mathcal{H}_A) = \mathcal{M}(\mathcal{K}(\mathcal{H}_A))$ it follows that $\mathcal{K}(\mathcal{H}_A) = \mathcal{K}(H) \otimes A$ is contained in \mathcal{T}_α as an essential ideal.

We next "compute" the quotient $\mathcal{T}_A/\mathcal{K}(\mathcal{H}_A)$:

Let $(A_n)_{n\in\mathbb{N}}$ be the sequence of C^* -algebras with $A_n = A$ for every $n \in \mathbb{N}$. For $m \geq n$ set $\varphi_{m,n} = \alpha^{m-n} : A_n \to A_m$. Let $A_\infty = \lim A_n$ be the direct limit C^* -algebra. Let $h_n : A \to A_\infty$ be the canonical map from $A = A_n$ to the direct limit. Define $\alpha_\infty : A_\infty \to A_\infty$ by setting $\alpha_\infty(h_n(x)) = h_n(\alpha(x))$ for $x \in A$. This is compatible with $\varphi_{m,n}$'s and extends to A_∞ . Since $\alpha_\infty \circ h_n = h_n \circ \alpha = h_n \circ \varphi_{n,n-1} = h_{n-1}$ it follows that α_∞ is an automorphism of A_∞ (and $\alpha_\infty^{-1} \circ h_n = h_{n+1}$).

We set $h = h_0$. The algebra A_{∞} admits the following abstract characterization.

Proposition 1.2. We keep the above notation. Let B be a C^{*}-algebra, $\sigma : A \to B$ a *-homomorphism and β an automorphism of B such that $\sigma \circ \alpha = \beta \circ \sigma$. Then there exists a unique *-homomorphism $\sigma_{\infty} : A_{\infty} \to B$ such that $\sigma_{\infty} \circ \alpha_{\infty} = \beta \circ \sigma_{\infty}$ and $\sigma_{\infty} \circ h = \sigma$. Moreover, A_{∞} and α_{∞} are uniquely determined by these conditions.

Proof. If $\sigma_{\infty} : A_{\infty} \to B$ is a *-homomorphism satisfying the above conditions, then $\beta^n \circ \sigma_{\infty} \circ h_n = \sigma_{\infty} \circ \alpha_{\infty}^n \circ h_n = \sigma_{\infty} \circ h = \sigma$, whence $\sigma_{\infty} \circ h_n = \beta^{-n} \circ \sigma$, which shows the uniqueness of σ_{∞} .

Define $\sigma_m = \beta^{-m} \circ \sigma : A \to B$. If $m \ge n$, then

$$\sigma_m \circ \varphi_{m,n} = \sigma_m \circ \alpha^{m-n} = \beta^{-m} \circ \sigma \circ \alpha^{m-n}$$
$$= \beta^{-m} \circ \beta^{m-n} \circ \sigma = \beta^{-n} \circ \sigma = \sigma_n$$

By the universal property of direct limit there exists a *-homomorphism $\sigma_{\infty} : A_{\infty} \to B$. Moreover, for all n we have $\sigma_n \circ \alpha = \beta \circ \sigma_n$, hence $\sigma_{\infty} \circ \alpha_{\infty} = \beta \circ \sigma_{\infty}$.

Let D be a C^* -algebra with an automorphism δ , and let $j : A \to D$ be a *-homomorphism such that $j \circ \alpha = \delta \circ j$. Assume that if B is a C^* -algebra, $\sigma : A \to B$ a *-homomorphism and β an automorphism of B such that $\sigma \circ \alpha = \beta \circ \sigma$, then there exists a unique *-homomorphism $\sigma' : D \to B$ such that $\sigma' \circ j = \sigma$ and $\sigma' \circ \delta = \beta \circ \sigma'$. Then there exist (unique) *homomorphisms $I : D \to A_{\infty}$ and $J : A_{\infty} \to D$ intertwining δ with α_{∞} and such that $h \circ I = j$ and $j \circ J = h$. The uniquness statements imply that $I \circ J = \mathrm{id}_{A_{\infty}}$ and $J \circ I = \mathrm{id}_D$, whence D is canonically *-isomorphic with A_{∞} . It follows from this proposition that the construction of the pair $(A_{\infty}, \alpha_{\infty})$ is functorial: Let B be another C^* -algebra endowed with an endomorphism β . To any *-homomorphism $\varphi : A \to B$ such that $\varphi \circ \alpha = \beta \circ \varphi$ there corresponds a *-homomorphism $\varphi_{\infty} : A_{\infty} \to B_{\infty}$ such that $\varphi_{\infty} \circ \alpha_{\infty} = \beta_{\infty} \circ \varphi_{\infty}$. In particular, let $\tilde{\alpha}$ be the unital endomorphism of \tilde{A} extending α . The corresponding inductive limit C^* -algebra is the algebra $\widetilde{A_{\infty}}$ obtained by adjoining a unit to A_{∞} endowed with the unital automorphism $\widetilde{\alpha_{\infty}}$ extending α_{∞} .

In what follows, we consider A_{∞} as a C^* -subalgebra of $A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}$.

Corollary 1.3. Assume that A is unital and that $\alpha(1) = 1$. Let B be a unital C^* -algebra, $\sigma : A \to B$ a unital *-homomorphism and v a unitary in B such that $\sigma(\alpha(x)) = v\sigma(x)v^*$, for all $x \in A$. Then there exists a unique *-homomorphism $\hat{\sigma} : A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z} \to B \rtimes_{\beta} \mathbb{Z}$ such that $\hat{\sigma}(d(x)) = \sigma(x)$ for all $x \in A$, and $\hat{\sigma}(u) = v$ where β is the inner automorphism of B associated with v and u is the unitary of $A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}$ defining the crossed-product.

Proof. Let $\sigma_{\infty} : A_{\infty} \to B$ be the associated *-homomorphism (Proposition 1.2). We have $\sigma_{\infty}(\alpha_{\infty}(x)) = v\sigma_{\infty}(x)v^*$, for all $x \in A_{\infty}$. By the universal property of the crossed product, there exists a unique *-homomorphism $\hat{\sigma} : A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z} \to B \rtimes_{\beta} \mathbb{Z}$ such that $\hat{\sigma}(x) = \sigma_{\infty}(x)$ for all $x \in A_{\infty}$ and $\hat{\sigma}(u) = v$.

Moreover, $h_n(x) = u^{-n}h(x)u^n$ for all $x \in A$ and $n \in \mathbb{N}$, so that $A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}$ is generated by h(A) and u; the uniqueness of $\hat{\sigma}$ follows immediately.

Corollary 1.4. There exists a unique *-homomorphism $\Psi : A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z} \to \mathcal{T}_{\alpha}/\mathcal{K}(\mathcal{H}_A)$ such that, for all $a \in A$, $\Psi(h(a))$ is the image of $d(a) \in \mathcal{T}_{\alpha}$ in the quotient and, for all $x \in A_{\infty}$, $\Psi(ux) = v\psi(x)$, where u is as above and v is the image of $S^* \in \mathcal{M}(\mathcal{T}_{\alpha})$ in $\mathcal{M}(\mathcal{T}_{\alpha}/\mathcal{K}(\mathcal{H}_A))$.

Proof. If A is unital and $\alpha(1) = 1$, this is an immediate consequence of Corollary 1.3.

In the non unital case, let $\tilde{\alpha}$ be the unital endomorphism of A extending α . By the unital case, we get a homomorphism $\tilde{\Psi} : \widetilde{A}_{\infty} \rtimes_{\widetilde{\alpha_{\infty}}} \mathbb{Z} \to \mathcal{T}_{\tilde{\alpha}}/\mathcal{K}(\mathcal{H}_{\tilde{A}})$. Note that moreover $A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}$ is the kernel of the map $\widetilde{A}_{\infty} \rtimes_{\widetilde{\alpha_{\infty}}} \mathbb{Z} \to C^*(\mathbb{Z})$ corresponding to the unital equivariant morphism $\widetilde{A}_{\infty} \to \mathbb{C}$ and that $\mathcal{T}_{\alpha}/\mathcal{K}(\mathcal{H}_{A})$ is the kernel of the morphism $\mathcal{T}_{\tilde{\alpha}}/\mathcal{K}(\mathcal{H}_{\tilde{A}}) \to \mathcal{T}/\mathcal{K}(\ell^2(\mathbb{N}))$. Since the diagram

$$\widetilde{A_{\infty}} \rtimes_{\alpha_{\infty}} \mathbb{Z} \xrightarrow{\Psi} \mathcal{T}_{\tilde{\alpha}} / \mathcal{K}(\mathcal{H}_{\tilde{A}})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C^{*}(\mathbb{Z}) \longrightarrow \mathcal{T}_{i} / \mathcal{K}(\mathcal{H})$$

is commutative, it follows that $\tilde{\Psi}(A_{\infty} \rtimes_{\alpha_{\infty}}) \subset \mathcal{T}_{\alpha}/\mathcal{K}(\mathcal{H}_A)$.

Furthermore, any $\Psi : A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z} \to \mathcal{T}_{\alpha}/\mathcal{K}(\mathcal{H}_{A})$ satisfying the conditions of the statement, extends to a morphism from $\widetilde{A_{\infty}} \rtimes_{\alpha_{\infty}} \mathbb{Z}$ to $\mathcal{T}_{\tilde{\alpha}}/\mathcal{K}(\mathcal{H}_{\tilde{A}})$ mapping u to v, from which the uniqueness of Ψ follows.

Theorem 1.5. The *-homomorphism Ψ of Corollary 1.4 is an isomorphism. In other words, we have an exact sequence

 $0 \to A \otimes \mathcal{K}(\mathcal{H}) \to \mathcal{T}_{\alpha} \to A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z} \to 0.$

Proof. For $x \in A$, $m, n \in \mathbb{N}$, the image of $S^m d(x) S^{*n}$ in $\mathcal{T}_{\alpha} / \mathcal{K}(\mathcal{H}_A)$ is $\Psi(u^m h(x) u^{*n})$, whence Ψ is onto.

To show that Ψ is one to one, we may assume that A is unital and $\alpha(1) = 1$. Let $(e_n)_{n \in \mathbb{N}}$ denote the canonical basis of $\ell^2(\mathbb{N})$ and set $b_n = e_n \otimes 1 \in \ell^2(\mathbb{N}, A) = \mathcal{H}_A$. The set of $T \in \mathcal{L}(\mathcal{H}_A)$ such that the sequence $\alpha_{\infty}^{-n} \circ h(\langle b_n, Tb_n \rangle)$ converges in norm in A_{∞} is a closed subspace of $\mathcal{L}(\mathcal{H}_A)$. Moreover, for all $x \in A$, $m, n, k \in \mathbb{N}$ we have $\alpha_{\infty}^{-k}(\langle b_k, S^m d(x) S^{*n} b_k \rangle) = \alpha_{\infty}^{-m} \circ h(x)$ if $k \geq m = n$ and to 0 otherwise. Consequently, $T \mapsto \lim_{n \to +\infty} \alpha_{\infty}^{-n} \circ h(\langle b_n, Tb_n \rangle)$ is a completely positive map $E : \mathcal{T}_{\alpha} \to A_{\infty}$, such that, for all $x \in A, m, n \in \mathbb{N}, E(S^m d(x) S^{*n}) = 0$ if $m \neq n$ and $E(S^m d(x) S^{*m}) = \alpha_{\infty}^{-m} \circ h(x)$. Clearly $\lim_{n \to +\infty} \alpha_{\infty}^{-n} \circ h(\langle b_n, Tb_n \rangle) = 0$ for all $T \in \mathcal{K}(\mathcal{H}_A)$, so that E defines a completely positive map $\Phi : \mathcal{T}_{\alpha}/\mathcal{K}(\mathcal{H}_A) \to A_{\infty}$. The composition $\Phi \circ \Psi$ is easily seen to be the conditional expectation $A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z} \mapsto A_{\infty}$ which is the identity on A_{∞} and maps $u^k x$ to 0 for all $x \in A_{\infty}$ and $k \neq 0$. As this conditional expectation is faithfull, Ψ is one to one.

When α is an automorphism of A we see immediately that A_{∞} identifies with A; therefore, the exact sequence of Theorem 1.5 is a generalization of the Toeplitz exact sequence of [10].

The following theorem characterizes the *-representations of the Toeplitz algebra \mathcal{T}_{α} . If π is a non degenerate *-representation of \mathcal{T}_{α} , then $\pi \circ d$ is a *representation σ of A and $T = \tilde{\pi}(S)$ is an isometry, where $\tilde{\pi}$ is the extension of π to the multiplier algebra. For all $a \in A$ we have $\sigma(a)T = T\sigma(\alpha(a))$. The converse is also true:

Theorem 1.6. Let B be a C^* -algebra and H be a Hilbert B-module. Let $\sigma : A \to \mathcal{L}(H)$ be a *-representation of A on H and let $T \in \mathcal{L}(H)$ be an isometry such that $\sigma(a)T = T\sigma(\alpha(a))$. Then, there exists a *-representation $\pi : T_{\alpha} \to \mathcal{L}(H)$ such that for all $x \in A$, $m, n \in \mathbb{N}$, $\pi(S^m d(x)S^{*n}) = T^m \sigma(x)T^{*n}$. Moreover, π is faithful if and only if the restriction of σ to the kernel of T^* is faithful.

Proof. Up to passing to \hat{A} , we may assume that A is a unital C^* -algebra and that α and σ are unital morphisms. We first treat the case $B = \mathbb{C}$.

320

Put $H_0 = \ker T^*$ and let H' be the closure in H of the union of ker T^{*n} $(n \in \mathbb{N})$. As $T^{*n}\sigma(a) = \sigma(\alpha^n(a))T^{*n}$, the subspaces H_0 and H' are invariant under $\sigma(A)$. Denote by σ_0 the restriction of σ to H_0 . Moreover, H' admits the orthogonal decomposition $H' = \bigoplus_{n \in \mathbb{N}} T^n H_0$, therefore there exists an isomorphism of Hilbert spaces $U : \mathcal{H}_A \otimes_{\sigma_0} H_0 \to H'$ such that $U((e_n \otimes a) \otimes x) = T^n \sigma_0(a)x = T^n \sigma(a)x$ for all $n \in \mathbb{N}$, $a \in A$, $x \in H_0$ (where $(e_n)_{n \in \mathbb{N}}$ is the canonical basis of $\ell^2(\mathbb{N})$). Also $U(S \otimes 1) = TU$ and for all $a, b \in A, n \in \mathbb{N}, x \in H_0$

$$U(d(a) \otimes 1)((e_n \otimes b) \otimes x) = U((e_n \otimes \alpha^n(a)b) \otimes x)$$

= $T^n \sigma(\alpha^n(a)b)x$
= $\sigma(a)T^n \sigma(b)x$
= $\sigma(a)U((e_n \otimes b) \otimes x).$

Since, the restriction of T to $H^{'\perp}$ is a unitary operator v; by Corollary 1.3, there exists a *-representation $\pi' : A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z} \to \mathcal{L}(H^{'\perp})$ such that $\pi' \circ h$ is the restriction of σ to $H^{'\perp}$ and $\pi'(u) = v$. Then, the *-representation $\pi : x \mapsto U(x \otimes 1)U^* + \pi' \circ q(x)$ satisfies the requirements of the theorem, where $q : \mathcal{T}_{\alpha} \to A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}$ is the composition of the quotient map $\mathcal{T}_{\alpha} \to \mathcal{T}_{\alpha}/\mathcal{K}(\mathcal{H}_A)$ with Ψ^{-1} of Corollary 1.4.

Now, as $\mathcal{K}(\mathcal{H}_A)$ is an essential ideal in \mathcal{T}_{α} , the representation π is faithful if and only if its restriction to $\mathcal{K}(\mathcal{H}_A)$ is faithful, which happens if and only if the representation $a \mapsto \pi(p \otimes a)$ is faithful, where $p \in \mathcal{K}$ is a minimal projection which, by a good choice of p means that $a \mapsto \pi(d(a)(1-SS^*)) = \sigma(a)(1-TT^*)$ is faithful.

We finally come to the general case $(B \neq \mathbb{C})$. We may embed $\mathcal{L}(H)$ in some $\mathcal{L}(E)$ where E is a Hilbert space. Then, by the case $B = \mathbb{C}$, there exists a *-representation $\pi : \mathcal{T}_{\alpha} \to \mathcal{L}(E)$ whose image is obviously contained in $\mathcal{L}(H) \subset \mathcal{L}(E)$.

We end this section with a theorem showing that \mathcal{T}_{α} is a full corner of a crossed product. Let $C_b(\mathbb{Z}, A)$ be the C^* -algebra of norm bounded sequences $(a_n)_{n\in\mathbb{Z}}$ of elements of A under pointwise operations and infinity norm. For each $p \in \mathbb{Z}$ let $j_p : A \to C_b(\mathbb{Z}, A)$ be the morphism such that $j_p(a)$ is the sequence whose n^{th} term is zero if n < p and $\alpha^{n-p}(a)$ if $n \ge p$. Let D be the C^* -subalgebra of $C_b(\mathbb{Z}, A)$ generated by the elements $j_p(a)$ for $a \in A$ and $p \in \mathbb{Z}$. The shift on $C_b(\mathbb{Z}, A)$ induces an automorphism β of D such that $\beta \circ j_p = j_{p-1}$, so that D is the smallest subalgebra of $C_b(\mathbb{Z}, A)$ containing $j_0(A)$ and invariant under the shift.

Lemma 1.7. The C^* -subalgebra $C_0(\mathbb{Z}, A)$ of $C_b(\mathbb{Z}, A)$ consisting of the sequences vanishing at infinity is contained in D as an essential ideal. There

is a *-isomorphism $\varphi : D/C_0(\mathbb{Z}, A) \to A_\infty$ such that $\varphi \circ q \circ j_0 = h$ and $\varphi \circ q \circ \beta = \alpha_\infty \circ \varphi \circ q$, where $q : D \to D/C_0(\mathbb{Z}, A)$ is the quotient map.

Proof. For $a \in A$ and $p \in \mathbb{Z}$, the only nonzero term of the sequence $j_p(a) - j_{p+1}(\alpha(a))$ is a in p^{th} position. Consequently $C_0(\mathbb{Z}, A) \subset D$ and as $D \subset C_b(\mathbb{Z}, A) = \mathcal{M}(C_0(\mathbb{Z}, A)), C_0(\mathbb{Z}, A)$ is contained in D as an essential ideal.

Note that D is the inductive limit of the algebras $D_p = C_0(\mathbb{Z}, A) + j_p(A)$. Therefore, a bounded sequence $(a_n)_{n\in\mathbb{Z}}$ is in D, if and only if, $\lim_{n\to\infty} ||a_n|| = 0$ and, for every $\varepsilon > 0$, there exists $n \in \mathbb{Z}$ such that, for every $m \in \mathbb{N}$, $||a_{n+m} - \alpha^m(a_n)|| \le \varepsilon$.

Moreover, for every $p \in \mathbb{Z}$, let $\varphi_p : D \to A_\infty$ be the map $(a_n)_{n \in \mathbb{Z}} \mapsto \alpha_\infty^{-p} \circ h(a_p)$. Clearly $\varphi_p \circ j_k = \alpha_\infty^{-k}$ if $p \geq k$. Therefore, for all $x \in D$ the sequence $\varphi_p(x)$ converges to some element $\varphi(x)$, when $p \to +\infty$. Obviously, φ is a *-homomorphism whose kernel contains $C_0(\mathbb{Z}, A)$ and whose image is invariant under α_∞ and contains h(A); therefore ψ is surjective. Let $x = (a_n)_{n \in \mathbb{Z}} \in \ker \varphi$. For every ε , there exists $n \in \mathbb{Z}$ such that for every $m \in \mathbb{N}$, $||a_{n+m} - \alpha^m(a_n)|| \leq \varepsilon$. Then

$$\begin{aligned} \|h(a_n)\| &= \|\alpha_{\infty}^{-n} \circ h(a_n)\| \\ &= \|\alpha_{\infty}^{-n} \circ h(a_n) - \varphi(x)\| \\ &= \lim_{m \to +\infty} \|\alpha_{\infty}^{-n-m} \circ h(\alpha^m(a_n) - a_{n+m})\| \le \varepsilon. \end{aligned}$$

Therefore $\limsup_{m \to +\infty} \|\alpha^m(a_n)\| \leq \varepsilon$, whence $\limsup_{m \to +\infty} \|a_{n+m}\| \leq 2\varepsilon$. It follows that ker $\varphi = C_0(\mathbb{Z}, A)$; therefore φ induces the desired isomorphism.

Theorem 1.8. Let $v \in \mathcal{L}(\ell^2(\mathbb{Z}, A))$ be the backward shift: i.e., $v((x_n)_{n \in \mathbb{Z}}) = (y_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}, A)$ where, for $y_n = x_{n+1}$. Moreover let $\rho : D \to \mathcal{L}(\ell^2(\mathbb{Z}, A))$ be the *-representation such that $\rho((a_n)_{n \in \mathbb{Z}})((x_n)_{n \in \mathbb{Z}}) = (a_n x_n)_{n \in \mathbb{Z}}$. The pair (ρ, v) is a covariant representation of (D, β) and the corresponding representation of $D \rtimes_\beta \mathbb{Z}$ is faithful. Identify $D \rtimes_\beta \mathbb{Z}$ with its image in $\mathcal{L}(\ell^2(\mathbb{Z}, A))$; the projection P of $\ell^2(\mathbb{Z}, A)$ onto $\ell^2(\mathbb{N}, A)$ is a multiplier of $D \rtimes_\beta \mathbb{Z}$ and $P(D \rtimes_\beta \mathbb{Z})P$ is the Toeplitz algebra \mathcal{T}_α ; it is a full corner in $D \rtimes_\beta \mathbb{Z}$.

Proof. It is clear that the pair (ρ, v) is a covariant representation of (D, β) . The restriction of the corresponding representation of $D \rtimes_{\beta} \mathbb{Z}$ to $C_0(\mathbb{Z}, A) \rtimes_{\beta} \mathbb{Z}$ is the canonical isomorphism of $C_0(\mathbb{Z}, A) \rtimes_{\beta} \mathbb{Z}$ with the algebra of compact operators in $\ell^2(\mathbb{Z}, A)$. As $C_0(\mathbb{Z}, A)$ is an essential ideal in $D, C_0(\mathbb{Z}, A) \rtimes_{\beta} \mathbb{Z}$ is an essential ideal in $D \rtimes_{\beta} \mathbb{Z}$ therefore the representation of $D \rtimes_{\beta} \mathbb{Z}$ associated with (ρ, v) is faithful.

As P is a multiplier of $\rho(D)$, it is a multiplier of $D \rtimes_{\beta} \mathbb{Z}$. Moreover, $(1 - P)\rho(D) \subset \mathcal{K}(\ell^2(\mathbb{Z}, A))$ so that $(1 - P)(D \rtimes \mathbb{Z}) \subset \mathcal{K}(\ell^2(\mathbb{Z}, A))$; it follows that

 $D \rtimes \mathbb{Z} = \mathcal{T}_{\alpha} + \mathcal{K}(\ell^2(\mathbb{Z}, A)); \text{ as } \mathcal{K}(\ell^2(\mathbb{N}, A)) \subset P(D \rtimes_{\beta} \mathbb{Z})P \text{ and } \mathcal{K}(\ell^2(\mathbb{N}, A)) \text{ is a full corner in } \mathcal{K}(\ell^2(\mathbb{Z}, A)), \text{ it follows that } P(D \rtimes_{\beta} \mathbb{Z})P \text{ is a full corner in } D \rtimes_{\beta} \mathbb{Z}.$

Now for all $m, n \in \mathbb{N}$, and $a \in A$, we have $v^{*m}\rho \circ j_0(a)v^n = P(v^{*m}\rho \circ j_0(a)v^n)P$ and acts on $\ell^2(\mathbb{N}, A)$ as $S^m d(a)S^{*n}$. It follows that $P(D\rtimes_\beta \mathbb{Z})P$ contains \mathcal{T}_{α} . Now $D\rtimes_\beta \mathbb{Z}$ is generated by $v^k\rho \circ j_p(a)$ where $p, k \in \mathbb{Z}$, $a \in A$. Moreover, if $n \in \mathbb{N}$, $\rho(j_{p-n}(a) - j_p(\alpha^n(a))) \in \mathcal{K}(\ell^2(\mathbb{N}, A)) \subset \mathcal{T}_{\alpha}$; it is enough to show that $P(v^k\rho \circ j_p(a))P \in \mathcal{T}_{\alpha}$ when $p \ge 0$ and $p-k \ge 0$. But $v^k\rho \circ j_p(a) = v^{k-p}\rho \circ j_0(a)v^p$ and the result follows.

2. KK-Groups.

In ([10]) it is proved that, when α is an automorphism, the canonical inclusion of A in \mathcal{T}_{α} induces an isomorphism at the K-theory level, and deduced a six term exact sequence computing the K-groups of a crossed-product by \mathbb{Z} . Here we prove that this holds in general, by showing that the same map considered as an element of the group $KK(A, \mathcal{T}_{\alpha})$ is invertible. As a consequence of this fact, we obtain a generalized version of Pimsner-Voiculescu exact sequence for endomorphisms.

Recall (cf. [6]) that if A and B are C^* -algebras, an element of KK(A, B)is given by the homotopy class of a triple (\mathcal{E}, π, F) , where \mathcal{E} is a $\mathbb{Z}/2\mathbb{Z}$ graded Hilbert B-module, $\pi : A \to \mathcal{L}(\mathcal{E})$ is a *-representation of A on $\mathcal{L}(\mathcal{E})$ as degree zero operators, and $F \in \mathcal{L}(\mathcal{E})$ has degree 1 such that for all $a \in A$, $[\pi(a), F] \in \mathcal{K}(\mathcal{E}), \ \pi(a)(F - F^*) \in \mathcal{K}(\mathcal{E}) \text{ and } \pi(a)(1 - F^2) \in \mathcal{K}(\mathcal{E}).$

Given a *-homomorphism $\varphi : A \to B$ we denote by $[\varphi]$ the element of KK(A, B) given by the class of $(B, \varphi, 0)$.

We keep the notation of the first section. In particular $d: A \to \mathcal{T}_{\alpha}$ is the embedding of A into \mathcal{T}_{α} . Set $\mathcal{E}^{(0)} = \ell^2(\mathbb{N}, A)$ and let $\mathcal{E}^{(1)} = \ell^2(\mathbb{N} \setminus \{0\}, A)$ be the subspace of $\mathcal{E}^{(0)}$ with zero in the first coordinate. Let $Q: \mathcal{E}^{(0)} \to \mathcal{E}^{(1)}$ be the orthogonal projection. Let \mathcal{E} denote the $\mathbb{Z}/2\mathbb{Z}$ -graded Hilbert A-module $\mathcal{E}^{(0)} \oplus \mathcal{E}^{(1)}$.

By Theorem 1.6, there is a *-representation of $\pi^- : \mathcal{T}_{\tilde{\alpha}} \to \mathcal{L}(\mathcal{E}^{(1)})$ such that $\pi^- \circ d$ is the restriction of d to the invariant subspace $\mathcal{E}^{(1)}$ of $\mathcal{E}^{(0)}$ and $\pi^-(S) = QSQ = SQ$. In fact $\pi^-(x) = S\tau_{\alpha}(x)S^*$ where $\tau_{\alpha} : \mathcal{T}_{\alpha} \to \mathcal{T}_{\alpha}$ is the map induced by $\alpha : A \to A$. Let $\pi : \mathcal{T}_{\alpha} \to \mathcal{L}(\mathcal{E})$ be the *-representation such that for $x \in \mathcal{T}_{\alpha}, \xi \in \mathcal{E}^{(0)}$ $\eta \in \mathcal{E}^{(1)}$ we have $\pi(x)(\xi, \eta) = (x\xi, \pi^-(x)\eta)$. Let $F \in \mathcal{L}(\mathcal{E})$ be defined for $\xi \in \mathcal{E}^{(0)}$ $\eta \in \mathcal{E}^{(1)}$ by $F(\xi, \eta) = (\eta, Q\xi)$.

Lemma 2.1. The triple (\mathcal{E}, π, F) defines an element of $KK(\mathcal{T}_{\alpha}, A)$.

Proof. Clearly $F = F^*$ and $1 - F^2$ is the projection $(\xi, \eta) \mapsto ((1 - Q)\xi, \eta)$, so that $(1 - F^2)\mathcal{T}_{\alpha} \subset \mathcal{K}(\mathcal{E})$. If $a \in A$, then $\pi \circ d(a)$ and F commute. Moreover

$$(F\pi(S) - \pi(S)F)(\xi,\eta) = (S\eta - S\eta, QS\xi - SQ\xi) = (0, S(1-Q)\xi), \text{ so that} (F\pi(S) - \pi(S)F)\mathcal{T}_{\alpha} \subset \mathcal{K}(\mathcal{E}).$$

Definition 2.2. We denote by [d] the class of the morphism d in $KK(A, \mathcal{T}_{\alpha})$ and by β the class of the triple (\mathcal{E}, π, F) in $KK(\mathcal{T}_{\alpha}, A)$.

Theorem 2.3. We have $[d] \otimes_{\mathcal{T}_{\alpha}} \beta = 1_A \in KK(A, A)$ and $\beta \otimes_A [d] = 1_{\mathcal{T}_{\alpha}} \in$ $KK(\mathcal{T}_{\alpha},\mathcal{T}_{\alpha})$. In particular, the C^{*}-algebras A and \mathcal{T}_{α} are KK-equivalent.

Proof. Here the Kasparov products are easily computed: We have $[d] \otimes_{\mathcal{T}\alpha} \beta =$ $d^*(\beta)$ and $\beta \otimes_A [d] = d_*(\beta)$. Since $\pi \circ d$ commutes with F and F is a self adjoint partial isometry it follows that the class of $(\mathcal{E}, \pi \circ d, F)$ coincides with the class of $((1-F^2)\mathcal{E}, i, 0)$ where i is the restriction of $\pi \circ d$ to $(1-F^2)\mathcal{E} = A$ and is therefore given by the identity map $A \to A = \mathcal{K}(A)$, hence $d^*(\beta) = 1_A$.

Now $d_*(\beta)$ is given by (\mathcal{F}, σ, G) where $\mathcal{F} = \mathcal{E} \otimes_A \mathcal{T}_{\alpha}, \ G = F \otimes 1$ and, for all $x \in \mathcal{T}_{\alpha}, \ \sigma(x) = \pi(x) \otimes 1$. Therefore $\mathcal{F}^{(0)} = \ell^2(\mathbb{N}, \mathcal{T}_{\alpha}), \ \mathcal{F}^{(1)} =$ $\ell^2(\mathbb{N} \setminus \{0\}, \mathcal{T}_{\alpha}), \sigma = \sigma^{(0)} \oplus \sigma^{(1)} \text{ where } \sigma^{(0)} : \mathcal{T}_{\alpha} \to \mathcal{L}(\ell^2(\mathbb{N}, \mathcal{T}_{\alpha})) \text{ and } \sigma^{(1)} :$ $\mathcal{T}_{\alpha} \to \mathcal{L}(\ell^2(\mathbb{N} \setminus \{0\}, \mathcal{T}_{\alpha}))$ are defined by $\sigma^{(i)}(d(a))\xi(n) = d(\alpha^n(a))\xi(n)$ for $a \in A$ and $\sigma^{(i)}(S)\xi(n) = \xi(n-1)$ if n > i and $\sigma^{(i)}(S)\xi(i) = 0$ (i = 0, 1).

For each $t \in [0, \frac{\pi}{2}]$ let $T_t \in \mathcal{L}(\mathcal{F}^{(0)})$ be defined by

$$(T_t\xi)(n) = \begin{cases} \xi_{n-1} & \text{if } n \ge 2\\ (\cos t)\xi_0 & \text{if } n = 1\\ (\sin t)S\xi_0 & \text{if } n = 0. \end{cases}$$

Then,

$$(T_t^*\xi)(n) = \begin{cases} \xi_{n+1} & \text{if } n \ge 1\\ (\cos t)\xi_1 + (\sin t)S^*\xi_0 & \text{if } n = 0. \end{cases}$$

One checks immediately that T_t is an isometry such that $\sigma^{(0)}(d(a))T_t =$ $T_t \sigma^{(0)}(d(\alpha(a)))$ for every $a \in A$. Hence, by Theorem 1.6, there exists a *representation $\sigma_t^{(0)} : \mathcal{T}_{\alpha} \to \mathcal{L}(\mathcal{F}^{(0)})$ defined by $\sigma_t(S) = T_t$ and $\sigma_t^{(0)}(d(a)) = \sigma^{(0)}(d(a))$. Moreover, for every $x \in \mathcal{T}_{\alpha}$, $\sigma_t^{(0)}(x) - \sigma^{(0)} \in \mathcal{K}(\mathcal{F}^{(0)})$. Consequentely, $(\mathcal{F}, \sigma_t^{(0)} \oplus \sigma^{(1)}, G)$ is a homotopy connecting the elements $d_*(\beta)$ and $(\mathcal{F}, \sigma_{\pi/2}^{(0)} \oplus \sigma^{(1)}, G)$.

Now $\mathcal{F}^{(0)}$ admits the decomposition $\mathcal{F}^{(0)} = \mathcal{T}_{\alpha} \oplus \mathcal{F}^{(1)}$ which is invariant under $\sigma_{\pi/2}^{(0)}$. It follows that $(\mathcal{F}, \sigma_{\pi/2}^{(0)} \oplus \sigma^{(1)}, G)$ is the sum of $1_{\mathcal{I}_{\alpha}}$ and a degenerate element. We conclude that $d_*(\beta) = 1_{\mathcal{T}_{\alpha}}$.

Lemma 2.4. Let $\theta : A \to \mathcal{T}_{\alpha}$ be defined by $\theta(a) = d(a)(1 - SS^*)$. Then, $[\theta] \otimes_{\mathcal{T}_{\alpha}} \beta = 1_A - [\alpha] \in KK(A, A).$

Proof. The element $[\theta] \otimes_{\mathcal{T}\alpha} \beta = \theta^*(\beta)$ is defined by $(\mathcal{E}, \pi \circ \theta, F)$. Given $\xi \in \mathcal{E}^{(0)} = \ell^2(\mathbb{N}, A)$ we have $(\pi \circ \theta(a)\xi)(n) = \pi(d(a)(1 - SS^*))\xi(n) = 0$ if $n \neq 0$ and $(\pi \circ \theta(a)\xi)(0) = a\xi(0)$. On the other hand, if $\xi \in \mathcal{E}^{(1)} = \ell^2(\mathbb{N} \setminus \{0\}, A)$, then $(\pi \circ \theta(a)\xi)(n) = \pi(d(a)(1 - SS^*))\xi(n) = 0$ if $n \neq 1$ and $(\pi \circ \theta(a)\xi)(1) = \alpha(a)\xi(1)$. Hence, up to a degenerate module $\theta^*(\beta)$ is represented by the triple $(\mathcal{E}', \mu, 0)$ where $\mathcal{E}'^{(0)} = \mathcal{E}'^{(1)} = A$ and, for $a \in A$, $\mu(a)$ is given by the matrix $= \begin{pmatrix} a & \sigma \\ 0 & \alpha(a) \end{pmatrix}$.

Using exactness of Connes-Higson's *E*-theory ([2]), Theorem 2.3 to replace \mathcal{T}_{α} by *A* in the exact sequence of *E*-groups associated with the extension of *C*^{*}-algebras of Theorem 1.5 and Lemma 2.4 to compute the map from E(D, A) (resp. E(A, D)) into itself, we get:

Theorem 2.5. Let A, α , and α_{∞} be as in 1.6. Then we have exact sequences of Connes-Higson's E-groups

$$E(D,A) \xrightarrow{1-\alpha_*} E(D,A) \longrightarrow E(D,A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z})$$

$$\uparrow \qquad \qquad \downarrow$$

$$E_1(D,A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}) \longleftarrow E_1(D,A) \xrightarrow{1-\alpha_*} E_1(D,A)$$

and

$$E(A,D) \qquad \stackrel{1-\alpha^*}{\longleftarrow} E(A,D) \longleftarrow E(A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z},D)$$

$$\downarrow \qquad \qquad \uparrow$$

$$E_1(A_{\infty} \rtimes_{\alpha \infty} \mathbb{Z},D) \longrightarrow E_1(A,D) \stackrel{1-\alpha^*}{\longrightarrow} E_1(A,D).$$

Remarks 2.6.

- (a) When α is an automorphism, we recover Pimsner-Voiculescu's exact sequences ([10]).
- (b) The same result holds of course with the " KK^{nuc} "-groups of [11] instead of E-groups.
- (c) We may compare the two Toeplitz extensions comming from α and α_{∞} . We get a diagram of the form:

$$E_{1}(D, A_{\infty} \rtimes_{\alpha \infty} \mathbb{Z}) \xrightarrow{h_{*}} E(D, A) \xrightarrow{1-\alpha_{*}} E(D, A) \xrightarrow{} E(D, A_{\infty} \rtimes_{\alpha \infty} \mathbb{Z})$$
$$\xrightarrow{h_{*}} h_{*} \downarrow \qquad f_{*} \downarrow \qquad$$

for which both top and bottom lines are exact. It follows in particular that h_* induces an isomorphism from the kernel of $1 - \alpha_*$ onto the kernel of $1 - \alpha_\infty_*$ and from the cokernel of $1 - \alpha_*$ onto the cokernel of $1 - \alpha_\infty_*$. Note that when $D = \mathbb{C}$, the group $E(D, A_\infty) = K_0(A_\infty)$ is the inductive limit of $(K_0(A), \alpha_*)$ and it is clear that h_* induces isomorphisms at these kernel and cokernel levels.

3. Semigroup of Endomorphisms.

In this section we define the Topelitz algebra associated with a semigroup of endomorphisms of a C^* -algebra A and formulate the corresponding Toeplitz extension.

By a semigroup of endomorphisms of a C^* -algebra A we mean a morphism $\alpha : t \mapsto \alpha^t$ from the (additive) monoid \mathbb{R}_+ to the monoid End(A) of endomorphisms of a A satisfying $\alpha^0 = id_A$ and $t \mapsto \alpha^t(a)$ is continuous for every $a \in A$. As α , is a morphism for all $s, t \in \mathbb{R}_+$, we have $\alpha^{t+s} = \alpha^t \circ \alpha^s$.

Note that we have:

Lemma 3.1. Let $(\alpha^t)_{t \in \mathbb{R}_+}$ be a semigroup of endomorphism of a C^* -algebra A. If α^t is an automorphism of A for some t > 0, then $\alpha^s \in \text{Aut}(A)$ for every $s \in \mathbb{R}_+$.

The continuous analogue of the Toeplitz algebra of Section 1 is defined as follows.

Let $\pi_{\alpha} : A \to \mathcal{L}(L^2(\mathbb{R}_+) \otimes A)$ be defined by $\pi_{\alpha}(a)\xi(t) = \alpha^t(a)\xi(t)$ for every $\xi \in L^2(\mathbb{R}_+) \otimes A = L^2(\mathbb{R}_+, A)$ and every $a \in A$. Let $S_t \in \mathcal{L}(L^2(\mathbb{R}_+) \otimes A)$ be defined by $(S_t\xi)(s) = \xi(s-t)$ if $s \ge t$ and $(S_t\xi)(s) = 0$ if s < t.

Clearly $(S_t)_{t \in \mathbb{R}_+}$ is a semigroup of isometries of $\mathcal{L}(L^2(\mathbb{R}_+))$. Moreover, for every $a \in A$ and every $t \in \mathbb{R}_+$ we have $\pi_{\alpha}(a)S_t = S_t\pi_{\alpha}(\alpha^t(a))$.

It follows that the integrals $\int_0^\infty \int_0^\infty S_s \pi_\alpha(a(s,t)) S_t^* \, ds dt$ where $(s,t) \mapsto a(s,t)$ is a continuous function from $\mathbb{R}_+ \times \mathbb{R}_+$ to A with compact support form a *-subalgebra of $\mathcal{L}(L^2(\mathbb{R}_+) \otimes A)$.

Definition 3.2. Let A and α be as above. The associated Toeplitz algebra, denoted by \mathcal{T}_{α} , is the closure in $\mathcal{L}(L^2(\mathbb{R}_+) \otimes A)$ of the algebra formed by the integrals

$$\int_0^\infty \int_0^\infty S_s \pi_\alpha(a(s,t)) S_t^* \, ds dt$$

where $(s,t) \mapsto a(s,t)$ from $\mathbb{R}_+ \times \mathbb{R}_+$ to A is continuous with compact support.

Remarks.

- (a) By density of continuous functions with compact support in L^1 -functions, for every $a \in L^1(\mathbb{R}_+ \times \mathbb{R}_+; A)$, $\int_0^{\infty} \int_0^{\infty} S_s^* \pi_{\alpha}(a(s,t)) S_t \, ds dt \in \mathcal{T}_{\alpha}$.
- (b) Let $b: t \mapsto b(t)$ be a continuous function from \mathbb{R}_+ to A with compact support; for $s, t \in \mathbb{R}^+$ set $a(s,t) = \alpha^t(b(s-t))$ when $t \leq \inf(1,s)$ and a(s,t) = 0 otherwise. Then

$$\int_0^\infty \int_0^\infty S_s \pi_\alpha(a(s,t)) S_t^* \, ds dt = \int_0^1 dt \left(\int_s^\infty S_s S_t^* \pi_\alpha(b(s-t)) \, ds \right)$$
$$= \int_0^\infty S_s \pi_\alpha(b(s)) \, ds.$$

It follows that $\int_0^\infty S_s \pi_\alpha(b(s)) ds \in \mathcal{T}_\alpha$. Clearly \mathcal{T}_α is the C*-subalgebra of $\mathcal{L}(L^2(\mathbb{R}_+) \otimes A)$ generated by these elements.

As in the case of a single endomorphism we have:

Proposition 3.3. The Toeplitz algebra \mathcal{T}_{α} contains the ideal of compact operators of $L^2(\mathbb{R}_+) \otimes A$.

Proof. Set $V = 1 - 2 \int_0^\infty e^{-t} S_t dt$. It is an isometry and the kernel of V^{*n} is formed by the functions $t \mapsto e^{-t}P$ where P is a polynomial of degree less than n. It follows that \mathcal{T}_{α} contains the elements $k\pi_{\alpha}(a)k'$ for every $k, k' \in \mathcal{K}(L^2(\mathbb{R}_+))$ and $a \in A$. Let $k \in \mathcal{K}(L^2(\mathbb{R}_+))$ and $a \in A$; by continuity of the mapping $t \mapsto \alpha^t(a)$ given $\varepsilon > 0$ there exists $\eta > 0$ such that $\|\alpha^t(a) - a\| < \varepsilon$ whenever $t \leq \eta$. But we can choose $x, y \in \mathcal{K}(L^2(\mathbb{R}_+))$ such that k = xyand x has support in $[0, \eta]$. It follows that $\|x\pi_{\alpha}(a)y - k \otimes a\| < \varepsilon$, whence $k \otimes a \in \mathcal{T}_{\alpha}$.

Next we show that \mathcal{T}_{α} is a full corner of an appropriate crossed product.

Let A_{∞} be the C^* -algebra as defined in section 1 corresponding to the endomorphism α^1 of A, and let $h : A \to A_{\infty}$ be the canonical map. Then α^1 induces an automorphism on A_{∞} which we denote by α_{∞}^1 . Since $\alpha^1 \circ \alpha^t = \alpha^t \circ \alpha^1$ each α^t induces an endomorphism, α_{∞}^t of the algebra A_{∞} . Hence, by Lemma 3.1 we obtain an action of \mathbb{R} on A_{∞} corresponding to the family $(\alpha_{\infty}^t)_{t \in \mathbb{R}_+}$ which will be denoted by α_{∞} .

Let $C_b(\mathbb{R}, A)$ be the C^* -algebra of bounded functions from \mathbb{R} to A. Let $D \subset C_b(\mathbb{R}; A)$ be the subalgebra of elements $a \in C_b(\mathbb{R}, A)$ such that $\lim_{t\to-\infty} \|a(t)\| = 0$, and for every $\varepsilon > 0$, there exists $t \in \mathbb{R}$ such that for every s > 0, $\|a(s+t) - \alpha^s(a(t))\| \leq \varepsilon$. Let $\beta : \mathbb{R} \to \operatorname{Aut}(D)$ be defined by $(\beta^t f)(s) = f(s-t)$. Clearly D contains $C_o(\mathbb{R}, D)$ as an ideal.

Lemma 3.4. There exists a *-isomorphism $\varphi : D/C_0(\mathbb{R}, A) \to A_\infty$ such that for every $a \in D$ we have $\varphi \circ q(a) = \lim_{t \to +\infty} \alpha_\infty^{-t} \circ h(a(t))$, where $q : D \to D/C_0(\mathbb{R}, A)$ is the quotient map.

Proof. It is easy to see that for every $a \in D$, the function $t \mapsto \alpha_{\infty}^{-t} \circ h(a(t))$ admits a limit when $t \to +\infty$. It follows that φ is well defined on the quotient. For each $a \in A$ let $\hat{a}(t) = \alpha^t(a)$. Then, $\hat{a} \in D$ and $\lim_{t \to +\infty} \alpha_{\infty}^{-t} \circ h(\hat{a}(t)) = h(a)$. It follows that φ is surjective.

Moreover, if $a \in \ker \varphi \circ q$, for every ε , there exists $t \in \mathbb{R}$ such that for every $s \in \mathbb{R}_+$, $||a(s+t) - \alpha^s(a(t))|| \leq \varepsilon$. Choose t such that ||h(a(t))|| = $||\alpha_{\infty}^{-t} \circ h(a(t)) - \varphi \circ h(a)|| \leq \varepsilon$. Therefore $\limsup_{s \to +\infty} ||\alpha^s(a(t))|| \leq \varepsilon$, whence $\limsup_{s \to +\infty} ||a(s+t)|| \leq 2\varepsilon$. It follows that $\ker \varphi \circ q = C_0(\mathbb{R}, A)$. Hence φ is an isomorphism. \Box

Theorem 3.5. Let $v_t \in \mathcal{L}(L^2(\mathbb{R}, A))$ be defined by $(v_t\xi)(s) = \xi(s+t)$. Moreover let $\rho: D \to \mathcal{L}(L^2(\mathbb{R}, A))$ be the *-representation such that $(\rho(a)\xi)(s) = a_s\xi_s$. The pair (ρ, v) is a covariant representation of (D, β) and the corresponding representation of $D\rtimes_{\beta}\mathbb{R}$ is faithful. Identify $D\rtimes_{\beta}\mathbb{R}$ with its image in $\mathcal{L}(L^2(\mathbb{R}, A))$; the projection P of $L^2(\mathbb{R}, A)$ onto $L^2(\mathbb{R}_+, A)$ is a multiplier of $D\rtimes_{\beta}\mathbb{Z}$ and $P(D\rtimes_{\beta}\mathbb{R})P$ is the Toeplitz algebra \mathcal{T}_{α} ; it is a full corner in $D\rtimes_{\beta}\mathbb{R}$.

Proof. It is clear that the pair (ρ, v) is a covariant representation of (D, β) . The restriction of the corresponding representation of $D \rtimes_{\beta} \mathbb{R}$ to $C_0(\mathbb{R}, A) \rtimes_{\beta} \mathbb{R}$ is the canonical isomorphism of $C_0(\mathbb{R}, A) \rtimes_{\beta} \mathbb{R}$ with the algebra of compact operators in $L^2(\mathbb{R}, A)$. As $C_0(\mathbb{R}, A)$ is an essential ideal in $D, C_0(\mathbb{R}, A) \rtimes_{\beta} \mathbb{R}$ is an essential ideal in $D \rtimes_{\beta} \mathbb{R}$ therefore the representation of $D \rtimes_{\beta} \mathbb{R}$ associated with (ρ, v) is faithful.

Let f be a continuous function on R such that f(t) = 1 if t < 0 and f(t) = 0 if t > 1. As f is a multiplier of D and $fD \subset C_0(\mathbb{R}, A)$, f defines a multiplier of $D \rtimes_{\beta} \mathbb{R}$ and $fD \rtimes_{\beta} \mathbb{R} \subset \mathcal{K}(L^2(\mathbb{R}, A))$. As (1 - P) is a multiplier of $\mathcal{K}(L^2(\mathbb{R}, A))$ and (1 - P) = (1 - P)f, it follows that P is a multiplier of $D \rtimes_{\beta} \mathbb{R}$ and $(1 - P)D \rtimes_{\beta} \mathbb{R} \subset \mathcal{K}(L^2(\mathbb{R}, A))$. As $\mathcal{K}(L^2(\mathbb{R}_+, A)) \subset P(D \rtimes_{\beta} \mathbb{R})P$, it follows that $P(D \rtimes_{\beta} \mathbb{R})P$ is a full corner in $D \rtimes_{\beta} \mathbb{R}$.

Let $D_0 \subset D$ be the set of $b \in D$ such that for all $u \geq 0$, $b(u) = \alpha^u(b(0))$. Let $(s,t) \mapsto a(s,t)$ be a continuous function from $\mathbb{R}_+ \times \mathbb{R}_+$ to A with compact support. Let $b : \mathbb{R}_+ \times \mathbb{R}_+ \to D_0$ be a function such that for every $s, t \in \mathbb{R}_+$, b(s,t)(0) = a(s,t). Then

$$\int_0^\infty \int_0^\infty v_s^* Pb(s,t) v_t \, ds dt \in P(D \rtimes_\beta \mathbb{R}) P$$

and acts on $L^2(\mathbb{R}_+, A)$ as

$$\int_0^\infty \int_0^\infty S_s \pi_\alpha(a(s,t)) S_t^* \, ds dt$$

It follows that $P(D \rtimes_{\beta} \mathbb{R})P$ contains \mathcal{T}_{α} .

Now $D\rtimes_{\beta}\mathbb{R}$ is generated by integrals over s,t of terms of the form $v_s\beta^t(a(s,t)) = v_{s-t}a(s,t)v_t$, where for $s,t \in \mathbb{R}$, $a(s,t) \in D_0$. Moreover, since $\cup\beta_t(D_o)$ is dense in D and $\beta_t(D_0)$ increases with t, we may assume t > 0 and $t \ge s$. Moreover $\int_0^{\infty} \int_{-\infty}^t v_{s-t}(1-P)b(s,t)v_t \, dsdt \in \mathcal{K}(L^2(\mathbb{R},A))$ and hence $P\left(\int_0^{\infty} \int_{-\infty}^t v_{s-t}b(s,t)v_t \, dsdt\right) P$ is the sum of

$$P\left(\int_0^\infty \int_{-\infty}^t v_{s-t}(1-P)b(s,t)v_t\,dsdt\right)P\in\mathcal{K}(L^2(\mathbb{R}_+,A))$$

and

$$\int_0^\infty \int_{-\infty}^t v_{s-t} Pb(s,t) v_t \, ds dt \in \mathcal{T}_\alpha$$

and the result follows.

Remark. Note that any isomorphism of $L^2(\mathbb{R}, A)$ with $L^2(\mathbb{R}_+, A)$ which is the identity on $L^2((k, +\infty); A)$ (for k large enough) obviously induces an isomorphism between $D \rtimes_{\beta} \mathbb{R}$ and \mathcal{T}_{α} .

Corollary 3.6. The quotient algebra $\mathcal{T}_{\alpha}/\mathcal{K}(L^2(\mathbb{R}_+, A))$ is naturally isomorphic with $A_{\infty} \rtimes_{\alpha\infty} \mathbb{R}$. In other words, there is an exact sequence

$$0 \to \mathcal{K}(L^2(\mathbb{R}_+, A)) \to \mathcal{T}_{\alpha} \to A_{\infty} \rtimes_{\alpha \infty} \mathbb{R} \to 0.$$

Proof. By Theorem 3.5, since $(1 - P)D\rtimes_{\beta}\mathbb{R}$ is contained in $\mathcal{K}(L^{2}(\mathbb{R}, A))$ it follows that $\mathcal{T}_{\alpha} + \mathcal{K}(L^{2}(\mathbb{R}, A)) = D\rtimes_{\beta}\mathbb{R}$. Hence, $\mathcal{T}_{\alpha}/\mathcal{K}(L^{2}(\mathbb{R}_{+}, A))$ is canonically isomorphic to $D\rtimes_{\beta}\mathbb{R}/\mathcal{K}(L^{2}(\mathbb{R}, A)) = D\rtimes_{\beta}\mathbb{R}/C_{0}(\mathbb{R}, A)\rtimes_{\beta}\mathbb{R}$; it is therefore isomorphic to $(D/C_{0}(\mathbb{R}, A))\rtimes_{\alpha_{\infty}}\mathbb{R}$, i.e., to $A_{\infty}\rtimes_{\alpha\infty}\mathbb{R}$ (see Lemma 3.4).

Let us now come to *K*-theoretic considerations.

Theorem 3.7. The morphism $h : A \to A_{\infty}$ is an isomorphism in *E*-theory. The C^{*}-algebras *D* and \mathcal{T}_{α} are contractible in *E*-theory, i.e., for any C^{*}-algebra *B* the groups $E(\mathcal{T}_{\alpha}, B)$, E(D, B), $E(B, \mathcal{T}_{\alpha})$ and E(B, D) are trivial.

Proof. Set $D_+ = D/C_0((-\infty, 0), A)$. The exact sequence $0 \to C_0(\mathbb{R}_+, A) \to D_+ \to A_\infty \to 0$ is an asymptotic morphism φ from A_∞ to A.

Note that for every C^* -algebra B, the identity element of the ring E(B, B) is given by the asymptotic morphism associated with the exact sequence $0 \to C_0(\mathbb{R}_+, B) \to C(\mathbb{R}_+ \cup \{+\infty\}, B) \to B \to 0.$

We have a commuting diagram

where $\beta : C_0(\mathbb{R}_+, A) \to C_0(\mathbb{R}_+, A)$ is given by $(\beta(f))(t) = \alpha_t(f(t))$ for every continuous function $f : \mathbb{R}_+ \to A$ and $h' : C_0(\mathbb{R}_+, A) \to C_0(\mathbb{R}_+, A_\infty)$ is given by $(h'(f))(t) = h_t(f(t))$ for every continuous function $f : \mathbb{R}_+ \to A$ (recall that $h_t = \alpha_\infty^{-t} \circ h$). As β is homotopic to the identity among $C_0(\mathbb{R}_+)$ -linear endomorphisms of $C_0(\mathbb{R}_+, A)$, the compositions $h^*(\varphi)$ defines the identity element of E(A, A); as h' is homotopic to the map $f \mapsto h \circ f$ among $C_0(\mathbb{R}_+)$ -linear homomorphisms of $C_0(\mathbb{R}_+, A)$ into $C_0(\mathbb{R}_+, A_\infty), h_*(\varphi)$ defines the identity element of $E(A_\infty, A_\infty)$.

It follows from the six term exact sequence of E-theory that D is E-contractible. By Connes' analogue of the Thom isomorphism it follows that $D \rtimes \mathbb{R}$ is E-contractible and by Theorem 3.5, \mathcal{T}_{α} is also E-contractible.

References

- A. Connes, An Analogue of the Thom Isomorphism for crossed product by an action of ℝ, Advances in Math., **39** (1981), 31-55.
- [2] A. Connes and N. Higgson, Deformation, morphismes asymptotiques et K-Théorie bivariante, C.R. Acad. Sci. Paris, **311(I)** (1990), 101-106.
- [3] Duncan and Barnes, C^{*}-Algebras of Certain Inverse Semigroups.
- R. Exel, Circle Actions on C*-algebras, Partial Automorphism and a Generalized Pimsner-Voiculescu Exact Sequence, to appear.
- [5] T. Fack and G. Skandalis, Connes' Analogue of the Thom Isomorphism for the Kasparov Groups, Invert. Math., 64 (1981), 7-14.
- G.G. Kasparov, The operator K-functor and extensions of C^{*}-algebras, Math. U.S.S.R. Izv, 16 (1981), 513-572.
- [7] _____, Hilbert C^{*}-modules, Theorem of Steinspring and Voiculescu, J. Operator Theory, 4 (1980), 133-150.

- [8] G. Peterson, C^{*}-Algebras and their Automorphism Groups, Academic Press, London, 1979.
- [9] M. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, Fields Inst. Comm., 12, Amer. Math. Soc., Providence, RI, 1997.
- [10] M. Pimsner and D. Voiculescu, Exact Sequences for K-groups and Ext-groups of certain crossed product C*-Algebras, J. Operator Theory, 4 (1980), 93-118.
- [11] G. Skandalis, Une notion de nucléarite en K-Théorie, K-Theory, (1988), 549-574.

Received March 29, 1996.

UNIVERSITY OF SASKATCHEWAN SASKATOON SK S7N 5E6, CANADA AND EQUIPE D'ALAIN CONNES COLLEGE DE FRANCE 75005 PARIS, FRANCE