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Regular representation of groupoid C*-algebras
and applications to inverse semigroups

By Mahmood Khoshkam*) at Saskatoon and Georges Skandalis at Paris

Abstract. The analogue of the left regular representation of a locally compact
groupoid is constructed in the Hausdorff as well as in the non-Hausdorff case. A necessary
and sufficient condition for a locally compact groupoid with a cocycle to be Morita equi-
valent to a group action is obtained. As an application, the C*-algebras of a class of inverse
semigroups is shown to be Morita-equivalent to crossed products of groups by abelian C*-
algebras.

Introduction

This paper is devoted to some questions concerning groupoid C*-algebras—in par-
ticular in the non-Hausdorff case—and the relations between groupoids and inverse semi-
groups.

Groupoid C*-algebras have been studied for years. A systematic development of the
fundamentals of the theory of groupoid C*-algebras was provided by Jean Renault in [17],
which is the classical reference for the subject. More or less at the same time, A. Connes
([2]) showed how groupoid C*-algebras have to be used in the study of geometric objects as
natural as foliations. In Connes’ work ([4]), various groupoids arise, in order to explain all
kinds of geometric phenomena: foliations, Penrose tilings, deformations ... Furthermore,
groupoids turn out to take into account, somewhat unexpectedly, various kinds of geo-
metric phenomena (e.g. coarse geometry—cf. [21]).

In this paper, we give a necessary and sufficient condition for a locally compact
groupoid with a cocycle to be Morita equivalent to a group action, by showing that if the
cocycle is faithful, closed and transverse (see Definition 1.6), then the groupoid is Morita
equivalent to a group action.

Actually the only really new difficulty in dealing with groupoids rather than group
actions on spaces, is that groupoids need not be Hausdorff. Moreover, non-Hausdorff
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groupoids actually occur in many important examples of foliations, such as the Reeb foli-
ation. Alain Connes ([3], [4]) explained which is the right modification to be made in treating
the non-Hausdorff groupoids (at least in the foliation case): one just needs to change the
definition of the algebra of continuous compactly supported functions C.(G). However, a
few facts, known in the Hausdorff case have to be clarified in the construction of faithful
representations and faithful families of representations for the reduced C*-algebra.

We view the analogue of L'(G) as a quotient, with a quotient norm and this allows us
to clarify its properties and give an alternate way of describing the full C*-algebra in the non-
Hausdorff case (cf. [17], [18]). We also construct ‘the regular representation’ of a groupoid:
in the Hausdorff case, this representation takes place on a natural Hilbert module L?(G)
over Co(X) where X is the space G*) of units of G. In the non-Hausdorff case, we construct
a natural locally compact space Y, which contains X as a dense subset: Y is the spectrum of
a suitable C*-algebra of bounded Borel functions on X. If G is Hausdorff, X and Y coincide.
In general, we construct a Hilbert Cy(Y)-module on which the reduced C*-algebra C;(G)
of G acts faithfully.

This representation of C(G) points to the following subtle point. If D is a dense
subset of X, the family of regular representations associated with the elements of D needs
not be faithful. For these representations to be faithful one has to assume that D is dense in
Y, which is a strictly stronger assumption. This is due to the fact that the inclusion map
X — Y is not continuous and thus a dense subset of X is not always dense in Y (see Cor-
ollary 2.11). This rather surprising appearence of a ““breaking’ of the spectrum turns out to
be an important input of the first counterexamples to the Baum-Connes conjecture ([9]).
Applying these results to the foliation case, we give a refinement of the main result of [7]:
we show that if (X, F) is a minimal foliation such that the set of points with trivial hol-
onomy group is dense for the topology of Y, then the foliation C*-algebra is simple (Re-
mark 2.12).

As an application of our construction we investigate connections with inverse semi-
group C*-algebras. The study of inverse semigroup C*-algebras was initiated by J. Duncan
and A. Paterson ([5]) and has since attracted the attention of a number of authors ([8], [20],
[6]). By the very definition of inverse semigroups, their C*-algebras are closely related to
the important class of C*-algebras generated by isometries and partial isometries such as
Toeplitz algebras, Cuntz algebras and Cuntz-Krieger algebras, just to mention a few ex-
amples. Here we focus our attention on the intrinsic connections between inverse semi-
group C*-algebras and groupoid C*-algebras. Given an inverse semigroup S, let X be the
spectrum of the commutative C*-algebra generated by the idempotents of S. Then S can
be viewed as a pseudogroup of partial transformations of X. Associated to it is a locally
compact groupoid—the groupoid of S. The inverse semigroup S and its groupoid have
the same C*-algebras. Using this fact, we prove that the C*-algebra of a large class of E-
unitary inverse semigroups (the class contains all F-inverse semigroups) are Morita equiv-
alent to the crossed product of an abelian C*-algebra by a group.

A summary of the paper is as follows.

® In section one, we discuss groupoid C*-algebras, especially in the non-Hausdorff
case. Moreover, we prove a result (Theorem 1.8) on group valued cocycles, which allows us
to answer the question of when is a locally compact groupoid with a cocycle Morita
equivalent to a group action.
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® In section two, natural Hilbert modules associated with groupoids are introduced
and the regular representation of a groupoid is constructed. The main results of this section
are Theorem 2.3 and Theorem 2.10 showing that the regular representation of G is a faithful
representation of C(G). Moreover, we find a sufficient condition on a subset D < X, the
unit space of G, so that the family of regular representations given by D is faithful on
C’(G). We end with the above mentioned application to foliations.

e Section three consists of applications of the previous sections to inverse semi-
groups. As noted above to an inverse semigroup S a groupoid Gs is associated such that
C*(Gs) = C*(S) and C;(Gs) = C}(S). Our construction of Gg follows that of A. Pater-
son ([16]), but most arguments are simplified and are shorter. In particular, thanks to
Lemma 1.4 we give an independent and more conceptual proof of the isomorphism
C*(Gs) = C*(S) than the one given in [16]. As well we fix a small gap in the proof of the
fact that C'(Gs) = C/(S) in the case Gy is non-Hausdorff (we will elaborate on this in
section 2 and 3). We then shift our attention to E-unitary inverse semigroups. For such
inverse semigroups, the natural cocycle from Gg onto the maximal group homomorphic
image of S is faithful. We find algebraic conditions (similar conditions appear in the alge-
braic theory of inverse semigroups) on S for the cocycle to be closed and transverse—
resulting in Corollary 3.11.

1. Groupoid C*-algebras

We begin this section by recalling basic definitions, notation and terminology from
groupoids and groupoid C*-algebras. For the details and the proofs of the basic facts we
refer to [17], [14] and [1].

Let G be a groupoid, then

— G will denote its space of units;

— 5:G— G and r: G — G denote respectively the source and range maps;
— G denotes the set {(y,7") € G x G;s(y) = r(y’)} of composable elements;

— given subsets 4, B < G, we set G4 = {ye G;s(y) € 4}, G® = {y e G;r(y) € B}
and G% = G, n GB; for x e G, we write G, and G* instead of Gy,) and G'¥).

A locally compact groupoid is a groupoid endowed with a locally compact topology
such that the groupoid operations (composition, inversion, source and range maps) are
continuous. Throughout the paper, we will further assume the source map to be open; in
this case, the range map is also open.

We will be interested in not necessarily Hausdorff locally compact groupoids. Before
giving the precise definitions of these objects, let us briefly review the construction of the
full and reduced C*-algebras of a Hausdorff locally compact groupoid G. Associated with
G is a function space to be denoted by ./ defined as follows.

A. The Hausdorff case. If G is Hausdorff, o/ is C.(G) the space of continuous
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complex valued functions with compact support on G. In order to turn .7 into an algebra,
we need what is called a Haar system. A Haar system on G is a collection v = {v,}, . o of
positive regular Borel measures on G satisfying the following conditions:

a) Support: For every x € G| the support of v, is contained in G,.

b) Invariance: For all y, € G and fe.Z, [f(yy)dvs(y)=[f(y)dv,(y), where
x=r(y)and y = s().

c) Continuity: For each f € .o/ the map x — [ f(y)dvy(y) is continuous.
Gy
If G is r-discrete, which means that the range and source maps are local homeomor-
phisms, then a possible choice for v, is the counting measure on G,.

Denote, by (G, v) a locally compact groupoid together with a fixed Haar system. Then
2/ 1s going to be a normed *-algebra under the following operations. For f, g € .«Z, let

(1) ) =r0"
and
(2) frg(y) = fo(wl‘l)g(yl)dvx(h),

where x = s(y). The norm on ./ is defined by

xeGO)

(3) If1ly = sup {maX<J|f(V)Idvx(V)aGflf(V1)|dvx(y)> }

The full groupoid C*-algebra C*(G,v) (or C*(G) when there is no ambiguity on the Haar
system) is defined to be the enveloping C*-algebra of the Banach x-algebra obtained by
completion of .7 with respect to the norm || ||;.

Given x e G, f e .o/ and ¢ € L*(G,,v,), we set

(4) I(f)EQy) = GJ"f(Wfl)é(Vl) dvy(y)).

One shows that, for every f € .« and x € G\, the operator /.(f) is bounded and we have
l4x()l £ 11f]l;- We thus get a bounded *-representation 4, of .o/ on L*(G,,vy). The re-
duced norm on .o/ is

(5) 11 = sup {{I2:(NII}

xe GO
which is a C*-norm.

The reduced C*-algebra C;(G,v) (or C;(G) when there is no ambiguity on the Haar
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system) is defined to be the C*-algebra obtained by completion of .o/ with respect to || ||..
Clearly, C(G) is a quotient of C*(G).

The full and reduced C*-algebras don’t depend—up to Morita equivalence on the
Haar system v ([17]).

Remark (cf. [17]). It may be worth noticing that the above “usual’ conventions for
groupoid algebras are slightly different from the conventions for groups (in the non uni-
modular case). The main difference is equation (1) for the adjoint. In fact, if G is a locally
compact group, there is a natural *-homomorphism from the algebra L'(G) for G as seen
as a groupoid to L'(G) for G seen as a group given by f A2 Tt is then not difficult
to see that, although this homomorphism is not onto, those two algebras have the same
enveloping C*-algebra—because they have the same representations: unitary representa-
tions of G.

B. The non-Hausdorff case. Many natural examples of groupoids, such as some in-
teresting foliation groupoids, are non-Hausdorff. Let us fix our setting and then explain the
modifications that have to be made in order to cover this case.

1.1. Definition. A locally compact groupoid is a groupoid G endowed with a topol-
ogy such that

a) the groupoid operations (composition, inversion, source and range maps) are con-
tinuous;

b) the space of units G*) is HausdorfT;
¢) each point of G has a compact (Hausdorff') neighborhood;
d) for each x € G, the space G, is Hausdorff");
e) the range and source maps are open.
Furthermore all the groupoids here will be assumed to be o-compact.

These conditions are satisfied by all important examples (such as holonomy group-
oids). The following example may seem somewhat unnatural; however it illustrates the kind
of singularities which naturally occur in non-Hausdorff foliation groupoids.

1.2. Example. Let I be a non trivial discrete group, X a compact space and
Xo € X a non isolated point. Then, I' x X is a groupoid with r(g,x) = s(g,x) = x and
(g9,x)(h,x) = (gh, x). Define an equivalence relation on I x X by (g, x) ~ (h,x) if x =+ xo.
The quotient space G =T x X/~, endowed with the quotient topology and groupoid
structure is a non-Hausdorff locally compact groupoid in the above sense. Indeed, denote

by (g, x) the class in G of (g, x) € I’ x X. Then, (g, x) converges to (g, xo) as x — x, for any
gel.

D Jean-Louis Tu pointed out to us that this is automatic, since the diagonal of G, is the set
{(7,7") € Gy x Gy;r(y") = +(7),y"'y' = x} and by c) points are closed subsets of G.



52 Khoshkam and Skandalis, Groupoid C*-algebras
As a set, G is the disjoint union of I' x {x¢} and X\ {xo}.

Let G be a, not necessarily Hausdorff, locally compact groupoid. As pointed out by
Alain Connes ([2]), one has to modify the choice of .Z; indeed C.(G) has no natural con-
volution algebra structure and is too small to capture the topological or differential struc-
ture of G.

For instance, in the case of Example 1.2, C.(G) consists of functions that are constant
on I' x {xo} and therefore vanish if I" is infinite. The space C,.(G) therefore contains very
little information on I'.

Following [2], we define .o/ to be the space of complex valued functions on G spanned
by functions which vanish outside a compact (Hausdorff) subset K of G and are continuous
on a neighborhood of K. Since in a non-Hausdorff space a compact set may not be closed,
members of .o/ are not necessarily continuous on G. In the case of Example 1.2, the algebra
o/ consists of pairs (¢, ) € C.(I') x C(X) such that y(xo) = > ¢(9).

gel’

The following result gives a practical way to describe all the elements of .o7.

1.3. Lemma. Let (U;);cs be a covering of G by open Hausdorff subsets. Then </ is the
set of finite sums Y f; where f; is a continuous compactly supported function on U;.

Proof. We just need to show that if U is an open Hausdorff subset of G any function
f € C.(U) can be decomposed as above. Let K be a compact neighborhood of the support
of f. Let (p;); be a finite partition of the identity of K associated with its open covering
Ui K. Then f = > fi with f; = fp;, which is a continuous compactly supported function
mKnU. O i

In other words, setting Q = [[ U;, the space <7 is a quotient of C,(Q).
iel
We now show how the various objects associated with a Hausdorff groupoid are de-
fined in the non-Hausdorff case thanks to the modified definition of ..

e The Haar system of a non-Hausdorff groupoid is defined as before: the support
and invariance conditions are the same as in the Hausdorff case; the continuity condition c)
is exactly the same as in the non-Hausdorff case with respect to the modified .«7. Note that
if G is r-discrete (as for instance in Example 1.2), the family v, of counting measure on G,
satisfies the above conditions.

® One obviously sees that the adjoint operation is well defined on .o/ by formula (1).
e To show that the convolution is also well defined, take U and V being open Haus-
dorff subsets of G and let f € C.(U) and g € C.(V'). We want to show that f x g as defined

by formula (2) is still an element of .o7.

Using compactness of the supports of f and g and partitions of the identity, we may
further assume that U and V are small enough so that the open subset

UV ={yrirneUpeV,sy) =rn}
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of G is Hausdorff. Set B = {(y;,7,) € U x V;s(y,) = r(y,)}; it is a closed subset of U x V.
The map (y,7,) — (172,72) 18 @ homeomorphism from B into an open subset B’ of
{(y3,74) € U.V x V;s(y3) = s(y4)}. Therefore, there exists ¢ € C.(B’) such that, for all

(71,72) € B we have f(71)g(y2) = @(y172:72)-

Formula (2) gives

(6) (f*x9) () = [0y, 72) dvy(72)-

Note that by the continuity condition on the Haar system, and since the map s is open,
formula (6) shows that f'xge C.(U.V) < o/.

e The norm || ||, on ./ is defined in the same way as in the Hausdorff case by for-
mula (3). The full groupoid C*-algebra C*(G) is defined in the same way as in the Haus-
dorff case: it is the enveloping C*-algebra of the Banach x-algebra obtained by completion
of .o/ with respect to the norm || ||,.

¢ In the same way as in the Hausdorff case (cf. [17]), we see that formula (4) defines a
bounded operator A,(f) on L*(G,) for any f €.o/ and any x € G) and that || .(£)|| < || /]I;-

® We finally define || ||, and C;(G) as in the Hausdorff case.

In the case of Example 1.2, a Haar system consists of: the Dirac measure for
x % xo and the Haar measure of I" at x = xo. The full C*-algebra of G consists of pairs
(p, ) € C*(I') x C(X) such that y(xo) = &(p), where ¢ denotes the trivial representation
of I'. The reduced C*-algebra of G is the quotient of C*(G) under the family of repre-
sentations Ay,: (¢, %) — A(p) (where 4 is the left regular representation of I') and, for
X £ x0, At (@, ) — Y(x). It follows that

— if I' is amenable, C(G) = C*(G);

— if I is not amenable, C}(G) = C}(I') @ C(X).

We will use the following complement to Lemma 1.3:

For f € o/ and x € G, put N/ (x) f|f )| dv(y) and N/ (x) f|f(y M dvi(p).
Let (U;);cr be a covering of G by open Hausdorff subsets and set

Q=[[U ={(y,i)e GxI;ye U}.

iel

For g € C.(Q) we let ¢p(g) € .o be the function y — Z g(y,i) (this is a finite sum). Lemma
1.3 states that ¢ is onto.

For x € G we put

x) = ZGJ"IQ(% D dv(y) and N(x) = Zéflg(y D] dvx(y).

X
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Finally, we put [|g, , = sup{N,(x); x € GV}, ||g||, , = sup{N¥(x); x € G} and

lglly = max({lgll, ,, llgll;,,)-

1.4. Lemma. Let (U;)ic; be a covering of G by open Hausdorff subsets and set
Q=[] Ui Let f € of; we have the following equalities:

iel

a) Ny(x) = inf{N,(x);g € Co(Q),p(g) = [}, for all x e G\;
b) sup{N;(x); x e GV} =inf{|lg|l, ;; 9 € Co(Q), p(9) = [}
c) |lf1l; = inf{||g[l;;9 € Co(Q),0(9) = f}.

Proof. For every g € C.(Q) and every x € G*) we have

Ny (x) = J"IZII g(y,1)

dvi(y) = [ lg(r, D) dv(7) = Ny(x).

This establishes the inequalities <.

Write f as a finite sum of functions /; where the /; are continuous with compact sup-
ports in open subsets Vj; put W =[]V} and let 1 € C.(W) be the function (y,/) — h;(y).
Set U/ = W n(U; x J). Given a partition of the identity y = (x;) of the support of &
adapted with the covering U/, we define g, € Co(Q) by setting g, (y,1) = > x;(7,7)hi(y)

j
(where i € I and y € Uj; the sum is taken over all j’s such that y € V}). Obviously ¢(g,) = f.
To prove a) and b), we will show

a’) For every x € X, there exists a partition of the identity y as above such that
Ny (x) = Ny, (x).

b’) For every ¢ > 0, there exists a partition of the identity y as above such that
sup{Ny(x);x € GO} = |lg,ll, , — e

a’) Since G, is Hausdorff, the space K = <U Supp(hj)> N G, is compact and
J

HausdorfT; let (w;) be a finite partition of the identity of K adapted to the covering (U; N K).
For (y,7) € Supp(h) such that s(y) = x and i€ I, put y,(y,j) = wi(y). Extend (y;) to a
partition of the identity of Supp(/). An elementary calculation shows that Ny(x) = N, (x).

b’) Let ¢ > 0. By a’) and compactness of the support of A, there are partitions
X1, -+ X Of the identity such that the open sets W = {x e G Ny, (x) <&+ sup Ny( y)}
¥

(k=1,...,n) form an open covering of G(). Take a partition of the identity y,,...,\, of
G adapted to the covering Wj. It is now enough to put x(y) = Y (i (s(7)).
k

c) Let ¢ > 0. By b), there exists & € Cy(Q) satisfying ¢(h) = f and



Khoshkam and Skandalis, Groupoid C*-algebras 55
sup{Ny(x);x e G} = ||all; , —e.

Apply then b’) replacing f, the U;’s and 4 by f: 9+ f(y") and U; = {y"';y € U;} and
h: (y,1) — h(y~',i); we find a partition of the identity y such that

sup{ NV (x); x € G} 2 ||g, I, , — &
But by construction of g, it follows that N, < Nj,. Therefore
sup{Ny(x);x € Gt 2 [lg Il , —&. O
From a), it follows that, for every f € ./, the function N, is lower semi-continuous.

C. Group valued cocycles. We end this section by examining in which cases a locally
compact groupoid with a cocycle is Morita equivalent to a group action.

We first consider a general situation where a Morita equivalence occurs. Recall that
the locally compact groupoids G and H with spaces of units X and Y are said to be Morita
equivalent if there exists a locally compact groupoid ¢ with space of units X [[ Y such that
both X and Y meet all -orbits and the restrictions of % to X and Y are respectively G and
H.

A groupoid homomorphism /#: G — H is a Morita equivalence if it is invertible in the
category of generalized homomorphisms in the sense of [14]; this means that there exists a
% as above endowed with a continuous section ¢ of s: gXY — X such that, for all y € G, we

have h(y)&(s(y)) = &E(r(7))7.

1.5. Lemma. Let H be a locally compact groupoid with space of units Y. Let X be a
locally compact space and f: X — Y a continuous map. Set

Z={(x,9)e X x H; f(x) =r(g)}.

Assume that the map (x,g)w— s(g) from Z — Y is open and surjective. Then the set
G={(x,9,x")Ye X x Hx X;r(g) = f(x),s(9) = f(x")} is a locally compact groupoid with
space of units X, source and range maps (x,g,x’) — x' and (x,g,x") — x, composition
(x,9,x")(x", h,x") = (x,gh,x"); in particular the source map G — X is open. Moreover, the
groupoid homomorphism (x, g, x") — g is a Morita equivalence from G to H.

Proof. The fact that the source map of G is open is due to the following ob-
servation: if g: Z — Y is open and f: X — Y is continuous, the map (z,x) — x from

{(z,x);9(z) = f(x)} to X is open.

Let us prove the last statement on Morita equivalence. Obviously, if X = Y and f
is the identity, then H = G. In the general case, let 2" be the disjoint union of X and Y and
[ 2 — Y be f on X and the identity on Y. The associated groupoid ¥ with space of ob-
jects Z realizes the desired Morita equivalence, since both X and Y are open subsets of 2
which meet all the %-orbits. One sees that %, = {(g,x) € H x X; f(x) = r(g)}; the desired
section X — 4, is x — (f(x),x), where f(x)e Y =HO < Y. O
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1.6. Definition. Let G be a locally compact groupoid, I' a locally compact group
and p: G — T a cocycle (a continuous groupoid homomorphism). Set X = G©. We will
say that the cocycle p is

® faithful if the map y — (r(y),p(y),s(y)) is injective from G into X x I' x X;
® closed if the map y — (r(y), p(7),s()) is closed;
e transverse if the map (g,7) — (g9p(y),s(y)) from T’ x G to I x X is open.

The cocycle p is faithful and closed, if and only if the map y — (r(y), p(y),s(y)) is a
homeomorphism from G into a closed subset of X x I' x X.

Note that if the group I is discrete, the cocycle p is transverse if and only if the set
{(p(»),5());» € G} is an open subset of ' x X.

Let p: G — T be a faithful, closed and transverse cocycle. On the space I' x X define
an equivalence relation by (g,x) ~ (h, ) if there exists y € G such that r(y) = x, s(y) =y
and p(y) = g~'h. Let Y =T x X/~ be the quotient space.

1.7. Lemma. Let G be a locally compact groupoid, T a locally compact group and
p. G — T be a faithful, closed and transverse cocycle.

a) The quotient map p: T x X — Y is open.
b) The graph {(&,n); & ~ n} of ~ is closed.

c) The quotient space Y is a locally compact Hausdorff space.

d) The formula g(h,x) = (gh, x) defines a continuous action of I" on Y.

Proof. Denote by ¢:I'x G—T x X the map (g,7) — (g9p(y),s(y)) and by
Y: G — X x T x X the map y — (r(7), p(»), 5(»))-

a) Let O be an open subset of I' x X. Set Q = {(g,7) e T x G; (g,r(y)) € O}.Itisan
open subset of I' x G. The saturation of O for the relation ~ is the set p~! (p(O)) = p(Q).
Since p is transverse, it is an open subset of I x X. By definition of the quotient topology,
the map p is open.

b) By definition of ~, a pair ((g,x),(h, y)) is in the graph of ~ if and only if
(x,g7'h, y) is in the image of ¥ which is closed.

c¢) Follows from a) and b).

d) The continuous action of I' on I' x X by left translation on I" obviously permutes
the equivalence classes of ~. Assertion d) follows. [
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1.8. Theorem. Let G be a locally compact groupoid, T" a locally compact group and
p: G — T be a faithful, closed and transverse cocycle. There exists a locally compact space Y
endowed with a continuous action of I and a homomorphism from G to the groupoid Y X T
which is a Morita equivalence.

Proof. Let Y be as above. Recall that the groupoid Y X I' is the set

{(7,9,") e Y xT x Y;9(y') = y}.

For x € X, let f(x) denote the class of (1,x) in Y. The map /: y — (f(r(»)),p(x), f(s()))
is the desired homomorphism. []

1.9. Corollary. Let G,I, and p be as in Theorem 1.7. Then:
a) The groupoid G is Hausdorff.

b) The C*-algebras C*(G) and C}(G) are respectively Morita-equivalent to Co(Y) X T’
and Cy(Y) >, T.

Proof. Clear from Theorem 1.8. []

Remarks. a) The converse of Theorem 1.8 is also true: if #: G — Y > T is a homo-
morphism and a Morita equivalence, one checks easily that its composition with the homo-
morphism Y > I' — I is faithful, closed and transverse.

b) The closedness condition is not automatic: For instance, let X be a compact space,
Xo € X anon isolated point and I" a discrete group. Set H =T’ x X — {xo} u {1} x X. Itis
an open subgroupoid of the groupoid I' x X (see Example 1.2). The associated quotient
space Y is not Hausdorff in this case: it is actually equal (as a topological space) to the non-
Hausdorff groupoid G described in Example 1.2.

2. Groupoids and Hilbert modules

The main purpose of this section is to define the groupoid analogue of the regular
representation. This is done by associating with a groupoid G a Hilbert module on which
C(G) acts faithfully. Thus giving a concrete picture of C(G) on a natural space. More
precisely, we construct in this section for a groupoid what may be regarded as the Hilbert
space L?(G) (when G is a group) and its left regular representation. In the case of a
groupoid, the space L?(G) is no longer a Hilbert space, but rather a Hilbert module over an
abelain C*-algebra B. If G is Hausdorff, the algebra B is just the algebra Co(G”)) of con-
tinuous complex valued functions vanishing at infinity on the base space of G. In the non-
Hausdorff case, this algebra has to be replaced by a bigger algebra which contains some
Borel non continuous functions on G%.

We first need a general lemma.

Let A be a C*-algebra, & a Hilbert A-module and n: 4 — ¥ (H) a representation of
A. We denote by I: (&) — (&6 ®, H) the representation 7 — T ® 1.
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2.1. Lemma. Let {p;} be a family of representations of A.

a) If the representation o of A is weakly contained in the family {p,}, then I, is weakly
contained in the family {1, }.

b) If {p;} is a faithful family, then {1, } is also a faithful family.

Proof. Let p be a representation of 4 and T € £(¢&). For every £ € &, ne H,, we
have (T(E®n), T(E®@n)) = (p(<T (&), T(E)Y'?) (), p(<T(E), T(E)>') (1)) Therefore,

Tekerl, &Vieé, VneH, T(E®n =0
&Ved, VneH, (TE®n),TE®n)>=0
eVees, p(KT(E),T(¢))y) =0.
The lemma follows immediately. []

The Hausdorff case. Define a Cy(X)-valued scalar product on .o/ = C.(G) by

(7) Emy(x) = Gf E@In(y) dvs(y).

In other words, (&) € Cy(X) is the restriction to X = G of &* x5 e .o/ = C.(G). Given
f € Co(X) and ¢ € o7 define the right action by &/ (y) = &(y) f (s(y)). With these operations
</ is a pre-Hilbert Cy(X)-module. Let L*(G,v) be its Hilbert-module completion. We will
show that C*(G) acts faithfully on L*(G,v). With this notation we have:

2.2. Lemma. If f.C € C(G), then || f %<l 126 = NSNSl 126, 0)-
Proof. First note that for ¢ € C.(G), we have

2
5.

€07 2(6.0) = Sup<é, ) (x) = sup GJ"|é<y>|2dvx<y) = sup|[¢ls,

Then, using the above, we have

1 % Ell 226,y = supllf %<

GX

2 = s[4 = I/l lell26n- O

Recall that a Hilbert C(X)-module & is the space of continuous sections of a contin-
uous field (&)yex of Hilbert spaces. An element 7' of £ (&) is a (x-strongly continuous)
field (7y)ycx of operators on the field (&y)yex, and ||T|| = sup || T||-

X

2.3. Theorem. There exists a *-representation A: C*(G) — £ (L*(G,v)) such that,
for f.Ee.of we have A(f)(&) = f*&. For all fe C*(G) and for all x € X, we have
M) =) e L(L*(G,v),) = L (L*(Gy,vy)). For all f € C*(G), we have ||A(f)|| = || f],-
In this way, we may identify C;(G) with 2(C*(G)).

Proof. For f,Ee .o/, let A(f)E = f & Then, by Lemma 2.2
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1A 26, = I IICN 26,0

It follows:
1. For all f, A(f) extends to a bounded operator on L*(G,v).
2. Z extends to a x-representation of C(G).

Now, for f €., the formula (A(f)) = A«(f) (using the canonical identification of
L*(G,v), with L*(Gy, vy)) is obvious since these operators are defined on .« with the same
convolution formula. Moreover || f]|, = sup||A(f).|| = [|A(f)||. O

If 1 is a measure on X, let Ind, () = [® 4.(f) du(x).
¥

2.4. Corollary. a) For a dense subset D < X we have ||f||, = sup || 4x(f)]].
xeD

b) Let u be a positive measure on X. If x € Supp u, then . is weakly contained in Ind,,.
In particular, if the support of p is X, then Ind,, is a faithful representation of C}(G).

Proof. a) Since D is dense in X, the maps f — f(x), from Cy(X) onto C form a
faithful family (ey)cep of representations of Cy(X). Now, the corollary follows from
Lemma 2.1.

b) Let 7, be the representation of C(X) by multiplication in L2(X, x). If x € Supp 4,
then by Lemma 2.1, I, = A, is weekly contained in I, = Ind,. []

The non-Hausdorff case. The following example shows that in the non-Hausdorff
case Corollary 2.4 is not correct as stated above. The example also shows that in the state-
ment of [16], Proposition 3.1.2, Hausdorffness of the groupoid is needed.

2.5. Example. Let G be the groupoid of Example 1.2. Then, D = X'\{x¢} is dense in
X. But, it is clear from the example, that for T € .«Z, ||T||, + sup ||Ax(T)||. Moreover, if x is
xeD

a measure on X with dense support, the representation Ind, is faithful if and only if the
point {xp} has nonzero mass.

We now examine which modifications should be done.

Let G be a non-Hausdorff groupoid and let .o7 be as in section 1. Set D= {f|,; f € .«/}.
Since we are in the non-Hausdorff case, elements of .o/ are not continuous, therefore D does
not consist of continuous functions. However, D = B(X) where B(X) is the C*-algebra of
bounded Borel functions on X. Let B be the C*-subalgebra of B(X) generated by D. By
Gelfand-Naimark theorem, B =~ Cy(Y') for some locally compact Hausdorff space Y. Since,
X is an open and Hausdorff subset of G, C.(X) = D = B. We summarize the important
properties of the space Y in the following proposition:

2.6. Proposition. Let X and Y be as above. Then:

a) The inclusion Cy(X) < Co(Y) yields a continuous map j: Y — X which is proper
and onto.
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b) The inclusion Cy(Y) < B(X) yields a Borel map i: X — Y such that i(X) is dense
in Y and io j is the identity map on X.

Proof. From Cy(X) < Cy(Y) we obtain a continuous surjection j: ¥+ — X sat-
isfying the conditions of a), where X+ and Y denote the one point compactification of X
and Y. Moreover, for every f € .o/, there exists g € Co(X), such that (gor)f = f; we have
((gor)f)lx = flxyg- Therefore, Co(X)Co(Y) = Co(Y). It follows that j maps the point at
infinity of Y to that of X+ and Y to X, and hence it maps Y onto X.

b) is clear. []

Let G be the groupoid of Example 1.2 with |I'| # 1. Then ¥ = X x {0} U {(x0,1)};
in this case i(x) = (x,0) if x # xo and i(xg) = (xo, 1). Note the fact that 7 is not continuous
at xp.

2.7. A construction of a Hilbert module. Before proceeding we need a Hilbert mod-
ule construction based on Kasparov’s generalized Stinespring theorem ([11]).

Let A be a C*-algebra and let & be a vector space with a completely positive A-valued
scalar product, i.e. a sesquilinear map &2 3 (&,7) — <(&,5) € A such that for every n-tuple
(C1y--, &) € 6" the n x nmatrix ({;,&;); ; is an element of M, (A4),. Form the algebraic
tensor product & © A of linear spaces and define an A-valued scalar product on the ele-
mentary tensors by

ERan®@by =a*&nb (Eneé,abeA).

This product is obviously A-sesquilinear with respect to the right action of 4 on & © 4
given by (£ ® a)b = & ® ab. This product is also positive. Indeed, let &, &,, ..., &, € & and
a,a,...,a, € A; then

(Se@aTtea) = Ta(s = mne .
i i ij

where, 77 € A" is the column matrix given by ai,a,,...,a, and C € M,(A), is the matrix
(<&i,¢>)i,j- Hence, 6 © 4 with the right action ({® a)b = ¢ ® ab is a pre-Hilbert A-
module. The Hausdorff completion, denoted by & ® A, is a Hilbert A-module.

We apply the above construction to the case of a non-Hausdorff groupoid G. Given
Sned, let & ny = (" *n)|y e D= G(Y).

2.8. Lemma. The inner product {&,n) = (" xn)|y is completely positive.

Proof. Given &1,&,,...,¢, € o/, we must show that for each y € Y, the scalar ma-
trix ((éi, @}(y)) is positive. It is therefore enough to see that, for all z;,...,z, € C" and
every y € Y we have (z, (<&(»),&(»)>)z) € R, which means that <&,&) € Co(Y), where
E=Yabied.

But for all x € X, we have <&, &) (i(x)) = f 1£(7))? dv<(y) = 0; the lemma follows by
the density of i(X) in Y. [
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Using Lemma 2.8, we form the Hilbert Cy(Y)-module, .« ® Cy(Y), as described in
2.7. This module will be denoted by L?(G, v). Of course, if G is Hausdorff, ¥ = X and the
definitions of L?(G,v) coincide.

2.9. Lemma. For each xe X, let x: Co(Y) — C be the character defined by
x(f) = f(i(x)). Then there is an isomorphism U,: L*(G,v) ®; C — L*(Gy,vx) such that,
forallé e .o, fe Co(Y)and z e C we have Uy ((¢® f) ®z) = (zf (i(x)) )&l -

Proof.  We first check that the inner product is preserved. Let &,n € o7, f,g€ Co(Y)
and z,w € C. We have

ERf®:z,n®g@sw) =ZX(ERf,n @ g))w

E(f(E %) yg)w

= 2/ (i(x)) (¢* % ) (x)g (i(x))w

[ =f (T) () wg (i(x))n(r) dva(y)

I
[N}

|
S

Q

x

= {zf & wyn).

This shows that U, defines an isometry from L*(G,v) ®; C to L?*(Gy, vy). Moreover, since
G, is a closed Hausdorff subset of G, the restriction to G, defines a surjection from .o to
C.(G,); it follows that U, is onto. []

2.10. Theorem. There exists a *-representation 1: C*(G) — £ (L*(G,v)) such that,
for f.Ee.of and ge Co(Y) we have A(f)(E® g) = (f *&) ®g. For all f € C*(G) and for
all x € X, we have (i(f))l.(x) =(f) e L(L*(G,v),) = L(L*(Gy,vx)). For dll f € C*(G),
we have ||A(f)|| = || f|l,- In this way, we may identify C;(G) with .(C*(G)).

Proof. Given f € o/ define Ty: o/ © Co(Y) — o/ © Co(Y) setting

Ti(E®9)=(/*0)®y.

For every x € X, we have

U(Ty(E®9) ®;1) = Un(f *E® g @5 1)
= (f*9)l6,9(i(x)
= lx(f) Ux(é ® g ®x 1)
Let { € o7 © Co(Y); the norm of Ty({) in L*(G,v) is the supremum over x € X of its image

in L?(G,v), = L*(G,,v,). This image is UX(Tf(C) ® 1) = )yx(f)(Ux(C ® 1)), whose norm
is less than || f]|,/|<]].

In particular, 77 extends to a continuous linear map A(f): L*>(G,v) — L*(G,v). Fur-
thermore, one sees easily that A(f) is adjointable with adjoint A(f™*).
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The above computations show that, for all x € X, we have (A(f )) = Jx(f) in
Z(L*(G,v),) identified with & (L*(G,, vx)) thanks to Lemma 2.9.

Finally,

12()]| = sup|| ()L(f))lmH (by density of i(X) and Lemma 2.1)
xeX :
= sup|4(/)
xeX
=71 O

2.11. Corollary. a) Let D = X be such that i(D) is dense in i(X), then for every
T € C*(G) we have ||T||, = sup{||A:(T)||}
xeD

b) Let p be a probability measure on X, and let i(x) € Suppi(p). Then, A is weakly
contained in Ind;(,)

Proof. Clear from Lemma 2.1, and Theorem 2.10. []

2.12. Remark. Let (V,F) be a minimal foliation. In [7], it is shown that, if the
holonomy groupoid is Hausdorff, then the C*-algebra of (V,F) is simple. In the non-
Hausdorft case, this is no longer true (cf. [19]). However, from the proof of [7] and Corol-
lary 2.11 we get:

Let Z c V be the set of points of V with trivial holonomy group. If i(Z) is dense in
i(V), then the foliation C*-algebra is simple.

Indeed, let = be a nonzero representation of C*(V, F) and x € Z. It follows from [7]
that 7= weakly contains /.. By Corollary 2.11, the family (4,).c is faithful, whence 7 is
faithful.

3. Applications to inverse semigroups

The relations between inverse semigroups and groupoids are well known. A. Paterson
([16]) gives an extensive account of the connections between the two theories through their
operator algebras.

In particular, with an inverse semigroup S is naturally associated a groupoid Gy,
such that C*(S) = C*(Gs) and C;(S) = C}(Gs). It turns out that, in the non-Hausdorff
case there is a small difficulty in the latter isomorphism that had been overseen. Equipped
with the result of section 2, we give a new proof of the isomorphism C*(S) =~ C*(Gs) and
show that, even in the non-Hausdorff case, this isomorphism passes to the reduced C*-
algebras.

Moreover, using Theorem 1.8 and Corollary 1.9, we prove that the full and the re-
duced C*-algebras of an E-unitary inverse semigroup satisfying an extra assumption (see
Prop. 3.9) is Morita-equivalent to the crossed product of its maximal group homomorphic
image with an abelian C*-algebra.



Khoshkam and Skandalis, Groupoid C*-algebras 63

Inverse semigroups. We begin by recalling some basic facts about inverse semi-
groups.

A semigroup S is called an inverse semigroup if for each u € S, there exists a unique
element, denoted by u* in S such that uu*u = u, and u*uu* = u*.

The set of idempotents Es = {u*u € S;u € S} of S plays a crucial role in the study of
inverse semigroups. It is a well known fact that Es is a commutative sub-semigroup of S.
Moreover, Eg is a semi-lattice under the partial ordering e < f if ef = e.

For u,v € S, set u ~ v if there exists e € Es such that eu = ev. This is an equivalence
relation on S. The quotient S/~ is a group denoted by Is called the maximal group ho-
momorphic image of S, in that any group homomorphic image of S is a quotient of I's. Let
a: S — I's denote the quotient map. Note that the set Es maps to the identity of I's. For
these facts and more on the algebraic theory of inverse semigroups we refer to [9].

3.1. Lemma. Foru,ve S the following conditions are equivalent.

* * *

=uu*; (i) uo* *

(1) wv=uwuu; (1) viu=wvu (il) vu = uu*;

* *

(i) u=wuv; (i) Ipe E,u=pv, (iv) u=ovu*u; (iv) Iq€ E, u=vq.

Proof. Note that (i) < (i)’ and (ii) < (ii)’ are proved by passing to adjoints;
(i) = (iii)" and (iv) = (iv)’ are obvious; (i) = (iii) (resp. (ii) = (iv)) is obtained by left
(resp. right) multiplication by u; finally, if (iv)’ (resp. (iii)’) holds, we find

wu = quog = v vg® = v*u
(resp. uu* = pvv*p = vv*p? = vu*). [

For u,v € S, write u < v if one (and hence all) of the equivalent conditions of Lemma
3.1 holds. This is a partial ordering on S.

The C*-algebras of an inverse semigroup. An inverse semigroup S can be repre-
sented as a semigroup of partial isometries on a Hilbert space H: a representation of an in-
verse semigroup S on a Hilbert space H is a map n: S — £ (H) such that z(uv) = n(u)n(v),
and n(u*) = n(u)".

For f,g e /'(S), we set

@) Srgw)= > fu)g(v), fT(w)=Sw), =21/ W)l

uv=w uesS

Endowed with these operations, /!(S) is a Banach-x-algebra. Each representation of .S ex-
tends linearly to a *-representation of #!(). The enveloping C*-algebra of /!(S) is called
the C*-algebra of S and is denoted by C*(S). In particular, there exists a one to one cor-
respondence between the representations of S and those of C*(S).

A very important representation of S, the left regular representation, is
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A: S — B(/*(S))
defined by

O 1f u*uv =,

Awe) = {7

otherwise,

where (J,),cs denotes the canonical orthonormal basis of /2(.S). The extension to /'(S) of
A is known to be faithful (cf. [22]), but A is not in general faithful on C*(S). The reduced
C*-algebra of S is by definition the image of C*(S) under A and will be denoted by C}(SS).

The groupoid of an inverse semigroup. We recall a construction which associates
with each inverse semigroup S, in a natural and explicit way, a groupoid G. For more on
this construction, the basic properties of the groupoid, and examples see [16].

Let S be an inverse semigroup and £ = Eg the set of idempotents of S. Let X be the
space of multiplicative linear functionals on /!(E) with the relative weak*-topology. In
other words, X is the spectrum of the abelian C*-algebra C*(E). We consider the elements
of E as continuous functions on X in the obvious way. In fact, each p € E corresponds to
the characteristic function of the set

F,={xe X;p(x) =1},

a clopen subset of X. The space X is totally disconnected, locally compact, and Hausdorff
with the sets F,, forming a sub-basis consisting of clopen sets for the topology of X.

Moreover, the semigroup S acts on the space X by local homeomorphisms (i.e. the
pair (X, S) is a localization in the sense of [12], [16]) in the following manner. If x € F,-,, let
u.x be the character e — x(u*eu) for e € E. Then, u.x € F,,~ < X and this defines a homeo-
morphism from F,-, onto F,,-.

The groupoid of S is the groupoid associated to this pseudogroup of partial homeo-
morphisms. Namely, let S = {(u,x) € S x X; (u*u)(x) = 1} with the relative product to-
pology. Define an equivalence relation on S by (1, x) ~ (v, x) if there exists e € E such that
e(x) =1 and ue = ve.

Let Gg be the quotient space of (S‘, ~) equipped with the quotient topology and
(u, x) — (u, x) the quotient map. Then Gs is a groupoid with Ggo) = X under the following

operations:
9) s,x)=x, rx)=ux, (x)"=@w,ux), and (ux)(v,y)=(u,y),

for v.y = x. The groupoid Gg will be called the groupoid of S. It is a localll compact r-

discrete groupoid which is not in general Hausdorff. The sets O, = {(u,x);x € F,+,}
form an open covering of Gg; the source and range maps restrict to homeomorphisms
s: 0, — Oy and r: F, — F,,-.

Embedding Sin Gs. Each p € E defines an element ¢, of X by ¢(¢,) = 1if p < ¢ (i.e.
pq = p) and zero otherwise. Furthermore, each u € S defines an element ¢, = (u, &,+,) € Gs.
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Since Cyp(X) = C*(E) is generated by E, an element x € X is determined by the set

F.={p e E;p(x)=1}. Conversely, the characteristic function of a nonempty subset F < E
such that

(eeFand feF)<efeF foreverye,fe€E,

is a nonzero character y of C*(E), and therefore determines an element of X. Moreover,
F 1s a directed ordered set by p < g if g < p.

We will use the following result—which is a slightly stronger reformulation of Prop-
osition 4.3.1 in [16].

3.2. Proposition. a) For x € X the net {¢,}
is dense in X.

converges to x. In particular, {&,}

PET PEE

b) For e € E, we have {y € Gs;s(y) = &} = {ey;u € S,u*u = e}.
c) The map u — ¢, is an injection with dense range from S into Gs.

Proof. a) By definition, C*(E) is spanned by the functions p € E. Therefore, there
exists po € E such that py(x) # 0.

Let V be an open neighborhood of x in X. There exist pi,...,p, € E and

q1,---,qm € E such that x e <ﬂFp[>\<UFq,.) < V. Let p be the product of the p;’s
from 0 to n. i i

As x € Fp,, we find p(x) = 1, whence p € 7.

Let e € %, such that p « ¢;

e as p; < p < e, we have p;(e,) = 1;

e asxe F,\F,, we find F, ¢ F,;,, whence e £ ¢;; we draw ¢;(¢.) = 0.
It follows that ¢, € V. Assertion a) follows.

b) Let e € E. An element y € G with source ¢, is the class of an element (u, &) with
e < u*u, and therefore y = ¢.

c) If u,v e S are such that u*u = v*v = e and (uf,E) = (17,;), then there exists f € E
with uf = vf and f'(¢,) = 1; the last condition yields e < f, therefore u = ue = uf = vf = v.
Injectivity of u +— ¢, follows.

It follows easily from a) and b) that ¢(S) is dense in Gs. []

Full C*-algebras. We now show that the full C*-algebra of an inverse semigroup is
equal to the full C*-algebra of the associated groupoid. More precisely, we have:
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3.3. Theorem. Let S be an inverse semigroup and Gs the associated groupoid. Let .o/
be the function algebra associated with the groupoid Gs (cf. Section 1). For u € S, denote by
fu € o the characteristic function of the compact open set O,. Then there is an isomorphism
C*(S) = C*(Gs) mapping 5, € £'(S) = C*(S) to f, € o = C*(Gs).

Proof.  One checks immediately the equalities f, f, = f,» and f,* = f,-. By the uni-
versal property of C*(S), there exists a x-representation 7: C*(S) — C*(Gs) such that

7(0y) = fu-

Let /= > g, be an element of .o/, where g, is a continuous function with compact
ues

support on O, (Lemma 1.3). Now one may write g, = f,h, where h, is a continuous func-
tion on F,-, such that g, = h, o s.

It follows from the definition of X, that Cy(X) may be viewed as the subalgebra
C*(E) of C*(S). Moreover, for f € C.(X), n(f) is the element f € C.(X) = o/ < C*(Gys):
this can be checked for f = p € E. Since the image of 7 contains C.(X) and the f,, it con-
tains .oZ. Therefore 7 is onto.

More precisely, the element > f,h, € </ is the image of the element > 6,4, € C*(S).
uesS uesS

To show that 7 is injective, we may use [17], [18]: each representation ¢ of C*(S) is a
representation of S by partial isometries. The latter, restricts to a representation of E, and
therefore to a representation of C.(X), which defines a measure class ¢ and a measurable
field (H,).cx of Hilbert spaces over X. Each u € U, defines a partial isometry, and looking
at its compatibility with the action of C(X), it follows that y is invariant under the partial
transformation of X associated with u; moreover, we may disintegrate u to a measurable
family V, . Hy — Hyy over {x € X; (u*u)(x) = 1}. We see immediately that (H, V) is a
representation of Gy in the sense of [17] (cf. [18] for the non-Hausdorff case). It follows now
straightforwardly from [17], [18] that o is a representation of C*(Gy), i.e. factors through
. [

Remark. We may also show in a more direct way the injectivity of z, by using

> 0uhy|| of > 0k, in C*(S) is less

uesS ueS

Lemma 1.4. We just need to show that the norm

than or equal to the norm

Z 5uhu

ueS 1
this will show that we have a morphism o: ./ — C*(S) continuous with respect to the

norm || ||;; as @ o ¢ is the inclusion of .o/ = C*(Gys), this ¢ will be a *-homomorphism of .o/
and will therefore extend to a s-homomorphism &: C*(Gs) — C*(S). Looking at gen-
erators of C*(S), we find that & is the inverse of 7.

(where the norm || ||; on ./ is given by formula (3)):

Now, by Lemma 1.4, the L'-norm of R = > 0uhy is an infimum over all writ-
uesS

ings R as a sum Y Jd,h,. It is therefore enough to show that the norm in C*(S) of

ueS

> 0uhy is gmax(sup2|hu(x)|,sup2|h;(x)|> where h), = d,h,0,-. To that end, write
xeX xeX

ueS u u

ullu = wWOul y, WIt s tu € Co given by Ky, = 0y u = an u=@ony
S Ouhy = X kidul, with ky, £, € Co(X) given by ky = 0,\/Thald; = /B and ¢, h

uesS ues

where ¢: C — C is the function defined by ¢(0) = 0 and ¢(z) = Z‘Z|7l/2 for z % 0. The fact
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that 0,410, € Co(X) for all f € Cy(X) is checked on generators J, of Cy(X). Now use the
well known elementary matrix calculation: >’ k,0,/, = LAC, where L is the line matrix
ueS
with coefficients &, A is the diagonal matrix with coefficients §, and C is the column matrix
with coefficients /,; the J,’s are nonzero partial isometries whence ||J,|| = 1, so that ||A|| =1,
moreover || L||*=||LL*||=sup 3" |;(x)| and [|C||*=||C*C||=sup 3" |h(x)|. We get
xeX xeX

u u

> Ouhy

uesS u xeX u

< 11l 1l = (sup zm;(x”)‘”(wp mu(x)')l/z

< max (sup (o)l sup Sl ).

xeX u

Reduced C*-algebras. To establish the isomorphism of the reduced C*-algebras,
C(Gs) = C*(S), we will use an equality

1T, = sup{l|4(T)ll,; p € E}-
P

A priori, as seen by Example 2.5, this does not follow from the density of £ in X = G,

instead, by Corollary 2.11, we must show that i(E) is dense in the space Y of section 2. The
proof of C*(Gs) = C}(S) given in [16] uses [16], Proposition 3.1.2, which as alluded to re-
quire Hausdorffness (see Example 2.5).

3.4. Lemma. The set {i(e,); p € E} is dense in Y.

Proof.  Since i(X') is dense in Y, it is enough to show that the closure of {i(¢,); p € E}
contains i(X).

Let xe X; we will show with the terminology of Proposition 3.2, that the net
(i(ep))pe# converges to i(x). One just needs to show that, for all f e Cy(Y), the net
(f (i(ep)) ) pe s converges to f(i(x)). As Co(Y) is generated by the set D of restrictions to
X of elements of <, it suffices to show that for each g € 7 the net (g(¢,))pe converges

to g(x).

Moreover, we only need to prove this for elements of the form f|, where f is a
continuous function in a compact open set O, = {(u, y); y(u*u) =1} for some uesS
(Lemma 1.3). We may write f = f,g, where g is a continuous function on F,-,. Then, for
z € X, we have

0 if z¢ Fy,

fly(z) =<0 if ze Fypy, (u,2) * 2,
g(z) if z € Fyy, (;,vz) =z

If x ¢ F,, then as F,-, is closed in X, the function f|, is continuous at x; therefore
(f(&p))pe converges to f(x) by Proposition 3.2.
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Second, if x e F,,, but (;,\)/c) #+ x. Then, for all pe #,, we have ¢, ¢ F,,, for

otherwise we get that (u,x) = (p,x) which is in contradiction with (u,x) = x; therefore
(f (g,,))pE  is the 0 family, and converges to f(x).

Finally, assume (Lfl,\;) = x. As the set {z € F+; (;l,\;) =z} is open, f|, is continuous
at x; therefore (f] X(e,,))pe% converges to f(x) by Proposition 3.2. []

3.5. Theorem. Let S be an inverse semigroup and Gs its associated groupoid. Then
CH(S) = C(Gy).

r

Proof. The left regular representation of S decomposes into a direct sum A = @ A,
under the decomposition /2(S) = @ /(S,), where for e E, S, = {u € S;u*u = e}.eeE
eekE

From Corollary 2.11, and Lemma 3.4, the family {4, ;e € E} is a faithful family of
representations for C/(G), where 4,: C;(G) — B(/*(G,,)).

By Proposition 3.2 b), one has G, = {¢,;u € S.}. Hence, there is an isomorphism
V,: /2(56) — /2(Gge) such that, for u € S,, we have V,(d,) = %)

Let n: C*(G) — C*(S) be the isomorphism given by Theorem 3.3. Then, for each
T e C*(S), one gets Ao(T) = U2, (n(T))U,, which is easily verified by checking on the
generators of C*(S). This completes the proof. []

The E-unitary case. Let S be an inverse semigroup S. Denote by a: S — I the
homomorphism of S onto its maximal group homomorphic image .

Recall that S is said to be E-unitary if every element u € S satisfying a(u) =1 is an
idempotent of S. This is a very important class of inverse semigroups whose algebraic
theory is well developed.

We will show that if S is E-unitary and satisfies certain algebraic condition, then its
C*-algebras are Morita equivalent to crossed products of its maximal group homomorphic
image by a commutative C*-algebra.

3.6. Proposition. Let S be an inverse semigroup, I its maximal group homomorphic
image and Gy its groupoid.

a) There is a continuous, transverse cocycle p: Gs — T that maps the class of (u,x) in
Gs to o(u).

b) The map (p,s): y +— (p(y),s(y)) from Gg to I's x X is injective if and only if S is E-
unitary.

Proof. a) If (u,x) = (v,x), then for some idempotent e € E, we have ue = ve.
Whence, o(u) = o(v) which shows that p is well defined. It is clear that p is a con-
tinuous cocycle. To show that p is transverse, since Iy is discrete, we only need to
prove that {(p(7),s(y));7 € Gs} is an open subset of I's x X. In other words, it is
enough to show that for any g €I, the set {s(y);y € Gs,p(y) =g} is open in X. But

{s(y);ve Gs,p(y) =g} = U  F,: it is an open subset of X.
ueS,o(u)=g
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b) If (p,s) is injective, then the map (p,s) oe: S — X x I is injective; it follows im-
mediately that S is E-unitary.

Assume S is E-unitary. Let u,v € S, x, y € X such that x € F,,-, and y € F,+,. Suppose
that (p,s)(u, x) = (p,s)(v, y). Then x = s(u, x) = s(v, y) = y and () = o(v). Since S is E-
unitary, uv* is an idempotent of S. Then, (1, x)(v,x)~! = (uv*,v.x) is a unit of Gy since uv*

is an idempotent of S. It follows that (v, x) = (u,x). [
3.7. Corollary. The groupoid of an E-unitary inverse semigroup is Hausdorff.

Proof. By Proposition 3.6, the map (p, s): y — (p(y),s(y)) is a continuous injective
map from Gy into the Hausdorff space ['s x X. [

Note that every element « of S defines a compact open subset O, (its graph) in G, i.e.
the set of the elements (u,x) € Gs. We have the following lemma:

38. Lemma. Let U c SandueS.If O, < |J O,, then there exists v e U such that
u=<v. velv

Proof- Indeed, the element ¢, has to belong to an O, which implies u < v. [

Our aim is to give a condition on S which is equivalent to the fact that the image of
Gs by the map y: y — (r(), p(7), (7)) has closed range. For g € Is, set S, = o~ ({g}).

3.9. Proposition. Let S be an E-unitary semigroup. The map Y: G — X x s x X

defined by W(y) = (r(7),p(7),s(y)) has closed range if and only if, for every p,q € E and
every g € I's, there exists a finite subset U < pS,q such that

pSyq ={ueS;ve U,u< v}

Proof- Since Iy is discrete, i has closed range if and only if, for all g € I's, the set
Gr(g) = | O, isclosed in X x X.

uesS,

Since the F, (p € E) form a compact open cover of X, the set Gr(g) is closed in
X x X if and only if, for every p, q € E, the set Gr(g) N (F, x F,) is compact. Now the O,
u € pS,q form a compact open cover of Gr(g); whence Gr(g) N (F, x F,) is compact if and
only if there exists a finite subset U < S, such that Gr(g) n (F, x F;) = |J Oy, which by
Lemma 3.8 is equivalent to pSy,q = {ue S;Jve U,u <v}. O uet

3.10. Theorem. If'S is an E-unitary inverse semigroup which satisfies the condition of
Proposition 3.9, then p: Gs — Ty is a faithful, closed and transverse cocycle.

Proof. By Proposition 3.6, p is a faithful, transverse, continuous cocycle and by
Proposition 3.9, it is closed. []

3.11. Corollary. If S is as in Theorem 3.10, then there exists a locally compact space
Y endowed with an action of T's such that C*(S) and C}(S) are respectively x-isomorphic to
C()(Y) X I's and C()(Y) x, Iy.
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Proof. Apply Corollary 1.7, Theorems 3.2, 3.5 and Theorem 3.10. []

We now give two examples of inverse semigroups. The first is E-unitary but the co-
cycle p is not closed; the second, is not E unitary, but the cocycle p: Gs — I's is faithful,
closed and transverse.

3.12. Examples. a) Let E = {p,;ne Nu {o}} with p,p,, = p,, if n = m. Let T be
a locally compact group and define S by

S=Tx{pnneN}u{(l, )}

It is a sub-semigroup of I' x E and therefore it is E-unitary. But the range of the map
Y is not closed. To see this one notes that X = Nu {oo} with its natural compact
topology (since p. is the identity element of E, X is compact). The range of the map
W ois {(m,g,m);me N} u{(o0,1,00)}, but the elements (m,g,m) converge to the point
(00, g, 00) which is not in the range if g & 1. Notice that, Iy = I" and for each g € I" with
g+,

Sy = {(g;pm);m e N}

which has no upper bound for the relation <. It follows that S does not satisfy the condi-
tion of Proposition 3.9.

b) Let 4 be a set with at least two elements and let S be the union of 4 x 4 and
an extra element o. Define the semigroup operations in S by setting (a,b)(b,c) = (a,c)
and all other products equal to 0. One sees immediately that S is an inverse semigroup,
(a,b)" = (b,a) and o* = o. Its set of idempotents is E = {(a,a);a € A} U {0}. A subset F
of E satisfying ef € F < e, f € F either contains o and is therefore equal to E, or it doesn’t
and therefore can contain only one (a,a). It follows that & E — X is onto, whence
& S — Gg is a bijection. It follows that G identifies with the subgroupoid 4 x 4 U {(0,0)}
of (Au{o}) x (4u{o}). It is obvious, that Iy is the trivial group, whence S is not E-
unitary. Since X and I" are discrete, the cocycle p: Gs — I's is closed and transverse; since
Gs is a subgroupoid of X x X, the map (r,s): Gs — X x X is one to one, whence p is
faithful.

It follows from this second example that we may construct a Morita equivalence
Gs — Y < Iy in a somewhat more general situation than that of Corollary 3.11. Note that
in the case of Corollary 3.11, the Morita equivalence Gs — Y > I's is moreover injective,
i.e. X is an open subset of Y.

We end this section with a discussion on a well known class of inverse semigroups for
which the transverse cocycle p is faithful and closed and by an algebraic condition equiva-
lent to that of Proposition 3.9. We thus get classes of inverse semigroups whose C*-algebras
are Morita-equivalent to the crossed product of an abelian C*-algebra by their maximal
group homomorphic image.

F-inverse semigroups. Let S be an inverse semigroup. With the above notation, S is
said to be F-inverse, if for every g € I'y, the set S, has a maximal element for the partial
ordering <. It is easily seen that an F-inverse semigroup is E-unitary and unital. In the non
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unital case, Mark Lawson ([13]) gave a more general definition of F-inverse semigroups.
Keeping our notation, S is said to be F-inverse in the sense of [13], if it is E-unitary and
for every g € I's and every e, f € E, the set eS, f has a maximal element for the partial or-
dering <.

The condition of Proposition 3.9 is obviously satisfied for F-inverse semigroups even
in the weaker sense.

It is in fact quite easy to express the condition of Proposition 3.9 in the terms of [13].
To a E-unitary semigroup S is naturally associated a partially ordered set Z: Z is the quo-
tient of I's x Es by the equivalence relation ~ defined by (g, e) ~ (h, f) if there exists u € S
such that o(u) = g~'h, uu* = e and u*u = f; denote by g.e € Z the class of (g,e) € I’y x Es.
The partial order of Z is given by: g.e < h.f if there exists u € S such that a(u) = g~'h,
u* =cecand u*u < f.

Recall that an order ideal of Z is a set I such that, if x € Z and y € I are such that
x < y then x € I. Any subset 4 of Z generates an ideal of Z: the smallest order ideal con-
taining 4.

Recall (cf. [13]) that S is F-inverse (in the weaker sense—[13]) if and only if Z is a
semilattice, i.e. if the intersection of two singly generated order ideals is singly generated. It
is easy to see that S satisfies the condition of Proposition 3.9 if and only if the intersection
of two finitely generated order ideals of Z is finitely generated.
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