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Regular representation of groupoid C�-algebras
and applications to inverse semigroups

By Mahmood Khoshkam�Þ at Saskatoon and Georges Skandalis at Paris

Abstract. The analogue of the left regular representation of a locally compact
groupoid is constructed in the Hausdor¤ as well as in the non-Hausdor¤ case. A necessary
and su‰cient condition for a locally compact groupoid with a cocycle to be Morita equi-
valent to a group action is obtained. As an application, the C �-algebras of a class of inverse
semigroups is shown to be Morita-equivalent to crossed products of groups by abelian C �-
algebras.

Introduction

This paper is devoted to some questions concerning groupoid C �-algebras—in par-
ticular in the non-Hausdor¤ case—and the relations between groupoids and inverse semi-
groups.

Groupoid C �-algebras have been studied for years. A systematic development of the
fundamentals of the theory of groupoid C �-algebras was provided by Jean Renault in [17],
which is the classical reference for the subject. More or less at the same time, A. Connes
([2]) showed how groupoid C �-algebras have to be used in the study of geometric objects as
natural as foliations. In Connes’ work ([4]), various groupoids arise, in order to explain all
kinds of geometric phenomena: foliations, Penrose tilings, deformations . . . Furthermore,
groupoids turn out to take into account, somewhat unexpectedly, various kinds of geo-
metric phenomena (e.g. coarse geometry—cf. [21]).

In this paper, we give a necessary and su‰cient condition for a locally compact
groupoid with a cocycle to be Morita equivalent to a group action, by showing that if the
cocycle is faithful, closed and transverse (see Definition 1.6), then the groupoid is Morita
equivalent to a group action.

Actually the only really new di‰culty in dealing with groupoids rather than group
actions on spaces, is that groupoids need not be Hausdor¤. Moreover, non-Hausdor¤
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groupoids actually occur in many important examples of foliations, such as the Reeb foli-
ation. Alain Connes ([3], [4]) explained which is the right modification to be made in treating
the non-Hausdor¤ groupoids (at least in the foliation case): one just needs to change the
definition of the algebra of continuous compactly supported functions CcðGÞ. However, a
few facts, known in the Hausdor¤ case have to be clarified in the construction of faithful
representations and faithful families of representations for the reduced C �-algebra.

We view the analogue of L1ðGÞ as a quotient, with a quotient norm and this allows us
to clarify its properties and give an alternate way of describing the fullC �-algebra in the non-
Hausdor¤ case (cf. [17], [18]). We also construct ‘the regular representation’ of a groupoid:
in the Hausdor¤ case, this representation takes place on a natural Hilbert module L2ðGÞ
over C0ðX Þ where X is the space Gð0Þ of units of G. In the non-Hausdor¤ case, we construct
a natural locally compact space Y, which contains X as a dense subset: Y is the spectrum of
a suitable C �-algebra of bounded Borel functions on X. If G is Hausdor¤, X and Y coincide.
In general, we construct a Hilbert C0ðYÞ-module on which the reduced C �-algebra C �

r ðGÞ
of G acts faithfully.

This representation of C �
r ðGÞ points to the following subtle point. If D is a dense

subset of X, the family of regular representations associated with the elements of D needs
not be faithful. For these representations to be faithful one has to assume that D is dense in
Y, which is a strictly stronger assumption. This is due to the fact that the inclusion map
X ! Y is not continuous and thus a dense subset of X is not always dense in Y (see Cor-
ollary 2.11). This rather surprising appearence of a ‘‘breaking’’ of the spectrum turns out to
be an important input of the first counterexamples to the Baum-Connes conjecture ([9]).
Applying these results to the foliation case, we give a refinement of the main result of [7]:
we show that if ðX ;FÞ is a minimal foliation such that the set of points with trivial hol-
onomy group is dense for the topology of Y, then the foliation C �-algebra is simple (Re-
mark 2.12).

As an application of our construction we investigate connections with inverse semi-
group C �-algebras. The study of inverse semigroup C �-algebras was initiated by J. Duncan
and A. Paterson ([5]) and has since attracted the attention of a number of authors ([8], [20],
[6]). By the very definition of inverse semigroups, their C �-algebras are closely related to
the important class of C �-algebras generated by isometries and partial isometries such as
Toeplitz algebras, Cuntz algebras and Cuntz-Krieger algebras, just to mention a few ex-
amples. Here we focus our attention on the intrinsic connections between inverse semi-
group C �-algebras and groupoid C �-algebras. Given an inverse semigroup S, let X be the
spectrum of the commutative C �-algebra generated by the idempotents of S. Then S can
be viewed as a pseudogroup of partial transformations of X. Associated to it is a locally
compact groupoid—the groupoid of S. The inverse semigroup S and its groupoid have
the same C �-algebras. Using this fact, we prove that the C �-algebra of a large class of E-
unitary inverse semigroups (the class contains all F-inverse semigroups) are Morita equiv-
alent to the crossed product of an abelian C �-algebra by a group.

A summary of the paper is as follows.

. In section one, we discuss groupoid C �-algebras, especially in the non-Hausdor¤
case. Moreover, we prove a result (Theorem 1.8) on group valued cocycles, which allows us
to answer the question of when is a locally compact groupoid with a cocycle Morita
equivalent to a group action.
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. In section two, natural Hilbert modules associated with groupoids are introduced
and the regular representation of a groupoid is constructed. The main results of this section
are Theorem 2.3 and Theorem 2.10 showing that the regular representation of G is a faithful
representation of C �

r ðGÞ. Moreover, we find a su‰cient condition on a subset DHX , the
unit space of G, so that the family of regular representations given by D is faithful on
C �

r ðGÞ. We end with the above mentioned application to foliations.

. Section three consists of applications of the previous sections to inverse semi-
groups. As noted above to an inverse semigroup S a groupoid GS is associated such that
C �ðGSÞGC �ðSÞ and C �

r ðGSÞGC �
r ðSÞ. Our construction of GS follows that of A. Pater-

son ([16]), but most arguments are simplified and are shorter. In particular, thanks to
Lemma 1.4 we give an independent and more conceptual proof of the isomorphism
C �ðGSÞGC �ðSÞ than the one given in [16]. As well we fix a small gap in the proof of the
fact that C �

r ðGSÞGC �
r ðSÞ in the case GS is non-Hausdor¤ (we will elaborate on this in

section 2 and 3). We then shift our attention to E-unitary inverse semigroups. For such
inverse semigroups, the natural cocycle from GS onto the maximal group homomorphic
image of S is faithful. We find algebraic conditions (similar conditions appear in the alge-
braic theory of inverse semigroups) on S for the cocycle to be closed and transverse—
resulting in Corollary 3.11.

1. Groupoid C*-algebras

We begin this section by recalling basic definitions, notation and terminology from
groupoids and groupoid C �-algebras. For the details and the proofs of the basic facts we
refer to [17], [14] and [1].

Let G be a groupoid, then

– Gð0Þ will denote its space of units;

– s: G ! Gð0Þ and r: G ! Gð0Þ denote respectively the source and range maps;

– Gð2Þ denotes the set fðg; g 0Þ A G � G; sðgÞ ¼ rðg 0Þg of composable elements;

– given subsets A;BHGð0Þ, we set GA ¼ fg A G; sðgÞ A Ag, GB ¼ fg A G; rðgÞ A Bg
and GB

A ¼ GA XGB; for x A Gð0Þ, we write Gx and Gx instead of Gfxg and Gfxg.

A locally compact groupoid is a groupoid endowed with a locally compact topology
such that the groupoid operations (composition, inversion, source and range maps) are
continuous. Throughout the paper, we will further assume the source map to be open; in
this case, the range map is also open.

We will be interested in not necessarily Hausdor¤ locally compact groupoids. Before
giving the precise definitions of these objects, let us briefly review the construction of the
full and reduced C �-algebras of a Hausdor¤ locally compact groupoid G. Associated with
G is a function space to be denoted by A defined as follows.

A. The Hausdor¤ case. If G is Hausdor¤, A is CcðGÞ the space of continuous
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complex valued functions with compact support on G. In order to turn A into an algebra,
we need what is called a Haar system. A Haar system on G is a collection n ¼ fnxgx AGð0Þ of
positive regular Borel measures on G satisfying the following conditions:

a) Support: For every x A Gð0Þ, the support of nx is contained in Gx.

b) Invariance: For all g1 A G and f A A,
Ð

f ðgg1Þ dnxðgÞ ¼
Ð

f ðgÞ dnyðgÞ, where
x ¼ rðg1Þ and y ¼ sðg1Þ.

c) Continuity: For each f A A the map x 7!
Ð

Gx

f ðgÞ dnxðgÞ is continuous.

If G is r-discrete, which means that the range and source maps are local homeomor-
phisms, then a possible choice for nx is the counting measure on Gx.

Denote, by ðG; nÞ a locally compact groupoid together with a fixed Haar system. Then
A is going to be a normed �-algebra under the following operations. For f ; g A A, let

f �ðgÞ ¼ f ðg�1Þð1Þ

and

f ? gðgÞ ¼
Ð

Gx

f ðgg�11 Þgðg1Þ dnxðg1Þ;ð2Þ

where x ¼ sðgÞ. The norm on A is defined by

k f k1 ¼ sup
x AGð0Þ

max
Ð

Gx

j f ðgÞj dnxðgÞ;
Ð

Gx

j f ðg�1Þj dnxðgÞ
 !( )

:ð3Þ

The full groupoid C �-algebra C �ðG; nÞ (or C �ðGÞ when there is no ambiguity on the Haar
system) is defined to be the enveloping C �-algebra of the Banach �-algebra obtained by
completion of A with respect to the norm k k1.

Given x A Gð0Þ, f A A and x A L2ðGx; nxÞ, we set

lxð f ÞxðgÞ ¼
Ð

Gx

f ðgg�11 Þxðg1Þ dnxðg1Þ:ð4Þ

One shows that, for every f A A and x A Gð0Þ, the operator lxð f Þ is bounded and we have
klxð f Þke k f k1. We thus get a bounded �-representation lx of A on L2ðGx; nxÞ. The re-
duced norm on A is

k f kr ¼ sup
x AGð0Þ

fklxð f Þkgð5Þ

which is a C �-norm.

The reduced C �-algebra C �
r ðG; nÞ (or C �

r ðGÞ when there is no ambiguity on the Haar
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system) is defined to be the C �-algebra obtained by completion of A with respect to k kr.
Clearly, C �

r ðGÞ is a quotient of C �ðGÞ.

The full and reduced C �-algebras don’t depend—up to Morita equivalence on the
Haar system n ([17]).

Remark (cf. [17]). It may be worth noticing that the above ‘usual’ conventions for
groupoid algebras are slightly di¤erent from the conventions for groups (in the non uni-
modular case). The main di¤erence is equation (1) for the adjoint. In fact, if G is a locally
compact group, there is a natural �-homomorphism from the algebra L1ðGÞ for G as seen

as a groupoid to L1ðGÞ for G seen as a group given by f 7! D1=2 f . It is then not di‰cult
to see that, although this homomorphism is not onto, those two algebras have the same
enveloping C �-algebra—because they have the same representations: unitary representa-
tions of G.

B. The non-Hausdor¤ case. Many natural examples of groupoids, such as some in-
teresting foliation groupoids, are non-Hausdor¤. Let us fix our setting and then explain the
modifications that have to be made in order to cover this case.

1.1. Definition. A locally compact groupoid is a groupoid G endowed with a topol-
ogy such that

a) the groupoid operations (composition, inversion, source and range maps) are con-
tinuous;

b) the space of units Gð0Þ is Hausdor¤;

c) each point of G has a compact (Hausdor¤ ) neighborhood;

d) for each x A Gð0Þ, the space Gx is Hausdor¤1);

e) the range and source maps are open.

Furthermore all the groupoids here will be assumed to be s-compact.

These conditions are satisfied by all important examples (such as holonomy group-
oids). The following example may seem somewhat unnatural; however it illustrates the kind
of singularities which naturally occur in non-Hausdor¤ foliation groupoids.

1.2. Example. Let G be a non trivial discrete group, X a compact space and
x0 A X a non isolated point. Then, G� X is a groupoid with rðg; xÞ ¼ sðg; xÞ ¼ x and
ðg; xÞðh; xÞ ¼ ðgh; xÞ. Define an equivalence relation on G� X by ðg; xÞ@ ðh; xÞ if x3 x0.
The quotient space G ¼ G� X=@, endowed with the quotient topology and groupoid
structure is a non-Hausdor¤ locally compact groupoid in the above sense. Indeed, denote

by ðg; xÞ the class in G of ðg; xÞ A G� X . Then, ðg; xÞ converges to ðg; x0Þ as x ! x0 for any
g A G.

1) Jean-Louis Tu pointed out to us that this is automatic, since the diagonal of Gx is the set

fðg; g 0Þ A Gx � Gx; rðg 0Þ ¼ þðgÞ; g�1g 0 ¼ xg and by c) points are closed subsets of G.
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As a set, G is the disjoint union of G� fx0g and Xnfx0g.

Let G be a, not necessarily Hausdor¤, locally compact groupoid. As pointed out by
Alain Connes ([2]), one has to modify the choice of A; indeed CcðGÞ has no natural con-
volution algebra structure and is too small to capture the topological or di¤erential struc-
ture of G.

For instance, in the case of Example 1.2, CcðGÞ consists of functions that are constant
on G� fx0g and therefore vanish if G is infinite. The space CcðGÞ therefore contains very
little information on G.

Following [2], we defineA to be the space of complex valued functions on G spanned
by functions which vanish outside a compact (Hausdor¤ ) subset K of G and are continuous
on a neighborhood of K. Since in a non-Hausdor¤ space a compact set may not be closed,
members ofA are not necessarily continuous on G. In the case of Example 1.2, the algebra
A consists of pairs ðj;cÞ A CcðGÞ � CðXÞ such that cðx0Þ ¼

P
g AG

jðgÞ.

The following result gives a practical way to describe all the elements of A.

1.3. Lemma. Let ðUiÞi A I be a covering of G by open Hausdor¤ subsets. Then A is the

set of finite sums
P
i

fi where fi is a continuous compactly supported function on Ui.

Proof. We just need to show that if U is an open Hausdor¤ subset of G any function
f A CcðUÞ can be decomposed as above. Let K be a compact neighborhood of the support
of f . Let ðjiÞi be a finite partition of the identity of K associated with its open covering
Ui XK . Then f ¼

P
i

fi with fi ¼ f ji, which is a continuous compactly supported function
in K

�
XUi. r

In other words, setting W ¼
‘
i A I

Ui, the space A is a quotient of CcðWÞ.

We now show how the various objects associated with a Hausdor¤ groupoid are de-
fined in the non-Hausdor¤ case thanks to the modified definition of A.

. The Haar system of a non-Hausdor¤ groupoid is defined as before: the support
and invariance conditions are the same as in the Hausdor¤ case; the continuity condition c)
is exactly the same as in the non-Hausdor¤ case with respect to the modifiedA. Note that
if G is r-discrete (as for instance in Example 1.2), the family nx of counting measure on Gx

satisfies the above conditions.

. One obviously sees that the adjoint operation is well defined onA by formula (1).

. To show that the convolution is also well defined, take U and V being open Haus-
dor¤ subsets of G and let f A CcðUÞ and g A CcðVÞ. We want to show that f ? g as defined
by formula (2) is still an element of A.

Using compactness of the supports of f and g and partitions of the identity, we may
further assume that U and V are small enough so that the open subset

U :V ¼ fg1g2; g1 A U ; g2 A V ; sðg1Þ ¼ rðg2Þg
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of G is Hausdor¤. Set B ¼ fðg1; g2Þ A U � V ; sðg1Þ ¼ rðg2Þg; it is a closed subset of U � V .
The map ðg1; g2Þ 7! ðg1g2; g2Þ is a homeomorphism from B into an open subset B 0 of
fðg3; g4Þ A U :V � V ; sðg3Þ ¼ sðg4Þg. Therefore, there exists j A CcðB 0Þ such that, for all
ðg1; g2Þ A B we have f ðg1Þgðg2Þ ¼ jðg1g2; g2Þ.

Formula (2) gives

ð f ? gÞðgÞ ¼
Ð
jðg; g2Þ dnsðgÞðg2Þ:ð6Þ

Note that by the continuity condition on the Haar system, and since the map s is open,
formula (6) shows that f ? g A CcðU :VÞHA.

. The norm k k1 on A is defined in the same way as in the Hausdor¤ case by for-
mula (3). The full groupoid C �-algebra C �ðGÞ is defined in the same way as in the Haus-
dor¤ case: it is the enveloping C �-algebra of the Banach �-algebra obtained by completion
of A with respect to the norm k k1.

. In the same way as in the Hausdor¤ case (cf. [17]), we see that formula (4) defines a
bounded operator lxð f Þ on L2ðGxÞ for any f AA and any x A Gð0Þ and that klxð f Þkek f k1.

. We finally define k kr and C �
r ðGÞ as in the Hausdor¤ case.

In the case of Example 1.2, a Haar system consists of: the Dirac measure for
x3 x0 and the Haar measure of G at x ¼ x0. The full C �-algebra of G consists of pairs
ðj;cÞ A C �ðGÞ � CðXÞ such that cðx0Þ ¼ eðjÞ, where e denotes the trivial representation
of G. The reduced C �-algebra of G is the quotient of C �ðGÞ under the family of repre-
sentations lx0 : ðj;cÞ 7! lðjÞ (where l is the left regular representation of G) and, for
x3 x0, lx: ðj;cÞ 7! cðxÞ. It follows that

– if G is amenable, C �
r ðGÞ ¼ C �ðGÞ;

– if G is not amenable, C �
r ðGÞ ¼ C �

r ðGÞlCðX Þ.

We will use the following complement to Lemma 1.3:

For f A A and x A Gð0Þ, put Nf ðxÞ ¼
Ð

Gx

j f ðgÞj dnxðgÞ and Nf ðxÞ ¼
Ð

Gx

j f ðg�1Þj dnxðgÞ.

Let ðUiÞi A I be a covering of G by open Hausdor¤ subsets and set

W ¼
‘
i A I

Ui ¼ fðg; iÞ A G � I ; g A Uig:

For g A CcðWÞ we let jðgÞ A A be the function g 7!
P
i

gðg; iÞ (this is a finite sum). Lemma
1.3 states that j is onto.

For x A Gð0Þ we put

NgðxÞ ¼
P
i

Ð
Gx

jgðg; iÞj dnxðgÞ and N gðxÞ ¼
P
i

Ð
Gx

jgðg�1; iÞj dnxðgÞ:
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Finally, we put kgk1;l ¼ supfNgðxÞ; x A Gð0Þg, kgk1; r ¼ supfN gðxÞ; x A Gð0Þg and

kgk1 ¼ maxðkgk1;l; kgk1; rÞ:

1.4. Lemma. Let ðUiÞi A I be a covering of G by open Hausdor¤ subsets and set

W ¼
‘
i A I

Ui. Let f A A; we have the following equalities:

a) Nf ðxÞ ¼ inffNgðxÞ; g A C0ðWÞ; jðgÞ ¼ f g, for all x A Gð0Þ;

b) supfNf ðxÞ; x A Gð0Þg ¼ inffkgk1;l; g A C0ðWÞ; jðgÞ ¼ f g;

c) k f k1 ¼ inffkgk1; g A C0ðWÞ; jðgÞ ¼ f g.

Proof. For every g A CcðWÞ and every x A Gð0Þ we have

NjðgÞðxÞ ¼
Ð P

i

gðg; iÞ
���� ���� dnxðgÞe

Ð P
i

jgðg; iÞj dnxðgÞ ¼ NgðxÞ:

This establishes the inequalities e.

Write f as a finite sum of functions hj where the hj are continuous with compact sup-
ports in open subsets Vj; put W ¼

‘
Vj and let h A CcðWÞ be the function ðg; jÞ 7! hjðgÞ.

Set U 0
i ¼ W X ðUi � JÞ. Given a partition of the identity w ¼ ðwiÞ of the support of h

adapted with the covering U 0
i , we define gw A C0ðWÞ by setting gwðg; iÞ ¼

P
j

wiðg; jÞhjðgÞ

(where i A I and g A Ui; the sum is taken over all j’s such that g A Vj). Obviously jðgwÞ ¼ f .

To prove a) and b), we will show

a 0) For every x A X , there exists a partition of the identity w as above such that
Nf ðxÞ ¼ NgwðxÞ.

b 0) For every e > 0, there exists a partition of the identity w as above such that
supfNf ðxÞ; x A Gð0Þgf kgwk1;l � e.

a 0) Since Gx is Hausdor¤, the space K ¼
	S

j

SuppðhjÞ
�
XGx is compact and

Hausdor¤; let ðoiÞ be a finite partition of the identity of K adapted to the covering ðUi XKÞ.
For ðg; jÞ A SuppðhÞ such that sðgÞ ¼ x and i A I , put wiðg; jÞ ¼ oiðgÞ. Extend ðwiÞ to a
partition of the identity of SuppðhÞ. An elementary calculation shows that Nf ðxÞ ¼ NgwðxÞ.

b 0) Let e > 0. By a 0) and compactness of the support of h, there are partitions

w1; . . . ; wn of the identity such that the open sets Wk ¼
�

x A Gð0Þ;Ngwk
ðxÞ < eþ sup

y
Nf ðyÞ


ðk ¼ 1; . . . ; nÞ form an open covering of Gð0Þ. Take a partition of the identity c1; . . . ;cn of
Gð0Þ adapted to the covering Wk. It is now enough to put wðgÞ ¼

P
k

wkðgÞck

�
sðgÞ

�
.

c) Let e > 0. By b), there exists h A C0ðWÞ satisfying jðhÞ ¼ f and
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supfNf ðxÞ; x A Gð0Þgf khk1;l � e:

Apply then b 0) replacing f , the Ui’s and h by ~ff : g 7! f ðg�1Þ and ~UUi ¼ fg�1; g A Uig and
~hh: ðg; iÞ 7! hðg�1; iÞ; we find a partition of the identity w such that

supfNf ðxÞ; x A Gð0Þgf kgwk1; r � e:

But by construction of gw it follows that Ngw eNh. Therefore

supfNf ðxÞ; x A Gð0Þgf kgwk1;l � e. r

From a), it follows that, for every f A A, the function Nf is lower semi-continuous.

C. Group valued cocycles. We end this section by examining in which cases a locally
compact groupoid with a cocycle is Morita equivalent to a group action.

We first consider a general situation where a Morita equivalence occurs. Recall that
the locally compact groupoids G and H with spaces of units X and Y are said to be Morita

equivalent if there exists a locally compact groupoid G with space of units X
‘

Y such that
both X and Y meet all G-orbits and the restrictions of G to X and Y are respectively G and
H.

A groupoid homomorphism h: G ! H is a Morita equivalence if it is invertible in the
category of generalized homomorphisms in the sense of [14]; this means that there exists a

G as above endowed with a continuous section x of s: GY
X ! X such that, for all g A G, we

have hðgÞx
�
sðgÞ

�
¼ x
�
rðgÞ

�
g.

1.5. Lemma. Let H be a locally compact groupoid with space of units Y. Let X be a

locally compact space and f : X ! Y a continuous map. Set

Z ¼ fðx; gÞ A X � H; f ðxÞ ¼ rðgÞg:

Assume that the map ðx; gÞ 7! sðgÞ from Z ! Y is open and surjective. Then the set

G ¼ fðx; g; x 0Þ A X � H � X ; rðgÞ ¼ f ðxÞ; sðgÞ ¼ f ðx 0Þg is a locally compact groupoid with

space of units X, source and range maps ðx; g; x 0Þ 7! x 0 and ðx; g; x 0Þ 7! x, composition

ðx; g; x 0Þðx 0; h; x 00Þ ¼ ðx; gh; x 00Þ; in particular the source map G ! X is open. Moreover, the

groupoid homomorphism ðx; g; x 0Þ 7! g is a Morita equivalence from G to H.

Proof. The fact that the source map of G is open is due to the following ob-
servation: if g: Z ! Y is open and f : X ! Y is continuous, the map ðz; xÞ 7! x from
fðz; xÞ; gðzÞ ¼ f ðxÞg to X is open.

Let us prove the last statement on Morita equivalence. Obviously, if X ¼ Y and f

is the identity, then H ¼ G. In the general case, let X be the disjoint union of X and Y and
f 0: X ! Y be f on X and the identity on Y. The associated groupoid G with space of ob-
jects X realizes the desired Morita equivalence, since both X and Y are open subsets of X
which meet all the G-orbits. One sees that GY

X ¼ fðg; xÞ A H � X ; f ðxÞ ¼ rðgÞg; the desired
section X ! GY

X is x 7!
�
f ðxÞ; x

�
, where f ðxÞ A Y ¼ Hð0Þ HY . r
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1.6. Definition. Let G be a locally compact groupoid, G a locally compact group
and r: G ! G a cocycle (a continuous groupoid homomorphism). Set X ¼ Gð0Þ. We will
say that the cocycle r is

. faithful if the map g 7!
�
rðgÞ; rðgÞ; sðgÞ

�
is injective from G into X � G� X ;

. closed if the map g 7!
�
rðgÞ; rðgÞ; sðgÞ

�
is closed;

. transverse if the map ðg; gÞ 7!
�
grðgÞ; sðgÞ

�
from G� G to G� X is open.

The cocycle r is faithful and closed, if and only if the map g 7!
�
rðgÞ; rðgÞ; sðgÞ

�
is a

homeomorphism from G into a closed subset of X � G� X .

Note that if the group G is discrete, the cocycle r is transverse if and only if the set��
rðgÞ; sðgÞ

�
; g A G

�
is an open subset of G� X .

Let r: G ! G be a faithful, closed and transverse cocycle. On the space G� X define
an equivalence relation by ðg; xÞ@ ðh; yÞ if there exists g A G such that rðgÞ ¼ x, sðgÞ ¼ y

and rðgÞ ¼ g�1h. Let Y ¼ G� X=@ be the quotient space.

1.7. Lemma. Let G be a locally compact groupoid, G a locally compact group and

r: G ! G be a faithful, closed and transverse cocycle.

a) The quotient map p: G� X ! Y is open.

b) The graph fðx; hÞ; x@ hg of@ is closed.

c) The quotient space Y is a locally compact Hausdor¤ space.

d) The formula gðh; xÞ ¼ ðgh; xÞ defines a continuous action of G on Y.

Proof. Denote by j: G� G ! G� X the map ðg; gÞ 7!
�
grðgÞ; sðgÞ

�
and by

c: G ! X � G� X the map g 7!
�
rðgÞ; rðgÞ; sðgÞ

�
.

a) Let O be an open subset of G� X . Set W ¼
�
ðg; gÞ A G� G;

�
g; rðgÞ

�
A O
�
. It is an

open subset of G� G. The saturation of O for the relation@ is the set p�1
�
pðOÞ

�
¼ jðWÞ.

Since r is transverse, it is an open subset of G� X . By definition of the quotient topology,
the map p is open.

b) By definition of @, a pair
�
ðg; xÞ; ðh; yÞ

�
is in the graph of @ if and only if

ðx; g�1h; yÞ is in the image of c which is closed.

c) Follows from a) and b).

d) The continuous action of G on G� X by left translation on G obviously permutes
the equivalence classes of@. Assertion d) follows. r
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1.8. Theorem. Let G be a locally compact groupoid, G a locally compact group and

r: G ! G be a faithful, closed and transverse cocycle. There exists a locally compact space Y

endowed with a continuous action of G and a homomorphism from G to the groupoid Y cG
which is a Morita equivalence.

Proof. Let Y be as above. Recall that the groupoid Y cG is the set

fðy; g; y 0Þ A Y � G� Y ; gðy 0Þ ¼ yg:

For x A X , let f ðxÞ denote the class of ð1; xÞ in Y. The map h: g 7!
�
f
�
rðgÞ

�
; rðxÞ; f

�
sðgÞ

��
is the desired homomorphism. r

1.9. Corollary. Let G;G, and r be as in Theorem 1.7. Then:

a) The groupoid G is Hausdor¤.

b) The C �-algebras C �ðGÞ and C �
r ðGÞ are respectively Morita-equivalent to C0ðYÞcG

and C0ðY Þcr G.

Proof. Clear from Theorem 1.8. r

Remarks. a) The converse of Theorem 1.8 is also true: if h: G ! Y cG is a homo-
morphism and a Morita equivalence, one checks easily that its composition with the homo-
morphism Y cG ! G is faithful, closed and transverse.

b) The closedness condition is not automatic: For instance, let X be a compact space,
x0 A X a non isolated point and G a discrete group. Set H ¼ G� X � fx0gW f1g � X . It is
an open subgroupoid of the groupoid G� X (see Example 1.2). The associated quotient
space Y is not Hausdor¤ in this case: it is actually equal (as a topological space) to the non-
Hausdor¤ groupoid G described in Example 1.2.

2. Groupoids and Hilbert modules

The main purpose of this section is to define the groupoid analogue of the regular
representation. This is done by associating with a groupoid G a Hilbert module on which
C �

r ðGÞ acts faithfully. Thus giving a concrete picture of C �
r ðGÞ on a natural space. More

precisely, we construct in this section for a groupoid what may be regarded as the Hilbert
space L2ðGÞ (when G is a group) and its left regular representation. In the case of a
groupoid, the space L2ðGÞ is no longer a Hilbert space, but rather a Hilbert module over an
abelain C �-algebra B. If G is Hausdor¤, the algebra B is just the algebra C0ðGð0ÞÞ of con-
tinuous complex valued functions vanishing at infinity on the base space of G. In the non-
Hausdor¤ case, this algebra has to be replaced by a bigger algebra which contains some
Borel non continuous functions on Gð0Þ.

We first need a general lemma.

Let A be a C �-algebra, E a Hilbert A-module and p: A ! LðHÞ a representation of
A. We denote by Ip:LðEÞ ! LðEnp HÞ the representation T 7! T n 1.
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2.1. Lemma. Let frig be a family of representations of A.

a) If the representation s of A is weakly contained in the family frig, then Is is weakly

contained in the family fIri
g.

b) If frig is a faithful family, then fIri
g is also a faithful family.

Proof. Let r be a representation of A and T A LðEÞ. For every x A E, h A Hr, we

have hTðxn hÞ;Tðxn hÞi ¼
�
r
�
hTðxÞ;TðxÞi1=2

�
ðhÞ; r

�
hTðxÞ;TðxÞi1=2

�
ðhÞ
�
. Therefore,

T A ker Ir , Ex A E; Eh A Hr; Tðxn hÞ ¼ 0

, Ex A E; Eh A Hr; hTðxn hÞ;Tðxn hÞi ¼ 0

, Ex A E; r
�
hTðxÞ;TðxÞi

�
¼ 0:

The lemma follows immediately. r

The Hausdor¤ case. Define a C0ðX Þ-valued scalar product on A ¼ CcðGÞ by

hx; hiðxÞ ¼
Ð

Gx

xðgÞhðgÞ dnxðgÞ:ð7Þ

In other words, hx; hi A C0ðXÞ is the restriction to X HG of x� ? h A A ¼ CcðGÞ. Given
f A C0ðXÞ and x A A define the right action by x f ðgÞ ¼ xðgÞ f

�
sðgÞ

�
. With these operations

A is a pre-Hilbert C0ðXÞ-module. Let L2ðG; nÞ be its Hilbert-module completion. We will
show that C �

r ðGÞ acts faithfully on L2ðG; nÞ. With this notation we have:

2.2. Lemma. If f ; x A CcðGÞ, then k f ? xkL2ðG; nÞ e k f krkxkL2ðG; nÞ.

Proof. First note that for x A CcðGÞ, we have

kxk2L2ðG; nÞ ¼ sup
x
hx; xiðxÞ ¼ sup

x

Ð
Gx

jxðgÞj2 dnxðgÞ ¼ sup
x
kxjGx

k22 :

Then, using the above, we have

k f ? xkL2ðG; nÞ ¼ sup
x
k f ? xjGx

k2 ¼ sup
x
klxð f ÞðxÞk2e k f krkxkL2ðG; nÞ: r

Recall that a Hilbert CðX Þ-module E is the space of continuous sections of a contin-
uous field ðExÞx AX of Hilbert spaces. An element T of LðEÞ is a (�-strongly continuous)
field ðTxÞx AX of operators on the field ðExÞx AX , and kTk ¼ sup

x
kTxk.

2.3. Theorem. There exists a �-representation l: C �ðGÞ ! L
�
L2ðG; nÞ

�
such that,

for f ; x A A we have lð f ÞðxÞ ¼ f ? x. For all f A C �ðGÞ and for all x A X , we have

lð f Þx ¼ lxð f Þ AL
�
L2ðG; nÞx

�
GL

�
L2ðGx; nxÞ

�
. For all f AC �ðGÞ, we have klð f Þk ¼ k f kr.

In this way, we may identify C �
r ðGÞ with l

�
C �ðGÞ

�
.

Proof. For f ; x A A, let lð f Þx ¼ f ? x. Then, by Lemma 2.2
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klð f ÞxkL2ðG; nÞe k f krkxkL2ðG; nÞ:

It follows:

1. For all f , lð f Þ extends to a bounded operator on L2ðG; nÞ.

2. l extends to a �-representation of C �
r ðGÞ.

Now, for f A A, the formula
�
lð f Þ

�
x
¼ lxð f Þ (using the canonical identification of

L2ðG; nÞx with L2ðGx; nxÞ) is obvious since these operators are defined on A with the same
convolution formula. Moreover k f kr ¼ supklð f Þxk ¼ klð f Þk. r

If m is a measure on X, let Indmð f Þ ¼
Ð
X

llxð f Þ dmðxÞ.

2.4. Corollary. a) For a dense subset DHX we have k f kr ¼ sup
x AD

klxð f Þk.

b) Let m be a positive measure on X. If x A Supp m, then lx is weakly contained in Indm.
In particular, if the support of m is X, then Indm is a faithful representation of C �

r ðGÞ.

Proof. a) Since D is dense in X, the maps f 7! f ðxÞ, from C0ðXÞ onto C form a
faithful family ðexÞx AD of representations of C0ðX Þ. Now, the corollary follows from
Lemma 2.1.

b) Let pm be the representation of CðXÞ by multiplication in L2ðX ; mÞ. If x A Supp m,
then by Lemma 2.1, Iex ¼ lx is weekly contained in Ipm ¼ Indm. r

The non-Hausdor¤ case. The following example shows that in the non-Hausdor¤
case Corollary 2.4 is not correct as stated above. The example also shows that in the state-
ment of [16], Proposition 3.1.2, Hausdor¤ness of the groupoid is needed.

2.5. Example. Let G be the groupoid of Example 1.2. Then, D ¼ Xnfx0g is dense in
X. But, it is clear from the example, that for T A A, kTkr 3 sup

x AD

klxðTÞk. Moreover, if m is

a measure on X with dense support, the representation Indm is faithful if and only if the
point fx0g has nonzero mass.

We now examine which modifications should be done.

Let G be a non-Hausdor¤ groupoid and letA be as in section 1. SetD¼f f jX ; f AAg.
Since we are in the non-Hausdor¤ case, elements ofA are not continuous, therefore D does
not consist of continuous functions. However, DHBðXÞ where BðXÞ is the C �-algebra of
bounded Borel functions on X. Let B be the C �-subalgebra of BðXÞ generated by D. By
Gelfand-Naimark theorem, BGC0ðYÞ for some locally compact Hausdor¤ space Y. Since,
X is an open and Hausdor¤ subset of G, CcðXÞHDHB. We summarize the important
properties of the space Y in the following proposition:

2.6. Proposition. Let X and Y be as above. Then:

a) The inclusion C0ðX ÞHC0ðYÞ yields a continuous map j: Y ! X which is proper

and onto.
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b) The inclusion C0ðYÞHBðXÞ yields a Borel map i: X ! Y such that iðXÞ is dense

in Y and i � j is the identity map on X.

Proof. From C0ðXÞHC0ðYÞ we obtain a continuous surjection j: Yþ ! Xþ sat-
isfying the conditions of a), where Xþ and Yþ denote the one point compactification of X

and Y. Moreover, for every f A A, there exists g A C0ðX Þ, such that ðg � rÞ f ¼ f ; we have�
ðg � rÞ f

�
jX ¼ f jXg. Therefore, C0ðXÞC0ðY Þ ¼ C0ðYÞ. It follows that j maps the point at

infinity of Yþ to that of Xþ and Y to X, and hence it maps Y onto X.

b) is clear. r

Let G be the groupoid of Example 1.2 with jGj3 1. Then Y ¼ X � f0gW fðx0; 1Þg;
in this case iðxÞ ¼ ðx; 0Þ if x3 x0 and iðx0Þ ¼ ðx0; 1Þ. Note the fact that i is not continuous
at x0.

2.7. A construction of a Hilbert module. Before proceeding we need a Hilbert mod-
ule construction based on Kasparov’s generalized Stinespring theorem ([11]).

Let A be a C �-algebra and let E be a vector space with a completely positive A-valued
scalar product, i.e. a sesquilinear map E2 C ðx; hÞ 7! hx; hi A A such that for every n-tuple
ðx1; . . . ; xnÞ A En the n � n matrix ðhxi; xjiÞi; j is an element of MnðAÞþ. Form the algebraic
tensor product EpA of linear spaces and define an A-valued scalar product on the ele-
mentary tensors by

hxn a; hn bi ¼ a�hx; hib ðx; h A E; a; b A AÞ:

This product is obviously A-sesquilinear with respect to the right action of A on EpA

given by ðxn aÞb ¼ xn ab. This product is also positive. Indeed, let x1; x2; . . . ; xn A E and
a1; a2; . . . ; an A A; then

P
i

xi n ai;
P
i

xi n ai

� �
¼
P
i; j

a�
i ðhxi; xjiÞaj ¼ hh;Chi A Aþ;

where, h A An is the column matrix given by a1; a2; . . . ; an and C A MnðAÞþ is the matrix
ðhxi; xjiÞi; j. Hence, EpA with the right action ðxn aÞb ¼ xn ab is a pre-Hilbert A-
module. The Hausdor¤ completion, denoted by EnA, is a Hilbert A-module.

We apply the above construction to the case of a non-Hausdor¤ groupoid G. Given
x; h A A, let hx; hi ¼ ðx� ? hÞjX A DHC0ðYÞ.

2.8. Lemma. The inner product hx; hi ¼ ðx� ? hÞjX is completely positive.

Proof. Given x1; x2; . . . ; xn A A, we must show that for each y A Y , the scalar ma-
trix

�
hxi; xjiðyÞ

�
is positive. It is therefore enough to see that, for all z1; . . . ; zn A Cn and

every y A Y we have
�
z;
�
hxiðyÞ; xjðyÞi

�
z
�
A Rþ which means that hx; xi A C0ðYÞþ where

x ¼
P
i

zixi A A.

But for all x A X , we have hx; xi
�
iðxÞ

�
¼
Ð

Gx

jxðgÞj2 dnxðgÞf 0; the lemma follows by
the density of iðXÞ in Y. r
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Using Lemma 2.8, we form the Hilbert C0ðY Þ-module, AnC0ðYÞ, as described in
2.7. This module will be denoted by L2ðG; nÞ. Of course, if G is Hausdor¤, Y ¼ X and the
definitions of L2ðG; nÞ coincide.

2.9. Lemma. For each x A X , let x̂x: C0ðY Þ ! C be the character defined by

x̂xð f Þ ¼ f
�
iðxÞ

�
. Then there is an isomorphism Ux: L

2ðG; nÞnx̂x C ! L2ðGx; nxÞ such that,
for all x A A, f A C0ðYÞ and z A C we have Ux

�
ðxn f Þn z

�
¼
�
z f
�
iðxÞ

��
xjGx

.

Proof. We first check that the inner product is preserved. Let x; h A A, f ; g A C0ðY Þ
and z;w A C. We have

hxn f nx̂x z; hn gnx̂x wi ¼ zx̂xðhxn f ; hn giÞw

¼ zx̂x
�
f ðx� ? hÞjXg

�
w

¼ z f
�
iðxÞ

�
ðx� ? hÞðxÞg

�
iðxÞ

�
w

¼
Ð

Gx

z f
�
iðxÞ

�
xðgÞwg

�
iðxÞ

�
hðgÞ dnxðgÞ

¼ hz f x;wghi:

This shows that Ux defines an isometry from L2ðG; nÞnx̂x C to L2ðGx; nxÞ. Moreover, since
Gx is a closed Hausdor¤ subset of G, the restriction to Gx defines a surjection from A to
CcðGxÞ; it follows that Ux is onto. r

2.10. Theorem. There exists a �-representation l: C �ðGÞ ! L
�
L2ðG; nÞ

�
such that,

for f ; x A A and g A C0ðY Þ we have lð f Þðxn gÞ ¼ ð f ? xÞn g. For all f A C �ðGÞ and for

all x A X , we have
�
lð f Þ

�
iðxÞ ¼ lxð f Þ A L

�
L2ðG; nÞx

�
¼ L

�
L2ðGx; nxÞ

�
. For all f A C �ðGÞ,

we have klð f Þk ¼ k f kr. In this way, we may identify C �
r ðGÞ with l

�
C �ðGÞ

�
.

Proof. Given f A A define Tf :ApC0ðY Þ ! ApC0ðYÞ setting

Tf ðxn gÞ ¼ ð f ? xÞn g:

For every x A X , we have

Ux

�
Tf ðxn gÞnx̂x 1

�
¼ Uxð f ? xn gnx̂x 1Þ

¼ ð f ? xÞjGx
g
�
iðxÞ

�
¼ lxð f ÞUxðxn gnx̂x 1Þ:

Let z A ApC0ðY Þ; the norm of Tf ðzÞ in L2ðG; nÞ is the supremum over x A X of its image
in L2ðG; nÞx GL2ðGx; nxÞ. This image is Ux

�
Tf ðzÞn 1

�
¼ lxð f Þ

�
Uxðzn 1Þ

�
, whose norm

is less than k f krkzk.

In particular, Tf extends to a continuous linear map lð f Þ: L2ðG; nÞ ! L2ðG; nÞ. Fur-
thermore, one sees easily that lð f Þ is adjointable with adjoint lð f �Þ.

Khoshkam and Skandalis, Groupoid C �-algebras 61

Brought to you by | Université Pierre & Marie Curie
Authenticated

Download Date | 8/31/15 11:21 AM



The above computations show that, for all x A X , we have
�
lð f Þ

�
iðxÞ ¼ lxð f Þ in

L
�
L2ðG; nÞx

�
identified with L

�
L2ðGx; nxÞ

�
thanks to Lemma 2.9.

Finally,

klð f Þk ¼ sup
x AX

���lð f Þ�
iðxÞ
�� ðby density of iðXÞ and Lemma 2:1Þ

¼ sup
x AX

klxð f Þk

¼ k f kr: r

2.11. Corollary. a) Let DHX be such that iðDÞ is dense in iðXÞ, then for every

T A C �ðGÞ we have kTkr ¼ sup
x AD

fklxðTÞkg.

b) Let m be a probability measure on X, and let iðxÞ A Supp iðmÞ. Then, lx is weakly

contained in IndiðmÞ.

Proof. Clear from Lemma 2.1, and Theorem 2.10. r

2.12. Remark. Let ðV ;FÞ be a minimal foliation. In [7], it is shown that, if the
holonomy groupoid is Hausdor¤, then the C �-algebra of ðV ;FÞ is simple. In the non-
Hausdor¤ case, this is no longer true (cf. [19]). However, from the proof of [7] and Corol-
lary 2.11 we get:

Let ZHV be the set of points of V with trivial holonomy group. If iðZÞ is dense in

iðVÞ, then the foliation C �-algebra is simple.

Indeed, let p be a nonzero representation of C �ðV ;FÞ and x A Z. It follows from [7]
that p weakly contains lx. By Corollary 2.11, the family ðlxÞx AL is faithful, whence p is
faithful.

3. Applications to inverse semigroups

The relations between inverse semigroups and groupoids are well known. A. Paterson
([16]) gives an extensive account of the connections between the two theories through their
operator algebras.

In particular, with an inverse semigroup S is naturally associated a groupoid GS,
such that C �ðSÞGC �ðGSÞ and C �

r ðSÞGC �
r ðGSÞ. It turns out that, in the non-Hausdor¤

case there is a small di‰culty in the latter isomorphism that had been overseen. Equipped
with the result of section 2, we give a new proof of the isomorphism C �ðSÞGC �ðGSÞ and
show that, even in the non-Hausdor¤ case, this isomorphism passes to the reduced C �-
algebras.

Moreover, using Theorem 1.8 and Corollary 1.9, we prove that the full and the re-
duced C �-algebras of an E-unitary inverse semigroup satisfying an extra assumption (see
Prop. 3.9) is Morita-equivalent to the crossed product of its maximal group homomorphic
image with an abelian C �-algebra.
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Inverse semigroups. We begin by recalling some basic facts about inverse semi-
groups.

A semigroup S is called an inverse semigroup if for each u A S, there exists a unique
element, denoted by u� in S such that uu�u ¼ u, and u�uu� ¼ u�.

The set of idempotents ES ¼ fu�u A S; u A Sg of S plays a crucial role in the study of
inverse semigroups. It is a well known fact that ES is a commutative sub-semigroup of S.
Moreover, ES is a semi-lattice under the partial ordering ee f if ef ¼ e.

For u; v A S, set u@ v if there exists e A ES such that eu ¼ ev. This is an equivalence
relation on S. The quotient S=@ is a group denoted by GS called the maximal group ho-

momorphic image of S, in that any group homomorphic image of S is a quotient of GS. Let
s: S ! GS denote the quotient map. Note that the set ES maps to the identity of GS. For
these facts and more on the algebraic theory of inverse semigroups we refer to [9].

3.1. Lemma. For u; v A S the following conditions are equivalent.

(i) u�v ¼ u�u; (i) 0 v�u ¼ u�u; (ii) vu� ¼ uu�; (ii) 0 uv� ¼ uu�;

(iii) u ¼ uu�v; (iii) 0 bp A E, u ¼ pv; (iv) u ¼ vu�u; (iv) 0 bq A E, u ¼ vq.

Proof. Note that (i), (i) 0 and (ii), (ii) 0 are proved by passing to adjoints;
(iii)) (iii) 0 and (iv)) (iv) 0 are obvious; (i)) (iii) (resp. (ii)) (iv)) is obtained by left
(resp. right) multiplication by u; finally, if (iv) 0 (resp. (iii) 0) holds, we find

u�u ¼ qv�vq ¼ v�vq2 ¼ v�u

(resp. uu� ¼ pvv�p ¼ vv�p2 ¼ vu�). r

For u; v A S, write u � v if one (and hence all) of the equivalent conditions of Lemma
3.1 holds. This is a partial ordering on S.

The C*-algebras of an inverse semigroup. An inverse semigroup S can be repre-
sented as a semigroup of partial isometries on a Hilbert space H: a representation of an in-
verse semigroup S on a Hilbert space H is a map p: S ! LðHÞ such that pðuvÞ ¼ pðuÞpðvÞ,
and pðu�Þ ¼ pðuÞ�.

For f ; g A l1ðSÞ, we set

f ? gðwÞ ¼
P

uv¼w

f ðuÞgðvÞ; f �ðwÞ ¼ f ðw�Þ; k f k ¼
P
u AS

j f ðuÞj:ð8Þ

Endowed with these operations, l1ðSÞ is a Banach-�-algebra. Each representation of S ex-
tends linearly to a �-representation of l1ðSÞ. The enveloping C �-algebra of l1ðSÞ is called
the C �-algebra of S and is denoted by C �ðSÞ. In particular, there exists a one to one cor-
respondence between the representations of S and those of C �ðSÞ.

A very important representation of S, the left regular representation, is
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L: S ! B
�
l2ðSÞ

�
defined by

LðuÞðdvÞ ¼
duv if u�uv ¼ v,

0 otherwise,

�
where ðduÞu AS denotes the canonical orthonormal basis of l

2ðSÞ. The extension to l1ðSÞ of
L is known to be faithful (cf. [22]), but L is not in general faithful on C �ðSÞ. The reduced

C �-algebra of S is by definition the image of C �ðSÞ under L and will be denoted by C �
r ðSÞ.

The groupoid of an inverse semigroup. We recall a construction which associates
with each inverse semigroup S, in a natural and explicit way, a groupoid G. For more on
this construction, the basic properties of the groupoid, and examples see [16].

Let S be an inverse semigroup and E ¼ ES the set of idempotents of S. Let X be the
space of multiplicative linear functionals on l1ðEÞ with the relative weak�-topology. In
other words, X is the spectrum of the abelian C �-algebra C �ðEÞ. We consider the elements
of E as continuous functions on X in the obvious way. In fact, each p A E corresponds to
the characteristic function of the set

Fp ¼ fx A X ; pðxÞ ¼ 1g;

a clopen subset of X. The space X is totally disconnected, locally compact, and Hausdor¤
with the sets Fp forming a sub-basis consisting of clopen sets for the topology of X.

Moreover, the semigroup S acts on the space X by local homeomorphisms (i.e. the
pair ðX ;SÞ is a localization in the sense of [12], [16]) in the following manner. If x A Fu�u, let
u:x be the character e 7! xðu�euÞ for e A E. Then, u:x A Fuu� HX and this defines a homeo-
morphism from Fu�u onto Fuu� .

The groupoid of S is the groupoid associated to this pseudogroup of partial homeo-
morphisms. Namely, let ŜS ¼ fðu; xÞ A S � X ; ðu�uÞðxÞ ¼ 1g with the relative product to-
pology. Define an equivalence relation on ŜS by ðu; xÞ@ ðv; xÞ if there exists e A E such that
eðxÞ ¼ 1 and ue ¼ ve.

Let GS be the quotient space of ðŜS;@Þ equipped with the quotient topology and
ðu; xÞ 7! gðu; xÞðu; xÞ the quotient map. Then GS is a groupoid with G

ð0Þ
S ¼ X under the following

operations:

s gðu; xÞðu; xÞ ¼ x; r gðu; xÞðu; xÞ ¼ u:x; gðu; xÞðu; xÞ�1 ¼ gðu�; u:xÞðu�; u:xÞ; and gðu; xÞðu; xÞ gðv; yÞðv; yÞ ¼ gðuv; yÞðuv; yÞ;ð9Þ

for v:y ¼ x. The groupoid GS will be called the groupoid of S. It is a locally compact r-

discrete groupoid which is not in general Hausdor¤. The sets Ou ¼ f gðu; xÞðu; xÞ; x A Fu�ug
form an open covering of GS; the source and range maps restrict to homeomorphisms
s: Ou ! Ou�u and r: Fu ! Fuu� .

Embedding S in GS . Each p A E defines an element ep of X by qðepÞ ¼ 1 if pe q (i.e.

pq ¼ p) and zero otherwise. Furthermore, each u A S defines an element eu ¼ gðu; eu�uÞðu; eu�uÞ A GS.
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Since C0ðX Þ ¼ C �ðEÞ is generated by E, an element x A X is determined by the set
Fx ¼ fp A E; pðxÞ ¼ 1g. Conversely, the characteristic function of a nonempty subset F HE

such that

ðe A F and f A FÞ , e f A F for every e; f A E;

is a nonzero character wF of C �ðEÞ, and therefore determines an element of X. Moreover,
Fx is a directed ordered set by pf q if qe p.

We will use the following result—which is a slightly stronger reformulation of Prop-
osition 4.3.1 in [16].

3.2. Proposition. a) For x A X the net fepgp AFx
converges to x. In particular, fepgp AE

is dense in X.

b) For e A E, we have fg A GS; sðgÞ ¼ eeg ¼ feu; u A S; u�u ¼ eg.

c) The map u 7! eu is an injection with dense range from S into GS.

Proof. a) By definition, C �ðEÞ is spanned by the functions p A E. Therefore, there
exists p0 A E such that p0ðxÞ3 0.

Let V be an open neighborhood of x in X. There exist p1; . . . ; pn A E and

q1; . . . ; qm A E such that x A

	T
i

Fpi

��	S
i

Fqi

�
HV . Let p be the product of the pi’s

from 0 to n.

As x A Fpi
, we find pðxÞ ¼ 1, whence p A Fx.

Let e A Fx such that pf e;

. as pi f pf e, we have piðeeÞ ¼ 1;

. as x A FenFq j
, we find Fe ,Fq j

, whence em qj; we draw qjðeeÞ ¼ 0.

It follows that ee A V . Assertion a) follows.

b) Let e A E. An element g A GS with source ee is the class of an element ðu; eeÞ with
ee u�u, and therefore g ¼ eue.

c) If u; v A S are such that u�u ¼ v�v ¼ e and gðu; eeÞðu; eeÞ ¼ gðv; eeÞðv; eeÞ, then there exists f A E

with uf ¼ vf and f ðeeÞ ¼ 1; the last condition yields ee f , therefore u ¼ ue ¼ uf ¼ vf ¼ v.
Injectivity of u 7! eu follows.

It follows easily from a) and b) that eðSÞ is dense in GS. r

Full C*-algebras. We now show that the full C �-algebra of an inverse semigroup is
equal to the full C �-algebra of the associated groupoid. More precisely, we have:

Khoshkam and Skandalis, Groupoid C �-algebras 65

Brought to you by | Université Pierre & Marie Curie
Authenticated

Download Date | 8/31/15 11:21 AM



3.3. Theorem. Let S be an inverse semigroup and GS the associated groupoid. Let A
be the function algebra associated with the groupoid GS (cf. Section 1). For u A S, denote by

fu A A the characteristic function of the compact open set Ou. Then there is an isomorphism

C �ðSÞGC �ðGSÞ mapping du A l1ðSÞHC �ðSÞ to fu A AHC �ðGSÞ.

Proof. One checks immediately the equalities fu fv ¼ fuv and f �
u ¼ fu� . By the uni-

versal property of C �ðSÞ, there exists a �-representation p: C �ðSÞ ! C �ðGSÞ such that
pðduÞ ¼ fu.

Let f ¼
P
u AS

gu be an element of A, where gu is a continuous function with compact

support on Ou (Lemma 1.3). Now one may write gu ¼ fuhu where hu is a continuous func-
tion on Fu�u such that gu ¼ hu � s.

It follows from the definition of X, that C0ðXÞ may be viewed as the subalgebra
C �ðEÞ of C �ðSÞ. Moreover, for f A CcðXÞ, pð f Þ is the element f A CcðXÞHAHC �ðGSÞ:
this can be checked for f ¼ p A E. Since the image of p contains CcðXÞ and the fu, it con-
tains A. Therefore p is onto.

More precisely, the element
P
u AS

fuhu A A is the image of the element
P
u AS

duhu A C �ðSÞ.

To show that p is injective, we may use [17], [18]: each representation s of C �ðSÞ is a
representation of S by partial isometries. The latter, restricts to a representation of E, and
therefore to a representation of CcðXÞ, which defines a measure class m and a measurable
field ðHxÞx AX of Hilbert spaces over X. Each u A U , defines a partial isometry, and looking
at its compatibility with the action of CðXÞ, it follows that m is invariant under the partial
transformation of X associated with u; moreover, we may disintegrate u to a measurable
family Vu;x: Hx ! HuðxÞ over fx A X ; ðu�uÞðxÞ ¼ 1g. We see immediately that ðH;VÞ is a
representation of GS in the sense of [17] (cf. [18] for the non-Hausdor¤ case). It follows now
straightforwardly from [17], [18] that s is a representation of C �ðGSÞ, i.e. factors through
p. r

Remark. We may also show in a more direct way the injectivity of p, by using

Lemma 1.4. We just need to show that the norm

����P
u AS

duhu

���� of P
u AS

duhu in C �ðSÞ is less

than or equal to the norm

���� P
u AS

duhu

����
1

(where the norm k k1 onA is given by formula (3)):

this will show that we have a morphism s:A ! C �ðSÞ continuous with respect to the
norm k k1; as p � s is the inclusion ofAHC �ðGSÞ, this s will be a �-homomorphism ofA
and will therefore extend to a �-homomorphism ~ss: C �ðGSÞ ! C �ðSÞ. Looking at gen-
erators of C �ðSÞ, we find that ~ss is the inverse of p.

Now, by Lemma 1.4, the L1-norm of R ¼
P
u AS

duhu is an infimum over all writ-

ings R as a sum
P
u AS

duhu. It is therefore enough to show that the norm in C �ðSÞ ofP
u AS

duhu is emax

	
sup
x AX

P
u

jhuðxÞj; sup
x AX

P
u

jh 0
uðxÞj

�
where h 0

u ¼ duhudu� . To that end, writeP
u AS

duhu ¼
P
u AS

kudulu; with ku; lu A C0ðX Þ given by ku ¼ du

ffiffiffiffiffiffiffi
jhuj

p
d�u ¼

ffiffiffiffiffi
h 0

u

p
and lu ¼ j � hu

where j: C ! C is the function defined by jð0Þ ¼ 0 and jðzÞ ¼ zjzj�1=2 for z3 0. The fact
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that duhd
�
u A C0ðX Þ for all f A C0ðX Þ is checked on generators de of C0ðXÞ. Now use the

well known elementary matrix calculation:
P
u AS

ku dulu ¼ LDC; where L is the line matrix

with coe‰cients ku, D is the diagonal matrix with coe‰cients du and C is the column matrix
with coe‰cients lu; the du’s are nonzero partial isometries whence kduk ¼ 1, so that kDk¼1,
moreover kLk2¼kLL�k¼ sup

x AX

P
u

jh 0
uðxÞj and kCk2¼kC �Ck¼ sup

x AX

P
u

jhuðxÞj. We get

P
u AS

duhu

���� ����e kLk kDk kCk ¼ sup
x AX

P
u

jh 0
uðxÞj

	 �1=2
sup
x AX

P
u

jhuðxÞj
	 �1=2

emax sup
x AX

P
u

jhuðxÞj; sup
x AX

P
u

jh 0
uðxÞj

	 �
:

Reduced C*-algebras. To establish the isomorphism of the reduced C �-algebras,
C �

r ðGSÞGC �
r ðSÞ, we will use an equality

kTkr ¼ sup
p
fklpðTÞkr; p A Eg:

A priori, as seen by Example 2.5, this does not follow from the density of E in X ¼ G
ð0Þ
S ;

instead, by Corollary 2.11, we must show that iðEÞ is dense in the space Y of section 2. The
proof of C �

r ðGSÞGC �
r ðSÞ given in [16] uses [16], Proposition 3.1.2, which as alluded to re-

quire Hausdor¤ness (see Example 2.5).

3.4. Lemma. The set fiðepÞ; p A Eg is dense in Y.

Proof. Since iðXÞ is dense in Y, it is enough to show that the closure of fiðepÞ; p A Eg
contains iðXÞ.

Let x A X ; we will show with the terminology of Proposition 3.2, that the net�
iðepÞ

�
p AFx

converges to iðxÞ. One just needs to show that, for all f A C0ðY Þ, the net�
f
�
iðepÞ

��
p AFx

converges to f
�
iðxÞ

�
. As C0ðY Þ is generated by the set D of restrictions to

X of elements of A, it su‰ces to show that for each g A A the net
�
gðepÞ

�
p AFx

converges
to gðxÞ.

Moreover, we only need to prove this for elements of the form f jX where f is a

continuous function in a compact open set Ou ¼ f gðu; yÞðu; yÞ; ŷyðu�uÞ ¼ 1g for some u A S

(Lemma 1.3). We may write f ¼ fug, where g is a continuous function on Fu�u. Then, for
z A X , we have

f jX ðzÞ ¼
0 if z B Fu�u,

0 if z A Fu�u, gðu; zÞðu; zÞ3 z,

gðzÞ if z A Fu�u, gðu; zÞðu; zÞ ¼ z.

8><>:
If x B Fu�u, then as Fu�u is closed in X, the function f jX is continuous at x; therefore�
f ðepÞ

�
p AFx

converges to f ðxÞ by Proposition 3.2.
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Second, if x A Fu�u, but gðu; xÞðu; xÞ3 x. Then, for all p A Fx, we have ep B Fu�u, for

otherwise we get that gðu; xÞðu; xÞ ¼ gðp; xÞðp; xÞ which is in contradiction with gðu; xÞðu; xÞ3 x; therefore�
f ðepÞ

�
p AFx

is the 0 family, and converges to f ðxÞ.

Finally, assume gðu; xÞðu; xÞ ¼ x. As the set fz A Fu�u; gðu; zÞðu; zÞ ¼ zg is open, f jX is continuous
at x; therefore

�
f jX ðepÞ

�
p AFx

converges to f ðxÞ by Proposition 3.2. r

3.5. Theorem. Let S be an inverse semigroup and GS its associated groupoid. Then

C �
r ðSÞGC �

r ðGSÞ.

Proof. The left regular representation of S decomposes into a direct sum L ¼
L
e AE

Le

under the decomposition l2ðSÞ ¼
L
e AE

l2ðSeÞ, where for e A E, Se ¼ fu A S; u�u ¼ eg.

From Corollary 2.11, and Lemma 3.4, the family flee ; e A Eg is a faithful family of
representations for C �

r ðGÞ, where lee : C �
r ðGÞ ! B

�
l2ðGeeÞ

�
.

By Proposition 3.2 b), one has Gee ¼ feu; u A Seg. Hence, there is an isomorphism
Ve: l

2ðSeÞ ! l2ðGeeÞ such that, for u A Se, we have VeðduÞ ¼ dðu; eeÞ.f
Let p: C �ðGÞ ! C �ðSÞ be the isomorphism given by Theorem 3.3. Then, for each

T A C �ðSÞ, one gets LeðTÞ ¼ U �
e lee

�
pðTÞ

�
Ue, which is easily verified by checking on the

generators of C �ðSÞ. This completes the proof. r

The E-unitary case. Let S be an inverse semigroup S. Denote by s: S ! GS the
homomorphism of S onto its maximal group homomorphic image GS.

Recall that S is said to be E-unitary if every element u A S satisfying sðuÞ ¼ 1 is an
idempotent of S. This is a very important class of inverse semigroups whose algebraic
theory is well developed.

We will show that if S is E-unitary and satisfies certain algebraic condition, then its
C �-algebras are Morita equivalent to crossed products of its maximal group homomorphic
image by a commutative C �-algebra.

3.6. Proposition. Let S be an inverse semigroup, G its maximal group homomorphic

image and GS its groupoid.

a) There is a continuous, transverse cocycle r: GS ! G that maps the class of ðu; xÞ in

GS to sðuÞ.

b) The map ðr; sÞ: g 7!
�
rðgÞ; sðgÞ

�
from GS to GS � X is injective if and only if S is E-

unitary.

Proof. a) If gðu; xÞðu; xÞ ¼ gðv; xÞðv; xÞ, then for some idempotent e A E, we have ue ¼ ve.
Whence, sðuÞ ¼ sðvÞ which shows that r is well defined. It is clear that r is a con-
tinuous cocycle. To show that r is transverse, since GS is discrete, we only need to
prove that

��
rðgÞ; sðgÞ

�
; g A GS

�
is an open subset of GS � X . In other words, it is

enough to show that for any g A GS, the set fsðgÞ; g A GS; rðgÞ ¼ gg is open in X. But
fsðgÞ; g A GS; rðgÞ ¼ gg ¼

S
u AS;sðuÞ¼g

Fu�u: it is an open subset of X.
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b) If ðr; sÞ is injective, then the map ðr; sÞ � e: S ! X � G is injective; it follows im-
mediately that S is E-unitary.

Assume S is E-unitary. Let u; v A S, x; y A X such that x A Fu�u and y A Fv�v. Suppose

that ðr; sÞ gðu; xÞðu; xÞ ¼ ðr; sÞ gðv; yÞðv; yÞ. Then x ¼ s gðu; xÞðu; xÞ ¼ s gðv; yÞðv; yÞ ¼ y and sðuÞ ¼ sðvÞ. Since S is E-

unitary, uv� is an idempotent of S. Then, gðu; xÞðu; xÞ gðv; xÞðv; xÞ�1 ¼ gðuv�; v:xÞðuv�; v:xÞ is a unit of GS since uv�

is an idempotent of S. It follows that gðv; xÞðv; xÞ ¼ gðu; xÞðu; xÞ. r

3.7. Corollary. The groupoid of an E-unitary inverse semigroup is Hausdor¤.

Proof. By Proposition 3.6, the map ðr; sÞ: g 7!
�
rðgÞ; sðgÞ

�
is a continuous injective

map from GS into the Hausdor¤ space GS � X . r

Note that every element u of S defines a compact open subset Ou (its graph) in GS, i.e.
the set of the elements gðu; xÞðu; xÞ A GS. We have the following lemma:

3.8. Lemma. Let U HS and u A S. If Ou H
S

v AU

Ov, then there exists v A U such that

u � v.

Proof. Indeed, the element eu has to belong to an Ov which implies u � v. r

Our aim is to give a condition on S which is equivalent to the fact that the image of
GS by the map c: g 7!

�
rðgÞ; rðgÞ; sðgÞ

�
has closed range. For g A GS, set Sg ¼ s�1ðfggÞ.

3.9. Proposition. Let S be an E-unitary semigroup. The map c: G ! X � GS � X

defined by cðgÞ ¼
�
rðgÞ; rðgÞ; sðgÞ

�
has closed range if and only if, for every p; q A E and

every g A GS, there exists a finite subset U H pSgq such that

pSgq ¼ fu A S; bv A U ; u � vg:

Proof. Since GS is discrete, c has closed range if and only if, for all g A GS, the set
GrðgÞ ¼

S
u ASg

Ou is closed in X � X .

Since the Fp ðp A EÞ form a compact open cover of X, the set GrðgÞ is closed in
X � X if and only if, for every p; q A E, the set GrðgÞX ðFp � FqÞ is compact. Now the Ou,
u A pSgq form a compact open cover of GrðgÞ; whence GrðgÞX ðFp � FqÞ is compact if and
only if there exists a finite subset U HSg such that GrðgÞX ðFp � FqÞ ¼

S
u AU

Ou, which by
Lemma 3.8 is equivalent to pSgq ¼ fu A S; bv A U ; u � vg. r

3.10. Theorem. If S is an E-unitary inverse semigroup which satisfies the condition of

Proposition 3.9, then r: GS ! GS is a faithful, closed and transverse cocycle.

Proof. By Proposition 3.6, r is a faithful, transverse, continuous cocycle and by
Proposition 3.9, it is closed. r

3.11. Corollary. If S is as in Theorem 3.10, then there exists a locally compact space

Y endowed with an action of GS such that C �ðSÞ and C �
r ðSÞ are respectively �-isomorphic to

C0ðY ÞcGS and C0ðYÞcr GS.

Khoshkam and Skandalis, Groupoid C �-algebras 69

Brought to you by | Université Pierre & Marie Curie
Authenticated

Download Date | 8/31/15 11:21 AM



Proof. Apply Corollary 1.7, Theorems 3.2, 3.5 and Theorem 3.10. r

We now give two examples of inverse semigroups. The first is E-unitary but the co-
cycle r is not closed; the second, is not E unitary, but the cocycle r: GS ! GS is faithful,
closed and transverse.

3.12. Examples. a) Let E ¼ fpn; n A NW fygg with pnpm ¼ pm if nfm. Let G be
a locally compact group and define S by

S ¼ G� fpn; n A NgW fð1;yÞg:

It is a sub-semigroup of G� E and therefore it is E-unitary. But the range of the map
c is not closed. To see this one notes that X ¼ NW fyg with its natural compact
topology (since py is the identity element of E, X is compact). The range of the map
c is fðm; g;mÞ;m A NgW fðy; 1;yÞg, but the elements ðm; g;mÞ converge to the point
ðy; g;yÞ which is not in the range if g3 1. Notice that, GS GG and for each g A G with
g3 1,

Sg ¼ fðg; pmÞ;m A Ng

which has no upper bound for the relation �. It follows that S does not satisfy the condi-
tion of Proposition 3.9.

b) Let A be a set with at least two elements and let S be the union of A � A and
an extra element o. Define the semigroup operations in S by setting ða; bÞðb; cÞ ¼ ða; cÞ
and all other products equal to o. One sees immediately that S is an inverse semigroup,
ða; bÞ� ¼ ðb; aÞ and o� ¼ o. Its set of idempotents is E ¼ fða; aÞ; a A AgW fog. A subset F

of E satisfying e f A F , e, f A F either contains o and is therefore equal to E, or it doesn’t
and therefore can contain only one ða; aÞ. It follows that e: E ! X is onto, whence
e: S ! GS is a bijection. It follows that GS identifies with the subgroupoid A � AW fðo; oÞg
of ðAW fogÞ � ðAW fogÞ. It is obvious, that GS is the trivial group, whence S is not E-
unitary. Since X and G are discrete, the cocycle r: GS ! GS is closed and transverse; since
GS is a subgroupoid of X � X , the map ðr; sÞ: GS ! X � X is one to one, whence r is
faithful.

It follows from this second example that we may construct a Morita equivalence
GS ! Y cGS in a somewhat more general situation than that of Corollary 3.11. Note that
in the case of Corollary 3.11, the Morita equivalence GS ! Y cGS is moreover injective,
i.e. X is an open subset of Y.

We end this section with a discussion on a well known class of inverse semigroups for
which the transverse cocycle r is faithful and closed and by an algebraic condition equiva-
lent to that of Proposition 3.9. We thus get classes of inverse semigroups whose C �-algebras
are Morita-equivalent to the crossed product of an abelian C �-algebra by their maximal
group homomorphic image.

F-inverse semigroups. Let S be an inverse semigroup. With the above notation, S is
said to be F-inverse, if for every g A GS, the set Sg has a maximal element for the partial
ordering �. It is easily seen that an F-inverse semigroup is E-unitary and unital. In the non
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unital case, Mark Lawson ([13]) gave a more general definition of F-inverse semigroups.
Keeping our notation, S is said to be F-inverse in the sense of [13], if it is E-unitary and
for every g A GS and every e; f A E, the set eSg f has a maximal element for the partial or-
dering �.

The condition of Proposition 3.9 is obviously satisfied for F-inverse semigroups even
in the weaker sense.

It is in fact quite easy to express the condition of Proposition 3.9 in the terms of [13].
To a E-unitary semigroup S is naturally associated a partially ordered set Z: Z is the quo-
tient of GS � ES by the equivalence relation@ defined by ðg; eÞF ðh; f Þ if there exists u A S

such that sðuÞ ¼ g�1h, uu� ¼ e and u�u ¼ f ; denote by g:e A Z the class of ðg; eÞ A GS � ES.
The partial order of Z is given by: g:e � h: f if there exists u A S such that sðuÞ ¼ g�1h,
uu� ¼ e and u�ue f .

Recall that an order ideal of Z is a set I such that, if x A Z and y A I are such that
x � y then x A I . Any subset A of Z generates an ideal of Z: the smallest order ideal con-
taining A.

Recall (cf. [13]) that S is F-inverse (in the weaker sense—[13]) if and only if Z is a
semilattice, i.e. if the intersection of two singly generated order ideals is singly generated. It
is easy to see that S satisfies the condition of Proposition 3.9 if and only if the intersection
of two finitely generated order ideals of Z is finitely generated.
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[3] A. Connes, A survey of foliations and operator algebras, in: Operator Algebras and Applications, Proc.

Symp. Pure Math. A.M.S. 38 part I (1982), 521–628.

[4] A. Connes, Non commutative geometry, Academic Press, 1994.

[5] J. Duncan and A. Paterson, C �-algebras of inverse semigroups, Proc. Edinburgh Math. Soc. 28 (1985), 41–
58.

[6] R. Exel, Circle actions on C �-algebras, Partial Automorphisms and a Generalized Pimsner-Voiculescu Exact
Sequence, J. Func. Anal. 122 (1994), 361–401.

[7] Th. Fack and G. Skandalis, Sur les représentations et idéaux de la C �-algèbre d’un feuilletage, J. Op. Th. 8
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2, Place Jussieu, 75251 Paris Cedex 05, France

e-mail: skandal@math.jussieu.fr

Eingegangen 29. Januar 2001

Khoshkam and Skandalis, Groupoid C �-algebras72

Brought to you by | Université Pierre & Marie Curie
Authenticated

Download Date | 8/31/15 11:21 AM


