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A. CONNES* and G. SKANDALIS**

In this paper, we use the bivarlant K theory of Kasparov ([19]) as a basic
tool to prove the ^-theoretical version of the Index theorem for longitudinal
elliptic differential operators for foliations which is stated as a problem in [10],
Section 10. When the foliation Is by the fibers of a fibratlon, this theorem
reduces to the Atiyah-SInger index theorem for families ([2], Theorem 3.1). It
Implies the Index theorem for measured foliations ([9], Theorem, p. 136) and
unlike the latter makes sense for arbitrary foliations, not necessarily gifted with
a holonomy invariant transverse measure.

The index in the Atiyah Singer theorem for families ([2]) Is an element of
the ^-theory K\B) of the base space of the fibration. In the case of foliations
the base B is the space of leaves of the foliation (F, F), This space of leaves, as
a topological space. Is often degenerate (If the foliation Is minimal there are no
nontrlvial open sets in V/F). The algebra C(B) of continuous functions on B
Is replaced by a canonically defined C*-algebra: C*(F, F), cf. [9], [10]. The K-
theory JT0(C*(F, F)) of this C*-algebra plays the role of K\S). In the case of a
fibration C*(F, F) is (Morita) equivalent to C(B) so that K0(C*(V, F))=K°(£).

Let D be an elliptic differential operator along the leaves of the foliation
(F, F). Since D is elliptic it has an inverse modulo C*(F9 F) hence It gives an
element Indfl(D) of KQ(C*(V, FJ). Let us now describe the topological index.
Let i be an auxiliary Imbedding of the manifold F In R2t\ Let N be the total
space of the normal bundle to the leaves: Nss=(i^(FJ)-±-c:M2n

a Let us foliate
¥= Fx jR2" by F, F(ss>t} =FXX {0}, so that the leaves of (F, f) are just L=Lx{t}9
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where L Is a leaf of (F, F) and t^R2n, The map (x, f ) -» (x, *(*)+£) turns an
open neighborhood of the 0-section in N into an open transversal T of the
foliation (V, F). For a suitable open neighborhood @ of Tin F"3 the C*-algebra
C*(£, F) of the restriction of Fto Q is (Morita) equivalent to C0(T), hence the
inclusion C*(Q9 F)cC*(F, F) yields a ^-theory map: K°(N)-*KQ(C*(V,F)).
Since C*(K,f*)=C*(F, F)®C0(Ig

2w)3 one has, by Bott periodicity, the equality

Ao(C*(P, F))=K0(C*(V5 F)).
Using the Thorn isomorphism K°(F*) is identified with K\N) so that one gets

by the above construction, the topological index:

Our main result is the equality: Indfl(D)==Ind,([aJ) where aD is the longitudinal
symbol of D and [aD] is its class in K\F*).

In the first section, we formalize the elliptic pseudo-differential calculus for
families of operators on X indexed by F, in terms of the bivariant Kasparov
theory. This gives a map of the ^-theory with compact support K*(T*Xx Y)
to the bivariant group KK*(X9 Y). We then compute directly the Kasparov
product of two such elements.

In the second section we first recall the definition of [10] of the analytical
element f\^KK(X9 Y) corresponding to a /^oriented map /from X to Y, We
then prove that (idx) ! is the unit of the ring KK(X9 X), Using the computation
of Section I, we then prove the equality: (/°g)!=g!®/!. Computing/! in the
case of an immersion, one gets that in all cases the map K(X) -*K(Y) given by/!
coincides with the classical wrong way map in K- theory. This statement is an
index theorem for morphisms.

In Section III we show that in the context of smooth manifolds the elements
of the bivariant Kasparov group KK(C(V)9 C(W)) have a natural interpretation
in terms of correspondences between V and W. The Kasparov product is
then given by a simple fibered product formula whose existence relies on the
transversality theorem. It follows then that, in this context, all Kasparov
products can be computed in purely geometric term. For instance the Poincare
duality in analytical K theory, is easily derived at the end of Chapter III from
simple geometric considerations. As applications we also derive the odd
index theorem of Baum-Douglas [6] and Kasparov [17]. As another example
we exhibit geometrically the correspondence from a submanifold W (of the
manifold V) to the complement of W in V whose associated analytical element
in KK\W9 VI W) is given by the exact sequence of C* algebras: 0
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C0(F)-»C0(WO-»Q. In particular^ the connecting map from the K homology

of VjWtQ the K homology of IF has again a simple geometric description.

In Section IV we prove the above-mentioned longitudinal index theorem

and at the same time the existence of a map /r. K%iT(BG)->K*(V/F) from the

geometric group [5]5 [10] of a foliation (V, F) with graph G to the analytical

groupo We then Illustrate it by a simple example.

Finally 3 in the appendix we Introduce in the general theory of Kasparov

a notion of connection which allows to compute Kasparov products without

modifying first the C* modules Involved. It gives an Implicit characterization

of the Kasparov product which we use In a crucial manner In our computations

throughout the paper. We also give a detailed description of the notion of K-

orlentatlon for microbundles which is the natural framework of Section II. All

the results of this paper have been announced in [11].

I. The Kasparov product of pseudo-differential families.

EL Wrong way functoriality.

DDL Composition of correspondences and applications.
IV. The longitudinal index theorem.
Vo Appendix A. Connections and Implicit characterization of Kasparov pro-

ducts.
VI. Appendix B. /C-orlentatlons of microbundles.

§1. Tie Kasparov Product of Pseudo-Differential

Let X be a smooth manifold and Y a locally compact parameter space0

In this section we shall first interpret the construction of continuous families,
indexed by Y, of pseudo-differential operators on X, as yielding a map W*:
K(T*XxY)-+KK(X,Y). Then we compute the Kasparov product of two
such families from a formula at the symbol level.

For the simplicity of the statements that follow we will assume that the
manifold X is compact. We will indicate In Remarks (1.5 (a)) and (1.11 (a))
the minor changes needed in the non compact case.

Denote by C0(F) the C*-algebra of continuous functions vanishing at oo in
r.

Let @ be an open subset of Xx Y and E a Hermitian vector bundle over
J2, Let Cc(&, E®@1/2) be the space of continuous (1/2 density) sections of E
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with compact support. Let $)=%)(&, E) denote the completion of CC(Q9 E®Ql/2)

with respect to the C0(F) valued inner product <<f, ^>(j)=l<(f(^5 j), 7j(x, j)>.

Then § is a Hilbert C*-rnodule ([18], Definition 2) over C0(F)0

1.1. Remarks, 1 . We denote here by Q112 the bundle of half densities in
the X direction. The scalar product <£ (x, y\ rj(x, j)> is a density in the X
direction. Hence its integral over J3y= {x \ (x, y)<^@} is v/ell defined.

In all this paper we will use half densities without mentioning the bundle
they are attached to. Their use will be to give formulae which do not depend
upon the choice of a measure in the Lebesgue class.

2. A Hilbert C*-module 8 over C0(Y) is the space of continuous sections
vanishing at co of a continuous field (Sy)ySY °f Hilbert spaces (in the sense of
[12], §10). Here we have §(£, E)y=L\Qy9 Ey) where Ey is the restriction of E
to Qy= {x | (x, y) e J2} . Note that the scalar product in L2(£y, Ey) is canonically
defined using half densities.

3. Following [18] and [19], we take all scalar products to be linear in the
second variable, antilinear in the first.

We next define the algebra of order 0 pseudo-differential families. It is
a subalgebra of the C*-algebra &(§($, E)) of endomorphisms of the Hilbert
C0(7) module &(£, E) ([18], Definition 3).

We shall first see the pseudo-differential families as acting on the C°°s° sections
with compact support of the bundle E.

Recall ([2]) that a function / on Xx Y is of class C°°'° if the map y ->/(•, y)
from Y to C°°(X) is continuous. The notion of bundle of class C00'0 over an
open subset ^czjfx Fis defined analogously. If E is such a bundle, C™*\E)
denotes the space of C°°'° sections of E9 with compact support in Q (cf. [2],
p. 121-124).

Set T*@={(x, f, y)l(x9 f)e T*X, (x, y)^®}. A symbol of order 0 is a
function aeC°°'°(r*J2, £(£)) which, uniformly on compact subsets of T, has an

asymptotic expansion a^S <*m where am is homogeneous of degree — m. To
m = o

such a symbol one associates a continuous linear map/-»P/ from Cr>0(^? E®
j21/2) to C°°'%0, E®®1/2) by the usual formula:

(Pf) (x, y) = jexp(i0(jc, x', tyafr, y, £)z(x, x', y)f(x\ y)dxfd^ .

Here the integral is an oscillating integral, 0 is a phase function and x is a

c*) Where d£ stands for (2?z:)~diinXx Lebesgue measure.
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cut off function associated with the diagonal
Ex,y®®l/2\ x(x, x,y)=lEX}y, cf., for Instance [7] or [16]).

As (Pf)(x,y) only depends upon the restriction of/ to Xx {y}, Pisa family
(Py)y(=Y °f pseudo-differential operators on X. We shall say that the support of
P Is contained In a closed subset K of J2, when, for each je Y9 the distribution

kernel of Py has support In KyxKy (Ky={x<=X, (x, y)<^K}).
It Is clear (cf. [24], Theorem 1, p. 243) that a family P as above, with com-

pact support KdQ, extends to an endomorphism (still called P) of the C0(Y)
module §(£, £). Let F?(£, £) denote the norm closure in S($(.0, E)) of the

*-algebra generated by the above P's and the Ideal S(§(^3 £)) °* compact
endomorphisms of §(£, £") ([18], Definition 4).

A bounded section /eC6($3 &(Is)) determines an endomorphism — still

noted /-of §(£, £") by the formula (/<?) (x, j>)=/(x, j)e(x? y) (eeQ(^3 £®
J21/2)). For PZE¥*(®, E) and /eQ(^, 8(£)) bolh /P and Pf^¥^, E).

Hence the closed subspace of S(£(,G,E)) generated by V$(Q9E) and Q(J23 &(E))
is a C*»algebra F*(J2, E).

Every P<^¥*(@,E) has a symbol of order 0, a(P) which lies in the C*-
algebra @(£3 E)=C0(S*ti, %(£))+ Cb(Q9 8>(E)) (as subspaces of Cb(S*£, 2(E))),
Here

S*Q = {(x, e, j); (x, j)eJ23 f is a half line of T*(X)}™ .

The following proposition Is a particular case of [9], p. 138 (cf. [24],
Corollary, p. 265):

L2o Proposition,, The following sequences are exact:

o -> £(£(0, E)) -> ry(j2, £> -1 c0(s*^, «(E)) -> o

o -> $(£>(£, £)) -> y*(fi, E -1 @(0, E -> o .

The construction of the map <P*:K(T*Xx Y)-*KK(X, Y) follows now in a
formal manner. It will be useful to use a rather large class of symbols a<^K(T*
Xx Y) only defined above an open subset Q of Xx Y and satisfying:

1030 DefiElticiii0 A Clifford symbol is a triple (£, E, a) where Q is an open

subset of Xx Y, E is a Z\1 graded Hermitian bundle of class C00'0 over ®, and
ae@(<03 E) satisfies:

(a) a(x, <?, y) is of degree 1 (for the JS/2 grading of2(EJ)for all (x, £ ,

c*) Or (f e r?!̂  ||<f|[ =1 for a given Riemannian metric.
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(b) a=o*,o*=l5

(c) a has compact support. This means that there exists a compact subset
Kof @ such that o(x, f , y) only depends on (x5 y) outside K.

Such a symbol Is called trivial if a is everywhere independent of f . The
JT-theory obtained from stable homotopy classes of Clifford symbols (modulo
the trivial ones) is canonically isomorphic (using the excision map) to the K-
theory with compact supports K(T*Xx Y) (cf. [1], §2),

Let (Q, E9 G) be a ClifTord symbol. By Proposition 1.2, there exists P=

9 E\ of degree !<*>, such that a(P)=a.

1.4. Proposition. The pair (§(£, E)9 Pff) defines an element of KK(X9 Y),
Moreover its class F*([a]) only depends upon the class of(Q9E9a) in K(T*Xx Y).

Proof, That Pv defines an element of KK(X9 Y) means that P^—P*, Pi— I

and [/,Po.]effi(§(J3,^))(for/eC(Jf)). This follows from Proposition 1.2.
Note that a homotopy of symbols can be lifted to a homotopy between Kasparov
elements using Proposition 1.2 with Fx[05 1] instead of Y, G

1.5. Remarks, (a) Assume that X is not compact Put

and

) = {reS(§)5/rer*(^3 ̂ )9 r/ec0

Let also :

One uses instead of Proposition 1.2 the exactness of:

0 - flx($) - JT Jz - C0.Z(S*0, 8(£)) -> 0 and 0 -> ftz(§) -> F$ -> @z -> 0 .

One then defines the ̂ -theory Kx(T*Xx Y) as the group of stable homotopy
classes of Clifford symbols G satisfying: the map Prz: Supp a-*X Is proper
(Instead of (c) of Definition 1.3).

The map W* Is then defined from Kx(T*Xx Y) to KK(X9 Y),
(b) The above construction of the map ¥* works (with obvious minor

changes) when one replaces KQ by K1 and KK° by KK1 (The bundle E of Defi-

Note that §(J25 E) is Z/2 graded. Also V*(Q9 E) is a graded subalgebra of S(©(J2, E)\
and the map <?: F*(J2, E1) -» @(J2, £") is grading preserving.
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nition 1.3 is not graded here).
(c) The groups K(T*Xx Y) and KK(X9 Y) are Independent of the smooth

structure of X (using rnicrobundles for the first term — see Appendix B). However
the map W* uses the C°° structure (in order to construct pseudo-differential
operators). It is not clear whether it depends upon the choice of a smooth
structure or not (cf. Remark 2.10 c).

(d) It turns out (Corollary 3.9) that the map W* is an isomorphism.

Let now Xl9 X2 be smooth compact manifolds and Y a locally compact
space. Let (Ql9 E\ oj e K(T^Xl x X2} and (J22, E\ a2) e K(T*X2 x Y) be Clifford
symbols. We next compute the Kasparov product ^(o^®x^*(o^ e KK(Xl9 Y).

To do so, we define the cup product of the symbols a=a1xX202^K(T*(X1

X X2) X Y). We then prove the equality ?r*(tT1)(8)c(^8)?P1*(a2)=Pr^i*(5r*(a)) where
PrZ] : X1xX2-^X1 is the projection.

Put X=Xl X X29 and let ® be the open subset of X X Y, Q = {(xl9x2, y), (xl5x2)
e Q19 (x29y) EE £2} . Let E be the graded bundle over £5 E(Xl,X2,y} =E\SvX^ ® E\^y}.

1.6. Definition. A Clifford symbol a e @($a E) is called a cup product of al

and a 2 if, and only if it satisfies:
(a) (Connection) a(xl9 0, xz? f2? y)=l E^®o2(x2, <f2? y) for (xl9 %2)eSupp alm

(b) (Positivity) [o^ £19 x2)®lE*, a(xl9 fl9 x2, £

The existence and uniqueness (up to homotopy) of a cup product is an
easy special case of the proof of Theorem A3 of the appendix.

Remark. In fact, it is very easy to give a formula for o :

o(xl9 £19 x2, e2J y) = MWai(xl9 el3 x2)® lE2+(l-M)1/2lEi® a2(x2) ^ y)

where M is a continuous function on S*@ with 0<M< 1, such that:
(a) M(xl9 0, x29 £2, y)=0 when (xl9

(P) M(xl9 fl5 x29 05 y)=l when (x29

(r) M is independent of (<? 13 f 2) for (^1? jc2, y) outside some compact K^

Let us now compute the Kasparov product ^(p^®x^
r^(a2). The map

/i®/2-/ where f(xl9x29y)=fl(xl9x^®f2(x29y)(fl^Ce^
CC(J225 E

2®^1/2)) identifies $(Sl9 El)®c(x^(Q» E2) with ©(0, £).
Let P2eF*(%£2) and PeE^*(£9£) be such that a(P2)-cr2? a(P)=a

(where a is a cup product of ol and a2).

We construct Px somewhat more carefully: Write ol=-G{+a{f where

This is of course the graded commutator.
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Cb(Q, 2(E1J) and ffj'fo, £19 x2)=® outside Supp alm Let J2 { c Q be the interior of
Supp Ol. We have a{' <= C0(S*£ J, SCE1)). Let Pr e ?Ff(^? E

1) c F^l3 E1) be
such that a(P{')=a{'. Let also P{<=¥*(@13 E

1) be the operator of multiplica-
tion by a(0 Put Pl=P/

1+P/
l
/.

Note that (Pf-1)?, [Pi,/foe$00{, E*)^$(Qi, El) for all ?e§C0l5 ̂ ) and
/eC^). Hence the support of the Kasparov bimodule (§(^15 E1), Px) is con-
tained in §(<% E1),

The next lemma shows that P is a P2 connection for (iK^i^1)? A) (Appen-

dix,, Definition A.4 and Remark A.6.4).

1.7. Lemmao L^ ^ ^eE$(J2l9 ^j a^ QeF*(^3^)0 Tfeii

Recall that r77j(??2)=?71®972e§(^9 ^) 0?2e§(J22J £2)). This means that

29y) and

Proof, It is of course enough to prove this for ^ and 771 with small sup-
ports. We can hence replace Xj by JRn*. It is also obvious that we can replace
Es by trivial one dimensional bundles0 We also assume that ^(xl9 ^^/ifc^fe)^

Vi(xi9 X2)=fi (-^i)/ife) where fi9f'j^C~(Rn>). By a density argument we may
assume that Q is given by the formula

«^^^

where a is a total symbol of order 0 (h e Cf ^(X*1 X if 2 x 7)).
Let geCr>0(^2xF)0 Then ((T^QT^g) (x2, y) is given by the formula

, xi9 f 2, j;)g(^f j)^^f2 where

This 6 defines a symbol of order 0 (cf. [7], Proposition 4.8) whose principal part
is given by:

2,7)

' fl V P>^9 \J9 A2s S 2?

1 „ /" .̂ A _- £f -»5\/*'/'-v
— l^Ql-^l? Us ^2? ̂ 2? /// 1\-^]
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where oQ(xl9 £ 19 x29 <?2, j>)=lim a(x±9 tSl9 x2, t£2, y) is the principal symbol of Q.
D

The difficulty with proving the positivity condition [Pi® 1, P]>0 modulo
$£(&(£}9E)) (Appendix3 Theorem A3) comes from the fact that PI® c(£2)l§C02?E

2)
$ W*(Q9 E). Indeed it is of the form (pseudo-differential of order 0 on JQ® 1
which is not pseudo-differential of order 0 (cf. [1], p0 513 or [24], pp. 207 and
210). However, using the next two lemmas we get that [Pi® 1, -P]<EF*(J23 E)
and has nonnegative symbol

Io80 LeiniMo Let G^.W*(@,E) with aG(xly 0, x2, f2» y)=® for (xi,x2)^
Supp <710 Tftew (Pi® l)G^W*(@y E) and its symbol is given by:

Note that this symbol makes sense for ^=1=0 and extends by continuity to

Proof. Write P^Pf+Pf7. Obviously Pi®I^W*(Q9 E), We hence
restrict our attention to P(/. By a density argument we may assume that GG is
equal to 0 in some neighborhood of {(xi9 x2) e Supp crl3 fi=0} and hence that
there exists G'^V*(Q9E) such that G-(4>+(Az$Y) (Ax+l}-l)G' 'effl($(£,E)).
Here 0 is a multiplication operator by 4>^Cb(Q\ 0>0and0(x1?^:2?j)=0 If(x1,x2)
e Supp GI ; dXi and Ax are the Laplacians of Xi and X

Now P(7JZl is pseudo-differential of order 2. Hence by [1], p. 514 (5.4) (cf.
[24], p. 2709 Theorem 7) (Pf/^)®! is in tlie closure of pseudo-differentials of
order 2. So that (P{'AX ® 1) (^z+l)~1 is in the closure of pseudo-differentials
of order 0. As (P{f® 1)0=0 we get that (Px® l)Ge r*(J29£") and has the right
symbol. Q

3 E). Assume that aG=a(G) satisfies:
and OG(XI, 05 xz, <?23 j) is independent of Xi for (

Supp (T!. Then [Px® 1, G]

Proof. Using Lemma 1.7 we get that G is a Q2 connection where Q2
2) satisfies l£i®a(Q2)(x25f2,j)-a(xl309x2jc2,j) for all fo, x^ e= Supp

Therefore, for all fceffl(§(^{, E')5 we have [k® 1, G]effl(§(i0, £)).
Using Lemma 1.8 we get that [Pi® 1, G] only depends, up to

upon the transverse symbol cfG(x1? 03 x29 £ 2? 7). Note also that [

Thanks to the above remarks, we know that the problem is local and only
depends upon the symbols. We thus may assume that X1= 2Twi and that G is



1148 A. CONNES AND G. SKANDALIS

invariant under translations by Tni (for a given trivialization of the bundle E1

along rwO-
Let Q^Wf^ixX^E1) be of the form Qi=^Q{ where 01eC(rl§1x

X29 S^E"1)) is a multiplication operator and Q{ is TWl translation invariant. Then

[Ql&l, G]=Q and [^® 1, G]effl($(^, JE)).
The result now follows from the fact that symbols of the form o(Q^

generate

C(S* Tni X X2, 2(E1)) = ©(JKi X X29 E
1) . D

1.10. Theorem, Let al e J^T*^ X X2)5 a2 e ^(T*Jr2 X F) &e C7(#br rf symbols.
Let ae^^CXixJQx Y) be a cup product of al and a2. Then one has W*(a^

®x2y
r*(°2)=P*x^*(o)) (prZl: X.xX^X, is the projection).

Proof. Let P, Pl9 P2 be as above. By Lemma 1.7 we know that P is a P2

connection for ($(Ql9 E1), PJ.
Write now a = a' + lE ®a" where a'(Xi,®,x2,£2,y)=Q for (xl9 x2)eSupp alm

Let P=P'+P" be a corresponding decomposition. By Lemma 1.9 we get
[Pi® 1, P^GE^CS, E)). By Lemma 1.8, Q=[P!® 1, P']ey*(fi, £) and a(Q)

D

1.11. Remarks, (a) When ^ and Z2 are not compact the cup product of
the symbols is defined by the same conditions. Note however that Supp ol is
not compact but the projection Suppa1->Ar

1 is proper. Also Supp G is not
compact but the projection Supp a -*X1 is proper. Note here that it wouldn't
be enough to require that the projection $uppa->X=X1xX2 is proper. Indeed
such a a would then only give an element W*[o]^KK(X1xX29 Y) which does
not project to KK(Xi9 Y) when the map X1xX2-^X1 is not proper.

Let K^T^X.xX^xY) be the ^-theory of Clifford symbols a whose
support satisfies Suppa-^Xj is proper. We get a map W^: Kx^(T^(XlxX2)

X 7) -> KK(X19 Y) based on an exact sequence 0 -> $^(£02, JS))-^^, £) ->
@Zi(J2,£)->0(cf. Remark 1.5 (a)).

The equality of Theorem 1.10 reads: %r$i(a1xX2a2) = ¥*(o1)®X2¥*(o2).

Note that when X2 is compact Kxj<T*(Xl X X2) x F) and K^^T^X, x JQ x 7)
coincide. In that case we have ^J^pr^oy*.

(b) In all the above construction one may obviously replace J£° by K1 and
KK° by KK\

(c) When ^l = Xl x X2, @2 = X2xY the computation of the Kasparov
product simplifies : In that case Pff is an &00l5 E

1) connection (not only an
215 E

l\ PI) connection). Also a simple formula for a cup product of the
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symbols is given by:

However, in all our examples it would be artificial to replace @ by Xx Ya

(d) For each Kasparov bimodule (<?, F) over C0(Xl)5 C(JQ (with X2 com-

pact) let./(<53 F) be the Kasparov bimodule (<?, F) over QCJrixJQ, C(Z2) where
the Copy 0(7(^2) action is given by (fi®f^=f^f2. Theorem 1.10 can be

formulated more precisely as the equality: ^*00=jX^*(ai))®c(z2)^*(a2)°
(Note that with the notations of [19], §4, Definition 4, j(S9 F)=4*Tc(Zj(£, F)
where A: X2-^X2xX2 is the diagonal map).

(e) One may take al e K(T*X± X Y1 X Z), <72 e J^T*(Z x X2) X F2), (Z;-5 Z
smooth compact manifolds9 Yj locally compact spaces). The Kasparov product
¥*(o1)®z¥*(o2)tEKK(X1xX2, Y^Yz) is then equal to (pr^]Xjra)*(y*(a)) for
any Clifford symbol aeJ^T^xZxJQx ^x 72) satisfying:

(a) (Connection) afa. 0, z, v, x2, f 2, jl9 J2)= l£i® a2(z, r\, x2, f 2, J2) for

(b) (Positivity) [^(

In this section we prove the formula (go/)!=/! ® g! stated as a problem
in [10], §10,

Let us first recall the construction of/1 (Cf. [10], p, 599):
Let X and Y be smooth manifolds and /: X-* Y a continuous map,, We

assume that/is i£-oriented; this means that the Euclidean vector bundle Tf=
T*X@ f* TYh endowed with a Spin* structure S. Here S is a complex Hermitian
vector bundle; each £&(Tf)x defines an endomorphism c(f) of the fiber 8%
(jceAT) such that:

(a) The map f -> c(<f) is linear.

(b) c(£)=c(0*, c(^2=\ 1^ 112 (Clifford condition).
(c) £, is irreducible as a module over Cliff c(Tf) (i.e. dim SK~2m where m

is the integral part of dimZ+dim7).

If moreover dimX+dimFis even:
(d)(*} The bundle S is Z/2 graded and c(f) is of degree 1 for all S.
Let us assume that the Riemannian metric on Y is chosen with injectivity

Or equivalently T/ is oriented. This is automatic by (c) in the odd dimensional case.
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radius 1. For yl9 y2^ Ywith d(yl9 y2)<l, we let y2—j^eTy^Y) be the unique
tangent vector of norm less than 1, whose exponential is equal to yz (exp^ (yz—yi)
=yz). Let Q be the open subset of Xx Y, ®={(x, y), d(f(x\ y)< 1}.

Put *(*, S,y) = M^2(x9y)\\S\\-lc(^ 0)+(1-M)^, jp)lb-/W)irXO, y-
/(*))eSGS,) ((jc, j)GEQ9 ee H% f 4= 0) where M(JC, ;;)= 1 if d(x, y)<e and
Af(*, j;)=0 if d(x, y)>l-e (*>0).

Then (Q9 prf S, a) defines a Clifford symbol (Definition 1.3). Let d be equal
modulo 2 to dimX+dimF.

20L ([10], § 10, p. 599). Lef/: X~>Ybe a K oriented map. The
element f I ^KKd(X, 7) is defined to be &*([(*]). Here [G] denotes the class of the

Clifford symbol a in Kd
x(T*Xx Y) (cf. Remark 1.5 (a)).

Let us first check that this construction of elements of KK(X9 Y) is not
trivial, proving that (Idz)! is equal to the unit lx of the ring KK(X, X).

Note that K(X) is a subring of KK(X, X): to each Hermitian vector bundle
E one associates the C(X), C(X) bimodule C(X\ E). As C(X) acts on the left by
compact operators this defines an element (E)=j([E]) of KK(X9 X) (see Remark
Lll (d)).

Let G be a C0(X), C0(7) bimodule. We say that the support of 8 is disjoint
from Q=QI x J22 c Xx Y if and only if for all & e Ce(^0 C C0(X), /2 e Cc(^2) and
f ^£ we have/!f/2=0. This defines the support of 5 as a closed subset of
XxY.

2828 Lemmao Ler X be a smooth compact manifold. Let p be the map from
X to pt andp*: KK(X9 X}=KK(pt,X)=K(X) the corresponding map. Then p*°j
=idK(X). Moreover, there exists a neighbourhood Q of A(X)={(x, x), x<=X}
such that for every Kasparov C(X)9 C(X) bimodule (G, F) with Supple J2 one

has: jopJJtS, F)]=[(S, F)].

Proof, Choose a Riemannian metric in X with injectivity radius 1 and put
Q= {(x, y), d(x, y)< 1}. Let G be a C(X)9 C(X) bimodule whose support is in
@. Consider 6 as the space of continuous sections of the continuous field of

Hilbert spaces (Sx)xex- Let then (<f>t\€=io,ii be the family of C(X) actions on Q

given by <l>t(f)E=(f°ptttf wherepM=exp,t(y-x) (£^<SX, (x, y)^Q).
Using <f>t we get a homotopy between (£9 F) and (£19 F) where GI is a

commutative bimodule (i.e. satisfies /£=£/ for all f^C(X) £e^). But then

by definition of p% and j one has [(£19 F)]=j°p*[(£i, F)]. D

2.3. Remarks, (a) If X is not compact, the ring Vect(Jf) of stable isomor-
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phism classes of complex vector bundles is equal to the subring of KK(X9 X) of
classes of commutative bimodules. The above proof shows that if (<S, F) is a
Kasparov bimodule such that the support of 8 is contained in a suitable neigh-
bourhood of the diagonal., its class [(6, F}} belongs to Vect X.

(b) Let (S, F) be a Kasparov C(X), C(X) bimodule and let & be its support
(Definition A.4).

If the support of the C(X), C(X) bimodule Q' is contained in the neighbour-
hood ti of A(X) (of Lemma 2.2) then jo /?*[(£, F)]=[(<S, F)] (see Remark A.6.2).

(c) In the above lemma X does not need to be a smooth manifold. If X is
just a topological manifold there still exists (by [21], Theorem 2) a neighbourhood
Q of the diagonal A in XxX such that the first projection pr^ J2 -> X is a
retraction by deformation of @ to A. Hence the proof of Lemma 2.2 applies.

Let now E be a Euclidean vector bundle over a locally compact space X.
Consider the continuous family of Hilbert spaces (SQx)x^X9!Qx=L2(Ex

m
9 ACEX),

graded by even and odd forms.
Let M be a continuous function on R+, 0<M< 1, which is 0 around 0 and

1 around +00. For x^X, c <=EX, 7]<^E*^EX (??^0) let «,(£, rj)^^(AcEx} be

defined by «,(£, 77) (oi)=(M^(||f ||)||f l l^f +iXl-^^(||f ||)|k||-^)Ao>.
Let (Px)xex ^e a continuous family of order zero pseudo-differential opera-

tors trivial at oo (px acting on §>J whose principal symbol is given by ox(f9rj)=

«,(f , *)+«,(£, *)*•
The pair (Jp, P) defines an element of KK(X9 X) (see Section I). We have:

2 A Lemma* (cf. [16]) 27ze commutative bimodule £> wfrfi fAe endomorphism
P defines the unit element lx^KK(X, X).

Proof. Assume for simplicity that X is compact. As the bimodule § is
commutative we have [(£>, P)]=j°p#[(!Q9 -P)]. Now the class of />#[(&, P)] in
J£(X) is the index of the family (P* )*e=* where P+ is the restriction of Px to §f}

(P?: ^-^^ §10) and §^1} are the homogeneous parts of the graded Hilbert
space £>J. Now by [16], Theorem 5.3 the equivariant O(n) index of Fx is L
Hence? the index of the family (P* ),<=* is the trivial one dimensional bundle. Q

Let X be a smooth manifold. Recall that the bundle
admits the following Spinc structure: SX=ACTSX9 and for

)*5 where a(£, i;) (o>)=(if +i/)A<»,

205o Proposition, Le/ X be a smooth manifold and let Idx be K-oriented as
shown above. Then (ldx)l is the unit element lx of the ring KK(X, X).
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Proof, Let Q be a neighbourhood of the diagonal A in Xx X and W : TX->

& a diffeomorphism of the form ¥(x, v) = (x, exp^l + IMI)-1*)''10. Let ($, P)
be the Kasparov bimodule corresponding to the tangent bundle TX as in Lemma
2 A, If we transport (§, P) to J2 through the diffeomorphism W, we get 70

p*(Idx)L Now by Lemma 2.2yo/?#(Id^)!=(Idjr)! and by Lemma 2.4 (£, P)=
lx. Hence (Idz)!-lz. D

Let now Xl9 X2 and 7 be smooth manifolds and let fa X^l^ and/2:
X2-> F be Jf-oriented continuous maps. Let Si and 52 be the corresponding

Spinc structures of the bundles Tfj and Tfz. Let also SXz be the Spinc structure
of the bundle Ti&X2 which is discussed above. Then there exists a unique Spinc

structure S of T/20/] such that the Spin" structures S1®f$S2 and /£ SX2®S of
T f i ® f f Tf2— f$TidZ2®Tfsofi coincide (see Appendix B, Proposition B.6.(c)).

2e6. Theorem. Let Xi9 X29 Y be smooth manifolds 9 fa Xi-*X29fa X2-*Y be
K-oriented continuous maps. Let f2°fi be K-oriented as shown above. We then
have(f2of1)\=f1l®X2f2l

Proof. Assume for simplicity that Xl and X2 are compact. We shall com-
pare two elements of the form V*[a] ofKK&xX* Y).

The first one isj(/iD®z2/2- and hence (Theorem 1.10, Remark 1.11 (d)) is
of the form W*[a\ where o^K(T^(X1xX2)x Y) is a cup product of a1 and a2

(o^K^X^Xz) and a2^K(T*X2x Y) are the Clifford symbols corresponding
to the ^-orientations of/j and/2 — see Definition 2.1).

Let us define the second. Let $2eJ£(r*JSr
2xAr

2) be the Clifford symbol
corresponding to the ^"-orientation of Id^. Let a{^K(T*X2xXi) be equal to

(idr*jf2X/i)*(52). Let now u^KK(X1xX29 X,) be equal 107(^*^1])- As we have

5r*(M)=/f V*(8J=f?(lzJ (Proposition 2.5), u is equal to g^l^), where g:
X1-^XlxX2 is defined by g(x1)=(x1, f^Xi)).

Let a'2 be the symbol of (/2°/i)L Let af^K(T*(Xl X X2) x Y) be a cup pro-
duct of a{ and aj. Then u® XJJ2<> fd\=V*[o'].

By the choice of the ^-orientation of f2°fi we have M=[<7'] in K(T^(Xlx
X 2 ) X Y ) .

We thus get the equality jX/iO®*2/2!=£*(/2°/i)-« Let p: X^y,X2-^Xl be
the projection. We have ^^OX/iO®^^-)^/!-®^/^! and ^°g=:=Idj: . Hence

/2!. J D

Let us state an easy corollary of this theorem. Note that if /i and fa

X is endowed with a Riemannian structure with injectivity radius equal to 1.
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X-»Fare homotopic and/ is ET-oriented, then/2 Is naturally JT-oriented and one
has/!=/2! (even if/ and/2 are proper, we do not have to assume that the

homotopy is through proper maps).

297o Corollary, Let X and Y be smooth manifolds andf: X-» Y a K-oriented

homotopy equivalence. Then /! defines a natural isomorphism of KK*(A, B®

C0(JT)) with KK*(A, B®C0(YJ) andof KK*(A®C0(X), B) with KK*(A®CQ(Y),

Proof. Let g: Y->X be a homotopy Inverse of/. As fog and / are K~

oriented so is g (see Appendix B, Proposition 6.c) and we have gl®xf^=(fos)^
= lr &ndfl®Yg!=(gof)!=lx. The result then follows from [19], Theorem 6,

§4. D

In particular, if X is a contractible smooth manifold then KK*(A®CJ(X)9

B)=KK*(A, B®C0(X))=KK*(A, B).

We shall now see how f\&KK(X, Y) simplifies for immersions and submer-

sions (cf. [10], pp. 598-599).

Let/: X-+Y be an immersion, N its normal bundle. Let / be the natural

extension of /to an etale map from N to Y (/ Is a diffeomorphism from N to a

tubular neighbourhood of f(X) when / Is a proper imbedding. In general / is

constructed locally using the tubular neighbourhood construction).

As Tf is Isomorphic to TIdz@N, ^-orientations of /and Spinc structures of

N are in a one to one correspondence. Assume therefore that S Is a Spinc

structure for ^V. Let us define the corresponding element /"im! of KK(X, Y).

On CC(N, S) consider the C0(7) valued inner product given by: <<?, riXy)

= 5] <^M, ^M>; the right action of C0(F) and the left action of C0(Jf» are
7cv)=v

given by (g£h) (v)=g(n(v))£(v)h(f(v)) (TC: N->Xis the projection).

Let Q be the Hilbert C0(7)-module. completion of CC(N, S} with respect

to this inner product. Let Fe8(c?) be given by (/Tf)M=(l-^r)1/2ll*;ir1^)f M»
where M(y)=\ for ^=0 and M(v)=0 for large \\v\\. For g^C0(X) we have

gF=Fg. Moreover if g^Cc(X), (F2—l)g has compact support in N so that

(F2- l)g e St(S). Thus the pair (£,F) defines an element/im ! e ^^dimZ+dimF(X5 Y),

2.80 Proposition,, Ler /: X-^Y be a K-oriented immersion, Thenfl=fiml.

Proof, We shall check that /! as defined in Definition 2» 1 is equal to the

Kasparov product (Id^)! ®xflml.

of degree deg (/!)=dimX+dimY.
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Let Si, 5*2, S1 be the Spin* structures corresponding to TIdz, N9 and Tf. We
have S=Si®S2. Let ti^XxX be the open neighbourhood of the diagonal A
on which (Idz)! is defined. Let Q^Xx Y be the open set defined by @ = {(x,

/00)» x^X9 v^N, (xy ̂ (y))^^!}. Then (IdZj)! is represented by Op($i, Si), PI)
and /! is represented by (§(£, S% P) (with the notations of Section 1). Let
(£, F) represent/im! as defined above.

The bimodule §(^i, Si)®c0(*)£ identifies easily with §>(J29 S).
As F commutes with the action of CQ(X)9 !®Fe8(£>(«0, S)) is well defined

and is an F-connection (cf. Remark A.6.3). As a(P) agrees with 1®F at infinity
in N9 P— 1 ® F is a 0 connection,, Hence P is an F connection.

The positivity condition [P, PI® 1]>0 is here easy to check as PI® 1 is a
pseudo-differential family (though not trivial at oo)0 Q

Let now /: X-+Y be a smooth submersion. Let S be a Spinc structure on
the bundle F-Ker(^f) (c TX).

On CC(X, S'®^1/2)(*) consider the C0(Y) valued inner product given by

<fOt), ??0c)>; let also C0(X) act on the right and C0(F) on the

left by (g£h) (x)=g(x)£(x)h(f(x)). Let 6 be the C0(JT), C0(F) bimodule completion
of CC(X5 S®@1/2) with respect to the C0(F) valued inner product. Let (P^9&

be a continuous family of order zero pseudo-differential operators acting on

L2(f~l{y}> S) with principal symbol e(x, f)=l|fH~Xf) (^e/"1^}, S^Tfif'1

W)==ker(4O*). To construct P (as an element of £(£)) and check that, for
g e CC(Z), g(P2— 1) and [g, P] belong to £(5), one may proceed locally in X9 and
hence assume X=XiX Fand/=prr where Proposition 1.2 applies.

The pair (€, P) defines an element/sub! of KK*(X, F).

2o90 Proposition Let X and Y be smooth manifolds and f: X->Y a K-
oriented submersion. Then fl =/sub!.

Proof. One checks that /sub! ® FIdr! =/!. It is clear that the two bimodules
coincide. Write/!=[(§, P)] (as in Definition 2.1). To show that P is a Kasparov
product is a local problem on X, so that the proof of Theorem 1.10 applies. [J

2.10. Remarks, (a) Let/: X-»Fbe a continuous oriented map (Xand F
are smooth manifolds). One can define, using Poincare duality, the push
forward/! in cohomology with compact support,/!: Hf(X)-^H*(Y).

If/is ^-oriented, then it is oriented, but the diagram

Cf. Remark 1.1.1.
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Jch

does not commute. But introducing the Todd genus Td(/)^Td(lT)/Td(/*TF)
def
=Td(rcJO/Td(r/)eH*(JT), we get ch(x®^/!)=/!(Td(/).ch(jc)), *€=**(*).
(This is seen by factorizing/through YxRn, using an imbedding of Tin Rn.)

(b) Let /: X^ Yf (/= 1, 2) be ^-oriented maps. Then / x/2: J^ X X2-^

Y1 x F2 is naturally j£-oriented. One has rather obviously (using Remark 1.11 (e)),

C/ix/2)!=/i!®c/2" Combining this with Proposition 2.5 and Theorem 2.6 we
get:

Let/: Xl-^ Yl X Z and /2: Z x J5r2-> 72 be ^-oriented maps. Let g: Xl x X2

-^FjX F2 be the composition (Id^x/X/xId^). We have gl=fl\®zf2l (cf.
[19], Theorem 4, §4).

(c) Let/: X->F be a ^-oriented map. The element/! is better described
using the J^-orientation of the microbundle Tf= \ Tf\ = T*Xxxf*Ty (cf. Appen-
dix B): This ^"-orientation is given by a triple (£& E, CTO)? where *00cr*Xx Y
is a neighbourhood of {(x, 09f(x))9 x e X} 9 E is a (graded) vector bundle over X
and <70(*5 e, j;)eS(£) for (^, e, j)e£0 (cf. Definition B. 1).

Let tic^Xx Tbe a neighbourhood of the graph of/and e>0 such that for
and (|f||<5?(;c5<f9j;)e^0. Let MeCc(^2) be such that 0<M<e and

)=e for all x in Z. For (*, y) in J2 and ^eT?X? S^O put <j(.x, e?j;)

fe J)f, J)- Then (0, E, a) is a Clifford symbol (Definition 1.3).
One then defines/! putting/!=F*([c7]). The advantage of this presentation is to
make it clear that/! can as well be defined if we just assume that Y is a topo-
logical manifold and/: JT-»7is ^-oriented.

Obviously Theorem 2.6 remains true if Y is a topological manifold.
Note that at the formal level the map c0->f! is given by the composition

e W*
K(rf} -* K(T*Xx Y)-»KK(X9 Y). Here e is the map a0->a; it is an "excision
type" map (a0 is an element of K(@Q) and $0 is an open subset of T*Xx Y).

With this presentation, it is obvious that if we change OQ to some uaQ (where
u is a unit of K°(X))9 fl is changed intoj(u)®xf\.

Notice moreover that a J^-orientation of/is a IT-orientation of the micro-
bundle TX x xf*

TY- Hence it makes sense to change the smooth structure of
Xbut keep the same ^-orientation. We obtain an element/'! ̂ KK(X, Y). Let
us compare/! and/'!.

Call d and 8f the ^"-orientations of K(TX x XTX) corresponding to the Spin'
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structures of the complex bundles T*XQ)TX for the two smooth structures of
X (cf. Remark 8.4). Let u be the unit of K°(X) such that d'=ud.

Let g: X-*X be JT-oriented by df. We have g'! = \x and gl=j(u). But by
Theorem 2.6 we have/!=g!<g)z/'!. Hencef\=j(u)®xf ' \ . Note that (w-1) is
a 2-torsion element of K\X) (cf. [25]).

§HL Composition of Correspondences and Applications

In this section we shall adopt the point of view according to which the
elements of KK(A9 B) are the natural formalisation of the algebraic notion of
correspondence. At the topological level, we shall use the definition of cor-
respondence between Xand Yof [4] (both Xand Fare locally compact spaces with
Y a manifold) as given by (Z, E9fX9 gr) where Z is a smooth manifold, E is a
complex vector bundle over Z,fx: Z-^X is continuous and proper, while gy:

Z-> Y is continuous and ^-oriented.
The results of the last section allow to define, for each correspondence,

X^(Z,E)^ Y an element: (fx)*((E)®zgY^KK(X9 Y) where (E)=j[E]t=
KK(Z9 Z) is the class of E, and plays a rather trivial role as a multiplicity. The
main interest of this construction of elements of KK(X, Y) (beyond its surjectivity)
is that the Kasparov product has a simple topological interpretation as the com-
position of correspondences: Take X, M, Y where X is locally compact, M is a
smooth manifold, Y is a topological manifold, and correspondences X«- (Zl5 EJ
g f
-> M <- (Z2, E2) -» Y. One will get a correspondence JT<- (Z, E) -> Y by defin-
ing Z as the fibered product ZiXMZ2, and E=ptfE1xpr$E2. For Z to be a
manifold, one has to assume that the maps/and g are smooth and transverse

(i.e., V(xl9 *2)^Z, dfT^+dgT^Z,) = Tf(xz,M) .

The homotopy invariance of both g! and /* shows that this assumption of
transversality is not harmful recalling the following (cf. [15], §111)

3elo Lemma0 Let Z1? Z2, M be smooth manifolds, g: Z2-*M a proper smooth
map, then the subset o/C°°(Z1, M) offs which are transverse to g is a dense Gs.

Having defined Z=ZlxMZ2 as above, note that prx: Z->ZX is proper
(since/is proper) so that the composition/^: Z-^Z^Xis proper. To end the
construction of (Z, E9fx,gY) with gY the composition Z-^Z2->T one has to
exhibit the ^-orientation of gy, i.e. (Prop. B. 6 (c)) of pr2. One has TPT2=T*Z+
(pr2)*TZ2 so that
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TpT2Xz(f°pr2TTldM = pr* T,xzprf TId^2

which (since g is ^-oriented) gives a ^-orientation for pr2.

3»2o Theorem0 The Kasparov product [Z1? E^®M[Z2,E2\ is given by the com-

position [Z, E] of the correspondences,

(The brackets around a correspondence indicate the associated element

of the analytical group).

Proof, Using Theorem 2.6, the problem easily reduces to show that

M

Replace M by MxR2n, Z2 by Z2xR2n,fbyfxidR2n and g by (g, i) where i:

Zl-^R2n is an embedding. Then Z does not change and the two sides of the
equality we want to prove are replaced by their (external) tensor product (over

C) by the Bott element fi<=KK(pt, R2n) (use Remark 2.10 (b)). So by Bott

periodicity (i.e. the invertibility of /?, cf. [19], Theorem 7, §5) we are reduced to

the case when g is an embedding. Note then that the normal bundle N2 of

pr2 is equal to prf N where N is the normal bundle of g. Using Proposition 2.8,

to compute g! and pr2l, the equality follows from the naturality of the Thorn

isomorphism. Q

3.3. Remark, Let (Z, E), (Z', E') be correspondences between X, YxM

and MxX', Y' then the Kasparov product [Z, E] x M[Z'? £"] ̂ KK(Xx X', Yx F)

is given by the composition of the correspondences (ZxX',E) between XxX',

YxMxX1 and (FxZ7, E') between YxMxX', Yx Yf, To see this, one uses

[19] and Remark 2. 10 (b).

g fTo define the composition of the correspondences X^-Zl-^ M and M*-Z2

->7, one first has to make /and g smooth and transverse by a small C° pertur-

bation. A natural question is then to see how the correspondence Zl x M^2==

{(xly x2), g(xi)=f(x2)} depends upon the above modification of / and g. By
Theorem 3.2 the above correspondences define the same element of KK(X, Y),

Let/', g',/", g" be such modifications, by construction there exist smooth
homotopies
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(/,)€= C"(Z2x[0, 1], Jlf), (^eC-CZiXp), 1], M)

with fQ=f', g0=g', fi=f"9 gi=g//- But it may be impossible to ensure the
transversality of/, and g, for all t9 and to construct a homotopy between the
correspondences Z' and Z". However Z' and Z" are cobordant in the following
sense(*}:

3A Definition. Two correspondences (Z', £')» (z//
3

 £") between X and Y
are cobordant iff there exists a "correspondence with boundary" (Z, E) such that

dZ=Z'UZ", E\Z, = E'9E\Z,, = E"9 f'x=fx\z»

fx = fx\z"> gy = gy\z'i gy = —gy\z"

(the same map with the opposite K-orientatiori).

In this definition the restriction dg of g to the boundary of the manifold Z
is J^-oriented by the equality (T9eX9zv)=i*Tg9 where v is the (inward) normal
bundle of dZ while /: dZ-*Z is the inclusion.

3o5o Propositione Two cobordant correspondences define the same analytical
element.

Proof. Let us take the notations of Definition 3.4? let D=(Z U 8ZZ) be the
double of Z, S: Z-^D the inclusion, ^: D->Z the projection. To show that the
correspondence (dZ, i*E) gives OejO^Z, 7) it is enough, using the following
diagram, to show that [5o/]®8z(5o/)!=0.

fop dof dot gop
X+-1--D < dZ >D^-^>Y.

Using the triviality of the normal bundle of dZ in Z3 construct i': dZ->Z
homotopic to / with ir(dZ)ndZ=<f>. It suffices to show that [i]®^z(i')l^
KK\Z9 Z) is the 0-element As an element of KK\dZ9 Z), i'\ is given by the
exact sequence 0-> C0(Z) -* C0(Z) -> CQ(dZ) ->0 and hence H®dz(i')! is given
by the split exact sequence:

0 - C0(Z) - C0(D) -> C0(Z) - 0 .

Another way of showing that [flo/](g)8z(5o/)!=0 is to see that this element
ofKK(D, D) is of the form j(U) for U^K\D) equal to (^o/)!®^ where E is
the trivial one dimensional complex bundle, lXeJT°(c?Z). One then computes
C/ and shows that its class is 0. [^]

Let us also remark that one can easily interpret as a correspondence, the

Using for instance [15], Lemma 1.2, p. 170, with A the diagonal in MxM.
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element of KK\W, V\W) given by the exact sequence: 0 -> C0(V\W) -> C(V)

-> C(W) -> 0 where Wis a submanifold of F.

Let S be the unit sphere of the normal bundle of Win V, n the projection of
A^ on W and i the imbedding of S in V\ W via the tubular neighborhood con-
struction.

3.6. Proposition. The class in KK\C(W), CQ(V\W)) of the exact sequence
O^C0(F\IF)->C(F)-^C(PF)--»0 is equal to the class [e] of the correspondence:

n i
W*- S-> V\W

Proof. Let / be an identification of N with a tubular neighborhood of W
in V. Let p be the completely positive lifting of the homomorphism of re-
striction: C(F)->C(»0, given by the conditions: p(/)eC0(7V)cC(F) and:

p(f)(x, f) = Xllf !!)/(*) , n*, Oetf

where *(0 = 1 - */2> * ^ [°> 2], XO = 05 Fr > 2. Applying the generalized
Stinespring construction to p ([18], Theorem 3) gives a Kasparov bimodule
(S, F) whose class in KK\W, V\W) is that of the above exact sequence. One
has <£=C0(N) with the obvious C* module structure over C(V), the action of
C(W) on the left is given (f£)(n)=f(n(ri))£(n\ F/eC(F), S^C0(N) (where n:
N-*Vis the projection). Finally the endomorphism Fis given by the multipli-
cation operator:

It is now clear that if we let / be the inclusion of S= {(x, £)^N, ||f || = 1} in F5

one has exactly [(<?, F)]=(iim)l, hence the result follows using Proposition 2.8.

D

We shall now apply Theorem 3.2 to formally deduce the analytic form of
the Poincare duality. Let F be a compact smooth manifold. Let av be the
correspondence between pt and Fx TV given by

pt ̂  V TFx v (JW = (fe o), x))

(A is an immersion whose normal bundle is complex(*} so that it is naturally
^-oriented). Let Pv be the correspondence between Fx TV and pt, given by:

d
Fx TV*-TV->pt, where TFis ^-oriented as in Proposition B.6 (a), 8(x9 f)=

Given xe F, ^-h/^e r,(F)(g)C, one puts 2(£)=(exp, (f), 0, A:), 2(i^)=(jf, ??,
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(*,(*,£)).

3e?o CoroIIarjo One has:

a) [ov]®v[flv]=lTV,^v]®Tv[^vl=^
b) For any C*-algebms A, B the Kasparov product by [av] gives natural

isomorphisms

KK(A®C(V), B)-*KK(A, B®CQ(TV)\ KK(A®C,(TV), B}->KK(A, B®C(V)\

Proof, a) Follows from a direct computation of the composition of these
correspondences using Remark 3,3 .

b) Follows from a) and [19 (Theorem 6, §4)]. D

The next corollary shows first (a), b)) the naturality of the Poincare duality
and then (c), d)) that the functors /->[/] and/-*/! are Poincare dual.

3o8o Corollary Let V and W be smooth compact manifolds, f: V-> W
a continuous map, df=TV-^TW a continuous extension of f. One has:

a) [ov}®TV(df)\=[aw}®w[fl

b) (df)l®TW[Pw}=[f]®v[Pvl
c)

d)

Proof. From Corollary 3.7 a) all these equalities are equivalent. To prove
a) one again computes directly the composition of these correspondences
(using Remark 3.3). [J

In [20] G.G. Kasparov proves the Poincare duality in a very similar way.

3.9. Remark. Let Cliff F=Cliff(F3 TV) be the graded C*-algebra of con-
tinuous sections of the bundle of Clifford algebras Cliffc Tx. The Thorn isomor-
phism [19], Theorem 8, §5 gives two elements ft e KK(OiS V, TV), a<=
KK(TV, Cliff V) such that a®ft=lTV, P®a=lciiiiv.

One can translate Corollaries 3.7 and 3.8 replacing QTF) by Cliff F5

using

py = ft®TV Pv^KK(C(V)®Cm F, C)

and av=av®TVa^KK(C, Cliff F®C(F)). In fact Pv is equal to the following
element of KK(C(V)®CKS V, C). The Hilbert space is the space of L2 sections
of the complex vector bundle over F with fiber Cliff c(^(F)). Both C(F) and
Cliff F act by (left) multiplication operators and the operator F is an ordinary
pseudo-differential operator of order 0 with principal symbol o(x, S)=i
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f eT*K, ||f || = 1, where r(f) is the right Clifford multiplication by f, e is the

grading of Oiffc (Ts(vy>.

To see that these two descriptions of Pv coincide, one checks that the
Kasparov product a(g)cliff VPV is (for both of them) equal to Pv.

The next proposition shows the meaning of the Poincare duality

y
K*(TV) -̂ -> KK(V9 pt), KK(V, pt) -^-

as associating to a symbol a pseudo-differential operator and vice versa.

38100 Proposition, a) Let a <= KK(pt, T* V X Y) (Y a locally compact
space), then [a]®T*v[Pv}=W*(o)^KK(V, Y)(cf. Section I}.

b) Let P^KK(V, Y) then P=¥*(a\ with [a]=ov®vP^K*(TVx Y),

Proof, a) Let S be a (graded) Cliff(F)®C0(7) module corresponding
to [a] through the Thorn isomorphism. One has

which (using the second description of Pv) is the family (indexed by Y(*>) of
Dirac operators on V with coefficients in 8. On the other hand, as [o]=fl®[S]
it is clear that Pv is also the family of Dirac operators on V with coefficients in 5.

b) Follows from a) and Corollary 3.8. G

3.11. Corollary. The map W* from K*(T*Vx Y) to KK*(V9 Y) of Section
I is bijective. In particular any element of KK*(V, Y) is given by a family of

pseudo-differential operators on V. G

Combining Proposition 3.10 with the multiplicativity (Theorem 2.6), one
gets the Atiyah-Singer index theorem (see [1]). Indeed let P^ be an elliptic
pseudo-differential operator on V, {P^^KK(V9 pt) its class and K\ F-»pt the
obvious map. Then the analytical index of P^ is obviously

The topological index of P^ ([!]) is defined using an embedding j: V-*Rn by
M® TV (dj) lim®TRn(dp) ! (with p : ̂ ->pt). One has

c*) We assume Y compact to simplify, replacing it by the one point compactification Y+,
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As n=p°j the equality Iodlt(P^=In.dt(Pv) follows from Theorem 2B6.

Combining Proposition 3.10 with Theorem 3.2., one gets the odd index
theorem, cf. [17] and [6], Theorem 24.3. Indeed let fi:K{(V)-»Ki(V) =
KKl(V, pt) be the map defined in [6], (18.1), p. 36 from the topological group
to be the analytical group. In our notation y(M9 E^f)=f^.((E^®Mpl) where
p is the map: Af-»pt. Let E be a complex vector bundle on the smooth com-
pact manifold V, a: tt*(E)-^n*(E) a self-adjoint Clifford symbol, A=Pa. a
corresponding self-adjoint order 0 pseudo-differential operator on V (from E

to E). Then by Proposition 3.8, [A] ̂ Kl(V)=KK\V, pt) is equal to [a]®T*YPv.
Put M=S*V, E0=E+ (cf. [6], p. 48, (24.1)), /=*: S*V-+V9 so that Theorem
24.3 of [6] is the equality 7Cx((E+)®s*vps*vl=[a]®T*vPv. This result follows

using the following diagram, from Theorem 3.2 and the equality [E+]®s*vi\
= [o]E^KK1(pt9 T*F) where /: S*K->T*Kis the inclusion.

T*F
/

FxT*F

§IVo The Longitudinal Index Theorem

Given a foliation (F, F) and a ^-oriented map/from a manifold IF to the
'def

space of leaves F/F, we associate an element/! of KK(W9 F/F) (=
C*(F, F))). We first discuss this contruction when / is a submersion. The
general case is then obtained by factorizing the map / through a submersion

The longitudinal index theorem is then obtained, considering the map
F-»F/F, and factorizing it in different ways.

The element/! corresponding to a .K-oriented submersion /: W-^V/F is
naturally written as the Kasparov product of two elements:

1) An element pw \^KK(W9 W/FW) where Fw is the pull back foliation by
/in Wa.ndpw: W->W/FW is the natural projection.

2) A quite trivial element £f<=KK(WjFw, F/F) which is given by a Hilbert
C*(F, F) module Gf on which C*(W, Fw) acts by compact operators.

The element/?^ ! will be constructed using the extension of pseudo-differential
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operators of [9] (§IX, p. 138).
The main fact about this construction is the functoriality (fog)l=gl®wfl

where g: X->W, f: W->V/F are K oriented submersions. This will allow us to
prove that for a general (K oriented)/: W->V/F the element 7!®*! does not
depend upon the factorization

W—+VIF

X

where TU is a submersion., and hence to define/! for general maps by/! =7!

We first construct the element ef^KK(W/Fw, V/F) corresponding to a
smooth submersion W-+V/F. Let us fix some notations (see [13], [10]).

Let V9 F be a foliated manifold and let G be the graph of the foliation i.e.,
the holonomy groupoid ([26] or also [9]3 §VII).

4.1. Definition. 1. A map f: W-*V/F is given by its graph which is a
principal (right) G bundle Gf over W. We call rf: Gf-^W and sf: Gf-*Gm= V
the corresponding maps,

2, The mapf: W-> V/F is called a submersion if the map sf is a submersion.

For a^Gf and r^G with sf(a)=r(r) the action of r on a is noted a 07%
Recall that we have sf(aor)=s(r)9 r f(a°r)=r f{a) and if rf(a1)=rf(a2) there
exists a unique r^G with az=a1or (Gf is principal).

Recall also that an equivalent way of giving the map /is a cocycle (£,-, r,-/)
on W with values in G (£; is an open covering of W and rfj-:
satisfies

t n ̂

Recall (cf. [10]) that given the cocycle (Qi9 r/y), Gf is obtained by gluing
together the open sets Qi={(x, r)^^,-xG, ra(x)=r(r)} by the map 5f. ->
8j, (x, r)-K*, rji(x)<>r)m One has

rf(x, r) = ^ sf(x, r) = s(r) (if (x, r) e 5,.) .

The map /is a submersion iff n^ @i~^ Fare transverse to the foliation F
(i.e., di..T£i+F=TV, cf. [22], p. 378).

Let/: FF— >F/Fbe a submersion. Call r=TF/Fthe transverse bundle on
V and TT: TF->r the projection. Then the subbundle of TW, Ker n°dy.. is well
defined (it does not depend upon i) and is integrable. Hence it defines the pull
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back foliation f*(F)=Fw in W(ct. [22], p. 373).

Let Gw be the graph of this foliation. Then Gw acts naturally and freely
on Gf9 in the following way:

4.2o Lemma, a) Let w(t), t e [0? 1] be a path drawn in a leaf of W. Let
a^Gf with rf(a)=w(Q), Then there exists a unique path a(t) in Gf satisfying

a(fy = a9 rf(at) = w(t), sf(at) = Sf(a) .

b) a(l) only depends upon the holonomy of the path w. Moreover, if a(l)=a9

w is a loop with trivial holonomy.

If r is the class of W in Gw one puts roa=a(l). This lemma proves that
this action is well defined and free.

Proof, a) Any path w can be lifted in a path ft with fi(Q)=a and rf(p(tj)=
w(t), consider then the path sf(ft(t)). It is drawn in the leaf of sf(a) in V.
Call then rt the class in G of the path sf(ft(ufi Q^u<^t, and put a(0=£(0°KO-

The uniqueness of the lifting is given by the fact that if a and a' are two
liftings: as rf(a(t))=rf(a'(t)\ a(0=a/(0°KO where r(t)^G, but r(r(tj)=s(r(tj)
=Sf(a) hence r is constant and

b) It is enough to show that given a loop w the corresponding a(l) is
equal to a if and only if the holonomy of w is trivial. As Gf is a G principal
bundle there exists a unique r^G with a(l)=aor. Let r(t), t^[Q, 1] be a path

in G joining sf(a) with r~\ with r(r(t))=sf=r(r)=s(f). Put then /ff(f)=a(OrtO-
It is a loop drawn in a leaf of Gf (which is foliated by the pull back foliation of
any of the maps rf or sf). This loop has the same holonomy as its two projec-
tions in F and W. Thus r has the same holonomy as the loop w(t). D

Let us now define the Hilbert C*(F, F) module Qf\
It is the completion of Ce(Gf9Q

l/*)™ with respect to its CC(G, £1/2)<*> c
C*(F, F) valued inner product

The right module structure is given by :

Where J21/2 is a suitable 1/2 density bundle (cf. [9], §VII and Remark 1.1.1).
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The left CC(GW9 £
1/2) action on Cc(Gf, £

1/2) is given by:

483o Proposition,, a) TA& art/on extends to an infective *-homomorphism

b) Moreover n
c) w/C*( JF, Fw))ef is dense in Sf.

Proof, a) The elements of C*(W9 Fw) are families, indexed by the space
of leaves of W9 of operators PL, PLe8(L2(L)) (L is the holonomy covering of
L ([10]3 §7). The elements of£(Gf) are families, indexed by the space of leaves
of V, of operators QL, QL^2(^L) where $L=L\Gft3S) (*eL), Gffg=Sf\{x}).
As Gw acts freely on G each GftX is partitioned in holonomy coverings of leaves
of W (those are in fact the connected components of GftX). Hence for

Sup \\PLw\\= Sup \\QLy\\
<=WIJ? 'r ^eF/JF

where PLw is the family corresponding to g, and gLF the one corresponding to
7uf(g). Thus

11*11 = l
b) Let ̂  c FF be a small enough open subset of an $z- such that r^-(^) c Q'9

where @ and &' are foliation charts. Assume also that the induced map from
@IFW to J2'/Fis injective (reducing again Q if necessary; here @/Fw represents
the space of plaques of Q).

Let (j£/C(j (resp. GQdGw) be the graph of the foliation F(resp0 Fw) re-
stricted to Q' (resp. Q). Let ̂ 'c^.-cG,, fi// = {(x, r); ^^^5 re G^/, r(r) =
TH(X)} - ®n is an open subset of Gf.

If a, yffe.0" satisfy s(a) = s(p)9 there exists a unique r^GQ such that

roj3=a. Call it ao^-1.

For £, ̂ eC^77, ̂ 1/2)c53 = ^ f *^*) where

Thus nf(C*(Q9 Fw))d^(Sf)'9 but these algebras generate
c) Let hn^Cc(Gw, $1/2) be a sequence satisfying:

2) Sup {/(r), r e Support AJ -»0 when «-» oo (/ is the length of r)

3) (for a given trivialisation of the bundle Q112) \ hn(r) -> 1 uniformly
JrCti=x
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on compact sets.
Then, obviously xf(hn)£ — <? tends to 0 uniformly for any <f e C^Gy, «01/2) and

has support in a fixed compact set. Hence

HA.*f-f||5/-*o n
4.4. Corollary. The (trivially graded) bimodule 8f (together with the zero

operator \) defines an element ef ofKK(W/Fw, V/F).

Proof. This is a translation of b) of Proposition 4.3. D

g
Let now X->W\FW be another submersion. The composition fog is a

submersion X to V/F which is given by its graph Gfog=GgxGvfrGf. It is the
quotient of {(p,a)<=GgxGf, sg(j3)=rf(a)} by the relation (J39 a)~ (fr, r~lQ0
for r^Gw, r(r)=sg(/3). (Note that since Gg is a Gw principal bundle, the Gw

action on it is free and proper. Hence Gfog makes sense as a manifold).
By construction Gfog is a G=GV principal bundle over X on which Gx acts

on the left (Gx is the graph of the pull back foliation g~1(Fw)=(fog)~1F on X).
If g: X->Wis smooth and transverse to the foliation Fw, the map fog can also
be viewed as the cocycle (g~l(@t), r,v°JO or as the pull back by g of the G prin-
cipal bundle Gf over W.

4.5, Proposition. The bimodule Sf0g is canonically isomorphic to

Sg ®c*(w,FW)£f In particular,

x, V/F)) .

Proof. For f e Cc(Gf, ®
l/2\ TI e Ce(Gg9 ®

l/2\ we let ^S(r)= ( ^(^)f («)
Jp°o}=-y

(where ^oa is the class in Gf0g of (/?, a)). Then y*? <=Cc(Gfogy £1/2). The
equality <?7i*£i9 ^2*fa>=<^iX^i5 faX^ i§ obvious. Hence 7j(&E-*7i*(; is an
isometry

£g®c*(w.Fir)£f ~> ^/^ •

To show that this map is surjective, it is enough to prove that nfog(h)£ is
in its image for all AeC*(X3 Fx) and S^Sf0g (Proposition 4.3 (c))0 But (using
Proposition 4.3 (b) applied to g)3 it is then enough to prove that for ^19

such that 6^t^ng(C*(X9 Fx)) one has

But makes sense obviously in <5/ (?7**f(^)=\ ^2(a)f(r))- One then
Jojop^
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uses the associativity

Oh*?7*)*f = ?7i*07**f ) . D

Let (V, F) be a foliation, and E a Hermitian Z\2 graded bundle on V.
Let us recall the exact sequence of pseudo-differential operators of ([9],

p. 138, (IX)). Choose an auxiliary phase function <p(r, 77), defined for r in a
neighborhood of F=G(0) in G and for ^eF*^, and locally of the form <r(r)—
s(r), ?>, and choose a smooth x, #(r)eS(JEr(y)®£3/2, Es(^®Ql

F
/2\ with support

contained in the domain of definition of 9, and which is the identity for

reG(0)=F. Let SViB be the C*-module over C*(F, F) corresponding to the
field &L=L\L, E), LeF/F. It is obtained as the completion of CC(G,
£1/2®r*(EJ) with respect to the C*(V, F) valued inner product

By construction it is a left Q(F) module,

Let a e C7(Fi*, 8(F))9 where FX* is the space of half lines in F*, extending it
smoothly to F* in such a way that it coincides with a outside a compact set,
the formula:

defines an endomorphism of the C*-module 6ViE.
Let W$ be the C*-subalgebra of 8>(£VtE) generated by such P^'s. Then one

has an exact sequence :

o -> st(ev.E) -^n^ CO(F*? s(£)) - o ,
where the symbol map a is given as usually (cf. [9], p» 138). For our purpose,
with Fnon compact, we let F* be the C*-subalgebra of %(£VtE): ¥*={P^

/ieC0(F)}, and we let Sty(SVtB)={T^S(SVfB)9 Th
). Vh(=C0(V)}. One gets:

4.6. PropositioHo The following sequence is exact:

0 - Stv(SVfB) -> V* -> Cb(F?9 S(£)) - 0 .

Proof. The only thing to prove is that a defined by the equality a(hP)=
ha(P\ /ieC0(F) is surjective. Given 0eQ(Ff, S(£)), e >0 and /?19 A2eCc(F)?

h2<\ and Ae^f with A1a(P1)=A1a, one can find P2, ||P2!|<Sup(2||a||5
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\\Pi\\) with h2a(P2) = h2a and \\(P2 — PM\^e. Thus, one can construct a
bounded sequence Pn^W% such that Pnh is convergent in W$ with o(PJi)-*ah
for all AeCtf(F). Thus P<?= limP^f exists for any £G£VtS=Ce(V)eVtE and

(P)=a<*>. "*" D

We can now associate to a given Spinc structure S on the bundle F an
element/?! of KK(V9 V\F)(p the projection V->V/F). Indeed the C*=module
SViS is naturally ZI2 graded and for any DeF* of degree one, with symbol
o(D)(x, f)=c(f/||f 1 1) e End S, the pair (<?F>5> D) is a Kasparov bimodule, whose
class is independent of the choice of D. (Note that this construction works
for any Clifford symbol for the bundle F* and gives a canonical map of KV(F*)
to KK(V, V/F)),

We can now prove the crucial lemma of this section:

4e?o Lemma0 Let g: W-^V be a smooth K-oriented (by a Spin' structure)

submersion, let Fw be the pull back foliation on W(**\ pw: W->WJFW, Then:

, V/F)

where sPv0g is defined by Proposition 4.3,

Proof. LQtf=pvog. Let us compute the right hand side. The bimodule
Sw,sw®c*(w,F^Sf is easily described as the completion SfiSw of Cc(Gf, rf*(Sw)

with the C*(V,F) valued inner product given by <fi5f2>(r) =

a Kasparov bimodule, PW^®W/F^S/ i§ given by

> Q)

(where Q=7cf(Dw))9 nf is defined as in Proposition 4.3).
Recall that Gf= WxvGv. By Proposition 2.9., we can describe g\ by the

Kasparov bimodule (6g>Sg, Dg) corresponding to the field (L2(g~1(x), Sg)9

Dg,x)xev> where DgfX is a Dirac operator of order 0 on g~\x). The bimodule
naturally isomorphic to £f,Sw by the map V£®7J)(y»9 r)=

It is hence enough to check that geEnd<?/tSTris a DF connection and
satisfies the positivity condition :

[^® 1, Q] >0 (modulo ®(SfiSw) .

In order to construct P we have to prove that PJ£ also converges: In the inductive step,
we impose also 11h1(P2—P1}\\<£-
Since FW = Ker dg + g*F it inherits a natural Spinc structure, with Clifford module
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, and Pe=F$iS|r Set P^
^et ^ — ̂  ^e a foliation chart for JF, Fw. If P has support

in GW(Q) and f , 77 have support in £, then P2<=¥$jSv and ei(P2)(x, a)= I
J z&g~l(x)

<f(z), (̂*, g*(«Mz)> (ae/1*; g*(a)eFf,,)5 (Lemma 1.7). This obviously
remains true for general P, <? ,??.

Now since <JC(z, g*(a)) = 1S^®<W>(4> °0 0?e ^ a eF^(2))3 we can see
that Q is a DF connection (Remark A.6.4).

Let us now check the positivity condition. We may assume that both Dg

and Dw have supports as close to the diagonal as we wish. In particular, we
may assume that each Dg>x is diagonal in the decomposition of g'^-x) in connected
components. In particular Fg®l=7cf(Fg) where Fg(=%(8w>Sw). It is now
enough to prove that h[Fg, Dw] e ¥fiW and has non-negative symbol for
h^Cc(W}, h>0. As DwGy$9[h,Dw]&Sl(eWtSvr). Then we just have to
compute [hPg, Dw]. We may now take h with as small support as we wish. Hence
(as the support of Fg is close to the diagonal) we may assume that there exists
a foliation chart ®w and k<= Ce(Qw)^Ce(W) such that kh=h and hFgk=hFg.
Hence we now have to compute [hFg, kDwk]. The whole situation is reduced
to the case V=TxU2, W=Tx C/xX U2, g=prrx^ and the obvious foliation.
So the answer follows from Lemmas 1.8, 1.9. D

48o Be&iMoiL Let W-^VJF be a smooth submersion. Assume that the
bundle Fw=df~\F) defining the pull back foliation is Spinc. The equality f\ =

Pw]>®w/FWef defines the element f\^KK(W9 V/F).

The following consequence of Lemma 4.7 will allow to extend this definition
to arbitrary j£-oriented smooth maps W-*V/F.

7U f
4o98 PropositioHc a) Let X-> W-* V/F be smooth K-oriented submersions.

Then(f°ic)\=7c\®wf\.
b) Assume that the following diagram of smooth K-oriented maps, is com-

mutative :

withfl,f2 submersions. Thenj\l®W]fi\=j2l(8)waf2"
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Proof, a) By Lemma 4.7, (pw°ri)\=7u\®wpw\. Thus

But (Pw°^=pxl®spwo7j:i so that (/vo*)!®*/ = p*'®ff/o,t =p/°J (by
Proposition 4.4). Hence (f°n)l=nl®wf\.

b) From Theorem 2.13 and a) above it is enough to construct W and
smooth jK-oriented maps making the following diagram commute:

where 77l5 ZT2,/are submersions.
Let us construct W. It is roughly speaking the fibered product of Wi and

W2 over VI F. More precisely let Gf={(al9 a2)^GfixGf2, sfi(al)=sf2(a2)} =

Gf XvGf2. It is a manifold and the diagonal action of G on the right makes it
a principal G-bundle over W=Gf/G. The projections TT-: Gf/G-*Gf./G are the
obvious ones and they are submersions.

The commutativity of the diagram means that there exists an isomorphism
6 of (/-bundles ofjf(Gf^ withy if (6y2). One then defines the map j: X-^W, by
j(x)=(al9 a2) if rfi(ad=j\(x), rfja£=j2(x) and a2=d(al), Q

g
410. DefinitioHe Let X-+VJF be a smooth K-oriented map, then gl^

KK(X9 VIF) is defined as any Kasparov product j\®f\for any factorization

g=f°j ofg through a K-oriented submersion fi W->¥/F.

(The existence of such a factorization is proven, using the transverse micro-
bundle (cf. [13]) in [10], §11.)

g
4.11. Theorem,, For X-+VJF the element g\<=KK(X, V/F) only depends

h
upon the K-oriented homotopy class of g. For Y-*X K-oriented., one has
(goh)l=hl®xgl

Proof. One may assume that the homotopy gt between g0 and gi is smooth.

Consider it as a smooth map Xx[0, l]^F/Fx[03 1] then gl&KK(Xx[0, 1]5
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V/Fx [03 1]) defined as in Definition 2, gives by restriction ([03 l]-»pt) an element
a<=KK(X, F/Fx[0, 1]) which is a homotopy between g0! and gj. The second
assertion follows from Theorem 2.6, together with Proposition 4.8. n

Recall that the geometric group K^r(B(f) was defined in [10], as equivalence
classes of cycles (M, E,f), where M is a compact smooth manifold, E is a bundle
over M, and/: M-*V/F is smooth and JT-oriented(*)

4.12. Corollary. The element ju(M, E, /) : f\(E) = [E]®Mf\ e K*(V/F),
depends only upon the equivalence class of the cycle (M, E,f).

Proof. The invariance under bordism follows from Proposition 3.5. Let
(M, E,pof) be a vector bundle modification of (M, E,f). One has by hypothesis
pI[£]=[E] hence the equality follows from Theorem 4.10. D

In [10] the analytical element associated to a geometric cycle was con-
structed in a different manner. We shall now check that this other construction
gives the same result.

The construction of [10] used a Kasparov bimodule associated to an etale
map W-^V/F; we first note that it coincides exactly with our Gf9 which (since
FW=Q), is by Definition 4.6 equal to/!.

/
4.13. Proposition,, Let X-*V/F be a K-oriented smooth map. Then for

any factorisation f=poeoj(**) :

N^> V/FxRn

/' , V
x - -L -

-where N is a manifold, e is etale, and p is the obvious projection, one has fl=jl

®^-®jg^~1 where ^~l^KK(Rn, pt) is the Bott element ([19], §5).

Proof. We may assume that X=N since jl®(p°e)\=f\ (Definition 4.8).
Let us consider the two maps g0, gl from NxRn to F/Fxl2ra

9 gQ(n, t)=(poe(n),
t\ g^n, t)=e(n). One has (p°e)\®c idrf.=g0! (applying Definition 4.7), gx! =

P~l®ce" ^s there is an obvious homotopy between g0 and gl5 one has g0! =
gxl. Hence using the Bott periodicity, one gets (poe)l=el®Rnfi~l. Q

Specializing to the case when X= F, N is the normal bundle of F in Rn for

c*) For a more precise definition of the topological J£-theory of a foliation, cf. [5].
c**) e being etale is X-oriented. Hence J^-orientations for/and/ are in 1-1 correspondence.
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some embedding V—>Rn, andj: V—»JVthe obvious inclusion one gets for arbitrary
foliations the precise analogue of the index theorem for families of Atiyah and
Singer [2].

4cl48 Tfaeorenio Let (V, F) be a smooth foliation, P a longitudinal elliptic
pseudo-differential operator. Let i: V^>Rn be an embedding, Nx==di(Fx)-

1- (in Rn)

the normal bundle to F. Considering N as an open transversal to the foliation of

VxRn by Fx {0} (cf. [10]), one gets a map: Ind,: K(N)-^K(V/FxMn)^K(V/F)

(through the Bott periodicity for C*-algebras). Then:

Ind.(P) - Ind,(af(P))

where 5(P) is associated to o(P)^K*(F*) through the Thorn isomorphism K*(F*}

Here the analytical index Indfl(P) is described by the Kasparov bimodule
(<Sv,E> ^)- It is of course the same as the image of the symbol in the connecting
map of the six terms exact sequence corresponding to the exact sequence of
Proposition 4.6. More explicitely, using a parametrix Q9 Indfl(P) is the class
of the idempotent

-Si Q(S1+S2
1)

_S,P Si

where S0 = 1-fiP, Si = l-PQE^C*(V, F) .

Proof, For simplicity, we only treat the case when F is Spin*, then N

inherits a natural Spin* structure with SF®SN^SRn. One can assume that P is
an order 0 Dirac operator with coefficients in [E]^K*(V), so that Inda(P)=[E]
®vpv! where pv: V-^V/Fis the projection. By Proposition 4.13, one has pv\
=jl®Ne!®M»/3~\ so that Inda(P)=[E]®j!®Ne!®Rnfi-\ Hence it is equal to

Ind,(P) since j\[E]=a(P). D

4.15. Remark, a) It is easy to deduce from the above theorem the index
theorem for measured foliations of [9]. The transverse measure A defines a
linear map Trace^ from K\VJF) to R, cf. [8], The composition of '
is easily seen to be Ind^(P) (see [9], [10]). The composition of'
can be computed topologically and gives <ch P Td Fc, [A]y (cf. [9] or [10]).

b) The map r. V^>Rn of Theorem 4.14 is not required to be an imbedding,
it is enough that its restriction to each leaf is an immersion. Thus the theorem

The sum F+7V is the trivial bundle R* so that ijr°pf (with obvious notations) is £-orientecL
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still holds for transversally C° foliations and even for foliations whose trans-
versals are just locally compact spaces. Formulated in this way it is even closer
to the Atiyah-Singer index theorem for families.

4.16. The Euler Class. Let ( V, F) be a compact foliated manifold. The de
Rham complex along the leaves yields a longitudinal elliptic operator. Let us
compute its topological index using the zeros of a generic longitudinal vector

e
field X as a pseudotransversal Z-> VI F. By the genericity of X, Z is a sub-
manifold of F, let us K orient the map e from Z to V/F. The derivative of X
yields an isomorphism dX from the normal Nx of Z in V (x e Z) to Fx. Now, as
N®TZ=TV\z=(rQ)F)z where r is the transverse bundle, the above isomor-
phism yields a ^-orientation of e,

4ol7o Corollary . The index of the de Rham complex is equal to

Proof. Let m F*->VIF be the projection of the total space of the longitu-
dinal cotangent bundle to the space of leaves, with its natural ^-orientation.
Then ®TC\: K°(F*)-*K\VIF) is the analytical index. Let i: Z->F* be the
inclusion (obviously K oriented) then e==7uoiso that (Theorem 4.10) el=il®F*7cl.
Thus one just has to check that z![Z] is the class in K°(F*) of the symbol of d+

di Jev-»/fodd. Put at(x, £)=at(x, £)+at(x, £)*, where for f e[0, 1] at(x, f) is
the exterior multiplication by ri(x9 f, t)=i(\—Ir£(t\\X\\, l))£+tX(x). This is
clearly a homotopy between z![Z] and the symbol of J+#. D

Let us consider a simple example. Let F^PSL(2, IS) be the fundamental
group of a compact Riemann surface M=U/r, (U the Poincare disk) of genus
g>2. Let Fbe the compact complex manifold V=UxrPl(C) where F acts on
P^O by homographic transformations (PSL(2, R)dPSL(2, <C)). Let F be the
foliation of V dropped down from the foliation of UxPi(C) with the leaves
Ux {pt}. By construction the holonomy covering of each leaf of the foliation
(F, F) is the Poincare disk. We shall endow the leaves with the canonical
metric with constant curvature — 1 .

Let us apply the above Corollary 4.17 to this situation. Let us determine
the analytical index of the de Rham operator D=d+d (from even forms to
1— forms). In this situation the restriction of the Laplacian to even forms is
lower bounded by 1/4 (D*D>l/4) hence the analytical index Inda(D) is ~[Ker

(Here 0 is isolated in the spectrum of DD* so that Ker D*=Ker DD* is a

w [Z]&K°(Z) is the class of the one dimensional trivial bundle.
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well defined idempotent in C*(T, Fj). On the other hand, the foliation (F, F)
is the foliation of the natural flat connection on the bundle V-+M, thus the fiber
S=P1(C) is a closed transversal and has a well defined class [S]^K*(V/F) (cf.
[8], § 8). Corollary 4. 1 7 now reads :

Even though this foliation admits no holonomy invariant transverse measure
(the action of F on P^C) is strongly proximal), the element [Ker D*] is non-zero
(as any of its multiples) in K°(V/F). Let us prove this. The bundle F-»M has
a smooth cross section a. Hence the pushforward x=i\(S)^K°(V) of the
trivial bundle on the fiber S, is not a torsion element, since o*(x) is the Bott
element of M. Let p: V->V/F be the projection, then the above [S](=K°(V/F)
is equal to pl(x). Thus the result follows from the injectivity of pi from K\V)
to K\VIF) ([10], p. 613).

§ VB Appendix Ai Connections and Implicit Characterization
of the Kasparov Product

In [19], §4, G. G. Kasparov defines the "intersection product" (69F)®D

(£\F') (where (£, F)^KK(A9 D), (£', F') e KK(D9 B)) assuming that the D-
module S and the B module G are of the form £=$®D, &=^®B (§ a
separable Hilbert space) while D has a unit. This is legitimate by G.G.
Kasparov's Stabilization theorem ([18], Theorem 2). For our purposes, it is
convenient to compute the Kasparov product without stabilizing.

In this appendix we introduce a notion of connection which allows us to
give an implicit characterization of the Kasparov product.

Let A, B, D be graded algebras (A separable B and D with countable ap-
proximate units).

Let (£,F)<=KK(A,D) and (£', Ff)^KK(D, B). Put ff'=e®De'. It is
an A9 B bimodule.

For each fee?, let T^%B(£'9 £") be given by T^)=S®Drj. Its adjoint
is given by

A.L Let G<EES(£') be such that [d, G](*> eft^/or a// J in D.
An element G of2(<S") is called a G-connection on S, if one has for any £ in Si

TiG-(-lf®GGT^®(Sr, 8"}

GTf -(-\}^GTf Ge^(£7/, 6'} .

c*5 All commutators are graded ones.
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A.2. Proposition, (a) For any G e S(£') satisfying [cl G] e $(£') (Krf e D),
raf G connections on <5.

(b) T/ze space o/ G- connections is affine ; f Ae associated vector space is the
space 0/0 connections:

(c) If G is a G-connection and k e $(<?) f/re/i [G3 fc® 1]

Proof, (a) Let PeS(<?) be a projection and G a G-connection on <?.

Then (P®l)G(P®l)<^£(PS®D8f) is a G-connection on P£. So that by the

stabilization theorem ([18], Theorem 2) it is enough to construct a G-connection

on 6=$Q®CD (D is obtained from D by adjoining a unit which acts as the
identity in 6'}. But then G=l§®cG^%(e®DS')=%($®ce') is a G-connec-

tion (the set of fee? such that conditions of Definition A.I are satisfied is a
closed D submodule of £ as [D, G]eJ?(<5")3 and contains £®CC). Call a
connection of the form (P® # l£')0$® c G)(P®D lg') a Grassmann connection.

(b) It is clear that if G{ are Grconnections, then Gi+Gg is a Gi+G2 con-
nection (also Gi-G2 is a G^ G2 connection). If ® is a 0 connection and <f , TJ <=8

we have QT^T*^St(G"). But rgr*=^gf,<g)l and the 6^ generate fl(<5) as a
closed subspace ([18], Definition 4). Hence 0(58 (£)® l)cfl(<57/). In the same

Conversely, if £(58(£)®l)c58(£") then (0r£)(0rf)*e58(<5//). Hence

(c) It is enough to prove it for k=6^,l. But 0^®\ = T$T*. D

We now formulate an implicit characterization of the Kasparov product

A83o Theorem- There exists an F' connection Ff/ (of degree one) on 6 such

that:
(a) (8", F") is a Kasparov bimodule.

(b) [F"? F® l]=P+h where P>0 and

a connection is unique up to operatorial homotopy ; the class of (Qh ',
1/2 AX(^[, 5) w rte Kasparov product (8, F)®D(8f, F1}.

Proof. Existence: Let G be an F' connection on Q, Let El be the

subalgebra of S((S/X) generated by ffl(£)&l and
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Let E2 be the (separable) C*-subalgebra of £(£") generated by {G2— 1,
G — G*9 [G, F®1]5 [G, a] (a<=A)}. Let g be the (separable) vector space
spanned by F® 1, G and A.

Finally put £=
As all elements of /s2 are 0-connections E1*E2czE. Using A.2(c) we get

Apply then Theorem 4 of Section 3 of [19] and get M, tf eS(£"), M>0,

5 Jlf+A^l such that ME^E, NE2^E, [M, %\^E.
Put then F" = Ml/2F®l + Nl/2G. One gets easily that (£", F") is a

Kasparov bimodule.
As Af 'j^cjE, M1/2 is a 0-connection; as [Af, F® l]e£, M1/2(F® 1) is also

a 0-connection. By A.2(b) N1/2 is a 1 -connection. Hence Ff/ is an F' connec-
tion.

Finally [F"5 F® 1] =M1/2[F® 1 , F® 1] modulo ffl(£"). But as 2M1/2(F2® 1)
=2M1/2 modulo ^ we get the positivity condition.

Uniqueness : Let first G0 and GI be two F' connections. Let E2 be the C*-sub-
algebra of %(£") generated by {G0-Gl9 G§-1, G0-GJ, [G0, F® 1], [G^ a] ae^}
and g the subspace spanned by F® 1, GQ, G1!, A. Apply then [19], Theorem 4,
§3 (with ̂  and E as defined above). Put F't'=Ml/\F® i)+A^((l-f)G0+fG,).

It now remains to prove that if G is an F' connection satisfying (a) and
(b), and if M, N are constructed as above, we can join G and F/f= M l/2(F® 1)+
Nl/2G by a norm continuous path of G-connections satisfying (a) and (b).

Let Qt = (tM)1/2(F®l)+(l-tM)1/2G. Write [F®l,G]=P+h with P>0
and AGE$. Put Zt=l+t1/2(l-t)1/2P, and F{/=QtZT1/2. One checks easily that

Moreover [A, ejcffl(£"); hence [^, ZJcffl(<?70. Thus [4,
and |F//|2-l=ZrV2(ie,|2-Z/)ZrV2e9f. Also [Qt, ZJeSJ, so that F,"-

We thus get that (8", F") is a Kasparov A, B bimodule.
As Qt is a G-connection and P is a 0-connection., F" is a G-connection.
Finally [F®l5P]e^ so that [F®1, Zr^eQf and hence [J7®!,^77^

Zr1/4(2(fM)1/2+(l-?)1/2P)Zr1/4+^ where ^e9f.
Thus F/7 is the desired homotopy between F{'=G and Fi'=F".

Finally, if in the existence part we start with a Grassmann connection then
(£"? F") is the Kasparov product as defined in [19], D

We need in fact a slight refinement of Theorem A. 3:
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Let (£, F) be a Kasparov A, D bimodule. Let JCi be the C*-subalgebra
of 5l(£) generated by [a, F], a(F2-l), a(F—F*) (a^A) and the multiples by A,
F and F*. Let Sl be the closed D submodule of £ generated by JCiS. Call
this Si the support of (8, F). It is obviously stable under the actions of A and
F.

Let ((?', F') be a Kasparov D, B bimodule. The refined version of Theorem
A. 3 is based on the following notion of connection localized on the support of

(S,F).

Ao4 Definition, An F' connection on (£, F) is an element G of %(8/f) such

that r*FM-l)86GreeSl(£\fi'0^ all £
in the support of '(<?, F).

A.5o Theorem,, In the above situation there exists F" ^%(S") such that:

(a) (<?", F") is a Kasparov A, B bimodule.
(b) F" is an F' connection on {8, F).
(c) a[F"? F®l]a*>0 modulo &(G")for all a^A.

Such an F" is unique up to norm homotopy and the class of(Q", F") in KK(A, B)

is the Kasparov product (8, F)®D(6'9 F').

Note that the condition (c) here is equivalent to condition (b) in Theorem A.3.

Proof. In view of Theorem A.3 we just have to prove uniqueness. But
the proof of uniqueness in Theorem A.3 needs no changes to apply in the present
situation. Q]

Let us end this appendix with some remarks which are used in the text:

A.6. Remarks. (1) Let Al9 A2 be separable, Bl9 B2, D with countable
approximate units. Let (£19 FJ be a Kasparov A, B&D bimodule and (<?2,
F2) a Kasparov D®A2, B2 bimodule. Their Kasparov product (£19 F^®D(82,
F2) is computed using the equality:

(Si, FJ®D(S2, F2) = (S&A* F1&T)®B£D&A,(B1&€29 1®F2)

in KK^&Az, B^B^ (cf. [19], Theorem 43 §4).
(2) Let (£, F) be a Kasparov A, B bimodule and let Si^Sbe the support

of (<?, F). Let F! be the restriction of FtoSi. Obviously (<£19 FJ is a Kasparov
A, B bimodule. Moreover, the classes of (8, F) and (<?15 Fj) in KK(A, B) coincide.

Indeed, let 8 be the Hilbert 5®C[0, 1] submodule of £® C[0, 1], <?={f ;f(l)
e<?i}. Let A act in an obvious way in Q ((a£)(t)=a«£(i)) and Fe8(<5) be given
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Then (£, F) is a homotopy between (<?, F) and (<?13 Fj).
(3) Let D and G be as In Definition A.I. Suppose moreover that [rf, (71=0

for all dm D0 Then ligJ^G makes sense in %B(G®DG') and is a {^-connection
on£.

(4) Let D and G be as In Definition A.l. Let G<=&(<S®D£f). If for all <?, 37
in (5, Tf G^-(-l)^8GG<f 9 37>eft(<50 and
ffi(<57), then G is a G-connection on G (to see this compute

(TeG-(- 1

Remark on the notation. By d;c we mean the degree of the homogeneous
element x. Note that in A.6.4 above If G is homogeneous d(G*G)=®. However,
the formulae of Definition A.I as well as those of Remark A.6.4 have to be
understood as extended by billnearity to the non-homogeneous ease.

The definition of /! of [10] that we used In Section 2 was given for a K-
oriented map /: X-*Y where X and Y are smooth manifolds. In order to
generalize this construction to the case where Y Is just a topological manifold
(cf0 Remark 2.10 (c))5 we need the notion of ^-orientation of microbundles that
we now discuss.

Let X be a compact space. Recall that a microbundle r over X (real of
dimension n) Is given by a locally compact total space Z and a pair of maps

i p
X-*Z->X, satisfying some local triviality condition (cf. [23], Definition., p. 54)
only the germ of Z around i(X) being of interest.

Let us first define the JT-theory K(r) of the microbundle r :
A virtual vector bundle over T Is given by a triple (Q9 E, G) where Q is a

neighbourhood of i(X) In Z, E Is a Z\2 graded hermitian vector bundle over X
and a Is a continuous bounded section of %(p*E) over Q\i(X) (a^Cb(Q\i(X)9

£))) such that o(z)2=l, a(z) Is of degree 1, a(z)=a(zf for all z in ^\i(X).
If <07 is an open subset of Q and i(X)^Q'9 we identify (Q9 E, G) with

The triple (Q9 E, G) Is called trivial If G extends to an element of

9 $&*£)).
Homotopies between triples are defined by triples relative to the micro-

bundle prf(r) over Xx[0, 1] (pTx: Xx[09 l]->Xls the projection).
Let K°(T) be the abellan group of stable homotopy classes of such triples.
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By construction K°(T) Is a module over K\X).

Let T be a real vector bundle, r= | T \ the underlying microbundle. Then
K\T) Is naturally isomorphlc to K\r). The map from K\\T\) to K°(T) Is
described as follows: Let (*0, Is, a) be a virtual vector bundle over r; choose
a Euclidean structure of the vector bundle T in such a ¥/ay that the unit ball Is
included In Q. Then the restriction of a to the unit sphere ST defines a Clifford
symbol in the sense of the first section.

If rx and T2 are two microbundles over X let r=T1xxT2 be their Whitney
sum ([23], page 59). There is a natural (J£(Jf) bilinear) cup product: K(T^X
K(T£-»K(T) given by [(Ql9 El9 aJ\xz[(Q2, E2, c 2)}=[(@ ̂  x@ 2, E^E^ a)] where
G(zlyz2)=M1/2o1(z1)®l+(l-M)l/2l®o2(z2) where M(zl9 z2) e [0, 1], M is con-
tinuous, M(zl9 z2)=Q if z1=/1(/?1(z1)); M(zl9 z2)=l if Z2 = i2(p2(z$ ((zx, z2)e

Recall that If X is a finite simplicial complex, then for any mlcrobundle
T over X there exists T' with rx ^r' isomorphic as a microbundle to XxMq (cf.
[23], Theorem 4.1).

Bolo Definition,, ^4« element [o] of K*(r)(*} will be called a K-orientation
of r if there exists a microbundle T' and [a']e^*(T') such that:

(a) r x xr
f is isomorphic to the trivial microbundle Xx Rn«

(b) [a] x x[a'] = [/?] wAer e [/9] e ^w(Xx Rn) is the Bott generator.

We shall not spell out the details of the rather obvious :

sition., L A K-orientation [G] of r is a generator of K*(i) as a
K*(X) module.

2- If [ffj and [a2] are two K-orientations of r, there exists a unit e G= K\X)
with a2

=6'ai'
3. Let [a] GE JT*(r) and let T' be such that r X x-c'— Xx R\ If [o1] EE/C*(r')

satisfying (b) of Definition B.I exists, it is unique. Moreover {af} is then a K~
orientation ofr'.

4. If [o'} exists for some T' (satisfying (a) of Definition B, I), it exists for any.

5. If [ffj and [a2] are K-orientations of rl and r2 then [aj X x[a^ is a K-
orientation O/^XXT^

6. If rl and rl x XT2 are K-orientable so is r2o

7. Let f: Y->X be a continuous map and r a microbundle over X. Then

if G is a K-orientation of r, f*(o) is a K-orientation off*(r).
8. Any K-orientation of T gives an orientation of T (using the Chern

[a] is assumed to be homogeneous for the Z/2 grading of irI:(r).



1180 A. CONNES AND G. SKANDALIS

character).

The most natural example of a IT-orientation is given by a Spinc structure
(on a real vector bundle T) which in C*-algebra terms is described as follows:

Associated to a Euclidean structure on the bundle T, is a bundle of com-
plexified Clifford algebras (Cliff Tx)x<=x. Let c: Tx-»Cliff Tx, c(£)2= \\S\\\
c(S)=c(£)* be the canonical embedding. The continuous sections of this
bundle of C*-algebras form a (Z/2 graded) C*-algebra, noted Cliff (X, T).

If dim Tis even each Cliff Tx is a matrix algebra; however it is not in general
of the form &(SX) for some hermitian bundle 5 (cf. [3], [14]). A Spin' structure
on T is given by an orientation of T together with a bundle S of irreducible
Clifford modules.

If dim Tis odd, the discussion is the same replacing Cliff 7*, by its even part.
If S and S' are two Spin' structures then HomCiiff(5', Sf) is a complex line

bundle L and S'=S(g)cL. Thus one gets a transitive and free action of the
group of complex line bundles on the set of Spin' structures, if any (these are
Spinc structures corresponding to a given orientation of T).

If S is a Spinc structure on the even dimensional Euclidean vector bundle T,
first S has a natural grading (given by Clifford multiplication by the orienta-
tion of T, cf. [14]) and the equality a(f)=c(f/||f ||)eS(5) (f eT, £=t=0) defines
an element o of K°(T).

In the odd dimensional case one gets an element of K\T).

B.3. Proposition. Let T be a real vector bundle over X.
(a) The above construction associates in an injective way a K-orientation to

each Spinc structure.
(b) If the microbundle \ T \ admits a K-orientation, then T admits a

Spin* structure.

Proof, (a) Note first that the group of line bundles is a subgroup of the
group of units of K°(X) which is isomorphic (through the first Chern class)
to H\X, Z). This shows the injectivity.

If Tf is a Euclidean bundle such that T®T is trivial, then T is oriented;
the equality Cliff (T@T')=Cliff (T)® Cliff (T) shows that the Dixmier-Douady
obstruction of Cliff (T7') is 0 (cf. [12], Definition 10.7.14); hence T has a Spin'
structure S'. Moreover, using the action of H\X, Z), we may assume that the
Spin' structure S®S' of T®T' is the trivial one (on the trivial bundle J® T').
But the [G] corresponding to the trivial Spinc structure is the Bott element.

(b) Assume that T is of even dimension 2/7. Let T' be a Euclidean
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bundle (of dimension 2pf) such that the bundle T® T is trivial Let Cliff(AT, T)
and Cliff (X, T") be the Clifford algebras (graded trivially) of T and T. The
Thorn isomorphism ([3], [19], Theorem 8, § 5) identifies K°(T) with KQ(CliS(X, T))

and K°(T') with JT0(Qiff(X, T)) (by Proposition B.2.8 above both T and T are
oriented). Let [S^]-[S^]^K0(CliS(X, T)) and [S'^]-[S/(1>]e ̂ (diff(X, TJ)
be the virtual Clifford modules associated to the ^-orientations of T and T'
through the Thorn isomorphism. By hypothesis the product ([5(0)]—[5(1)])®
([S/(0)]—[S/(1)]) defines the same element of J£"0(Cliff(X, T@T'}} as the standard
irreducible module C(X)®S(R2p^f) over C(X)®CM(R2p+2p'). We thus get

(dim Sfro-dim S(1))(dim S'^-dim S"(1)) = 1*+* ,

As S(0) and S^ are Cliff^ T) modules, dim S(0) and dim S™ are multiples of
2*. Also dim 5"(0) and dim S"(1) are multiples of 2P/, So that either S™ or 5(1)

(say 5(0)) is of dimension r2p where r is odd.
Note that X=EndCiiff(5'(0)) is Morita equivalent to Qiff(X, J), and thus

has the same Dixmier-Douady obstruction w&H3(X, Z), For each x^X, AK

is a matrix algebra of dimension r2 so that ([14]) rw=0. But as T0 T is naturally
Spinc (see Remark B.4 below) we get 2w=Q hence w=0.

If dim Tis odd, replace Tby T0^0 D

Note that in general H\X, Z) is strictly contained in the group K\X)~l

of units in K\X), so that the map which to a Spinc structure of T associates a
X-orientation of | T \ is not surjective.

B.4. Remark. Recall that if T is a real vector bundle on X, T®T has a
natural Spin* structure coming from its complex structure.

For a complex Hermitian bundle Tput S=A(T) and for <? eTput c(f)=
es+ef where efi(w)=f Aw. As c(f)2-|i<f||2 the bundle S is a Cliff T graded
module with grading by even and odd exterior powers.

In particular if the microbundle r is \T\ for some real vector bundle
T,TXXT is J^-oriented. It is not clear how this ^"-orientation depends upon the

choice of T,

B950 BefMtioEo Let X be a smooth manifold and Y a topological manifold.
Letf: X-> Y be a continuous map. Let rY be the tangent microbundle of Y (given

A pr,
by Y->YxY-* Y, A(y)=(y, y), cf. [23], Example 3, §2). A K-orientation
of f is a K-orientation of the microbundle rf=\T*X\ Xx/*(rF) (in the sense
of Definition B.I).
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Let us gather some easy facts in the following:

B.6. Proposition* (a) If X and Y are K-oriented, any continuous map from
X to Y is K-oriented. In particular, if Y and f are smooth then df: TX->TY
is K-oriented.

(b) Idx has a canonical K-orientation.

(c) Let /!.' Xl-+X2 and fz: X2-*Y be continuous maps where Xl9 X2 are
smooth manifolds Y is a topological manifold. Iffi andf2 are K-oriented then so

is f2°fi- Iff 2 cmd f2
Qfi are K-oriented ', then so isf^

(d) Let Y be smooth and f: X~>Y a smooth immersion. Let N be the

normal bundle off. Then f is K-orientable if and only ifN is K-orientable.

(e) Let Y be smooth and f: X—> Y a smooth submersion. Then f is K-
orientable if and only if the bundle Ker df (over X) is K-orientable. D

In this proposition, the following conventions are made :
(a) If GX is a X-orientation of TX, we let aj1 be the jK- orientation of T*X

such that oxlxxox is the JT-orientation of T*X@TX given by the complex
structure where tangent vectors are real and cotangent imaginary. The K-

orientation of /is then a x
l x xf*(Gy)'

The JT-orientation of TX (or TY) is given by the same almost complex
structure as in [1] : horizontal vectors are real, vertical are imaginary.

(b) The ^-orientation of rldjr is given by the complex structure of

F*JT© TX discussed in (a).
(c) The ^-orientations a1 of/l3 a2 of /2 and a of f2of1 are related by the

equality /? $2XXio=alxx^f?o2 where d2^K(T*X2@TX2) is the ^-orientation
of ldX2 (we have identified /f(rld^) x xTfaofj with r/3 x ^/i*(r/a)).

(d) The J^-orientations a of rf and a' of N are related by the equality

ff=8xxx(j
r where 3X is the JT-orientation of Idx (we have identified rf with

(e) The ^-orientations a of rf and a' of Ker (40 are related by the equali-

ty o = *'Xzf*(dr).
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