Some Remarks on Kasparov Theory

Georges Skandalis
Department of Mathematics and Statistics, Queen's University, Kingston, Ontario K7L 3N6, Canada
Communicated by A. Connes

Received November 1. 1983

Introduction

This work consists of the simplification of two central points of Kasparov's paper $|4|$: the homotopy invariance of the "Ext" bifunctor [4, Sect. 6, Theorem 1] and the associativity of the Kasparov (intersection) product $[4$, Sect. 4, Theorem 4].

The proof of homotopy invariance given here, is based upon the following remark: the Kasparov product may be defined for the groups where only "operatorial homotopy" is allowed (Theorem 12). When looking at it carefully, one sees that this proof is very similar to the one given by Kasparov in [4], but, I believe that it may seem more conceptual.

The associativity of the Kasparov product is seen through the notion of connexion introduced in $\mid 2$, Appendix A \mid. Both of these proofs use in a crucial manner the technical part of Kasparov's work |4, Sect. 3|, especially Theorem 4 therein.

Notation

All gradings are $Z / 2$ gradings. All tensor products are graded and minimal (spacial) tensor products. All commutators are graded commutators $\left(|a, b|=a b-(-1)^{\partial a \partial b} b a\right.$, where ∂a is the degree of $\left.a\right)$. The reference for graded Hilbert C^{*}-modules, endomorphisms, compact endomorphisms of Hilbert C^{*}-modules, graded tensor products, etc, is $[4$, Sects. 1,2$]$ (see also [3|). As in $|4|$ if \mathscr{E} is a graded Hilbert C^{*}-module $\mathscr{L}(\mathscr{E})$ (resp. $\mathscr{K}(\mathscr{E})$) denotes the graded C^{*}-algebra of endomorphisms (resp. compact endomorphisms) of \mathscr{E}.

If x is an element of a graded C^{*}-algebra, or a graded Hilbert C^{*}-module, $x=x^{(0)}+x^{(1)}$ represents its decomposition in the even and odd parts. The grading operator (resp. the grading automorphism) of a graded C^{*}-module (resp. C^{*}-algebra) is the operator $x^{(0)}+x^{(1)} \rightarrow x^{(0)}-x^{(1)}$. If A is a graded C^{*}-algebra, \tilde{A} denotes the graded C^{*}-algebra with an added unit of degree 0 .

Let us begin by recalling Kasparov's Theorem 4 of [4, Sect. 3], in the form it will be used several times here. Let B be a graded C^{*}-algebra and \mathscr{E} a countably generated graded Hilbert C^{*}-module over B.

Theorem 1 [4, Sect. 3, Theorem 4]. Let $E_{1}, E_{2} \subset \mathscr{L}(\mathscr{E})$ be graded subalgebras $\mathscr{F} \subset \mathscr{L}(\mathscr{E})$ a graded vector subspace. Assume that:
(i) E_{1} has a countable approximate unit and $\mathscr{K}(\mathscr{E}) \subset E_{1}$,
(ii) \mathcal{F}, E_{2} are separable,
(iii) $\left.E_{1} \cdot E_{2} \subset \mathscr{K}(\mathscr{E}), \mid \mathscr{F}, E_{1}\right] \subset E_{1}$.

Then there exist M, N of degree 0 (for the grading) such that

$$
\begin{gathered}
M+N=1, \quad M \geqslant 0, \quad N \geqslant 0, \\
M \cdot E_{1} \subset \mathscr{K}(\mathscr{E}), \quad N \cdot E_{2} \subset \mathscr{K}(\mathscr{E}), \quad[\mathscr{F}, M] \subset \mathscr{K}(\mathscr{E}) .
\end{gathered}
$$

(Notice that \mathscr{E} being countably generated, $\mathscr{\mathscr { \prime }}(\mathscr{E})$ has a countable approximate unit.)

Let us also recall the basic definitions and notations of the $K K$ groups [4, Sect. 4, Definitions 1-3|.

Definition 2. (1) Let A, B be graded C^{*}-algebras. An A, B bimodule is a countably generated graded Hilbert C^{*}-module \mathscr{E} over B acted upon by A through a grading preserving $*$ homomorphism $A \rightarrow \mathscr{L}(\mathscr{E})$.
(2) A Kasparov A, B bimodule is a pair (\mathscr{E}, F), where \mathscr{E} is an A, B bimodule, $F \in \mathscr{L}(\mathscr{E})$ is of degree 1 and satisfies
$\forall a \in A, \quad[a, F] \in \mathscr{K}(\mathscr{E}), \quad a\left(F^{2}-1\right) \in \mathscr{Y}(\mathscr{E}), \quad a\left(F-F^{*}\right) \in \mathscr{K}(\mathscr{E})$.
$\mathbb{E}(A, B)$ denotes the set of all Kasparov A, B bimodules.
(3) A Kasparov A, B bimodule (\mathscr{E}, F) will be said to be degenerate iff $[\mathrm{a}, F]=a\left(F^{2}-1\right)=a\left(F-F^{*}\right)=0, \forall a \in A . \mathscr{D}(A, B)$ denotes the set of degenerate Kasparov A, B bimodules.
(4) An operatorial homotopy through Kasparov bimodules, is a homotopy (\mathscr{E}, F_{t}), where $t \rightarrow F_{t}$ is norm continuous.
(5) An element of $\mathbb{E}(A, B \otimes C([0,1]))$ is given by a family $\left(\mathscr{E}_{t}, F_{t}\right) \in \mathbb{E}(A, B)$ which will be called a homotopy between $\left(\mathscr{E}_{0}, F_{0}\right)$ and $\left(\mathscr{E}_{1}, F_{1}\right)$.
(6) The addition of two Kasparov bimodules $\left(\mathscr{E}_{1}, F_{1}\right)\left(\mathscr{C}_{2}, F_{2}\right)$ is defined by $\left(\mathscr{E}_{1}, F_{1}\right) \oplus\left(\mathscr{E}_{2}, F_{2}\right)=\left(\mathscr{E}_{1} \oplus \mathscr{E}_{2}, F_{1} \oplus F_{2}\right)$.
(7) The set $K K(A, B)$ is defined as the quotient of $\mathbb{E}(A, B)$ by the equivalence relation given by homotopy.
(8) The set $\widetilde{K K}(A, B)$ is defined as the quotient of $\mathbb{E}(A, B)$ by the equivalence relation generated by addition of elements of $\mathscr{C}(A, B)$ and operatorial homotopy.

Remark 3. (a) If $(\mathscr{E}, F) \in \mathscr{L}(A, B)$ then (\mathscr{C}, F) is homotopic to the Kasparov bimodule $(0,0)$, because $\left.\left(\notin C_{0}(\mid 0,1)\right), F \otimes 1\right) \in$ $1(A, B \otimes C(|0,1|))$.
(b) The definition given here of $K K(A, B)$ is different from the one given in $[4$, Sect. 4 Definition 3]. However, using the stabilization theorem |3, Theorem $2 \mid$ these two definitions coincide when B has a countable approximate unit.

One has

Proposition 4 [4, Sect. 4, Theorem 1|. $K K(A, B)$ and $\widetilde{K K}(A, B)$ are abelian groups when equipped with addition as in Definition 2(6). $K K(A, B)$ is a quotient of $\widetilde{K K}(A, B)$.

Proof. The second assertion follows from Remark 3(a). For the first one, we just recall that $-(\mathscr{C}, F)=\left(-\mathscr{E},-U F U^{-1}\right)$, where $-\mathscr{E}$ is the same Hilbert B module with opposite grading, $U \in \mathscr{L}_{B}(\mathscr{F},-\mathscr{F})$ is the identity, and the action of A is given by $a U \xi=U(\alpha(a) \xi)$, where α is the grading automorphism of A). Then

$$
\left|\begin{array}{cc}
\cos \theta \cdot F & \sin \theta U^{-1} \\
\sin \theta \cdot U & -\cos \theta U F U^{-1}
\end{array}\right|, \quad \theta \in|0, \Pi / 2|
$$

defines an operatorial homotopy joining $(\mathcal{F}, F) \oplus(-(\mathscr{F}, F))$ to a degenerate element.

We may notice that if (\mathscr{F}, F) and $\left(\mathcal{F}^{\prime}, F^{\prime}\right)$ are unitarily equivalent $\mid 4$, Sect. 4, Definition 2), then $(\mathscr{C}, F) \oplus\left(-\left(\mathscr{C}^{\prime}, F^{\prime}\right)\right)$ is operatorially homotopic to a degenerate element. Hence the classes of (\mathscr{C}, F) and $\left(\mathscr{C}^{\prime}, F^{\prime}\right)$ in $\widetilde{K K}$ and $K K$ coincide.

Functorial Property 5. (1) Let $f: A_{2} \rightarrow A_{1}$ be a homomorphism of graded C^{*}-algebras. Let (\mathscr{E}, F) be a Kasparov A_{1}, B bimodule. Then ${ }^{\prime}$ may be looked at as an A_{2}, B bimodule $f^{*} \mathscr{E}$ through the A_{2} action $A_{2} \rightarrow^{\prime} A_{1} \rightarrow$ $\not(f)$. This defines a map $f^{*}: \mathbb{E}\left(A_{1}, B\right) \rightarrow \mathbb{E}\left(A_{2}, B\right), f^{*}(\not, F)=\left(f^{*}, F\right)$.
(2) Let $g: B_{1} \rightarrow B_{2}$ be a homomorphism of graded C^{*}-algebras, and $\left({ }^{*}, F\right) \in \mathbb{E}\left(A, B_{1}\right)$. Then put $g_{*}(\mathscr{E}, F)=\left(\mathscr{E} \otimes_{B_{1}} B_{2}, F \otimes 1\right) \mid 4$, Sects. 2. 8|. This defines a map $g_{*}: E\left(A, B_{1}\right) \rightarrow E\left(A, B_{2}\right)$. (Note that as $\not \subset$ is countably generated, the same holds for $\mathscr{E}\left(\otimes_{B_{1}} B_{2}\right)$.
(3) Both of these maps pass to the quotients $K K$ and $\widetilde{K K}$. We keep the notations f^{*}, g_{*} for these quotient homomorphisms.
(4) For a graded C^{*}-algebra D with a countable approximate unit one defines the map $\tau_{D}: \mathbb{E}(A, B) \rightarrow \mathbb{E}(A \widehat{\otimes} D, B \otimes \bar{\otimes} D)$ by putting $\tau_{D}(\mathscr{E}, F)=$ ($\mathscr{E} \otimes \bar{\otimes}, F \otimes 1$).
Again this map passes to the quotients $K K$ and $\widetilde{K K}$, and gives homomorphisms still called τ_{D}. One has obviously $[4$, Sect. 4, Theorem 3].

Proposition 6. The bifunctor $K K(A, B)$ is homotopy invariant in both entries.

The homotopy invariance theorem given here is in fact the equality $K K=\widetilde{K K}$.

Lemma 7. Let (\mathscr{E}, F) be a Kasparov A, B bimodule. Let $f: D_{1} \rightarrow D_{2}$ be a homomorphism of graded C^{*}-algebras.
(a) If D_{1} and D_{2} are unital, and $f(1)=1$, then

$$
f^{*}\left(\tau_{D_{2}}(\mathscr{E}, F)\right)=f_{*}\left(\tau_{D_{1}}(\mathscr{E}, F)\right)
$$

(b) In general, this equality holds in $K K\left(A \otimes D_{1}, B \otimes D_{2}\right)$.

Proof. (a) is obvious.
(b) Put $J=D_{1} \widetilde{\otimes}_{D_{1}} D_{2}$; it is the right ideal in D_{2} generated by $f\left(D_{1}\right)$. Then $f_{*}\left(\tau_{D_{1}}(\mathscr{E}, F)\right)=\left(\mathscr{E} \widehat{\otimes}_{C} J, F \widehat{\otimes} 1\right)$ and $f^{*}\left(\tau_{D_{2}}(\mathscr{E}, F)\right)=\left(\mathscr{E} \widehat{\otimes}_{C} D_{2}, F \widehat{\otimes} 1\right)$. Let \mathscr{E}^{\prime} be the $D_{1}, D_{2} \otimes C([0,1])$ bimodule $\mathscr{E}^{\prime} \subseteq D_{2} \otimes C([0,1])$, $\mathscr{C}^{\prime}=\left\{f:[0,1] \rightarrow D_{2} \mid f(1) \in J\right\}$. Then $\left(\mathscr{E} \widehat{\otimes}_{C} \mathscr{E}^{\prime}, F \widehat{\otimes} 1\right) \in\left(A \widehat{\otimes} D_{1}\right.$, $\left.B \bar{\otimes} D_{2} \otimes C([0,1])\right)$ realizes a homotopy between $f^{*}\left(\tau_{D_{2}}(\mathscr{E}, F)\right)$ and $f_{*}\left(\tau_{D_{1}}(\mathscr{E}, F)\right)$.

Definition 8 [2. Appendix, Definition A.1]. Let \mathscr{E}_{2} be a D, B bimodule. Let \mathscr{E}_{1} be a Hilbert D module. Put $\mathscr{E}-\mathscr{E}_{1} \widehat{\otimes}_{D} \mathscr{E}_{2}$. Let $F_{2} \in \mathscr{L}\left(\mathscr{E}_{2}\right)$. An element $F \in \mathscr{L}(\mathscr{E})$ is said to be an F_{2} connexion for \mathscr{E}_{1} iff $\forall \xi \in \mathscr{E}_{1}$,

$$
\left[\tilde{T}_{\xi}, F_{2} \oplus F\right] \in \mathscr{L}\left(\mathscr{E}_{2} \oplus \mathscr{E}\right), \quad \text { where } \quad \tilde{T}_{\xi}=\left[\begin{array}{cc}
0 & T_{\xi}^{*} \\
T_{\xi} & 0
\end{array}\right] \in \mathscr{L}\left(\mathscr{E}_{2} \oplus \mathscr{E}\right)
$$

$T_{\xi} \in \mathscr{L}\left(\mathscr{E}_{2}, \mathscr{E}\right)$ being defined by $T_{\xi}(\eta)=\xi \otimes \eta \in \mathscr{E}$.
Let us gather some easy results about connexions in
Proposition 9 [2, Appendix, Proposition A.2]. (a) If F_{2} satisfies
$\left|F_{2}, d\right| \in \mathscr{L}(\mathscr{E}), \forall d \in D$, then there exists an F_{2} connexion for any countably generated \mathscr{F}_{1}.
(b) If F is an F_{2} connexion, then $F^{*}\left(r e s p . F^{(0)}, F^{(1)}\right)$ is an F_{2}^{*} (resp. $\left.F_{2}^{(0)}, F_{2}^{(1)}\right)$ connexion.
(c) If F is an F_{2} connexion and F^{\prime} is an F_{2}^{\prime} connexion, then $F+F^{\prime}$ (resp. $F F^{\prime}$) is an $F_{2}+F_{2}^{\prime}$ (resp. $F_{2} \cdot F_{2}^{\prime}$) connexion.
(d) The space of 0 connexions for $\not \mathscr{F}_{1}$ is $\Omega=\{T \in \mathscr{L}(\mathscr{F}) \mid \forall x \in$ $\left.\not \mathscr{F}_{1}\left(\mathscr{H}_{1}\right) 1, T x \in \mathscr{F}(\mathscr{E}), x T \in \mathscr{F}(\mathscr{E})\right\}$.
(e) If F is an F_{2} connexion for some F_{2}, then $|F, x| \in \mathscr{F}^{\prime}(f)$. $\forall x \in \mathscr{F}\left(\mathcal{F}_{1}\right) \otimes 1$.
(f) If $\left[F_{2}, d\right]=0, \forall d \in D, 1 \otimes F_{2}$ makes sense in $\mathscr{L}(\mathscr{C})$, and $1 \otimes F_{2}$ is an F_{2} connexion. Moreover for any $T \in \mathscr{L}\left(\mathcal{C}_{1}\right),\left|T \otimes 1,1 \otimes F_{2}\right|=0$.
(g) If $F_{2} \in \mathscr{L}\left(\mathscr{F}_{2}\right)$ and $F \in \mathscr{L}(\mathscr{E})$ are normal and F is an $F_{\text {: }}$ connexion, $f(F)$ is an $f\left(F_{2}\right)$ connexion $(f: C \rightarrow$ continuous $)$.
(h) If $\left(\mathscr{E}_{2}, F_{2}\right)$ is a Kasparov D, B bimodule and f_{1} is countably generated, and if F is an F_{2} connexion of degree 1, then (\mathcal{F}, F) is a Kasparov $\not \approx\left(F_{1}\right) \otimes 1, B$ bimodule.
(i) Assume \mathscr{E}_{2} is a D, E bimodule and \mathscr{F}_{3} is an E, B bimodule. Let $\left.F \in \not \subset\left(\mathscr{F}_{1} \widehat{\otimes}_{D} \mathscr{F}_{2} \widetilde{\otimes}_{E} \mathscr{F}_{3}\right), F_{2} \in \mathscr{L}\left(\mathscr{E}_{2} \widehat{\otimes}_{E} \mathscr{E}_{3}\right), F_{3} \in \not \mathscr{L}_{3}\right)$.

If F_{2} is an F_{3} connexion for y_{2} and F is an F_{2} connexion for F_{1}, then F is an F_{3} connexion for $\mathscr{F}_{1} \widetilde{\otimes}_{D} \mathscr{F}_{2}$.

Recall that the proof of (a) is an easy consequence of the stabilization theorem 12 , Theorem 2]: If $\mathscr{E}_{1}=P \mathscr{H}_{\tilde{D}}$, where $P \in \mathscr{A}\left(\mathscr{H}_{\tilde{n}}\right)$ is a degree 0
 $\left.\left(P \widetilde{\otimes}_{D} 1\right)\left(1 \widetilde{\otimes}_{\otimes}\right), F_{2}\right)\left(P \widetilde{\otimes}_{D} 1\right)$ is an F_{2} connexion (the grassmann connexion). The other statements are obvious.

Definiliun 10 [2, Appendix, Theorem A.3]. Let A, B, D be graded C^{+}. algebras $\left(\mathcal{C}_{1}, F_{1}\right) \in \mathbb{E}(A, D),\left(\mathscr{C}_{2}, F_{2}\right) \in \mathbb{E}(D, B)$. Call \mathscr{f} the A, B bimodule $\mathscr{Z}_{1} \otimes_{D} \mathscr{C}_{2}$. The pair $(\mathscr{E}, F), F \in \mathscr{L}(\mathscr{E})$ is called a Kasparov product of $\left(\mathscr{E}, F_{1}\right)$ by (f_{2}, F_{2}) (one writes $F \in F_{1} \#_{D} F_{2}$) if and only if
(a) (f, F) is a Kasparov A, B bimodule (Definition 2(2)),
(b) F is an F_{2} connexion,
(c) $\forall a \in A, a\left|F_{1} \otimes 1, F\right| a^{*} \geqslant 0$ modulo $\not \mathscr{V}^{*}(\mathbb{*})$.

Note that $\mathscr{C}_{1}, \mathscr{F}_{2}$ being countably generated, \mathscr{E} is countably generated.
We will need
Lemma 11. Let \mathscr{E} be an A, B bimodule. Let $F, F^{\prime} \in \notin(\mathscr{E})$ be such that
$(\mathscr{E}, F) \in \mathbb{E}(A, B),\left(\mathscr{E}, F^{\prime}\right) \in \mathbb{E}(A, B)$, and $\forall a \in A, a\left[F, F^{\prime}\right] a^{*} \geqslant 0$ modulo $\mathscr{H}(\mathscr{E})$. Then (\mathscr{E}, F) and $\left(\mathscr{E}, F^{\prime}\right)$ are operatorially homotopic.

Proof. Let $O t$ be the subalgebra of $\mathscr{L}(\mathscr{E})$

$$
\mathscr{C}=\{T \in \mathscr{L}(\mathscr{E}) /[T, a] \in \mathscr{R}(\mathscr{E}), \forall a \in A\}
$$

and J be the ideal of $C t$

$$
J=\{T \in C T / T a \in \mathscr{K}(\mathscr{E}), \forall a \in A\} .
$$

Then $\left[F, F^{\prime}\right] \in C l$ and is positive modulo J. Write $\left[F, F^{\prime}\right]=P+K$, where $P \in O l, P \geqslant 0$, and $K \in J ; P$ and K being of degree 0 . Note that as $F^{2}-1$ and $F^{\prime 2}-1 \in J,[F, P]$ and $\left[F^{\prime}, P\right] \in J$. Put $F_{t}=(1+\cos t \cdot \sin t P)^{-1 / 2}$ $\left(\cos t F+\sin t F^{\prime}\right)(t \in[0, \Pi / 2])$. Then $F_{t} \in C t, F_{t}-F_{t}^{*} \in J$, and $F_{t}^{2}-1 \in J$. Hence (\mathscr{E}, F_{t}) realizes the desired operatorial homotopy.

Note that in the above proof it is enough to assume that $\left.\mid F, F^{\prime}\right] \geqslant \lambda$ modulo J, where $\lambda \in \mathbb{R}, \lambda>-2$.

Theorem 12 [4, Sect. 4, Theorem 4; 2, Theorem A.3]. Assume A is separable, $\left(\mathscr{E}_{1}, F_{1}\right)$ is a Kasparov A, D bimodule, $\left(\mathscr{E}_{2}, F_{2}\right)$ is a Kasparov D, B bimodule.
(a) There exists a Kasparov product (\mathscr{E}, F) of $\left(\mathscr{E}_{1}, F_{1}\right)$ by $\left(\mathscr{E}_{2}, F_{2}\right)$ unique up to operatorial homotopy.
(b) The map $\left(\mathscr{E}_{1}, F_{1}\right),\left(\mathscr{E}_{2}, F_{2}\right) \rightarrow(\mathscr{E}, F)$ passes to the quotients, and defines maps $K K(A, D) \otimes K K(D, B) \rightarrow K K(A, B) \quad$ and $\quad \widetilde{K K}(A, D) \otimes$ $\widetilde{K K}(D, B) \rightarrow \widetilde{K K}(A, B)$. The quotient maps are noted $\otimes_{D},(x, y) \rightarrow x \widehat{Q}_{D} y$.

Proof. (a) Existence. Let $G \in \mathscr{L}(\mathscr{E})$, of degree 1, be an F_{2} connexion (Proposition 9(a)). Put $E_{1}=\mathscr{H}\left(\mathscr{E}_{1}\right) \otimes 1+\mathscr{K}(\mathscr{E})$ and let E_{2} be the subalgebra of $\mathscr{L}(\mathscr{E})$ generated by $\left(G^{2}-1\right),[G, \underline{a}](a \in A), G-G^{*}$, $\left[G, F_{1} \widehat{\otimes} 1\right]$. Let \bar{F} be the vector space spaned by $F \bar{\otimes} 1, G, A$. One checks that Theorem 1 applies to give M and N such that,

$$
M+N=1, \quad M E_{1} \subset \mathscr{K}(\mathscr{E}), \quad N E_{2} \subset \mathscr{K}(\mathscr{E}), \quad[M, \mathscr{F}] \subset \mathscr{K}(\mathscr{E})
$$

Then put $F=M^{1 / 2}\left(F_{1} \ddot{\otimes} 1\right)+N^{1 / 2} G$. Then (\mathscr{E}, F) is obviously seen to be a Kasparov A, B bimodule. Note that M is a zero-connexion (Proposition 9(d)). As $\left[F_{1} \widehat{\otimes} 1, M\right] \in \mathscr{H}(\mathscr{E}), M^{1 / 2}\left(F_{1} \widehat{\otimes} 1\right)$ is also a zeroconnexion. And, hence (Proposition $9(\mathrm{c})$ and (g)) F is an F_{2} connexion. Finally $\left[F_{1} \bar{\otimes} 1, F\right]=M^{1 / 2}\left[F_{1} \widehat{\otimes} 1, \quad F_{1} \bar{\otimes} 1\right] \bmod \mathscr{K}(\mathscr{E}) \quad$ and hence $a\left[F_{1} \otimes 1, F \mid a^{*}=2 a M^{1 / 2}\left(F_{1}^{2} \widehat{\otimes} 1\right) a^{*} \quad \bmod \mathscr{K}(\mathscr{E})=2 a M^{1 / 2} a^{*} \bmod \mathscr{K}(\mathscr{E})\right.$. Thus $F \in F_{1} \#_{D} F_{2}$.

Uniqueness. Let $F, F^{\prime} \in F_{1} \not \#_{D} F_{2}$. Put $E_{1}=\mathscr{\not V}\left(\mathscr{E}_{1}\right) \otimes 1+\mathscr{K}(\mathscr{E}) . E_{2}=$ subalgebra generated by $\left[F_{1} \widehat{\otimes} 1, F\right],\left[F_{1} \widehat{\otimes} 1, F^{\prime}\right], F-F^{\prime}$. $=$ vector space generated by $A, F_{1} \otimes 1, F, F^{\prime}$. Then take M, N satisfying the conclusion of Theorem 1 and put $F^{\prime \prime}=M^{1 / 2}\left(F_{1} \otimes 1\right)+N^{1 / 2} F$. One has $\left(\mathscr{E}, F^{\prime \prime}\right) \in \mathbb{E}(A, B)$ and $\forall a \in A, a\left[F, F^{\prime \prime}\right] a^{*} \geqslant 0 \bmod \mathscr{R}(\mathscr{E})$ and $a\left|F^{\prime}, F^{\prime \prime}\right| a^{*} \geqslant 0 \bmod \neq \mathscr{K}(\mathscr{C})$. The conclusion follows by Lemma 11.
(b) Let $\left(\mathscr{F}_{1}, F_{1}\right) \in \mathbb{E}(A, D \otimes C([0,1]))$ be a homotopy. Let (\mathscr{E}, F) be a Kasparov product of $\left(\mathscr{E}_{1}, F_{1}\right)$ by $\tau_{(\{[0,1])}\left(\mathscr{E}_{2}, F_{2}\right)$. Then, (\mathscr{E}, F) realizes a homotopy between a Kasparov product of $\left(\mathscr{E}_{1}^{0}, F_{1}^{0}\right)$ by $\left(\mathscr{C}_{2}, F_{2}\right)$ and a Kasparov product of $\left(\mathscr{C}_{1}^{1}, F_{1}^{1}\right)$ by $\left(\mathscr{E}_{2}, F_{2}\right)$. In the same way, if $\left(\mathscr{C}_{2}, F_{2}\right) \in \mathbb{E}(D, B \otimes C([0,1]))$ is a homotopy, a Kasparov product of $\left(\mathscr{E}_{1}, F_{1}\right)$ by $\left(\mathscr{E}_{2}, F_{2}\right)$ realizes a homotopy between a Kasparov product of $\left(\mathscr{C}_{1}, F_{1}\right)$ by $\left(\mathscr{E}_{0}^{0}, F_{2}^{0}\right)$ and a Kasparov product of $\left(\mathscr{E}_{1}, F_{1}\right)$ by $\left(\mathscr{C}_{2}^{1}, F_{2}^{1}\right)$. This carries over the $K K$ case.

If $\left(\mathscr{C}_{1}, F_{1}\right)$ is degenerate, then $\left(\mathscr{E}, F_{1} \otimes \widehat{\otimes}\right) \in \mathscr{L}(A, B)$ and is operatorially homotopic to any Kasparov product of $\left(\mathscr{E}_{1}, F_{1}\right)$ by $\left(\mathscr{E}_{2}, F_{2}\right)$ by Lemma 11. If $\left(\mathscr{F}_{2}, F_{2}\right)$ is degenerate, then $1 \ddot{\otimes} F_{2}$ has an obvious meaning in $\mathcal{L}\left(\mathscr{F}_{1} \tilde{\otimes}_{n} \mathscr{C}_{2}\right)$. and satisfies the conditions to be a (degenerate) Kasparov product of $\left(F_{1}, F_{1}\right)$ by ($\left.F_{2}, F_{2}\right)$ (Proposition 9(f)).

Let $\left(\mathscr{F}_{i}, F_{i}^{t}\right)(t \in[0,1], i=1,2)$ be operatorial homotopies. Let G^{\prime}. $t \in|0,1|$, be a norm continuous family such that each G^{t} is an F_{2}^{t} connexion for \mathscr{F}_{1}. (Such a family exists; take, e.g., the "grassmann connexions" $G^{t}=\left(P \otimes_{D} 1\right)\left(1 \otimes_{C} F_{2}^{t}\right)\left(P \otimes_{D} 1\right)$ for some trivialization $\mathscr{C}_{1}=P \mathscr{A}_{D}$.) Put $E_{1}=\mathscr{H}(\mathscr{E}) \otimes 1+\mathscr{\not}(\mathscr{E})(\subseteq \mathscr{L}(\mathscr{E})) . \quad E_{2}=$ the C^{*}-algebra generated by $\left|G^{t}, A\right|,\left(G_{t}^{2}-1\right), G_{t}-G_{t}^{*},\left|F^{t} \otimes 1, G^{t}\right|, t \in|0.1|, F=$ the subspace generated by $A, F_{1}^{t} \otimes 1, G^{t}, t \in[0,1]$. One checks that Theorem 1 applies.

Let M, N satisfy the conclusions of this theorem. Then $\left({ }^{*}, M^{1 / 2}\left(F_{1}^{t} \otimes 1\right)+\right.$ $N^{1 / 2} G^{t}$) is the desired operatorial homotopy.

Proposition 13 (Functoriality of the Kasparov product). (a) If A, and A_{2} are separable, $f: A_{2} \rightarrow A_{1}$ is a homomorphism $x_{1} \in K K\left(A_{1}, D\right)$. $x_{2} \in K K(D, B)($ or KK $)$, then $f^{*}\left(x_{1}\right) \otimes_{D} x_{2}=f^{*}\left(x_{1} \otimes_{D} x_{2}\right)$.
(b) If $h: D_{1} \rightarrow D_{2} \quad$ is a homomorphsim $\quad x_{1} \in K K\left(A, D_{1}\right)$. $x_{2} \in K K\left(D_{2}, B\right)$ (or $\left.\widetilde{K K}\right)$, then $h_{*}\left(x_{1}\right) \otimes_{D_{2}} x_{2}=x_{1} \otimes_{D_{1}} h^{*}\left(x_{2}\right)$.
(c) If $g: B_{1} \rightarrow B_{2}$ is a homomorphism $x_{1} \in K K(A, D), x_{2} \in K K\left(D . B_{1}\right)$ (or $\widetilde{K K}$), then $g_{*}\left(x_{1} \otimes_{D} x_{2}\right)=x_{1} \otimes_{D} g_{*}\left(x_{2}\right)$.

Proof. (a) If $\left(\mathscr{E}_{1}, F_{1}\right) \in \mathbb{E}\left(A_{1}, D\right)$ and $\left(\mathscr{F}_{2}, F_{2}\right) \in \mathbb{E}(D, B)$, then one has $f^{*}\left(F_{1} \#_{D} F_{2}\right) \subset f^{*}\left(F_{1}\right) \not \#_{D} F_{2}$.
(b) If $\left(\mathscr{E}_{1}, F_{1}\right) \in \mathbb{E}\left(A, D_{1}\right), \quad\left(\mathscr{E}_{2}, F_{2}\right) \in \mathbb{E}\left(D_{2}, B\right), \quad$ then one has $h_{*}\left(F_{1}\right) \not \#_{D_{2}} F_{2}=F_{1} \#_{D_{1}} h^{*}\left(F_{2}\right)$.
(c) If $\left(\mathscr{E}_{1}, F_{1}\right) \in \mathbb{E}(A, D), \quad\left(\mathscr{E}_{2}, F_{2}\right) \in \mathbb{E}\left(D, B_{1}\right)$, then one has $g_{*}\left(F_{1} \#_{D} F_{2}\right) \subset F_{1} \#_{D} g_{*}\left(F_{2}\right)$.

Let A_{1}, A_{2} be separable. Let $x_{1} \in K K\left(A_{1}, B_{3} \otimes D\right)$ (resp. $\left.\widetilde{K K}\left(A_{1}, B_{1} \overparen{\otimes} D\right)\right) \quad$ and $\quad x_{2} \in K K\left(D \widetilde{\otimes} A_{2}, B_{2}\right) \quad$ (resp. $\widetilde{K K}\left(D \widehat{\otimes} A_{2}, B_{2}\right)$). Consider the product $\tau_{A_{2}}\left(x_{1}\right) \otimes_{B_{1} \otimes \ddot{\otimes} D \otimes_{\otimes} A_{2}} i^{*}\left(\tau_{\hat{B}_{1}}\left(x_{2}\right)\right)\left(i: B_{1} \rightarrow \tilde{B}_{1}\right.$ is inclusion). One sees that it gives in fact an element of $K K\left(A_{1} \bar{\otimes} A_{2}, B_{1} \widehat{\otimes} B_{2}\right)$ (resp. $\widetilde{K K}\left(A_{1} \widetilde{\otimes} A_{2}, B_{1} \otimes B_{2}\right)$). This, because, if (\mathscr{E}, F) is a Kasparov bimodule which defines this product, one has

$$
\forall \xi, \eta \in \mathscr{E}, \quad\langle\xi, \eta\rangle \in B_{1} \widehat{\otimes} B_{2} \subset \tilde{B}_{1} \widehat{\otimes} B_{2}
$$

Definition 15. The Kasparov product $x_{1} \otimes_{2} x_{2}$ is defined as the element of $K K\left(A_{1} \widehat{\otimes} A_{2}, B_{1} \otimes B_{2}\right) \quad$ (resp. $K K\left(A_{1} \widehat{\otimes} A_{2}, \quad B_{1} \widehat{\otimes} B_{2}\right)$) corresponding to the Kasparov product $\tau_{A_{1}}\left(x_{1}\right) \otimes_{B_{1} \otimes \boldsymbol{\otimes} D \mathcal{B}_{2}} i^{*}\left(\tau_{\tilde{B}_{1}}\left(x_{1}\right)\right)$.

Remark 16. (a) If B_{1} has a countable approximate unit, $\tau_{B_{1}}\left(x_{2}\right)$ makes sense and one has $x_{1} \otimes_{D} x_{2}=\tau_{A_{2}}\left(x_{1}\right) \otimes_{B_{1} \otimes \otimes \otimes A_{2}} \tau_{B_{1}}\left(x_{1}\right)$.
(b) More generally, one may take, instead of \tilde{B}_{1} any algebra with countable approximate unit in which B_{1} is an ideal. The result will not change.

Proposition 16 (Part of [4, Theorem 4.4]). The product $x_{1} \otimes_{D} x_{2}$ is bilinear, contravariantly functorial in A_{1}, and covariantly functorial in B_{1} and B_{2}. Moreover, it is contravariantly functorial in A_{2} in $K K$ and with respect to unital maps in $\widetilde{K K}$. If $h: D_{1} \rightarrow D_{2}, x_{1} \in K K\left(A_{1}, B_{1} \widehat{\otimes} D_{1}\right)$, $x_{2} \in K K\left(D_{2} \widetilde{\otimes} A_{2}, B_{2}\right) \quad$ (or in the corresponding $\left.K \widetilde{K K}\right) \quad h_{*}\left(x_{1}\right) \bigotimes_{D_{2}} x_{2}=$ $x_{2} \otimes_{D_{1}} h^{*}\left(x_{2}\right)$.

Proof. Follows obviously from Proposition 13. The A_{2} functoriality uses Lemma 7.

Let $1 \in \widetilde{K K}(\mathbb{C}, \mathbb{C})(=K K(\mathbb{C}, \mathbb{C}))$ be given by the \mathbb{C}, \mathbb{C} bimodule \mathbb{C}, trivially (zero) graded and the zero operator.

Proposition 17 [4, Sect. 4, Theorem 5]. Let A be separable, $x \in K K(A, B)$ or $\widetilde{K K}(A, B)$. Then $x \otimes_{\mathbb{C}} 1=x$. If A is unital, then $1 \otimes_{\mathbb{C}} x=x$. In general, this equality holds in $K K(A, B)$.

Proof. That $x \otimes_{C} 1=x$ is obvious. Assume A is unital. Let (\mathscr{E}, F) be a Kasparov A, B bimodule, and let $P \in \mathscr{L}(\mathscr{E})$ be the image of $1 \in A$. The product $1 \otimes_{\mathbb{C}}(\mathscr{E}, F)$ is given by $(P \mathscr{E}, P F P)$. But (\mathscr{E}, F) is operatorially homotopic to $(\mathscr{E}, P F P)=(P \mathscr{E}, P F P)+((1-P) \mathscr{E}, 0)$ (this last term being degenerate). Let $(\mathscr{E}, F) \in \mathbb{E}(A, B)(A$ non unital). One may extend the action on \mathscr{E} to \tilde{A} sending $l \in \tilde{A}$ to $1 \in \mathscr{L}(\mathscr{E})$. (This does not in general give a Kasparov \tilde{A}, B bimodule!)

Let \mathscr{E}^{\prime} be the $A, \tilde{A} \otimes C([0,1])$ bimodule, $\mathscr{E}^{\prime} \subseteq \tilde{A} \otimes C([0,1]), \quad \mathscr{E}^{\prime}=$ $\{f:[0,1] \rightarrow \tilde{A}, \quad f(1) \in A\}$. Put $\mathscr{E}=\mathscr{E}^{\prime} \otimes_{\tilde{A} \otimes C([0,1)}(\mathscr{E} \otimes C([0,1]))$. Let $\tilde{F} \in \mathscr{L}(\widetilde{\mathscr{E}})$ be an $F \otimes 1$ connexion for \mathscr{E}^{\prime}. Then $(\mathscr{C}, \tilde{F}) \in \mathbb{E}(A, B \otimes C([0,1 \mid))$ and $\left(\mathscr{F}^{1}, F^{1}\right)$ is a Kaparov product $1 \otimes \in(\mathscr{E}, F)$ and $\left(\mathscr{E}^{0}, F^{0}\right)$ is operatorially homotopic to (\mathscr{E}, F).

Now let $f_{t}: C([0,1]) \rightarrow \mathbb{C}$ be evaluation at time t.
Lemma 18. One has $f_{0}^{*}(1)=f_{1}^{*}(1)$ in $\widetilde{K K}(C([0,1]), \mathbb{C})$.
We do not want to get into the proof. It is a consequence of "homotopy invariance" in the abelian case, for the Ext functor [1, Theorem 2.14] see, also, $[4$, Sect. 6 , Theorem 1 , beginning of proof $]$.

Theorem 19 (Homotopy invariance [4, Sect. 6, Theorem 1]. Assume A is separable. Then, the map $\widetilde{K K}(A, B) \rightarrow K K(A, B)$ is an isomorphism.

Proof. Let $\left(\mathscr{E}^{t}, F^{t}\right) \in(A, B \otimes C([0,1]))$ be a homotopy. Let x be its class in $\widetilde{K K}(A, B \otimes C([0,1]))$. Let x_{t} be the class of $\left(\mathscr{E}^{t}, F^{t}\right)$ in $\widetilde{K K}(A, B)$. One has

$$
\begin{aligned}
x_{0} & =f_{0 *}(x)=f_{0 *}(x) \otimes_{C} 1 & & \text { (Proposition 17) } \\
& =x \otimes_{C([0,1])} f_{0}^{*}(1) & & \text { (Proposition 16) } \\
& =x \otimes_{C([0,1])} f_{1}^{*}(1) & & \text { (Lemma 18) } \\
& =x_{1} . & &
\end{aligned}
$$

Let us recall

Proposition 20 [4, Sect. 4, Theorem 4]. The Kasparov product satisfies the following commutation relations with the functor τ_{D} :
(a) $\tau_{D_{2}}\left(x_{1}\right) \otimes_{D_{1} \otimes \boldsymbol{\otimes} \mathscr{\otimes} D_{2}} \tau_{D_{1}}\left(x_{2}\right)=x_{1} \otimes_{D} x_{2} \quad\left(x \in K K\left(A_{1}, B \underset{\otimes}{\otimes} D_{1} \otimes D\right)\right.$, $y \in K K\left(D \otimes D_{2} A_{2}, B_{2}\right) ; A_{1}, A_{2}, D_{2}$ separable, D_{1} with countable approximate unit).
(b) $\tau_{D_{1}}\left(x_{1} \otimes_{D} x_{2}\right)=\tau_{D_{1}}\left(x_{1}\right) \otimes_{D \otimes D_{1}} \tau_{D_{1}}\left(x_{2}\right)\left(x_{1} \in K K\left(A_{1}, B_{1} \otimes D\right), x_{2} \in\right.$ $K K\left(D \otimes A_{2}, B_{2}\right) ; A_{1}, A_{2}, D_{1}$ separable $)$.

Proof. It follows from Definition 15 and Remark 16.
Let us now pass to associativity:

Theorem 21 (Part of $\left[4\right.$, Sect. 4, Theorem 4]. Let $A_{1}, A_{2}, A_{3}, D_{1}$ be separable and let $\left.\left.x_{1} \in K K\left(A_{1}, B_{1} \bar{x}\right) D_{1}\right), \quad x_{2} \in K K\left(D_{1} \widehat{\otimes} A_{2}, B_{2} \bar{x}\right) D_{2}\right)$. $x_{3} \in K K\left(D_{2} \otimes A_{3}, B_{3}\right)$. Then $\left(x_{1} \otimes_{D_{1}} x_{2}\right) \otimes_{D_{2}} x_{3}=x_{1} \otimes_{D_{1}}\left(x_{2} \otimes_{D_{2}} x_{3}\right)$.

Proof. Put $A=A_{1} \bar{\otimes} A_{2} \dddot{\otimes} A_{3}, D=B_{1} \widetilde{\otimes} D_{1} \widehat{\otimes} A_{2} \widehat{\otimes} A_{3}, E=B_{1} \dddot{\otimes} B_{2} \bar{\otimes}$ $D_{2} \ddot{\otimes} A_{3}, B=B_{1} \otimes B_{2} \otimes B_{3}$. Replace the x_{i} 's by Kasparov bimodules representing them. Let $i_{1}: B_{1} \rightarrow \widetilde{B}_{1}, i_{2}: B_{2} \rightarrow \widetilde{B}_{2}$ be the inclusions and put

$$
\begin{aligned}
& \left(\mathscr{E}_{1}, F_{1}\right)=\tau_{A_{2} \otimes A_{3}}\left(x_{1}\right) \in \mathbb{E}(A, D), \\
& \left(\mathscr{E}_{2}, F_{2}\right)=i_{1}^{*} \tau_{\tilde{B}_{1} \otimes A_{3}}\left(x_{2}\right) \in \mathbb{E}(D, E), \\
& \left(\mathscr{E}_{3}, F_{3}\right)=i_{2}^{*} \tau_{\tilde{B}_{1} \otimes \tilde{B}_{3}}\left(x_{3}\right) \in \mathbb{E}(E, B) .
\end{aligned}
$$

Due to Proposition 20, Theorem 21 is a consequence of

Lemma 22. Let A be separable $\left(\mathscr{E}_{1}, F_{1}\right) \in \mathbb{E}(A, D),\left(\mathscr{E}_{2}, F_{2}\right) \in \mathbb{E}(D, E)$, $\left(\mathscr{E}_{3}, F_{3}\right) \in \mathbb{E}(E, B)$. Take $G_{1} \in F_{1} \#_{D} F_{2}$ and $H \in G_{1} \#_{E} F_{3}$. Assume that $F_{2} \#_{E} F_{3}$ is nonempty and $G_{2} \in F_{2} \#_{E} F_{3}$. Take then $F \in F_{1} \#_{E} G_{2}$. Then $\left(\mathscr{E}_{1} \otimes_{D} \mathscr{E}_{2} \bar{\otimes}_{E} \mathscr{E}_{3}, F\right)$ and $\left(\mathscr{E}_{1} \bar{\otimes}_{D} \mathscr{E}_{2} \bar{\otimes}_{E} \mathscr{E}_{3}, H\right)$ are operatorially homotopic.

Notice that G_{1} and H are unique up to norm homotopy by Theorem 12, but G_{2} and hence F are not apriori unique. Notice also that for the proof of Theorem 21, we know that $F_{2} \#_{E} F_{3} \neq \varnothing$ because $\left(\mathscr{E}_{2}, F_{2}\right)$ and $\left(\mathscr{E}_{3}, F_{3}\right)$ are of the form $\tau_{B_{1}}$ of something, for which Theorem 12 applies.

Proof of Lemma. Put $\mathscr{E}_{1}^{\prime}=\mathscr{E}_{1} \bar{\otimes}_{D} \mathscr{E}_{2}, \mathscr{E}_{2}^{\prime}=\mathscr{E}_{2} \bar{\otimes}_{E} \mathscr{E}_{3}, \mathscr{E}=\mathscr{E}_{1} \bar{\otimes}_{D} \mathscr{E}_{2}^{\prime}=$ $\mathscr{E}_{1}^{\prime} \bar{\otimes}_{E} \mathscr{E}_{3}$. As G_{1} is an F_{2} connexion for \mathscr{E}_{1} and F is a G_{2} connexion, $\left[G_{1} \otimes 1, F\right]$ is an $\left[F_{2} \widehat{\otimes} 1, G_{2}\right]$ connexion for \mathscr{E}. To see this, write

$$
\tilde{F}=F \oplus G_{2} \in \mathscr{L}\left(\mathscr{E} \oplus \mathscr{E}_{2}^{\prime}\right), \quad \tilde{G}=G_{1} \oplus F_{2} \in \mathscr{L}\left(\mathscr{E}_{1}^{\prime} \oplus \mathscr{E}_{2}\right)
$$

Then $\forall \xi \in \mathscr{E}_{1},\left[[\tilde{F}, \tilde{G} \otimes 1], \tilde{T}_{\xi}\right]=\left[\widetilde{G} \otimes 1,\left[\tilde{F}, \tilde{T}_{\xi}\right]\right]-\left\lfloor\left[\tilde{T}_{\xi}, \tilde{G} \otimes 1\right], \tilde{F}\right]$. The first term belongs to $\mathscr{K}\left(\mathscr{E} \oplus \mathscr{E}_{2}^{\prime}\right)$ because F is a G_{2} connexion. Also $\left[\tilde{T}_{5}, \tilde{G} \otimes 1\right] \in \mathscr{E}\left(\mathscr{E}_{1}^{\prime} \oplus \mathscr{E}_{2}\right) \widehat{\otimes} 1$, and hence $\left[\left\{\tilde{T}_{5}, \widetilde{G} \widehat{\otimes} 1\right], \widetilde{F}\right] \in \mathscr{N}\left(\mathscr{E} \oplus \mathscr{E}_{2}^{\prime}\right)$ because \tilde{F} is an F_{3} connexion for ($\mathscr{E}_{1}^{\prime} \oplus \mathscr{E}_{2}$) (Proposition 9 (i) and (e)). Hence $\left[G_{1} \otimes 1, F\right]$ is a 0 connexion for \mathscr{E}_{1}^{\prime} (Proposition $9(\mathrm{i})$) and $\left[G_{1} \otimes 1, F\right]-$ $\operatorname{Re}\left[G_{1} \widehat{\otimes} 1, F\right]^{+}$is a 0 connexion for \mathscr{E}_{1} (Proposition $9(\mathrm{~g})$).

Put $\quad E_{1}=\mathscr{N}(\mathscr{E})+\mathscr{K}\left(\mathscr{E}_{1}\right) \widehat{\otimes}_{D} 1+\mathscr{H}\left(\mathscr{E}_{1}^{\prime}\right) \widehat{\otimes}_{E} 1 \subset \mathscr{L}(\mathscr{E}) . \quad E_{2}=$ subalgebra of $\mathscr{L}(\mathscr{E})$ generated by $\left(\left[G_{1} \widetilde{\otimes} 1, F\right]-\operatorname{Re}\left[G_{1} \stackrel{\widetilde{区}}{\widehat{\otimes}} 1, F\right]^{+}\right), \quad\left[F_{1} \widehat{区}_{D} 1, F\right]$. $\mathscr{F}=$ subspace of $\mathscr{L}(\mathscr{E})$ generated by $F, F_{1} \widehat{\otimes} 1, G \widehat{\otimes} 1, A$.

We may apply Theorem 1 . Let M, N satisfy the conclusions of Theorem 1 . Put $\quad F^{\prime}=M^{1 / 2}\left(F_{1} \times 1\right)+N^{1 / 2} F$. Then $\left(\mathscr{E}, F^{\prime}\right) \in \mathbb{E}(A, B)$ and $\forall a \in A$, $a\left[F, F^{\prime}\right] a^{*} \geqslant 0 \bmod \mathscr{K}(\mathscr{E})$. Hence (\mathscr{E}, F) and $\left(\mathscr{E}, F^{\prime}\right)$ are operatorially homotopic (Lemma 11). On the other hand, $\forall a \in A, a\left[F^{\prime}, G_{1} \otimes 1\right] a^{*} \geqslant 0$ $\bmod \mathscr{C}(\mathscr{E})$ and F^{\prime} is an F_{3} connexion for \mathscr{E}_{1}^{\prime}. Hence $F^{\prime} \in G_{1} \not \#_{D} F_{3}$.

Remark 23. Let $\left(\mathscr{E}_{1}, F_{1}\right) \in \mathbb{E}\left(A_{1}, B_{1}\right),\left(\mathscr{E}_{2}, F_{2}\right) \in \mathbb{E}\left(A_{2}, B_{2}\right)$, where A_{1}, A_{2} are separable. Let \mathscr{E} be the $A_{1} \widehat{\otimes} A_{2}, B_{1} \otimes B_{2}$ bimodule $\mathscr{E}_{1} \widehat{\otimes}_{C} \mathscr{E}_{2}$. Using [4, Sect. 3, Theorem 3], one finds $M, N \in \mathscr{L}(\mathscr{E})$ of degree $0, M \geqslant 0, N \geqslant 0$,
$M+N=1$, such that $M\left(\mathscr{K}\left(\mathscr{E}_{1}\right) \widehat{\otimes} 1\right) \subseteq \mathscr{F}(\mathscr{E}), N\left(1 \widehat{\otimes} \cdot \mathscr{H}\left(\mathscr{E}_{2}\right) \subseteq \cdot \mathscr{Z}(\mathscr{E})\right.$, and $\mid M, A] \subseteq \mathscr{H}(\mathscr{E}), \quad\left[M, F_{1} \widehat{\otimes} 1\right] \in \mathscr{K}(\mathscr{E}), \quad\left[M, 1 \widehat{\otimes} F_{2} \mid \in \mathscr{H}(\mathscr{E}) . \quad\right.$ Then $M^{1 / 2}\left(F_{1} \otimes 1\right)+N^{1 / 2}\left(1 \otimes F_{2}\right)$ is a Kasparov product of $\left(\mathscr{E}_{1}, F_{1}\right)$ by $\left(\mathscr{E}_{2}, F_{2}\right)$ and also a Kasparov product of $\left(\mathscr{E}_{2}, F_{2}\right)$ by $\left(\mathscr{F}_{1}, F_{1}\right)$.

References

1. L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of C^{*}-algebras and K homology, Ann. of Math. 105 (1977).
2. A. Connes and G. Skandalis, The longitudinal index theorem for foliations, preprint I.H.E.S.
3. G. G. Kasparov, Hilbert C^{*}-modules. Theorems of Stinespring and Voiculescu, J. Operator Theory, 4 (1) (1980).
4. G. G. Kasparov, Operator K functor and extensions of C^{*}-algebras, Izt. Akad. Nauk USSR Ser. Mat. 44 (1980), No. 3, 571-630. English translation Math. USSR Izz: 16 (1981), No. 3.
