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Abstract. Tt is proved, using Krieger’s theorem, that ITPFI’s of bounded type are
ITPFI,. This answers a question asked by E. J. Woods.

0. Introduction

The main result of this paper asserts that every infinite tensor product of factors of
type I (ITPFI) of bounded type is an ITPFI, factor (theorem 2.1). Its proof is based
on Krieger’s theorem ([12]).

The same ideas yield a sufficient condition for two ITPFI, factors to be isomorphic
(theorem 3.1). This comes from Kakutani’s criterion ([11]) for the equivalence of
infinite product measures, applied in the context of the Connes-Takesaki flow of
weights.

Theorem 3.1, in turn, allows us tc sharpen theorem 2.1: namely, given an ITPFI
factor of bounded type, we realize it explictly as an I'TPFI, in terms of eigenvalues
and multiplicities (corollary 3.6). Together with a partial converse (proposition 4.4),
theorem 3.1 gives also a rather surprising example (4.5).

In the proof of theorem 2.1, when Connes’ invariant T is {0}, we use the rather
easy proposition 1.1. In the appendix we indicate the construction of the fiow of
weights used in this text. Theorem 2.1 solves question 4 of [16] and theorem 3.1
may be used to give an answer to question 7 of [16] (corollary 3.7). Note, finally,
that theorem 2.1 admits a more elementary, but technical proof (remark 2.3).

We are very grateful to E. J. Woods who made this research possible by his kind
invitation at Queen’s University and also for many precious conversations and
careful reading of the manuscript. We would also like to thank him with all the
faculty and staff of the department of Mathematics and Statistics who contributed
to make our stay as pleasant as possible-particularly Prof. U. Fixman, P. Ribenboim,
E. Weimar-Woods, Dr. M. Khoshkam and also Z. Mansourati and J. Mina&.

The first author was financially supported in part by NSERC (Canada) and the
Swiss National Fund for Scientific Research; the second author by NSERC
(Canada). The authors wish to thank these institutions.

All the definitions and the notation can easily be found in the literature (for
instance in [15]). However, we shall recall those definitions which are frequently
used.
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Definitions (1) A factor M is called ITPFI if it is of the form

M= é (M,.(C), &)

acting on the Hilbert space ®i°=1 (Hy, &) where M, (C) denotes the algebra of
me X m matrices acting on the Hilbert space H,(n,=2) and ¢,(x) = (x&, &,

(2) If all the n, are bounded by a number n, M is said to be an ITPFI of bounded
type.

(3) If all the n, are equal to 2 (or to m) M is said to be an ITPFI, (or ITPFI,,).

Finally, if M is a factor, T(M) and S(M) denote Connes’ invariants T and S
([2, 8§ 1, 3]).

1. A technical result
Let M be an ITPFI factor of bounded type. In order to prove that M is an ITPFI,
factor, we use, if T(M)={0}, the following:

(1.1) ProposiTiON. Let M =), ., (M,,,+1(C), &) be an ITPFL,,.,, with S(M)c
{0, 1}. Then, for every positive number a, there exist sequences (Y )=, 0f states on
ry

M, (C) and (A,),=¢ of real numbers such that:

(1) the states R, .., P and X, ., Y. are weakly equivalent;

(i) the eigenvalues of ¥ are (1/ AL, my/Aks -+ s Miem/ Ak where ;€ {A,; p=0},
(Ake=1+Y, m;); and

(ili) Ao=1and e "<, <e ™ for p=1.

We write the eigenvalues of the state ¢, in the form (&o/ Ay, &1/ Ak - - - s Exm/ Ar),
where 1=§0= 6= = &m>0and Ap =% &
We need the following application of lemma 8.6 of [1].

(1.2) LeMMA. Let a be a positive real number. If there exist disjoint subsets Y, Z of
Nx{0,...,m} and a bijection a: Y > Z such that Z(,g,.)ey|§i‘,.—§§,(,m|2=oo and
[log (£acin/ &)< a, for all (k,i)e Y, then S(M)[e % 1) # D.

Proof. Write a(k, i)=(l.,ji.)- Replacing if necessary the pair {(k, i), a(k, i)} by
{a(k, i), (k, i)}, we may assume that for all (k,i)eY, L,=k Put B(ki)=
ki = el (ki) e Y.

If Ykievi, =k B(k, i) =00, then one may apply lemma 8.6 of [1] and get the
conclusion (putting Ki={&./Al(k, i)e Y and L, =k};¢i(&i/ Ax) = Eaqiin/ A if
&i/Ae Ki; Ki= ¢ (KL); note that A, =m+1).

So, replacing Y by {(k, i) e Y|l ;> k}, we may furthermore assume that } ;> k,
for all (k,i)e Y.

Let p: Nx{0,..., m}—>N be the projection, (p(k, i)=k). For ke p(Y), let i be
an element maximizing {8(k, i)|(k, i)€ Y}. We have

Y Bki)E=—— T Bk i)=+.

kep(Y) m+1 (ijey
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Replacing Y by {(k, it)|k € p(Y)}, we may now assume that the map p: Y >N is
one-to-one. Maximizing, for a given k, B8(a~'(k, j)), we may also suppose that the
map p: Z->N is one-to-one.

Let I: p(Y)- p(Z) be given by I(k) =1 ;. For ke p(Y), put

0 if ke p(Z),
max {ilke I'(p(Y))} if ke p(Z).

As I(k)>k, for all kep(Y), r(k)sk As ¥, .,y B(k i)=00, either
Yrkyeven B(K, i) =00 01 3, 1) 0qa Bk, it) = c0.

Assume, for instance, that ¥, . v, (k)even B(K i) = 0. Then, replacing Y by
{(k, i)|r(k) even}, the map p: Y U Z >N is one-to-one. Write

r(k)={

M =( ® (Mm+1, ¢k)) ®( ® (Mm+1®Mm+la ¢k®¢l(k)))

kep(YoLZ) (ki)eY
and apply lemma 8.6 of [1], (putting

Kl = {gk,igl(k),o} K2 = {fk,oga(k,i)}
' AkAI(k) ’ ' AkAl(k)

and recalling that & ,=1 for all k and that A, =m+1). ]

End of the proof of proposition 1.1. For p=0, let
E,={(k i)eNx{l,..., m}|&, (e PV e P ]}

We have, by lemma 1.2, ¥, ;) ¢ |€} ,—1]* < 0. Hence, for p #0, # E, is finite, where
# E, denotes the cardinality of E,.
Choose A, € (e ?*V% e7%?] such that

#{(k, i) € Ep|ée: <A} = #{(k, i) € Ej|éi; = A,}
and

#{(k i) € Epléci > A} = #{(k, i) € E,|éci = A},
Let F, and G, be disjoint sets with the same cardinality, such that

F,2{(k, i) e E,|&, <A}
and

G, 2{(k i) e E|&:> A}
and let a,: F, > G, be a bijection.

If (k, i) € F,, we have
lehi— &L ol =IAb— Ehi+ & o —ALP
2 A= &L+ & o — A

Therefore

DIRTS FEE SR D M I PR LA

(ki)eF, (ki)eE,

nup://journas.camoriage.org Downloaded: 28 Aug 2U15 IP address: 81.194.2/.158



http://journals.cambridge.org

568 T. Giordano and G. Skandalis

We get, using lemma 1.2,

O

YT I ldi-alP=y 3 |§%c,i—§§x,,(!gi)|2<°°-

p=1(ki)eE, p=1(ki)eF,
Put Ao=1. If (k,i)eE, peN, put n=A, As Z(,gi)650|§%g,-—1|2<oo, we get
Z(k,i)eEo "fig‘ 77%g.'|2<00- Put A} =Z:"=o Nk, is ("Iko= 1).
Note that if x and y are non-zero vectors of a normed vector space, then we have

x y L(nx—yll+ y(l_%))

Il il i)

Il Ayl
1
—m(llx—yll +Hyl ==l D

2
Smllx—ﬂi-

I =

Therefore,
< §_k,,»)* ("_k,f)i:_“_"' b _ A
Z, (Ak AL) | =h, B ek
=4 Z:Olg%gl_n%u'z
Hence
Cre A\ \}]2
£ 8-
oy 1 \Ag Al
This inequality gives ths weak equivalence of &),., ¢, and ®,.., ¥ O

2. Infinite tensor products of bounded type
In this section, we prove

(2.1) THEOREM. Every ITPFI factor of bounded type is (isomorphic to) an ITPFI,
Jactor.

This answers a question of E. J. Woods [16, 4 § 6]).

Up to isomorphism, there exists a unique ITPFI factor, in each of the cases I,
I1,, 1, and III,, A € (0, 1] and it can be realized as an ITPFI, ([1]). Therefore, the
only interesting case of theorem 2.1 is the type 111, case.

An ITPFI factor of bounded type is a finite tensor product of homogeneous ITPFI
factors.

We proceed by induction and show that every ITPFI,,,, factor M (m=1) is a
tensor product of an ITPFI,,,, factor by an ITPFI, factor.

Therefore, let M =), .., (M,,.o(C), ¢,) be an ITPFI,,,, factor of type 111, We
write the eigenvalues of the state ¢, in the form (& of/ Ak, &xi/Aw- -5 &m/ As
emer/ Ax) Where 1= £0= £, Z - Z £ = Exmer >0 and A =Y &

If T(M) # {0}, we might assume that all the &, are of the form A?, where A € (0, 1)
is such that 27/log A € T(M). In order to treat the case T(M)={0}, we use
proposition 1.1: we get a seque-ice (A,),-, of real numbers, with A, =1 and e P <
A, =e"?, for all p; we suppose that the & ;’s are chosen in the sequence (A,),=o.

http://iournals.cambridae.ora Downloaded: 28 Aua 2015 IP address: 81.194.27.158
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Gathering the terms which have the same eigenvalue list, we may write:

M=Q,, (M,.(C), $,,) "),

where p=(p,,...,Pm); (p, q) Tuns over all the (m+1)-tuples 0<p,<-.-<p, =<
and ¢, , is a state with eigenvalues (1/A, 4 Ap/Apg -+ s Ap, /Apg Ag/Apg)s Apg
A,+ A, where A, =1+Y A,

As M is of type III,, L, , <o for (p, q) # (0, 0). Sirce M is isomorphic to M®R
(R is the hyperfinite factor of type II,), we may assume that L,,=0.

For all (p, q) define integers K, , and J,, by

L

AL, L,,(1+A,)
o bl IR b

p.q

([

K

X

where if x e R, [x] denotes its integral part.

Let ¢, (resp. ¢;) be a state on M,,.,(C) (resp. M,(C)) with eigenvalues (1/A,,
A/ Ap ooy Ay [AL), (tesp. (1/1+4,), A,/(1+A,)). Set

N=Q,,(Myii(C), 6,)®5 @ (M(C), $) ).

We want to prove that M is isomorphic to N.

For all (p, q), consider the (probability) measures u,, and u,, on N™ XN given
by .

Lyg! . A’;’Vq

kYN (Lyq~IKl =)' Az’
where p, (k j)=0if |k|+j>L,, and k!=T]"-, k;!; |k|=3" ki Ak =TI, A%;

i=1
) K Jo! kA
;’,q(k’]) p.q pP"q

Mpq(k j) =

1
P9 °
KNK,,— k]! ji(Jpg—0)! Afra(1+A,)re’

with p) . (k j)=0if [k|> K, , or j> T, .

Let (Q, »), (resp. (£2,v")) be the product measure space ({}, ») =]'[(M) (N™ x N,
Hpq) (resp. (Q, v') =], ) (N" XN, u} ). Let B< Q, with »(B)#0 and »'(B) #0.

Let & be the equivalence relation on B XR given by: (x, )% (y, s) iff there exists
a finite subset E of indices (p, q) such that x,, =y, ,, for all (p, q)¢ E and

L Talxe)tt= X T o(hpa)+ts
(p.g)eE (p.9)€E
where T, (k,j)=—Y1", kilog A, —jlog A,, for (k,j)=(ky, ks, ..., km, j) €N™ XN.

The flow of weights of M (resp. N) is given by the action of R by translation on
(BXR, vxdx)/R (resp. (B XR, v'xdx)/R) (see appendix).

Using Krieger’s theorem ({12]) to prove the isomorphism between M and N, it
is enough to show that the measures » and v’ are not (mutually) singular (i.e.
equivalent on a subset B < (}). This is done using Kakutani’s criterion on infinite
product measures ([11, p. 453]) and the following lemma.

(2.2) LEMMA. Let 1=§,= §,= - - - =&, = A > 0 be real numbers and let L be a positive

integer. Let u and u' be the (probability) measures on N™ XN given by
, L! g\
'U'(k’J)_k!j!(L—lkl-—j)! AL’

(u(k,j)=0if [k|+j>L);

http://journals.cambridge.org Downloaded: 28 Aug 2015 IP address: 81.194.27.158
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K! J! £
KK - k) jUT-)! (A-10)KQa+r)”

(u'(k,j)=0 if |k|>K or j>J); where A=1+Y &+A, K=L—-[LA/A], J=
[L(1+A)/A), (£ =TI, £5). Then

plp,n)= Y plk)u'(kji=1-2a
(kj)

n'(k j)=

Proof. Let @ and a’ be the probability distributions of the random variable j, with
respect to w and u'. They are measures on N, given by

L' MA-A)Y
JUL=j) A"

a(j) ='§ nik,j) =
and
J! Yy
S =a+a”
Let 8; and B’ be the conditional probabilities of the random variable k, given j. (8’

does not depend on j, as the random variables j and k are independent for u'.)
They are measures on N™ given by

a'(j)=§ w'(k, j)=

(k, j) (L—j)! £
BUO="00) kUL kDI A=)
gy =2kl K ¢

a'(j) kMK -|kPHA-)X
We have:

=T a(a'() S BB (0}

7

=Y a(j)ta'(j) e (B, B

=p(a, a) = a(j)e’()(1-p(B, B)).
As 1-p(B, B')=0 and 3(a(j)+e'(j)) = a(j) a'(j)},
pp, 1) = pla, @) =3 (a(j)+a'(j))(1-p(B, B')). (1)

P, 1) =kZJ a(j)'B;(k)a’(j)B (k!

Therefore, we need only to estimate p(a, a') and the expectations with respect to

a and o' of 1—p(B; B').

(a) Computation of p(B;, B’). Let K,=inf (K, L—j) and K,=sup (K, L—j). If

K=L-j, put v,=8; and y,=8"; if K <L—j, put y, =" and v, = B; We get:
v2(k) _ KoUK, — k]! 1 B xﬁx, K +i
'Yl(k) Kl!(KZ_Ikl)! (A“)\)KZ_K‘ i=1 (Kl_,kl"'i)(/\’)‘).

Using the inequality log (a/b)=(a—b)/a, we get

g 220 SR kA = 0) (A=A - (K +i)

Y1(k) i=1 K, +i .

lo

httn-//iniirnale camhridne arn Nownlnaded: 98 Ann 2018 1P addrece R1 104 97 168
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Hence,

(7:(’6)) 1415 Ko |kl(A=2)—(A- A-D(K+iD)

(k) 2 lzl K, +i

Now, p(%1, ¥2) =Xy 11(K)(7(K)/ 11 (k)L As T, |klyi(k) = K; (A=A —1)/(A— 1), we
get
15-K (A-A—-1)i
p(7, 72)—1—5 El TRt
As for i= K,—-K,, i/(K,+i)=(K,—- K,)/ K,, we derive
(K,-K,)*

S =12 L (A-A-1
(1, v2) 2K, ( ).

(K - L+j)?

7K (A—A —1). Therefore

Hence, p(B,B8)=1-

L a()(1-p(B, BN =SS ali) ((-25) +<%+K—L>)2.

As the expectation E,(j) of j, with respect to a, is LA/A and its variance o2(j) is
LA(A—1)/A?, we get:
. A- LA(A=D) ( >2>
1- BN < +K-L
As E,(j)=AJ/1+A and a'f,'(j)=)‘.l/(1+)«)2, we get in the same way:
-A=1{ A AJ 2
1- = + +K~L .
As by the deﬁmtlon of K, L(A—A)/KA=1 and, by the definition of J, J/(1+A) =
L/A=K/(A-2A), we get:
(A—A ~1) LA(A—-X) AA-A—-1 A
- - -l —
2K

A2 T2 A T2
and

(A»/\~1> M A _A-A-1 A
2K (A+A2)*  2(A=A)(1+A) 2
If LA/A<1, then K=L and (AJ)>/(1+A)*<(AL/A)*=AL/A. If LA/A=1, then
0=(AL/A)+K—-L=K—-((L-(AL/A))<1, by the definition of K. Also, by the
definition of J, AJ/(1+A)=<AL/A(1+A)=<AL/A; thus,

AJ

—A AL
-l=—<—+K-L=s—+K-~-L<1.
1+a2 1+A A

In all cases,
AL AL AJ AL
—+K - =— —+K—-L) =—.
<A K L) A 2nd (1+A ) A
Hence, we get:
A—-Ar-—-1 LA A A-A-1 LA

X (@()+a ()1~ p(B, BN =s+E 2L E LA L By )

http://journals.cambridge.org Downloaded: 28 Aug 2015 IP address: 81.194.27.158
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(b) Computation of p(e, a').

a(j) _LWJI-)a+ry o (T T+ () (A-)t
()~ THL—jyaE AM ‘(.ﬂf—jﬂ) AL

Let e=E,(j)=JA/(1+A). Put

T J+i (1+A) (A=2)L~
Ve_(igxf—e+i) AL .
We have
a(j) (LI T—e+i o
a—f(j)“(i=,1_j+,.)(A A V.
As log (a/b)=(a—b)/a, we get
log ((J))>10gV+(e —j)log (A— A)+le_f—-e_-:
Hence,
@\ ;[ L ( s
(a,(j)) = Vi 1+3(e—j) log(A—)‘)‘ElJ—eH)]'
Therefore,

pla, o) = z("‘((’))) Gz,

as ¥, (e~ j)a'(j)=0.
Now,

Ve=
L-e J ico J—e+i A*

As log (J+1t)/(J—e+1t) is a decreasing function of t =0, we get

L J- e(L—H J+i )(1+A)’(A—A)L“e

L—J-1 +i L-J

Eo IOgJ—e+i2_L [log(J+1t)—log(J—e+1t)] dt
zLlogL-JlogJ—(L—e)log(L—e)})+(J—e)log(J—e).

Hence,

I-e L"J-0)"2 4+ (A=) J-e (X) (J=ey™
J (L e)L eJ.l AL J (L_e)(L—e)( ] )J

( L
J '< ) .( )y.

Now, by definition of e, J=(J—e)(1+A). Put e=(L(1+A)/A)—J; (we have

0=¢<1). We get
L L-e
(1+5) <1+f)
1 J 1 J
= . = ]

“T14+A <1+ eA )L‘°_1+,\ LA
(A—a)J (A=A)J

V.=

htto://iournals cambridae ora Downloaded: 28 Aun 2015 IP address 81 194 27 158
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But,
1+ E(1——’—\—)
J J A—A (L—e)eA
—e)log| — |=(L- =—
(L~e)log 1+ eA (L=e) 145 (e+JXA-A)
(A-A)J J
AA(L—e)e
2> ),
LA+A)A-A)
as L—e<L,e<land A=(1+A)(A—A). Hence,
1 2
V221+Aexp(—)«)>(1—)\).
Thus,
pla,a’)=Vi>1-2. (3)
By (1), (2) and (3), we get the result. O

End of the proof of theorem 2.1. For a given q, there are (g+m)!/qim!=(q+1)"
possible choices of (p, q). As ¥, A, =Y (g+1)"A,=}, (g+1)"e <0, we get
[li.q) P(#p.a» pg) # 0. By Kakutani’s criterion, ([11, pp. 453-455]), the product
measures v and v’ are not singular. The proof is now complete.

N.B. We actually used a straightforward consequence of Kakutani’s criterion: though
neither u,, nor w,, is absolutely continuous with respect to the other, as
H(p,q)p(pp’q, Hpq) #0, the product measures » and »' are not singular. (cf. [11,
remark 22.37, p. 455]. O

(2.3) Remark. We can prove theorem 2.1 in a more computational way but without
using Krieger’s theorem. We need (keeping the above notation) the following:

ProPoOsITION. There exist:

(i) projections P,, in A, , =(M,,.,(C))®%s and Q, in B, ;= (M, 41(C)®%a®
(M(C))®ra;

(ii) states x,, on matrix algebras C,, and integers r, 4, r} 4}
such that

(a) Hp,q ®,,(Pg)>0, Hp,q Vq(Qpq) >0, where @, = ¢(pa,;~"'q and ¥, =
(¢,°5) @ (¢ %7r);

(b) (Cpgr Xpg)®(M, (C),Tr) is isomorphic to (A, 4 ®,,) reduced by P,, and

p.q

(Cra Xp,q)®(M,;,'q(C), Tr) is isomorphic to (B, ,, 'V, ,), reduced by Q,,

Then, the projections P=&),, P,,€ M and Q=&),, Q,,€ N are non-zero, and
M,®R= N,o®R, where R denotes the hyperfinite factor of type II,.

As M is of type III, M and N are isomorphic. (M =Mp=Mp® R= N,® R = N).
Here Tr denotes the normalized trace on M, (C) (Tr(1)=1).

Let us now sketch the proof of the proposition. It is enough to show that P,, and
Q,,4 can be chosen, satisfying (b) and such that @, (P, ) =1 ~9A3 and ¥,4(Qpg) =
1-9A}; if A} =1 then take P,, and Q,, to be any rank one projections.

http://journals.cambridge.org Downloaded: 28 Aug 2015 IP address: 81.194.27.158
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We can now drop the indices (p, q). We keep the notation of lemma 2.2. Let
E ={(k,j); [log (u(k, j)/ n'(k, )| =2A%}. As

. i 2
%)(1_(::((’;]]))) ) p'(kj)=2(1—p(u, p'))=4x

and as for (k,j)¢ E,

Wi

A\D
‘(M(h])) _I.ZI_CXP_A,

n'(k, j)
we get that
4 1
p(E)=1-—————=1-5A
(1—exp (—23%))
In the same way
4
p.(E)zl——A—l—z —5A%.
(1-exp (—A3))?
Put
L! 4 m K! J!
T =Tkt TR TR TR 1T )
We have

We distinguish two cases:

(1) (0,0)e E. We have |log(m,/m},|<4A}, for (kj)eE Let g =
min (my ;, mj ;) and let Py ; (resp. Q,;) be a subprojection of dimension g, ; of the
projection on the eigenspace of @ (resp.¥), relative to ¢“A7/A" (resp.
EN/(A=-D)FA+2)). Set P=Y e Py and Q=% Q. We have
(Ap, ®p)=(Bg, ¥,) and

®(P)=exp (—4AY) - u(E)=exp (—4AH)(1-5A) =1-9A%
Also, ¥(Q)=1-9A%,
In this case, put r=r'=1 and (C, x) =(Ap, Pp).
(2) (0,0)¢ E. Note that if AL/A <1, then K =L and

BO0) (VAN (1-2)
°gu'(o,0)‘l° ( AL =Jlog (1+A)+ Llog{1-—).

As 0=<log (14A)~(A/(1+1)) = A%/(1+A) and =A%/ A(A—A)=<log (1—(A/A))+
A/A=0,

A LA? ©(0,0) JA +ﬂ

- =- =1
A-r AA-2) BL0,0) 1+A A

As 0= (LA/A)—(JA/(1+A))=(A/(A+ANI(LA+A)/A)=J]=A/{(1+1A), we get

10,0\ _
llog (———#,(O’ O)) <2A and (0,0)eE.
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Hence, in our case, AL/A=1and J =[L(1+A)/A]=L/A=A"". Moreoverif m} ;=1
and (k, j)#(0,0), then either K is equal to one of the k;’s or J=j. The p and
p’-measure of these points is very small. Therefore, we will neglect them. (One can
also show that these points do not belong to E).

Now, if m} ;> 1, then m; ;=J. Let r, €N be such that r’ is smaller than J} and
L_L(O’_(.)_) <=J}

r u(0,0)

Let g, ; = min ([m, ;/r], [m};/r']) and P, (resp. Q«; and R, ;) be a subprojection
of dimension rq,; (resp. r'qy; and g, ;) of the projection on the eigenspace of
® (resp. W), relative to £“A7/ A" (resp. £A//(A—A)(1+1)’). Put P=Y, ¢ P
Q=2 jjee Qs R=Z jjee Ri; and (C, x) =(Bg, ¥r). We have

(AP, ‘DP) = (C9 X)@(M,(C), Tr)

and
(BQ, \PQ) = (C9 X)®(Mr'(c)’ Tr)'
It is now not difficult to estimate ®(P) and ¥(Q). |

3. A sufficient condition for isomorphism of 1TPFI, factors

The main result of this section is theorem 3.1, which gives a sufficient condition for
two ITPFI, factors to be isomorphic. By theorem 2.1, any ITPFI factor M of
bounded type is isomorphic to some ITPFI, factor N. In corollary 3.6, we give such
an N explicitly (in terms of the eigenvalues and multiplicities for M).

(3.1) THEOREM. Let (¢,),=, be a sequence of states on M,(C) with eigenvalues
{1/(1+A,), A, /(A+A,)), 0<A,<1 and such that 3., A, <. Let L,, L, be two
sequences of integers. Let M and N be the ITPFI, factors:

M=® (MyC), $,)®" and N=@Q (MyC), ¢,)®""

n=1 n=1
Lete,=L,A,/(1+A,), e,,=L,A,./(1+1,), and d, be the closest integer to e/,— e, ; if
e, —e,=b+3 d,=b or d,=b+1 does not affect the convergence of the series (cf.

remark 3.4). If
1 _ - 2 2
s Gmesd) (4 )
n=1 e, te, e, e,

and M is purely infinite, then M and N are isomorphic.

To simplify the coming notation, it will be convenient to assume that L, =L, for
all n. (If not, put L, =sup (L,, L,). Let P be the corresponding ITPFI, factor and
compare M and N with P)

We will prove that M and N have the same flow of weights. Let M,=
R,y (My(C), ¢,)®%x. Let (f,),=1 be a sequence of integers and let u, be the
probability measure on Z, supported by {—f,,1—f,, ..., K,,—f,} and given by

K,! Ak
TRAK, - k) (1+ 1)K

pnlk— 1) for0sk=K,.
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(The f,’s will be used in lemma 3.3). Let (Q, u) be the product measure space
.-, (Z, n,) and let B< £ be a non-null set.

Let & be the equivalence relation on B XR given by (x, t)R(y, s) iff there exists
g €N such that x, = y,, for all n> g, and

- Z x,logA,+t=— Z yolog A, +s.

n=1

The flow of weights of M, is given by the action of R by translation on B xXR/R
(see appendix).

Using Kakutani’s criterion and lemma 3.3 below, we are going to show that M
and N have the same flow of weights. We first need the following:

(3.2) LEMMA. Let 0<A <1 be a real number and L= L' be positive integers. Let
e=LA/(1+A),e'=L'A/(1+ 1), dbe the closest integerto e’ ~eand 8 = e’ — e~ d. Set
A9 d | L-L-d L'~L

MN—— 1l IT (L+19).

A+M)F L Ueti iy L—e+iim

V>( e )* (_(1+A)82)
=\(+1)(e+d)) P e )

Proof. For t=0, put g(t)=log(L'—d+1t)/(e+t) and h(t)=log(L+1t)/(L—e+1)

d L'~-L-d
log V. =log ((#J)Jf X g+ Z h(i)

=Yg(d)—g(0)+h(L'~L—d)- h(0)+ X

Ltd p(i—1)+ h(i) A )
£ s (1)

e =

Then

2 gli=1)+g(i)
2

+
One has
(g(d)—g(0)+h(L'— L—d)—h(0)) =10g(

L e L'—d L—e)
et+d L'-d L'-e—-d L

_1 ( e L .L-—e>
TlO\e+d L—e-d L

_log< +d) —log (1+A).

Now, the functions g and h are convex, so that [g(i—1)+g(i)]/2={i_, g(¢) dt.
Therefore,

a g(i—1)+g(i)+”‘zL“' h(i—1)+h(i)

igl 2 i=1 2

d L'~L-d
ZJ g(t) dt+j h(t) dt
0 0

=L'logL —(e+d)log(etd)—(L'—d)log(L'—-d)+eloge
+(L'—d)log(L'~d)—(L'—e—d)log(L'—e—d)—Llog L
+(L—e)log(L—e).
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Hence

>( e )% L/L'ee(L_e)L—e Ad
TN+ (e+d)) LYe+d)* " (L'—e—d)" 7 (1+A)F T

L, E € ¢ L—e
(orris) (t52) (5) w0
(1+A)(e+d) (L) <e+d) (Lr_e_d)L'—e—d

1+A A

Noting that L/(1+A)=e/A =L—e, we get

L' \*
v 2( e )i (m)
(I+A)(e+d) (e)‘L/) (L'—e—d)t

() (o) (i)
“\(a+a)e+d)) \(1+r)(e+d) (1+A) (L -e—d) ’

But AL'/(1+A)=¢', L'/(1+ )= L' —¢'. Using the inequality, log (a/b)=(a—b)/a

we get:
e , L-¢ S(e+d) 86(L'—e—d)
(e+d)loge+d+(L e d)log(L,_e_d)Z o Lo
_6(e’—6)_8(L'—e’+6)
Y L'—¢
_ 8 8 (1+M)8
e Lr_er_ e .
Therefore,
) 2
e (1+A)8 )
Vz{——F—— ——. O
((1+A)(e+d)> e"p( ¢
(3.3) LEMMA. Let u and p’ be the (probability) measures on Z given by

L! AK
KNL—Kk)!'(1+A)*

(k)=

(u(k)=0 for k<0 or k> L) and

LI! Ak+d
(k+d){L ~k—-d)! 1+ A1)~
(n'(k)=0 for k<—d or k> L'—d). Then we have

n'(k) =

L A
Y= Ou')lz=1-2-————————
p(p, ') kgou( yu'(k) = 2T e de(erd) 62

Proof. For all k, 0= k= L, we have
n'(k) d g4 jl-L-d ] —e+i

}L(k)=ve ,l;llk+l ,‘l;ll L_k+l.
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Hence,
L'-L-d

d k—e e—k
—_ +__ —_
=log (V.) .»gllog(l e+i) z lo‘c"(HL +z)

i=1

w'(k)
w(k)

Using the inequalities log (1+x)=<x~x?/2+x3/3 and log (1+ x) < x we get:

log—~+

wk) 4 fe—k (e-k)?® (e—k)\ L-Ld k—e
log > (k) logv+z(e+z+2(e+i)2+3(e+i)3)+ L Toe+i
Now (u/(k)/ (k)= 1+ log (u'(K)/ w(k). As TE_o (e~ K)u(k) =0,
> LA e
Z (e= k) uk) = =1

and

LA(1—1) —e(1-2)
(1+A)*  (1+A)?

L
I (e=klutk)=-

(cf. [7]). We deduce

d e e(1-1)
=1+1log V,+1
plu,pw)=ltzlog Vets b o (e i 30+ 0) e+ 1)
+d (1+1)8* 1 de ed
1 +A _1 e _ +- _
alog (1+2)~3log— 2¢' 4(1+A)(e+d)’ 6
A d B 1 de 1 ae _d
T 4 de e 4(etd) 4(1+A)(e+d) 6€°
_ A 8 _detdy—e’) A d
I de(e+d)? 4 6e*
L A8 dQetd) d
T2 e 4e(e+d)® 6€°
A8 d’ d
>1-2-2_ £ ___ & u

End of the proof of theorem 3.1. Let L,, L,, A,, e,, e, d, be as in theorem 3.1 with
L,=L, Putd,=e,—e,—d, Let u, and u, be the probability measures correspond-
ing to L,, L), A, and d, as in lemma 3.3. Let » and v’ be the infinite product
measures on [[,., Z: v=Q),.; tn V' =&, -, un For all n, u, is absolutely con-
tinuous with respect to u,,. Let A={neN|d, #0}. If n€ A, e/, — e, <2d,. Therefore

’ 2
e,—e
¥ (—,"—-'1) <oo and i =1.
ncA en+en n—»ooe
neA

Changing finitely many L,’s, we may assume that for all ne€ A, e, = e¢,,/2. By lemma
3.3, we get

d? d
= plumpi)= L 2+ 35 24y — 2y 3 S
"22:1( p(“ # )) n‘él 2 n§1 e né:A 2€ (e,,+d ) nEA 683.
82 2d?
=¥y Ay Y 2+ Y Q4+

/2
n=1 2 n=1 en ncA €5 neA3
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By Kakutani’s criterion ([11, p. 453]) v is absolutely continuous with respect to »'.
By the above description of the flow of weights we deduce (using Krieger’s theorem
[12]) that M and N are isomorphic. (|
(3.4) Remark. Notice that the condition
(en—e—d,)’  d
a1 eLte, (el +e,)

can be replaced by the equivalent ones:
(i) There exists a sequence of integers (d}),= such that
(ehmea=di),  d7
n=1 e:,+e,, (e:l+en)

(ii)
(e;wen_dn)2 (ecl_en)2

Y + <00

e e +e, (e, +e'+1) )

From theorem 3.1, we immediately get:
(3.5) CoroLLARY. With the notation of theorem 3.1, if ¥, _ lel,—e,|/(e,+1) <0,
and M is purely infinite, then M and N are isomorphic.
Proof. As e;,—e,—d,<e,+e,
e:u €T dn ?
(——,e——)s lel — e, —d,|.
e,te,
As el —e,—d,|<3,
(e:I — €, — dn)2
e, +e,

e:l_en —dn|}

sinf{]eL,——e,,—d,,l,I 2o te)

- let, — e, <2|e£,— e,

“sup(l,e,)  e,+1

Moreover,
1 _ 2 1 _
(en—e)’ _len—enl
(e,+e",+1)* e,+1
We conclude the proof using remark 3.4 (ii). O

Let a be a positive real number and A, be a sequence of real numbers with e "% <
A, = e % For an integer k, let ¢y, be a state on M,(C) with eigenvalues (1/(1+ A),
A/(1+A)). Let m=1 be an integer and, for each multi-index p=(p,,..., Pm),
0sp,=p,=---=p, let ¢, be a state with eigenvalues (1/A,, A, /A, -, A, /Ap)
(A, =143, A,).

(3.6) CorOLLARY. Let L, be a sequence of integers indexed by the m-tuples p =
(Pry...,pm) WithO=p,<---=p. ForkeN, let

R, = [f 5 Lp(1+)\k):|'

=1k Ap
If M=Q,(M,,.,(C), $,)®% is of type 1ll,, then it is isomorphic to N =
Qi (M), ¢) O
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Proof. We prove corollary 3.6 by induction on m. If m =1 there is nothing to prove.
Let M =@, ) (Mpn12(C), ¢,,,q)®"m be an ITPFI,,,, , factor written as in the proof
of theorem 2.1. Let

Ml - ® [(Mm+1(C), ¢P)®K""’®(M2(C)a (bq)@]l’.q]

where Kpq= Lypq—[AqLyq/ Apgl, (Apqg=1 +Z:"=1 AptAg=A,+Ay), Jpa=
[((A+A0)/ Apg) Lyl
By the proof of theorem 2.1, M and M, are isomorphic. By induction, M, is
isomorphic to N, =), (M,(C), ¢;)®% where
m K, (1+A
S, = [ Z Z p'q( )

i=1 pgq Ap
pi=k

As K, /A =L, /A, g we have:
S,g[i 5 M]*"Z [Lp,k(1+1\k):|
p

] +z Jp,k'
4

i1 {(pap=k}  Apgq Api
o (K +m)!
T kimy
as
m L, (1+A L,,(1+A
sz[z Z p,q( k)_‘_z p,k( k)]
i=1 {(p.g)|pi=k} Ap,q P Ap.k
On the other hand,
m + L, (1+A
Sks[z Z Lp,q(l Ak)_‘_z: p,k(l k)].
iZ1 {(p,k)pi=k} A, P Apk
Note that for k= g we have
Apg - Apg—Ag+ )"‘s 1+ A
Ap,q —A, Ap,q —A,
Hence
S <(1+A ) (R +1).

We have /\k(Rk_Sk)S/\k(k'*'m)!/k'm! and (Sk_(Rk+1))/(Rk+1)</\k-
Therefore,

A(Re=S9)| _, (et m)!
MRe+1 |~ 7% kimt
so that
+00 —
Ak(lzk Sk) <+®,
k=1 AkRk+1
By corollary 3.5, N =®f=1 (My(C), $.)®R« is isomorphic to N,. O

Theorem 3.1 gives also a (negative) answer to problem 7 of [16, p. 37].

(3.7) CoroLLARY. Let L, be a sequence of integers and A, 0<<A <1, a real number.
Let ¢, be a state on M,(C) with eigenvalues {1/(1+A%), A*/(1+A1%)}. Let M be the
ITPFL factor: M =Q),., (My(C), ¢,)®™
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Then if M is not of type 1, there exists a sequence L), such that ¥, ., A*|Li — L;| = +c0
and M is isomorphic to the ITPFI, factor N =), ., (My(C), ¢;)®"

Proof. The factor M not being of type I, the sequence (L,A*) is not summable.
Therefore there exists a sequence (a;) € £,(N) such that ¥, ., (LA *Ya, = +00. Let

v=Le+{a(Lid %) 1 We have ¥, (L, — L, )A* =+00and ¥, A*(L,~ L,)*/ L, < +oo.
This implies, by remark 3.4(i), that M and N are isomorphic. O

4. An example
Theorem 3.1 does not admit a converse in general (for example, the Powers factors
of type 111, or the Araki & Woods type I1I, factor can be written in many completely
different ways).

However in some situations it does admit a converse (proposition 4.4). This yields
a quite surprising example (4.5).

Let L, be a sequence of positive integers and let A, be a sequence of positive
real numbers. Let u, be the measure on Z (supported by {0, ..., L,}) corresponding
to (L, A,) and let u =Q&),., pnn be the product measure on [],., Z.

(4.1) Definition. The sequence (L,, A,,) is said to satisfy condition C if there exists
£ >0 and sequences a,, b, of integers such that

(i) u({x=(x)p=1€1l,2, Zla,=x,=<b,, for all n=1})>0;

(ii) forall n=1, —logA,=¢ —Z',::, 2(b, —a,) log Ay

A much stronger condition was used by Araki & Woods to prove the existence of
type 111, factors ([1, § 10], cf. also [15]).

(4.2) Remark. Let a,, b, be as in definition 4.1 and let B={x¢€[],., Z|a, < x,=<b,}.
Using the description of the flow of weights given in the appendix, B XR maps onto
the flow space. Condition (ii) says that B X[0, ¢) maps injectively to the flow space.
In particular if 3, _, LA, = +00 the corresponding factor is of type I1I,.

(4.3) LEMMA. Let (L,, A,.), (L., A,,) satisfy condition C. Assume that the corresponding
factors are isomorphic.

Then, there exists a sequence of integers (cp)n=, Such that ¢, and u' are not
(mutually) singular, where ¢:1],.,Z~>11,.,Z is defined by ¢(x),=x,+c, (u and
w' denote the measures on [],., Z associated with (L,, A,) and (L, A,,), as above.)

n=1
Proof. Let a,, b,, a,, b, n (=inf (g, €')) be given by definition 4.1.

Let Bo=Il,.,{am-.., bn}, Bo=11,-,{an, ..., b.}. Let Ty: By~ B,, Ty: By~ By
be the odometers. Let x € B, and peN. Then (T} x), = x,, for n large enough. Let

g(xa P)= - z ((Tgx)n_xn) lOg An

n=1

and
E(x,p)=— ¥ ((Tfx),—x,)logr,  (x'€By).
n=1

As the corresponding factors are isomorphic, there exists an isomorphism between
their flows of weights.
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These flows are constructed over the base transformations ( By, u, Tg), ( Bo, 1, T)
with the ceiling functions £(x, 1) and ¢'(x’, 1). The isomorphism of the flows means
that there exist: non-null subsets B,, B; of B, and By; a measure-class preserving
isomorphism ¢: B, > B} intertwining the induced transformations T; and T;; a
measurable map a: B, ~ R such that if ¢ and £ are the induced ceiling functions
(&1(x) = £(x, m(x)) if Ty(x) = T™(x)),

&1((x)) = &(x) + a(Ty(x)) — a(x)
for almost all x.

There exists an interval I in R of length smaller than » such that u(a™'(I)) #0.
Let B=a " '(I), B'= ¢(B). Let T and T’ be the induced transformations in B and
B'.

For x€ B (resp. x'€ B’), let p(x) (resp. p'(x')) be the integer satisfying T(x) =
TE(x) (resp. T'(x')) = T >*(x")). Let q(x) be defined by T(x) = T¥*¥(x). Note
that T'(¢(x)) = ¢(T(x)) = T (¢ (x)).

Put £(x) = £(x, p(x)) = L2y ' &(Ti(x)); €(x") = £(x', p'(x')). Note that we still
have £(¢(x)) = £(x) + a(Tx) — a(x). (As £($(x)) = £(x) =TI~ (&(S(Ti(x))) -
£(Ti(x))) = a(Tx)—a(x).)

Now, for all x and p, x" and p’, we have
€(x, p) - €(x', )| = n=>&(x, p) = €'(x', p')
(condition C). We derive £'(¢x)) = £(x). Hence,
— 2 ((Tx)n—x,) log A, = —El ((T"$(x))n — ($(x))) log A,

nx=1l
By condition C, we get (Tx),—x, =(T'¢(x)), —(¢(x)), for all n, which means
(¢(x)), —x, =(6T(x)), —(TX),. By ergodicity of T, we get that (¢(x)),—x, is
essentially constant (equal to an integer c¢,) for all n. Moreover, ¢*p,| s and u'|p
are equivalent. Therefore, if we define ¢:[[,., Z~>1],., Z, by (¢(x)), =X, + c,, we
get that ¢, and u' are not singular. 0

The following proposition is a partial converse of theorem 3.1.

(4.4) ProrosiTION. Let (L, A,), (L), A,) satisfy condition C. If the corresponding
ITPF1, factors are isomorphic, then

', _ 2 2
Z (e’l e’l d’l) +( dn ) <w,

1 e +e, el +e,

where e, = L,A,/(1+A,), e,=L,A,./(1+A,) and d, is the closest integer to e, —e,.

Proof. By lemma 4.3, there exists a sequence (c,),-; of integers such that ¢,u and
u' are not singular.

Let (a,).=, be a sequence of real numbers such thaty, _ aZ(e,+elL)/(1+A,) <o
and a,(e,—e,—c,)=0. As we have o (x,)=e,/(1+A,) and o (x,)=e,/(1+],)
and using a theorem of Kolmogorov (cf. theorem B of §46 of [9]), we get:
¥ =1 An(x, —e€,) converges p-a.e., Y. .., a.(x,—c,—e,) converges ¢ u-ae., also
Yn=1 Au(x, —e),) converges u'-a.e.
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As ¢, and pu' are not singular, we get

Y a.(e,—c,~e,)<co.

n=1
If (e}, — e, — c,)/ (e, + e,) 2 £,(N), there exists a sequence (b, )=, € £2(N) such that
Y.y Iba(eh—e,—cy)|/ (el +e,) =0, Setting |a,|=|b,|/ (e, +e,)}, we get a contra-
diction. Therefore, (e, —e,—c,)/(eh+e,)el,(N) and Y, _ (e,—e,—d,)?/
(e, +e,) <00, where d, denotes the closest integer to e, — e,..‘
Put 8, =e), ~e,—c,, for all n=1. We have:

R ((x . 5,,)2) LA, (2L,,A,,+1 -4A,,+A%,>
ag n— €En T =
. 2 Q+A)0°\1+2a, 1+A,
LnAn(l - An) 83|Ln/\n

(1+1,)* (1+a,)?
=2é%+e,+2|6,|e,+ 82e,.

—28,

Also,
8 2
af,((x,, - e£,+—2"> ) =2e'?+ el +2|8,|e,+ 8%e,.

AsY.., 8%/(e,+e,) <+00, we may assume |5,|< (e, + e,)? for all n. We get

2 2
o ((xn—e,.-ﬂ) )+0'2'<(x —e, +§ )
» 2 M n nTh

<2(e,+e,)+e,+eh+2(e,+e)i+ (e, +e)?
=4(e, +e,)’+2(e, +eh)
=4(e,+el,+1)%

n=1

If ¥,..,(e.—el)’/(e,+e,+1) =00, there exists a sequence (b,),=, such that
Yoy bi<©, bn(e,~eh)=0 and ¥ _, b.(e,—e.)/(e,+e,+1)=00. Put a,=
b,/(e,+e,+1).
As T, an(oh (X — €, —[8,/21)*) + 05 ((x, — €, +[84/2])*)) <00, by a theorem

of Kolmogorov (cf. [9, § 46, theorem B]), we get

Z,.zl an((xn —€, (8n/2))2_ en/(l + An) - 53!/4)
converges p-a.e. Hence,

Znal an((xn - e:l+ (6,,/2))2— en/(l + An) - 83!/4)
converges ¢, pu-a.e. Also,

Tt n((Xn — €5 +(8,/2))* = €4/ (1+4,) — 82/4))
converges u'-a.e. As ¢,u and p' are not singular, we get

Yn=1 Anlen—e€n)/(1+2,) <o,

which contradicts our assumption } ., b,(e,—e,)/(e, + e, +1)=00.
The proposition now follows from remark 3.4. a

n=1
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(4.5) Example. Let A €(0,1). Put A, =A1%*"(k=1). Let

(e e )
Ak Ak /\k

One easily checks that the sequences (Ly, Ay), (L}, Ax), (L%, Ac) satisfy condition C
(taking a, =0, b, = k(k+1) and using Tchebyshev’s inequality).

Let M, N, P be the corresponding factors. Using theorem 3.1, we get that M and
P are isomorphic; using proposition 4.4, we get that M and N are not isomorphic.
Note that, for all k, L, < L; < L.

Using theorem 3.1, again we get that M@ M and N® N are isomorphic.

Let Ay =[(1+A;)/2A,] and let Q be the factor corresponding to (A, A,). We
have M ® Q (= N) is not isomorphic to M, though M ® Q® Q (= P) is isomorphic
to M.

Taking A, =[(1+A.)/gA.], where q is an integer, we get factors M and Q such
that M®Q®, j=0,...,q—1, are pairwise non-isomorphic but M® Q%7 is
isomorphic to M.

Appendix .

In §§2, 3 we use only a partial determination of the Connes-Takesaki flow of
weights. In order to make the exposition reasonably self-contained, we outline the
relevant aspects of this construction. In part (A) we set it in the general framework
of equivalence relations. In part (B) we specialize it to the ITPFI case. Finally in
parts (C) and (D) we indicate how this partial construction is used in §§ 3(C) and
2(D).

(A) Let &, be a type IlI discrete ergodic equivalence relation on the Lebesgue
measure space ({,, P). Let M = M(%,) be the corresponding factor.

By [5, theorem II 6.2] (cf. also [4], [8], [10], [13], [14]) the flow of weights of
M is given by the action of R by translation in , XR/ %R, (this quotient stands for
the ergodic decomposition) where ?/30 is the equivalence relation in (Qo xR, P xXm)
given by (x, t)jio(y, s) iff xR,y and s =1t—log 8(x, y) where 5(x, y) is the module
of P (cf. [4], [6, p. 434]) (m is a finite measure on R equivalent to the Lebesgue
measure). Note that as (Q,, P, %) is weakly equivalent to its restriction (A, P, Ry4)
for A< Q,, P(A)#0, the flow of weights may also be realized in A XR/Q}O,AXR.

This ergodic decomposition has explicitly been determined in some cases (cf. [3],
[10, § 1.6], it can also be obtained in § 4 of this paper). In general, however, it seems
to be a problem.

Let 95, be another equivalence relation, g:!,g Ro. The ergodic decomposition
(QOXR)/@() can be obtained in two steps, computing first (Y, u)=(Q xR, P X
m)/ 9~21 and then (Y, u)/ R where & is a discrete equivalence relation given below.
The interest of this construction is that, in the cases we are interested in, we are
able to compute both the quotient (Y, ) and the equivalence relation R.

The measure P Xm admits the disintegration Pxm =, v,du(y) where the v,
are pairwise singular %, -quasi-invariant and ergodic measures on () XR. Then R
is defined by any of the equivalent conditions:
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yjly’ iff (i) forall measurable subsets E, E' of Qg X Rsuchthatv,(E)#0,v,(E')#0
there exist xe€ E, x'e E’ with x?/iox’, or
(ii) there exists a partial borel transformation ¢ whose graph is contained
in the graph of %, such that v,(dom ¢)=1 and that ¢,(v,) and v,
are not singular.
If g"lo is defined by the countable set (g,).=, of transformations of (, xR, we also
have the condition
(iii) m,=Y,.,2 "g.«(v,) and m, =3} ., 27"g,.~(v,) are equivalent.
(To see the equivalence of (i), (ii) and (iii) note that m, and m, are ﬁo-quasi-
invariant and ergodic, hence either singular or equivalent).

(B) Inthe ITPFI case, (Qq, P) =[], .., (X,, P,) where (X,, P,) is a finite probability
space for all n. The equivalence relation R, is given by wR @’ iff w, =w,, for all
but finitely many n’s. There may be some multiplicity in the eigenvalues, which
means, in our setting, that there may be x, x'e X,, with P,(x)= P,(x") (x # x'). Let
&, be an equivalence relation in X, presérving P,(i.e. if x¥,x', P,(x) = P,(x")).

Let &, < R, be the equivalence relation given by oR 0’ iff ©R,0’ and for all n,
w,¥,w,. Let ji,g 9'.20 be given by (w, t)g:?,(w', s) iff R0’ and t=s.

Clearly Q, XR/ R, =0/ R, XR and (Q,, P)/ R, = 1,2, (X Pa)/ Fn).

Put (X, P}/ ¥.=(Q,, u,). Let R be the equivalence relation on ({,v)=
I1,., (., ) given by xRy iff there exists k such that x, =y,, n=k. Let 7: Q4> Q
be the projection. If xRy, let o, w' € ), be such that 7(w) =x, 7(w') =y and 0R,w'.
As ¥, preserves P,, we notice that

60((‘)’ wl) = anl Pn(wn)Pn(w’n)_l

does not depend on the choice of w, @'. Put 8(x, y) = §,(w, w'). Then R is given by
(x, )R (y, s) iff there exists k=1 such that x, =y,, n=k and s =t—log 5(x, y).

(C) In §3, we have (X, P,)=({0, 1}, a,)®%" where ,(0)=1/(1+A,), a,(1)=
A/ (U+AL) If x=(x1),-y, .k, € X, put k(x)=#{le{l,..., K,}; x;=1}. We have

)“;(X)
P.(x)=

(1+A,)%
The equivalence relation &, is here x¥,x’" iff k(x)=k(x'). The quotient of X, by
&, is {0, ..., K,} and the measure u, is given by
ua(k)= Y Pu(x)

x,kix)=k
Ak K,! Ak
A+1,)% (K, —k)k! (1+A,)%

=(#{x, k(x)=k}) -
It is also convenient in §3 to replace {0,...,K,} by {—f,1—f ..., K,—fu}

considered as a subset of Z. Note that if w, '€ Q=]],.,Z and if w®w’ then
8w, 0)=1l,., A4 7“0 (if wRew’, all but finitely many w, — o', are zero).
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(D) In §2, we have (X,,P,.)=(0,1,...,mm+1}, a,,)®%« where
a,(0)=1/Apq ap ()=A, /A, 1=i<m, and a, ,(m+1)=21,/A,, For xe X, ,,
i=1,...,m, put k(x)=#{le{l,...,L,,}; x;=i] and j(x)=#{le{l,...,L,.};
x;=m+1}. The equivalence ¥, is given by x¥, x" iff k;(x)= k,(x') for all i and
Jj(x)=j(x'). The quotient of (X, ,, P,,) by &,, is the space of (k, j) considered in
§ 2, namely X,,/%,,={(k j)eN"xN; |k|+j=<L,,}, and the quotient measure is
the measure u,, of § 2.
We also consider

(X;),qa P;,q) = ({0’ 1, crs m}’ Bp)®Kp'q X ({0’ l}a Yq)®lp'q
where B,(i) = A,/ Ap ¥,(0)=1/(1+24,), v,(1) =A,/(1+A,). An element x€ X}, is

p.

xe X, putk(x)=#{le{l,.... K, }iym=iland j(x)=#{le{l,..., ], }; z1=1}.

The equivalence relation &, , is given by x¥, .x' iff k;(x)=k(x') for all i and
j(x) =j(x'). The quotient of (X}, P} ) by ¥, is the space {(k, j) eN™ xN, |k| < K ,
Jj=J,,} and the measure u,, of § 2.
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