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Résumé. — Le « mapping class group » (ou groupe de difféotopie, ou groupe mo-
dulaire) d’une surface de genre g est le groupe de ses auto-difféomorphismes directs,
considérés à isotopie près. Ce groupe de présentation finie agit naturellement sur
des objets mathématiques attachés à la surface : espace de Teichmüller, espaces de
connexions plates, modules skein... Ces actions permettent de construire des repré-
sentations de dimension finie de ce groupe, appelées quantiques à cause de leur liens
avec la théorie quantique des champs et les invariants quantiques des nœuds. L’ex-
posé se propose de discuter quelques résultats récents concernant ces représentations,
notamment leur fidélité asymptotique (J.E.Andersen, Freedman-Walker-Wang).
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Introduction

This talk will be about quantum representations of mapping class groups. We will
describe the geometric approach through Hitchin’s connection and the combinatorial-
topological approach through the skein theory of the Kauffman bracket à la [BHMV].
The reader should beware that both on the geometric side and on the combinatorial-
topological side there are other approaches, which will be mentioned only briefly.
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2 GREGOR MASBAUM

Thus, this text is not meant to be a complete survey of the subject, and I apologize
in advance to those whose work should be mentioned but isn’t (1).

1. Basic notions and notation

Let Σ = Σg be a closed oriented surface of genus g. The mapping class group
of Σ is the group of isotopy classes of orientation preserving diffeomorphisms of Σ.
We will denote it by Γ = Γg. The name comes from the German Abbildungsklassen
for (isotopy) classes of mappings. Other names for this group include Teichmüller
modular group and homeotopy (or diffeotopy) group.

For example, in genus one, the mapping class group is simply the group SL(2,Z)
of two-by-two integer matrices with determinant one. Indeed, a genus one surface
is homeomorphic to a torus S1 × S1, which we can also think of as the quotient of
R2 by the lattice Z2. Any matrix in SL(2,Z) defines an orientation-preserving linear
automorphisms of R2 which preserves the lattice Z2. This gives a map from SL(2,Z)
to the mapping class group Γ1, which is an isomorphism.

Diffeomorphisms of surfaces may be induced by automorphisms of compact Rie-
mann surfaces (or smooth complex-algebraic curves). However, a given complex struc-
ture on Σ will have only finitely many automorphisms, and one of the rôles of the
mapping class group (which is an infinite group) in geometry is to relate the differ-
ent complex structures. The picture (which we will need later) is the following. Let
T = Tg be Teichmüller space, which we think of as the space of complex structures
on Σg . Here, two complex structures σ and σ′ are identified in Tg if σ′ = f∗(σ) for
some diffeomorphism f isotopic to the identity. Thus, the mapping class group acts
on Tg , and the stabilizer of a point σ ∈ Tg is precisely the automorphism group of the
complex curve (Σ, σ). Moreover, by Nielsen’s theorem, any f ∈ Γ of finite order has
a fixed point in Teichmüller space (in fact, f can be represented by an actual diffeo-
morphism of finite order, and this diffeomorphism fixes an actual complex structure,
i.e. not just up to isotopy).

The easiest examples of diffeomorphisms of infinite order are Dehn twists about
simple closed curves on the surface. Here, a simple closed curve γ on Σ is an (un-
parametrized) embedded circle. By definition, the Dehn twist tγ about γ is the
identity on Σ except in an annulus neighborhood of γ, where it can be described as
follows. Choose polar coordinates (r, θ) in this neighborhood so that γ corresponds
the locus where r = 1, and the angle θ varies between 0 and 2π. Then the map sends
(r, θ) to (r, θ+ ϕ(r)) where ϕ is a smooth increasing (i.e., ϕ′ ≥ 0) function such that
ϕ(r) = 0 for r ≤ 1 − ε, and ϕ(r) = 2π for r ≥ 1 + ε, for some small ε > 0. Note
that this definition does not require an orientation of the curve γ, but does require
an orientation of the surface (the identification of the neighborhood of γ with the
standard annulus with coordinates (r, θ) should preserve the orientation). Note also
that tγ only depends on the isotopy class of γ.

(1)In order to keep the list of references within reasonable length, we will also not give explicit
bibliographic references for results about the mapping class group which are in some sense “classical”;
for those the reader is referred to existing surveys such as for example Ivanov’s paper [Iv].
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QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS 3

Dehn twists are important because, by the theorem of Dehn and Lickorish, the
mapping class group is generated by Dehn twists, in fact, by a finite number of such.
Moreover, Γ has a finite presentation due to Wajnryb based on previous work of
Hatcher and Thurston.

A good way to study a mapping class f ∈ Γ is to look at its action on simple closed
curves. In fact, mapping classes on closed surfaces are determined by their action on
isotopy classes of unoriented simple closed curves, except in genus one and two. Since
we will need this fact later, we shall briefly sketch the argument. For every f ∈ Γ and
every simple closed curve γ, one has the fundamental relation

(1) ftγf
−1 = tγ′

where γ′ = f(γ). Thus, if f acts trivially on the set of (isotopy classes of) unoriented
simple closed curves, then f commutes with every Dehn twist, and must therefore be
central in the mapping class group. But the center of Γg is trivial, except in genus
one and two, where the center is Z/2, generated by the hyperelliptic involution. (This
is an involution with 2g+ 2 fixed points on Σg such that the quotient is a sphere S2.
In genus one and two, it is unique up to isotopy.) This shows that mapping classes
on closed surfaces are indeed determined by their action on simple closed curves if
the genus is at least three, and determined up to multiplication by the hyperelliptic
involution if the genus is one or two.

One may also look at how a mapping class f acts on the fundamental group π1 =
π1(Σg). Recall that this group is generated by 2g generators α1, β1, α2, . . . , βg with
one relation

α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g = 1.

Elements of π1(Σg) are homotopy classes of loops on Σ, where all loops have to start
and end at a given base point. Since a diffeomorphism f need not respect this base
point, one gets in this way only an outer automorphism of π1, that is, an element
of Out(π1) = Aut(π1)/Inn(π1), where Inn(π1) stands for the inner automorphisms
(i.e. conjugations). The Baer-Nielsen theorem states that this gives an isomorphism

Γg
≈−→ Out+(π1(Σg))

(where the superscript + indicates automorphisms which preserve orientation in an
appropriate sense). This result was used by Grossman [Gr] to show that the mapping
class group is residually finite.

Let us now look at linear representations of the mapping class group. The first ex-
ample is, of course, the action on the homology of the surface. Recall thatH1(Σg ;Z) '
Z2g comes equipped with a skew-symmetric non-degenerate bilinear form, the inter-
section form. In terms of generators ai, bj corresponding to the generators αi, βj of
the fundamental group, the intersection form is given by

ai · bj = −bj · ai = δij ,

(all other intersections are zero). This form is preserved by the mapping class group,
and so one gets a homomorphism

(2) Γg → Aut(H1(Σg ;Z), ·) = Sp(2g,Z).
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4 GREGOR MASBAUM

This map is moreover surjective because the symplectic group Sp(2g,Z) is generated
by transvections which can be realized by Dehn twists.

In genus one, this is just the isomorphism Γ1
≈−→SL(2,Z). But in higher genus, the

map (2) is not injective. The kernel is called the Torelli group Tg. For example, a Dehn
twist about a separating (hence null-homologous) curve acts trivially in homology and
therefore lies in the Torelli group. Much of what we know about this group is due to
Johnson. For example, he defined the so-called Johnson homomorphism from Tg to
Λ3H1(Σg ;Z). He also defined higher homomorphisms, each one being defined on the
kernel of the preceding one. For more information on the Torelli group, see his survey
paper [J].

2. Geometric quantization

There are various approaches to quantum representations of mapping class groups.
In some sense, they are all quantizations of the natural action of Γ = Γg on the space
of representations of the fundamental group π1(Σ) into a Lie group G. First, let us
describe the geometric approach, which fits into the general framework of geometric
quantization. For simplicity, assume G = SU(2).

The space

M ′ = Hom(π1(Σ), G)irr/G

of irreducible representations up to conjugation is in a natural way a smooth symplec-
tic manifold of dimension 6g − 6. The symplectic form can be described as follows.
A point in M ′ may be represented by an irreducible flat connection A on the trivial
G = SU(2)-bundle P = Σ×G. Then the tangent space to M ′ at this point is

T[A]M
′ = H1(Σg ; dA),

where dA is the induced covariant derivative in the associated adjoint bundle adP .
The symplectic form ω is given by

ω(α1, α2) = −
∫

Σ

Tr(α1 ∧ α2),

where α1, α2 are dA-closed 1-forms with values in adP . If the trace is appropriately
normalized, then the symplectic form ω is the curvature form of a connection on a
complex line bundle L over M ′, whose first Chern class is

c1(L) =
[ω]

2π
.

Now pick a complex structure σ on Σ. This induces on M ′ the structure of a
complex manifold which we will denote byM ′σ . In fact, by the theorem of Narasimhan
and Seshadri, M ′σ is the moduli space of stable holomorphic rank two bundles with
trivial determinant over the Riemann surface (or algebraic curve) (Σ, σ). By the
theorem of Drézet and Narasimhan, the Picard group of M ′σ is isomorphic to Z,
generated by a (holomorphic) line bundle Lσ , whose underlying C∞ bundle is just
the line bundle L. Note that multiplying the symplectic form by a positive integer k
called the level, just amounts to replacing Lσ by its k-th tensor power L⊗kσ .
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QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS 5

We define Zk(Σ, σ) to be the space of (holomorphic) sections of L⊗kσ :

Zk(Σ, σ) = H0(M ′σ,L⊗kσ ).

These sections are sometimes referred to as non-abelian theta functions. They form
a finite-dimensional vector space whose dimension is given by the famous Verlinde
formula

dg(k) =

(
k + 2

2

)g−1 k+1∑

j=1

(
sin

πj

k + 2

)2−2g

.

This is a non-trivial result and the proof of this formula (and of similar formulas for
other Lie groups) has involved many famous people; see Sorger’s Bourbaki talk [S]
for more about this.

Note that the dimension is independent of the complex structure σ which we needed
to choose in order to define Zk(Σ, σ). In fact, as σ varies in Teichmüller space Tg ,
the vector spaces Zk(Σ, σ) fit together to form a vector bundle Zk(Σ) which will be
called the Verlinde bundle over Teichmüller space.

If f is a diffeomorphism of Σ fixing the complex structure σ, one may study its
induced action on Zk(Σ, σ) purely with algebro-geometric means (see [A1]). But
such diffeomorphisms are necessarily of finite order. To get a representation of the
full mapping class group, we need a way to compare Zk(Σ, σ) and Zk(Σ, f∗(σ)). This
is achieved by a projectively flat connection on the Verlinde bundle Zk. Its existence
was proved by Axelrod, della Pietra, and Witten [ADW] and Hitchin [H]. Integrating
the connection along a path in Teichmüller space between two points σ1 and σ2 gives
a linear isomorphism called parallel transport

Pσ1,σ2 : Zk(Σ, σ1)
≈−→ Zk(Σ, σ2).

Projective flatness of the connection means that up to multiplication by a non-zero
scalar factor, the parallel transport map Pσ1,σ2 is independent of the choice of the
path (we are using here that Teichmüller space is contractible). A more invariant
way of saying this is that the fibers of the projectified bundle PZk(Σ) are canonically
identified; in fact, each fiber is identified with the space of covariant constant sections
of PZk(Σ). Let us denote this space by PZk(Σ).

Thus we get a projective representation

ρk : Γ → Aut(PZk(Σ)) ;

the latter group is, of course, isomorphic to the projective-linear group PGL(dg(k),C).
Concretely, if we identify PZk(Σ) with PZk(Σ, σ) for some σ ∈ T , then a mapping
class f is represented by the natural map f ∗ followed by parallel transport back to
the fiber over σ:

ρk(f) = Pf∗(σ),σ ◦ f∗.
Thus, the“ideology”of geometric quantization has succeeded: The symplectic man-

ifold M ′ with its natural action of the mapping class group has been “quantized” to a
series of vector spaces Zk(Σ, σ) which depend on additional structure (the choice of
the complex structure σ); however, the associated projective spaces are independent
of the additional structure, and carry a (projective) action of the mapping class group.
Of course, the key point in this construction is the projectively flat connection on the
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6 GREGOR MASBAUM

Verlinde bundle Zk. Another approach to this is the construction of Tsuchiya, Ueno,
and Yamada [TUY] of a connection on the bundle of conformal blocks in the WZW
(Wess-Zumino-Witten) model (we again refer to [S] for more about this). Laszlo [La]
has shown that this WZW connection does indeed coincide with Hitchin’s connection.

3. The skein-theoretical approach

Recall that a knot (resp. a link) in a 3-manifold is an embedded circle (resp. a
collection of disjointly embedded circles). Beginning with the Jones polynomial of
links in the 3-sphere, it has proved useful to consider skein modules, i.e. modules
generated by linear combinations of (isotopy classes of) links in the given manifold,
modulo so-called skein relations, of which there are various types. We will use the
Kauffman bracket relations (see Figure 1). They are a convenient variant of the skein
relations for the Jones polynomial; however, one must actually consider banded (or
ribbon) links, i.e. collections of disjointly embedded annuli S1 × [0, 1]. We denote the
Kauffman bracket skein module of a 3-manifold N by K(N). It is a module over the
ring of Laurent polynomials Z[A,A−1]. For a complex number ξ ∈ C×, we denote by
Kξ(N) the vector space obtained from K(N) by extending coefficients via the ring
homomorphism Z[A,A−1]→ C, A 7→ ξ.

= A + A−1 , = −A2 −A−2

Figure 1. The Kauffman bracket relations.

Let us now look at the case where the 3-manifold is the product of a surface Σ
by an interval [0, 1]. The skein module Kξ(Σ × [0, 1]) is naturally an algebra, the
product being given by stacking one link on top of the other. If ξ = ±1, this product
is commutative, but in general it is non-commutative (if the genus is at least one).
Thus we may think of Kξ(Σ × [0, 1]) as a deformation of the commutative algebra
K−1(Σ× [0, 1]).

Every diffeomorphism of Σ extends canonically to a diffeomorphism of Σ × [0, 1].
Thus the mapping class group Γ acts on links in Σ× [0, 1]. Skein relations are “local”,
so this induces an action of Γ on the skein algebras Kξ(Σ× [0, 1]). These are infinite-
dimensional as vector spaces, and hence not yet the quantum representations we seek.
But they can be used to construct those finite-dimensional representations, as we will
see.

Before that, let us make a brief digression to remark that the above is closely related
to “deformation quantization” of the action of Γ on the SU(2)-representation variety
M ′ considered in the previous section, except that one should replace the latter by
the SL(2,C)-character variety, MC. Note that every simple closed curve γ on Σ (or,
more generally, a knot in Σ× [0, 1]), gives rise to a holonomy function

hγ : MC → C,
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QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS 7

which associates to a representation ρ : π1(Σ)→ SL(2,C) the trace of the holonomy of
ρ along γ. (A matrix in SL(2,C) and its inverse matrix have the same trace; therefore
the trace of the holonomy does not depend on an orientation of γ.) The point is
that the coordinate ring of the SL(2,C)-character variety MC is naturally isomorphic
to the skein algebra K−1(Σ × [0, 1]) (see [PS] and references therein). Under this
isomorphism, the holonomy function hγ (which is an element of the coordinate ring
of MC) corresponds to the curve γ × 1

2 viewed as a knot in Σ × [0, 1] and hence as
an element of the skein module. This is based on the fact (first observed by Bullock
[Bu]) that the Kauffman bracket skein relation for A = −1 is very similar to the
well-known equality

Tr(A) Tr(B) = Tr(AB) + Tr(AB−1),

for any two matrices A,B ∈ SL(2,C). Thus, roughly speaking, the skein algebra
Kξ(Σ× [0, 1]) may be viewed as a non-commutative deformation of the representation
variety, and, moreover, in a Γ-equivariant way. (There is a lot more one should say
about this topic, but we will end our digression here.)

Skein modules were used in [BHMV] to construct finite-dimensional representa-
tions Vk(Σ) of the mapping class group which should correspond, in some sense, to
the representations Zk(Σ) discussed in the preceding section. This construction is
equivalent to (but logically independent from) Reshetikhin and Turaev’s construction
using representations of the quantum group Uqsl(2) at roots of unity [RT]. As be-
fore, only the projective space PVk(Σ) is canonically associated to the surface. The
minimal amount of extra structure needed to get a well-defined vector space (and

a well-defined representation of a certain central extension, Γ̃, of the mapping class
group Γ on it), is a so-called p1-structure on the surface (see [BHMV]). Another
approach put forward by Walker and Turaev (see [T]) is to fix a lagrangian subspace
in the first homology of the surface. These things are necessary to construct properly
a Topological Quantum Field Theory (TQFT).

The connection with TQFT’s is, of course, an important aspect of quantum rep-
resentations of mapping class groups. Indeed, historically they were initiated by
Witten’s paper [W], where he “explained” the Jones polynomial of knots from the
point of view of Quantum Field Theory. For the connection with Conformal Field
Theory, see also Kohno [Ko]. But we will not go into this here. Let us just mention
that a TQFT contains topological invariants of 3-manifolds called quantum invari-
ants. In particular, it associates a vector in Vk(Σ) to every “extended” 3-manifold N
with boundary ∂N = Σ. (Here, “extended” means that N must also be equipped with
an appropriate extra structure.)

Let us now describe the projective representation of the mapping class group. We
follow Roberts [Ro], who has found a simple way to construct it from the natural
action of Γ on the skein algebra Kξ(Σ × [0, 1]). Here, and from now on, ξ is a
primitive root of unity of order 4k + 8. Embed the surface Σ into the 3-sphere so
that its complement consists of two handlebodies H and H ′:

H ∪Σ H
′ = S3.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003



8 GREGOR MASBAUM

The skein module Kξ(S3) is naturally isomorphic to C, so this gives a symmetric
bilinear form

(3) 〈 , 〉 : Kξ(H)×Kξ(H ′) → Kξ(S3) = C

defined as follows: If x ∈ Kξ(H) is represented by a link L in H , and x′ ∈ Kξ(H ′) by
a link L′ in H ′, then 〈x, x′〉 is simply given by the union L ∪ L′ viewed as a link in
S3. Let Vk (resp. V ′k) be the quotient of Kξ(H) (resp. Kξ(H ′)) by the left (resp. right)
kernel of this form, so that we have a non-degenerate pairing

(4) Vk × V ′k → C.

which we denote again by 〈 , 〉. It turns out [BHMV, Li] that Vk (and hence also
V ′k) is a finite-dimensional vector space, of dimension given by the Verlinde formula
dg(k). This Vk will be our definition of the vector space Vk(Σ).

Let K be the set of Dehn twists in Γ about curves which bound a disk in the
handlebody H . Such Dehn twists extend naturally (and uniquely, up to isotopy) to
diffeomorphisms of H , and so act on the skein module Kξ(H). It turns out that they
preserve the left kernel of the form (3). Thus, we get a linear action of the group 〈K〉
(the subgroup of Γ generated by Dehn twists in the set K) on the quotient vector
space Vk. Let us call this action ρk. We claim that it extends to a projective action
of the whole mapping class group Γ.

To see this, consider the set K ′ of Dehn twists which extend to the other han-
dlebody, H ′. The set K ∪K ′ generates Γ (for example, it contains the generators in
Wajnryb’s presentation of Γ). A priori, the group 〈K ′〉 acts not on Vk but on V ′k . But
since the form in (4) is non-degenerate, 〈K ′〉 also acts linearly on Vk, via the adjoint:
For f ′ ∈ K ′, we define ρk(f ′) by the formula

〈ρk(f ′)(x), y〉 = 〈x, (f ′)−1(y)〉,
for all x ∈ Vk, y ∈ V ′k .

Thus, for every ϕ ∈ Γ we have a candidate for ρk(ϕ): just write ϕ as a product of
Dehn twists from K or K ′ or their inverses, and apply ρk to each factor. The claim
is that ρk(ϕ) is well defined up to a scalar factor, and that this defines a projective
representation of Γ. To prove this, we must show the following: If

w = f1f2f3 . . . fn

is a relator, i.e. a non-trivial word in Dehn twists from K ∪K ′ or their inverses which
represents the identity element of Γ, then ρk(w) (computed as the product of matrices
ρk(f1) · · · ρk(fn)) is a multiple of the identity matrix.

Roberts’ argument to prove this goes as follows. If s ∈ Kξ(Σ×[0, 1]) and x ∈ Kξ(H),
we define

Adds(x) = x ∪ s,
where x ∈ Kξ(H), and H ∪Σ (Σ× [0, 1]) is identified with H in the obvious way. This
defines an action of the skein algebra Kξ(Σ × [0, 1]) on the skein module Kξ(H) and
also on the quotient vector space Vk. Let us denote this action on Vk by

s 7→ Add(k)
s .
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QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS 9

The key observation is that for f ∈ K, one has

(5) ρk(f) ◦Add(k)
s ◦ ρk(f)−1 = Add

(k)
f(s)

(note the analogy with Eq. (1)). One can check that this also holds if f ∈ K ′. So we
can apply this equation to our relator w = f1f2f3 . . . fn. We find

ρk(w) ◦Add(k)
s ◦ ρk(w)−1 = Add

(k)
f1f2f3...fn(s) = Add(k)

s ,

since the product f1f2f3 . . . fn, viewed as a mapping class, is the identity. Thus ρk(w)

commutes with every endomorphism of the form Add
(k)
s . Roberts now shows that the

endomorphism ring End(Vk) is generated by such endomorphisms. Thus ρk(w) is
central in End(Vk), and hence is a scalar multiple of the identity matrix. Thus ρk is
indeed a projective representation of the mapping class group.

Note that, as for the geometric construction in the preceding section, we needed
to make an additional choice to define the vector space Vk = Vk(Σ). While it was the
choice of complex structure before, it is now the choice of the handlebody H . The
fact that the projective representation is independent of this choice follows from the
construction of the full TQFT in [BHMV].

We remark in passing that it is possible to compute the scalar factors ρk(w) for
the relators w in a presentation of the mapping class group. In this way, one gets a
presentation for the extended mapping class group acting linearly on Vk(Σ) [MR].

4. Some properties of quantum representations

From now on, we will use the notation ρgeomk for the representation defined using
Hitchin’s connection and write ρskeink for the one defined through using skein theory.
It is expected that the two are the same, but it is not clear to me whether this has
been proved. There certainly is no direct proof, but it might be that it can be deduced
by putting together various results in the literature: By Laszlo’s result [La] ρgeomk is
equivalent to the representation coming from conformal field theory, and it is also
known that ρskeink is equivalent to the representation constructed by Reshetikhin and
Turaev [RT] using the quantum group Uqsl2. It remains to establish the connection
between conformal field theory and Turaev’s modular categories constructed from
quantum groups; this is discussed in the book [BK].

Unitarity. The vector space Vk(Σ) carries a hermitian form which is preserved by
the representation ρskeink . The form is positive definite (and so the representation is
unitary) if ξ = exp(2πi/(4k+ 8)) (but not for an arbitrary choice of the root of unity
ξ) [BHMV, Th. 4.11](2). In fact, the vector space Vk(Σ) and the hermitian form on
it may be defined over a cyclotomic field, and the signature of that form depends on
the embedding of the field into C. For ρgeomk , unitarity does not seem to be known.

Dehn twists. It is very easy to see that ρskeink represents Dehn twists by matrices
of finite order (with roots of unity as their eigenvalues). The same is true for ρgeomk ,

(2)Our Vk is denoted Vp in [BHMV], where p = 2k + 4.
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10 GREGOR MASBAUM

using the equivalence with the conformal field theory approach. In genus two, a direct
proof using Hitchin’s connection was given in [BJ].

(In)finiteness. Although the mapping class group Γ is generated by Dehn twists,
the preceding statement does not imply that its image ρk(Γ) under the representation
is a finite group.(3) Nevertheless, in genus one, Gilmer [G1] showed that the image
ρskeink (Γ1) is finite. But in genus two and higher, it is easy to write down a mapping
class f (a product of two Dehn twists) such that ρskeink (f) has infinite order except
for a few low values of k [M].

Integral structure. As already mentioned, the representation ρskeink can be defined
over a cyclotomic field containing the root of unity ξ. The hermitian form preserved
by it is also defined over that field. For the SO(3)-variant of the theory, and at
roots of unity of prime order, it is known that the mapping class group representation
preserves a full lattice defined over the ring of integers in the cyclotomic field [G2].
Explicit bases for the lattice are known so far in genus one and two only [GMW]. I
don’t know how to define a similar integral structure from the geometric approach.
There is an analogy here with the representation of the mapping class group on the
homology of the surface, where the image is the group of automorphisms of the integral
homology which preserve the intersection form.

Heisenberg group. Consider ρskeink as a linear representation of the extended map-

ping class group Γ̃ as in [BHMV]. For every Dehn twist tγ , one has that

τγ = ρskeink (tγ)2k+4

is an involution on Vk(Σ), i.e. one has τ2
γ = 1. The group Ek(Σ) generated by these

involutions depends only on the value of k mod 4. If k ≡ 0 mod 4, the involution
τγ depends only on the mod 2 homology class of γ, and Ek(Σ) is isomorphic to
H1(Σ;Z/2). Otherwise, depending on k mod 4, the group Ek(Σ) is a central extension
of H1(Σ;Z/2) by µ2 = {±1} or by µ4 (the group of fourth roots of unity) which may
in both cases be described as a finite Heisenberg group associated to the intersection
form on the first homology. (See Section 7 of [BHMV] for details.) These involutions
play a rôle in further developments such as Spin refined TQFT’s [BM] etc. Similar
involutions were defined in [AM] for ρgeomk , as follows. Assume Σ is equipped with a

complex structure σ. The mod 2 homology of Σ is isomorphic to the group J (2) of 2-
torsion points on the Jacobian of Σ. This group acts on the moduli space M ′σ of rank
two bundles with trivial determinant by tensoring. One can show that this lifts to an
action of the group Ek(Σ) on the line bundle L⊗kσ and hence on its space of sections
Zk(Σ, σ). Here, one uses 4-torsion points to specify elements of the extension Ek(Σ),
and this group is now presented in terms of the Weil pairing (which is the algebro-
geometric analog of the intersection form). The result is that Vk(Σ) and Zk(Σ, σ)
are canonically isomorphic as representations of the finite Heisenberg group Ek(Σ). I
believe this confirms that there should be a natural isomorphism between ρgeomk and

ρskeink .

(3)Not even in genus one: for example, the quotient of PSL(2,Z) by the Nth power of a Dehn twist
is a triangle group Γ(2, 3, N) = 〈a, b|a2 = b3 = (ab)N = 1〉 which is infinite for N ≥ 7.
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5. Asymptotic Faithfulness

This is for me the most striking result about quantum representations of mapping
class groups. The statement is as follows:

(AF) Let f ∈ Γg be in the kernel of all the representations ρk, i.e. such that ρk(f) ∈
C Id for all k. Then f is the identity mapping class, except in genus one or two where
f may also be the hyperelliptic involution.

This result was discovered by Andersen, who proved it for ρgeomk [A2] using Toeplitz
operators. (His argument works in the higher rank case as well, and then the hyperel-
liptic involution is also detected by the representations.) The proof seems to be rather
difficult, and I should say that I am unable to check it completely. The main strategy
is, however, rather simple to describe, as we will see below. Prompted by Andersen’s
announcement, Freedman, Walker, and Wang [FWW] then proved asymptotic faith-
fulness for ρskeink . They also point out that this gives another proof that mapping
class groups are residually finite.

The proofs in [A2] and [FWW] are logically independent, of course, since we do
not know that the two representations are equivalent. However, the main steps of
both proofs are parallel, as we will see.

Andersen’s idea was to consider endomorphisms of Zk(Σ, σ) = H0(M ′σ ,L⊗kσ ) given
by Toeplitz operators. They are defined as follows. Fix a complex structure σ on Σ.
A vector ψ in Zk(Σ, σ) is a (holomorphic) section of the line bundle L⊗kσ . If h is a
C∞ function on M ′ with compact support, the product hψ is only a C∞ section. But
there is a natural orthogonal projection πσ from L2(M ′σ,L⊗kσ ) back to H0(M ′σ,L⊗kσ ),

and the Toeplitz operator T
(k)
h,σ is simply the composite map. In other words, one has

T
(k)
h,σ(ψ) = πσ(hψ).

The function h might be a holonomy function hγ along some simple closed curve γ
on the surface. As explained above, the skein algebra Kξ(Σ× [0, 1]) is in some sense
a deformation of the commutative algebra of (holonomy) functions on the moduli
space M ′. Thus, it should not come as a surprise that the skein-theoretical analog

of the Toeplitz operators T
(k)
h,σ are the endomorphisms Add

(k)
s of Vk(Σ), where s ∈

Kξ(Σ× [0, 1]).
Let us first describe the skein-theoretical proof of (AF). It is in three steps. The

first step is very easy to formulate in terms of the construction of ρskeink we have given
above. Observe that

(6) ρskeink (f) ◦Add(k)
s ◦ ρskeink (f)−1 = Add

(k)
f(s)

for every mapping class f . Indeed, this holds for Dehn twists in the generating set
K ∪ K ′ (see Eq. (5)), hence for every f ∈ Γ. Thus, if f satisfies the hypothesis of
(AF), i.e. if ρskeink (f) ∈ C Id for all k, then

(7) Add(k)
s = Add

(k)
f(s)

for every skein element s in Σ× [0, 1]. (By a skein element in a 3-manifold, one means
an element of the skein module of that manifold.)
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The main work is done in the second step. Recall that the vector space Vk(Σ) was
constructed as a quotient of the skein module of the 3-dimensional handlebody H .

Thus it contains a vector v
(k)
∅ ∈ Vk(Σ) (the “ground state”) represented by the empty

link in the handlebody H . If the skein element s is given by a simple closed curve

γ on the surface, we denote the vector Add
(k)
s (v

(k)
∅ ) by v

(k)
γ . It is represented by the

curve γ pushed slightly into the interior of H . Thus, Eq. (7) implies that

v(k)
γ = v

(k)
f(γ)

for every simple closed curve γ. The claim now is that for k big enough, this is only
possible if the (unoriented) curves γ and γ ′ = f(γ) are isotopic. This follows from the
standard description of a basis of the vector space Vk(Σ) in terms of decompositions
of the surface into pairs of pants, together with a topological lemma(4) asserting the
existence of a particular pants decomposition having special properties with respect
to a given pair of non-isotopic curves γ and γ ′. See [FWW] for the details of this.

Finally, the third step is to recall (see Section 1) that if a mapping class f leaves
invariant every isotopy class of unoriented simple close curves, then f must be the
identity, except for the hyperelliptic involution in genus one and two. This completes
the (sketch of) the proof of the asymptotic faithfulness of ρskeink .

In Andersen’s original proof, Step 1 is more difficult to establish (which is why we
have preferred to give the skein-theoretical approach first). Recall that we consider

the endomorphism of Zk(Σ, σ) = H0(M ′σ ,L⊗kσ ) given by the Toeplitz operator T
(k)
h

associated to the function h on M ′. We may consider T
(k)
h as a section of the endo-

morphism bundle End(Zk) over Teichmüller space. Andersen’s key theorem is that
this section is asymptotically flat with respect to the flat connection induced from the
flat connection in the projective bundle P(Zk). More precisely, if we let PEnd

σ0,σ1
denote

parallel transport in the endomorphism bundle, then

(8) ‖PEnd
σ0,σ1

◦ T (k)
h,σ0
− T (k)

h,σ1
‖ = O(k−1),

where ‖ · ‖ is the operator norm on H0(M ′σ ,L⊗kσ ).
The representation ρgeomk was defined by ρgeomk (f) = Pf∗(σ),σ ◦ f∗ where f∗ is the

natural map from the fiber of Zk over σ to the fiber over f∗(σ), and Pf∗(σ),σ is parallel
transport back to the fiber over σ. We have

(9) ρgeomk (f) ◦ T (k)
h,σ ◦ ρ

geom
k (f)−1 = PEnd

f∗(σ),σ ◦ T
(k)
h◦f,f∗(σ).

(This corresponds to Eq. (6) in the skein-theoretical approach.)
Thus, if f satisfies the hypothesis of (AF), i.e. if ρgeomk (f) ∈ C Id for all k, then

T
(k)
h,σ is equal to PEnd

f∗(σ),σ ◦T
(k)
h◦f,f∗(σ). By the asymptotic flatness in Eq. (8), we deduce

that
‖T (k)

h−h◦f,σ‖ = ‖T (k)
h,σ − T

(k)
h◦f,σ‖ = O(k−1).

(This corresponds to Eq. (7) in the skein-theoretical approach, but notice that now
the conclusion is weaker, as we only have an asymptotic statement here.)

(4)The proof of this lemma [FWW, Lemma 4.1] as given has a gap but the lemma is true and can
be proved by considering an additional case.
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Andersen’s second step is to deduce from this that

h− h ◦ f = 0.

This follows from a theorem of Bordemann, Meinrenken and Schlichenmaier [BMS]
which says that the operator norm of Toeplitz operators associated to a C∞ function
converges for k → ∞ to the sup norm of that function. (Actually, the theorem of
[BMS] is for compact Kaehler manifolds, so one needs to adapt it to the current
setting. The moduli space M ′σ is non-compact but has a natural (but singular) com-
pactification Mσ of M ′σ given by semi-stable bundles, and Andersen originally used
a desingularization of this compactification. Recently, he and Christ have announced
a generalization of [BMS] which allows one to argue directly on the singular variety
Mσ itself.) Thus, f acts by the identity on C∞c (M ′), and therefore also on the moduli
space M ′ itself.

The third step is to show that if f acts trivially on the space M ′ of irreducible
SU(2)-representations, then f must be the identity or the hyperelliptic involution in
genus one or two. This seems to be well-known; a proof is also given in [A2].
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