Errata of "Arakelov geometry over adelic curves" — July 6th, 2021—

• Proof of Theorem 1.1.7: It is not adequate to apply Corollary 1.1.6 (2) to show that, given a finite-dimensional semi-normed vector space $(V_2, \|\cdot\|_2)$ over a trivially valued field $(k, |\cdot|)$, if the function $\|\cdot\|_2$ is not identically zero, then it is bounded from above and from below by positive real numbers outside of its null sub-space. In fact, here in Theorem 1.1.7 we do not assume that the semi-norm $\|\cdot\|_2$ is ultrametric, while this condition is included in the assumption of Corollary 1.1.6. Following is an errata for the proof.

Let $(e_i)_{i=1}^r$ be a basis of V_2 . For any $(a_1, \ldots, a_r) \in k^r$, one has

$$||a_1e_1 + \dots + a_re_r||_2 \leq \sum_{i=1}^r |a_i| \cdot ||e_i||_2 \leq \sum_{i=1}^r ||e_i||_2$$

which shows the boundedness from above. We now show the boundedness from below by contradiction. Suppose that there exists a sequence $(x_n)_{n\in\mathbb{N}}$ in $V_2 \setminus N_{\|\cdot\|_2}$ such that

$$\lim_{n \to +\infty} \|x_n\| = 0.$$

Since V_2 is finite-dimensional, there exists $N \in \mathbb{N}$ and a vector subspace F of V_2 such that, for any integer $n \ge N$, the equality

$$F = \operatorname{Vect}_k(\{x_\ell : \ell \in \mathbb{N}, \ \ell \ge n\})$$

holds. Then, by the proof of boundedness from above, we obtain that

$$\sup_{y \in F} \|y\| \leqslant \inf_{n \in \mathbb{N}, \ n \ge N} \left(r \sup_{\ell \in \mathbb{N}, \ \ell \ge n} \|x_\ell\| \right) = r \limsup_{n \to +\infty} \|x_n\| = 0$$

However, by definition F is not contained in the null sub-space of $\|\cdot\|_2$, which leads to a contradiction.

• Proof of Theorem 1.2.54: The arguments for showing that Θ^+ is convex and the function $\log \det(\cdot)$ is strictly concave on the convex open set Θ^+ of positive definite self-adjoint operators are not correct. They should be replaced by the arguments as follows.

Let V be an n-dimensional vector space over \mathbb{R} or \mathbb{C} , equipped with an inner product \langle , \rangle' . For any self-adjoint operator $u : V \to V$. By diagonalizing the operator u one can show that there exists a positive definite operator, that one denotes by $u^{\frac{1}{2}}$, such that $u = u^{\frac{1}{2}} \circ u^{\frac{1}{2}}$.

Let u and v be two positive definite self-adjoint operators. For $x \in V$,

$$\langle x, (tu+(1-t)v)(x) \rangle' = t \langle x, u(x) \rangle' + (1-t) \langle x, v(x) \rangle' \ge 0,$$

and the equality holds if and only if x = 0. Thus Θ^+ is convex.

Since the determinant function is multiplicative,

$$\det(tu + (1-t)v) = \det(u) \det(tI + (1-t)u^{-\frac{1}{2}} \circ v \circ u^{-\frac{1}{2}})$$
$$= \det(u) \prod_{i=1}^{n} (t + (1-t)\lambda_i),$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of $u^{-\frac{1}{2}} \circ v \circ u^{-\frac{1}{2}}$ (counting multiplicity), and I denotes the identity operator. Note that $\lambda_i > 0$ for all i. By the concavity of the

function log, we obtain

$$\log \det(tu + (1-t)v) \ge \log \det(u) + (1-t) \sum_{i=1}^{n} \log(\lambda_i)$$
$$\ge \log \det(u) + (1-t) \log \det(u^{-\frac{1}{2}} \circ v \circ u^{-\frac{1}{2}})$$
$$= t \log \det(u) + (1-t) \log \det(v),$$

which shows the concavity of $\log \det(\cdot)$.

• Proposition 2.3.12

PROPOSITION 2.3.12. Let L be an invertible \mathcal{O}_X -module which is generated by global sections. Let $\varphi_{\mathscr{L}}$ be the metric induced by a model $(\mathscr{X}, \mathscr{L})$ of (X, L). Let φ be a continuous metric of L and $\mathscr{H} := \{s \in H^0(\mathscr{X}, \mathscr{L}) : ||s||_{\varphi} \leq 1\}$. Moreover, let \mathcal{E} be an \mathfrak{o}_k -submodule of $H^0(\mathscr{X}, \mathscr{L})$ such that $\mathcal{E}' := \mathcal{E}/\mathcal{E}_{tor}$ yields a lattice of $H^0(X,L)$. Then one has the following:

(1) If $\mathscr{H} \otimes_{\mathfrak{o}_k} \mathcal{O}_{\mathscr{X}} \to \mathscr{L}$ is surjective, then $\varphi \leqslant \varphi_{\mathscr{L}}$.

- (2) If φ is the quotient metric on L induced by $\|\cdot\|_{\mathcal{E}'}$ (see Definition 1.1.27) for the norm induced by a lattice), then $\varphi \ge \varphi_{\mathscr{L}}$.
- (3) If φ is the quotient metric on L induced by $\|\cdot\|_{\mathcal{E}'}$, and the natural homomorphism $\mathcal{E} \otimes_{\mathfrak{o}_k} \mathcal{O}_{\mathscr{X}} \to \mathscr{L}$ is surjective, then $\varphi = \varphi_{\mathscr{L}}$.

PROOF. If \mathscr{X} is flat over \mathfrak{o}_k , then the proof of the book works well. Note that in this case, $H^0(\mathscr{X}, \mathscr{L})$ is torsion free.

In general, let \mathscr{X}' and \mathscr{L}' be the same one as the beginning of Subsection 2.3.2. Then, $(\mathscr{X}', \mathscr{L}')$ is a flat model of (X, L), and if we set

$$\mathscr{H}' := \{ s \in H^0(\mathscr{X}', \mathscr{L}') \, : \, \|s\|_{\varphi} \leqslant 1 \},$$

then $\mathscr{H}/\mathscr{H}_{\mathrm{tor}} \subseteq \mathscr{H}'$. Moreover, note that $\varphi_{\mathscr{L}} = \varphi_{\mathscr{L}'}$ and $\mathcal{E}' \subseteq H^0(\mathscr{X}', \mathscr{L}')$. Observing the following diagrams:

one can see the assertions.

• Proposition 2.3.17

The proof of Proposition 2.3.17 in the case where \mathscr{L} is ample can be done in the following way.

There is a positive number n such that $H^0(\mathscr{X}, \mathscr{L}^{\otimes n}) \otimes_{\mathfrak{o}_k} \mathcal{O}_{\mathscr{X}} \to \mathscr{L}$ is surjective. Since $\mathscr X$ is quasi-compact, there is a finitely generated \mathfrak{o}_k -sub-module $\mathscr E$ of $H^0(\mathscr{X}, \mathscr{L}^{\otimes n})$ such that $\mathscr{E} \otimes_{\mathfrak{o}_k} \mathcal{O}_{\mathscr{X}} \to \mathscr{L}^{\otimes n}$ is surjective and $\mathscr{E} \otimes_{\mathfrak{o}_k} k = H^0(X, L^{\otimes n})$. Thus $\mathcal{E}' := \mathcal{E}/\mathcal{E}_{tor}$ yields a lattice of $H^0(X, L^{\otimes n})$, so that, by Proposition 2.3.12, $\varphi_{\mathcal{L}^{\otimes n}}$ is the quotient metric induced by $\|\cdot\|_{\mathcal{E}'}$. Therefore, $\varphi_{\mathcal{L}^{\otimes n}}$ is semipostive. Moreover, as $\varphi_{\mathcal{L}^{\otimes n}} = n\varphi_{\mathcal{L}}$ by Proposition 2.3.15, $\varphi_{\mathcal{L}}$ is also semipositive by Proposition 2.3.2.

• Proposition 6.4.20

The original proof works under the assumption $vol(\Omega_{\infty}) > 0$. For the general case we need a supplementary condition that there exists an integrable function ψ on Ω such that

$$\int_{\Omega} \psi \, \nu(\mathrm{d}\omega) > 0$$

Then we replace the function φ in the original proof by

$$\varphi(\omega) := (1/a)(\ln \|f\|_{ag_{\omega}} + \psi(\omega)), \quad \omega \in \Omega.$$

By using this new φ , one can see that the original proof works well.