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Extension property of semipositive invertible sheaves
over a non-archimedean field

Hueyr CHEN AND ArsusHr MoRrwAKr

Abstract. In this article, we prove an extension property of semipositively
metrized ample inver,tible sheaves on a projective scheme over a complete non-
archimedean valued field. As an application, we establish a Nakai-Moishezon
type criterion for adelically normed graded linear series.

Mathematics Subject Classification (2010): 14C20 (primary); 14G40 (sec-
ondary).

1. Introduction

I-et k be a field and X be a reduced projective scheme over Spec ft, equipped with
an ample invertible Oy-module L. If Y is a reduced closed subscheme of X, then
for any sufficiently positive integer n, any section (. of Llp" on Y extends to a
global seclion of Lan on X. In other words, the restriction map Ho(X, L@\ -->

Ho (Y, f ;p'; is surjective. A simple proof of this result relies on Serre's vanishing
theorem, which ensures that FIl (X , Ty I L@n) : 0 for any sufûciently positive
integer n, where Iy is the ideal sheaf of I.

The metrized version (with ft : C) of this result has been widely studied
in the literature and has divers applications in complex analytic geometry and in
arithmetic geometry. We assume that the ample invertible sheaf I is equipped with
acontinuous (with respectto the analytic topology) metric 1.17,, which induces a
continuous metric l.lt, on each tensor power sheaf Z8n, where n € N, n > 1. The
metric 1.17," leads to a supremum norn ll.llt, on the global section space Ë101X, Z;
such that

llsllr' :,jÏfo,lsh"(x) forall s e H0(X, L).
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Similarly, it induces a supremum norm ll 
.ll y,7,, on the space 1{0 (I, l, ;p'; wittr

llsllY,7," : sup lsla,(Y).
yer(C)

Note that for any section s € F10(X, Zan) one has llslyllayx, < llslla,. The metric
extension problem consists of studying the extension of global sections of Lly to
those of ,L with an estimation on the supremum norns. Note that a positivity con-
dition on the metric ft is in general necessary to obtain interesting upper bounds.
This problem has been studied by using Hôrmander's L2 estimates (see [9] for ex-
ample), under smoothness conditions on the metric. More recently, it has been
proved (without any regularity condition) that, if the metric 1.17, is semi-positive,
then for any é > 0 and any section t e HÙlY,Ily) there exist an integer n > I and
s e H0(X, Za') such that sly : I8' andthat llsll7,, < e'"llslvlly,l,u. 'We refer the
readers to fl1 ,191 for more details.

The purpose of this article is to study the non-archimedean counterpart of the
above problem. We will establish the following result (see Theorem 4.5 and, Corol-
lary 2.17).

Theorem l.l. Let k be afield equipped with a complete and non-archimedean ab-
solute value l.l (which could be trivial). Int X be a reduced projective scheme
over Speck and L be an ample invertible sheaf on X, equipped with a continu-
ous and semi-positive metric I'ln. Let Y be a reduced closed subscheme of X and
I e H07Y,Lly). For any € > 0 there exists aninteger no > | suchthat,for any
integer n . ,0, the section lan extends to a section J € F10(X, L@") verifying
llslla, < e"llllli,n.

The semi-positivity condition of the metric means that the metric 1.17, can be
written as a uniform limit of Fubini-Study metrics. We will show that, if the abso-
lute value l.l is non-trivial, then this condition is equivalent to the classical semi-
positivity condition (namely uniform limit of nef model metrics, see Proposition
3.14) of Zhang [21], see also [10, 16], and compare with the complex analytic
case [20]. The advantage of the new definition is that it also works in the trivial
valuation case, where the model metrics are too restrictive. We use an argument of
extension of scalars to the ring of formal Laurent series to obtain the result of the
above theorem in the trivial valuation case.

As an application, we establish an adelic version of the arithmetic Nakai-
Moishezon criterion as follows, see Theorem 5.6 and Corollary 5.9.

Theorem 1.2. Iet X be a geometrically integral projective scheme over a number

field K and L be an invertible sheaf on X. For any place u of K, let h, be a con-
tinuous semipositive metric on the pull-back of L on the analytic space Xln, such
that (H0 (X, L8'), {ll.llx" ,nXl) forms an adelically normed vector space over K for
any n e N (see Definition 5.I). Suppose that for any integral closed subscheme
Y of X, the restriction of L on Y is big and there exist a positive integer n and a
non-zero section s € É10(y, Llp\ such that llslly,,lri < l for any place u of K,
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and that the inequality is strict when u is an infinite place. Thenfor any sfficiently
positive integer n, the Q-vector space H0 (X , La\ has a basis (r,tt, . . . , àr,1 *ith
llt'tillx,,ni < Ifor any place u,where the inequality is strict if u is aninfinite place.

This result generalizes simultaneously [2I, Theorem 4.2] and [15, Theorem
4.2] since here we have a weaker assumption on the adelic metric on z. Indeed,
in the paper [2ll,the following conditions are assumed: h, is semipositive for all
places u of K,G(Zll'"*t) = 0 for all integral subschemes y of X,and there
exist a non-empty open set u of Spec(or) and a positive integer d such that the
metric hj of Lf;d (Vu e U) is inducèd by a nef modèt (9{u,9ù of (X, L&d) over
U. Obviously these assumptions imply our assumptions in Theorem 1.2. The main
idea for the proof is to combine the estimation on normed Noetherian graded linear
series developed in [15] and the non-archimedean extension property established in
the current paper. In the archimedean case we also use the archimedean extension
property proved in [17].

The article is organized as follows. In the first section we introduce the notation
of the article and prove some preliminary results, most of which concern finite-
dimensional normed vector spaces over a non-archimedean field. In the second
section, we study various properties of continuous metrics on an invertible sheaf,
where an emphasis is made on the positivity of such metrics. In the third section,
we prove the extension theorem. Finally, in the fourth and last section, we apply the
extension property to prove a generalized arithmetic Nakai-Moishezon's criterion.

AcrNowI-BDGEMENTS. Huayi Chen has benefited from the visiting support of
Beijing International Center for Mathematical Research and would like to thank the
center for the hospitalities.
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2. Notation and preliminaries

2.1. Notation

Throughout this paper, we fix the following notation

2.1.1. Fix a field È with a non-archimedean absolute value l.l on fr. Unless oth-
erwise stated, we assume that (k,l.l) is complete. The valuation ring of À and the
maximal ideal of the valuation ring are denoted by 07. and m7., respectively, that is,

0p::{a ekllal< ll and î17. :: lx ekl lxl = l}

In the case where l.l is discrete, we fix a uniformizing parameter o of m1, that is,
fîk: atgk.
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2."1,.2. A norm ll.ll of a finite-dimensional vector space V over the non-archime-
dean field t is always assumed to be ultrametric, that is, ll.r * y ll < max{ ll.r ll, ll y ll }.
The pair (y, ll.ll) is called afinite-dimensional normed vector space over k.

2.13. In Section l-Section 4, we fix a reduced algebraic scheme X over Specft,
that is, X is a reduced scheme of finite type over Spec(ft). Let Xan be the analyti-
fication of X in the sense of Berkovich [2]. For any r e Xan, the residue field of
the associated scheme point of x is denoted by rc(x). Note that the seminorm l.l"
at x yields an absolute value of r(x). By abuse of notation, it is denoted by 1.1".

Let ft(x) be the completion of r("r) with respect to 1.1". The extension of l.l, to
Ê(-x) is also denoted by the same symbol 1.1,. The valuation ring of Ê(,r) and the
maximal ideal of the valuation ring are denoted by o, and m", respectively. Let Z
be an invertible sheaf on X. For any .r € Xan, the sheaf Z 8o* î@) is denoted by
L(x).

2.1.4. By continuous metric on L, we refer to a family h : {lln@)}".yan, where

l.h(x) is a norm on L @6* Ê(x) over Ê(,r) for each -r € Xun, such that for any
local basis a of L over a Zanski open subset U ,lrolnO is a continuous function on
Um. We assume that X is projective. Given a continuous metric h on L,we define
a norm ll.lla on Ho(X, Z) such that

llsllT, ::,sup" lslt(,r) for all s e Ho(X, L).

Similarly, if I is a reduced closed subscheme of X, we define a norm ll.lly,7, on
Ho(Y,,L) such that

lllllv,1, :: 
rt!!" 

l/la(l) for all / e H0(Y, L).

Clearly one has

llslla ' llslyllr,a Q.I)
for any s e HoçX, L!.

o In the following 2.1.5,2.1.6 and 2.1.7 , X is always assumed to be projective.

2.15. Given acontinuous metric h on L,for eachintegern > I the metric induces
a continuous metric on Z@n which we denote by h": for any point x e Xan and any
local basis t's of L over a Zariski open neighborhood of .r one has

loPn 17," @) : lotl1,@)n .

Note that for any section s e H01X, L) one has llsan lla" : lls lli. By convention,

fuO denotes the trivial metric on LaO : Ox,namely lLl7,o(x) : I for any r € Xan,
where 1 denotes the section of unity of Ox.
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Conversely, given a continuous metric S : {l.lg(x)}xeXan on l&n, there is a
unique continuous metric h on L such that hn : g. We denote by g'/n this metric.
This observation allows to define continuous metrics on an element in Pic(X) a Q
as follows. Given M e Pic(X) I Q, we denote by l(M) the subsemigroup of N,1
of all positive integers n such that Man e Pic(X). We call continuous metric on M
any family g : (gànertm with g, being a continuous metric on M&n, such that

Bl : g*n forany n €.f (M) andanym e N'1. Notethatthefamily

8: (S)net(M)

is uniquely determined by any of its elements. In fact, given an element n e I (M),
one has g* : g:/: : @f;)tln for any m e l(M).In particular, for any positive

rational number p /q,tl'tefamily f nlo - {St([on)rrrçro(r/ar; is a continuous metric

on tr4e@/o) ,where N is a positive integer such that MeN e Pic(X), and the metric
tn/a 6sss not depend on the choice of the positive integer N. If L is an element
of Pic(X), equipped with a continuous metric g, by abuse of notation, we use the
expression g to denote the metric family (gn)neN,r, viewed as a continuous metric
on the canonical image of I in Pic(X) A Q.

Let M be an element in Pic(X) I Q equipped with a continuous metric g -
(g)net(M). By abuse of notation, for any n e l(M) we also use the expression gn
to denote the continuous metric g, on M8n .

2.1.6. Let 9{ --> Spec(o7r) be a projective and flat o/.-scheme such that the generic
fiber of 3{' --> Spec(or) is X. We call it a model of X. We denote by 9{" ::
J{8or @*/mù the central fiber of 9{ --> Spec(or). By the valuative criterion
of properness, for any point x € Xun, the canonical ft-morphism Spec Ê(x) -+ X
extends in a unique way to an op-morphism of schemes 9, : Spec o" --+ ,%. We
denote by rg(x) the image of m, € Speco, by the map 9r. Thus we obtain a

map rg:from Xan to 9{o,calledthe reduction map of ,9{'.

Let 9 be an elemen t of Pic(9{ ) I Q such that 9l 
" 

: L inPic(X) 6 Q. The

Q-invertible sheaf 9yields a continuous metric l\sas follows.
First we assume that I e Pic(%) and 91, : L inPic(X). For any x e Xan ,

let ar" be a local basis of I arotnd r g(x) aid a* the class of ro" in L(x) ::
L 8ôx Ê(,r). For any I e L &ox Ê@),if we set I : qxax (a' e Ê(x)), then

llly@) :: larl,. Here we set h :: ll.ls(x))s6aun. Note that fu is continuous
because, for a local basis a; of Iover an open set ?/ of 3{:, lalg(x) : I for all
* e , rf {%"), where ?/o : a2'6oo 

@t /mù is the central fiber of Q/. Moreover,

forall n > O andx € Xan

l@" : ala?n. Thus

l.lr,, (r) : l.l-s,(x) (2.2)

Indeed, if we set I : axôx for / e L(.r), then

ll@nln"@) : (lll1,@D" : la,lï: llenly,(x)



-'-

In general, there are an ..,// e Pic(9{) and a positive integer m stchthat 9@* : .,til
inPic(fl') I Q and .Zlx: La* inPic(X). Then we set

l]s:: [lz)r/^ .

Note that the above definition does not depend on the choice of .// and m. Indeed,
let ..r// and m'be another choice. As -r/F*' : t//8* inPic(%) I Q, there is a
positive integer N such 1!1v1 

"41pNm' - âeNm inPic(9{),so that, by using (2.2),

1.lz@DN^' : l.l,47o*-,(x) : l.l"û,sru, (x) : (.1"a@))N^ ,
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there exists an integer n such that the unit ball (V, ll.ll)sr :- {"r e y I ll-rll < 1} is
contained in the free ot-module

onopel +...+ ur'oper,

where zzr is a uniformizing parameter of or as in 2.1.1. Since or is a discrete valua-
tion ring, we obtain that (V , ll .ll < r ) is an o7r-module of finite type, and hence a free
07.-module of rank r.

Let (x;)'!-, be a family of vectors in V, where n > 2. Assume that (a;)'!-, e kn
is such that the numbers (llaixilDi__t are distinct, then one has

llarxt + "' * anxnll : 
,.1T3.1,, 

llaixill.

' . * anx, is non-zero. Therefore, the image of V \ {0} by the

Y \ t0] ll'll' Px '- IRi/lÈ" 
I

is a finite set, whose cardinality does not exceed the rank of l/ over È. In particular,
if the valuation l.l is discrete, then the image of y \ {0} by ll.ll is a discrete subset
of R|; if the valuation l.l is trivial, then the image of V \ {0} bV ll.ll is a finite set,
whose cardinality does not exceed the rank of V over k.

Proposition 2.1. Assume that ll is discrete. IEt W be a quotient vector space of V
and r : V --> W be the projection map. We equip W 8* k with the quotient norm

ll.lllry.Thenforanyy eW thereisanx eV suchthatr(x) - y and.llyllw: llrll.

Proof. We may assume that y * 0 (the case where / : 0 is trivial). We set

M : Ker(n). Since M is dense in M @1, fç : Ker(n), we obtain that n-l({y}) is
dense in z;1 t{r}). Hence there exists a sequence (xn) nroin 7 such that n (x) : y
for any n and that,IT_llx,ll : llyllw. Since the image of y \ {0} by ll.ll is

discrete, we obtain that ll x 
"ll 

: ll y ll w for suffi ciently positive n. Tl'rc proposition is

thus proved. !

2.2.2. Orthogonality of bases. For a e (0, ll, a basis (er ,...,€r) of V is called
ana-orthogonalbasis of V withrespect /o ll'll if

cv max{la1 I ller ll, . .., la,llle'll} < 
I latet *... I ar€rll Y at,...,a, e. k.

lf a:1(respectivelya: l and llelll : ...: lle,ll : 1),thentheabove
basis is called an orthogonal basis of V (respectively an orthonormal basis of V).
'We refer the readers to [8, Section 2.31for more details on the orthogonality in
thenon-archimedeansetting. Let(e'r,...,e'r) beanotherbasisof V. Wesaythat
(et,...,er)iscompatiblewith(e\,...,"'r)ifket*...*kei:ke| 1."*ket,for
i:1,...,r.
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as desired

2.lJ . Let %be a model of X. As ,9{ is flat over oft , the natural homomorphism
Og - Oy is injective. Let Y be a closed subscheme of X and Iy c Ox the
defining ideal sheaf of I. Let 9srbe the kernel of 0 g --> Oy f Iy , that is, 9gr ::
Iy f\ Os. Obviously ggSo*k : Iy, so that if we set U: Spec(Os/9s),
then9xgo"c1o1; Spec(fr) : L Moreover,%is flat over 07. because Ogr --> Oy is
injective. Therefore, Uis amodelof I. We say that {/isthekriski closure of Y in
g.

2.2. Normed vector space over a non-archimedean field

In this subsection, we recall several facts on (ultrametric) nonns over a non-archi-
medean field. Throughout this subsection, a norrn on a vector space over a non-
archimedean field is always assumed to be ultrametric. We also assume that fr is
complete except in Subsections 2.2.1-2.2.2.

2.2.1. Topology. In this subsubsection, È is not necessarily complete. Let V be a
finite-dimensional vector space over ft and ll.ll be a norm of V over (È, l.l). LetJ
be the rank of V. We assume that ll'll extends by continuity to a norm on V 8* k,
where ldenotes the completion of (f, l.l), on which the absolute value extends in a
unique way. In particular, any È-linear isomorphism kr -> V is a homeomorphism,
where we consider the product topology on fr' (see [3, Section I.2,n.3, Theorem
2 and the remark on the page I.15_p, and for any vector subspace W of V , W is
closed in V and is dense in I/ 8r k c V 8* k.

For abasis e : (el, ..., €r) of V, we set

llatet * "'* ar€r ll, :: maxflal l, ..., la'l) for all (a1, ..., ar) e k'

which yields an ultrametric norrn on v 8r fr. Note that the nonns ll.ll, and ll.ll on
V are equivalent. In particular, ifthe valuation l.l is discrete and non-trivial, then

In particular,atxt I
composed map
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Proposition 22. Fixabasis ("1,...,e') of V. For any a €. (0,1),there exists an
u-orthogonal bqsis (et,...,er) of V with respect to ll.ll such that (e1,...,er) is
compatible with (etr, . . . , "'r). 

Moreover, if the absolute value l.l is discrete, then
there exists anorthogonalbasis (et,...,er) of V compatiblewith (etr,...,et) (see

f7 , Proposition 2.51).

Proof. we prove it by induction on dim7. v. If dim7, v : r,then the assertion is ob-
vious. By the hypothesis of induction, there is a 

"@-orthogonal 
basis (e1, . . . , €r_t)

of Vt :: ket, * . ' ' * ke'r_, with respect to ll.ll such that

k"r +... * kei : ke\ I... + kei

fori: I,...,r - 1. Choose u € y\ V/. Since Vtisaclosedsubsetof V,onehas

dist(u, V') :: inf{llu - xll : x e V'l > 0.

There then exists y e V/ such that llu - yll < ("/cy;-ldistqu,V,).We set e. :
u . l. Clearly (et,...,€r-t,er) forms a basis of V, which is compatible with
@i, . . . , e'r1.lt is sufûcient to see that

llarct -l . .' * ay -1e,-t * e,ll > a max{lar I ller ll, . . ., la, -t I lle,-r ll, lle, ll}

forallal, ...,er-r e t.Indeed,as llerll . (Jù-rilarct+... *a7_1er_tlerll,
we have

allerll < Joll"rll < llarcr +...+ er-t€r-r + e,ll.
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Remark 23. We assume that ft is not complete. Let y e k \ fr, we define a norrn

ll'lly on ft2 uY

Y(a,b) e k2, ll@,b)lly :: lq * byl.

Then there is no positive constant C such that ll(a, b)llv > C max{lal, lbl} for all

a, b e k.In particular, for any cv e (0, 11, there is no a-orthogonal basis of fr2 with
respect to ll.lly. Indeed, let us assume the contrary. We can find a sequence la"l in
È with limn-* lan - yl: 0. On the other hand,

lan - yl : ll(an, -l)lly > C max{larl, 1} t C

for all n. This is a contradiction. Note that the norm ll.lly extends by continuity

to a map P --, IR>s sending (a,b) e P to lo + byl. But this map is a semi-
norm instead of a norm. Therefore, the hypothesis that the ll.ll extends to a norm on
V Or lis essential.

2.23. Dual norm. From now on and until the end of the section, we assume that
(È, l'l) is complete. Let (V,ll.ll) and (y', ll.ll') be finite-dimensional normed vector
spaces over k, and Q : V --> Vt be a fr-linear map. By the topological property of V
that we resumed in Subsection2.2.l we obtain that the linear map @ is continuous,
which implies that

lldllso.*tv,v')':,.Tfl') jg
is finite (in the case where l.l is trivial, we also use the fact that ll.ll and ll'll/ only
takes finitely many values). Note that ll.llso.o1y,y,; yields an ultrametric norm on
HomTr(V, V/), called the operator norm. We denote ll'llnory(v,rt by ll'll" (i'e.,the
case where V' : k and ll.ll/ : l.l), called the dual norm of ll.ll. By definition, one

has

lQ@)t = 
ll0ll"ll"{ll

for any x e V and Q e Vv. In particular, one has

llrll"" < ll-rll for all x e V, (2.3)

If lla1e1 | .

llater +'

* ay-1e,-1 ll < lle,ll, then

* a7-1e,-1+ e,ll > Joll"rll, Jollorcr * .'. * a,ae,all
z Ja (Ja maxi.larl ller ll, . . ., la,_| ll",._r ll})
: ot max{.larl ller ll, . . ., la, _rl ller_r ll}.

Otherwise,

llapr * * a7-1er-1* erll : llapt * ...1araerall
> .1Æmax{lallleill, . . . ,la,-t llle.-r ll}
> amaxllal lllerll,. ..,la,_t llle,_rll),

as required.
For the second assertion, it is sufûcient to use the discreteness ofthe set

{llu-xll lxe V'}

to show that it has the minimal value (see Section 2.2.1).

where we identify V with (yt)t via the natural isomorphism.
Let (e;)l-, be an c-orthogonal basis of V, a € (0, ll, and (e,")i:r Ue its

dual basis of Vv. By definition one has el(Irct +...+ L,e,) - I; for any

(lr, ..., Àr) € frr. Hence

lle,"ll": sup
Q'r,...,),r)*

lÀ; I

to,...,ol llÀrer * "'* )",e,ll
< cl-t llei ll-1 . (2.4)

n

Therefore,forany ô: aÉY +...+ arel e Vv,where (ar,...,ar) e k',onehas

ttott > trI : ffi > atail ll',Y ll"'



Namely the dual basis (e,v)i:, is a-orthogonal with respect to the dual norm ll.llv.
By the same reason, the basis (")i:t is also a-orthogonal with respect to the double
dual norm ll.lltt, and for any x - Lr", + ...* Lre, e V one hai

-y (x) lÀi Illxll"" > l- ile,yil" 
: 

m 
> alLillleill forall i e ll' "''r)

where the second inequality comes from(2.4). We then deduce that

llxll"" - o,.TTï,, lÀilllei ll > oll*ll.

By Proposition 2.2 and (2.3), we obtain that the natural isomorphism v --> (vv)v
is actually an isometry, where we consider the double dual norm ll.ll"" on (y")t.
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22.4. Scalarextensionofnorms. Inthissubsubsection,wefixafinite-dimensional
normed vector space (V, ll.ll) over È.

Definition 2,4. Let k' be an extension field of È, and let l.l/ be a complete absolute
value of fr/ which is an extension of l.l (we call (kt , l.lt) a complete valued extension
of (fr, l'l)). We set Vp, i: V 8r k' .Identifying Vt, with
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This maximality property implies that, if (k" ,1.1") is a complete valued extension
of (k/, l.l/), then one has

ll.lly : ll.llt,,*,, onVp, : V 8* k" 7 V*, 6.k,k" . (2.5)

Lemma 25. Let f : V --> W be a surjective homomorphism of finite-dimensional
vector spaces over k. We assume that dimpW : I and let llllw be the quotient
norm of ll.ll induced by the surjective map f : V --> W . Then the norm llllw,y
identifies with the quotient norm of ll.llp, induced by the surjective map fp, i-
f 8 ido, : Vp, --> Wp,.

Proof. Let ll.ll'wo, be the quotient norm of ll.ll7,, induced by the surjective map fp, 1

Vp, --> Wy .Let (.be an non-zero element of I7. As lYllw,*, : lWllw , it is sufficient
to show that lltllt**, : lWllw. Note that

{u e V I f@) : ll c lut e Vp, | .fr,@') : tl,

so that we have l\llw > l\ll'w.,. In the following, we prove the inequalitY lWllw <

lllll'w.,. For o € (0, 1), let (e1,...,€r) be an cy-orthogonal basis of V such that

(ez, . . ., er) forms a basis of Ker(/) and that f @ù : l.T\en

ll{ll'wo,: inf{lle1 *a|e2+...+ a!re,lly,1,, I oL,...,a!, ek'}
> inf{a max{ llel ll, loLl' llezll, . . ., lo!,1' lle' ll } I oL, . . ., a!, e k' I
: ulletll >- ulllllw.

Therefore, we have l|(l|wo, Z lWllw by taking a --> I. n

Lemma 2.6. We assume that the absolute value l.l of k is trivial. Let (k' ,l'l') be

a complete valued extension of (k,l.D such that l.l' is non-trivial. Let ok' be the

valuation ring of (kt ,llt) and mk, the maximal ideal of op,. Suppose that

(l) The natural map k --> ok, ind,uces an isomorphism k :-> op, f mp,;
(2) For alt elements u and u' tn y \ {0} such that llull * llut ll, the quotient ll u' ll / ll u ll

does not belong to lktx lt .

Then ll.llp, is the only ultrametric norm on Vp, extending ll'll.

Proof. We prove the assertion by induction on the rank r of V over ft. The case

where r : 1 is trivial. In the following, we suppose that the assertion has been

proved for normed vector spaces ofrank < r over ft.
Let ll.ll/ be anotherultrametric noffnon Vlc,extending ll'll. Since ll'117,, is the

largest ultrametric norïn on Vy extending ll.ll, we obtain that ll'117,, > ll'll/. If the

equality ll.ll' : ll.ll7,, does not hold, then there exists a vector x e Vp,such that

Hom7,(Hom7, (V, k), k\,
we define ll 'llp as the operator norTn on V1r, , that is,

lu,l1,, ::,,0 {llqfr1fA Io . u"} ror ar u, e v1,,.

The norm ll.l[, is called the scalar extension of H.
By definition, if ll.llr and ll.llz are two nonns on V such that ll.llr < ll.ll2, then

onehas ll.llI Z ll.ll| anOhence ll.llr,r,< ll.llz,r,.Moreover,

llu 8 rly : sup {## lO 
. v"} : 1r1"" : llull ror anu e v,

see Subsection2.2.3 for the last equality. In other words, ll .llr extends the norm ll.ll
on V. It is actually the largest ultrametric nonn on Vr extending ll.ll. In fact, by
an argument similar to that in subsection2.2.3 we can show that, if (e)i_, is an o-
orthogonal basis of (y, ll.ll), where cv € (0, ll, then (e; O l)i:r is an cvio-rthogonal
basis of (v ,ll'lltù. Assume that ll.ll/ is another ultrametric iôrrn on yk, exte;ding
ll.ll. If (e!, . . . , e,) is an cv-orthogonal basis of V, where a e (0, 1), then we havé
for all (atr, . . ., a'r) e k'

ulla\e 1 + . . . + ol 
", ll' s 

",.î?,Lî,,r 
(lai l' lle i ll' )

: cy._max .(ail'lleilD < llalq +...+ a,rerll1,,.
i e{l,...,r)
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llxll' < llxllp,. Let (e)i:r be an orthogonal basis of (V, ll.ll), which is also an
orthogonal basis of (V*, ,ll.llp,). Suppose that -r is written in the form x : atet *
-.. I er€r, with (ar ,...,er) € k/'. We will prove thatlailtlleill are the same for
i e {1,...,r1 arguingbycontradiction. Withoutlossof generality,weassumeon
the contrary that

lal'llerll : .. . < lail'lleill < lai+rl'll"i+rll : ... : la,ltlle,ll
with j € {1, .. .,r - I}. Note thar

llxll' < llxlh, :,.î1,L1,l loil'll"ill: la,l'lle,ll.

Moreover, by the induction hypothesis, the norms ll.ll, and ll.llt, coincide on
kte i+t + . . . + k'e, .In particular, one has

llai+rci+r+ "'+ a,erll' : larl'lle,ll.
Therefore,if we let y: arct +...+ alei,thenwehave

llvll': llx-(a1'r1ei+r * " ' * a,e,)llt :1a,ltlle,ll t,.ïî,Llr,l ail'lleill : llvlk,,

which leads to a contradiction since ll . ll' < ll 
.lk, . Hence we should have

lal' llerll : . .' : la,lt lle,ll.
By the condition (2), we have llelll : ... : lle,ll (namely the function ll.ll is
constant on V \ {0}) and hence lall' : ... : larl' t 0. By the assumption (l), we
obtain that, for any i e {1,..., r} there exists a b; e kx such that lai - biarlt <
larll. Thus

225. lnnices and norms. From now on and until the end of the subsection, we
assume that l.l is non-trivial. Let '// be an ok-submodule of V. We say that '/ is a
latticeofV if T8o*k:V and

sup{llullg lue'/}<æ
for some norm ll.llo of V. Note that the condition sup{llullo I u e T} < oo does

not depend on the choice of the norm ll.116 since all norms on V are equivalent. For
any lattice / of V ,we define llllytobe

llully:: inf{lal-l I a e k" and au e Tl.
Note that ll.llzforms a norm of V. Moreover, for a nonn ll.ll of y,

(V, ll.ll)=r :- {u e Y I llull : 1}

is a lattice of V.

Proposition 2.8. Iæt '/ be a lattice of V. We assume that, as an ok-module, y
admits a free basis (et, . . . , er). Then (et, . . . , er) is an orthonormal basis of V
with respect to ll'lly.

Proof. For u : aÉt I ... * ar€r e V and a e kt,itholds

au e Te aai e ok for all i : l, ...,r
ç la;l = lal-l for all i : I,...,r
19 rp;{lall, . . ., lorl} . lol-t,

so that llully: max{la1l, . . . ,la,l}. !
Lemma 2.9. Let ll.ll be a norm of V and'/ :: (V, ll 

. 
ll )<r . Then

llully: infflbl Ib ek" andllull = lbl).

Moreover, ll.ll S ll.llyandllully < lclllull forallot e k* withlul > land
ueV\{0}.
Proof. The first assertion is obvious because, for a e kx,au e Tif and only if
llull < lal-1.

Foru e V,leta e È'with au eT.Then llaull < l,thatis,llull < lal-1,and
hence llull < llully.

Finally we consider the second inequality, that is, llully . lcvlllull for u e
y \ t0). As lal-l < 1, there is an e > 0 with lol-re' < 1. By the first assertion,
wecanchoose be k" suchthatllull < làl <e'llully.If llull < lba-ll,then

llully. lbll"l-t < e' 11u114a1-t .

Thus 1 . e'lal-r. This is a contradiction, so that llu ll > lba-l l. Therefore,

llully< lbl < lalllull,

as required. n

lxl' : ll,,I biei +2r, - u,',t",ll :1a,ltlle,ll : llxllz

slnce
r r

:larltlle,ll and
r

o,T biri : larl' Du,", l{", - bia,)ei <la,l'llerll
i:l j:l j:l

This leads to a contradiction. The lemma is thus proved. n
Remark 2J. We assume that l.l/ is discrete and

lo'l' : exp(-a ordoo, (a/)) a' e k'
fora e IR,s.If

a / U QQoe llull - log llu/ll),
u, u/e V\{0}

then the assumption (2) holds. Indeed, we suppose that latlt : llull/llutll for some
a' e k'' and u,'u' e V \ {0}. Then

-u ordoo,(a') : log llull - log llu'll,
so that ordoo,(at): 0, and hence llull : llu'll, as required.
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Proposition 2.10. we assume that l-l is discrete. Thenwe have thefollowing:
(l) Every lattice'/ of V is afinitely generated o1r-module;
(2) If we set /:: (7, ll.ll):r for a norm oTll.ll of V, then llull < llully <

lol-lllullforu e V \ {0}.

Proof. (1) By subsection 2.2.1, (v,ll.llù< is a finitely generated op-module.
Moreover, note that T c (v,ll.lly)sr. Thus we have 1l) because 07. is Noethe-
rian.

Part (2) follows from Lemma 2.9. !
Proposition 2.11. we assrme that l-l is not discrete . If we set T :: (v , ll.l) a1 for
a norm of ll.ll of V, then ll.ll : ll.lly.

Proof. Since l.l is not discrete,lk"l is a dense subgroup of IR.f (see [5, chapter v,
section 1, no. I and section 4, no. 1l). we can ttrus nna a sequànce-1Ér)fl, ,u"r,
tbat lB"l > I and limn--6o lf À : 1. On the other hand, by LeÂma 2.9, it iiolhs

ll'll < ll.llz< lp,lllll.
Therefore the assertion follows. n
Proposition 2.12. we assume that the absolute vatue l.l is not discrete. Izt ll.ll be
anormof v andT:: (v,ll'll)sr. Forany e > 0, thereisasub-ratticelt'àyr
such that'/t is finitely generated over ok and ll.ll < ll.lly < e.ll.ll.

Proof. Let (e1, . . . , e) be an e-e/2-orthogonal basis of v with respect to ll.ll (cf.
Proposition 2.2).WecanfindaÀ; € frx such thatlleill < lÀ;1< eri211e,ll for"u"ii. We ;9t ai :: ).,tei Q : 1,...,r) and T :: 61rr, + . I o7,a.rr. Note that
a1 e Tfor all j, that is, 7t is a sub-lattice of T and T is finitely generated over
o *. By Proposition 2.1 I, one has ll . ll : ll.lly,and hence ll.ll = ll.llt, . Moreover, for
ct, . . ., c, e k,by Proposition 2.8,

llcter * "' I crerlly : llc1,1ar * ... * crÀ.rotrlly : maxilqÀrl, .. ., lcrLrlj
< e' /2 max{lc llle ll, . . ., lc,llle, ll}
< ee llc1e1 * .. . * crerll,

hence we have ll .lly < e,ll.ll. tr

23. Seminorm and integral extension

Let dbe a finitely generated o1-algebra, which contains 07. as a subring. we set

| :: dagu fr. Note that A coincides with the localization of .dwithiespect to
s--r: o{ \ {0}. Let spec(A)an be the analytification of Spec(A), that is, the set of
all seminorms of A over the absolute value of È. For x e 

^Specll;un, 
let o" and m,

be the valuation ring of (Ê(-r), l.l") and the maximal idealïf ôr, respectively (seé
subsection 2.1.3 for the definition of Ê("r)). we denote the natuial homomorphism
A --> ft (x) by e, .It is easy to see that the following are equivalent:
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(1) Spec(Ê("r)) -+ Spec(A) extends to Spec(0") --> Spec(d), that is, there is a
ring homomorphism Q, : d -> o, such that the following diagram is commu-
tative: 

d @', 
ox

tl++
A e" > î(x);

(2) lal, < 1 for alla e d.

Moreover, under the above conditions, the image of m, of Spec(or) is given by

O;1(m*) : (d,l.l)..1,and (d,l.l,).r e Spec(d)., where

(d,l.l).r:- la e .dl lalx < 11,

Spec(.d)";: {P e Spec(d) | P 1\ op - mr}.

Let Spec(A)ap be the set of all x e Spec(A)an such that the above condition (2) is
satisfied. The map 16: Spec(A)p -+ Spec( d)" givenby

x r> (d,l.l,).r

is called the reduction map (c/. Subsection 2.I.6). Note that the reduction map is
surjective @f.[2, Proposition 2.4.4] or |1,4.13 and Proposition 4.141).

Theorem 2.13. If we set I :: {a e A I a is integral over dl, then

g- n (A, l.l")sr,
.reSpec(A)p

where (A,l.lr)=r :- {a e A I lal, < 1}.

Proof. Let us first see that I c (4, l.l,)s1 for all.r e Spec(A)p.lt a e 9,then
there are al,...,an €. dsuchthatan * alan-| +...+ an:0. We assume that

lal, > 1. Then

loli : lanl* : lala'-r *
< . ryax tlalT-i] : loll-1,t:t,...,n

so that lal, < l, which is a contradiction.
Let a e A such that a is not integral over d. We show that there exists a prime

ideal q of dstch that the canonical image of a in A/S-tq is not integral over
d/q.In fact, since A is a k-algebra of finite type, it is a noetherian ring. In partic-
ular, it admits only finitely many minimal prime ideals S-lp1, ..., S-lpn, where

Pr, ... ,Fn are prime ideals of .dwhich do not intersect S : oÈ \ {0}. Assume that,

* anl,5 . ryax llail.lall-'l
i:1,...,n
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for any i e {1, ..., nl,there is a monic polynomial f, in (d/p;)[ZJ on such that
ïi (),i) : 0, where À; is the class of a in A / s-l p i . rei r; be a monic polynomial in.d[T) whose reducrion modulo p; [z] coincides'with /,. bne il C("); i-ït;f;;
any i e { 1, . . ., n}. Let F' be_tfe product of the polynàmials F1, . . ., Fn. Then' È @)belongs to the intersection [-lf:1 s-tp,, hence is nilpotent, wïicn impties that a is
integral over "&. To show that thère exists an ,r e spèc(A)p such that lal, > 1 we
may replace .d(respectivgly a) by d/q (respectively A/s-rq) and hence assume
tbat "d-is an integral domain without loss of ginerality.

We set b : q-1. Let us see that

bdtbln op I {o} and t / bdtbl.
We_set a : a' /sforsome a, e dands e,S. Then s : ba, e bdlblo or,so thatbdlbl n ok + {0}. Next we assume rhat 1 € bd[bl.Then

| : a\b + a'ru2 + ...+ a!r,bn'

forsome a'r,...,a'n, e d,sothat ar' :6,ron'-l +..,+o,_,,which is acontradiction.
Let p be rhe maximal idear of d[b] such rhar bdlbi c p. As p î o* * {0} and

pOo7, c mk,wehavepOoT. : lll;,ândhencep espec(d[b]).. Note tnat.diUlis
finitely generated over o* and dlbl go1 È : A[b]. 'ihus, sinéine reduction map

r drbt : Spec( Atblpr6l __> Spec(.d[bl) 
"

is surjective, there is an .r e Spec(A[bJ)p16, such that r6p1@) _ p. Clearly
x e Spec(A)p. As b e p,we have lbl, <'1, so that lal, > 1 because ab : L
Therefore,

a/ n (4, l.l,):r,
.reSpec(A)p

as required. n
we assume that X is projective. Let ,9{' + spec(07.) be a flat and projective

scheme over Spec o* 11* that the generic fiber of 
^g{ 

-->-spec(oa) is X. Let gbe
an invertible sheaf on .% such that gl*: Z. We set h ::'ll.l)'i*)l*r"^. For the
detnition of the metric l|"s@) at ,r, séê Subsection 2.1.6.

corollary 2.14. Fix I e H0 çx, L). If lrlst(x) < r for ail x e x^n, then there is an
r € ok \ {0} sacft that sla" e Ho(g-, gen) for all n > 0.

Proof. Let .%': l)!:rspecldi) be an affine open covering of ,9{-withthe follow_
ing properties:

t!! (, is a finitely generated algebra over or for every i;
(2) Spec(.di). + A for all i;
(3) There is a basis a; of gover Spec(.d) for every i.
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'Weset l:aiai forsome ai e A;:: dilroft. Byourassumption, la;1, < l for
all x e Spec(A; )p . Therefore, by Theorem 2.13, ai is integral over,@,so that, by
the following Lemma 2.I5, we can find s; € S such that sia! e di for all n > 0.
Wesetr: sl ...sN. Then,as sa! e,@ foralln > 0and i: l,...,N,wehave
the assertion. n

Lemma 2.15. Let A be a commutative ring and S be a multiplicatively closed sub-
set of A, which consists of regular elements of A. If t e S- I A and t is integral over
A,thenthereis ans € S suchthat stn e Aforalln > 0.

Proof. As t is integral over A, there are al, . . ., ar-t € A such that

t' : aû'-1 + ..'+ ar-1t * a,

Wechooses e Ssuchthatst' e Afori:0,...,r - 1. Byinductiononn,we
prove that stn e A for all n > 0. Note that

tn-l +'..*ar-1tn-r*l a ar{-'

Thus,if sf'e Afori:0,...,n- l,then stn e Abecause

stn : at (rr'-t) +...+ arq(s{-'+t) + a,(st-'). tr

2.4. Extension obstruction index

In this subsection, we introduce an invariant to describe the obstruction to the exten-
sion property. Let X be a reduced projective scheme over Spec ft, L be an invertible
sheaf on X equipped with a continuous metric h, and Y be a reduced closed sub-
scheme of X. For any non-zero element t of HÙ(Y, Zly), we denote by ),1r(l) the
following number (if there does not exist any section s e l'101X, Zaz) extending
/8', then the infimum in the formula is defined to be +oo by convention)

tn:el

),1(l): limsup inf
fi++oo seHo(X,Len\

s lY:/e"

(S#1" - rog llrllv,,,) e [0, *oo]. (2.6)

This invariant allows to describe in a numerically way the obstruction to the metric
extendability of the section /. In fact, the following assertions are equivalent:

(a) Àr,(/) :0;
(b) for any é > 0, there exists an n6 e N'1 such that, for any integer n > ns,the

element/8n extendstoasections e F10(X, Zan) suchthat llsll7,, < e"llllli,n.

The following proposition shows that, if /an extends to a global section of Lan for
sufûciently positive n (notably this happens when the line bundle Z is ample), then
the limsup defining Àa (/) is actually a limit.
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Proposition 2.16. For any integer n > l,let

Then the sequence (an)n.t is sub-additive, namely one has ctm+n 1 am * anTor
any (m, n) e N'r . In particurar, if for sfficientry positive iiii* n, the seciion
l_a" 

.lies in the iiase of the restrictibi nnpi u0çi,'r6;j --, i6<T tl, ;;:;;;';;;
limit superior in (2.6) is actually a limit.

Proof. By (2.1),one has an > 0 for any integer n Z l. Moreover, an < *oo if and
only if ln lies in the image of the restriction map HjçX, y*"1 __r' iofy, U?;l-iiverify the inequality am+n { e* I an,it sufifiôes to consider the case where botha* and an are finite. Let s,, an1f s, be respectively sections in Ë10(X, p;f i"Â
H0 (X,lan) such that^s^ly': 1s,m and sn ly' : ld, tfr"" tù;;il ,, : rm g s,, €H0(x, Ua@+n)', verifies tire relation sly'"J pri+.i. M;;;;;;r, ài" r,",

llslla-+, : slp lsl1,^+"(x): slp (s^rn-@).lsnl1,,(x)) < lls,,lln^ .llsnlln,.
xeXû xeXû

Since sln and s, are arbitrary, one has em+n 1 am * an. Finally, by Fekete,s lemma,
if a, < *ooforsulficientlypositiveintegern,thenthér"qu"n"" (an/n)n4actually
converges in IR1. The proposition is thus proved. n

corollary 2.17. Assume that the invertible sheaf L is ample, then the foltowingconditions are equivalent.

(a) ),n(l) :0;
(b) for any € > 0, there exists ann e Nrr and a section s e H,(X, Lan) such

that sly : ln andthat llsll1," . e,,llll!,n.

Proof- we keep the notation of the previous proposition. By definition the second
condition is equivalent to

fiminf 91 :0. e.7)n__++æ n

Since z is ample, Proposition 2.16 leads to the convergence of the sequence(an/n),'-t in IR-.. Hence the condition (2.7) is equivalent to-,1.a (z) : o. n
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3.1. Quotient metric

Let V be a finite-dimensional vector space over À. We assume that there is a surjec-
tive homomorphism

n:V8*Ox-->L.
Foreach e e V ,n(e8I) yields a global section of L,thatis, z(ee l) e H0(X, L).
We denote itby ë. Let ll.ll be a norm of 7 and V :: (V,ll.ll). Let ll.lla1"; be a
norm of V gr ft@) obtained by the scalar extension of ll.ll (c/.Definition Z'.4y.1_nt

l.l$"t{r) be the quotient norm of L(x) :: L I î(x) induced by ll.llar,t and the

sudective homomorphism V Or ft@) --> L(x).

Proposition 3.1. The fam;ly 
{ 

I 
.|fl't1,r) },.r* defines a continuous metric on Lan .

Proof. The problem is local for the Zanski topology. Hence we may assume with-
out loss of generality that L is the trivial Oy-module. Denote by ss the global
section of L which trivializes L on X.It sufûces to show that the function l"oll"'
is continuous on Xan.

For any point -r € Xan and any element s e V 8t ft@), there exists a unique
element Â(s) e 1(x) such that s(-r) : fi(s)ss(x), where s(_r) denotes the image
of s by the natural (surjective) homomorphism z(x) : V 8* ft(x) --> L @5r* ft(x).

Themap /' is alinearformon vgrû(x),andonehas lsslflot(xl : (ttr.llX,-.,) 
t,

where ll.ll|1r; denot"s the dual norm of ll.llaAt (see Subsection2.2.3).
It remains to prove that the function (-r e Xan) è lfrll|,r, is continuous. We

first treat the case where (l/, ll.ll) admits an orthogonal basis (eùi:t (see Subsec-
tion 2.2.2 for the notion of orthogonality). Let (r)it be its duâl 6asis. For any
x e Xan, @Dit is an orthogonal basis of (V 8r â(r))" (see Subsections 2.2.3-
2.2.4). Moreover, by construction there exist regular functions g1,... ,g, on X
such that Tx : Br@)el + ... I gr@)e.v. Note that

llÂ llX(") :,.î13.1,r lg;(x)1, ll"r" ll;(,) :,.î13.1,,t lsi(x)1" . ll",v ll",

where ll.llv denotes the dual norm of ll.ll. Therefore the function .r Ê llÂ ll),r, is
continuous.

We now consider the general case. By Proposition 2.2,for any integer n 2 2,
thereexistsabasis @['\î:rof Vwhichis(l-])-orthogonal.Lerll.ll,bethenorm
on V such that

ll^'"1" + "'+ 
^,,"'ll,:,.TT3j,rt^,t ll,l"'ll r-"rr (Àr,... ,)",) e k'.

Since the Uasis 1e,{'))i:, is (1 - })-orthogonul, we obtain that

an: inf
self 1x,La"1

slY:1on

log lfsll7,, - nlogllllly,l,( )

3. Continuous metrics of invertible sheaves

In this section, we consider several properties of continuous metrics of invertible
theaves. Throughout this section, let I be a reduced scheme of finite type over
Spec È and Z be an invertible Oy-module. Il--

n
ll.ll,<ll.llsll.ll,
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Therefore, if we denote uv l.l?lli.rr"t(x) the quotient norm on L(.r) induced by
ll'llrî<*>, where x € Xun, one has

lr"el*rllli ,,,y(x) -roglsslflot('ril = -.r (t - *) "' attx e xan.

By the particular case we have proved above, each function log lss lf|llT .,,,, is contin-
uous. Therefore, the function log ls6lflot, which is the uniform limit of a sequence
of continuous functions, is also continuous. Thus we obtain the continuity of the
function trol?lliï.rr,t and the proposition is proved. n

From now on and until the end of the subsection, we assume that X is projective
and z is geneFted by global sections. I-,et h : {l.h (x)}"ex* be a continuous metric
of Lan. As F101X, L) 8r Ox -+ Z is surjective, by prôpàsition 3.1,

hquot - { 
t'tf}ri,r,r,,,r.rr,, 

r 
(r) },.x-

yields a continuous metric of Zan. For simplicity, we denot" I.lfiroj1r,rt,,,.,,,,, (.r) by

l.ll"ot(r). Moreover, the supremum norm of É10(X, t) arising from àquot is denoted
by ll.llluot,that is, ll.ll;"'t :- ll.ll7,e-t.

Lemma 3,2. The following statements hold:

(L) We have 1|1,@) . lll'@) Tor ail x e Xan;
(2) We have llll1,: ll.llluot;
(3) I^et (L', h') be a pair of an invertible sheaf Lt on x and a continuous metric

fut : {l'11,,@)}.reXun of L'* suchthat Ltis generatedby globalsections.Then

1t . t' 1|$), qxy . ltlî' @)lt' llio' {r)

for I e L(x) and lt e Lt(x).

Proof. (l)^Fix I e L(x) \ {0}. For € > 0, let (e1,...,en) be an e-€-orthogonal
basis of H0 (X, I) with respect to ll . llà. There is a'.s e F1oix, L) g 

r, Ê @).u"Ë thut
s(x): / and llsll7,,B,4 < e€lllf,uot1";. W"set,r: oÉr*...*anen(a1,...,e,x €
ia(x)). Then, by Subsection 2.2.4,

lls lla,at,l > e-é max{l al"llerlln, . . . ,lanl,llenlln}
> e-€ max{lal*lerln@), ...,lanlrle,ln(x)} > e-€lll1,@),

so that llln@) . 
"t..1llfl"o'(x), 

and hence the assertion follows because e is an
arbitrary positive number.
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(2)By (1),wehave ll.lla < ll.llfluot. Ontheotherhand,as l"lluot(") < llsllT, for
s e Ho1X,l), we have llsllluot = ;;r1;r.

(3) For € > 0, there are an s € Ho(X, D At î@) and an s' e Ho(X, L') &r,
Ê(x) such that

s(x) : l, s'(x) : t', llslln,t@) S ee Ull"ot(r) and lls/117,,,;, *l . "'lt'lllo'{.l').

Let us show lls . stlln'n,,î(x) < e2' llslll,tt"llls'llr,,,ttrt. Let (s1, ..., s.) and

(ri, . . . , sl,)be e-.-orthogonal bases of n0çx, Z) and Ho(X, L/), respectively. If
wesetr : /tsr*. ..lt^s*ands' : tis'r+..'*tl,sl, (withlr ,...,tm,t1,...,t1, e
Ê(x)), then

,, .r, : ftit,rsi .s,r.

i,j

Thus,
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lls .s'llrot,,a(,) s Ta,x flt,l.lr'/"lls; 
.si llnan,l

,,1
max [v,uv|l" lls; lh,11si lla,]

< max{ltiLllsilla}m?x
tl

. 
"2' 

lltlln,n@r lls'lla,,a(,).

Therefore, we have (s . s')(.x) : I . lt and

1t 't'1|$)0,çx1.lls 's'lllol,,îçx1 s e2'llslln,tr,l lls'llr,,at,r ."4'ltll"ot(*)lt'lïi"@),

as required. !
Proposition33. Ifthereareanormedfinite-dimensionalvectorspace(V,ll.ll)and
a surjective homomorphismv@l,oy-->L suchthat h is give, ây {l lt}:ii.11;(")}".a*,
then 1.11,,(r) : l.ll}ot( x) for all n > l.

Proof. First we consider the case n : l. Fix I e t(.r) \ {0}. For € > 0, there is an

s e V 8r Ê(,r) such that s(.r) : / and llsllaf"t < eellll'@).
Notethat llulln .llall for allu e V. Let(er,...,e,)be an e-€-orthogonal

basis of V with respect to ll 
.ll . If we set s : atet +'..+ are, (withat,...,ar €.

ft(x)),then, by Subsection 2.2.4,

ll s ll l,,atrl < max{ la1 l, lle tll n, . . ., la, l, lle, ll n}
< max{lc1l,ller ll, . . . ,lar l,lle,ll}
< e'llsllct"t,

so that

lllT"'(t) < llslla,at't < e'llrllÊ(") t 12'llln@),

t,J

t'1llnl
{trjt"il



262 HUAYI CHEN AND ATSUSHI MoRIwAKI

: max {lallrllllp@),
so that ls h (r) < lsç l" : lsly@), as required.

and hence ulrt"ot(r) < llln@) by taking e -+ 0. Thus the assertion for n : r
follows from (1) in Lemma 3.2.

In general, by using (3) in Lemma 3.2,

lt"ln,@) : 1t11,@))": (lzl|"",{r))' . V,lf,ior{*),

and hence we have the assertion by (1) in I'emma32. tr
Lemma 3.4. We assume that there are a normed finite-dimensional vector space
(y' ll'll) and a suriective homomorphism v g* ox --> L such that h is givân by

{f lf}1fi.,,,f"1},.x"" . Let k' be a separable extensionfietd of k, and let l.lt be a
complete absolute value of kt as an extension of l.l. We set

Xt :: X xspec(k) Spec(ft/), L' : L @t k, and V, :: V gt kt.

!"t l'll be a norm of vt obtained by the scalar extension oT ll.ll. Moreover, let hl
be a continuous metric oT L'un given by the scalar extension of h. Then ht coincides
.itn 

{1.ftii1,,.11, /* )1,,. 
"^ 

.

Proof. Let f : Xt --> X be the projection. Forx, e X,un,we set x : fun(x,).Thel Ê("r) c ft(x') and (L g{.,ûtrll E.p6 ft@) : 1., &k, ft(xt),thatis, Z1i; A;1"y
î1x'1 : L'(x'). Moreover, vt gk,î,,lt) - (V gt î@)"aiai'Ê(xt),andby (2.5),
ll'l$ç1: ll'lht',t : ll'llar'l,tt",;. Thus the assertion follows'îiom Iæmma2.5. n

Proposition 35. we assume that there is a subspace H of no(x, L) such that
H 8* ox --> L is surjective and the morphism ôn : X - i"(rr) induced by H k
a closed embedding. We identifu X with Qs(X),-s-o that L : ôe<n>e)lx. 

-f", 
lt.|

be a norm of H such that H has an orthonormal basis (e1, . . . ,i)i'witiï"rprri i
ll'll. We set

a ': {l ffliriir.ll(r)],.x- and ,ff:: oker+...+ 01çe, :(F1, ll.ll)sr.

I'et 3l'be the Zariski closure of x in P(tr ) (cf . subsection 2.1.7) and g ::
Oe<-at\)l s. Then 1|1,@) : l.ls(x) for alt x € Xan.

Proof. First let us see that lsla(x) < lsl-s@) for s e H. Let ro6 be alocal basis of
3at Ç : r f(x). If we set s : sfarË, then

lsl_E@) - lsç1,.

As sf ls e 9q and' -ff4o* ÔgÉ + 9q is surjective, there are 11, . . . ,1, e ,ffand
ctt, ..., a, e Og;ç such that sfls : alt *... * arlr.Therefore,

l"ut'1, 
(.r) < max ilal1l1,@),
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Next let us see that llls(x) < ll/llcf,l for all I e H g Ê(x). By Subsec-
tion2.2.4, (er, . . ., er) is an orthonormal basis of Il g Ê (x) with respect to ll 

.ll;frl.
Thus,ifwe set/ : qÉt *... I ar€, (at,..., a, e ft(x)),then

llly(x) < max{la1 l,letl-s@), . . ., la,l"le,l-E@)l
< max{la1lr, ..., la,lrl : ll/lht"t.

Finally let us see thatlsls(x) < lsh(x) for s e ,F1. For e > 0, we choose / e
H 8 Ê(x) such that l(x) : s(x) and ll/lhtrt < e€lsl1,@). Then, by the previous
observation,

lsl-y(x): llls(x) = ll/ll,ar"t < e€lslp@)

Thus the assertion follows.

Remark3.6. We assume that l.l is non-trivial and ll.ll : ll.llvsfor some finitely
generated lattice ,ff of H. Then a free basis (et,...,er) of ,ffyields an or-
thonormalbasisof F1 withrespectto ll.ll (c/. Proposition2.8). Moreover,.ff:
(1{' ll'll).r.

3.2. Semipositive metric

we assume that z is semiample, namely certain tensor power of r is generated by
global sections. We say that a continuous metric h : ll.ln@))xexun is semipos-
itive if there are a sequence {er} of positive integers and a sequence {(%, ll.llr)}
of normed finite-dimensional vector spaces over Æ such that there is a surjective
homomorphism V, 8* Ox , L&en for every n,and that the sequence

D

{r,*##3}

{;"'#3}^

oo

n:l

converges to 0 uniformly on Xan.

Proposition 3J. If X is projecttve, L is generated by global sections, and h is
semipositive, then the sequence

,larlrlp@)l
converges to O unifurmly on Xan

Proof. We set
l,ln@)l < l,arlx

Am: [ÏlîX
xeXaî

*##l
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Then a 
^ 

a*, < a*ffl (by (3) 
!n 

l..emma 3.2, and hence lim.* * aa / m : inf {a* / m}by Fekete's lemma. For e > 0, there is an en > 0 such that

e-"' l.lh^ @) < l.ln,(x) < ee,e l.l1r", (x)

for all.r € Xan, where hn: {t.tt}ll,,.,,,;(.x)}".r_. Thus

e-"" ll.llh* < ll.lln, < e",€ ll.llnn ,

so that "-"*l.lliï'ioi s I.lfi'ttx) . "",,lllylro). Thus, by proposition 3.3,

"-'"' l.lll.' @) < l.ln,(x) < e",, l.llii, f*).
Therefore,

r 
=l,l,i.'r,:,1 - 

l.ln,@) l.llii'(*) - o2eoe- lln",@) l.ln*@) l.lhJ.) ] 6 ' r

that is, 0 < a"nf en < 2e ,andhence 0 < lim.*_ a*/m <2e , as required. n
corollary 3.8. A continuous metric h is semipositive if and onry if, for anye > 0, there is a nositive integer n such thai, yor att"x e i*, we canfinds e H0 (x, ron)ar*r \ {0} with ttT tt 

^, 
i it"2 ene ls I 

p, (x) .

Proof' First we assume that ft is semipositive. By using proposition 3.7,we canfind a positive integer n such that L@n is generated by globar sections and

l\n, @) = l.llT"t(r) . 
"ne/21.1p 

@)

for all -r e Xan . On the other hand, there is an r € Ho (X, Len) t(*) \ {0} such that
lls lln,,;t"t . 

"", 
/2lrllïo,1";. Thur,

lls lln,,tro . r", /2 It lll,ot(r) . en€ lsly (x).

Next we consider the converse. lor a positive integer m,thereis a positive inte_ger em such that, for any x e xan, *" 
"un 

find s E H:di;4,-;A;;)at,t \ {0} with
llslllr"^,ççç's < 

"e^/mlsl1r"^(x). 
clearly L@"^ isgenerated by global sections. More-over,

|s|v,(x) = lr|Ëitrr,. 
""^))r.,o"_)(x1 

< s"^/m|s|6o,(x),

that is,

corollary 3.9. I'et h be a continuous metric of Lun. If there are c
of positiie integers and a sequence rhnl of màtrics ,ulh thot o" t! )l!iriiïr!f;)
metric of (Lae,')an for each n and

l,^_ l.ll,,(x)
l toe 

lw,r-)
converges to 0 unifurmly as n -+ oo, then h is semipositive.

Proof. For a positive number é > 0, choose a positive integer n such that

"-eer/3qren 
< hn < 

"een/3pen 
.

As le, is semipositive, by corollary 3.q, there is a positive integer rn such that,
for all x e Xan, we can find s e H0(X,La^r,,)îG) \ {0} with llsllnf;,t1t S
eme"€ /3 Blh1(-r), so that

llsll1ro,",,p1"'1 < e€men/3llslln,;; ,t1r1 . r2mene/3lslnx@) < e^'n'lslp",,(y\.

Therefore, the assertion follows from Corollary 3.8. n

33. The functions o and p on Xan

Throughout this subsection, we assume that x is projective. Let Éè6,0(X) denote
the group of isomorphism classes of pairs (L l) consisting of an invertible sheaf L
onXandacontinuousmetric hof Lan. FixZ: e,h) e ÉÈ60(X). Weassume
that L is generated by global sections. We define o7@) tobe

o7',)::'-(Tî#)

Lemma 3.10. ForT andf e Éè6,0(X) such that both L and L' are generated by
global sections, we have the following

(l) or > 0 on Xan;
(2) o7*7 (x7 < o7(x) I o7 @) for x e Xan ;

@ IfT -t , then oT : ol on Xan.

Proof. (1) and (3) are obvious. (2) follows from (3) in Lemma 3.2. !

We assume that Z is semiample. We set

N(Z) :: ln e Zt I Zan is generated by global sections| .

o=1,"r(
l.tquot, , {Ho1x,7a"^1,

l.16^@)
I.lnoù(x) I

m

Thus & is semipositive.
n
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Note that N(Z) + 0 and N(Z) forms a subsemigroup of Zrl with respect to the
addition of 2.1. For x € Xun, we define pZ@) to Ue 

-

rr7@):: inr {"t#1, . *r.l}
Note_ that Ér; is upper-semicontinuous on Xan because o7e, is continuous for all
n e N(t). We set

ftËrttl :: {(L,fi eîcço(X) | Z is semiampte}.

Note that ÉèJrfXl forms a semigroup with respect to 6.

Lemma 3.11. LetE - (L, h) andT' : (L' , ht) be erements of fc[o(x). Then we
have the following:

(l) It holds pT > 0 on Xan;

(2) It hotds pt@): nUL 
?9 *, x e Xan;

n eN(L)
(3) Itholds &7*7@) < p+7@)I1.t7@)forx € Xan;

\!l I{T -l , then pr: pt on xan;
(5) For n > O, l"f, : np{on X^.

Proof. (1) follows from (1) in Lemma 3.10.

. 
(2) 

111."."rr,,+,t.(x),= o1p,(x) I oia,,(.r) for n,n, e N(l,) by (2) in
Lemma 3.10, the assertion follows from Fekite's lemma.

(3) and (4) follow from (2) and (3) in Lemma 3.10 rogerher with (2), respec-
tively.

(5) rf n : 0, then the assertion is obvious, so that we may assume that n > r.
We fix ns e N(Z). Then ns € N(t8r). Thus, by (2),

uv,@):.q "# : n ^\ry# : ntr'l. n

. We let Éè6,0(X)q be the quotient space of fr6,0(X) Oz e by rhe e_vector
subspace generated by (Ox, {"-À1.19}) _ ),(gr, {l.lg}), where {l.l!} denàtes the
trivial continuous metric on ôy. Note that ft.o1xjq can be ioentiRea with the
Q-vector space of all pairs (2, à), where Z is anllem.irt of li"1X) g e and fr is a
continuous metric on I (see Subsection 2.L5). Moreover, *" r"i

frË'fxlo :: {(2, nS e fcroçx)q I Z is semiample}.

Let r : Éè6.0 (X) + ft6,0 (X)qbe the canonical homomorphism. For Z e ftlo (X)r,
we choose a positive inreger n andZ, e û|txl with t(L): Zr,. Ï,À
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W7,@) / n does not depend on the choice of n and Zn . Indeed, let us choose another

n' e Z,y andln, e Éèjo(x) with (Ln,) :T&n' . ls 4fi"'1 : ,(T3,") :T*nn' ,

there is a positive integer rz such that L:^"' :T,9^n .By (5) in Lemma 3.11,

,lnt FLn(x) : &ta^,, (x) : ttya^, (x) : mnpLnt(x),

that is, lt7,@) /n : &Ln,(x) /n' ,as required. By abuse of notation, it is also denoted

by ttz@).

Lemma 3.12. ForT,t <ftJr(X)O, we have the following:

(1) It holds w7*7@) < W7@) + trf @)for x e Xan;
(2) For d € Q'0, pTpo : ap7 on Xan;

(3) IntL1,...,T, be elements o7Éè6,01X;q. We assume that there are open
intervals It, . . . ,1, o/R such that

L aDl" a .' .a L7" . ftj'1xlq

for all (tr, ... ,tr) e (I1x ... x 1r) n q. Then,for afixed x e Xan,there is
a continuous function f : 11 x'.' x I, --> R such that

.f (h, . . ., tr) : &zod,t o...oV+ @)

for all (h,...,tr) e (11 x .'. x 1,) î Q'.

Proof. (1) and (2) are consequences of (3) and (5) in Lemma 3.11, respectively.
(3) we set 

ro4t,...,t7) :: *Ts1,rs...sv,,@)

for(rr,...,t,) e (1r x ...x Ir) îQ'. By(1)and (2),for À e [0, 1]nQand
(h, . . ., tr), (tl, . . ., t'r) e (1r x . .' x 1r) î @, we have

fo(),(n,...,t,) + (1 - x)(ti,...,t',))
:l-L_ _

1tat1"8...8f";ol*(Zozf i * ,*'l )@(r -À) 
(x)

. Lt L*4,re.-@Ê, (.r) + (l - L)p_*_*,\* .*t,i@)
: À.foîr,...,t,) + (1 - Dfo?i,...,t',),

that is, /s is concave on (11 x . . . x 1r) fl Q'. Therefore, the assertion (3) follows
from [14, Corollary 1.3.2]. n

Let (L , h) be anelement of ftjr 1X;q. We say that à is semipositive if there is

a positive integer n such tTTat Lan e Pic(X) and h" is semipositive. The following
characterization of the semipositivity of h is a consequence of Proposition 3 .7.
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Proposition 3.13. ForT : (L,A; e Éèjr(X)A,h is semipositive if and only iÎ
tLT :0 on Xan

we assume that l.l is non-trivial. Let 9{be a model of X over Spec(07.). Let
Z e Pic(X) 8Q and I ePic(%) OQ with gl, : L.Letn be apoiitive inreger
such that La* e Pic(X). Then we define Z - (L, h) tobe

(L, h) :: (L*^,ll.ly*,,@)l,nr^)*t/^ .

Proposition 3.14. If L is ample and I is nef, then h is semtpositive.

Pro^o.f. First we assume that 9is ample. we choose a positive integer n such that
9a'^e Pic(,9{') and 9an is very ample. Then we have an embedâing t : g{ -->
P(Ho(g', g@\) and 9a" : L*(Ow<notsse,;(l)). Let (et, . . . , €,) be a free
basis of H0 (g', g@\. We define a norrn ll.ll of tO(X, I&n; to be

llarer l'..I e,e,ll :: max{lal,...,larl}.

Note that (H0(X, Le\,l.ll):r : H0(g', ga"), so that, by proposition 3.5, we
frave I'lf|oj,",16,),1.') (r) - l.l-s*,(x) for x e Xan . Thus ft is semipositive.

In general, let d be an ample invertible sheaf on fl'and I :: dlx. We
choose ô € Q,o such that L I Ae" is ample for all a € (-ô, ô) n e. Note ihat

T a (e,lla)e' : (r o A@, ,l.l.saæ,) ,

so that &Ta1t,116y@. : 0 for e e (0, ô) n Q by the previous observation together
with Proposition 3.13. On the other hand, by (3) in Lemma3.l2,

ttz@) : 
ItJË 

rr*,o,1.1"u;e. (x).

eeQ

Therefore, FL : O,and hence fu is semipositive by Proposition 3.13. n
Remark 3.15. Assume that the absolute value l.l is non-trivial. Let z be an am-
ple invertible sheaf on X, equipped with a semipositive continuous metric ft. Then
there exists a sequence l(g'r, g")|r11, where ffi is amodel of X and gn is anef
invertible sheaf on 9{n such that gnlx - L8, and that hn : [ls,(x)r/r)*.y^n
converges uniformly to h. This follows from proposition 3.7 and the comparison
between quotient metrics and model metrics (via the embedding into the projective
spaces of lattices). combining with Proposition 3.14 and corollary 3.g, we ob-
tain that, in the non-trivial valuation case, our semipositivity coincides with that of
zbang [21] and Moriwaki [16]. we refer the readers to fr2,Section 6l and to [g,
Section 6.81 for the descriptions of the semipositivity in terms of plurisubharmonic
currents. Note that their semipositivity is also equivalent to our semipositivity.
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4. Extension theorem

Throughout this section, we assume that X is projective and reduced. Let us begin
with a special case of the extension theorem. The general extension theorem is a
consequence ofthe special case.

4.1.. Extension theorem for a metric arising from a model

Let 1f,' --> Spec or be a model of X. We let I bean invertible sheaf on SYlsuch that
9l x : L. We have seen in Subsectio n 2.1 .6 that I induces a continuous metric
h : {l.l-s@)}.'ex- of Zan.

Theorem 4.1. We assume that l.l is non-trivial and 9is an ample invertible sheaf.

Fix a reduced closed subscheme Y of X, a section t e H01Y, Lly) and a positive

number e. Thenthere are apositive integer n andan s e Ë10(X, Lan) suchthat
slv : lan and

llsllr, < 
""' (lltllv,n)' .

Proof. Clearly, we may assume that I I 0. Let {J/ be the Zariski closure of Y in %'
(c/. Section 2.1.7).

Ctaim 4.2. There are a positive integer a and an a e k' such that

"-ae/2 
.lul@ollv,no < r.

Proof. Since the absolute value l.l is not trivial, there exists a non-zero element y
of È such thatlog lZl < 0.Hence there exists arational number bla (witha e Z',s
andb eZ)stchthat

log ll/llr,r , b , log ll/lly,r é

log lzl - e - log lyl 2loglyl'

rhat is, ,-ea/2 S WPllUli,h < 1. By the equality llla"lly,n : llllli,n it suffices to

take cu - yb to conclude the claim. tr

By Corollary 2.14,there is a B e or \ {0} such that

Ê (uP'1a^ e ruo (% Y*'^lr)

lor all m > 0. We choose a positive integer rn such that lBl-1 < 
"ame 

/2 un6

Ho (.gt', g8"*) --+ Ho (* t*'^lr)



is surjective, so that we can find an t-eH, (g',g8o-) such th at t*lgr: B(u',a)emNote that lllmllh, < 1. Thus, if we set s - B-to-nl.,rlr"n ,1).:1*.* uno

lls llp. : I Êl-r lal-^ llt^ll n"^ < eom€ /2 1q;m
< eam(/2@f* (e",/211ap"llr,o")* : sene (iltll",n)"^ ,

as required. 
D

42. Extension theorem for quotient metrics

Theorem 43. We assume that L is very ample. 
^,Let ll.ll be a norm of Ho(X, L)and h a continuous metric of Lun stve:n by ll.lËîi",;;, .;u;i:."^ rzt y be

a reduced closed subscheme of X and t e 7loii,'^iir'l."ir"r,']o, onré > 0,there are a positive integer n and ans e i.r.(x, ;s;;'r:r;";;;tt'rlr : l'n andllslla" < en' (lllllv,ù" .

Proof' First we assume that l.l is non-trivial. Let us begin with the following:
claim 4.4. Therc are a positive integer a and afinitely generated rattice ,ffofUo (X,284) such that

ll.lln < ll.llæ< 
"",/zll.lln .

Proof. First we assume that l.l is discrete. we choose a positive integer a such thattat-r . eo,/2. we s.t.ryi: U . iidtx','iô;;"ii;;,"î'ii,iI" that,ff is afinitely generared lattice of ao(x, L*";;; Ëroposition 2.10. As ll.lln, < ll.ll.r<l- l-,1 
-il.|| 

n' by propositio n 2.l0,we have the assertion.
Next we assume that l'l is not discrete. By proposition 2.ll,thereis a latticeT of H0(x,r) such trrat li.lla : lt:ttr- si i,roporition 2.i;,;;;;"is a finitetygenerated rattice .ffof n06. L) such that kc 'fand 

il.il1, 
= i r)= e,/211111,,asdesired. 

ev : / g's ll -llr? : ll'll",f - 
n

Let ,9{be the Zariski cl99ye of X in p(.tr) (c/. Subsecti on2.l.7) and g _Oeçm\)lr Moreover, let ht beu 
"on,inuou, 

metric of (Z&a;an given by

Il'ftÏi,',,',, *, a) 1"."""'
Then, by Proposition 3.5 and Remark 3.6,1.1n, : l.l-g. Therefore, by virtue ofTheorem 4'1, there are a positive integer m andan,s € H,(x,1*am,rsuch thatsly : lao* and,
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lls ll n^ < eam€ /2 
1117e,a 1ly,n,)^ .

As ll.lla, < ll.llæ< e",/2ll.lln, we have

l'loqT"'t") < l.ln, @) . 
""' 

/2 l.lllo' @)
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for all x e Xan. Therefore, by proposition 3.3,

l.ln"@) < l.ln,@) < e"'/21.11,,(x) gz)
for all .r € Xan. In particular ,1.11r,^ (x) < 1.11r,,,(-r). Therefore,

llslln. < llslla-,. (4.3)

On the other hand, by using (4.2),

llta"lly,n, . 
"ae/2 

sup{l/8d17,,0) ly € run} . ""r/zflllly,n)". (4.4)

Thus the assertion follows from (4.1), (4.3) and (4.4).
Next we assume that l.l is trivial. clearly we may assume thatl t' 0. Let È, be

the field ft((z)) of formal Laurent power series over k, that is, the quotient field of
the ring È[z] of formal power series over È. Note that ktis separa^ble over È. we
set

û
i:0

t ( U Q (rog llslla, - log lls/117,,)

,s/€^ryo(x,Z@t)\{0}

(4.r)

es {llslla' I s e aO(x, rs') \ {0}} is a finite serby virtue of Subsecrion2.2.t,we
have #(x) = Ro. Therefore, we can find c e Rro \ E. Here we consider an
absolute value l.l/ of ft/ given by

lôQ)( :: exp(-o ord(@(z))) (ô(T) e kt).

We set

X' :: X xspec(È) Spec(fr/), y' :: y xspec(/<) Spec(È/) and L, : L g* k, .

Note that Ho(x" L') : a!(x, L) @t kt. Let ht be acontinuous metric of Ltun
given by the scalar extension of à. Then, by Lemma 3.4, ht is given by

{ 
t 
.tf}i r,,r, ,1.1k,)(x\l ,,.x,^ ,

where ll'117., is the scalarextension of_il.11. Moreover, fors e H\(x,z), it holds
lsln,@'): l{lt(pun(-rt)) for xt € X,un,where p : X, --> X is the piojection. Note
that p^n i Xtan -+ Xan is surjective. Therefore, llsll7,, : llslla for all s e Uo6, D.

--By 
the previous observation, there are a positive integer n and, an s,e H0 (x', ,

Z'an) such that

s'lr, : l&n and lls'lln^ < e,, fllllv, ,h,), : er, |ltllv,ù" .

Note that, for a positive integer d, we have

,'8d e H0(x', L'*on), ,'*olr,- ladn and 11s,@d110,0, . "dn,llllly,ùdn.
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Thus we may assume that Ho(X,Le\ --> Ho(y, zJp,; is surjective. Let
(et, . . . , er) be an orthogonal basis of H0çX, Zan) with respect to ll.llt, such that
(et+l,...,er) forms a basis of Ker(F1O(X, Lan) --> no(i, LlTrD (c/. proposi-
tion2.2). We set

st : et(T)er + ... -f at(T)et * a111(T)et+r + .. .+ a,(T)e,

forsome ar(T),...,ar(T) € kt : fr(Z). As srl", : l&n e HÙqy, tlpr) and
(elv ,..., etly) forms a basis of HÙ(y, Ll?\, we have a(T),...,a{T) e k.
Note that

u/ U Q(rogllslla"-loglls/117,,),
s,s/€Ho(X,Z@n)\{0}

so that, by Lemma 2.6 and Remark 2.7 together with Subsection2.2.4, (et, . . . , er)
forms an orthogonal basis of Ho(X' ,l'an; with respect to ll.lh,,. Therefore, if we
setJ : a1(T)e1+... + a1(T)e1,thens e Ho(X,18'),we have sly : /@, and

lls lla, - max{ lar (Z) | llerll n,, . . ., lat (T)lllet lln }
I< max 
I lar (z) I lle rlln^, . . ., lat (T)llle, lln,, lapl(T)lt llet +lllhn, . . .,

l,,rQ)(llerllh,l
: llstllp," < e"'(lllllv,ù" ,

as required. n

43. General case

Theorem 45. we ossume that L is ample and h is a semipositive continuous met-
ric of Lan. Fix a reduced closed subscheme y,l e Ho(y, Lly) and e € IRr6.
Then there is^a positive integer ng such that, for all n > n0, we can find an
s e Ho1x, La\ with

sly : l&n and llslla, < en'flllly,ù".

Proof. clearly we may assume thatl + 0. Let us begin with the following claim:

Claim 4.6. For any e' > 0,there areapositive integer N and an.çN € H0 qX, LaNy
such that

rnlr : /aN and llsrvlla,v . ,N'' Qltllv,ùN .

Proof. By using Proposition 3.7, we can find a positive integer a such that Lad is
very ample and

l.ln@) 
= l.lTT"t(") . 

""e'/2111,"(x)
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for all x € Xan. We set n' : ffllio'(x)). Then, the above inequalities mean that

lln"@) < l'ln,@) . ,ae'/21'11'"(x) (4.5)

for all x € Xan. Furthermore, by Theorem 4.3,there are a positive integer b and an
so6 e H0(X, Laob) such that sably : l@ob and

llsoùl n,u . ,abe' /2 
7111@" llv,n )b .

By (4.5), it holds

lllso ll v,n, . rae' /2 lpaa ll y,no : eo'' /2 (llt llv,ù" .

Moreover, as l.l1.a (-r) 3 I'l1rt(x) by (4.5), we have lls"6llpo < lls"6llo,o, so that

llso6llpu < llso6llp < 
"abe'/27111s,ollv,nùb

. 
"abe' 

/2 
7"ae' 

/2 |llllv,ùo)b:""b'' (lllllr,n)ob .

Therefore, if we set N : ab, then we have the assertion of the claim. !
Since Z is ample, by Corollary 2.17,the above claim is actually equivalent to

the assertion of the theorem. Thus the theorem is proved. n

5. Arithmetic Nakai-Moishezon criterion over a number field

In this section as an application ofthe extension property (cf. [17] and Theorem 4.5),
we consider the arithmetic Nakai-Moishezon criterion over a number field under a

weaker assumption (adelically normed vector space) than Zhang's papet l2ll.

5.1. Adelically normed vector space over a number field

Fix a number field K. Let Ox be the ring of integers in K. We set

I up ,: Spec((?r) \ t(0)]

Iri ,: K(C) (i.e.the set of all embeddings K '-+ C).

Moreover, My :: MYU Mf;.Forp e Ml{ ando € Mf ,the absolutevalues l'lp
and l.l" of K are defined by

lxlp :: #(Oy/p1-otdv@) and lxlo :: lo(x)l (x e K),

respectively. Furthermore, for p € Iutp,the completion of K with respect to l.lp
is denotedby Kp. In addition, Ko and K + Ko @ e Mf) are defined to be C
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aîd o , respectively. By abuse of notation, for u e Mç, the extension absolute of
l.lu to Ku is also denoted by l.lr. In the case where u : o e Mf ,the absolute
value l'1" on Ko : C is the usual absolute value. If p e Ml{ ,the valuation rings of
(K, l.lp) and (Kp, l.lp) are denoted by Op and (2p, respectively. Nore rhat (?p is the
localization of 06 with respect to Ox \ p, and Oo is ttre completion of the local
ring Op.

fin
<lt
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Definition 5.L. Let H be a finite-dimensional vector space over K. For u e My,
H 8x K, is denotedby Hr. For each u € My,let ll.ll, be a norm of 11, over
(Kr, l.lr). In the case where u e MY, the norm ll.ll, is always assumed to be
ultrametric. Moreover, we assume thai the family fl.llr)reup is invariant under
complex conjugation, namely for any finite family of vectors fi;)tr in .É1 and vec-
tor (À;)f_, of complex numbers, one has

ll[Osr +...+Âr 8"nlla: lllr Bsr + ...1),,gsnllo.

The family {ll.llr}re,rzr of norms is ofren denoted bV ll.ll.We set

I

Ita, I'll)fi :: lx e H I llxllp < 1 forall p e M!{l
[fa, lt.ttll, ;: {x € H I llxllps I }.

The pair (11, ll.ll) is called an adelically normeduector space over K if, for any
x e H, llxllp : I except finitely many p e M!{, and (H,ll.ll)l"l is a finitely
generated (?6-module (cI.16,Definition 2.ll and [7, Definition 2.10]i.

Lemma 52. we will assume that (H,ll.ll) ts an adericaily normed vector space
over K . Then, the following hold:

(t) Forp e MY,we have (n, ll.ll)! : (H,ll.ll)1'î On" (?p;

(2) We have (H,ll.ll)fi oo* K : H. Moreover,la, tt.tDl", @ze: H;
(3) Iæt "f : H --> Ht be a surjective homomorphism of .fi1ite-dimensional vector

spaces over K . l*t lllll"ot be the quotient norm of H! induced by the surjection
fu i H! --, Hi, and the norm ll.ll, on Hu. Then (H,,ll.llquot) is an adàlically
normedvector splce over K and

t (<u, r.il)g) : (H' , llquo')

By Lemma 5.3 as below, there is an a e Kx such that

ordq,(a) > 0(Vi : 1,...,r) and ordq(a) :0 (Vq e M1{\{qr,...,gr}).

We choose a positive integer n such that llanxllq, < 1 for all i : 1, ..., r. Note

thatan e Of and,anx e tA, tl.ttll"r, so that x : ot-na'x € (É1, ll 'lD\r 8o* Op.

(2) For x e H,by using Lemma 5.3, we can find a Ê e Ox \ {0} with B;r e
(É1, ll.ll)_1"1, which means that the first assertion holds.

Lety e Or \ {0}.Thenthere î1ê a1,...,Qn e Zsuchthat

yn *otyn-l +"'+ an:0.

Clearly we may assume that an I 0. Thus, if we set

y' : -(y'-r + oty'-r +..' + an-r),

thenyt e Oç and,yy' : ar. Note that(H,11.11;!n, Snr K and (Ë1, ll'll)fi Sz Q
are the localizations of (H,ll 'll)lli with respect to Or \ {0} and Z \ {0}, respectively.

Therefore the last assertion follôws.

(3) Let us see that

t (rn,ll'll)!1) : (H' ,ll'llq""')!r (5.1)

for all p e Ml{.Clearly one has /
inclusion follows from Proposition
(5.1), we obtain

t (tu,ll.ll)ii) 8o* op: (H',ll'llq*')l"r 8oK op-

Therefore t(o,ll ll)i'r) :(H',ll'llq""t)l'ï by [1,Proposition3.8],asrequired.

Lemma 53. IEt E be afinite subset 
"f 

MF{ .Then there is an u e Kx such that

(ra, tl il)!r) c (H' ,ll.llq""')-|. The converse

2.1. By using (1) together with the equation

where ll'lleuot : { ll.llSuot}r.,rz" .

Proof. (1) Obviously (Ë1, ll.ll)fi ecc* Oo c (H,ll.ll)lr. Conversety, we assume
thatx e H and ll.rllp < 1. We set

lq e uP I llxllq > 1l : {qr, ..., {,}.

Proof. We set X : {pr, ..., F"}.As the class group of K is finite, foreach i, there

are a positive integer n; and an a; € Or \ {0} with pft : uiOK. Thus, if we set

o : àt' ' 'ee,then the assertion follows. n

ordp(cY)
>0
-0

ifpeE
,fp e uP!\>.
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Ry,n :: Rn/ P, and 7y,n :: 9n/ Pn O 9n
oo oo

5.2. Estimation of lq for a graded algebra

A normed z-module is a pair (,///, ll.lD of a finitely generated z-module .,// and a
norm ll.ll of .r/@z lR.. we define )"q(.t//,ll.ll) and Là(z/,lllD as follows. rf t//is
a torsion module, then

)'q(.tL, ll.ll) : ),2(t//, ll.ll) : 0.

otherwise, let ),q(.2//,ll.ll) (respectivery ),ve,//,ll.ll)) be the infimum of the ser of
non-negative real numbers À such that we can find a e-basis €1, . . . , e, of .,,//q ::
-t// &z Q which is contained in ..// (respectively a iree basis' of "///"//r.)înlle; ll < À for all i : I, .. . , r. Note that

),q(.tt, ll.ll) . ),2(//,ll.ll) s rk(h)).q(.t//, ll.ll) (s.z)

(cf.|5,Lemma 1.21).

. L:, R : OÊo R, be a graded Q-algebra of finite type such that R is an
integral noetherian domain 

1nd 
dlmq R, 

^< 
oo for all n = ô. I_"t g : @Zng,be a graded subalgebra of R such that frn is a finitely generated z-module and

4"grQ: Rn foralln > 0. For eachn > 0,let tt.tt, UËanonnof Rn 6lqlR(:9n }zR). We assume that

(s,n.lt): ô (e,,ll,)
n:0

ts a normed graded Z-algebra, that is, for a e gn and b e gn,, it holds lla .

blln+n, < llalln . llbll,,.
_ Let X :: Proj(R) and I be a closed subvariety of X over e, that is, I is a

closed, reduced and irreducible subscheme of X ou"i q. Let r : -çi;[0 p; be th;
corresponding homogeneous prime ideal of R to y . We set
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Theorem 5.4. Let 6x be the set of all subvarieties of x and let u : 6y -> IRr6 be
a map. we assume that,for every Y e 6 x, there are a positive integer n(y) anà an
sy e 9y,n1y) \ {0} with llsvllliilrl S u(y)^V) . Then there are a positive number
B and afinite subset S of 6x such that

),q(%n,ll'll,) < Bnd(d+t)/2 (max{u(r) | f e S})n

for all n > l, where d : dimX.

Proof. It is a generalization of [15, Theorem 3.1]; however, it can be proved in a
similar way. For reader's convenience, we give a sketch of the proof.

Step 1. For a positive integer à, we set

Rhn, @) :: 96, P&) -ô oj', and ffint
n:O

By using [15, Lemma 2.2 and Lemma 2.4],we can see that if the theorem holds for
6h) and uh , then it holds for Q and, u. iherefore ,by ï4,Chapter III, Section l,
Proposition 3], we may assume that R is generated by R1 over Rg and s :: .rx €
9r. Let OxQ) be the tautological invertible sheaf of X arising from R1 .

We prove this theorem by induction on d.

Step 2. I r the case where d : 0, X : Spec(K) for some number field K, so that
Rn c Hg(X, Ox@)) = K. Therefore, dimq R, < IK : Q] for all n > 1, and
hence the assertion can be checked by the same arguments as in [15, claim 3.r.2].

Step 3. 'We assume d > O. Let 1 be the homogeneous ideal generated by s :: sy,
that is, 1 : Rs. By using the same ideas as in [13, Chapter I, PropositionT.4f ,we
can find a sequence

I:IoÇhÇ...Ç1,:R
of homogeneous ideals of R and non-zero homogeneous prime ideals p1 , . . . , p,
of R such that Pi - Ii c Ii; fori: l,...,r.
Step4. Wesetfr, - (9n,ll.ll,) and,Vi,r: (Ai,r,ll.lli,,), where,g;,n::9,îIi,n
and ll.ll;,, is the subnorm induced by ll.ll, and I;,, + Rn.Here we consider the
following sequence:

@0 3 4, e ... e V,,r e ...e 7,,t:@r

:64u,'
n:0

R!) ::

Ry :: 
I O"" and Qr ,: 

9*ro.
Let ll'llp"jt be the quotient norm of Rtn Oe IR induced by the surjecrive homo-

l"tpTtAR, 9q \ t 
--Rr,n 

8q R and the norm ll'll, on Àn oe IR. Note that
!4v." &zQ : Ry,n for all n > 0 and

(*r,u.il?""') : 
Ê (*r,^,r.rffi')

is a normed graded Z-algebra. Then we have the following:

-5 Vo,i +
:\ 9s,t*1 '--.'

+ -qi, j '-> " ' L> 7r,i:@i

- 7r,j+r - + 4r,j+t ôz
JL:tl

JTI

's 4,, 9i,n 9... + v,,,:@n---_> + 9
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Let ll.lllit be the quotient norm of li,n/Ii-r,n induced by ll.ll;,, and li,n -->
It,n/Ii-t,n. Notethat As,nf%nas isatorsionmodule foralln ) l,sothat,apply-
ing [15, Proposition 1.4] to the above sequence, we have

xq{@) =l I tt 
" 

lt I 
-'.i q(Ai, i / 9i -l, j, ll 

. 
ll li:') dimq(I ;, i / r i a, )
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+ llsll!),q(frs) dimq R6.

Step 5. Here we claim the following:

Claim 55. The following facts hold:

(1) If 4 e Proj(R), then there are positive constants B; and c; , and a finite subset
S; of 6y such that

),q(Ai,n / Ai-r,,, ll.lll)"t) < B. nd(d-r)/2 (max{u(y) I r e s, })"

and dimq(4, n/Ii-r,à < Cind-r for all n > 1.
(2) If Pi É Proj(R), then there is a positive integer n; such that li,n/Ii_l,n : 0 for

n > ni.Inparticular,),q(Ai,n/gi-r,r, ll.ll!,)"t) :0 and dimq(ti,n/Ii_l,n) :0
foralln> n;.

Proof. (1) follows from [15, Proposition 2.31 and the hypothesis of induction. In
the case (2), Pi : OËr Rn because Rs is a number field. As Ii / Ii-r is a finitely
generated (R/P;)-module, we can find a positive integer n; such that li,nf I;_y,n -Oforn> n;. !

step 6. The assertion of the theorem follows from (5.3) by using (1) and (2) of
Claim 5.5. n

53. Nakai-Moishezon's criterion

Let X be a geometrically integral projective variety over a number field K. For a
closed subvariety Y of X and u e Mçç,we sêt Zy :: y xspec(K) Spec(Kr). Let
L be an invertible sheaf on X. For u e My,lethube a coniinuous metric of Lf,n

9l Xln, where L, :: L 8x Kr. Note that X(C) is canonically identified wiih
Uoeup Xo(C), so that h6 i: {holoeM? yields a metric on i-. We assume
that hoo is invariant by the complex conjugation map F- on X(C). Moreover, for
s e Ho1f, Lly), we set

llsllr,,a, :: sup{lsl7,,(x) I x e Yî"}.

Theorem 5.6. We will assume thefollowing:

(a) For any n e Z,o, the space (Ho1X,Len),{ll.llx",nilr.u*) ts an adelically
normedvector space over K;

(b) The sheaf Tl, is bigfor atl subvarieties Y of X, that is, Lly is big onY and there

are a positive integer n and an s e Hj(Y, ZIP") \ lO\ suchthat llsllyo,1r,, < I
forattp < M!{ andllslly",1,2 <lforalto e Mf;;

(c) It holds that h, is semipositivet 7or all u e My.

Then there are positive numbers B and u such that u < I and

r'o ((attx , La')'ll'llft')n 
r 
, .TWlll'll,",021) "no'o*"''u'

foralln> l.

Proof. First note that l, is nef because Ll6, is big for all curves C on X. Moreover,
as Lly is big on Y and L is nef, we have (Lfi^") = 0. Therefore, L is ample on
X by virtue of the Nakai-Moishezon criterion for projective algebraic varieties.

'We 
set

Rn:: Ho7X, La'), frn:: (Rn, ll.lla,)lnr and ll.lln

n r

j:r j:1 (s.3)

:: max lll'llx",n:loeMf

Note that 9n is a finitely generated Z-modtle. We use the same notation as in
Subsection 5.2. Note that X : Proj(R) because Z is ample. Fix a closed subvariety
I. For u € My,the norm llllx,,ni on H01Xr, Zf;n) (respectively the norm ll.llr,,ai
on H0(Y,, Ll?P is denoted by ll.llx,,, (respectively ll.llr,,,). Note that ll.ll, :
maxoçyylll.llx",n). Let ll.ll!,""j be the quotient norm of Ry,, 8x K, induced by

ll.llx,,, âna tne surjective hoÉromorphism Rn 8x K, + Ry.n 8x Kr. We also

fix a positive integer ,?0 such that, for all n > ns, Ho(X, L@\ --> n01Y, f1p'\ ls

surjective.
By (3) in Lemma 5.2 and Theorem 5.4, it is sufficient to show that there are a

positive integer n(I) > ns and an s e F10(r, r l?'("))\{0} such that lls ll}""1, n = 
|

for all p e Mliand llsll[""], n < lfor all o e Mi.
As Zl" is big, there are an nr > 0 and an s' < Ho7Y, Ll?"t) such that

lls'llro,n, < lforallp e Ml{and lls'llr",n, < lforallo e Mf. Since

H0(x, yanou'r--> H01Y, Llflnou, is surjective, we can find an l'eH0(X,Lenoul
suchthat /1": s/sno,sothattherearepl, ...,F, e Ml{ suchthat lll'llxo,ror, S I

for all p e Mf{ \ {pr,. ..,F,1. In particular, llr'anoll}iïr,, < 1 for all p e

I In the case where u e Mf; , the semipositivity of h, can be defined as the uniform limit of the

quotient metrics as describéi in Subsection 3.2. This semipositivity coincides with the positivity
of the first Chern current of (L r, hrl). For details, see [1 7].
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Mp't fpr,...,P"].ByLemma5.3,wecanchoose Ê e Ox\ {0} suchthat
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ordr(B)
>0 ifue {Fr,...,F"1
-0 if ueMx \{pr,...,F"1

since lls/llv" ,r, . I for all o e Ml,we can find a positive integer r?2 such that

Corollary 5.9. We will assume (a), (b) and (c) as in Theorem 5.6. Let (N, g) be
a pair of an irwertible sheaf N on x and a family g : lgulueux of contiiuous
metrics g, of Nî" on Xln. We will qssume that goo :: {golo.u? is compatible
with respect to F* and

(to,t, L,n &N), {ll 'llx,,nig,l,.u*)

is an adelically normed vector space over K for all n > 0. Then there is a positive
integer ns such that,foru u no, (uo(x,L8" gN), ll.lh,,s)1"1 has afree basis
(at,...,(Drn) overZwithll@illn1g" < lforalli:1,...,rn aido e Mf ,where
rn is the rank of Ho (X, L&, & N) over Q.

Proof . we use the same notation in the proof of rheorem 5.6. Moreover, we set

max{lcr{É)l lo e Mfl <1. (s.4)

claim 5.7. If we set s : Ês'@nonz ,then s satisfies the following properties:

(i) Itholds ll'llflillr,,,o < I forallp e Mp" \ {p,, ...,F"};
(ii) Itholds llsllro,,n2n1,o < l foralli: 1,...,e;
(iii) Itholds llslly",n2ntno < l forall o e Mf .

Proof' (i) is obvious. (iii) follows from (5.4). Ler us consider (ii). As ordp, (B) > 0
and lls/llyo.,n, < 1, we have

llsllyo,,rrnrno : #(o x /F)- ordor (É);;"ranonr 
llyo,,rorrr,

: #(ox/Fù-ordp,(É) (llr,ll"o,,,,),on, . r,

as required.

Next let us prove the following claim:

Claims.8. If lltllv,,* < 1 for u e My and I e Ho(yu, Lrl?:),rhen there is an
mg such that, for all m, > ng, it holds

llr*^'ll}o!.*, . 1.

Proof' choose an € >- 0 such that eêiltilv,,m < r. By virtue of the extension
property kf. U7) and rheorem 4.5), there ii an ms such that, for all mt . mo, we
can find t' e H0çX,,, 1@mmt,, with t,lr,: ls,m' and llttlly,,^*, S "^,, flrll;,",;;;r.In particular,llt'llx,,^., < 1, so that tË assertion follows. n

Bytheaboveclaim,foreach i : I,...,eando e Mf ,thereisapositive
integer n3 such that

lltt" llTilj,r, ,,r,, 1 I and 1rt', llT)lj,r, ,nrno . r.

If we set n(Y) :: n3n2nrno and sy :: s8rr, then llsy ll!,"oj(yt S 1 for all p . Mp
and llsvll$""j(r) < l for all o e Mi. 

- v'"\'' 
!

An:: Hoçx, Zon €l N)

,d,:: (uo(x, Lan &N), ll.lh,,,s)11 and ll.lll ,: 
"*fip{ll 

.llx",n2s"loeMp

(,*4,,, "',,,"',,r)"0"'

oo

A:: @ An
n:O

oo
(d, ll.ll)': O (d,, ll.ll).

n:0

Note that (d,ll.l() is a normed graded (A, HD-module (c/. [15, Section 2]), wheren
oo

a : @{no (x, L*"), ll.lla,)l"r

Furthermore A is a finitely generated over @po H0(X,lar) because L is ample.
Therefore, by Theorem 5.6 together wlth [15, Lemma 2.Z],there is a positive num-
ber B'such that Lq(d",ll.ll;) S Btnd(d+t)/2un for all n t l,so rhai, by (5.2),

)"2(d,,ll.ll;) 5 dimq F10(X, La" I N) . Btnd(d+t)/2un

for all n > l. Thus we can find a positive integer n 0 such that ),v (d",I.llr) . t
fot n > n0, as required. n

n:0
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On flops and canonical metrics

IveN A. CHpr-rsov AND YANIR A. RUBINSTEIN

Abstract. This article is concerned with an observation for proving non-existence

of canonical Kâhler metrics. The idea is to use a rather explicit type of degenera-
tion that applies in many situations. Namely, in a variation on a theme introduced
by Ross-Thomas, we consider flops of the deformation to the normal cone. This
yields a rather widely applicable notion of stability that is still completely explicit
and readily computable, but with wider scope. We describe some applications in
dimension two, among them, a proof of one direction of the Calabi conjecture for
asymptotically logarithmic Del Pezzo surfaces.

Mathematics Subject Classification (2010): 14J45 (primary); l4E3O, 32Q20
(secondary).

1.. Motivation and results

A variety is slope stable in the sense of Ross-Thomas if, roughly, it is K-stable
with respect to degenerations to the normal cone of its subvarieties. This notion
has been studied extensively by a number of authors and has yielded many non-

existence results for canonical metrics on projective Kâhler manifolds. Our main
purpose in this article is to introduce a slight variation on this theme by considering

a somewhat more involved notion of stability that involves additional flops on the

degeneration to the normal cone but that is still geometric and computable, and is

partly inspired by the work of Arezzo-Della Vedova-La Nave and Li-Xu.
In this article we only develop the details of this idea in the two-dimensional

case.

This already gives many new non-existence results, and most notably allows

us to resolve one direction of the Calabi conjecture for asymptotically logarithmic
DelPezzo surfaces.
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