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CHAPTER 1

Introduction

In algebraic geometry, Hilbert function measures the growth of graded linear series of
a line bundle on a projective variety. Let k be a field, X be an integral projective scheme
of dimension d € N (= Zs) over Spec k, and L be an invertible Ox-module. The Hilbert
function of L is defined as

Hp :N— N, Hy(n) = dimg(H* (X, L®")).
If L is ample, then the following asymptotic estimate holds:

(LY

Hy(n) = T +o(n?). (1.1)

This formula, which relates the asymptotic behaviour of the Hilbert function and the
auto-intersection number of L, is for example a consequence of Hirzebruch-Riemann-Roch
theorem and Serre’s vanishing theorem. It turns out that the construction and the asymptotic
estimate of Hilbert function have analogue in various contexts, such as graded algebra, local
multiplicity, relative volume of two metrics, etc.

In Arakelov geometry, an arithmetic analogue of Hilbert function has been introduced
by Gillet and Soulé [48] and an analogue of the asymptotic formula (I.1)) has been deduced
from their arithmetic Riemann-Roch theorem. This result is called an arithmetic Hilbert-
Samuel theorem. Let & be a regular integral projective scheme of dimension d + 1 over
Spec Z,and Z = (Z, ¢) be a Hermitian line bundle on ', namely an invertible Og--module
& equipped with a smooth metric ¢ on Z(C). For any integer n € N, we let ||-||,, be the
norm on the real vector space H(2, £) ® R defined as follows

Vs e H(X, L)@z RC H' (X, ZE™).  Isllng = sup [slay (x).

xeZ(C)
Then the couple (H(Z, Z°®"), IIllnp) forms a lattice in a normed vector space. Recall
that its arithmetic Euler-Poincaré characteristic is
vol({s € HY (XL, ZL®") ®z R : |Isllny < 1})
covol (HO(L, %), ||llng)

X(HU(ZL, Z%"), |Illng) = In

where vol(-) denotes a Haar measure on the real vector space
HY(Z,%) @z R,

and covol(HO(Z', Z®™), IIIln) is the covolume of the lattice HO(Z, £®") with respect to
the Haar measure vol(-), namely the volume of any fundamental domain of this lattice. In
this setting the arithmetic Hilbert-Samuel theorem shows that, if & is relatively ample and
the metric ¢ is positive, then the sequence

X (H(L, 29", ||llng)
nd i d+ Dl

eN,n>1
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converges to the arithmetic intersection number (§d+l). In the case where & is ample, the
arithmetic Hilbert-Samuel theorem also permits to relate the asymptotic behaviour (when
n — +oo) of

card({s € H(ZL, Z®") : |Isllny < 1})

to the arithmetic intersection number of Z. These results have various applications in
arithmetic geometry, such as Vojta’s proof of Mordell conjecture, equidistribution problem
and Bogomolov conjecture, etc. The arithmetic Hilbert-Samuel theorem has then been
reproved in various settings and also been generalized in works such as [1}39,163].

Recently, a new framework of Arakelov geometry has been proposed in [36]], which
allows to consider arithmetic geometry over any countable field. Let K be a field. A
structure of proper adelic curve with underlying field K is given by a family of absolute
values (]+|)weq of K parametrized by a measure space (Q, A, v), which satisfies a product
formula of the form

VaeK*, /ln|a|wv(dw)=0.
Q

We assume that, either K is countable, or the o-algebra A is discrete. This notion is
a very natural generalization to any countable field of Weil’s adelic approche of number
theory. The fundament of height theory and Arakelov geometry for projective varieties over
an adelic curve have been established in the works of Gubler [49] (in a slightly different
setting of M-fields) and Chen-Moriwaki [36]], respectively, see also the model theoretical
approach of Ben Yaacov and Hrushovski [52]. More recently, the arithmetic intersection
theory in the setting of adelic curves have been developed in [38]. Note that in general it is
not possible to consider global integral models of an adelic curve. Several classic notions
and constructions, such as integral lattice and its covolume, do not have adequate analogue
over adelic curves. It turns out that a modified and generalized form of normed lattice —
adelic vector bundle — has a natural avatar in the setting of adelic curves. An adelic vector
bundle consists of a finite-dimensional vector space V over K equipped with a family of
norms (||-||)weq On vector spaces V,, = V @k K, (where K, denotes the completion
of K with respect to the absolute value |-|,,), which satisfy dominancy and measurability
conditions. The Arakelov degree of the adelic vector bundle

V=V, (Ilw)we)

is then defined as
Fe®) == [l A+ A g v(do)
Q

where (s;)]_, is an arbitrary basis of E over K. This notion is a good candidate to replace
the Euler-Poincaré characteristic.

Let 1 : X — SpecK be a projective scheme over Spec K. For any w € Q, let
X = X Xspeck Spec K, and let X% be the analytic variety associated with X,, (in the
sense of Berkovich [9] if |-|, is non-Archimedean). If E is a vector bundle on X, namely
a locally free Ox-module of finite rank, we denote by E,, the pull-back of E on X,,. As
adelic vector bundle on X, we refer to the data E = (E, (f,)weq) consisting of a vector
bundle £ on X and a family (), ecq of continuous metrics on E,, with w € Q, which
satisfy dominancy and measurability conditions. It turns out that, if X is geometrically
reduced, then the vector space of global sections H(X, E) equipped with supremum norms
(IIlly,,) weo forms an adelic vector bundle 7. (E) on the base adelic curve.

Let 7 : X — Spec K be an integral projective scheme of dimension d over Spec K and
L= (L, ¢) be an adelic line bundle on X, that is, an adelic vector bundle of rank 1 on X.
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Assume that the line bundle L is ample. We introduce the notion of y-volume as

®n

vol, (L) = lim sup —dZ%Eﬂ*(L ) .
n—otoo N/ (d +1)!
In view of the similarity between Arakelov degree and Euler-Poincaré characteristic of Eu-
clidean lattices, the notion of y-volume is analogous to that of sectional capacity introduced
in [64], or to that of volume in [74]]. Moreover, similarly to the number field case, we show
in Theorem-Definition[4.2.T| that the above superior limit defining the y-volume is actually
a limit. However, from the methodological view, we do not follow the classic approaches,
which are difficultly implantable in the adelic curve setting. Our strategy consists in casting
the Arakelov geometry over an adelic curve to that in the particular case where the adelic
curve contains a single copy of the trivial absolute value on K, that is, the absolute value
|-lo such that |a|p = 1 for any a € K \ {0}. More precisely, to each adelic vector bundle
V = (V, (Il o) wee), We associate an ultrametric norm ||-||o on V (where we consider the
trivial absolute value |-|g) via Harder-Narasimhan theory in the form of R-filtrations, such
that

— — 1
deg(V, (II'll ) wea) — deg(V, ||-||0)‘ < 5V(Qe) dimg (V) In(dimg (V)),

where Q. denotes the set of w € Q such that ||, is Archimedean. Then the convergence
of the sequence defining vol v (L) follows from a limit theorem of normed graded linear
series as follows (see Theorem [3.4.3] and Corollary [3.4.4] for this result in a more general
form and for more details):

THEOREM A. Assume that the graded K-algebra (B, . HO(X, L®") is of finite type.
For any integer n > 1, let ||-||,, be a norm on H°(X, L®") (where we consider the trivial
absolute value on K). Assume that

(a) in\f{o} In ||s]|, = O(n) when n — +co,

n

(b) for any (n,m) € N2>1 and any (s, s;m) € Vyy X V,y, one has

Isn = Smllnem < sl - lsmllm-

Then the sequence

deg(V, [I1n)
_— e N
nd @+ e S

converges in R.

In view of the classic Hilbert-Samuel theorems in algebraic geometry and in Arakelov
geometry, it is natural to compare the y-volume to the arithmetic intersection number of
adelic line bundles that we have introduced in [38] (see also the work [49] on heights
of varieties over M-fields under the assumption of integrability of local heights). Let
7 : X — SpecK be a projective scheme of dimension d > 0 over K and L = (L, ¢)
be an adelic line bundle on X such that L is ample and the metrics in the family ¢ are
semi-positive. Then the arithmetic self-intersection number (L4*") of L is written in a
recursive way as

17—
N[(uf;v(s))s— [ ] mblemaCoe) @) a2
QJXE

where N is a positive integer, and s is a global section of L#V which intersects properly
with all irreducible components of the projective scheme X. One of the main results of the
article is then the following theorem (see Theorem [5.5.1).
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Tueorem B. Assume that, either X is geometrically integral, or the field K is perfect.
Let L = (L, ) be an adelic line bundle on X such that L is ample and that all metrics in
the family ¢ are semi-positive, then the following equality holds:

vol, (L) = (L*).

Note that, in the literature there exists a local version of the Hilbert-Samuel theorem
which establishes an equality between the relative volume of two metrics and the relative
Monge-Ampere energy between them. We refer the readers to [[10] for the Archimedean
case and to [20}17] for the non-Archimedean case (see also [18]]). These results show that,
for a fixed ample line bundle L on X, the difference between \7(;1)( (L) and (L") does not
depend on the choice of the metric family on L (see Proposition [5.1.4] and Remark [5.1.6).
Moreover, by an argument of projection to a projective space (on which the arithmetic
Hilbert-Samuel theorem can be proved by explicit computation, see Proposition[5.2.5), one
can show that the inequality \70\1X (L) > (L") holds (see Step 2 of the proof of Theorem
5.5.1.

In view of the recursive formula (T.2) defining the self-intersection number, a natural
idea to prove the above theorem could be an argument of induction, following the approach
of [1] by using an adaptation to non-Archimedean setting of some technics of complex
analytic geometry developed in [17,/44]. However, it seems that a refinement in the form
of an asymptotic development of the function defining the local relative volume is needed
to realize this strategy. Unfortunately such refinement is not yet available. Our approach
consists in casting the arithmetic data of L to a series of metrics over a trivially valued
field. This could be considered as a higher-dimensional generalization of the approach of
Harder-Narasimhan R-filtration mentioned above. What is particular in the trivial valuation
case is that the local geometry becomes automatically global, thanks to the trivial “product
formula”. In this case, the arithmetic Hilbert-Samuel theorem follows from the equality
between the relative volume and the relative Monge-Ampere energy with respect to the
trivial metric (see Theorem [5.3.2). Note that this result also shows that, in the case of a
projective curve over a trivially valued field, the arithmetic intersection number defined
in [38] coincides with that constructed in a combinatoric way in [37] (see Remark @]}
The comparison of diverse invariants of L with respect to those of its casting to the trivial
valuation case provides the opposite inequality vol » (L) < (L%"). As asequel to the above
arguments in terms of trivially valued fields, our way towards the arithmetic Hilbert-Samuel
theorem over an adelic curve gives a new approach even for the classical case.

As an application, we prove the following higher dimensional generalization of Hodge

index theorem (see Corollaries and[6.5.2).

Tueorem C. Assume that, either X is geometrically integral, or the field K is perfect.
Let L = (L, ) be an adelic line bundle on X. Assume that L is nef and all metrics in
the family ¢ are semi-positive, then the inequality \’/(?l(Z) > (L") holds. In particular, if
(LYY > 0, then the line bundle L is big.

Theorem (B naturally leads to the following refinement of the arithmetic Hilbert-
Samuel theorem, in introducing a tensor product by an adelic vector bundle on X (see
Corollary [5.5.2). As in Theorem [B] we assume that, either X is geometrically integral, or
the field K is perfect.

TueoreM D. Let L = (L, ¢) be an adelic line bundle on X and E = (E, ) be an
adelic vector bundle on X. Assume that L is ample and the metrics in ¢ are semi-positive.
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Moreover we suppose that either tk(E) = 1 or X is normal. Then one has

deg (HO(X. L @ B), (I lng, s wcc
lim

n—+00 nd+1/(d + 1)'

= rk(E) (L.

The second part of the article is devoted to the study of positivity conditions of adelic
line bundles. Positivity of line bundles is one of the most fundamental and important
notions in algebraic geometry. In Arakelov geometry, the analogue of ampleness and
Nakai-Moishezon criterion have been studied by Zhang [80, |81]]. The arithmetic bigness
has been introduced in the works [60, (74, [61]] of Moriwaki and Yuan. These positivity
conditions and their properties have various applications in Diophantine geometry.

We assume that the underlying field K of the adelic curve S is perfect. Let X be a
projective scheme over Spec K. Given an adelic line bundle L on X, we are interested
in various positivity conditions of the adelic line bundle L. We say that the adelic line
bundle L is relatively ample if the invertible Ox-module L is ample and if the metrics
of L are all semi-positive. The relative nefness can then been defined in a limit form of
relative ampleness, similarly to the classic case in algebraic geometry. Recall that the global
intersection number of relatively ample adelic line bundles (or more generally, integrable
adelic line bundles) can be defined as the integral of local heights along the measure space
in the adelic structure (cf. [49)38]]). This construction is fundamental in the Arakelov
height theory of projective varieties.

We first introduce a numerical invariant — asymptotic minimal slope — to describe
the global positivity of an adelic line bundle L such that L is ample. This invariant, which
is denoted by iy (L) describes the asymptotic behaviour (when n — +o0) of the minimal
slopes of the sectlonal spaces HY(X, L®") equipped with sup norms (which are adelic
vector bundles on ). It turns out that this invariant is super-additive with respect to L. This
convexity property allows to extend the construction of the asymptotic minimal slope to
the cone of adelic line bundles with nef underlying invertible Ox-module (see for the
construction of the asymptotic minimal slope and its properties). The importance of this
invariant can be shown by the following height estimate (see Theorem for the proof
and Proposition [6.4.8] for its generalization to the relatively nef case).

Tueorem E. Assume that the field K is perfect. Let X be a reduced projective scheme
of dimension d > 0 over Spec K, and Ly, . . . , Ly be a family of relatively ample adelic line
bundles on X. Foranyi € {0,...,d}, let 6; be the geometric intersection number

(Lo---Li—1Lis1---Lqg).

Then the following inequality holds:

Y

(Lo~ La)s > ) 8 o (L),

i=1
where (ZO - 'Zd)s denotes the arithmetic intersection number of Lo,...,Ly.

The asymptotic minimal slope always increases if one replaces the adelic line bundle
by its pullback by a projective morphism (see Theorem[6.6.6): if g : X — Pisa projective
morphism of reduced K-schemes of dimension > 0, then for any adelic line bundle M on
P such that M is nef, one has [F?s 1}; (g"(M)) > ’ﬁi(M ). Typical situations include a closed
embedding of X into a projective space, or a finite covering over a projective space, which

allow to obtain lower bounds of ﬁ:: 1};1 (L;) in the applications of the above theorem. Note



6 1. INTRODUCTION

that the particular case where Ly, ..., Ly are all equal to the same adelic line bundle L
gives the following inequality

(zd+l )S ~asy /7

G > P (13)
which relates the normalized height of X with respect to L and the asymptotic minimal
slope of the latter. This inequality is similar to the first part of [81, Theorem 5.2]. However,
the imitation of the devissage argument using the intersection of hypersurfaces defined by
small sections would not work in the setting of adelic curves. This is mainly due to the fact
that the analogue of Minkowski’s first theorem fails for adelic vector bundles on a general
adelic curve. Although (in the case where X is an integral scheme) the inequality (T.3)
could be obtained in an alternative way by using the arithmetic Hilbert-Samuel formula of
L together with the fact that the minimal slope of an adelic vector bundle on S is always
bounded from the above by its slope (see Proposition[6.7.1)), the proof of Theorem [E|needs
a new idea. Our approach consists in combining an analogue of the slope theory of Bost
[14} 15] with the height of multi-resultant.

The relative positivity and the Hilbert-Samuel formula have natural applications in
equidistribution. In Arakelov geometry, equidistribution of small algebraic points in an
arithmetic projective variety has firstly been studied in the work [66] of Szipro, Ullmo
and Zhang (see also the Bourbaki seminar review [2] of Abbes), which has a fundamental
importance in the resolution of Bogomolov’s conjecture [67, [79] by Arakelov geometry
method (see [40] for another approach to the conjecture using Diophantine geometry). Let
us remind the statement of the arithmetic equidistribution theorem in its classic form. Let A
be an abelian variety over a number field, L be a symmetric ample line bundle L equipped
with a positive adelic metric ¢ such that the Arakelov height function with respect to L
coincides with the Néron-Tate height. Let (x,),cn be a sequence of algebraic points of A
such that the Néron-Tate height of x,, converges to 0 (we say that such a sequence is small).
Then the Zariski closure X of (x;),en is the translation of an abelian subvariety of A by
a torsion point. Moreover, if in addition any subsequence of (x;),en is Zariski closed in
X, then, for any Archimedean place o of the number field, the Borel measure ¢y, , on
X (C) of taking the average on the Galois orbit of x, converges weakly to the Monge-
Ampere measure ¢| (L, @) 5™X) on X, (C). This equidistribution theorem has then been
generalized in various contexts. We refer the readers to [60] for the case where the base
field is a finitely generated extension of Q, to [25}I55]] for the case of a semi-abelian variety,
to [5) 4] for equidistribution of a small sequence of sub-varieties, to [6, 45, 7] for the case
of a dynamical system on a projective line, and to [26] for an equidistribution theorem of
a small sequence of algebraic points in the analytic variety over a non-Archimedean place.
We also refer to [51), 43] for similar results over function fields. In [74], an arithmetic
analogue of Siu’s inequality has been proved, which leads to an equidistribution theorem
with a weaker condition on the metrics of the adelic line bundle.

We revisit the equidistribution of a small sequence of subvarieties in the setting of
Arakelov geometry over an adelic curve. Assume that the underlying field is countable and
perfect. Let X be an integral projective scheme over Spec K and d be the dimension of X.
Let L = (L, ¢) be an adelic line bundle on X, namely an invertible Ox-module L together
with a family ¢ = (¢ )weq of metrics on L, satisfying dominancy and measurability
conditions. We assume in addition that L is semi-ample (namely a tensor power of L is
generated by global sections), deg; (X) = (L¢) > 0 and ¢ is semi-positive. The data L
Zl;l,im(y)“)

permit to construct an arithmetic intersection number ( g for any integral closed
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subscheme Y of X, which can be written as an integral over €2 of local intersection numbers.
In the case where deg; (Y) = (L|dylm(Y)) > 0, the normalized height of Y with respect to L
is defined as

T,

(dim(Y) + 1) deg; (Y)"

Let Y be an integral closed subscheme of X such that deg; (Y) > 0. For any w € Q, we
denote by 67y, the Radon measure on X such that, for any continuous function f on the
analytic space X%,

1 )
o+ dx) = ——— L , dim(¥) (4y).
S P00z 0@0 = s [ e Lol ol @)
In the case where |-, is non-Archimedean, the Monge-Ampere measure

c1(Lolyys @wly,) ™) (dy)

has been constructed in [26, Definition 2.4].

Note that, if one modifies the metrics ¢, for w belonging to a set of measure 0, the
height of subvarieties of X does not change. However the local Monge-Ampere measure can
be modified by this procedure. Hence it is not adequate to consider a local equidistribution
problem with respect to a single place w unless the set {w} belongs to A and has a
positive measure with respect to v. We therefore introduce the following global version of
Monge-Ampere measure. Let Q' be an element of A such that v(Q’) > 0. We denote by
X¢y the disjoint union [] .o X7} of local analytifications indexed by Q’. We equipped
this set with a suitable o-algebra Bx o so that the canonical projection map X7 — Q'
sending the elements of X2 to w gives a fibration of measurable spaces. It turns out that
local Monge-Ampere measures mentioned above form a disintegration of a measure on
(X&), Bx ) over v|g: for any integral closed subscheme Y of X such that deg; (Y) > 0,

Qe

we denote by 62’,,’9, the measure on (Xg,‘, Bx o) which is defined as

/XQ Jx) gy o (dx) := /Q (/xw F) 67y, (d) | v(dw).

It is worth while to say that the global adelic measure determines the local measures almost
everywhere, that is, if the global measure 67 , ,, coincides with another global measure
0f y.q- then 67y, = 07,y ,, almost everywhere on Q' (cf. Proposition|7.7.1). From

a functional point of view, one can consider 67 , . as a linear form on the vector space

hp(Y) =

of adelic families of continuous functions on X. Denote by ‘5}3 (X) the set of families
f = (fw)wea of continuous functions on X such that (Ox, (e /*[-|,)weq) forms an
adelic line bundle on X. Note that f yields a measurable function fo on X&' given by
fa(x) = fu(x) for x € X2 We denote by €Y(X;Q’) the vector subspace of EY(X)
consisting of f € €2 (X) such that f,, = 0 for any w € Q\ Q'. Then

(F eG00Q) — [ fW)57y 00
X

defines a linear functional on %S(X ;Q’). One of the main results of the article is the
following (see Theorem [8.11.2).

TueoreM F. Let X be an integral projective scheme of dimension d over Spec K
and L = (L, ¢) be an adelic line bundle on X such that L is semi-ample, (L%) > 0
and ¢ is semi-positive. Let (Y,)nen be a sequence of integral closed subschemes of X,
such that each of its subsequences is Zariski dense in X, and that h7(Y,) is well-defined
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and converges to hy(X) when n — +oo. Then, for any Q' € A such that v(Q') > 0,
the sequence of measures (07 y o )nen, Viewed as a sequence of linear functionals on

BY(X;Q'), converges pointwisely to 0T x o

The proof of the theorem is inspired by the original work of Szipro, Ullmo and
Zhang, the subvariety version of Autissier, together with the differentiability interpretation
introduced in [30]. The idea relies on the following simple observation. Let V be a real
vector space, xo be an element of V, and f and g be two real-valued functions on U such
that f(x) > g(x) for any x € V. Assume f is concave on V, g is Gateaux differentiable
at xg, and f(xg) = g(x9). Then the function f is also Gateaux differentiable at xy and its
differential identifies with that of g. Concretely in the case of the equidistribution problem,
we consider, for any integral closed subscheme Y of X such that deg; (Y) > 0, the linear
functional @y : €Y(X;Q’) — R which sends f € €2(X; Q') to

vol, ((L, ¢+ f)ly)
(dim(Y) + 1) deg, (Y)’

where \EX((L, ¢ + f)]y) denotes the y-volume of (L, ¢ + f)|y, which is defined as

deg(HO, LIZ, (Ml ngurn i, ) oco)
lim - -
n—+oo pdim()+1 /(dim(Y) + 1)!
By the arithmetic Hilbert-Samuel formula, the value of ®y at O identifies with A7 (Y).

Moreover, this functional is concave. Consider now a generic sequence (Y;,),en of integral
closed subschemes of X as in Theorem|F, For any f € Y(X;Q’), let

@y, (f) = liminf @y, (£).

Since the functionals @y, are concave, so is @y,. The sequence (¥},),cn being generic,
the functional ® is bounded from below by ®x. Moreover, the hypothesis that (A7 (Yy)),
converges to h7-(X) shows that @y, (0) = ®x(0). Therefore, we deduce from the differ-
entiability of ®x the equidistribution result. Note that the equality @y, (0) = ®x(0) is
not always satisfied. In general, for any generic sequence (¥,)nen, the limit inferior of
@y, (f) when n — +oo is always bounded from below by the asymptotic maximal slope of
(L, ¢ + f), which is defined as

s (HOO LI, (Hlngsnfl, ) )

n

~asy

/Jmax(L’ p+ f) = lim
n—+co

Moreover, the lower bound [y (L, ) of ®y, (0) is attained by a certain generic sequence

(Yn)nen (see §[8.10). In particular, if the function
(f € BYX: Q) — (L, @+ f)
is Gateaux differentiable at O, then the following relation holds

) A asy
lim 6Z,Yn,9’(f) = 5 t:()/lmax(Lv p+ tf)

n—+oo

Note that Theorem [F| gives a partial answer of [[77, Conjecture 5.4.1] by Yuan-Zhang.

The global adelic space that we use to study the equidistribution problem permits to
extend the construction of arithmetic intersection product in allowing one of the adelic line
bundle to be possibly not integrable. This construction has applications in the study of
weak relative positivity conditions. Bigness is another type of positivity condition which
describes the growth of the total graded linear series of a line bundle. In Arakelov geometry
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of number fields, the arithmetic bigness describes the asymptotic behaviour of the number
of small sections in the graded sectional algebra of adelic vector bundles. This notion
can be generalized to the setting of Arakelov geometry over adelic curves in replacing
the logarithm of the number of small sections by the positive degree of an adelic vector
bundle (namely the supremum of the Arakelov degrees of adelic vector subbundles). In
[36. Proposition 6.4.18], the arithmetic bigness has been related to an arithmetic sectional
invariant — asymptotic maximal slope, which is quite similar to asymptotic minimal slope:
for any integral projective K-scheme and any adelic line bundle L on X such that L is
big, we introduce a numerical invariant [T, (L) which describes the asymptotic behaviour
(when n — +00) of the maximal slopes of H°(X, L®") equipped with sup norms (see
for its construction and properties). It turns out that this invariant is also super-additive with
respect to L, which allows to extend the function fio, (+) to the cone of adelic line bundles
L such that L is pseudo-effective. Moreover, in the case where L is nef, the inequality
Y (L) < i (L) holds.

Recall that Fujita’s approximation theorem asserts that a big line bundle can be de-
composed on a birational modification into the tensor product of two Q-line bundles which
are respectively ample and effective, with a good approximation of the volume function. In
this article, we establish the following relative version of Fujita’s approximation theorem
for the asymptotic maximal slope (see Theorem and Remark [8.5.7).

TueoreM G. Assume that the field K is perfect and the scheme X is integral. Let L
be an adelic line bundle on X such that L is big. For any real number t < [Tos, (L), there
exist a positive integer p, a birational projective K-morphism g : X' — X, a relatively
ample adelic line bundle A and an effective adelic line bundle M on X’ such that g*(Z®P)
is isomorphic to A ® M and ﬁanm (A) > pt.

As an application, in the case where X is an integral scheme, we can improve the
height inequality in Theorem [E]in relaxing the positivity condition of one of the adelic line
bundles and in replacing the asymptotic minimal slope of this adelic line bundle by the
asymptotic maximal slope (see Theorem [8.6.1).

THeoREM H. Assume that the field K is perfect. Let X be an integral projective
scheme of dimension d over Spec K, and Zo, o ,Zd be adelic line bundles on X such
that Ly, ...,Lyq are relatively ample and Lg is big. For any i € {0,...,d}, let 6; =
(Lo-+-Li—1Liy1 -+ Lg). Then the following inequality holds:

d
(Lo La)s > 6o fimn (Lo) + ) 61 e (L2)
i=1
In the case where Zo, . ,Zd are all equal to the same adelic line bundle L, the above
inequality leads to

(Zd+l)
s sy (T sy (T
> A (D) + d B (D).

In the case where the adelic curve S comes from the canonical adelic structure of a
number field, if L is a relatively ample adelic line bundle, then ﬁf; iyn(L) is equal to the
absolue minimum of the Arakelov (absolute) height function /7 on the set of closed points
of X. This is essentially a consequence of [81, Corollary 5.7]. Similarly, the asymptotic
maximal slope fiyx (L) is equal to the essential minimum of the height function hz. This
is a result of Ballay [8, Theorem 1.1]. In this article, we show that these results can be
extended to the case of general adelic curves if we consider the heights of all integral closed
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subschemes of X. More precisely, we obtain the following result (see Theorem and
Proposition [8.10.1].

THEOREM 1. Assume that the field K is pefect. Let X be a non-empty reduced projective
scheme over Spec K and ®x be the set of integral closed subschemes of X. For any relatively
ample adelic line bundle L on X, the following equalities hold:

sy ( |d1m(Y)+l)
mm( ) - Ylengx (dlm(Y) + 1)(L|dlm(Y)) Yeng Hmax(LlY)

Moreover, if X is an integral scheme, the following equality holds:

F/I‘?SZX(L) = Ssup lnf /'lnfax(L|Z)
YE@X €Ox
Y#X Z¢Y

We also show that a property similar to Minkowski’s first theorem permits to recover
the link between the asymptotic maximal and minimal slopes, and the Arakelov height of
closed points in the number field case. More precisely, we say that a relatively ample adelic
line bundle L is strongly Minkowskian if for any Y € ©x one has

dim(Y)+1
1 — L
lim - sup deg(s) > (Lly )dfm(y)
MUY T e B0y, LIS (dim(Y) + (L[, ")
s#0

This condition is always satisfied notably when the adelic curve S comes from a number
field (consequence of Minkowski’s first theorem) or the function field of a projective curve
(consequence of Riemann-Roch theorem). We then establish the following result (see

Corollary [8.9.2).

THEOREM J. Assume that the field K is pefect. Let X be an integral projective
scheme over Spec K and L be a relatively ample adelic line bundle on X which is
strongly Minkowskian. Denote by X0 the set of closed points of X. Then the equal-
. Aasy .
ity ymm(L) él}(f(o) ht(x) holds.

Motivated by Theorem I} we propose the following analogue of successive minima for
relatively ample adelic line bundles. Let f : X — Spec K be an integral projective scheme
of dimension d over Spec K and L be a relatively ample adelic line bundle on X. For
ief{l,...,d+1},1et

€ (Z) sup lnf #max(L|Z)

Y C X closed
codim(Y')>i 1 Y

With this notation, one can rewrite the assertion of Theorem[l] as

e1(L) = I (L), eqr1 (L) = 7= (L).

mln
We show in Remark[8.10.2]that, in the number field case, one has
Vie{l,...,d+1}, e;(L)= sup inf  hp(x). (1.4)
Y C X closed xe(X\Y)©

codim(Y)>i
Thus we recover the definition of successive minima in the sense of [80, §5]. We propose
several fundamental questions about these invariants:

(1) Do the equalities (T.4) hold in the case of a general adelic curve, under the
assumption that L is strongly Minkowskian?
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(2) What is the relation between the invariants e,(L), ..., eq(L) and the sectional

—Q®n
algebra @, fu (L )?
(3) Does the analogue of some classic results in Diophantine geometry concerning
the successive minima, such as the inequality

still holds for general adelic curve?

(4) In the case where (X, L) is a polarized toric variety and the metrics in ¢ are toric
metrics, is it possible to describe in a combinatoric way the positivity conditions
of L, and express the the invariants e;(L) in terms of the combinatoric data of
(X, L), generalizing some results of [21},22] for example?

The last chapter of the article is devoted to the study of global positivity of adelic line
bundles. Motivated by Nakai-Moishezon criterion of ampleness, we say that an adelic line
bundle L on X is ample if it is relatively ample and if the normalized height with respect
to L of integral closed subschemes of X has a positive lower bound. We show that this
condition is equivalent to the relative ampleness together with the positivity of the invariant
1Y (L). Therefore, we deduced from Theorem@that, if Lo, . .., Ly are ample adelic line

min

bundles on X, where d is the dimension of X, then one has (see Proposition[9.1.3)
(Z() .. ’Zd)S > 0.

In the case where L is strongly Minkowskian, L is ample if and only if it is relatively ample
and the height function /7 on the set of closed points of X has a positive lower bound (see
Proposition[9.1.4). Once the ample cone is specified, one can naturally define the nef cone
as its closure. It turns out that the nefness can also be described in a numerical way: an
adelic line bundle L is nef if and only if it is relatively nef and /z'> (L) > 0 (see Proposition
OT8).

Bigness and pseudo-effectivity are also described in a numerical way by the invariant
oY (+): an adelic line bundle L is big if and only if L is big and fiay (L) > 0 (which
coincides with the bigness in [36]); it is pseudo-effective if and only if L is pseudo-effective
and [Zan, (L) > 0 (see [36, Proposition 6.4.18] and Proposition . We deduce from
T heoremthat, if Ly, . . ., Ly are adelic line bundles on X such that Ly is pseudo-effective
and that Ly, ..., Ly are nef, then the inequality (Lo, ..., Lg)s > 0 holds (see Proposition
0.27).

As an application of the equidistribution theorem together with the global positivity
properties of adelic line bundles, we consider Bogomolov’s conjecture over a countable
field of characteristic zero (see Theorem[9.4.1). We assume that K is algebraically closed
field of characteristic zero, v(Qs) > 0, and v(A) € {0, +oo}. The following theorem is a
generalization of [60, Theorem 8.1].

THeOREM K. Let A be an abelian variety over K, L be an ample and symmetric line
bundle on A, and ¢ be a family of semipositive metrics of A such that (A, ¢) is nef and ¢,
is the canonical metric of L., for each w € Q. If the essential minimum of (L, )| is zero,
then X is a translation of an abelian subvariety of A by a closed point of Néron-Tate height
0, which is a torsion point provided that any finitely generated subfield of K has Northcott’s
property (cf. [38, Theorem 2.7.18]).

We also discuss arithmetic dynamical systems in the adelic curve setting. We assume
that K is algebraically closed. Let X be a projective integral scheme over Spec K and L
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be an ample line bundle on X. We denote by End(X; L) the set of all endomorphisms
f : X — X such that f*(L) is isomorphic to a tensor power of L with exponent > 1. For
any f € End(X; L) with f*(L) = L®? for some d > 1, there exists a unique metric family

@ such that (L, ¢ ) forms an adelic line bundle and f* (L) is isometric to Z®d. We call it
the global canonical compactification of L. It is easy to see that any f-preperiodic rational
point of X is of height 0. The converge is also true if the adelic curve S has Northcott
property. We establish the following result (see Theorem[9.5.T)).

THeEOREM L. Let L be an ample line bundle on X and f and g be two elements of
End(X; L). Then the following statement are equivalent:

(1) The adelic line bundle (L, ¢r) and (L, ¢g) define the same height function on
the set of rational points of X.

(2) {x € X(K) | h(1,pp)(x) =0} = {x € X(K) | h(L,4,)(x) =0}

(3) {x € X(K) | h(L,py)(X) = h(L,p,) (x) = O} is Zariski dense in X (K).

Moreover, when these conditions are satisfied, there exist an integrable function € on Q and
Q' € A such that v(Q\ Q') = 0 and that

YweQ', ¢g0= ef(“’)gaf,w

The rest of the article is organized as follows. In the remaining of Introduction, we
remind the the notation that we use all through the article.

In the second chapter, we consider metric families on vector bundles and discuss their
dominancy and measurability.

In the third chapter, we study normed graded linear series over a trivially valued field
and prove the limit theorem of their volumes. Then in the fourth chapter we deduce the
limit theorem for graded algebra of adelic vector bundles over a general adelic curve, which
proves in particular that the sequence defining the arithmetic volume function actually
converges. We also show that the arithmetic Hilbert-Samuel theorem in the original form
implies the generalized form with tensor product by an adelic vector bundle.

In the fifth chapter, we prove the arithmetic Hilbert-Samuel theorem. We first prove
that the difference of the y-volume and the arithmetic intersection product does not depend
on the choice of the metric family. Then we prove the arithmetic Hilbert-Samuel theorem
in the particular case where the adelic curve contains a single copy of the trivial absolute
value, and we use the method of casting to the trivial valuation case to prove the arithmetic
Hilbert-Samuel theorem in general.

The sixth chapter is devoted to the study of relative ampleness and nefness of adelic
line bundles. We begin with a discussion on these positivity conditions and its relation
with sectional arithmetic invariants. We also deduce the generalized Hodge index theorem
from the arithmetic Hilbert-Samuel theorem.

In the seventh chapter, we establish the Gateaux differentiability with respect to mod-
ification of metrics of the y-volume function at any adelic line bundle L = (L, ¢) such
that L is semi-ample and big and ¢ is semi-positive. We then deduce the measurability of
certain fiber integrals. This measurability result is important in the construction of global
adelic space.

In the eighth chapter, we study asymptotic maximal slope and its relation with positivity
of adelic line bundles. We also prove an equidistribution theorem for a generic sequence
of subvarieties in the setting of adelic curves.

In the ninth and last chapter, we discuss global positivity conditions, and deduce
Bogomolov’s conjecture over a countable field of characteristic zero.
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In order to obtain the main results of the article in positive characteristic case, we need
to generalize some results of [37, Chapter 5] to any characteristic, which we resume in the
appendices.

Notation and preliminaries

1.1. Throughout the article, we fix a proper adelic curve
S = (K’ (Q9ﬂ’ V)’ ¢)7

where K is a commutative field, (Q, A, v) is a measure space and ¢ = (|+|,,) weq is a family
of absolute values on K parametrized by Q, such that, for any a € K*, (w € Q)  In|al,,
is integrable on (€, A, v), and the following “product formula” holds:

VaeKk, /ln|a|wv(dw):0.
Q

For any w € Q, we denote by K, the completion of K with respect to the absolute value
|| Let Qo be the set of w € Q such that |-, is Archimedean. Note that v(Q,) < +oo (see
[36 Proposition 3.1.2]). For w € Q, we always assume that |a|,, = a for any a € Q.
Denote by Qg, the set Q \ Q. We assume that, either the o-algebra A is discrete, or the
field K is countable.

Let K’ be an algebraic extension of K. In [36] §§3.3-3.4], it has been constructed an
adelic curve

Sek K' = (K',(Qk, Ak, vk'), k')

together with a measurable fibration 7 : Qg+ — € and a family of disintegration probability
measures (V.. )weq on fibers 771 ({w}) for vk over (Q, A, v), which is characterized
by the following properties:

(1) for any w € Q, 7' ({w}) is the set of absolute values on K’ which extend he
absolute value |-|,, on K, which is equipped with the projective limit of discrete
o-algebra, where we identify 77! ({w}) with the projective limit of the sets of
extensions of ||, to finite field extensions of K contained in K,

(2) for any integrable or non-negative A’-measurable function f : Q" — R, one has

[r@mea= [y [ e

The adelic curve S ®k K’ is called the algebraic extension of S by K’. Note that this adelic
curve is proper if S is proper.

1.2. Let V be a finite-dimensional vector space over K. As norm family on V, we refer to a
family (||| w)weq, Where ||-||, is anormon V,, :=V @k K.

Let ¢ = (||'|lw)weq and € = (||-]|%,) weq be norm families on V. For any w € Q, we
denote by d, (¢, &’) the following number

sup |InIs|lo —In|ls]l,|-
seV\{0}

In the case where V = 0, by convention d, (£,¢7) = 0.
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1.3. As adelic vector bundle on S, we refer to the data V = (V,&) which consists of
a finite-dimensional vector space V over K and a family of norms ¢ = (||||o)weq On
Vw =V ®k K, satisfying the following conditions:
(1) the norm family € is strongly dominated, that is, there exist an integrable function
C : Q — Ry and a basis (e;)!_, of V over K, such that, for any w € Q and any
A1,...,4,) € K, {(0,...,0)},

Injjdie; + -+ Arer||lo —In max |2;|,| < C(w).
ie{l,..., r}
(2) the norm family & is measurable, that is, for any s € V, the function (w € Q)
[|s]] o is A-measurable.

In the article, we only consider adelic vector bundles which are ultrametric over non-
Archimedean places, namely we assume that the norm ||-|| ., is ultrametric once the absolute
value ||, is non-Archimedean. If in addition the norm ||-||,, is induced by an inner product
whenever |-|,, is Archimedean, we say that V is Hermitian. If dimg (V) = 1, we say that V
is an adelic line bundle (note that an adelic line bundle is necessarily Hermitian).

If V is an adelic vector bundle on S, any vector subspace (resp. quotient vector space)
of V together with the family of restricted norms (resp. quotient norms) forms also an
adelic vector bundle on S, which is called an adelic vector subbundle (resp. quotient adelic
vector bundle) of V. Note that if V is Hermitian, then all its adelic vector subbundles and
quotient adelic vector bundles are Hermitian.

1.4. Let V_: (V, (I'll w)wea) be an adelic vector bundle on S, we define the Arakelov
degree of V as

deg(V) = /g I ller A~ A e loe v(dew),

where (e;);_, is a basis of V over K, and ||-|| »,der denotes the determinant norm of |||,

which is defined as (where r = dimg (V))

Vi edet(V) =A(V), [nllwge= _inf lsyll---[lse]l.
N=S1N\---\Sy

Let (ﬂa\g (V) be the positive degree of V, which is defined as

d’(;ng(V) = sup d’e\g(W),
wcv

where W runs over the set of vector subspaces of V, and in the adelic vector bundle structure
of W we consider the restricted norms. In the case where V is non-zero, we denote by (V)
the quotient deg(V)/dimg (V), called the slope of V. We define the minimal slope of V as

Ton(V):=  inf  @(W),
Hmin(V) Vﬁl‘;}#{o}#( )

where W runs over the set of all non-zero quotient adelic vector bundles of V. Similarly,
we define the maximal slope of V as

,Emax (‘_/) = sup /*T(W),
{0}#W—V

where W runs over the set of all non-zero adelic vector subbundles of V.
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1.5. Let E and F be two adelic vector bundles on S and ¢ : E — F be a K-linear map. We
define the height of ¢ as

hg) = /Q Inll¢llo v(dw),

where ||¢||,, denotes the operator norm of the K,-linear map E,, — F,, induced by ¢.
Moreover, if E is non-zero and if ¢ is injective, then the following slope inequality holds
(see [36. Proposition 4.3.31]):

ﬁmax (E) < ﬁmax (F) +h(e).

1.6. Let V be a non-zero adelic vector bundle on S. For any 7 € R, we let

FVy= > W,
{0}#WcV
ﬁmin (W)>t

where W runs over the set of all non-zero adelic vector subbundles of V such that Hmin (W) >
t. We call (F'(V));cr the Harder-Narasimhan R-filtration of V. In the case where V is
Hermitian, the following equality holds (see [36, Theorem 4.3.44]):

dea(V) = - /R ¢ d(dimg (F' (V))),

cITcg+(V)=—/O mtd(dimK(T’(V)))zfo dimg (F(V)) dt.

In general one has the following inequalities (see [36) Propositions 4.3.50 and 4.3.51, and
Corollary 4.3.52]):

0 < deg(V) + / td(dimg (F*(V))) < %V(Qm)dimK(V) In(dimg (V)),
R

0< cfe\g+(7) - /0+°° dimg (F'(V)) dr < %V(Qm) dimg (V) In(dimg (V)).

17. Let V = (V, (llv.0) weq) and W = (W, (||-llw.w)weq) be adelic vector bundles on
S. For any w € Q such that ||, is non-Archimedean, let ||-||, be the &-tensor product on
Vo ®k,, W, of the norms ||-||v,, and ||-||w,,. Note that, for any T € V,, ®k,, W, the
value of ||T||,, is equal to

leillv.ollfillw.o

T=e1®fi+t -+e,Q [y

| neN, (e)L, €Vy, (fi)iL, € WG
ie{l,..., n} )

min{ ~ max

In the case where |-|,, is Archimedean, let ||-||., be m-tensor product of ||-||v.. of ||||w. w-
Recall that for any T" € V,, ®k,, W,,, the value of ||T|,, is equal to

n
. neN, (e)t, eV:, (), e Wt
min e; . : ’ i=1 w? i=1 w .
{ ;:l ” t”V,w”ﬁ”W,w T=e ®f1 +eotep, ®fn

The pair
V Qe n W = (V ®k W, (””w)weQ)

is called the &, n-tensor product of Vand W.



16 1. INTRODUCTION

Assume that V and W are Hermitian. If |-|,, is non-Archimedean, let -1 be the &-
tensor product of ||-||v.,, and |||lw.«; otherwise let ||-||Z be the orthogonal tensor product
of the Euclidean or Hermitian norms ||-||v. ., and ||-||w... Then the pair

VW= Vex W, (1))

is called the Hermitian tensor product of V and W.

1.8. Let (k,|-|) be a field equipped with a complete absolute value, X be a projective
scheme over Spec k. We denote by X" the analytic space associated with X (in the sense of
Berkovich if |-| is non-Archimedean). Recall that a point x of X*" is of the form (j(x), |-|x),
where j(x) is a scheme point of X, ||, is an absolute value on the residue field of j(x),
which extends the absolute value |-| on the base field k. We denote by k(x) the completion
of the residue field of j(x) with respect to the absolute value |-|,, on which |-|, extends by
continuity. The set X" is equipped with the most coarse topology which makes continuous
the map j : X*" — X and all functions of the form

Is| : U™ — Ry, x> [s(x)]y,

where U is a non-empty Zariski open subset of X and s € Ox(U) is a regular function on
U. In particular, if U is a Zariski open subset of X, then U*" is an open subset of X*". We
call such open subsets of X*" Zariski open subsets.

1.9. Let 7 : X — Spec K be a projective scheme over Spec K. For any w € Q, let X,,
be X Xspec k Spec K, and let X7} be the analytic space associated with X,,. If L is an
invertible Ox-module, we call metric family on L any family ¢ = (¢.,)weq, Where ¢, is a
continuous metric on L,, = L|x,,. In the particular case where X is the spectrum of a finite
extension K’ of K, the invertible Ox-module L is just a one-dimension vector space over
K’ and a metric family of L could be viewed as a norm family if we consider the adelic
curve S ®k K’ obtained by algebraic extension of scalars (see [36, §3.4]).

If E = (E,(|||lw)wee) is a finite-dimensional K-vector space E equipped with a
norm family, g : X — P(E) is a projective K-morphism and L = g*(Og(1)), then, for
each w € Q, the norm ||-||,, induces by passing to quotient by the universal surjective
homomorphism

(8w omw) (Ew) — 84, (0k,(1)) = Lo

a continuous metric ¢,, on L,. The metric family (¢.,)wecq is called a quotient metric
family induced by (||-ll.,) weq (and by g).

Let L be an invertible Ox-module and ¢ = (¢,)cq be a metric family of L. For any
w € Q, the metric ¢,, induces by passing to dual a metric on L., which we denote by
—¢@ . The metric family (—¢,)weq on LY is denoted by —¢.

Let Ly,..., L, be invertible Ox-modules. For any i € {1,...,n}, let ¢; be a metric
family on L;. Then the metric families ¢, . . ., ¢, induce by tensor product a metric family
onlL; ®---® L,, which we denote by ¢ + - - - + ¢, in the additive form. In particular, if
all (L;, ¢;) are equal to the same (L, ), the metric family ¢ + - - - + ¢ is denoted by n¢.

Let Y be a projective K-scheme and f : ¥ — X be a K-morphism. If L is an invertible
Ox-module and ¢ is a metric family of L, then ¢ induces by pullback a metric family
f*(p) on f*(L): for any w € Q and any y € Y2, the norm [-| p+(,),, (¥) is induced by
|| o, (f3'(y)) by extension of scalars.
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1.10. Let X be a projective K-scheme, L be an invertible Ox-module and ¢ be a metric
family of L. Assume that there exist invertible Ox-modules L; and L,, together with
quotient metric families ¢; and ¢, on L; and L, respectively, which are induced by
strongly dominated norm families (see , such that L = L; ® L) and that ¢ = ¢1 — ¢,
we say that the metric family ¢ is dominated. We refer to [36, §6.1.2] for more details.

1.11. Let Q be the set of w € Q such that the absolute value |-|,, is trivial. Let X
be a projective scheme over Spec K. For any triplet x = (K, |+|x, Px), Where (K, |-|x)
is a valued extension of the trivially valued field (K, |-|p) and Py : SpecKy — X is a
K-morphism, we denote by S, the adelic curve

(va (QO’ ﬂ()v VO)’ (I'IX)Q)EQ())’

where Ay = Alq, and vy is the restriction of v to (o, Ap). If L is an invertible Ox-module
and if ¢ is a metric family of L, we denote by L, the pullback P (L) and by x*(¢) the
norm family (|-|o,, (P$))weq, on Ly, where P¢ denotes the point of X% determined by
(Px, ||x)

Assume that the transcendence degree of K, /K is = 1. Then || is a discrete absolute
value on K. Let ordy (-) : Ky — ZU {+co} be the corresponding discrete valuation, which
is defined as

ordy(a) =sup{n € Z : a e m},
where my = {b € K, : |b|x < 1}. Then there is a non-negative real number ¢ such that
|-|x = exp(—q ordy(-)). We call it the exponent of x.

1.12. Let X be a projective K-scheme, L be an invertible Ox-module, and ¢ be a metric
family of L. We say that the metric family ¢ is measurable if the following conditions are
satisfied (see [36, §6.1.4] for more details):

(1) for any finite extension K’/K and any K-morphism P : Spec K’ — X, the norm
family P*(¢) is measurable,

(2) for any triplet x = (K, |-|x, Px), where (K, |-|,) is a valued extension of tran-
scendence degree = 1 and of rational exponent of the trivially valued field (K, |-|o),
and Py : Spec K, — X is a K-morphism, the norm family x*(¢) is measurable.

1.13. Let X be a projective scheme over Spec K, L be an invertible Ox-module and ¢ be
a metric family of L. We say that L = (L, ¢) is an adelic line bundle on X if the metric
family ¢ is dominated and measurable (see §I.10]and §1.12).

Suppose that X is geometrically reduced. Let L = (L, ¢) be an adelic line bundle on
X. We denote by f(L) the couple (H°(X, L), (||ll4.,) wea), Where for s € H(X,,, L),

sl = sup [slg,, (x).
xeXxu

It turns out that f,(L) is an adelic vector bundle on S (see [36, Theorems 6.1.13 and
6.1.32]).

1.14. Let X be a projective scheme over Spec K. Let L be an invertible Ox-module,
¢ = (pow)wea and ¥ = (Y 4,) weq be metric families on L such that (L, ¢) and (L, ) are
both adelic line bundles. Then we define the distance between ¢ and ¢ as

In
xexa| ||y, (X)

v(dw).
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If L is semiample and if there exist a positive integer m and a sequence (¢, ),en of quotient
metric families (where ¢,, is a metric family of L®"™), such that

1
lim —d(nme, ¢,) =0,
n—+oo Mn

we say that the metric family ¢ is semi-positive.

1.15. Let X be a projective scheme over Spec K and d be the dimension of X. An adelic
line bundles L on X is said to be integrable if it can be written in the form A; ® Z\z/ , where
each A; is an ample invertible Ox-module equipped with a semi-positive metric family.
We denote by ITlt(X ) the set of all integrable adelic line bundles on X. In [38], we have
constructed an arithmetic intersection product

(Lo, ..., Lg) € mt(X)™") — (Ly---La)s €R,

which is multi-linear with respect to tensor product. We have also related the arithmetic

intersection number (Lg - - - Ly)s to the height of the multi-resultant of Lo, . .., L.
1.16. Let K be an algebraic extension of K. Forany (ag : ... : a,) € P"(K*), we denote
by hs(ag : ... : a,) the following real number

/ Inmax{|ag|y, ..., |anl|x} via (dx).
QKaC

By the product formula, its value does not depend on the choice of the projective coordinate
(ag,...,an), we call it the height of (ag : ... : ay).
We say that S has Northcott property if, for any C > 0, the set

{ae€eK : hg(l:a)<C}

is finite. Note that this condition is satisfied notably by number fields, and more generally
by a finitely generated extension of K equipped with the canonical adelic structure.

If S has Northcott property, then a Northcott theorem type result holds for the adelic
curve, namely, for any positive constants C and d, the set

{x e P"(K™) : hs(x) < C, [K(x) : K] < &}

is finite (see [36, Theorem 3.5.3]). More generally, if X is a projective K-scheme and
L = (L, p) is an adelic line bundle on X such that L is ample, then, for all positive real
numbers C and §, the set

{P € X(K*) : hy(P) <C, [K(P): K] < 6}

is finite, where the height 47 (P) is defined as d’;g(P*(L),P*(go)). We refer to [36,
Proposition 6.2.3] for more details.

1.17. e Let (x4)qca be a family of indeterminates over Q and K = Q((xo)aeca). We
assume that #(A) < No. Let Apy ;4 be the product o-algebra (namely the smallest
o-algebra making measurable the projection maps to the coordinates) and vy jja be the
product of the uniform probability measure on [0, 1].

o We define Q. to be

Qo = {(ta)aeA € [0, 1] | (exp(27it 4 )) qea is algebraically independent over Q}.
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Note that Qo € A 174 and v 174 ([0, 114\ Qo) = 0. Let Aq_ and vq_ be the restrictions
of Ajp, 174 and v 174 t0 Q, respectively. Fort = (14)aeca € Qo and f € K, | f|; is defined
by
|f1e = 1 f ((exp(27tita))aca)lc,
where |-|c is the usual absolute value of C. Note that |-|, yields an archimedean absolute
value of K.
e For f € K*, one introduce (f) as follows:

(1= [ toelfl(epritaucall o

o Let {Ty} U {T4}aca be a set of indeterminates over Q such that x, = T, /Ty. Let
Q, be the set of all homogeneous, principal, prime and non-zero ideals in Z[ Ty, (T ) @eal-
For each w € Qy, let P, be a defining homogeneous polynomial of w. Note that P, is
uniquely determined up to +1. We fix 1 € Ryy. For w € Qj, a nonarchimedean absolute
value |-|,, on K is defined to be

1flw = C3Y) (vf e k),

where
Co =exp(ddeg(Py) + (Pu(l,{xa}taca))).
o Let Q, be the set of all prime number of Z. For p € Q,, let ||, be the p-adic absolute
value of Z with |p|, = 1/p. For f € Q[{xq}aeal, let Cy be the set of all coefficients of f.
If we set

= max|a
F1p = max {lal).

then, by Gauss’ lemma, one can see that | fg|, = | f|,|g|p, so that |-, extends to an absolute
value of Q((xq)aea)-

o We set Qg 1= Qp [[ Q,. A measure space (Qgpn, Afin, Vin) 1S the discrete measure
space on Qg such that vg, ({w}) =1 for all w € Qgy.

e An adelic structure of Q((x4)aca) given by

(Qﬁn’ Afin, Vﬁn) L (Qms Acos Voo)

is denoted by Sa 4.
o It is known that the following facts hold (cf. [38l Proposition 2.7.10 and Proposi-
tion 2.7.14]):
(1) S4,a is proper.
(2) If A > 0 and A is finite, then S4 4 has Northcott property.

1.18. Let K be a countable field. Let (x4)qca be a transcendental basis of K over Q. As
described in Q((xq)aea) has an adelic structure S, 4, which extends to K because
K is algebraic over Q((x4)qeca). Note that if A > 0, then Northcott property holds for any
finitely generated subfield of K (cf. [38) Theorem 2.7.18]).






CHAPTER 2

Metric families on vector bundles

The purpose of this chapter is to generalize dominancy and measurability conditions
in [36, Chapter 6] to metrized locally free modules of finite rank, and to develop related
topics. These constructions will be useful further in the extension of the arithmetic Hilbert-
Samuel formula to the case with a tensor product by a metrized torsion-free sheaf. Let
S = (K, (Q,A,v), $) be an adelic curve as introduced in In the first section, we
introduce the notion of metric family for vector bundles on a quasi-projective scheme over
Spec K. In the second section, we discuss the conditions of measurability and dominancy of
metric families in making links to the tautological invertible sheaf of the projective bundle.
In the third section we prove the dominancy and measurability of the dual metric, which
allows to discuss the dual adelic vector bundle and also adelic vector subbundle. In the
fourth section, we extend the notion of metric families to the setting of torsion-free sheaves
which are locally free on a Zariski dense open subset and discuss the norm family structure
on the sectional space.

2.1. Metric family

Let p : X — Spec K be a quasi-projective scheme over Spec K. Let E be a vector
bundle on X, that is, a locally free Ox-module of finite rank. For any w € Q, let E, be
the restriction of E to X, = X Xspec k Spec K, and ¥, be a metric on E,,. By definition
Ve is a family (]-]y,, (X))xexm parametrized by X2, where each ||, (x) is a norm on
E,(x) = E, ®0y,, k(x). We assume that the norm [-|,,, (x) is ultrametric if the absolute
value ||, is non-Archimedean. Moreover, we assume that the metric ¢, is continuous,
namely, for any section s of E over a Zariski open subset U of X,,, the function

(x € U™) — |s]y,, (x)

is continuous. The data ¥ = (¥ ,)wecq is called a metric family on the vector bundle E.
Assume that X is projective and geometrically reduced. For any w € Q, we denote by
lIIl ., the supremum norm on H%(X,,, E,), which is defined as

Vs e H (Xw,Ew),  slly, = sup [s(x)ly,, (x).
xeXxa

We denote by p..(E, ) the couple (H*(X, E), (||ly,,) weg)-

If ¢ and ¢ are two metric families of E. For any w € Q we denote by d, (¢, ¥) the
element

sup sup In|s|,, (x) —In|s|y,, (x)| € [0, +oo],
xeXi¥ seE, (x)\{0}

which is called the local distance at w between ¢ and .

We denote by Og (1) the universal invertible sheaf on the projective bundle  : P(E) —
Spec K. For any w € Q, the metric ¢, induces by passing to quotient a continuous metric
on Og (1), = O, (1), which we denote by ¥F>. Recall that, if y is an element of P(E,,)*"

21
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and x = 7%"(y), then the norm || i on Okg(1), is the quotient metric induced by the
universal surjective homomorphism

E,(x) ®R(x) ?()’) — OE(I)y,

where we consider the g-extension of ||y, (x) to E, (x) ®z(x) K(y) if ||, is non-Archime-
dean, and m-extension of ||, (x) if ||, is Archimedean (see [36, §1.3 and §2.2.3]). Note
that, if ¢ and ¢ are two metric families of E, then one has (see [36} Proposition 2.2.20])

VweQ, du(¢™. ") <du(e,v). 2.1)

2.2. Dominancy and measurability
Throughout this section, we fix a projective scheme X over Spec K.

DEerINITION 2.2.1. Let E be a vector bundle on X.

(1) We say the metric family ¥ = (¥ )weq on the locally free Ox-module E is
dominated (resp. measurable) if the metric family ™ = (yF5) cq on O (1) is
dominated (resp. measurable). We refer the readers to [36, Definitions 6.1.9 and
6.1.27] for the dominancy and measurability conditions of metrized line bundles.

(2) We say (E, ) is an adelic locally free Ox-module or an adelic vector bundle if
W is dominated and measurable, or equivalently, (Og (1), ") is an adelic line
bundle on P(E).

ProposiTION 2.2.2. (1) If ¥ is dominated, then the norm family

&y = (IIMly,)wee

on H(X, E) is strongly dominated.
(2) If the metric family Y on E is measurable, then the norm family £y, on H'(X,E)
is measurable.

Proor. If we identify H°(X, E) with H*(P(E), Og(1)), then for any w € Q one
has |||y, = ||~||¢£)s by [36, Remark 2.2.14]. Therefore the assertions follow from [36,
Theorems 6.1.13 and 6.1.32]. m]

ProposiTiON 2.2.3. Let E be a vector bundle on X, and ¢ and  be two metric families
of E. Suppose that ¢ is dominated and that the local distance function

(w e Q) r—du(e,¥)

is bounded from above by an integrable function. Then the metric family  is also dominated.
Proor. This is a consequence of [36l Proposition 6.1.12] and @.I). i

DEeFintTION 2.2.4. Let f : Y — X be a projective K-morphism from a geometrically
reduced projective K-scheme Y to X. Let E be a vector bundle on X and ¢ = () weg be
a metric family on E. We denote by f*(¢) the metric family on f*(E) such that, for any
y € Y&, the norm || s+ (y),, () on

FH(E)w(y) = Ew(x) ®z(x) K(¥)
is induced by |-y, (f*(y)) by e-extension of scalars in the case where |-|,, is non-

Archimedean, and by m-extension of scalars if |-|,, is Archimedean.

ProPOSITION 2.2.5. We keep the notation and the assumptions of Definition
Suppose that the metric family  is dominated (resp. measurable), then its pull-back f* ()
is also dominated (resp. measurable).
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Proor. The universal property of projective bundle induces a projective morphism
F :P(f*(E)) — P(E) such that the following diagramme is cartesian.

P(f*(E)) —— P(E)

T () l l nE

Yy —X

Moreover, one has O« (g) (1) = F*(Og(1)) and F*(yFS) = £*(¢)FS. Hence the assertion
follows from [36} Propositions 6.1.12 and 6.1.28]. O

DeriniTION 2.2.6. Let E be a vector bundle on X and ¥ = (Y (,) wcq be a metric family
of E. If F is a vector subbundle of E, for any w € Q and any x € X2, we denote by
|l g, (x) the restriction of ||y, (x) to F,(x). Note that Y = (YF, o) weq forms a metric
family of F, called the restriction of Y to F. Similarly, if G is a quotient vector bundle of E,
we denote by ||y, (x) the quotient norm of |-|,, (x) on G, (x). Then g = (YG,w)wee
is a metric family of G, called the quotient metric family of ¥ on G.

ProrposiTioN 2.2.7. Let E be a vector bundle on X and G be a quotient vector bundle
of E. Let Y be a metric family on E. If is dominated (resp. measurable), then the quotient
metric family Y is also dominated (resp. measurable).

Proor. Let i : P(G) — P(E) be the closed embedding induced by the quotient
homomorphism E — G. Then one has i*(¢"®) = ¢7. Hence the assertion of the
proposition follows from [36, Propositions 6.1.12 and 6.1.28]. O

DeriniTION 2.2.8. Let E and F be vector bundles on X, equipped with metric families
Y and YF, respectively. For any w € Q and any x € X2}, if ||, is non-Archimedean,
we denote by || (y.eyp), (x) the e-tensor product of the norms |-y, , (x) and ||y, (x),
if |-|o, is Archimedean, we denote by |-|(yzgysx), (x) the m-tensor product of the norms
||y, () and ||y, , (x). Thus we obtain a metric family ¥z ® ¥ on the vector bundle
E ® F, called the tensor product of metric families ¥ ¢ and . In the case where one of
the vector bundles E and F is of rank 1, we also write the tensor product metric family of
Vg and Y in an additive way as Y g + Y.

ProposiTiON 2.2.9. Let E and F be vector bundles on X, equipped with metric families
YE and Y respectively. We assume that E is a line bundle. If both metric families g and
Y F are dominated (resp. measurable), then Y g+ is also dominated (resp. measurable).

Proor. Since E is of rank 1, we can identify P(E ® F) with P(F). Moreover, if we
denote by 7 : P(F) — X the structural morphism, one has Oggr(1) = 7*(E) ® Op(1),
and the metric family (¢ £ + ¢ )" identifies with the tensor product of 7* () and zpf,s.
Hence the assertions follow from [36l Propositions 6.1.12 and 6.1.28]. O

ProrosiTiON 2.2.10. Let E be a vector bundle on X. Then there exists a dominated
and measurable metric family of E.

Proor. Let L be an ample line bundle on X and ¢ be a dominated and measurable
metric family of LY. Then, one can find a positive integer m such that L™ ® E is ample and
generated by global sections. If L ® E has a dominated and measurable metric family ¢,
then the tensor product of my with ¢’ is a dominated and measurable metric family of E
by Proposition[2.2.9] so we may assume that E is ample and generated by global sections.
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Let H*(X,E) ® Ox — E be the natural surjective homomorphism. Fix a basis
er,...,en of H'(X,E) and, for each w € Q and (ay,...,an) € KN, we set

Viail2, +- - +lanl? if w € Qoo,
||a161 +"‘+aN€N||w =
max{|ai|w,...,lan|w} fweQ\Qu,

and £ be the norm family (||-]|o)weq. Let ¢ be the quotient metric family of E induced
by H'(X,E) ® Ox — E and &. Let m : P(E) — X be the projective bundle of £ and
Og (1) be the tautological line bundle of P(E). Note that the metric family ¢ of Og (1)
is induced by H*(X,E) ® Opg)y — Og(1) and €, so it is dominated and measurable. Thus
the assertion follows. O

2.3. Dual metric family

In this section, let X be a projective scheme over Spec K.

DeriniTioN 2.3.1. Let E be a vector bundle on X, equipped with a metric family
¥ = (Ww)wea. Forany w € Q and any x € X2}, the norm |-|,,, (x) on E,,(x) induces a
dual norm on E,, (x)", which we denote by |-| ;v (x). It turns out that ¢/}, = (-] (X)) xexam
forms a continuous metric on E},. Hence ¢¥ = (¢),) weq i a metric family on EV, called
the dual metric family of .

ProposiTION 2.3.2. Let E be a vector bundle on X and  be a metric family of E. If
is dominated, then the dual metric family " is also dominated.

Proor. Let ng : P(E) — X and ngv : P(EY) — X be the projective bundles
associated with E and EV respectively. We consider the fiber product P(E) xx P(EY) of
projective bundles and denote by

p1:P(E)xxP(EY) — P(E) and p;:P(E)®xP(EY) — P(EY)
the morphisms of projection. Let
Oe(1)® Opv (1) := p1(Oe(1)) ® p5(Opv (1))
and let
s € H'(P(E) xx P(EY), Op(1) ® Opv (1))

be the trace section of Og(1) ® Ogv (1), which corresponds to the composition of the
following universal homomorphisms

p2(Opv (1)) — py(ape(E)) = py (7 (E)) — pi(Oe(1)).

Cramm 2.3.3. Let ¥ = (Y1.w)weq and Y2 = (Y2.w) weq be metric families on E and
EY respectively. We equip Og (1) ® Ogv (1) with the metric family ¢ = (¢o)weq Which is
the tensor product of the metric families p’{(t//lfs) and p;(lﬂgs). Then, for any w € Q and
x € X2, one has
e, @
sup ——— S ISlley s
reEy, ooy [y, (X) ¢

where s is the trace section of Og (1) ® Ogv (1) defined above.

Proor. For a non-zero element f of E}, (x), the one-dimensional k(x)-vector space of
E},(x) spanned by f determines a point Py € P(E,,)* valued in (k(x),|-|y) which lies
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over x € X2 Suppose that Q is a point of P(E},)*" valued in (k(x), |-|) which lies over
x. Then s(P, Q) corresponds to the following composition of universal homomorphisms

Opv(-1)(Q) — Eu(x) — Oe(1)(Py), 2.2)

and [s|,,, (P s, Q) is the operator norm of this homomorphism. We pick an arbitrary non-
zero element ¢ of Ogv(—1)(Q). The dual element in Og(—1)(Py) of the image of £ by
@2) is £ (€)' f. Therefore one has

FASOIR
Islg, (Pr. Q) = < Isllg,, -
S [T PN ES B VI P E Bt
Taking the supremum with respect to £, we obtain the required inequality. O

In the above claim, if both metric families /| and i, are dominated, then the metric
family ¢ on Og (1) ® Ogv (1) is also dominated. In particular, the function

(we Q) —1In|ls|l,,
is bounded from above by an integrable function. Then the claim shows that the function
(w e Q) — sup sup (ln |f|¢,1vw(x) =In|fly,., (x))
xeXy feEy (x)\{0} '
is bounded from above by an integrable function. Therefore, the function

(WeQ) —  sup sup (1n|f|wv,ps(Q) — I flyps (Q))
QeP(EY)™ feOh}v (01)(Q) Lo "«
£

is bounded from above by an integrable function. For the same reason, by interchanging
the roles of E and EV we obtain that the function
(WeQ) — sup  sup (1n el s (P) = In ] s (P))
2,w W

PeP(E)™ teOg (1)(P)
t#0

is also bounded from above by an integrable function. In particular, if we denote by ¢ the

tensor product of the metric families pj (1//;/ *PS) and p;(wY’PS), then the function

(w € Q) —1In||s||z,
is still bounded from above by an integrable function. Hence the above claim implies that
the function

(WeQ)— sup  sup(In|fly,, () =Inlflyy ()
xeX8 feEL(0\(0) *

is bounded from above by an integrable function. Therefore we obtain that the local distance
function

(W€ Q) r— do,(Wy,¥2)
is bounded from above by an integrable function. By Proposition [2.2.3] the metric family
¢ is dominated. By Proposition there exists at least a dominated metric family on
EV, the assertion is thus proved. O

DeriniTION 2.3.4. Let E be a vector bundle on X, ¢ = () weq be a metric family of
E. Let K’ /K be a finite extension and let P : Spec K’ — X be a K-morphism. Let

(K, (Q, A", v),¢)=Sek K.
Recall that Q' is a disjoint union
o=]]e.,

weQ
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where Q! denotes the set of all absolute values on Q’ extending |-|,,. For any w € Q and
any x € Q! , we let P : Spec K, — X, be the morphism induced by

Spec K, — Spec K’ Ix
and the canonical morphism Spec K, — Spec K.

Spec K.

\\

\

\

N
Spec Ky — Spec K

We denote by ||| the norm on
(E ® K') ® K}, = E, ®k,, K,

which is induced by ||y, (Px) by e-extension of scalars if ||, is non-Archimedean, and
by m-extension of scalars if ||, in Archimedean. Then, (||-||x)xeq forms a norm family of
P*(E), which we denote by P*(i).

DEerINITION 2.3.5. Let € be the set of w € Q such that the absolute value ||, is trivial.
Let x = (K, |-|x, Px) be a triplet, where (K, |-|) is a valued extension of the trivially
valued field (K, |-|o), and Py : Spec Ky — X is a K-morphism. Assume that E is a vector
bundle on X and ¥ = (¥ ,) weq is a metric family of E. Denote by E, the K, -vector space
P%(E). We consider the following adelic curve

Sx = (KX’ (Q()? »7[0, VO)’ (|'|x)w€£2())»

where A is the restriction of the o-algebra A to Qp, and vy is the restriction of v to
(Qo, Ap). We denote by x*(¢) the norm family (|-|y,, (P¥))weq, on Ex, where PY
denotes the point of X2} determined by (Py, ||x).

ProposiTION 2.3.6. Let E be a vector bundle on X and y = (Y ,)weq be a metric
family of E. Then the metric family  is measurable if and only if both of the following
conditions are satisfied:

(1) for any finite extension K’ /K and any K-morphism P : Spec K’ — X, the norm
family P* () is measurable,

(2) for any triplet x = (Kx, ||x, Px), where (Kx, |-|x) is a valued extension of tran-
scendence degree = 1 and of rational exponent (see §1.T1) of the trivially valued
field (K, |-|o), and Py : Spec Ky — X is a K-morphism, the norm family x* ()
is measurable.

Proor. It suffices to treat the case where the field K is countable. Recall that the
measurability of the metric family ¢ signifies that the following two conditions are satisfied
(see §L.12):

(1’) for any finite extension K’/K and any K-morphism Q : Spec K’ — P(E), the

norm family Q*(¢"S) is measurable,

(2°) for any triplet y = (K, ||y, Qy), where (K, |-|,) is a valued extension of tran-
scendence degree = 1 and of rational exponent of the trivially valued field (K, |-|o),
and Q,, : Spec Ky, — P(E) is a K-morphism, the norm family Q}, (yFS) is mea-
surable.
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Let K’ /K be a finite extension. Any K-morphism Q : Spec K’ — P(E) corresponds to
a K-morphisme P : Spec K’ — X together with a one-dimensional quotient vector space L
of P*(E), which identifies with Q* (O (1)). Moreover, the norm family Q* (¢FS) identifies
with the quotient norm family of P*(y). If the norm family P*(¢) is measurable, by [36,
Proposition 4.1.24], we obtain that Q*(¢"5) is also measurable. Conversely, if for any
one-dimensional quotient vector space of P*(E), the quotient norm family of P*(y) on it
is measurable, by passing to dual we obtain from [36, Proposition 4.1.24] that P*(y)" is
measurable and therefore P*(y) is also measurable.

Let x = (K, ||x, Px) be a triplet, where (K, |-|x) is a valued extension of tran-
scendence degree = 1 and rational exponent of the trivially valued field (K, |-|g), and
P, : Spec K, — X is a K-morphism. Note that the field K, is countable. Similarly to the
above argument, the norm family P (y) is measurable if and only if all its quotient norm
families on one-dimensional quotient subspaces are measurable. The proposition is thus
proved. O

ProposiTiON 2.3.7. Let E be a vector bundle on X and ¢ = (Y ,)wea be a metric
family on E. If s is measurable, then the dual metric family " of EV is also measurable.

Proor. Let K’/K be a finite extension and P : Spec K’ — X be a K-morphism.
If P*(y) is measurable, by [36, Proposition 4.1.24] we obtain that P*(y") = P*(y)Y
is measurable. Similarly, for any triplet x = (K, |-|x, Px), Where (Ky, ||x) is a valued
extension of transcendence degree < 1 and of rational exponent of the trivially valued field
(K, |-lo) and Py : Spec Ky — X is a K-morphism, if the norm family P7 () is measurable,
then P%(y") = PL(y)" is also measurable. The proposition is thus proved. O

CorOLLARY 2.3.8. Let E be a vector bundle on X, F be a vector subbundle of E, Y g
be a metric family of E, and Y be the restriction of Y to F. If the metric family Yk
is dominated (resp. measurable), then the restricted metric family Y is also dominated
(resp. measurable).

Proor. The homomorphism of inclusion F — E induces by passing to dual a surjective
homomorphism EV — FY. Thus FV can be considered as a quotient vector bundle of EV.
Note that . identifies with the quotient metric family of .. Hence the assertion follows

from Propositions[2.3.2, 2.3.7|and 2.2.7] O

2.4. Metric families on torsion-free sheaves

In this section, we assume that the K-scheme X is geometrically integral.

DeriniTION 2.4.1. Let E be a torsion free Ox-module and U be a non-empty Zariski
open set of X such that E|y is a vector bundle. For any w € Q, let i, be a continuous
metric of E,, over U2} such that, for any s € HO(Xw, E,),

Islly,, = sup{|sly, (x) : x € UL} < +oo.

We set ¥ = (Vw)wea and &y = (|Illy,)wea. We say that (E,U,y) is a sectionally
adelic torsion free Ox-module if (H(X, E),£&y) is an adelic vector bundle on S. By
Proposition if (E,y) is an adelic vector bundle on X, then, for any non-empty
Zariski open set U of X, (E, U, ) is a sectionally adelic torsion free Ox-module.

DeriniTION 2.4.2. Let E be a torsion free Ox-module and U be a non-empty Zariski
open set of X such that E|; is a vector bundle. Let ¢ = (¥,)weq be a metric family of
Ely. We say (E,U, ) is a birationally adelic torsion free Ox-module if it satisfies the
following properties:
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(1) Thereexistabirational morphism y : X’ — X of geometrically integral projective
schemes over K such that u~!(U) — U is an isomorphism, an adelic vector
bundle (E’,¥") on X’, and an injective morphism of Ox--modules E — pu.(E”)
whose restriction to U gives an isomorphism E|y — w.(E")|y = E'|,-1(1)-

(2) The isomorphism E|; — E’|,-1 ) yields an isometry

(E. Wy — (E" ¥ w) -
By definition, for s € H°(X, E) and each w € Q,

lIslly,, = sup{lsly, (&) : § € UG}

belongs to Ro. Note that ||-||,, is the restriction of ||-||,, to H(X,E) by using the
injective homomorphism H°(X, E) — H°(X’, E’), so that

(H (X, E), (Ily,) wea)

is an adelic vector bundle on S, that is, a birationally adelic torsion free Ox-module is
sectionally adelic in the sense of Definition [2.4.1]

Lemma 24.3. Let 1 : X — Y be a continuous map of locally compact Hausdorff
spaces such that m is open and proper. Let f : X — R be a continuous function on X and
f Y = Rbe afunction onY given by

F(y) =max{f(x) : m(x) = y}.

Then f is continuous onY.

Proor. Fix yo € Y. Since 77! (yg) is compact, for £ > 0, there exist xi,...,x, €
P (y0) and open subsets Uy, . .., U, of X such that

7 (yo) CULU -+ U U,

x; €U;foralli € {1,...,n}and |f(x)— f(x;)| < eforalli € {1,...,n}andx € U;. If we
set Z=X\U; U---UU,,then n(Z) is closed and yy ¢ 7 (Z). We choose an open subset
W of Y such that yo € W and

WcnrnU)n---Nna(Uy,) N \n(2)).
Note that 7~ '(W) C U, U---UU,. Lety € W and
Ay =sup{f(x) : x e U;and y = m(x)}.
Then f(y) = max{A,...,4,} and A; — & < f(x;) < A; +eforalli € {1,...,n}, so that
F) =& < fyo) <) +e,
as required. O

Let # : X — Y be a generically finite morphism of geometrically integral projective
schemes over Spec K and (M, U, ) be a sectionally adelic torsion free Ox-module. Note
that 7. (M) is a torsion free Oy-module. The pushforward . () is defined as follows: We
choose a non-empty Zariski open set V of Y such that

a1y vy —vVv

is étale and 7~ !(V) C U. Note that m,(M) is locally free over V. For y € V3 and
s € . (M) ® R(Y), |S|x,(y),, () is defined to be

I8l () (¥) = max{sly,, () : x € ()~ (1)}
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Since 771 (V)3 — Va1 is proper and open (for example, [9, Lemma 3.2.4]), by Lemmal2.4.3]
7. () yields a continuous metric of . (M), over V2. We denote (7. (¥) o) weq by . ().
For s € HO(Y, n.(M)) = H*(X, M), as

sup{|slz. (), (v) : ¥ € V'} = sup{[sly,, (x) : x e 7~ (V)},
one has |5l x, ), = lIslly, < oo, so that (7.(M),V,n.()) forms a sectionally adelic
torsion free Oy-module and (H°(Y, 7.(M)), (||l . (4., ) wee) is isometric to

(H' (X, M), (Il y,) wee)-

We call V an open subscheme of definition of r..(\).






CHAPTER 3

Volumes of normed graded linear series

This chapter deals with normed graded linear series over a trivial valued field. We
first remind the geometry of adelic vector bundles on the adelic curve consisting of a sigle
copy of the trivial absolute value on a field. Then we introduce in the second section the
notion of normed graded algebra over such adelic curves and discuss the properties of the
associated spectrum norm. The last two sections are devoted to the study of asymptotic
behaviours of normed graded linear series. In this chapter, we let k be a commutative field
and we denote by ||y the trivial absolute value on k. Recall that |a|g = 1 for any a € k*.
Moreover, Sy = (k, {0}, |-|o) forms an adelic curve.

3.1. Adelic vector bundle on S,

Adelic vector bundles on Sy are just finite-dimensional ultrametrically normed vector
spaces over k. If V.= (V,||-]|) is an adelic vector bundle on Sy, then the function ||-|| only
takes finitely many values. Moreover, if the vector space V is non-zero, then one has (see
[36, Remark 4.3.63])

Omax (V) = — min 1 , Hmin(V) == 1 i
Hmax (V) Sergn{lo}nllsll Hmin (V) rsneavxnllsll

The Harder-Narasimhan R-filtration of V is give by
VieR, F'(V)={seV :|s||<e’}.
Note that oo
e, (V) i= sup deg() = [ dimy (7 (V)
wcv 0

deg(V) = — /R tddimy (7' (V)) dr.

3.2. Normed graded algebra

Let V. = @B, Va be a graded k-algebra. We assume that each V), is a finite-
dimensional vector space over k. For any n € Ny, let |||, be an ultrametric norm
on V,. Then the pair V, = (V., (I-lln)news,,) is called a normed graded algebra over
(k,|-lo). Let f : Ny; — Ry be a function. If, for all £ € Ny,, (ny,...,np) € Nil and

(81,...,8¢) € Vy, X+--XV,,, one has
”Sl e Sl’”n1+~~~+n5 < ef(n])+.“+f(n[) ”Sl ||n| e ||S[||n€, (31)

we say that V, is f-sub-multiplicative. In the particular case where f is the constant function
taking value 0, we just say the V, is sub-mutiplicative. If there exist two constant C and C;
such that, for any n € N and any s € V,, \ {0}, one has

e < lslla < e, (3.2)
we say that V, is bounded.

31
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ProposiTiON 3.2.1. Let V, be a normed graded algebra over (k,|-|o) and f : N5 —
Rso be a function such that

LS

im =

n—+oo 1

0.

Assume that V, is an integral domain and that V, is f-sub-multiplicative and bounded.

(1) Foranyn € Ny and any s € V,,, the sequence

IsMIMY, NeN, N>1

converges.
(2) For any n € Ny;1, the map

Ny

llpn s Vo — R, 57— Jim sV [0

is an ultrametric norm on 'V,,.
(3) The family of norms (||-|lsp,n)nen satisfies the following sub-multiplicativity con-
dition: for any (n,m) € N> and any (s, Sm) € Vp X Vy,

||Snsm||sp,n+m < ”Sn”sp,n : ”sm”Sp,m-
(4) Foranyn € N and any s € V,, \ {0}, one has
”S”sp,n < ef(n)”s”n- (3.3)

Proor. [(T)] It suffices to treat the case where s # 0. By (BI), for £ € Ns,, and
(Ny,...,Np) € N’ . one has

=1’

11

In ™ Ny vy < (1™l + £ (1N,
i=1

13

Moreover, by (3:2), the sequence

1
NIHHSNHnNa NeN, N>1

is bounded. Therefore this sequence converges in R (see [29, Proposition 1.3.1]), which
shows that the sequence

IsMIMY, NeN, N> 1

converges to a positive real number.
[2)]1t suffices to show that ||-||sp, satisfies the strong triangle inequality. Let s and 7 be
two elements of V,,. For any N € N, one has

N
(s+0)N = Z (1;])sitN_i

i=0
and hence
I(s+ONlay < max_ ISt 7|

yeees

Let

1 . .
M= max ~max{ln|is’|l,;. n[||l,;.0}.
JEN, j>1 ]

Let (&) jen be a sequence of real numbers in [0, %] such that

lim g; =0, lim jg;j =+c0, lim (j - j&;) = +oo.
+00

J—+oo Jj—too j—
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Ifi/N < ey, one has

N-i
N N-i

1 o -
NthSllN "lanv < enM+ In |t~ vy

L fi) | fN =)
N N

Similarly, if (N —i)/N < gy, one has

f (ni) N f(n(N -1i))
N N ’

1 . . i 1 .
—In||s ¢V < — - =1In||s"|,; + en M +
N ” ”nN X N i ” ”m N

If Ney <i < N — Negp, one has
i

N-i 1
N

N N-i

In |t~ (v-i)

L L) | fN =)
N N

1 . X 1 .
_ln“sltN_l”nN < c=In [l || +
N i

Taking the superior limit when N — +co, we obtain that

fimsup_max s/l < max{lsllgn el
Let (n,m) € N> and (s,,, $;n) € V,, X V,,,. Forany N € N such that N > 1, one has
ICnsm)™ lnemyn < &NV sy -
Taking the N-th root and letting N — +co we obtain
snSmllspntm < llsnllspn - 1Smllspm-
[(4)For any N € N, the following inequality holds:
™l < ™/ Is]13 .
Taking the N-th root and then letting N — +oo, we obtain

lIsllsp.n < & Is]l,0.

3.3. Reminder on graded linear series

In this section, we let £’/ k be a finitely generated extension of fields. As graded linear
series of k' [k, we refer to a graded sub-k-algebra V, of

K[T] = @ K'T"
neN

such that V) = k. We denote by N(V,) the set of n € N such that V,, # 0. If V, is a graded
linear series and N(V,) # {0}, we denote by k(V,) the sub-extension of k’/k generated by

U (F/e1(f.0) € Vax (Va \ {O}))

neN(V,)\{0}

over k. If N(V,) # {0}, then we denote by dim(V,) the transcendence degree of the extension
k(V.,)/k, and call it the Kodaira-Iitaka dimension of V,. In the case where V,, = {0} for any
n € N1, by convention dim(V,) is defined to be —co. If N(V,) # {0} and if the field k(V.,)
coincides with k’, we say that the graded linear series V, is birational.
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We say that V, is of sub-finite type if there exists a graded linear series W, of k’/k
which is a k-algebra of finite type and contains V, as a sub-k-algebra. By [33, Theorem
3.7], there exists a graded sub-k-algebra of finite type W, of the polynomial ring

k(V)IT] = P k(vT™
neN

such that k(W,) = k(V,), which contains V, as a sub-k-algebra. In other words, V, viewed
as a graded linear series of k(V,)/k is sub-finite.

LetV, be a graded linear series of sub-finite type, and d be its Kodaria-Iitaka dimension.
If N(V,) # {0}, we define the volume of V, as the limit (see [33, Theorem 6.2] for the
convergence)

vol(V.) := lim —dm:lk(vn)
neN(V,),n—+c0 1 /d'

Note that V, satisfies the Fujita approximation property, namely, one has

vol(V,) = sup vol(W,),
W,cV,
dim(W.)=dim(V,)

where W, runs over the set of all graded sub-k-algebras of finite type of V, such that
dim(W,) = dim(V.).

3.4. Normed graded linear series

In this section, we fix a finitely generated extension k’/k, a graded linear series V, of

k'’ /k which is of sub-finite type, and a f : Ny; — Ry such that
lim M =0.
n—+oo n

Let d be the Kodaira-Iitaka dimension of V,. We assume that d > 0 (namely N(V,) = {n €
N : V,, # 0} # {0}) and we equip the graded algebra V, with a family of norms (||-||,,)nen
such that V, = (V,, (IIlln)news, ) forms a normed graded algebra which is f-sub-multiplica-
tive and bounded (see §3.2). For any n € Ny i, let ||-[|sp.n : Vi — R be the map defined

as
N

Isllsp.n := Nli_)rr:w IIs N *

Then (V., (||:llsp,n)newn,,) forms a normed graded algebra which is sub-multiplicative and

bounded. Moreover, we denote by fimy (V.) the asymptotic maximal slope of V,, which is

defined as

_ 1
—~asy . .

V) =- lim min —In
Hinax (V) nEN(V.), no+co sV, \{0} 71 Islln

= lim DO,Zl\ma,x(‘/n»”'”n)'

neN(V,), n—+

Note that the existence of the limit is ensured by the inequality (3.1I), which implies that

14
Fimas Vit Ielngon) = - (fma Vs L) = £ 0)).

i=1
We refer the readers to [29), Corollary 1.3.2] for a proof of the convergence.

ProrosiTioN 3.4.1. The following equality holds:

— 1
—~asy _ . ~
Hmax (V) = neN(\}.li’,nnawo ;,Umax(vn, II- ”%Pn)
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Proor. By Proposition [3.2.1} one has

Illsp.n < 1111

and hence for n € N(V,) the following inequality holds

Hmax (Vs ”'”sp,n) > fimax (Vs I-lln) = f(n).

This implies

1 _ 1
lim - Vs l4lls > lim - Vi llIl12) -
HEN(Va) im0 1 Himax (Vs |l ”sp,n) REN(Ve) Wstoo 1 Himax (Vs [I112)

Conversely, for any fixed n € N(V,) and s € V,, \ {0} such that

In “S“sp,n = _ﬁmax(vn’ ”'”sp,n)»
one has

asy = . | B
ngx(v-) = Nll)nlm W ﬂmax(VnN, “”nN)

. -1 1 —~
> NILIEOO W In “sN”nN = _; In ”S”sp,n = ; ,umax(vm ”'”Sp,n)~

Taking the limit when n — +oo0, we obtain

ﬁ]a;:e}llx(‘_/-) 2 ﬁarr?gx(vn (”'”sp,n)neN;l)-

[m]

DEFINITION 3.4.2. We define the arithmetic volume of V, as (see for the definition
of deg,)

ol(V deg, (Vo, ||-
vol(V,) :=  limsup M

. 3.4
neN(V,), n—+oo nd+1/(d + 1)' ( )

TueoreM 3.4.3. The superior limit in the formula (3.4) defining the arithmetic volume
function is actually a limit. Moreover, the following equalities hold:

_ deg, (Vi II-llsp.n)
1 V. — li -
vo ( ) nGN(V.l)ITln—Hoo nd“/(d + 1)‘

+00
=(d+ 1)/ vol(V7) dt,
0
where fort € R,

Vi=ke P Vecti({s € Vy : lIsllpn <™.

neN, n>1

Proor. By replacing k’ by k(V.), we may assume that the graded linear series V, is
birational. For simplifying the notation, we let M be the asymptotic maximal slope of V.
Note that M is also the asymptotic maximal slope of (V., (||-|[sp,n)nen) (see Proposition
. Moreover, since V, is bounded, there exists a constant A > 0 such that ||s||, < e"4
forany n € N3 and any s € V,,.

By the same argument as the proof of [33, Proposition 6.6], we obtain that, for any
t < M, one has k(V!) = k(V,). Moreover, for any t > M and any n € N, one has V} = 0.
Therefore, combining the construction of Newton-Okounkov bodies in [32, Theorem 1.1]
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and that of the concave transform developed in [16, §1.3], we obtain, in a similar way as
[16! Corollary 1.13] that

nEN(Vo), n—-+oo nd+1/(d + 1)'

=(d+1) /0+°° vol(V?) dt.

Vol (Ve (1 lspn)nerss,) =

Moreover, by (3.3) we obtain that
deg, (Vo lI-llsp.n) > deg, (Va, [l-lln) = dimg (Vo) f (n),

which leads to

deg, (Vo [1ln) _

lim sup < VOl (Ve (1 llspur)nerss,)

HEN(Va), notoo N1/ (d +1)!

since dimy (V,,) = O(n?) when n € N(V,), n — +co.
Let € be an element of |0, M|, ¢ be an element of [, M[. Let W! be a graded sub-
k-algebra of finite type of V!, which is generated by a family of homogeneous elements

$1,-...,S¢ of homogeneous degrees ny, ..., n, respectively. For any i € {1,..., ¢}, there
exists a; € Ny such that the inequalities

n;Nef2 N ¢ oniN(g/2-1) (3.5)

s v < e l15ill5p.n;
hold for any integer N > a;. Therefore, by the inequality (3.I) we obtain that, for any

(Ny,...,Np) € N’ one has

>1°

4
N N, N;
sy 50 g Nesmene < (I 1SN g, + £ (15 N7))

i=1

By (3.5), we obtain that

N, N,
]n ||S1 been s[ (||n1N1+~~~+npN(

ie{l,....t} ie{l,....0l}
Ni>a; Ni<a;
c I 1
< (E - t) Zn,’(Ni - Cli) + Z nia;A
i=1 i=1
c I ¢
< (E - l) ZniNi + Zniai(A +M).
i=1 i=1
Therefore, for (Ny,...,N¢) € Nil such that ny Ny + - - - + ng Ny is sufficiently large, one has

M Ne g—t)(nyNi+---+ngN,
sy -5y ||n1N1+---+an[<e( )(ni Ny Ne).

In particular, for n € N(V,) sufficiently large, one has
Wy € F Vo [,

which leads to

o dimg (F="(Vy, [I-110))
lim inf

> vol(W!).
neN(V.), n—+oo nd/d' VO( .)
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Taking the supremum when W! varies, by the Fujita approximation property of V! we
obtain that
- dimg (FU=" (Vs [|-l1))
lim inf

neN(V,), n—+co nd/d| > VOI(V.I)' (36)

Note that

deg, (V. [l = /0 dimg (F (Vi [|-))
+00
o / dimy (F" (V. |- dt
0

M
g n/ dimg (F"7 (Vs [|-l1)) di.
&€
Taking the integral with respect to 7, by Fatou’s lemma we deduce from (3.6)) that

o deg, Vi, ll-lln)
lim inf —_—
neN(Va),n—+o0 04+l /(d +1)!

d+1)!
> lim inf ( )
neN(V,), n—+co nd

M +co
>(d+1)/ vol(Vf)dt:(d+1)/ vol(V?).

M
/ dime (F) Vi, [1-1))

Finally, taking the supremum with respect to &, we obtain the inequality

deg, (Va. Illn) _

lim inf > Vol (Ve ([Illspn)nerss,)-

neN(V,),n—+oo nd“/(d +1)!

The theorem is thus proved. O

CoroLLARY 3.4.4. The sequences
deg(Va, [-ln) deg (Vi [-llsp.n)
nd+/(d + 1)1’ nd+/(d+1)! °

converge to the same real number, which is equal to

—/ tdvol(V!).
R

ProOF. Let A be a positive constant such that ||s||,, < "4 for any n € N5 and any
s € V,,. Foranyn € Ny, let||-]|/, = e 4| ||. Then, (V., (e™"|||ln)new,, ) forms anormed
graded algebra over (k,|-|p), which is f-sub-multiplicative and bounded. Moreover, for
any n € N3, one has

neN(V,) and n € N(V,)

deg(Vi, [I-lI7,) = deg, (V. [Ill},) = nA dimy (V;,) + deg(Vi, [I-ll),
where the first equality comes from the fact that the image of ||-||/, is contained in [0, 1].
For any n € N one has
”“;p,n = e_nA”'”Sp,n-

By (3.3), for any n € N3 and any s € V,,, one has

N 1/N N 1/N N A
VN €Nst,  lsllopn = IsM Iy < el (NN NI < o (1N)/Nan,
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Taking the limit when N — +co, we obtain ||s||sp., < e"4 and hence lll$p, also takes
value in [0, 1]. Therefore, for any n € N, one has

deg(Viu, [I-ll5p,) = degy (Viu, lI-llgp ) = nA dimg (Vyy) + deg(Viu, (|-l sp.n)
Hence Theorem [3.4.3|leads to the convergence of the sequences

deg(Vi, |I1ln) + nA dimg (V,,)
nd*1/(d +1)!

, neN,)

and .
deg(Vy, ”'”sp,n) +nA dimg (V,)

nd+l/(d +1)!
to the same limit, which is equal to

(d+1)/0+mvol(vf—A)dz=(d+1)/_;mvol(vf)dt

, neNWV,)

=A(d + 1) vol(V,) - / tdvol(V)),
R

where the last equality comes from the fact that V! =V, when ¢ < —A. By the formula
dimy (V,
fim SV
neN(V.),n—+0 14 /d!

we obtain the assertion. m]

DEFINITION 3.4.5. We define the y-volume of the normed graded linear series V, as

— = . deg(V, [|Iln)
1,(V,) = 1 _
voly (V.) neN(V.])rf]n—>+oo nd*tl/(d +1)!

By Corollary , we obtain that \751)( V.) = \7(;1X(V., (Illsp,n)nens,)-



CHAPTER 4

Arithmetic volumes over a general adelic curve

In this chapter, we use the results of the previous chapter to study the volume functions
of anormed graded algebra over a general adelic curve. The main idea is to cast to the trivial
valuation case by Harder-Narasimhan filtration. In the first section, we introduce the notion
of graded algebra of adelic vector bundles and its casting, which is a normed graded algebra
over a trivial valued field. In the second section, we show that the sequence appearing on
the left-hand side of the arithmetic Hilbert-Samuel formula actually converges, by using the
convergence result established in the previous chapter. In the third section, we discusses
normed graded modules, which are used in the fourth section to obtain bounds of y-volume
in the case where the tensor product with a metrized torsion-free sheaf appears.

Throughout the chapter, let S = (K, (Q, A, v), ¢) be the adelic curve defined in
We let |-|p be the trivial absolute value on K, and denote by Sy = (K, {0}, ||o) the adelic
curve consisting of a single copy of the trivial absolute value |-|p on K.

4.1. Graded algebra of adelic vector bundles

In this section, we consider basic facts on graded algebras of adelic vector bundles.

DerinITION 4.1.1. Let E, = @neN E, be a graded K-algebra. We assume that each
vector space E;, is finite-dimensional over K. For any n € N, let &, = (|||, )weq be a
norm family on E,, such that E, = (En, &) forms an adelic vector bundle on S. We call
E. = (Ep)nen a graded algebra of adelic vector bundles on S. For any n € N such that
n > 1,let (F'(E,)):er be the Harder-Narasimhan R-filtration of V,, (see . We denote
by ||-|[IN the norm on E,, (viewed as a vector space over (K, |-|o)) defined as

VseE, |s|iN=exp(—sup{teR :seF (En}).

Then, the couple (E., (||-|I'IN),en.,) forms a normed graded algebra over (K, |-|o) (see
. Moreover, if we view (Ep, ||-||HN) as an adelic vector bundle on Sy, then its Harder-
Narasimhan filtration coincides with that of (E,, &,). In particular, by the results recalled
in the following estimates hold:

0 < deR(En 0) = deR(Ens ) < 59(Qu) dimic(En) In(@im (En)), A1)

0 < deg, (En. &) — deg, (En. |I-INY) < %vmm)dimK(En)1n<dimK(En)>. (4.2)

Let b = (bn)nen,, be a sequence of non-negative integrable functions on (£, A, v).
We say that a graded algebra of adelic vector bundles E, is b-sub-multiplicative if for all
w€Q, €Nz, (ny,....,np) €N, and (s1,...,5¢) € Enj o X+ X Ep, o, the following
inequality holds

51+« Sellnpteeoing,e < €7 @ Fone g [ lsellng, - (4.3)

39
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If for any n, b, is the constant function taking 0 as its value, we simply say that E, is
sub-multiplicative.

ProrosiTioN 4.1.2. Assume that K is perfect. Let b = (bp)nen,, be a sequence of
non-negative integrable functions on (Q, A, v), and E, be a graded algebra of adelic vector
bundles on S, which is b-sub-multiplicative. Let f : N51 — Ry be the function defined as

f(n) = %v(Qm) In(dimg (E,)) + / by (w) v(dw).
Q

Then the normed graded algebra (E., (||-||HN),en,,) is f-sub-multiplicative.

Proor. Let £ € Ny and (ny,...,ns) € Ngl. Forany i € {1,...,{}, let F,,, be a
K-vector subspace of E,,. For any w € , we consider the K,-linear map

Fnl,w®"'®Fn(,w > En1+'~+ng,w

induced by the K-algebra structure of E,. If we equip Fy,, o, ® - - - ® F},, o, With the e-tensor
product of the norms |||l4,.w>- - -» Illn;.0 When ||, is non-Archimedean, and with the
n-tensor product when ||, is Archimedean, then the operator norm of the above map is
bounded from above by exp(b,, (w) + - - - + by, (w)). Moreover, by [36, Corollary 5.6.2]
(Although this result has been stated under the assumption that char(K) = 0, this assumption
is only used in the application of [36, Theorem 5.4.3], which actually applies to any perfect
field. Moreover, the lifting of invariants from the symmetric power to the tensor power, that
we have used to prove [36, Proposition 5.3.1], is valid in any characteristic. For details, see
Remark [A:3.3]), one has

- LY =3 :

Mmin(Fnl ®g,7r o ®s,n an) > Z (/Jmin(Fn,-) - EV(Qoo) ln(dlmK(Eni)))-

i=1
Let Fy,,+...+n, be the image of the map
Fo® - ®F, — Ep+.4n,-

By [36, Proposition 4.3.31], we obtain that
¢

Frin Py > Y (e (Fo) = 3@ n@imie (B ) = [ b1, (0) v(d0)). @)

i=1 Q

Therefore, we obtain that, for any (7,...,1,) € R’, one has
7:[1 (Em) e 7:![ (Enp) - 7:[1+---+lf*f(l’l])*"'*f(l’l[) (En|+m+ng),
which shows that the normed graded algebra (E., (||-||}N) nel,, ) is f-sub-multiplicative. O

CorOLLARY-DEFINITION 4.1.3. Assume that the defining field K is perfect. Let b =
(bn)news,, be a sequence of non-negative integrable functions on (Q, A, v) such that

1 B
lim —/an(a)) v(dw) = 0.

n—+o0o n
Let E. be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative.
Denote by N(E,) the set of n € N such that E,, # 0. Assume that

(1) E, is isomorphic to a graded linear series of sub-finite type of a finitely generated
extension of K, which is of Kodaira-litaka dimension d > 0,
(2) there exists C > 0 such that, for any n € N(E,),

-Cn < ﬁmin(En) < ﬁmax(En) < Cn.
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Then the sequences

deg(Ey)
m, ne N(E.)
and .
deg, (En) n € N(E.)

ndtl/(d + 1))
converge to two real numbers vol » (E.) and \751(5.), which we call y-volume and volume
of E., respectively.

Proor. These results follow from Proposition 4.1.2] Theorem [3.4.3] Corollary [3.4.4]

and the comparisons {@.1)), (4-2) and the convergence of the sequence
dim K (E n)
——=, neN(E,)).
nd/d! (E.)
[m]

ReEMARK 4.1.4. Assume that the field K is perfect. Let b = (b,)qen,, be a sequence
of non-negative integrable functions on (€, A, v) such that

1
lim — | b, dw) = 0.
im /g; (w) v(dw)

n—+oo n

Let E, be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative.
We assume that ny, . . ., ne are elements of N(E,) \ {0} such that

Ko @ E,
neN, n>1
is generated as K -algebra by E,, U- - -UE,,. By @.4) we obtain that, for any (ay,...,ar) €
N%\ {(0,...,0)}, the canonical image of
Epi @ - ®Eyt
in Eg n,+--+asn, has a minimal slope

4

> 3 o[ (B = 30 0B = [ b0 v(a )

i=1
Therefore we deduce that, for any n € N(E.) \ {0}, the minimal slope of E,, is bounded
from below by
¢

o~ 3
min § ai(#min(Ei)__V(Qoo)ln(Eni)_/bni(w)v(dw))~
(111 aaaaa a[)ENf i=1 2 Q

n=ani+---+arne

Hence there exists C > 0 such that fipmin(E,) > —Cn holds for any n € N(E,).
4.2. Arithmetic y-volumes of adelic line bundles
In this section, we introduce the arithmetic y-volume of an adelic line bundle.

THEOREM-DEFINITION 4.2.1. Let p : X — Spec K be an integral projective scheme
over Spec K, d be the dimension of X, and L = (L, ¢) be an adelic line bundle on X. We
suppose that, either K is perfect, or X is geometrically integral. Assume that L is big and
the graded K-algebra

@ HO(X, L®n)

neN
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is of finite type. We denote the adelic vector bundle
(HX. L), (- lIng.) we)
over S by p.(L®"). Then the sequence

deg(p.(L®"))

s eN,n>1 4.5
ndt drn e “-5)

converges to a real number, which we denote by vol v (L) and which we call the y-volume
of L.

Proor. Let KP° be the perfect closure of K. Recall that, if K% denotes the algebraic
closure of K, then K is the intersection of all subfields of K containing K which are
perfect fields. Note that KP°/K is a purely inseparable algebraic extension of K. Therefore,
for any w € Q, the absolute value |-|,, extends in a unique way to KP°/K. In other words,

the measure space in the adelic curve structure of S ® KP¢ coincides with (Q, A, v).
For any n € N, let

E, = H°(X,L®") ®k K™ = H'(Xgr, Lgh).

The norm family of p*(Z®”) induces by extension of scalars a norm family on E,,, which
we denote by &,. By [36l Proposition 4.3.14], the equality

(;C\g(En’ &n) = d/e\g(p*(z@t))

E,:@En

neN
is a graded KP¢-algebra of finite type, which is isomorphic to a graded linear series of
the function field of Xgpe over KP¢. As a graded KP¢-algebra of adelic vector bundles on
S @k K*, E. = (Ep)nen is sub-multiplicative. By [36, Proposition 6.2.7], we obtain,
following the proof of [36, Proposition 6.4.4], that the sequence

holds. Moreover,

—~ . E
Foa(En) s
n
is bounded from above. Therefore the assertion follows from Corollary-Definition {.1.3]
(see also Remark [4.1.4). mi

ReEMARK 4.2.2. Under the notation and the assumption of the above theorem-definition,
the following relation holds
deg(p. (L") vol, (L)

n—+oo ndimg (HO(X, L®")) ~ (d + 1) vol(L)

4.3. Normed graded module

Let R. = (Rp)nen be a graded algebra of adelic vector bundles on S, where R, =
(Rns (Iln, ) weq). Let M, = €, c;y Mn be a graded module over R, = ), Ra. If
each M, is a finite-dimensional vector space over K and is equipped with a norm family
(IIIM ) weq such that M, = (M, (I-I1¥,,) weq) is an adelic vector bundle on S, we say
that M, = (M, )nen is a graded R.-module of adelic vector bundles on S.

Assume that R, is sub-multiplicative (see Definition . If, for all (n,m) € N2,
w e Qand (a,s) € Ry, X My, ,, one has

M M
||as||n+m,a) < ||a||n,w : ”S”m,w’
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we say that M, is sub-multiplicative.

Lemma 4.3.1. Let M, = (M, ém,))nen be a graded R.-module of adelic vector
bundle on S. Let Q = @f;o O, be a graded quotient R-module of M, that is, Q, is a
quotient vector space of M,, over K for all n and a¢- : M,, — M,,.¢ induces by passing to
quotient ag- : Q, — Qnyie for ag € Re. Let £, be the quotient norm family of O, induced
by M, — Q, and &y, Then 0. = ((Qns€0,))nen is a graded R.-algebra.

Proor. Assume that &y, and &g, are of the form (||~||%w)weg and (||‘||,%w)weg,
respectively. Let (n,n’) € N>, w € Q,a € R, and ¢ € Q,.,. For any s € M, ,, which
represents the class g € Q- ,, one has

M M
lagl2,,, o, < llasliyh, o < lallno - sl -

Taking the infimum with respect to s, we obtain

lagll,,..., < llalln.o - gl .

as required. O
ProposiTiON 4.3.2. Suppose that R, is a K-algebra of finite type. Let

M. = ((Mm ‘fM,z))neN

be a graded R.-module of adelic vector bundles on S, such that M, is an R.-module of finite
type. Suppose that

.. dimg (M,
hmmf# =0
n—oo n
for some non-negative integer d, then
deg(M,,
hmlnf g( n an) > 0'
n—oo nd+1
Proor. Letxy,...,x, be homogeneous elements of R which generate R as K-algebra.
We choose non-zero homogeneous elements m,...,my of M such that M is generated
by mi,...,mg over R. We set ¢; = deg(x;) and f; = deg(m;) fori € {1,...,r}. For
a = (ai,...,a,) € N", we denote x{" - - - x;" by x*. If we set d, = dimg (M,), then, for
n > max{fi,..., fr}, we can find @1, ...,aq, € N and m;,...,m;, € {my,...,me}
such that x*'m;,, ..., x%nm;, form a basis of M,,. Note that
M M M
(¥ mi ) Ao A mi M g ger < IS M0 g - I miy, 1 g,
M M
<K ey I e o+ W 1 g I3,
dy, M M dp
<max{L [Ixille;,ws s IXrlle, 0} max{L, lmill % .. ... Imell%, 3}
so that
deg(My,ém,) = ndy / min{0, —In ||x1lle;,ws - - -» = I ||xr]le, .0} V(dw)
Q
. M M
+d, / min{0, — In ||m; ||f1’w, e, —1In ||mg||f(,w} v(dw).
o /

Thus the assertion follows. O



44 4. ARITHMETIC VOLUMES OVER A GENERAL ADELIC CURVE

4.4. Bounds of y-volume with auxiliary torsion free module
Let us begin with the following lemma.

LeEmMA 4.4.1. Let X be an integral projective scheme over a field k, L be an invertible
Ox-module and F be a coherent Ox-module. We assume that there exist a surjective
morphism f : X — Y of integral projective schemes over k and an ample invertible Oy -
module A suchthat f*(A) = L. Then R = EB:;O HO(X, L®") is a finitely generated algebra
over k and M = @B, H*(X, F ® L®") is a finitely generated R-module.

Proor. By [62, §1.8], there exist positive integers d and ng such that
HO(Y,A%?) @ H(Y, A®" ® f.(F)) — H'(Y, A% @ f.(F))
is surjective for all n > ng, and hence
HY(X,L?) @ H'(X,L®" ® F) — H(X, L% g F)

is surjective for all n > ng because f.(L®") = A®" ® f.(Ox), f-(L®" @ F) = A®" ® f.(F),
Oy C f:(Ox). Thus, by the arguments in [62, §1.8], one can see the assertion. O

In the rest of the section, let p : X — Spec K be a d-dimensional geometrically
integral projective variety over K. Let L = (L, ¢) be an adelic invertible Ox-module.
Let E be a torsion free Ox-module and U be a non-empty Zariski open set of X such
that E|y is a vector bundle. Let ¢ = (¥ )weq be a metric family of E|y. We assume
that (L®" ® E, U, np|y + ) is a sectionally adelic torsion free Ox-module (see Definition
for all n € N. Note that, if the sectional algebra €, . H(X, L®") is of finite type
over K (this condition is true notably when L satisfies the hypothesis of Lemma[4.4.), by
Theorem-Definition .21} the sequence

deg(p.(L®"))

, eN,n>1
nd @+ e

converges to a real number denoted by vol » (L).

THEOREM 4.4.2. If there are a birational morphism f : X — Z of geometrically
integral projective schemes over Spec K and an ample invertible Oz-module A such that
L = f*(A), then the following inequality holds:

— — . deg(p.(I®"®E))
k(E 1,(L) <1 f
tk(E) voly (L) < limin nd* 1/ (d + 1)!

Proor. Let r be the rank of E. Note that p*(Z‘g" ® E) forms an adelic vector bundle
over S for any n € N. For a sufficiently large positive integer ng, shrinking U if necessarily,
we can find ey, ..., e, € H'(X,L®™ ® E) such that ey, . .., e, yield a basis of L®™ ® E
over U. Indeed, there is a positive integer ng such that

H%(Z,A®™ ® f.(E)) ® Oz — A®™ ® f.(E)
is surjective, and hence
H'(X,L®" Q@ E)® Ox — L® Q E

is surjective on some non-empty Zariski open subset of X. Thus the assertion follows. Let
03" — L®™ @ E be the homomorphism given by

(ai,...,ay) — aje1 +---+aye,.
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Let Q be the cokernel of OF" — L®" ® E. The sequence

0— 0y —L*®E—Q—0
is exact, and so is

0— (L®)® — [®"M @ F — [®" @ Q — 0.
Thus
0 —s HO(X, Lemer HO(X, LOM0 @ F) —s HO(X, L% ® Q)
is also exact for all n > 0. Let Q,, be the image of
HY(X,L®"" @ E) — H(X,L®" ® Q).
We equip H%(X, L®™*" ® E) with the norm family
Eming)prw = Il (nng) potire,) wer-

Let &&= (|15 o) wea be its restricted norm family on H%(X, L®")®" induced by the
Injection

HO(X, LEM)er HO(X, LE0 @ ).
Let §,LQ = (||~||%w)w€9 be its quotient family on Q,, induced by the surjection

HY(X,L®™™ @ E) — Q,,.

Then, by [36, Proposition 4.3.13, (4.26)],
deg(HO(X, L®")®", &) + deg(Qn. &) < deg(HO(X, L% ® E), E(ring)prs):
Since dim Supp(Q) < dim X, by Proposition#.3.2]

d’\ ns ‘ e w
tim ing 3€8(@n- Ul lnw)weg) S

n—oo nd"'l

0.

Therefore, by the super-additivity of inferior limit, we obtain

deg(HO(X, L&")®r £L des(p, (L®" @ E
Jim inf S8 )" 860) i ing S8R (L7 ® E)) (4.6)
n—co nl/(d +1)! n—eo  pd+l/(d +1)!

Let us consider the homomorphism of identity

(H (X, LE®, (1175, ) wea) — (HO (X, LE®, (11 o) wea);

new
where
_ {nllax } Isillne,, ifweQ\Q,
e{l,...,
st sl = .
(”SlHn(pw+'”+”sr”rupw) if w € Qoo.
If w e Q\ Qu, then
L
NCstse s sl < lIs1er+ -+ srerll (nang) potve

<
<
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Moreover, if w € Q, then by Cauchy-Schwarz inequality
L
||(S19 ] sr)”n,w < ||S1€1 S Srer”(n+n0)<pw+¢w

,
< sillngy leillngg v,

!
< (Do Msillngo ) (, maxleiluoguvo )

.....

< ‘/;”(S]’ o sr)l nYy i Hl ||el||n()<pw+l//m'

.....

Therefore,

1
h(fn) < - max loglleillnye,+u., V(dw) + = log(r) vol(Qw),
Qief{l r} 2

.....

and hence, by [36, Proposition 4.3.18],
rdeg(H'(X, L®"), én,) = deg(HO (X, L®")®", £87
< deg(HO(X, L®™)®" £hy4

1
rhO(L®")( “max  10g [|e;]lng o, +u., V(dw) + = log(r) vol(Qw) | ,
Qie{l r} 2

.....

where
hO(L®") = dimg HO(X, L®"),  &np = (Mlngn)weas = (IM%g,, ) wea-
Thus,
-~ deg(HO(X, L®")®" L)
ol, (L) < liminf L
rvol(L) < liminf ==
Combining this inequality with (@.6), we obtain the assertion. m]

CoroLLARY 4.4.3. Let m : Y — X be a generically finite morphism of geometrically
integral projective schemes over K, L = (L, @) be an adelic invertible Ox-module and
M = (M,y) be an adelic invertible Oy-module. If there are a birational morphism
p : X — Z of geometrically integral projective schemes over K and an ample invertible
Oz-module A such that L = p*(A), then

Jeg 5 (T\®N o AL
deg() vol, (L) < liminf deg((p;zj(/:d(i)l)z .

In particular, deg(r) Vol (L) < Vol (7*(L)).

Proor. Since 7*(L®") ® M is an adelic invertible Oy-module, one can see that
(L®" @ n.(M), . (nn" () + )
is sectionally adelic for all n > 0 (see the last section of Chapter[2)). Note that
m(na* (@) +¥) =np+m.(¢) and 1k(7m.M) = deg(rx).
Thus, by Theorem 4.4.2}

deg(HO(X, L% ® (M), (Il lng,+x. (w)w)weQ)
nd[(d+1)!

deg(r) vol, (L) < lim inf
n—

Moreover,
(H (X, L®" @ m.(M)), (I lngo . (4).) we)
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is isometric to
(H(Y, 7" (L®") @ M), (II-llnxs, (g0 ) wed) -

Thus we obtain the required inequality. O

THEOREM 4.4.4. Let L = (L, ¢) be an adelic invertible Ox-module and E = (E, U, )
be a birationally adelic torsion free Ox-module. We assume that there are a birational
morphism p : X — Z of geometrically integral projective varieties over K and an ample
invertible Oz-module A with L = p*(A). If either (E, ) is an adelic invertible Ox-module
or X is normal, then the sequence

deg(p.(L®" ® E))

s eN,n>1
nd d+ e

is convergent to tk(E) \751)( (L).
Proor. In view of Theorem[#.4.2] it suffices to establish the following inequality

deg(p.(I®" QO FE
Jim sup eg(p«(L*" ® E))

m su A (1 1)] < rk(E)volX(Z).

First we assume that (E, ) is an adelic invertible Ox-module. Let us begin with the
following claim:

CLamm 4.4.5. One has the following inequality:

msup AL OE) o deg(p. (L))
lim sup < limsup
n—oo nd+1/(d+l)! f—sc0 nd+1/(d+1)!

for some positive integer n.

Proor. Since L is nef and big, we can choose a positive integer ny and sg €
HO(X,L® @ EV) \ {0}. Note that s( gives rise to an injective homomorphism

H(X,L®" ® E) — H'(X, L®("+10)),

Let &ub.n = (I|*|lsub.n,w) weq be the restricted norm family of H°(X,L®" ® E) induced by
the above injective homomorphism and

f(n+no)<p = (||'||(n+n0)<pw)a)€9-
In order to show Claim[4.4.3] it is sufficient to see the following two inequalities:

deg(H'(X, L®" ® E), £sub,n) deg(HO(X, LBU70)) £ ine) o)

li <li
1nm—>S£p nd+/(d +1)! lnm_gp n 1 (d + 1))
and
lim sup deg(p.(L*" ® E)) li deg(HO(X, L®" ® E). £wb.n)
n—oco nd+1/(d+1)! S me nd+l/(d+1)!

The first inequality is a consequence of Lemma Proposition {.3.2] [38, Lemma
1.2.16] and [36, Proposition 4.3.13, (4.26)]. Let us consider the homomorphism of identity

f i (HOGLE ® B), (Flngsw)oca) — (HY(G LS © E), Eun).
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For s € H'(X,E ® L®") \ {0},

”S”SUb,n,w _ ||SS0||(I’L+n())4pw

||S||n<pw+¢w B ”S”mpw+¢w
”S”nnpwﬂl/w ”SOHnonpw—ww

= lIsollnoge-ves

X

lIslln g+
so that || f|l, < [[Sollnoee—v.,- Therefore, by [36, Proposition 4.3.18],
deg(H*(X, L®" @ E), (I llng, 1, ) we@) < deg(H(X, L ® E), £wbn)
+dimH(X, L®" ® E) /Q 10g (15011 g, — 1, v (dw).
Thus the second inequality follows. O

By Lemma4.4.1] Theorem-Definition and the relation

i (n + np) ! _1
n—lg—loo nd+1 -
we obtain that
. deg(p.(LOmm)))  — —
R TP P IR AC

Hence Claim .4.5]1eads to
vol,, (L;E) < VOIX(Z),

as required.

Next we assume that X is normal. We prove the assertion by induction on r := rk(E).
Letu: X’ — X, (E’,¢’) and U be a birational morphism, an adelic invertible Oy -module
and a non-empty Zariski open set of X, respectively, as in Definition[2.4.2] First we suppose
that r = 1.

CrLam 4.4.6. One has the following inequality:

i sup S8R L ®E) . deg((pep)o (4 (L) ® 7))
im sup < limsup
n—oo nd+1/(d+ 1)‘ n—oo nd+1/(d+ 1)‘
Proor. This is a consequence of Lemma [4.3.1] Proposition [4.3.2} Lemma [4.4.1] and
[36L (4.26) in Proposition 4.3.13]. O

By Claim[4.4.6|together with the case where (E, ) is an adelic invertible Ox-module,
one has

: deg(p.(I®" ® E))
1
TSP T [+ 1)

On the other hand, since X is normal, one can see that \7(;1)( (u*(L)) = ‘7(;1)( (L), as desired.

In the case where r > 2, considering a birational morphism X" — X’ if necessarily,
we may assume that there exists an exact sequence 0 —» F’ — E’ — Q" — 0 on X’ such
that F” and Q’ are locally free, tk(F”) = 1 and rk(Q’) = r — 1. Let ¢+ be the restricted
metric of F’ over X’ and ¢+ be the quotient metric of Q" over X’. Let O be the image of
E — p.(E") = p.(Q’) and F be the kernel of E — Q. Shrinking U if necessarily, ¥ o
and ¢ r descent to metric families o and ¥ of Q| and F|,. Note that 0= (0, o)

< voly (u*(ID)).
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and F = (F,yF) are birationally adelic torsion free Ox-modules by Proposition and
Corollary 2.3:8] Therefore, by the hypothesis of induction,

lim sup S8+ (L © F))
noco nATT/(d+1)!

. deg(p.(L®" ® Q))
lmsup = & @+ 1)1

For any n € N, one has an exact sequence

0> H'(X,L"®F) » H'(X,L"®E) » H*(X,L"® Q) » H' (X,L®" ® F). (4.7)

< voly (L. ),

< (r=1)vol, (L, ).

Let O, be the image of
H(X,L®"® E) — H°(X,L®" ® Q).
Let &n.sub = (||*ln.sub, ) wea be the restricted norm family of

gmpﬂ/f = (”'”n(pwﬂlrw)weﬂ

on HO(X, L"® F) and &, quot = (I|*|ln,quot,w) wea be the quotient norm family of &, 44y on
H°(X,L" ® Q). By [36 (4.28)],

deg(H' (X, L" ® E), éngsy) = 6(H (X, L" ® E), Engry)
< (deg(HO(X, L" @ ), €nur) = S(HO(X, 1" ® F), &)
+ (deg(HO(X, " ® 0), &5, quot) = S(H'(X, L © 0), &nquo)):
where for any adelic vector bundle V on S, §(V) denotes the sum cfe\g(V) + &Eg(VV). Let

Engrug.sub = (g +vp. o sub) weq be the restriction of

§n<ﬂ+l//Q = (|I'||mpw+l//Q"u)a)€Q
to Q,. Itis easy to see that, for any w € Q,

>

”'”n,sub,w = ”'”mpwﬂ//p,ma ”'”n,quot,w ||'||ngow+sz,w,sub-

Thus, by [36, Proposition 4.3.18],

d/e\g(Qns ‘fn,quot) < d/e\g(an §n<p+¢Q,sub),
so that

deg(p.(T®" & E)) - 6(p.(L®" ® E))
< (deg(p. (T°" ® F)) - 6(HO(X, L" ® F). &)
+ (d’e\g(Qm é:n<p+(//Q,sub) - 5(Qn, é:n,quot))-

Moreover, by [36, Proposition 4.3.10],
6(p.(I" 9 E) _,

nh_IEO nd+1 >

_ S(HY(X,L" ® F), & sub)

lim = =0,
n—oo n +1

6 ’
lim (Qn é:n,quot) —

n—oo nd+1

07
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so that one obtains

: deg(p.(L®?" ® E)) _ — . deg(Qns Engryg.sub)
1 <vol, (L, ) +1 R
Ty T TR e A Ny TP

and hence it is sufficient to show that

£ an n 5S (T-\ * Z®n 0
Jim sup 2(Qn. Eng+yg . sub) < limsup eg(p(L®" ® Q))

n—r+00 l’ld+1/(d + 1)' n—+oo nd“/(d + 1)'

CLamvm 4.4.7. Ifwe set T, = H(X, L®" ® Q)/Q,, then

(4.8)

lim dimg (T,))/n = 0.
Proor. By the Leray spectral sequence
EY? =HP(Z,A®" ® RIf.(F)) = HP™(X,L®" @ F),
if n is sufficiently large, then one has an injective homomorphism
H' (X,L®" ® F) — H"(Z, A®" @ R' f.(F))

so that
. dimg(H'(X,L®" ® F))
lim =

n—+oo nd

because Supp(R! £, (F)) has Krull dimension < d. Thus the assertion follows by @7. o

By Lemma.4.1, @B H(X,Q ® L") is finitely generated over

é HO(X, L"),
n=0

so that EBZO:O T, is also finitely generated over it. Let &7;, be the quotient norm family of
éng+yo on T, Then by Claim[4.4.7 together with Proposition[4.3.2] we obtain that

0

deg (T,
liminf eg( dn é:Tn) > 0’
n—+0o nd+1

that is, for any £ > 0,
deg(Tm an)
—_— 2 -
nd+1
for sufficiently large n. Moreover, by [36, Proposition 4.3.13, (4.26)],

deg(Qm é:n<p+sz,sub) (Ie\g(Tn,an) (fe;g(p*(z®" ®§))
+ <
nd+1 nd+1 nd+]

s

so that

(Te\g(Qn7§n<p+l//Q,sub) Cfe\g(p*(z‘gn ®§))
—&<
nd+l nd+1

for sufficiently large n. Thus,

d’e\g(Qn’ §n<p+1//Q,sub)
pd+1 B

i deg(p.(L°" ® 0))
1m sup 7 .
n

n—+00

& < limsup

n—+0o

Since ¢ is arbitrary, we obtain the inequality (@8). o
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CoroLLary 4.4.8. Let (E, U, ) be a birational adelic torsion free Ox-module. If X
is normal and L is ample, then

. deg(p.(L*" ® E))
n—+oo pd+1/(d +1)!

Proor. This is a consequence of Theorem [#.4.2and Theorem [#.4.4] m]

=rk(E) \HX(L, ©).






CHAPTER 5

Hilbert-Samuel property

This chapter is devoted to the proof of the arithmetic Hilbert-Samuel formula. We first
show, in the first section, that the difference of the two sides of the equality does not depend
on the choice of the metric family on the line bundle. Then, in the second section, we
show by an explicit computation with a specific choice of metric family that the arithmetic
Hilbert-Samuel formula holds for a projective space. In the third chapter, we prove the
arithmetic Hilbert-Samuel formula for the trivial valuation case. The proof of the arithmetic
Hilbert-Samuel formula in the general case is presented in the last two sections. We use
the casting to the trivial valuation case to show that the arithmetic y-volume is bounded
from above by the arithmetic intersection number. The converse inequality is obtained by
a finite projection to a projective space.

Let f : X — Spec K be an integral projective scheme over Spec K, d be the dimension
of X and L be an ample invertible Ox-module. We assume that, either the field K is perfect,
or the scheme X is geometrically integral. We denote by .#* (L) the set of metrics families
¢ = (@) wen such that all metrics ¢, are semi-positive and that (L, ¢) forms an adelic
line bundle on X.

5.1. Definition and reduction

DeriniTION 5.1.1. We say that ¢ € " (L) satisfies the Hilbert-Samuel property if the
equality

vol, (L, ¢) = ((L, 9)%*h)

holds, namely the y-volume coincides with the self-intersection number of (L, ¢).

ReEMARK 5.1.2. Note that Theorem-Definition shows that, for any positive integer
n, one has
\HX(LQQ", ne) = nd“\;(;l)((L, ®).
Therefore, if ¢ satisfies the Hilbert-Samuel property, then for any positive integer n, the
metric family n¢ also satisfies the Hilbert-Samuel property. Conversely, if there exists a
positive integer n such that ny satisfies the Hilbert-Samuel property, then so does the metric
family ¢.

In order to show the Hilbert-Samuel property for all metrics families in .Z* (L), it
suffices to check the property for one arbitrary metric family in .Z*(L).

Lemma 5.1.3. Let E be a finite-dimensional vector space over K. If ¢ = (||| w) wea
and & = (|||’ ) weq are two norm families on E, then one has

de(det(§), det(§)) < rdw(€,€). (.1
In particular, if ¢ is strongly dominated, so is det(£).

53
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Proor. Let r be the dimension of E over K. If n is a non-zero element of det(E,,),
then one has

,
I [7llo.de =017, g = sup  Inllsi Avee Aslloge = Y Inllsilll,
( i=1

< sup > nlsille —Inllsil, < rde(€.€).

(S1seees sr)€E], i=1
nN=s1N\---ASp

Interchanging & and &’, the above inequality leads to
In [l g = 17l w,0et < 7d e (€,€7).
Therefore, the inequality (5.1)) holds. O
PROPOSITION 5.1.4. Assume that there exists a metric family ¢ € M+ (L) which satisfies

the Hilbert-Samuel property. Then any metric family ¢ € M* (L) satisfies the Hilbert-
Samuel property.

Proor. For any n € N, let E, be the K-vector space H’(X,L®") and r, be the
dimension of E,, of K. For any w € Q, let E,, , = E,, ®kx K,

dnw = sup |In|lsllng,, —Inllsllny,
s€Ep, \{0}

be the distance of ||-||ny,, and [|-[[ny,,, and

6n,w = sup In ||77||n<pw,det —1In ”77||mpw,det~
nedet(En,)\{0}

Note that the function (w € Q) — &, is v-integrable, and one has

[ nv(d0) = E(p (L7 10) - (. (L"),
Q
By Lemma[5.1.3] one has

[0n,0w| < Fudn,w < nrpdy,(@,¥).
Note that the function
(weQ) —du(p.¥)
is dominated (see [36, Proposition 6.1.12]). Moreover, by [18, Theorem 1.7], one has

d
. 6”,&)
n1—1>IPoo nd+/(d+1)! jZ_(:) v/X?S Jo () B(Ly i) (Lasr) = (AX),
where f,, is the continuous function on X2} such that

e/, (1) = g,
for any x € XZ)'. Hence Theorem-Definition and Lebesgue’s dominated convergence
theorem lead to (see Remark [4.2.2))

— — . 1
VOIX(L,lﬂ)—VOlX(L,QD)z lim m[)én,w v(dw)

n—+oo

d
O o it (0 v(d0)

7=0

= (L,y)™) = (L, ™).
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The proposition is thus proved. O

DEerintTION 5.1.5. Let X be a geometrically integral projective scheme over Spec K
and L be an ample invertible Ox-module. If there exists a metric family ¢ € Z* (L) which
satisfies the Hilbert-Samuel property, or equivalently, any metric family ¢ € . * (L) satis-
fies the Hilbert-Samuel property (see Proposition [5.1.4), we say that the ample invertible
Ox-module L satisfies the Hilbert-Samuel property.

ReEMARK 5.1.6. The proof of Proposition actually shows a more precise result:
the function

(¢ € M*(L)) —> Vol (L, @) — ((L, 9)4*")

is constant.

5.2. Case of a projective space

In this section, we assume that X = P% is the projective space and L = OPI¢1< (1) is
the universal line bundle. We show that any metric family in .#* (L) satisfies the Hilbert-
Samuel property. Without loss of generality (by Proposition[5.1.4), we consider a particular
case as follows. Let E be a (d + 1)-dimensional vector space over K and (ei),-d:o be a basis
of E. Let & = (]|'|lw)weg be the Hermitian norm family on E such that (ei)lflzo forms an
orthonormal basis of E with respect to ||-||,, for any w € Q. We then identify ]P’% with P(E)
and let ¢ = (pu)weq be the quotient metric family on L induced by £. Note that, for any
integer n € N, the vector space H%(X, L®") is isomorphic to the symmetric power S"(E).
We denote by r,, the dimension of S”(E). One has

n+d
rp = .
d
DeriniTION 5.2.1. Let w € Q such that ||, is non-Archimedean. Let x be the point in
P(E)*" which consists of the generic scheme point of P(E ) equipped with the absolute

value
|'|x : k(Q Er;l) —)R;O

e’ > ey

such that, for any

) N =) L P

a=(ay,..., ay_1)EN"
one has

|P|y = max |dq] .
acN"

Note that the point x does not depend on the choice of the orthonormal basis (e j);=0' In
fact, the norm ||-|| induces a symmetric algebra norm on K, [E ] (which is often called a
Gauss norm) and hence defines an absolute value on the fraction field of K, [E,,]. The
restriction of this absolute value to the field of rational functions on P(E,) identifies with
|-|x. Hence x is called the Gauss point of P(E,,)*".

Lemma 5.2.2. Let w be an element of Q such that |-|, is non-Archimedean, and n € N.
Let ||-|ln,o be the g-tensor power of ||-||, on the tensor power space EJ" and let |||}, ,,
be the quotient norm of ||||n.«w by the quotient homomorphism E&" — S"(E,,). Then the
norm |||, ., coincides with the supremum norm ||-|| .o, of the metric ng,, on LS)".
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Proor. For any w € Q, we denote by E, the K -vector space E @k K,,. By [36,
Propositions 1.3.16 and 1.2.36], if we consider the Segre embedding P(E,,) — P(E®"),
then the metric ng,, identifies with the quotient metric induced by the norm ||-||5. ..
Moreover, if we denote by Ogen (1) the universal invertible sheaf of P(E &) and by ¢, the
quotient metric on this invertible sheaf induced by the norm ||||,.,. By [36, Proposition
2.2.22], the supremum norm ||-||;,, on

HY(P(EE™), Ogen (1)) = EZ"
of the metric y, coincides with ||-||,..,. Since L®" is the restriction of Ogen (1) to X and
the restriction map
HO(B(EZ"), Opgn (1)) — H(P(Ew), LE")

identifies with the quotient homomorphism E®" — S"(E,,). In particular, the supremum
norm |[|-[| yen is bounded from above by the quotient norm ||-[|7, .
Let x be the Gauss point of the Berkovich analytic space P(E,)*" (see Definition

B.2.1). If
S Y

I=(ag,...,aq) EN4!
apt+---+aqg=n

is an element of S"(E), then the relation

F(x) = ( Z /ll(:_(l))al__.(i_((,)l)ad)eo(x)Q@n

I=(ay,..., aq) eNd+l
apt---+ag=n

holds. In particular, one has

”F”mpw > |F|mpw(x) = max 1] -
I=(ag,...,aq) N4
ap+-+ap=d
Since F is the image of the element
= _ ®agp ®ag
F= D ege-ee

I=(ay,...,aq) eN*!

apt+--+aqg=n
by the quotient map E&" — §"(E,,), we obtain that
1Fllng, > 1Flln,ew > [1F7, 0

Therefore the equality |||y, = [IF]l},, ., holds. O

REMARK 5.2.3. As a byproduct, the proof of the above lemma shows that, for any

F= Z Arey’ e € S"(Ey),

I=(ay,..., ad)EN‘Hl
ap+--+aqg=n

one has
”F”mpw = max |/ll|w-
I=(ay,..., ad)GN‘H'1
In other words, the family

ag aq
(€y” €4 ap.....aq) ene+

forms an orthonormal basis of (S¢(E,,), gy, )-
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Lemma 5.2.4. For any integer d € N and any any x > 0, let

Pas1x ={(to, ..., 1a) € Rigl [to+- - +1ta < x},

d+1
XZ{(IO7-..,td)€R>6 |t0+"'+td:x}.

We denote by voly,, the Lebesgue measure on RY. For any affine hyperplane of R,
we denote by v, the translate of the Haar measure on the underlying hyperplane which is
normalized with respect to the canonical Euclidean norm on R4 (namely the parallelotope
spanned by an orthonormal basis has volume 1).

(1) The volume of P 441,x with respect to volgyy is x4 (d+ 1)L
(2) The volume of Ag, x with respect to v is xd\d + 1/d\.
(3) Let uq be the uniform probability distribution on A4 x. One has

/ (ro In(to) + - - - + 14 ln(td)) Ha(d) = ——
m=1 €=1

| =

A

Proor. [(T)] We reason by induction on d. The case where d = 0 is trivial. In the
following we assume the induction hypothesis that the lemma holds for R¢. By Fubini’s
theorem, we have

x—1)4 x
volg1 (Pasi,x) =/0 volg(Pg x—;) dt _/ ( !) i

d+1

The distance from the origin to the affine hyperplane containing Ay x is x/Vd + 1.
Therefore, by the equality

1 X
d+1 Vd+1

volgs1 (Paqs1,x) = va(Ag x),

we obtain
va(Agx) =

By Fubini’s theorem, one has

X
+ IE

/ to ln(to) volgy1 (dtg, . .. ,dtd) = /xtln(t) VOld(Pd’x,t) dr
Pd+]x 0
E t(x—t)dln(t)dt— 'Z( 1) ( ) d-i/Oxf’“ In(7) dt
d . . )
— %ZO(_l)t(i)xd—lH%(xHZ ln(x) _ H%XHZ)
_xd+21n(x) d Ad) 1 xd?2 &
T l_;(_l) (z’)i+_2_ Z( )( )(z+2)2

By a change of variables, we obtain

1 X
to In(zg) voly dto,...,d( = —/ / toIn(tp) v4(dr) du.
/P (10) volui D= ) [ e vt
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Taking the derivative with respect to x, we obtain

(d +2)x% In(x) + x4 Z (d) 1
(-1

d! P i)i+2

(a’+2))c”lJr1
Z(_ ! ( )(z+2>2

1 / Vd(Ad x)
= toIn(tg) vq(dt) = —= toIn(tg) pa(de).
Vd+1 Jag, o Vd+1 Jag, 00 fd

In particular, one has

ot matan = Z( v(f) (- 95)

~ i-d
Z( z‘(d—z)' (i +2)2

i=0

B ; (d+1)! i+1
—‘m;“ ) (i+2)1d—i-1D! i+2

Therefore

(d+1) /A toIn(to) pa(dr) - d / foIn(to) -1 (dr)

Ag-1.1

= i (d+ D) i+1
__;(_)(Hz)!(d—i—l)!'nz
< d! i+1
+Z(_l) (+2)1(d—-i-2) i+2
d-1

d! i+1 .
Z( (z+2)'(d YR AR R C

d!
Z( Troaimy -

e ((1) ﬁ(dzl))

i=0
. d+1 d+1
=;<—1>(l)+—2( )( )
=-1 ! 1 d+1)) = !
=gt =

Combining with

1 1
2/ toIn(to) py (de) = 2/ tIn(z) dr = —/ tdt =—=
Ay 0 0
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by induction we obtain

d 1 d+1 1
(d+ 1)/ oln(io) pa(d) == > —— = -3 L.
At ; I+ 1 ; €

By symmetry of (g, ...,t4), we get
d+1

d
1
(d+1) tn(t) pa(de) = —(d+1) Y =

Since
d m d d d d
1 1 d+1-¢ 1
DI EDID I D St (AR D IE S
m=1 =1 =1 m=¢ =1 =1
d+1 d+1
1 d+1 1
=(d+1)Zz+(d+1)—m—d=(d+l)zz,
=2 =2
we obtain the desired result. O

ProposiTiON 5.2.5. The universal invertible sheaf O]Pcé (1) satisfies the Hilbert-Samuel
property.
Proor. By Proposition it suffices to prove that the particular quotient metric

family ¢ = (¢,)weq defined in the beginning of the section satisfies the Hilbert-Samuel
property. For any n € N, let

M = A el ... % € det(S"(E)).

By Lemma and [36, Proposition 1.2.23], for any w € Q such that ||, is non-
Archimedean, one has

”nn”mpw,det =1.
Let w be an element of Q such that |-|,, is Archimedean. Similarly to Lemma
for each n € N, we let ||-]|,,, be the orthogonal tensor power norm on E$" and ||-||;, , be
its quotient norm on S (E,,). Note that

(€5" - €q ) (ap,....aq)crven
forms an orthogonal basis of (S¢(E,,), II17..,) and

1
a a ao!~-ad! 2
”eoo "'edd“;z,w = (T) .

By [36, Proposition 1.2.25], one has
, ao! cee ad! %
llwae= |1 (=)

In particular, using Stirling’s formula one obtains

In [|77,1} 1
lim — et -3 /(zo In(to) + - - - + 14 In(t4)) du
A

n—+oo nry
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where p denotes the uniform probability measure on the simplex
d+l
A={(ty,...,tq) €R>6 [to+---+tg =1},

and the second equality comes from Lemma[5.2.4]
By [13, Lemma 4.3.6] and [48, Lemma 30] (see also [65, VIII.2.5 lemma 2]), one has

= 0(In(n)).

—1
sup |Gy sl ) — In sl
seS"(E,)\{0}

Moreover,
_1 1
In(r,?) = ) Inr, = O(In(n)).
Hence by Lemma [5.1.3| we obtain
ln”nn“gﬁ",det . ln”n"“:l,w,det
im ———"— = lim ————,
n—+oo nry n—-+00 nry

The proposition is thus proved. O

5.3. Trivial valuation case

In this section, we show the Hilbert-Samuel property in the trivial valuation case. Let
v = (k, |-|) be a trivially valued field. Let us begin with the following Lemma:

Lemma 5.3.1. Let X be an integral projective scheme of dimension d over Spec k and
L be a very ample invertible Ox-module. Let ||-|| be the trivial norm on H*(X, L), that is,
llel| = 1 fore € H*(X, L)\ {0}. Let ¢ be the quotient metric of L induced by the surjective
homomorphism H*(X,L) ® Ox — L and ||-||. Then we have

vol, (L, ¢) = ((L, @), =0,

where in the construction of vol,, (L, ¢) we consider the adelic curve consisting of one copy
of the trivial absolute value on k and the counting measure.

Proor. Let X — ]P’i be the embbedding given by L, where £ = dimy H*(X,L) — 1.
We can find a positive integer ng such that HO(P%, Op¢ (m)) — HO(X, L®") is surjective
for all n > ny. In order to see \7(;1X(L, ¢) = 0, it is sufficient to show that the norm
|llng is trivial for all n > ng. As HO(Pi»O]Pi (n)) = Sym™(H%(X, L)), one has that

Sym"(H°(X,L)) — H°(X,L®") is surjective for all n > ny. Let (Ty,...,T;) be a
homogeneous coordinate of P{. For n > ng and s € H%(X, L®"), if

_ . Clo i
s = E aj, ..., ,KTO T{,
(ig,---»ig) ENEH
10+ "+if:n

G
2(l'(] i[)EN[” iy, ..., 1(Z1 Z[

.....

io+---+l‘g=n

”S”mp: sup ‘ 7
xe(XNUp) (max{l, 121l - - - |Zg|x})
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where z; = T; /Ty and Uy = {(Tp, ..., Ty) € Pi : Tp # 0}. Note that

. . il . e if
'Z(i() ..... ip)eNe Gig, .0 2y Zp

i0+~~-+i[=n X
<max{|z1|" - |zel : (ios... i) € N ig+ - +ip =n}
n
< (max{la |Z1|)C7'-‘$|Zf|x}) ]

and hence [|s|., < 1. Let k% be an algebraic closure of k. We assume s # 0. We choose
E=(1,£&,...,&) € X(k*) such that s(£) # 0. Then, as

iy, i€ L € k™ {0}

(l() ,,,,, i[)EN“’l
lo+~~+i(=n
and &1, ...,&, € k*, one has
| D iy il - £E| =1 and max(1 el léel = 1

io+--+ig=n
where v’ is the pair of k% and its trivial absolute value. Therefore, ||s|/,, = 1.
Next let us see that ((L, ¢)%*!), = 0. Note that
H (P}, Oz¢ (1)) = H'(X, L) and Sym" (H° (P}, Og¢ (1)) = H* (B}, Ope ()
forn > 1. Let ¢ be the Fubuni-Study metric of Opi (1) induced by the surjective homo-
morphism HO(Pi,Opi(l))) ® Opc — Ope (1) and ||-[|. Then ¢|xu = ¢. In the same way
as before, |||/, on HO(Pi, O]Pf],( (n)) is trivial for n > 1. Therefore, the induced norm on
HO(Pi X xPi, O]pi ()r---= O]pi (8)) is also trivial, where § = (L¢). Thus the assertion
follows (by [38, Theorem 3.9.7]). O

THEOREM 5.3.2. Assume that, for any w € Q, ||, is the trivial absolute value on K.
Then any ample line bundle L on X satisfies the Hilbert-Samuel property.

Proor. By Remark [5.1.2] we may assume that L is very ample. Let E be the vector
space H*(X,L). For any w € Q, we denote by ||-||., the trivial norm on E = E,,. Let
& = (|'llw)wea and ¢ = (@) weo be the quotient metric family on L induced by & and the
canonical closed embedding X — P(E). Then, Lemma[5.3.1|implies

voly (L, ) = (L, 9)™") = 0.

Therefore, by Proposition [5.1.4] we obtain that the invertible sheaf L satisfies the Hilbert-
Samuel property. O

RemaRrk 5.3.3. In [37], an intersection product of metrized divisors has been intro-
duced in the setting of curves over a trivially valued field (k,|-]). Let X be a regular
projective curve over Spec k. Recall that the Berkovich space X?" is an infinite tree

no

X0
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where the root point 79 corresponds to the generic point of X together with the trivial
absolute value on (1), and each leaf xy corresponds to the closed point x together with the
trivial absolute value on k(x). Moreover, each branch |ng, xo[ is parametrized by |0, +co|,
where 1 € 10, +o00[ corresponds to the generic point i together with the absolute value

|[x,r = exp(=tordy(-)).
We denote by #(-) : X* — [0,+c0] the parametrization map, where #(r9) = 0 and

t(xg) = +o0. Let D be a Cartier divisor on X. Recall that a Green function g of D is of the
form

8§ =8D t ¥g,
where gp is the canonical Green function of D, which is defined as

gp (&) = ordx(D)1(),

and ¢, is a continuous real-valued function on X" (which is hence bounded since X"
is compact). Then, the intersection number of two integrable metrized Cartier divisor
Dy = (Dy, go) and D| = (D1, g1) has been defined as

81(10) deg(Do) + go(170) deg(D1)

- k) 1 k] /0 G (D) e, (D1, (52)

xex™M

where X1 is the set of closed points of X, & : [0, +c0] — [170,X0] is the map sending
t € [0,+o0] to the point in [7g, xg] of parameter ¢, and the function t,o"glo £ (-) should be
considered as the right-continuous version of the Radon-Nikodym density of the function
Pgi0¢, () with respect to the Lebesgue measure.

Let (Lo, o) and (L1, ;) be integrable metrized invertible Ox-modules. By [37,
Remark 7.3], the above intersection number with respect to (Lo, ¢g) and (L, ¢) is well-
defined. To distinguish this intersection number with the intersection number defined in

[38} Definition 3.10.1] it is denoted by ((Lg, ¢o) - (L1, ¢1))’. Then one can see
((Lo, ¢0) - (L1, ¢1)) = ((Lo, wo) - (L1, 1)) (5.3)

Indeed, by using the linearity of ( - ) and ( - )’, we may assume that Ly and L; are ample,
and ¢o and ¢ are semipositive. Moreover, as

(((Lo, p0) + (L1,91))*) = ((Lo, 90)*) = (L1, ¢1)%)
> )

(Lo, o) - (L1, 1))’ = (((Lo, po) + (L1,¢1))%)’ —2((Lo,<po)2)' - ((me)z)’,

we may further assume that (Lo, ¢o) = (L1, ¢1), say (L, ). On the one hand, by [37,
Theorem 7.4],

((Lo» o) - (L1, 1)) =

—In ”Sl ANCERIVAN Sr, ”ncp,det

lim =((L,¢)-(L,9)),
Tim o ((L.¢) - (L.9))
where {s1,...,s,,} is a basis of H(X, L®"). On the other hand,

. _ln“Sl A "'/\Sr,,“ntp,det
lim 5
n—oo n /2

by Theorem|[5.3.2](the Hilbert-Samuel formula over a trivially valued field), as required.

=((L,p) - (L,9))
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5.4. Casting to the trivial valuation case

In this section, we assume that K is perfect. Let X be a projective K-scheme, d be
the dimension of X, E be a finite-dimensional vector space over K, f : X — P(E) be a
closed embedding, and L be the restriction of the universal invertible sheaf Og(1) to X.
We assume that, for any positive integer n, the restriction map

S"(E) = H(P(E), O (n)) — H°(X, L®")

is surjective. We equip E with a Hermitian norm family ¢ = (||-||o)weq Such that the

couple E = (E, £) forms a strongly adelic vector bundle on the adelic curve S. Denote by

¢ = (pw) wea the quotient metric family on L induced by & and the closed embedding f.
Let F = (F'(E));cr be the Harder-Narasimhan R-filtration of E. Recall that

F(E)= ) F
0#¢FCE
Hin (F)>1
(cf. [36} Corollary 4.3.4]). Note that this R-filtration actually defines an ultrametric norm
|I-llo on E, where we consider the trivial absolute value |-|o on the field K. More precisely,
for any s € E, one has

lIsllo = exp(~sup{t € R : s € F'(E)})

(cf. [36, Remark 1.1.40]). Denote by ¢( the quotient metric on L induced by ||-||o. If we
consider the adelic curve Sy consisting of a single copy of the trivial absolute value on K,
then (L, ¢g) becomes an adelic line bundle on X.

ProrposiTioN 5.4.1. The following inequality holds:
(Lo @)™ > (L, 90) ™) = ¥(Qw) ((d + 1) In(r) +In(61)), (5:4)

where r denotes the dimension of E over K and 6 is the degree of X with respect to the line
bundle L, that is, § = (L%).

Proor. For any w € Q, let ||-||,.« be the dual norm on E, and let ||-|| .., s be the
6-th symmetric power of the norm ||-||,., that is the quotient norm of the g-tensor power
(resp. orthogonal tensor power) of |[|-||, « by the canonical quotient map if |-|,, is non-
Archimedean (resp. Archimedean). Let ||-||’, . be the &-tensor product (resp. orthogonal
tensor product) of d + 1 copies of the norm ||-||, +.s if |-| iS non-Archimedean (resp.
Archimedean). By [36, Proposition 1.2.36], this norm also identifies with the quotient of
the tensor power of [|-||,,« by the quotient map

Po: EZ)®6(d+l) ~ (EZ)®5)®(d+l) N S(S(E:,/))@(dﬂ). (55)
We denote by &’ the norm family (||-||, .)weq- It turns out that
(Sé(Ev)®(d+l), fl)

forms an adelic vector bundle on S. Moreover, if we let R € S®(EY)®(@*1) be a resultant of
X with respect to d + 1 copies of the closed embedding f : X — P(E), then the following
inequality holds:

((L,@)™!) > ~deg (R) - %v(Qm)(d +1)In (r “;_ 1), (5.6)
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where r is the dimension of E over K. This is a consequence of [38, Theorem 3.9.7] and
[13) Corollary 1.4.3, formula (1.4.10) and Lemma 4.3.6]. Note that in the case where
Q. = 2, the equality
((L,9)™") = ~deg, (R) (5.7)
holds.
We now consider the trivial absolute value |-|p on K and we let & be the ultrametric

norm on S°(E Z))‘X’(‘”l) defined as the quotient norm of the e-tensor power of ||-||o . by the

quotient map
p: EV®6(d+1) ~ (EV®5)®(d+l) N S(S(Ev)®(d+1)_

Similarly to (5.7), the following equality holds:
(L, 0)™") = —deg (R). (5.8)

Note that the dual norm |[|-||o,. corresponds to the Harder-Narasimhan R-filtration of the
dual adelic vector bundle EV = (EV,&V), where &¥ = (|||l w.+)weq (see the proof of [36,
Proposition 4.3.41]). Therefore, if we denote by ¥ the one-dimensional vector sub-space of
§9(EV)®(d+D) spanned by the resultants of X with respect to d + 1 copies of f : X — P(E),
then the dual statement of [36, Theorem 5.6.1] (see Remark[A.3.3) leads to

deg (W, &) < deg(W, &) + %V(Qm)5(d + 1) In(r) + v(Qw) In(5"),
or equivalently
~Geg e (R) > 0oy (R) ~ 2v(@u)o(d + ) n(r) ~ V(@) In(6).  (59)

In the case where Q. is empty, we use Theorem[A.3.5]to determine the Harder-Narasimhan
R-filtration of S 5(EV) and apply the dual statement to the tensor product of d + 1 copies

of § 5(FV). In the case where €, is not empty, we uses the anti-symmetrization map
(see Remark |A.2.6)) to identify S®(E") with a vector subspace of EV®? and apply the dual

statement to 6(d + 1) copies of E . Note that the anti-symmetrization map sym’ has height

< v(Q) In(8!) (see Propositions and[A.2.3). By (5.6), (5.8) and (5.9), we obtain

(L @)™ > (L)) = (@) (d+ D1In (r " 1)

- %v(Qm)é(d + 1) In(r) — v(Qw) In(8!)
> (L, o)) = v(Qw)d(d + 1) In(r) — v(Qo) In(8?),

r+o6-—1 <0
1)

The proposition is thus proved. O

by using the inequality

5.5. Arithmetic Hilbert-Samuel theorem
The purpose of this section is to prove the following theorem.

THEOREM 5.5.1. Let X be an integral projective K-scheme, d be the dimension of X
and L be an ample invertible Ox-module. We assume that, either K is perfect, or X is
geometrically integral. Then for any metric family ¢ € M* (L), the following equality holds

voly (L, ¢) = ((L,9)**"). (5.10)
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Proor. Step 1: We first prove the inequality \7(;1X(L, ©) < ((L, @)%,

Let K’ be the perfect closure of K. Note that each absolute value |-|,,, w € Q, extends
in a unique way to K’, so that the underlying measure space of § ®k K’ identifies with
(Q,A,v). Let X" = X Xspeck SpecK’, L’ = L ®k K’, and ¢’ be the extension of ¢ to L'.
Let (sq,...,sn) be abasis of H(X, L®"). Note that, for any w € €, the norm IIl1e;, is an
extension of |||, (cf. [36, Proposition 2.1.19]). Therefore, by [36, Proposition 1.1.66]

or Appendix[A.2.6] one has

st A Asnllnge.det = 181 A - Asnllng,.dets

so that \751)((L, ) < \7(;IX(L’, ¢’). Moreover, by [38, Theorem 4.3.6],

(L, @)™ = (L', ).
Thus, if the assertion of Step 1 holds for K’, then one has

vol, (L, ¢) < vol, (L', ¢') < (L', ")) = (L, ) ™).

Therefore we may assume that K is perfect.
By taking a tensor power of L we may assume that L is very ample and the canonical
K-linear map
s"(H°(X,L)) — H°(X,L®") (5.11)

is surjective for any integer n > 1. Moreover, by Remark[5.1.6] the difference

vol, (L, @) — ((L, 9)4*1)

does not depend on the choice of the metric family ¢. Therefore, we may assume that ¢
identifies with the quotient metric family induced by the norm family &1 = (||-||¢,,) wea-
By [36l Proposition 2.2.22 (2)], for any positive integer n, the metric ny identifies with
the quotient metric family induced by the norm family &, = (||-[s4,, ) wee. Moreover, by
changing metrics we may also assume that the minimal slope of (H%(X, L), &) is non-
negative. Since the K-linear map (5.11)) is surjective, by [36] Proposition 6.3.25], we obtain
that the minimal slope of (H°(X, L®"), £,) is non-negative for any positive integer n. By
[36, Theorem 4.1.26], there exists a Hermitian norm family &;, = (||-|I;,..,) of HO(X, L®")
such that |||, = ||"llng,, When ||, is non-Archimedean and

e < Wellng, < 2r) 2111, 0, (5.12)

when ||, is Archimedean, where r,, denotes the dimension of H(X, L®"). Note that
— — 1
deg(H (X, L®"), &,) — deg(H (X, L®"),&))| < 7V(Qe)rn In(2ry),

so that

_ Teo( HO ®ny ¢
voly (L. ¢) = lim deg(H_(X, L™"). &) (5.13)

n—+eo  pdtl/(d +1)!

For any positive integer n, let ||-]|, be the ultrametric norm on H°(X, L®") corre-
sponding to the Harder-Narasimhan R-filtration of (H(X, L®"), &), where we consider
the trivial absolute value |-|p on K. Let ¢, be the continuous metric on L (where we
still consider the trivial absolute value on K) such that ngp,, identifies with the quotient
metric on L®" induced by ||-||,. By [36, Proposition 2.2.22 (2)], one has ||-||,,z, = ||-|l» on
H°(X, L®") and hence

deg(H*(X, L®"), |I-l.z,) = deg(HO (X, L®™), ||-l,) = deg(H (X, L®"), &), (5.14)



66 5. HILBERT-SAMUEL PROPERTY
By Proposition and the second inequality of (5.12)) we obtain that

((nL,ng)®") + lv(gzoo)(ar + Dn?(LY) In(2r,)
2 (5.15)
> (0L, 1) ™) = v(Qu)n? (L4 ((d + D In(r) + In(n? (L)),

where we consider X as an arithmetic variety over the adelic curve S (resp. as an arithmetic
variety over the adelic curve consisting of a single copy of the trivial absolute value on
K) in the computation of the arithmetic intersection number on the left-hand side (resp.
right-hand). Moreover, by Theorem[5.3.2] the following equality holds:

vol, (L, n) = (L, @) ™). (5.16)

By [31}, Corollary 5.2] (see also the proof of Theorem 7.3 of loc. cit.), there exists a positive
constant C such that, for any positive integer n, one has

B H' X, L), ) < 20 .
The constant C can be taken in the form an invariant of the graded linear series
P uox. Lom)
meN
multiplied by
fimax (HO (X, L®™), £,,)

sup .
meN, m>1 m

By (3.14), (5.13) and (5.16)), we deduce that

nd+l
(d+1)!
+ %V(Qoo)(d + D (LY In(2r3) + v(Quo)n? (L) In(n? (LY)).

deg(HO(X,L®"), &))< (L, ) + Cnd

Dividing the two sides of the inequality by n?*!/(d + 1)! and then taking the limit when
n — +oo, by (5.13) we obtain

voly (L. @) < ((L,9)*™).

Step 2: the converse inequality \7(?1X(L, ©) = (L, )%,

By replacing L by a tensor power, we may assume that L is very ample. Moreover,
by the normalization of Noether (cf. [38 Proposition 1.7.4]), we may also assume that
there is a finite K-morphism 7 : X — ]P"Ii< such that L = ”*(OP‘;(U))' By Remark
we may further assume that there exists an element ¥ = (¥ )weq Of A*(Opa (1)) such
that ¢ equals the pull-back of y by n. Then, by Corollary Proposition and [38,
Theorem 4.4.9], one has

voly (L, ¢) > deg(m)voly (Oga (1), ) = deg(m) ((Opg (1),4)™*") = (L, )",
as required. O

CoroLLARY 5.5.2. Let X be a d-dimensional geometrically integral projective scheme
over Spec K, L = (L, ) be an adelic line bundle on X and E = (E,U, ) be a birational
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adelic torsion free Ox-module. Assume that L is ample and the metrics in ¢ are semi-
positive. Moreover we suppose that either (E, ) is an adelic invertible Ox-module or X
is normal. Then one has

deg(H (X, L®" ® E), (||-|,» o _
m eg( ( ) (” “ pr+¢a,) EQ) - I‘k(E)(Ld+l).
n—+o0 nd 1 /(d +1)!

Proor. This is a consequence of Theorem [5.5.1| together with Theorem [4.4.4] m]







CHAPTER 6

Relative ampleness and nefness

The aim of this chapter is to discuss strong relative positivity conditions on adelic
line bundles. In the first two sections, we introduce a numerical invariant, asymptotic
minimal slope, to measure the relative positivity. In the third section, we define the relative
ampleness of an adelic line bundle and discuss its properties. In particular, we establish a
lower bound for the arithmetic intersection number in terms of asymptotic minimal slopes.
In the fourth section, we extend by continuity the function of asymptotic minimal slope to the
cone of relatively nef adelic line bundles and generalize the lower bound for the arithmetic
intersection number in this setting. In the fifth section, we prove a generalized Hodge index
theorem which gives a bigness criterion of relatively nef adelic line bundles in terms of
the positivity of the arithmetic self-intersection number. In the sixth section we prove the
non-decreasing property of the asymptotic minimal slope by the pull-back by a projective
morphism. This property is useful to provide lower bounds of the asymptotic minimal
slope. In the seventh section we compare the asymptotic minimal slope of a generically
big and relatively nef adelic line bundle to normalized height of the arithmetic variety with
respect to the adelic line bundle, by using the arithmetic Hilbert-Samuel formula.

Throughout the chapter, we assume that the underlying field K of the adelic curve
S =(K,(Q,A,v),p) is perfect.

6.1. Convergence of minimal slopes

Lemma 6.1.1. Let k be a field, X and Y be projective k-schemes and g : Y — X be a
projective k-morphism such that g.(Oy) = Ox. Let L be an ample line bundle on Y and M
be an ample line bundle on X. Then there exists N € Ns such that, for any (n,m) € N?
satisfying min{n, m} > N, the k-linear map

HO(Y, L®") @k HO(X, M®™) = HO(Y, L®") ®k H(Y,g"(M®™))
— HO(Y,L®" ® g"(M)®™)
defined by multiplication of sections is surjective.
Proor. Consider the graphe
Ig:Y —>Y XX

of the morphism g : ¥ — X. It is a closed immersion since g is separated. Denote by /
the ideal sheaf of the image of I';. Let p : ¥ Xx X — Y and g : ¥ X; X — X be the two
projections, and A = p*(L) ® g*(M). Since M and L are both ample, the line bundle A on
Y Xy X is ample. Moreover, one has I, (A) = L ® g*(M). The short exact sequence

0——1——= Oyxxx — Oyxx/I —=0

69
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induces, by tensor product with the invertible sheaf p*(L®") ® ¢* (M ®™) and then by taking
cohomology groups on Y X X, an exact sequence of K-vector spaces
HO(Y, L") @ HO(Y. g (M)®™) — HO(Y,L®" ® g (M)®")
— H'(Y x¢ X,1® p*(L®") ® " (M®™)).

By [56, Example 1.4.4], the line bundles p*(L) and ¢* (M) are nef. By Fujita’s vanishing
theorem (cf. [46, Theorem 5.1]), there exists N € N5 such that, for any (n, m) € N2 guch
that min{n, m} > N, one has

H' (Y % X, 1® p*(L®") ® ¢"(M®™))
=H'(Y %, X, 1® A®N @ p*(L®""N)) @ g*(M®""N))) = 0.
Therefore the assertion follows. O
Lemma 6.1.2. Let (k, |-|) be a field equipped with a complete absolute value. Let X be

a projective scheme over k, L be a semi-ample line bundle on X and ¢ be a semi-positive
metric of L. Then, for any projective K-morphism g : Y — X, g* () is also semi-positive.

Proor. Replacing L by a tensor power, we may assume that L is generated by global
sections, and that there exists a sequence of quotient metric families (¢,,),en such that

1
lim —d(ny, ¢,;) =0.
n

n—+0oo

Note that for each n € N, the pull-back g*(¢;,) is still a quotient metric, and one has

d(ng*(¢), 8" (¢n)) < d(ng, ¢y).
Therefore we obtain that g*(¢) is semi-positive. O
In the remaining of the section, we let f : X — Spec K be a non-empty and reduced

projective scheme over Spec K. Since the base field K is supposed to be perfect, the
K-scheme X is geometrically reduced.

ProposITION 6.1.3. Let L = (L, ¢) be an adelic line bundle on X such that L is ample.
Then the sequence

Timin (o (Z°"))
s 2

neN, n>1 (6.1)

converges in R.

Proor. Forany n € Ny let E,, = (Ep, &,) be the adelic vector bundle f, (Z®n). Since
L is ample, by Lemma there exists N € N such that, for any (n, m) € N; - the map
En®KEm_)En+m, S®t > st

is surjective. Moreover, if we equip E, ® E,, with the &, n-tensor product of the norm
families &, and &, the above map has height < 0. By [36, Proposition 4.3.31], one has

ﬁmin(Eer) > ﬁmin(En ®s,7r Em)

Moreover, since the field K is assumed to be perfect, by [36, Corollary 5.6.2] (see also
Remark [A:3.3)), one has

ﬁmin (En ®s,7r Em) > ﬁmin (En) + ﬁmin (Em)

- %v(Qw)(ln(dimK(En)) + In(dimg (E,)))-
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Note that
In(dimg (E,)) = O(In(n)),
and, by [36, Propositions 6.4.4 and 6.2.7], there exists a constant C > 0 such that
ﬂmln(En) ,umax(En)
Therefore, by [29, Corollary 3.6], we obtain the convergence of the sequence (6.1). O

6.2. Asymptotic minimal slope

DerINITION 6.2.1. Let L = (L, ¢) be an adelic line bundle on X. If L is ample, we
define the asymptotic minimal slope of L as

/\dﬁy (L) - lim Hmin(f*(zgm)).

mm n—+oco

By definition, for any m € N such that m > 1, one has

Hon (L®™) = m i (L). (6.2)

mm mm

ProposiTiON 6.2.2. Let L = (L, ) and M = (M, ) be adelic line bundles on X such
that L and M are ample. Then one has

Y (L®M) > oy (L) + 1y (M). (6.3)
Proor. By Lemmal6.1.1] for sufficiently large natural number n, the K-linear map
HO(X,L®") @ H (X, M®") — HY(X,(L® M)®"), s®1+> st
is surjective. Moreover, for any w € Q, the following inequality holds:

V(s,1) € H' (X, LE) X H' (X, ME"),  IIstlln(gnswe) < Isllng,, - lellny,,-

Therefore, if we equip H*(X, L®") ®x H°(X, M®") with the &, n-tensor product norm
family, then the above K-linear map has height < 0. Hence, by [36l Proposition 4.3.31 and
Corollary 5.6.2] (see also Remark[A.3.3)), we obtain

Fimin(F(L™" @ M™") > fimin (£(L") + fimin (£ (M "))
- 5v(gm)( In(dimg (H°(X, L®"))) + In(dimg (H° (X, M®”)))).
We divide the two sides of the inequality by n and then take the limit when n — 400, using
lim % In(dimg (H° (X, L®"))) = lim % In(dimg (H (X, M®™))) = 0
we obtain the inequality (6.3). a

ProposiTiON 6.2.3. Let L be an ample line bundle on X and ¢; and ¢, be metric
families on L such that (L, ¢1) and (L, ¢2) are both adelic line bundles. Then the following
inequality holds:

sy —asy
oy (Lo@1) = oy (L, @2)| < d(g1, ¢2). (6.4)
Proor. For any n € N, the identity maps
f(L®" ng1) — fu(L®", ngs)

and
Jo(L®" ngy) — fu(L®", ngy)
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have heights < d(np1, ng;2) = nd(e1, ¢2). By [36, Proposition 4.3.31], we obtain that

Hmin (f (L®n n¢1)) = Umin (f (L®n ngz))| < nd(e1,¢2).

Dividing the two sides of the inequality by »n and then taking the limit when n — +oco0, we

obtain (6.4). mi

Assume that X is integral. Let L be an adelic line bundle on X such that L is ample.
Note that
(L d) o

dimg (H(X, L®")) = +o(n?), n— +co.

Therefore, one has

a(f(IL™)  vol (D)

li = . 6.5
e (d+1)(L9) (6.3

We denote by *Y(L) the value M and call it the asymptotic slope of L. B
y i @ DY ymp P . By

Theorem , if L = (L, ) is an adelic line bundle on X such that L is ample and ¢
is semi-positive, that is, L is relatively ample in the sense of Definition below, then

vol, (L) = (ZdH)S and hence

—d+1

REMARK 6.2.4. Let L be an adelic line bundle on X such that L is ample. By definition
the following inequality holds:

(L) > iy (L). (6.7)

ml[l

6.3. Relative ampleness and lower bound of intersection number

DeriniTION 6.3.1. Let (L, ¢) be an adelic line bundle on X. We say (L, ¢) is relatively
ample if L is ample and ¢ is semi-positive. By [36, Proposition 2.3.5], if L and M are
relatively ample adelic line bundle, then the tensor product L ® M is relatively ample.

TueoreM 6.3.2. Let L; = (L;, ;) be a family of relatively ample adelic line bundles
on X, wherei € {0,...,d}. Foranyi € {0,...,d}, let

0;=(Lo---Li-1Ljy1---La).

Then the following inequality holds:

d
(Lo-+-La)s > ) 6 o (L) (6.8)
i=0
Proor. Without loss of generality, we may assume that L, ..., Ly are very ample.

Forany n € Nyj andanyi € {0, ..., d}, we denote by E; ,, the K-vector space H(X, L?™),
and set r; , = dimg (E; ;) — 1. We denote by &, the norm family (||[,2¢; ., ) wee On Ej 5,
and let &; ,, be a Hermitian norm family on E; ,, such that (E; ,, &; ») forms an adelic vector
bundle and that

1
w(gl nafmp,) ]152 (a))ln(rln+2)
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The existence of such a Hermitian norm family is ensured by [36, Theorem 4.1.26]. Let
l(") be the metric family on L; such that mp(") identifies with the quotient metric family
induced by the closed embedding X — P(E; ;) and the norm family &; ,,. Since

1
lim —1In(r;,+2) =

n—+o0o N

and the metric families ¢; are semi-positive, by [38, Proposition 3.3.12], we obtain that

lim d(cp( ),go,)— hm /d (go(”),<pl) v(dw) =

n—+oo

For any n € N1, let R, be the one-dimensional vector space of
S"0(Ey ) @ -+ @ "% (EY ) (6.9)

spanned by any resultant of the closed embeddings X — P(E;,). We equip each
§néo (EV ) with the orthogonal symmetric power norm family of .§~‘V , and the tensor
product space ( with the orthogonal tensor product norm family. By [38, Remark
4.2.14] and [13} Corollary 1.4.3 and Lemma 4.3.8], we obtain that

(n) rin +né;
((Lo.¢g")++ (Lar gy )s > =~ | dea(Ry >+v(9w)21 s
12
=0 (6.10)
> — o (deg(R )+ v(Q) Z nds; (i, + 1)),
i=0
where the second inequality comes from
b
V(a,b) € N2, (“Z ) <(a+1)’.
Note that
d
deg(Rn) < Amax (SO (EY ., £0,) ® -+ ® S™O4(E) £ ). 6.11)

In the case where K is of characteristic 0, by Remark [A.2.6]and [36, Proposition 4.3.31],
we obtain

IJmax (Sn 60(E() ne é:(),n) ® -8 464 (Ed n’ Ed,n))

d (6.12)
d d
#max((E() n §0,n)®n @@ (Ed n fd,n)‘gn (Sd) +v(Qu) Z ndéi ln(ndéi)-
i=0
By [36, Corollaries 4.3.27 and 5.6.2], we have
nd nd
((EO n’§0,n)® % @ ® (Ed n’ é:d,n)® 6‘1)
—~ v v 1

nds; (,umax(Ei’n,fi’n) +57(Q) In(ri + 1)) 61

N
D it 7

1
=

—~ 1
n95i( = Amin(Eins €30) + 3¥(9e0) In(ri + 1))
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Combining (6.10), (6.11), (6.12) and (6-13)), we obtain

d —~
Fmin (Ein» §i.n)
O R e

i=0

(6.14)
3 45 L5
- 5v(Qx) 20 ~In(ri + 1) = V(Q) ‘§=0 ~In(n’s;).

In the case where K is of positive characteristic, by Corollary and Theorem
we obtain
d d d
fimax (S™ O (Ey o £5,) © - @ "By €4 1)) < Y n?6; frmax (B} £1).
i=0
Hence the inequality (6.14) still holds in this case. Since r;, = O(n?), taking the limit
when n goes to the infinity, we obtain the inequality (6.8). m|

6.4. Relative nefness and continuous extension of /i’

PrOPOSITION 6.4.1. Let L and A be adelic line bundle on X. Assume that L is nef and
A is ample. Then the sequence

1 —en  —
;ﬁf;iyn(L® ®A), neNs (6.15)

converges in R U {—co}, and the limit does not depend on the choice of A. In particular, in
the case where L is ample, the following equality holds:
ol —en = =
lim = Finin(L™" @ A) = fimin(L)- (6.16)
n—+oo n
Proor. Let p be a positive integer. By Proposition [6.2.2] for any ¢ € N3 and any
re{l,...,p}, one has

—asy 0P _ 1 _asy =®+)p _ —8(L+])
Hpin (L ® A) = 7471 Hoin L QA )
1 S —®(fp+r) —_ S —®(p7r) — . _
> g (A e B A T e B+ - 1) @),

Taking the limit superior when {p +r — 400, we obtain

S —Qp - . 1 S —®n — S —

a2 (L ®A) >phmsup;ﬁf;iyn(L ®A)+17 (A),
n—+o0o

which leads to

_— 1 —~asy ([ 7OP _ & . 1 ~asy 7N _ —

llljrgﬂlof 1_7 H (L ®A) > lzrgitlop - (L ® A).
Therefore the sequence (6.13) converges in [0, +00]. Moreover, still by Proposition[6.2.2]
for any p € N, one has

— — -1 _

(I o)+ L2 v (),

min min p min

_ 1 _ _
An@ @A) =~ a0 T &4 >

S| =

which shows that

To prove the second assertion, we first show that the limit of the sequence does not
depend on the choice of the metric family on A. For this purpose, we consider two metric
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min

families ¢ et ¢, on A such that both (A, ¢;) and (A, ¢,) are adelic line bundles on X. By
Proposition [6.2.3] for any n € N one has

2T @ (A, 00) - BT © (4. 01)| < d(o1, 02),
so that | |
lim = @ e (4e0) = lim AT e (Ag).  (617)

n—tco pp | min min

We then show that, for any p € Ny, the followmg inequality holds:

1 _asy 1 _asy —®p
nl_l}I}_loo o ;1 n(L "® A) = hm - umm(L "®A ). (6.18)
In fact, by (6.2), for any n € N5 one has
1 —~asy 1 —~asy —®p
~H mln(L "®A) = _p mln(L PeAa").

Taking the limit when n — +o0, we obtain the equality (6-18).
Note that if B is another adelic line bundle such that B is ample, then the following
inequality holds:

1 1 _,
Jim (I 0 A) < Jim i Y (™" e A@B). (6.19)
In fact, by Proposition|[6.2.2] for any n € N>1, one has
1 —~asy ~asy ~asy
; mln(L "®A® B) > — mln(L "® A) + Inln(B)

Taking the limit when n — +o0, we obtam (©-19).
Finally, we show that, if B is an arbitrary adelic line bundle such that B is ample, then
the equality

1 1
lim - yn(L ®A) = hm —[me (L ®B) (6.20)

n—+o0o N min
holds. In fact, there exists p € N5 such that N = B®P ® AY is ample. We equip it with an
arbitrary metric family such that N forms an adelic line bundle. By we obtain

1 1
lim —ﬁ‘“y(L ®A) < Jim —ﬁasy(L ®A®N).

n—+oo 1

Since A ® N is isomorphic to B®”, by (6.17) and (6.18) we obtain
1 1
lim —[Fﬁsy(L ®A®N) = hm —ﬁasy(L ® B).
n—+oo n
Therefore, we deduce

1 . |
lim -z y(L ®A) < hm ~ Hin y(L ® B).

n—+oo 1

Interchanging the roles of A and B we obtain the converse inequality.
To obtain the equality (6.16), it suffices to apply the equality (6.20) in the particular
case where A = L. The proposition is thus proved. O

DEFINITION 6.4.2. Let L be an adelic line bundle on X such that L is nef, we define

1
(L) = hm ~H i (L% @ A),

mm min

where A is an arbitrary adelic line bundle such that A is ample. The element o Tl (L) of
R U {—co} is called asymptotic minimal slope of L.



76 6. RELATIVE AMPLENESS AND NEFNESS

ReMARK 6.4.3. It is an interesting question to ask when the asymptotic minimal slope
is a real number. As we will show in Theorem [6.6.6] the asymptotic minimal slope does
not decrease if we replace the adelic line bundle by its pullback by a projective morphism.
In particular, if L is the pullback of an ample line bundle by a projective morphism, then
oY (L) € R. Luo [59] gives a partial answer in the function field case.

PROPOSITION 6.4.4. Let L and M be adelic line bundles on X such that L and M are
nef. One has

Y (Lo M) > goy (L) + i) (M). 6.21)
Moreover, one has
1 gy —en — s —
Jim — 08 (L @ M) = i (L) (6.22)

provided that ,fi:: .yn (M) > —co.

Prook. Let A be an adelic line bundle on X such that A is ample. For any n € N, by
Proposition [6.2.2] one has

1 —®n _ —®n _ —®2 1 —Qn _ — —Qn _ —
~Hin (L @M @A) >~ G0 (LT @A)+ [0 (M ® A).
Taking the limit when n — +co, we obtain the inequality (6.21).

By (6.21)), we obtain, for any positive integer n, the inequality

1 —en _ — — 1 _
—E@T o M) > (D) + ~ i (B).

n min min
Since /) (M) € R, taking the limit inferior when n — +co, we obtain

1 v — — e —
liminf — 2 (L™ ® M) > @™ (T).

n—+c0 n

Pick an adelic line bundle A on X such that A is ample. Since A ® M is ample, one has

. 1 oy —®n — — asy —
Jim ~ @ (L © M A) = iy (D). (6.23)
Moreover, by (6.21) one has
1 4oy —on — — 1 4o —0n — 1 ¢ —
;ﬁj;-‘/n(L ®M®A)>;;T;YH(L ®M)+;ﬁ‘njiyn(A).
Taking the limit superior, by (6.23) we obtain
. 1 —Q®n —_— < —
hnrgiljop;pﬁiyn(L ®M) < iy (L).
Hence the equality (6.22) holds. O

DEFINITION 6.4.5. Let L = (L, ¢) be an adelic line bundle on X. We say that L is
relatively nef if there exists a relatively ample adelic line bundle A on X and a positive
integer N such that, for any n € Ny, the tensor product L®" ® A is relatively ample. Note
that a relatively nef adelic line bundle is integrable in the sense of §1.15]

ProPOSITION 6.4.6. Let L = (L, ¢) be an adelic line bundle on X such that L is semi-
ample and ¢ is semi-positive. Then, for any adelic line bundle A = (A, W) on X which
is relatively ample and any n € N, the tensor product ™ ® A is relatively ample. In
particular, L is relatively nef.
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Proor. Since L is semi-ample, we obtain that, for any n € N, L®" ® A is ample.

Moreover, by [36, Proposition 2.3.5], n¢ + ¢ is semi-positive. Hence L™ ®A4is relatively
ample. O

ProposiTioN 6.4.7. Let Z_and M be adelic line bundles on X which are relatively nef.
Then the tensor product L ® M is also relatively nef.

Proor. Let A and B be relatively ample adelic line bundles on X, and N be a positive
integer such that I ®@Aand M ® B are relatively ample for any integer n > N. We

then obtain that (L ® M)®" ® (A ® B) is relatively ample. Therefore L ® M is relatively
nef. O

PrOPOSITION 6.4.8. Let Lo, . .., Ly be a family of relatively nef adelic line bundles on
X. Foranyi € {0,...,d}, let

= (Lo Li-1Li1--- La).

Assume that §; > 0 for those i € {0, ...,d} such that ﬁfnslyn (L;) = —co. Then the following
inequality holds:

U

(Lo-+La)s > ). 6 o (L) (6.24)
i=0
Proor. If there is i € {0,...,d} such that i lyn(L ) = —oco, then the assertion is
obvious, so that we may assume that ﬁ:iyn(zi) > —oo foralli € {0,...,d}.

Let A; be a relatively ample adelic line bundle on X such that Z?n ® A, is relatively
ample for sufficiently large positive integer n. For any i € {0,...,d} and any positive
integer n, let

Zi,n = Z?n ® Zi,
6i,n = (LO,n Tt Li*l,nLi+l,n T Ld,n)~

By the multi-linearity of intersection product, we obtain that

61 n . (LO,n e Ld,n)S
lim — = 0;, lim ————
n—+o0o nd n—+oo nd+1

Note that Theorem[6.3.2]leads to

= (Lo La)s.

QU

(ZO,n e 'Zd,n)S 2 Z i,n A::,};(Lt n)
i=0

for sufficiently large positive integer n. Dividing the two sides by n?*! and then taking the
limit when n — +co, we obtain the inequality (6.24). O
6.5. Generalized Hodge index theorem

THeOREM 6.5.1 (Generalized Hodge index theorem). Let (L, @) be a relatively nef
adelic invertible Ox-module. Then one has

vol(L, ) > ((L, ). (6.25)

Proor. Let (A, ) be a relatively ample adelic invertible Ox-module and ng € N such
that (L, ¢)®" ® (A, ) is relatively ample for n € N,,. Then, by Theorem |5.5.1]

VOI((L, 9)®" ® (A, ) > Vol (L, 9)®" ® (A, 1)) > (L, )" ® (A,9))**")s
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for n > ng, and hence by [36, Theorem 6.4.14 and Theorem 6.4.24],

— ) 1 —
Vol(L.g) = lim —ovol(L. )" ® (A4.4))

1
> lim —
7 koo pd+l

(L, 9)®" ® (A, )" N)s = (L, )",
as desired. O

CoroLLARY 6.5.2. Let (L, ) be a relatively nef adelic invertible Ox-module. If
((L, @)@1Y > 0, then L is big.

Proor. By Corollary , \7(;1(L, @) > 0. Let (A,y) be a relatively ample adelic
invertible Ox-module. By the continuity of vol (see [36, Theorem 6.4.24]), there is a

positive integer n such that \751((L, ©)®" ® (A, ¥)Y) > 0, so that, for some positive integer
m, HO(X, (L®" ® AV)®™) # {0}. Therefore L is big. m|

6.6. Pull-back by a projective morphism

LEmMMA 6.6.1. IfL = (L, @) is a relatively nef adelic line bundle on X and ifg : Y — X
is projective morphism from a reduced K-scheme Y to X, then the pull-back g*(L) is a
relatively nef adelic line bundle on'Y.

PrOOF. Let A = (A, ) be a relatively ample line bundle on X and N be a positive
integer such that I ®4 = (L®" ® A,np + ) is relatively ample for any n € Ny .
Note that L®" ® A is ample and hence g*(L)®" ® g*(A) is semi-ample. Moreover, by
Lemmal6.1.2] ny + ¢ is semi-positive. We choose an arbitrary relatively ample adelic line
bundle B on Y. By Proposition we obtain that g*(L)®" ® (g*(A) ® B) is relatively
ample for any n € N . Thus the assertion follows. O

PrOPOSITION 6.6.2. Let L = (L, @) be an adelic line bundle on X such that L is nef.
For any non-empty and reduced closed subscheme Y of X, the following inequality holds:

B (Lly) > 1= (L). (6.26)

min min
Proor. We first consider the case where L is ample. Clearly the restriction of L to Y
is ample, and there exists ng € N such that the restriction map
mn s HO(X, L®") — HO(Y, L|P")
is surjective for any n € N,,,. Moreover, if we denote by ¢¥, the restriction of the metric
@ to Lyly,, then, for any s € HO(Xw, L®"), the inequality
lIsllng,, > ”ﬂn,w(s)”mpz

holds, so that, by [36, Proposition 4.3.31], we obtain

ﬁmin(HO(Y’ L|$n)’ (”'”n‘pz)meg) = I’Imin(Ho(X’ L®n)’ (”’”mpw)weﬂ)
for any n € Ny ,,. Dividing the two sides of the inequality by » and taking the limit when
n — +oo, we obtain the inequality (6.26).

In general, let A be an adelic line bundle on X such that A is ample. By the above
argument, one has ﬁﬁ:lyn (Aly) > ﬁf;lyn(Z) > —co. Since L is nef, L|y is also nef (see [56)}
Example 1.4.4]) and therefore [z’ (L|y) is well defined. By and the above case, one
has

T . 1 - vy . 1 —Q®n — —_
ATl = tim = (I o Aly) > lim -2 (™ 8 ) = 2 (D),
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as required. o

ProposiTION 6.6.3. Let Y be a reduced and non-empty closed subscheme of X and r
be the dimension of Y. Let Ly, ..., L, be a family of relatively nef adelic line bundles on
X. Foranyi € {0,...,r}, let

0; = (Loly - - - Li—1lyLis1ly - - - Lrly).

Assume that, for any i € {0,...,r}, 6; > 0 once ﬁ;‘;l};(zlly) = —co. Then the following
inequality holds:
(Loly -+ Lyly)s > Z&' Y (Lily). (6.27)
i=0
Proor. This is a consequence of Proposition [6.4.8]and Lemma[6.6.1] a

ProrosiTION 6.6.4. Let (E, &) be an adelic vector bundle on S, L be a quotient line
bundle of f*(E) and ¢ be the quotient metric family induced by &. Then the adelic line
bundle (L, @) is relatively nef. Moreover, the following inequality holds:

— - — 3 .
Hoin (L) > Himin (E) = 5 V(£2e0) In(dimy (E)) (6.28)

Hinin

Proor. By [57, Propositions 6.1.8 and 6.1.2], f*(E) is a nef vector bundle on X and
hence L is a nef line bundle. Moreover, since quotient metrics are semi-positive (see [36,
Remark 2.3.1]), the adelic line bundle Lis relatively nef.

In the following, we prove the inequality (6.28). Let p be an integer and Abearelatively
ample adelic line bundle on X. Then I’ ® Ais relatively ample. Let Y = P(f*(E)®P)
and g : Y — X be the structural morphism. The quotient homomorphism f*(E) — L
induces by taking the tensor product a surjective homomorphism f*(E)®P — L®P, which
corresponds to a section s : X — Y such that s*(Oy (1)) = L®P. Hence

s*(0y(1) ® g*(A)) = L®P @ A.

By Proposition [6.6.2] one has
sy ~®p _ — &5 —— =
(L @A) > iy (Oy (1) @ 8" (A)). (629)

where we consider Fubini-Study metric fiber by fiber on Oy (1). Note that, for any integer
n € Ny, by the adjunction formula one has

H'(Y,Oy(n) ® g*(A)®") = H'(X, S"(f*(E)®’) @ A®") = S"(E®P) ® H*(X, A®").
Moreover, the projection map
E®"? @ HO(X, A®") — S"(E®P) ® H(X, A®™)
has height < 0, where we consider the &, r-tensor product norm family on the left hand

side of the arrow, and the adelic vector bundle structure of (fg).(Oy (1) ® g*(A)®") on the
right hand side. By [36, Corollary 5.6.2] (see also Remark [A.3.3), we obtain

Amin * o * Z®n 1 —~ — —~ —Qn
- (g ( Y(’:l)®g ( )) > ;l np/lmin(E)+ﬂmin(f*(A® )

3
- Ev(gm) In (dimg (E)"P - dimg (H°(X, A%™))) |.
Taking the limit when n — +o0, we obtain

min

i (Oy (1) ® g*(A)) > p fimin(E) + 55 (A) - %V(Qm)p In(dimg (E)).
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Combining this inequality with (6.29), we obtain

T .
> YT ®A) > fimin(E) + I_)ﬁdsy (4) = 5(Qu) In(dimg (E)).

min min

Thus, due to Definition [6.4.2] we obtain

min

sy ol ey ~ep  — . = 3 .
Finin (D) = Jim = 3 (L @ ) > fimin(E) = 5v() In(dimic (E)).
as required. O

ProPOSITION 6.6.5. Let g : Y — X be a projective morphism of K-schemes, which is
surjective and such that g.(Oy) = Ox. Let L be an adelic line bundle on X such that L is
nef. Then the following inequality holds:

fion (87 (L)) > o (L).
Proor. By [56, Example 1.4.4], the line bundle g*(L) is nef, and hence ﬁ:j 1};( g* (L))
is well defined. We first consider the case where L is ample. Let p be a positive integer

and A be an adelic line bundle on Y such that A is ample. By Lemma , for sufficiently
positive integer n, the K-linear map

HO(Y, A®") @ HO(X, L®P") — HO(Y, A®" ® g*(L)®P™)
is surjective. Moreover, if we equip the left hand side of the arrow with the &, n-tensor

product norm family of those of (f g)*(Z@’") and f. (Z®pn), then the K-linear map has
height < 0. Therefore, by [36, Corollary 5.6.2] we obtain

Timin (£2)x A" ©g*(T)®P")) > fimin (F)x(A°")) + fimin (£ (Z°7"))
- %v(ﬂm) In(dimg (H°(Y, A®™)) dimg (H?(X, LEP™))).

Dividing the two sides of the inequality by pn and then taking the limit when n — +oo0, we
obtain
~asy x

1 — — Moo (A) —

A (Aeg (D®r) > M 4 g (T,

p p
which leads to

asy [ w7 R P asy ;7
A" (@) = lim —F0 (Re 8" (D)) > A2 (D).

We now consider the general case. Let B be an adelic line bundle on X such that B is
ample. By the above argument we obtain that ™ (¢*(B)) > "> (B) > —oo and, for any
min min

positive integer n,

1 S %, 7O %/ 1 —® —_
~ i (87 (L Y@ g"(B) > - i (L™ ® B).

; 'umin
Taking the limit when n — +co, by (6:22)) we obtain > (g* (L)) > ITe (L). O

THEOREM 6.6.6. Let g : Y — X be a projective morphism of K-schemes. We assume
that Y is non-empty and reduced. For any adelic line bundle L on X such that L is nef, one
has 15 (8 (D)) > 5 (L),

Proor. The projective morphism g can be written as the composition of a closed
immersion from Y into a projective bundle on X and the projection from the projective
bundle to X. Hence the inequality follows from Propositions [6.6.5|and [6.6.2] a
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6.7. Comparison with the normalized height

The following height estimate can be deduced from Theorem [6.4.8] Here we provide
an alternative proof in the particular case where X is integral by using the arithmetic
Hilbert-Samuel formula.

ProposITION 6.7.1. Let L be a relatively nef adelic line bundle on X such that (L¢) > 0.
Then the following inequality holds
—d+1
(L~ s —asy
—_— 2 L 6.30
@+ DL o (L) (6.30)

Proor. We assume that X is integral. In the case where L is relatively ample, it is a
consequence of Theorem [5.5.1]and Remark [6.2.4]

We now consider the general case where L is only relatively nef. Let A be a relatively
ample adelic line bundle and N be a positive integer such that I ®Ais relatively ample

for any n € Ns. For any n € Ny, the adelic line bundle L, = L™ @A is relatively
ample. Hence the particular case of the proposition proved above shows that
—d+1
L
VneNyy, (n—)_Sd > o (Ly).
(d+1)(L,)

Moreover, by the multi-linearity of intersection product, one has

—d+1
L _ d
lim ( 2 )Sz(Ld”)s, lim &) = (LY.
n—o+oo  pd+l n—+oo pd
Therefore, one obtains
—d+1 —d+1
Sy Ty - Loy T o L, )s @)
oo 1) = B0 i () < B0 D) ~ @ Dy

]

COROLLARY 6.7.2. Let L be a relatively nef adelic line bundle on X. For any non-empty
and reduced closed subscheme Y of X, the following inequality holds:

(lelm(Y)+1)S
~asy
Finin (L) < (dim(Y) + 1) deg, ()

In particular, for any closed point x, one has
i (L) < hp(x),

mln

6.31)

where hr(x) denotes

(Z|X)S
[K>x) : K]

Proor. By Lemma 6.6.1 the restriction of L to Y is relatively nef. By Proposition
one has

= deg(x"(L)).

( |d1m(Y)+1)

A1) < (e ) T deg, (1)

By Proposition[6.6.2] we obtain (6-31). o






CHAPTER 7

Global adelic space of an arithmetic variety

This chapter is devoted to the construction of global adelic space of an arithmetic
variety. This construction will be useful further in the study of equidistribution of closed
subvarieties. In the first section we establish a link between metric family on the trivial
invertible sheaf and family of continuous functions on local analytifications. In the second
section we prove the measurability of partial derivatives, which will be useful in the proof of
Bogomolov conjecture over an adelic curve with Archimedean places. In the third section,
we interpret the arithmetic y-volume by concave transform on the Newton-Okounkov body
and show its convexity with respect to choices of metric families. In the fourth section,
we prove the Giteaux differentiability of the arithmetic y-volume. In the fifth section, we
prove the measurability of fiber integrals of a measurable family of continuous functions.
In the last two sections, we construct the global adelic space of an arithmetic variety,
which is a measure space fibered over the adelic curve, admitting the fiber integrals as the
disintegration with respect to the base measure.

Throughout this chapter, we fix an adelic curve S = (K, (Q, A, v), ¢) such that the
underlying field K is countable and perfect. Let X be an integral projective scheme over
Spec K and d be the dimension of X.

7.1. Function associated with a metric family

DeriniTioN 7.1.1. For any invertible Ox-module L, we denote by . (L) the set of
metric families ¢ on L such that (L, ¢) forms an adelic line bundle on X. If L; and L, are
two invertible Ox-modules, and (1, ¢2) € M (L1) X M (L,), we denote by ¢ + ¢, the
tensor product of the metric families ¢; and ¢, which is an element of /#Z (L, ® L;).

DerintTION 7.1.2. Let U be a non-empty Zariski open set of X. Let
W) =[] c"wm

weQ
and f = (fu)weq € €°(U). We say that f is measurable if the following conditions are
satisfied (see [36, Definition 6.1.27]):

(a) For any closed point P of U, the function from Qg p) to R sending v € Qg (p) to
f(xp,y) is Ak (p)-measurable, where xp , denotes the point of X2} represented
by (Py, |-]v), Py being the point of X, (K(P),) extending P.

(b) Let X" be the Berkovich analytification of X with respect to the trivial absolute
value on K. For any x € X*", whose underlying scheme point is of dimension
1, and such that the absolute value (in the structure of x) of the residue field
has a rational exponent (see §I.11), the function (w € Qo) — fo(x) is Alq,-
measurable, where Qg denotes the set of w € Q such that |-|,, is trivial.

Under the assumption U = X, the family f is said to be dominated if there exists an
integrable function g on (L, A) such that sup, ¢ xu [ fw|(x) < g(w) for all w € Q. Here we

83
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set
B2(U) := {f € 8°(U) | f is measurable},

%g(X) :={f € €%(X) | f is dominated},
EY(X) := {f € €°(X) | f is measurable and dominated}.
Sometimes €°(U), €% (U), €J(X) and € (X) are denoted by
&(U;Q), €n(U;Q), FUX;Q) and BUX;Q),
respectively, to emphasize the parameter space €.
For f € €°(X), a metric family of Oy given by (e /«|-|,)weq is denoted by e~/
Note that a map given by f + (Ox,e™/) yields a bijection between €°(X) and the set of
all metric families of Ox. In the situation where we use the additive notation to represent

a tensor product metric family, by abuse of notation we also denote the metric family e~/
by f in order to facilite comprehensions.

Proposition 7.1.3. For f € €°(X), we have the following equivalence:

f € 8%(X) & (Ox, e ') is measurable,
f € €Y (X) & (Ox.e™7) is dominated,
f € BYUX) & (Ox,e/) is an adelic line bundle.
Proor. The first equivalence is obvious. The second is a consequence of [36, Propo-

sition 6.1.12] and the fact that the zero metric on Oy is dominated. The third follows from
the first and second. O

By abuse of notation, we often identify €2 (X) with .4 (Ox). Let Q' be a measurable
subset of Q (i.e. Q" € A), and §" = (K, (Q,A’,v"),¢’) be the restriction of S to Q’.
Note that S’ is also an adelic curve. We consider a natural correspondence €°(X; Q') —
%°(X; Q) given by the following way: if f = (fu)weq then f = (fu)weq is defined to
be

7, = fo ifwe,
“710  otherwise.

Then, as a corollary of the above proposition, we have the following.

CoroLLARY 7.1.4. The above correspondence yields €0 (X; Q') € €2(X; Q).

7.2. Measurability of partial derivatives

We assume that K is algebraically closed and Q = Q.. We fix a root V-1 of the
equation 72 + 1 = 0 in K, and a family (t,,)ecq, of embeddings K — C which satisfies
the following conditions (c.f. [38, Lemma 4.2.5]):

(i) for any w € Q, t,(V-1) =i, where i € C denotes the usual imaginary unit,
(ii) for any w € Qoo, ||e = |t ()],

(iii) for any a € K, the function (w € Q) > ¢, (a) is measurable.

Letm: X — IP% be a finite projection and V be an affine Zariski open set of P% such
that if we set U = 7~ (V), then U is smooth over K and 7 : U — V is étale. Let

e (W)= [[ oW and GR(U) =6 (U)NEHU).

weQ
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Let x be a closed point of U. For any w € €, we denote by x,, the unique point of X2}
whose underly scheme point of X, lies over x. Let (z j)jlzl be a coordinate of V. Note

7*(z1),...,7"(z4) yields a local étale coordinate of U around x. By abuse of notation,
7*(z1),...,7"(zg4) are denoted by z1,...,z4.
ProrositioN 7.2.1. If f = (fw) € G (U), then the function given by
82
we) — T )
6Zj(92€
is A-measurable.
Proor. We may assume that 7(x) = (0, ...,0). As V is a Zariski open set of A%, we
can find a non-negative integer e and a non-zero polynomial
h= Z aig,.,..., idXi.l s Xclld (a,-l ..... iq € K)
i15-5ld €250,
i1+:+ig<e

such that £(0,...,0) # 0 and
V= {(x1,...,xq) € K| h(x1,...,x,) #0} C V.

If we set )
he = Z L(/.)(all ..... 1(1)Xil . leld
U, ld €230
for each w € Q, then V/,*" = {({1,...,¢q) € C¢ | hy (1, .. . L) # 0}. For a polynomial
g= > by XX eClX,..., Xal,
i1,eeesld €230,
i1+ -+ig<e

we define p(g) to be

p(g) =inf{(| >+ +1a)'? | 841, ..., La) = O}

Note that p(g) = 0 if and only if g(0,...,0) = 0, and p is continuous with respect to the
coefficients (b;,,..;,), so if we set ro, = p(hy,), then r,, > 0 and the function given by
(w € Q) > 1, is A-measurable. Moreover,

Wo ={(1,....4a) ecd | |§1|2+“.+|§d|2<ri)}<;v;)ano

As W, is simply connected and 7! (W,,) is étale over W, 7! (W,,) is a disjoint union of
connected open sets. Let T, be the connected component of ﬂ;l (W) such that x,, € T,.
Then n, : T, — W, is an isomorphism.

Let n be a positive integer and A,, :={w € Q| ry, > 1/n} € A. Let

(p1+V-1q1,. .., pa + V=1¢4) € Q(V-1)¢

such that (p7 +¢7) +- - -+ (p% +¢%) < 1/n*. Then, for each w € A,,, we can find y,, € Ty,
such that z,(yw) = (p1+iq1, ..., pa+iqa). Further, since y,, € T, forall w € A, there
exists y € U such that z(y) = (py + V=141, ..., pa + V=1g4) and y is the image of y,, by
X, — X for all w € A,. Therefore, for any £ € Q with 0 < & < 1/(V2n), we can find
Vi,e:Y2,6:Y3,¢e € U’(K) such that

2(y1,e) = €ej, 2(y2,e) = V-leey, 2(y3,c) = €ej + V-leey
and

lim (yl,s)w =Xy, lim (y2,e)w =X, and lim (y3,£)u) =Xw-
e—0 e—0 e—0
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Thus one obtains
0*(fw)
0z i 07¢

for w € A,. Note that, for any rational point y of U, the function (w € Q) — f,(y) is
A-measurable. Therefore, if we set

(xew) = i{%é fw((YS,s)w) —fo(O1,6)w) = fw((YZ,s)w) +fw(xw)]

0*(fw)
w € Ay,
bn(w) = azjazf(x) @
0 otherwise,

then b, is A-measurable on Q, so the assertion is proved because

9*(fw)

6Zj(92€

(*w).

lim b, (w) =
n—oo

7.3. Relative volume and y-volume

If L is an invertible Ox-module, we denote by

V(L) = P HO(x, L)

neN

the total graded linear series of L. Recall that the volume of L is defined as

- dimg (HO(X, L®"))
vol(L) = limsu .
( ) n—>+oop nd/d!
The invertible Ox-module L is said to be big if vol(L) > 0.

If L is a big invertible Ox-module and V, is a graded linear series of L (namely a
graded sub-K-algebra of V,(L)), we denote by A(V,) the Newton-Okounkov body of V..
We refer to [53, 58] for the construction of Newton-Okounkov body under the assumption
that the function field of X admits a Z¢-valuation of one-dimensional leaves over K, see
also [32,133]] for the arithmetic construction which applies to the general case. Recall that
A(V,) is a closed convex subset of R?, whose Lebesgue measure is equal to

1 di V,
a0 vol(V,) := lim sup lmK—(n)

n—+oo nd

In the case where V, is the total graded linear series of L, the Newton-Okounkov body is
denoted by A(L). Recall that, if L and L’ are big invertible Ox-modules, and V., V! and
W, are respectively graded linear series of L, L’ and L ® L’, such that

VneN, V,- V. CW,,
then one has
AV)+AWV]) :={x+y : (x,y) € A(V.) + A(V])} € A(W.).

Let (L, ¢) be an adelic line bundle on X. For any n € N, we denote by &, the norm
family (||-|lng,,)weq on Vi (L) = HO(X, L®"), so that (V, (L), &,,) forms an adelic vector
bundle on S. Let ¥ be the Harder-Narasimhan R-filtration of this adelic line bundle. Recall
that

VteR, Tt(vn(L)7§n<p) = Z F,
0+£FCV, (L)
Hiin (F) >t
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where F runs over the set of non-zero vector subspaces of V,,(L) such that the minimal
slope of F equipped with restricted norm family of &, is not less than ¢. Note that this R-
filtration determines an ultrametric norm on V,, (L) (where we consider the trivial absolute
value on K), which we denote by ||-[l,,. Denote by ||-|l44,sp the corresponding spectral
norm, which is defined as

— N N
Islhngsp = Jim sVl

For any 7 € R, let
VP (L) = {s € Vu(L) : lIsllng.sp < €™}

Note that V' (L) is a graded linear series of L.

DeriniTION 7.3.1. Let (L, ¢) be an adelic line bundle on X such that L is big. We call
concave transform of the metric family ¢ the function G, : A(L) — R defined as follows:

Gy(x) =sup{r € R : x € A(V#'(L))}.
This function is concave. Moreover, for any x € A(L), one has

lim inf /Jmm(v ELL) fmp) < G‘p(x) < lim sup ,Umax(Vn(L)’fmp) )

n—>+oo n—+0o n

For any positive integer n, one has A(L®") = nA(L) and

Grp(nx) = nG,(x). (7.1)

In the case where
Umin (Vi (L),
lim inf /Jmm( n( ) gncp) > _
n—+o0o n

the following equality holds:

/A(L) Gy(x)dx = d+ 1)'V01 (L, ). (7.2)

DeriniTION 7.3.2. We say that an invertible Ox-module L is slope-bounded if there
exists a metric family ¢ € .# (L) such that
Vu(L), én
lim inf ﬂmm( (L), € LP) > —oo, (1.3)

n—>+oo n

Note that, for any element ¢ € .# (L), one has

VneN, |ﬁmin(vn(L)’§n</:) - ﬁmin(vn(L)vfnw” < n./g sup 0w — Yol(x) v(dw)
XE dn
and therefore
lim inf ,Umm(v (L) fm,b)

n—>+oo n
if (7.3) is true.

ExampLE 7.3.3. Let L be a big invertible Ox-module. Assume that the graded linear
series V.(L) := P, e V(L) is of finite type over K. Then the invertible Ox-module L is
slope-bounded. In particular, semiample and big invertible Ox-modules are slope-bounded
(cf. Remark[7.3.4]below).
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ReMARKk 7.3.4. Let L be a semiample invertible Ox-module. Then V,(L) is of finite
type over K. Indeed, there exist a surjective morphism f : X — Y of projective integral
schemes over K, an ample invertible Oy-module A and a positive integer a such that
L® = f*(A). Thus, by Lemma.4.1] R = V,(L®) is of finite type over K and

M; = @HO(X,L®i ® L®na)
n=0
is finitely generated over R for every O < i < a. Therefore, V.(L) = My & --- ® M, is
also finitely generated over R, and hence the assertion follows.

ProrosiTiON 7.3.5. Let Ly and L, be big invertible Ox-modules. If (@1, ¢3) is an
element of M (L) X M (L3), then the following inequality holds:

V(x,y) € A(LD) XA(L2), Gy (x+y) 2 Gy, (x) + Gy (1)

Proor. Let (11,1:) € R%, n € Nxj and (s1,s2) € V" (L1) x VE»(L,). By defini-
tion, for any € > 0 there exists N € N3 such that

Vie{l,2}, sNeF™NUmE (VN (L), nng,)-
By [36l Corollary 5.6.2] (see also Remark |A.3.3), we obtain that

—In[|(s152) M [lnn (@r4¢p) = BN (1 + 12 — 2¢)

- %V(Qw)(ln dimg (Vo (1)) + Indimg (Vo (L2)) ).
Dividing the two sides of the equality by N and taking the limit when N — +oco, we obtain

=In|ls1520ln(p1+@).sp = Bt + 12 = 28).
Since € > 0 is arbitrary, we obtain

—In[[s182[ln(p1+¢2).sp = 1t +12).
Therefore, one has
Vi (Ly) - ViR (L) S VTR (L © L),
which implies
A(VE (L) + AV (Lo)) € A(VET#2ITR (L) © Lo)).

Let (x,y) be an element of A(V,(L;)) X A(V.(L,)). For any & > 0 and any (¢1,1;) € R?
suchthatf; < Gy, (x) —gand 12 < G, (y) — &, one has

(x,y) € A(VE(Ly)) X AV (L))
and hence x + y € A(VE" "2 (1, @ L,)). We thus obtain
Gt (x+y) 2t +1 = 2e.
Since t1, t; and € are arbitrary, we deduce
G+ (X +Y) 2 Gy (x) + Gy, (x).
O

CoroLLARY 7.3.6. Let L be a slope-bounded invertible Ox-module, ¢ and ¢, be
elements of M (L), and 6 € [0, 1]. Then the following inequality holds

vol, (L, 61 + (1 = 6)¢2) = 6voly (L, 1) + (1 = 8) vol, (L, ¢2). (7.4)

In other words, the function from 4 (L) to R sending ¢ to \HX(L, @) is concave.
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Proor. We first treat the case where ¢ is a rational number. Let k and N be positive
integers such that N > k. By (7.1)), (7.2)) and Proposition[7.3.5] we obtain

Vol (LN kg1 + (N — K)ga) _ voly (L%, k1)  vol, (L*N™0 (N — k)g»)
vol(L®N) ~ vol(L®K) vol (L®(N-k)) ’
or equivalently,
N voly (L, &1+ N5k @) > kvoly (L, 1) + (N = k) vol, (L, ¢2).

Therefore the inequality holds in the case where ¢ is rational. The general case follows
from the rational case together with the following estimate

V (¢, ¥) € M(L)?,

WOl(L, @) — vol(L.y)| < (d+ 1) vol(L) /Q sup [(p — ) ()] v(dw).

an
xe€Xy)

7.4. Gateaux differentiability

We show that the y-volume function \7(;1)((-) is Gateaux differentiable along any di-

rection defined by metric families on the open cone Pic A(X) of adelic line bundles L on X
such that L is semi-ample and big.

DeriniTION 7.4.1. Let L be a big invertible Ox-module. Let ¢ and ¢ be two elements
of #(L). For any w € Q, we denote by vol(L,, ¢, ¥, ) the relative volume of L, with
respect to the metric pair (¢, ¥, ), which is defined as

. d+1)! . ,d
g @D Mg
n—+eo  pdt ”'”nzﬁw,det

We refer to (34, Theorem 4.5] for the convergence of the sequence defining the relative
volume.

ProrosiTiON 7.4.2. Let L be a semi-ample and big invertible Ox-module and (¢, ) €
M (L)?. The following equality holds:

\7(;1)/(14’ %) - ‘751/\/(10 ¥) = / VOl(L s P ¥ ) v(dw).
Q

Proor. For any positive integer n, let a,, be a non-zero element of det H°(X, L®").
By definition

— — d+1)!
vol, (L, p) —vol, (L,¢) = — lim u / In w v(dw).
weQ

n—+oo  pd+l lanllng,, det
Note that w
1 ‘ ‘ling,,,det
. In ——| < sup [0 —Youl(x).
ndimg (HO(X, L2 | llnggdet|  xexem ¢
By dominated convergence theorem we obtain
. (d+1)!

\7()\1X(L, @) — \7(;1X(L, W) = —/ lim In Il e v(dw)

weq =+ pdtl ”'”nww,det

:/VOI(LQ)y‘pu)?l)bw) V(dw)
Q
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ProposiTiON 7.4.3. Let L = (L, @) be an adelic line bundle on X. We assume that L is
semi-ample and big and that ¢ is semi-positive. The function vol, (-) on Pica(X) is Gateaux
differentiable at L along the directions of M (Qx). Moreover, for any f € M (Ox), the
function

(weQ)r— / fo Ci (Lw,cpw)d
X3
is v-integrable, and one has

vol, (L(1)) - vol, (L)
t—r% t

=(d+ I)Lv(dw) /Xan fo C](Lw,tpw)d.

Proor. By [19, Theorem 1.2] and [10, Theorem B], for any w € Q, one has

lir% vol(L,,, t,Dwt+ s Pw)
>

~@+) [ foerLoga)®

Note that
VOl(Ly, 0o + 1 fers Qo)
t

< (d+1)deg, (X) sup | feol (x).

xeXy)
Since the function
(w € Q) — sup |ful(x)

xeXu
is integrable, by Lebesgue’s dominated convergence theorem we obtain, by using Proposi-
tion that
vol (L(tf)) = vol, (L
lim L (L(2f )t) (L)
=

=(d+ 1)‘/Qv(da)) ‘/Xan fwcl(Lw,goa,)d.
O

REMARK 7.4.4. We conjecture that any big invertible Ox-module L is slope-bounded.
If this is true, then for any metric family ¢ € (L), the y-volume \781(L, @) takes real
values. Hence the results of Propositions and hold without semi-amplitude
assumption on L. Correspondingly, we conjecture that Theorem [8.11.2]also holds when L
is only nef and big. Actually Luo [59] give a generalization of Theorem [8.11.2] under the
assumption [z iyn(Z) eR.

CoroLLarY 7.4.5. Let (M, 1), ..., (Mg, ¥4) be relatively nef adelic line bundles.
For any f € GY(X), the function

(weQ)r— /Xan foct(Mi,w,¥1,0) - c1(Mg,w,Vad,0) (7.5)

is v-integrable.

Proor. By the multi-linearity of Monge-Ampere measure, we may assume without
loss of generality that all adelic line bundles (M;, ;) are equal to the same one (M, )
(c.f. [38| Proposition 1.1.4]). Let (L, ) be a relatively ample adelic line bundle on X. By
Proposition[7.4.3] for any n € N3, the function

1
(we Q) — n_d/ foct(ME" ® Ly, nr,, + gow)d
X3
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is A-measurable. Passing to limit when n — +co, we obtain the A-measurability of the
function

e [ foarMovo)
X3
Finally, since f € %2 (X), by [36, Proposition 6.1.12], we obtain that there exist two
v-integrable functions A; and A, on Q such that
Vxe XY, Aj(w) < fox) < Ay(w).

Since each ¢; (M, )% has measure ¢ (M)<, the function
e [ fuerMowa)
X

is v-integrable. O

7.5. Measurability of fiber integrals

DeriniTION 7.5.1. Let Q' be an element of A. As Borel measure family on X over €',
we refer to a family n = (1,,)weq’, Where each 7, is a Borel measure on X,,, such that, for
any f = (fu)weq € G)(X;Q’), the function

@e@)— [ fulna@

is Al -measurable and integrable with respect to the restriction of the measure v to Q’.
We denote by n(f) the integral

/Q, /X?g for (%) 6o (dx) v(dw).

ReEMARK 7.5.2. Let n = (7y)weq be a Borel measure family on X over Q'. For
any v-integrable function A : Q — R which vanishes on Q \ Q’, we consider the family
fa = (fa,w)weq, Where fa , denotes the constant function on X2 taking value A(w). We
then obtain that the function

(0 €@) = A1 = [ faulnu(@)

xeXy)

is v-integrable. This observation shows that the function
(@ € Q) — e, (X
is essentially bounded, namely there exists C > 0 such that
{weQ :n, (X >C}
is a zero measure set.

ExampLE 7.5.3. Let L = (L, ¢) be a relatively ample adelic line bundle on X, namely
L is an ample invertible Ox-module and ¢ = (¢, )weq 1S @ measurable and dominated
family of semi-positive metrics. Let Y be a reduced closed subscheme. Denote by 67 , o =
(5Z’Y’w)wgg' the Borel measure family on X over Q' defined as follows: for any we Q,
and any positive Borel function f,, on X2},

_ — 1 dim(Y)
S Fo @000 = g [ g enLol el ™ @)
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This is a Borel probability measure on X2, which is supported on Y2'. In the case where
Y is a closed point, the measure 67 ,,  is given by the weighted average on some points of
X2 We refer to Proposition for the integrability of the function

e — [ g, @

when f € €%(X) (so that the restriction of f to ¥ belongs to €(Y)). In the case where S is
proper and €’ = Q, one can also interpret the expression 67 y ¢ in terms of the arithmetic

intersection theory. For any f € €Y(X) and any 7 € R, we denote by L(zf) the adelic line
bundle (L, ¢ +e~*/). Then the following equality holds:

_ . —dim(Y)+1
07y o (f) = lim CaHEmO s - @ s
Ly /) =10 (dim(Y) + 1) deg, (Y)t ,

provided that (Ox,e~/) formes an integrable adelic line bundle.

ExampLE 7.5.4. Let (My,y¢1),...,(Mg,¥4) be relatively nef adelic line bundles on
X. Forany w € Q, let

Nw = C1 (Ml,a), wl,w) s C (Md,ws lr//d,a))'
By Corollary[7.4.5] (174)weq forms a Borel measure family on X over Q.

ProrosiTIiON 7.5.5. Let Q' be an element of A and n = () weq be a Borel measure
Sfamily on X over Q'. Let M = (M, ) be an adelic line bundle on X and s be a non-zero
global section of M. Then the function

@e@) s [ (~Inlsly, ()70 (@0)
X3
is A-measurable and is bounded from below by an integrable function.
Proor. Let Qg be the set of w € Q such that |-|,, is trivial. Then
Q\ Q= U {weQ : lal, 1}

acK\{0}
is o-finite (namely a countable union of elements of A which have a finite measure).
Moreover, by [36, Proposition 6.1.12], a comparison with the trivial metric family over Q
shows that the function

(w € Qp) —> sup |1n|s|¢w (x)|
X an

w

is integrable. Therefore the set

Qo5 ={w € Qo : |s|y,, is not identically 1}
is o-finite. We may then choose a non-negative v-integrable function A on Q such that
A(w) > 0forany w € (Q\ Qo) UQq ;. In fact, if we write (Q \ p) U Qo s as a countable

union |, <y Bn, Where each B, is an element of finite measure in A, then, with arbitrary
choices of positive real numbers b,, such that b,,v(B;) < 27", n € N, the following function

is v-integrable
> bul,

neN
and vanishes nowhere on (Q \ €p) U Qp ;.
For any ¢ > 0 and any w € Q, let f; ., : X3 — R be the function defined as follows:

St.0(x) = min{=1In sy, (x),tA(w)}.
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This is a continuous function on X2, which yields a continuous metric e~/ on Oy,,.
Moreover, the function f; , is bounded from below by
min{—1In[s]|y,,,tA(w)}
and bounded from above by A (w). By Proposition [36) Proposition 6.2.12], the function
8 Q—-R, (weQ)r— —Inls|ly,

is integrable. Therefore, the family f; = (f;.»)wea belongs to €%(X) and hence the
function

@)= [ fru @)

is A-measurable. Passing to limit when ¢+ — +co0, we obtain the measurability of the
function

@e@) i [ (inlsly, ()o@,

Finally, by definition, for any w € Q’, one has
/ (=10 I5ly, (1)) 70 (d2) > — I lsll g, 700 (XE0).
X

Since the function (w € Q') — 1, (X2") is essentially bounded, the second assertion is
true. O

ProprosITION 7.5.6. Let U be a non-empty Zariski open subset of X, and f = (fo,)wea
be a measurable family, where each f,, is a continuous function on UY), such that there
exists a v-integrable function g : Q — R satisfying

VweQ, Vxe X,  fu(x) > glw).

Let Q' be a o-finite element of A and (1) weq be a Borel measure family on X over Q.
Assume that, there exist an adelic line bundle (M, ) and a non-zero section s € H(X, M)
such that the non-vanishing locus of s is contained in U and that

/ (=In|s|y,, (x)) nw(dx) < +c0  v-almost everywhere on Q'.
X

Then the function
e [ fu@na)
vy
is A-measurable.

Proor. We choose a non-negative v-integrable function A on Q such that A(w) > 0
for any w € Q'. This is possible since Q' is o--finite. Moreover, without loss of generality,
we may assume (by Remark and the condition of the proposition on (7,,) weq) that

[ sl o) (o € 7

for any w € Q'.
For any t > 0 and any w € Q, let f; ,, : X2} — R be the function defined as

Jt.0(x) := min{f,, (x) = In|s|y, (x),7A()},

where by convention f; ,,(x) = tA(w) when s(x) = 0. Since f,,(x) is continuous and
—In|s|y,, (x) tends to +co when x tends to some point xo € X2 such that s(xg) = 0, we
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obtain that the function f; ,, is continuous on X2. Moreover, the function f; ,, is bounded
from above by 1A (w) and bounded from below by

min{g(w) —1n|[s]ly,,.tA(w)}.

Therefore the family (f;..,)weq belongs to €2(X). Hence by Proposition we obtain
the measurability of the function

e — [ (o =Inlsly, () 100,
O

RemARk 7.5.7. Let (L, ) be a relatively nef adelic line bundle. For any w € Q, let
Nw = ¢1(Le, 9u)?. Then, for any adelic line bundle (M, ) and any non-zero section
s € HY(X, M), one has

Yow e Q, /Xan(—ln|s|¢,m(x)) Ne(dx) € R.

We refer to [27]] for the non-Archimedean case.

7.6. Global adelic space
Recall that we fix a adelic curve
S = (K7 (Q, ﬂ? V)? ¢)

such that K is countable and perfect. If X is an integral projective K-scheme, we denote by
K (X) the field of rational functions on X. This is also a countable field.

Let X be a projective scheme over K and Q' be an element of A. We denote by X
the disjoint union [[,cqr Xj,. Denote by 7 : X3} — € the map sending the elements of
X{; to w. For any Zariski open subset U of X, let UJ} be the disjoint union [ ] ,cq UZ).

DeriNiTION 7.6.1. We equip X&) with the smallest o--algebra By o which satisfies the

following conditions:
(1) the map  : X3 — Q' is measurable,
(2) for any Zariski open subset U of X, the set Uy, belongs to By o,
(3) for any adelic line bundle (L, ¢) on X and any section s of L on some Zariski
open subset U of X, the function

Uy — R, (xeU)— sy, (x)
is Bx o/-measurable.

ReEMARK 7.6.2. The above third condition can be replaced by the following (3)’:
(3)’ For any adelic line bundle (L, ¢) on X and any global section s of L, the function

Xo — R, (x € X)) Islg, (x)
is Bx q/-measurable.

In fact, suppose that U is a Zariski open subset of X and s is a section of L over U. We
an auxiliary adelic vector bundle (M, ) such that M is very ample and global sections
t1,...,t, of M such that the non-vanishing loci D(ty),...,D(t,) of t1,...,t, form an
open cover of U. Then there exists an integer £ > 1 such that tfs, e, tﬁs extend to global
sections of L ® M®’. Locally on D(t; & We can then write the function (x € X{) = [s],,,
as the quotient of (x € X™) i |tfs|¢y, +¢,, (X) by (x € X) > |1; f}/w (%).
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ReMARK 7.6.3. Let U be a Zariski open subset of X. We consider the trivial metric
family on Ox. Then the point (3) in the above definition shows that, for any regular
function f on U, the function |f|o : Uy — Rso, which sends x € UZ} to |f]w(x), is
Bx .ol um -measurable.

Assume that the scheme X is integral. Let ¢ be a rational function on X and U be the
maximal open subscheme over which the rational function ¢ is defined. We consider the
function |g|o' on X} sending x € X7 to |g|. (x). Note that, on the Zariski open subset U,
the rational function g coincides with a regular function b on U. Moreover, the following
equality holds

[bloy (x), ifx € U,
lglor (x) = . o\ an
+00, ifx € Xy \ Uy

In particular, the function |g|g is Bx o -measurable.

ProrosiTiON 7.6.4. Let f : Xg} — Ry be a Bx o -measurable function.

(1) Forany w € Q', f|xm is a Borel measurable function.
(2) Let 1= (Nw)weq be a Borel measure family on X over Q'. Then the function

@e@)— [ fmn.@

is A|qy-measurable.

Proor. Let H,, be the set of bounded functions f : X5 — R which satisfies the
condition predicted in the proposition, namely f|xm= is a Borel function for any w € Q’,
and the function

@e@)— [ fmna@

is Al -measurable. Note that H,, is a A-family, namely

(i) the constant function 1 belongs to H,,;
(ii) if f and g are two elements of H,,, and a and b are non-negative numbers, then
af +bg € Hy;
(iii) if f and g are two elements of #,, such that f < g, then g — f € H,;
(iv) if (fn)new is an increasing and uniformly bounded sequence of functions in #,,,
then the limit of the sequence ( f,,),en belongs to H,.
Let C be set of functions X) — R of the form 1 -1 4)|b|,, o, Where A is an element of
A contained in Q’ and b is a global section of some adelic vector bundle (L, ¢). Moreover,
the o-algebra By ¢ is equal to the o-algebra o-(C) generated by C. By Proposition[7.5.6}
the family C is contained in H,,. If A" is another element of A contained in Q’, b" is a
global section of some adelic line bundle (L', ¢’), then one has

(M1 1blp.0) (-1 an | @) = o1 (anany DD | iy s
where wen consider bb’ as a global section of the adelic line bundle (L ® L', ¢ ® ¢’).
The function family C is hence stable by multiplication. By monotone class theorem (see
for example [36, Theorem A.1.3]), H,, contains all bounded o(C)-measurable functions.
Since any By o’-measurable function can be written as a limit of bounded Bx q/-measurable
functions, the proposition is thus proved. O

DerINITION 7.6.5. Let Q' be an element of A and 1 be a Borel measure family on X
over Q'. Proposition|7.6.4|shows that, the map

(BeBxa)— [ vdo) [ 1a(n.@
we’ xa
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defines a measure on the measurable space (Xg}, Bx o). We denote by 7¢ this measure.

By abuse of notation, it is often denoted by 7. For any non-negative Bx o -measurable
function f : Xg} — R0, one has

/Xan’ f(x) ney (dx) = /le(dw) ./ng F(x) e (dx).

REMARK 7.6.6. If there exists an adelic line bundle (M, ) such that M is ample and
that, for any n € N and any non-zero section s € HO(X , M®™), one has

Yw e Q, / (=In|sly, (x)) 1, (dx) €R,
X

then, viewed as a measure on (Xq, Bx o), 17 is uniquely determined by the integrals of
functions in €2(X; Q). In other words, if 7’ = (17),) weg is another Borel measure family
on X over ' such that

/weg/V(dw) /X Jo(X) 16 (dx) =./wesz'V(dw) /Xw fu(x) 1, (dx),

then, as measures on (X3, Bx '), one has ng: = ng,. This follows from the proofs of

Propositions and

DeriniTION 7.6.7. We equip X(); the smallest o-algebra 8
following conditions:

’
X,

which satisfies the
(1) the map  : X3} — €' is measurable,
(2) for any Zariski open subset U of X, the set US} belongs to B;( o
(3) for any Zariski open subset U of X and any regular function b on U, the function

|bloy on U defined as

YweQ, VxeUY, |bla(x) :=|bley(x)

is B;(’Q,

Obviously 85 ,, € Bx,o (see Remark .

ProrosiTiON 7.6.8. Let L be a very ample invertible Ox-module and ¢ be a family
of semipositive metrics of L such that (L, @) is measurable. Then, for s € H*(X, L), the

function |s|y o : X3 — R sending x € X{) 1o |5y, (x) is BY, o, -measurable.

-measurable.

Proor. We begin with the case where ¢ is a quotient metric family. Let £ = H*(X, L),
& be a norm family on E such that (E,¢) forms a measurable vector bundle on S, and
u : X — P(E) be the canonical projective K-morphism. Note that u*(Og(1)) = L.
Assume that the metric family ¢ is induced by & and the morphism u. If s = 0, then the
assertion is obvious, so we may assume that s # 0. Let U be a Zariski open set of X given
by {£ € X | s(£) # 0}. Forr € E \ {0}, we choose A € K(X)* such that r = As. Note that
Ais regular on U. Let us consider |/l|£‘2,1 (x) - Il on UY'. For a point x with [A]o/(x) =0
(i.e. 1(x) = 0), the value of || 5! (x) - ||]|, is defined to be co. Thus,

inf g () - litllew = inf g () - N1l
teE\{0}, 1eK(X)* teE\{0}, 1eK(X)*
t=As t(x)#0, t=As
and hence
Is] .00 (x) = inf g () - lltlleo

1
teE\{0}, 1eK (X)*
P
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for all w € Q and x € Uj]. Therefore [s|, o is B , -measurable because |/l|£‘2/1 ) - It

is B% Q,-measurable and E is countable.

Let (¢n)nen is a family of metric families on L. We assume that (L, ¢,) forms a
measurable line bundle on X, and that, for any w € Q’,

lim d,(¢n, @) =0.
n—+oo

If for any n € N, the measurable line bundle (L, ¢, ) verifies the assertion of the proposition,
then so does (L, ¢). Therefore the proposition follows. O

REMARK 7.6.9. The above proposition implies that the o-algebra By ¢ is spanned by
functions of the form |b|¢ for, where b is a regular function on some Zariski open subset
U of X and f is an element of €Y (X). In fact, for any adelic line bundle (L, ¢) such that
L is ample, one can always find an element f € €°(X) such that ¢ + f is semi-positive.

7.7. Determination of fiber integral by global adelic measure

In this section, we let § = (K, (Q, A, v), ¢) be an adelic curve such that K is countable,
and Q' be an element of A. We have seen in that any Borel measure family n =
(Nw)weqr on X over Q' determines a measure 77¢ on the measurable space (X3, Bx o),

such that, for any non-negative Bx o -measurable function f on Xg}, one has

/Xan’ J(x) ney (dx) = /Q/V(dw) ./xgg F(x) e (dx).

We show that the fiber measures 7, are almost everywhere determined by the global
measure 7¢y .

ProposITION 7.7.1. Let 1 = (Nw)weqy and T = (Ty)weq be Borel measure family on
X over Q'. Ifngy = ¢y, then there exists a measurable subset Q" of Q' such that v(Q") =0
and that n,, = 7, forany w € Q" \ Q".

Proor. We first show that, for any non-negative Bx o -measurable function f on X(),
the set Q} of w € Q' such that

[ tema@o = [ 5omu@
X X
has measure 0 with respect to v. Let A be the set of w € Q' such that
[ rema@ > [ reea.
X3 X3
By Proposition we obtain that A is a measurable set. Moreover, by the equality

[ a0 (@0 = [ 1) £3) e @)
Q o

we obtain that v(A) = 0, where 7 : Xg) — Q' sends the elements of X2 to w. Similarly,

the set of w € Q' such that

/ £ no(dv) < / F) To(d0)
X X8

is also A-measurable and has measure 0 with respect to v.
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We now pick an auxiliary adelic line bundle L = (L, ¢) such that L is ample and ¢ is
semi-positive. We let
0= U HO(X,L®").
neN
Since K is countable and each linear series H°(X, L®") is a finite-dimensional vector space
over K, the set ® is countable. For any s € ©, we consider the function f; : ngl — Ry
which sends x € X2 to [s|,,, (x). This function is By o/-measurable. We let

Q= U Q.
s€O® ’
By the above argument, we obtain that Q" belongs to A and v(Q") = 0.
Let w be an element of Q' \ Q" and denote by H,, the set of positive and bounded
Borel function g, on X2 such that

[ solno@) = [ gura(a.
X X

Clearly H,, is a A-family. Let C,, be the set of functions of the form (x € X27') +— sy, (x),
where s is an element of ®. Clearly the family C,, is stable by multiplication. Therefore,
by monotone class theorem (see for example [36, Theorem A.1.3]), H,, contains all
bounded o (C,,)-measurable functions. Finally, for any n € N, H(X, L®") is dense
in H(X,,, L®") = H(X, L®") ®k K,. Forany s € H’(X,,, L®"), there exists a sequence
(s¢)een of elements in HO(X, L&) such that
lIse = sllng, = sup [se = sly, (x)
xeXa

converges to 0. Therefore we deduce that H,, actually contains all bounded positive Borel
functions on X2, which means that n,, = 7. m]

Lemma 7.7.2. Let (K, |-|) be a trivially valued field, X be an geometrically integral
projective scheme of degree d over Spec K, L be an ample invertible Ox-module, and ¢
and ¢’ be two continuous metrics on L. Assume that the equality c¢1(L, 9)? = c{(L, ¢’)¢
holds. Then there exists a constant A € R such that ¢’ = e .

Proor. By definition there exists a continuous function A on X such that ¢’ = () .
It suffices to prove that the function A(-) is constant.

Let u be a real number such that 0 < u < 1. For f(T) = ¥~ a,T" € K[[T]], we
define | f(T)| to be

|f(D)] = sup la;lu’,

i€Z>0
which extends to anon-trivial absolute value on K (7). LetK’ = K((T)) and  : X§, — X*"
be the projection map. By Proposition [38, Proposition 3.9.9], one has

(0. 407 - (Lxrgx)?) = ((0.0) - (L)),

(0.20m) - (Li¢ie)) = (0.0) - (Log)?.

and hence

/ Ax)) er (L o) = / A e1 (L o)
X;;]/ an

- / A 1 (L) = / Ar() 1 (Lirs ).
Xﬂn Xan/

K
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By the same method of the proof of [76, Corollary 2.2], we obtain that A(7(+)) is a constant
function, and hence A(-) is a constant function since 7 is surjective. O

ProposiTiON 7.7.3. Let L and L’ be invertible Ox-modules, and ¢ = (¢ o) weqy and
¢ = (¢),)weey be semi-positive metric families of L and L’ over Q', respectively, such
that (L, @) and (L', ¢") forms adelic line bundles over Q'. If 6(1.o) x.or = O(17,4), X,
on X%, then there exists Q" € A such that Q" C Q', v(Q"”) = 0 and ¢, (L, 0g,)dimX =

ci(L.,, )™ X forall w € Q' \ Q. Moreover, in the case where L = L" and L is ample,
then there exists an integrable function A : Q' — R such that ¢, = eV @) g for any

weQ\ Q"

Proor. The first statement is a consequence of Proposition For the second
statement, let f = (f,)weq € %Q(X;Q’) such that ¢/, = efop,, for all w € Q. By the
uniqueness part of Calabi-Yau theorem (see [76, Corollary 2.2] and the lemma above, see
also [23,54,[12]), f., is a constant ¢(w) on Q" \ Q”. Thus, if we set

c(w) ifweQ \Q",
Aw) = .
0 otherwise,

then the second assertion follows. O






CHAPTER 8

Generically big and pseudo-effective adelic line bundles

The purpose of this chapter is to study weak relative positivity conditions of adelic line
bundle. In the first section, we first extend the arithmetic intersection product in allowing
the appearance of one non-integrable adelic line bundle. In the second and third sections,
we introduce a numerical invariant, the asymptotic maximal slope, to measure the weak
relative positivity of an adelic line bundle. In the fourth section, we show that the asymptotic
maximal slope does not decrease by the pull-back by a surjective projective morphism. In
the fifth section, we prove a relative version of Fujita’s approximation theorem for the
asymptotic maximal slope of an adelic line bundle by the asymptotic minimal slope of
relatively nef adelic line subbundles. In the sixth section, we proved a strong lower bound
of the arithmetic intersection product with the appearance of the asymptotic maximal slope
of one adelic line bundle instead of its asymptotic minimal slope. In the seventh section,
we discuss asymptotic first minimum, which is similar, but in general not equal, to the
asymptotic maximal slope. In the eighth section, we compare the asymptotic maximal
slope to the normalized height. In the ninth section, we introduce the condition of strong
Minkowskianness for adelic line bundles. Under this condition the adelic line bundles
behave similarly to the classic number field case. In the tenth section, we study the
successive minima of the normalized height function and discuss its link with sectional
invariants such as the asymptotic maximal and minimal slopes. In the eleventh and last
section, we prove an equidistribution theorem for a generic sequence of integral closed
subscheme.

In this chapter, we fix an adelic curve S = (K, (2, A, v), ¢) such that, either (Q, A) is
discrete, or K is countable. We assume in addition that K is perfect. Let X be a projective
scheme over Spec K and d be the dimension of X.

8.1. Extension of arithmetic intersection product

In this section, we extends the construction of intersection product allowing the ap-
pearance of one non-integrable adelic line bundle. Let Lo = (Lg, o), ..., Lq = (Lg, ¢a)
be adelic line bundles on X. We assume that Ly, ..., Ly are integrable.

ProposiTiON 8.1.1. Assume that the invertible Ox-module Ly admits a global section
s which forms a regular meromorphic section of Lo on X. Then the function

<we9>H/ 1015l c1 Lo 01.0) -1 (La.aos @)
X2

is v-integrable.
Proor. By the multi-linearity of the local mixed Monge-Ampere measure

Cl(Ll,an (pl,a)) o0 (Ld,wv ‘pd,w)

101
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with respect to Zl, e, Zd, we may assume without loss of generality that the adelic line
bundle L, ..., Ly are relatively ample. By Proposition , we obtain that the function

(weQ)r— / In sy, c1(L1,w ¢1,0) - c1(Ld,w> Pd,w)
X%

is A-measurable and bounded from above by a v-integrable function. Let A= (A,y) be
a relatively ample adelic line bundle on X such that L] ® A admits a global section ¢. By
Proposition again, the function

(we Q) r— / (=Intly,-gp.) c1(L1,ws P1,0) - c1(Ld,ws Pd,w)
X3

is bounded from below by a v-integrable function. Since A is relatively ample and hence
integrable, by [38, Theorem 4.2.12] we obtain that the function

e [ sty er(Liopro) (Lo fao)
X
is v-integrable, which shows that the function
e [ sl oer(Lionpro) - erLao o)
X

is bounded from below by a v-integrable function. The proposition is thus proved. O

DerintTioN 8.1.2. Let Ly = (L1, ¢1),...,Lq = (Lg, ¢q) be integrable adelic line
bundles. Let Lo = (Lo, o) be an adelic line bundle. If Ly admits a non-zero global section
s which forms a regular meromorphic section of Ly over X and

n
diV(S) = Z aij
=1
is the decomposition of div(s) into linear combination of prime divisors, we define the
arithmetic intersection number of Ly, ..., Ly as

n

> a;(@ilz; - Lalz)s

j=1
- / v(dw) / 1 [5lg0 . €1 (Lt.on @1.0) - €1 (Ld.or d.00):
Q Xan

denoted by (Lo---Lg)s. In the general case, we write Lo in the form Mo ® NE)/ , Where
M and Ny are adelic line bundles such that M, and Ny are ample. Then we define the
arithmetic intersection number of Ly, ..., L, as

(Mo-Ly---Lag)s = (No- Ly La)s.
Note that, for fixed integral adelic line bundle Zl, .. ,Zd, the map

(Lo € Pic(X)) — (Lo - Ly -+ La)s
defines a linear form on ﬁi\C(X ).

ProvposrrioN 8.1.3. Let Ly = (Lo, ¢0), . - . La = (La, ¢a) be a family of adelic line
bundles on X. Foranyi € {0,...,d}, let

0i= (Lo~ Li-1-Li+1 -+~ La).
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Assume that L1, ..., Lg are relatively nef, Ly admits a global section s which is a regular

meromorphic section, and, for any i € {1,...,d}, §; > 0 once ,umlyn(L ) = —co. Then the
following inequality holds:

-+ Lq)s > Z o iy (L)

(8.1)
/ S 0l L 1,001 L ) (00,

Proor. If there exists i € {1,...,d} such that i’y (L;) = —oo, then the inequality
(8:1) is trivial. Therefore, we can assume that ymy (L) € Rforanyi € {1,...,n}.
Let div(s) = a1 Z; + - - - + a,Z, be the decomposition of div(s) as linear combmatlon of
prime divisors, where ay, ..., a, are non-negative integers since s is a global section. By
proposition [6.6.2] for any i € {1,...,d} and and any j € {1, ...,n}, one has

~asy
oy (Lilz;) > Ho (Li). (8.2)

By [38| Proposition 4.4.4], one has

n

(Lo La)s = Z a;j(Lilz, -+ Lalz,)s
=

—/Q/ In|s|g, ,, (x) c1(L1,w, ¢1,0) - €1(Ld, 0, Pd,w) (dx) v(dw).
X3

By Proposition [6.6.3] one has

U

n n d

n
> a;(@ilz; - Lalz)s > D a; )6 o (Lilz,) Za,z 8i.j o (L),
A £

j=1 j=1 =1 i=1
where

6i,j = (Lilz; -~ Li-1lz; - Linlz; - - Lalz;),

and the second inequality comes from (8.2). Note that, for any i € {1,...,d}, one has
n
Z a j(5 i,j = 61'.
j=1
Hence we obtain the desired inequality. O

8.2. Convergence of maximal slopes

ProposITION 8.2.1. Let X be an integral projective scheme over Spec K, and L = (L, ¢)
and M = (M, ) be adelic line bundles on X such that H*(X, L) and H°(X, M) are non-
zero. Then the following inequality holds:

Fmax (fs (L ® M)) > fimax (fo(L)) + fimax (f2 (M) — -V(Qm)(ln(hO(L) ho(M))),
where h°(L) = dimg (H°(X, L)) and h°(M) = dimg (H°(X, M)).

Proor. By [36, Theorem 4.3.58], there exist non-zero vector subspaces E and F of
HO(X, L) and H(X, M), respectively, such that

l«Tmin (E) = ﬁmax(f* (Z))’ ﬁmin (F) = /«Tmax(f* (M))7
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where we consider restricted norm families on £ and F. Since X is integral, the map
E®x F— H (X, L®M), s®t+ st
is non-zero. Moreover, for any w € €, one has
V(5.0) € EoX Fan llstllgurne < Isllgy - lllge-

Therefore, the height of the above K-linear map is < 0 if we consider the &, 7-tensor product
norm family on £ ®k F. By [36, Theorem 4.3.31 and Corollary 5.6.2], we obtain

fmax (f:(L ® M)

> Finin (E e, F) > fin (B) + fin (F) = 5 (Quc) In(cimg (E) - dimg (F)
= s (- (D) + Fian (- (F) = 3(Q) In(dim () - dimg (F)

> Fimax (D)) + s = (F1)) = 3 (@) (L) - BO(M))),
as required. O

COROLLARY 8.2.2. Let L be an adelic line bundle on X such that H*(X, L®") is
non-zero for sufficiently large natural number n. The sequence

L (LT, ne,
converges in R.

Proor. The convergence of the sequence follows from Proposition 8.2.1] using the
same argument as in the proof of Proposition[6.1.3} O
8.3. Asymptotic maximal slope

In this section, we let f : X — Spec K be an integral projective K-scheme.

DeriniTION 8.3.1. Let L be an adelic line bundle on X such that L is big. We define

_ n Ton
/Tri:z)a/x(L) — lim Hmax (fu (L®™)) )
n

n—+0o
By definition, for any p € Ny, the following equality holds:
sy 79 sy 7
fim (L") = p fimax (L)
ProposITION 8.3.2. Let L and M be adelic line bundles on X such that L and M are
both big. One has
Fimax (L ® M) > Fimax (L) + fiax (M). (8.3)
Prookr. Forany n € Ny, let a, = dimg (H%(X, L®")) and b,, = dimg (X, M®"). One
has
In(a,) = O(In(n)), In(b,) =O0(n(n)), n — +oo.
By Proposition [8.2.1] for sufficiently large n, one has

ﬁmax(f*«fn ® M)°™) | ﬁmax<f;<Z®")) N ﬁmax<f;(ﬁ®")> SEMESULLAS

Taking the limit when n — +o0, we obtain the inequality (8-3). m]
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PrOPOSITION 8.3.3. Let L and A be adelic line bundle on X. We assume that L is
pseudo-effective and A is big. Then the sequence

1 —en _ —
;,E?;Zx(L "®A), neNy

converges in R U {—co}. Moreover, its limit does not depend on the choice of A. In
particular, in the case where L is big, the following equality holds:

. 1 —Qn —_ —
Jim = o (L © A) = i (L). (8.4)
Proor. The proof relies on the super-additivity of the function iz (+) (see Proposition
[8.3.2) and follows the same strategy as that of Proposition We omit the details. O

DerINITION 8.3.4. Let L be an adelic line bundle on X such that L is pseudo-effective.
We define [Ty (L) as the limit
1 ey — —
lim - @ (™" ® A),
n—+oo n
where A is an arbitrary adelic line bundle on X such that A is big. The element finay (L) of
R U {—c0} is called the asymptotic maximal slope of L.

ProposITION 8.3.5. Let L and M be adelic line bundles on X such that L and M are
pseudo-effective. Then the following inequality holds:

Fimax (L ® M) > fia (L) + Hina (M).
Proor. Let A be an adelic line bundle on X such that A is big. For any n € N,
(LOM)®"® A®? = (L®" @ A) ® (M®" @ A)
is big. Moreover, by Proposition [8.3.2] one has
1 . - — —2 1 oy —on  — 1| 49 —on  —
~ Hmax (LOM)™" © A™) > — I (L ® A) + ~ [ (M ® A).

Taking the limit when n — 400, we obtain

Fimax (L ® M) > [ (L) + i (M).

8.4. Pullback by a surjective projective morphism

Let X and Y be integral projective K-schemes and g : ¥ — X be a surjective projective
morphism.

LemMma 8.4.1. Let L be an invertible Ox-module. If L is pseudo-effective, then the
pullback g*(L) is also pseudo-effective.

Proor. Let A be a big invertible Ox-module and B be a big invertible Oy -module. For
any positive integer p, the invertible Ox-module L®P ® A is big and hence g*(L®” ® A)
is pseudo-effective since it has a tensor power which is effective. Similarly, g*(A) is also
pseudo-effective. Thus we obtain that g*(A) ® B and g*(L)®” ® g*(A) ® B are big. In
particular, g*(L) is pseudo-effective. O

ProposrTION 8.4.2. Let L be an adelic line bundle on X such that L is pseudo-effective.
Then the following inequality holds:

Fimax (87 (L)) > Himax (L)
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Proor. We have seen in Lemma that the invertible Ox-module L is pseudo-
effective, so that fZasy (L) is well defined. We choose an adelic line bundle A on X such
that A is big.

We first assume that L is big. Let n and p be positive integers. We consider the
K-linear map

H(X, g.(A®") @ HY(X, L®") — H°(X, g.(A®") @ L®"P)
— HO(Y,A®n ®g*(L®np))

induced by multiplication of sections. Let E be the destabilizing vector subspace of

(fg)« (K@m) and let F be the destabilizing vector subspace of f, (Z®np). By [36, Proposition
4.3.31], one has

—~ - - —~ —Qn « , on
Hmin(E ®¢ 7 F) < max((fg)«(A ®g"(L P)))
by [36. Corollary 5.6.2 and Remark 4.3.48] (see also Remark[A.3.3)), one deduces

Tmax (£). (A" @ g* ("))

> Finin(B) + Finin(F) — 57(@u) (n(dim (E)) + In(dim (F))

> fimax (f2)e(A"")) + Fimax (fo(T™"")) = 2v(Qu0) Indimg (HO(Y, A®™))

- 2v(Qo) Indimg (H (X, LE"P)).

If we divide the two sides by np, taking the limit when n — +co, we obtain
I asy — . ~®p I asy — ~ =
;ﬁ?ﬁz}i’x (A ® 8 (L )) > ;Z’ZAH:ZX(A) + /Jmax(L)-

Taking the limit when p — +00, we obtain [Ty (g*(L)) > oy (L), as required.

We then consider the general case where L is only assumed to be pseudo-effective. Let
B be an adelic line bundle on X such that B is big. Note that, for any positive integer p,
L®P ® B is big. Hence, by the particular case of the proposition shown above, one has

%/ T %/ —®p
Fimax(8"(L)®F ® g°(B)) > fmax (L~ ® B).
Therefore, by Proposition[8.3.5] we obtain
1 S * T * e 1 S F®p 3 1 S e
~fimax (8" (L)®P ® 8" (B) ® A) > ~[imax (L~ ® B) + — fima (A).
p p p
Taking the limit when p — +oo, we obtain [Tas, (g*(L)) > ey (L). o

REMARK 8.4.3. Let L be an adelic line bundle on X. Assume that L is the pull-back of
a big line bundle by a surjective projective morphism. Then Proposition shows that
Fimax (L) € R.

8.5. Relative Fujita approximation

Let f : X — Spec K be an integral projective K-scheme, K (X) be the field of rational
functions on X, and .#x be the sheaf of meromorphic functions on X.

DeriniTION 8.5.1. Let L be a big line bundle on X. Note that /#x ®¢, L is isomorphic
to the trivial invertible .#x-module. In particular, if s and ¢ are two global sections of L
such that s # 0, then there exists a unique rational function 1 € K(X) such that r = 1s. We
denote by ¢/s this rational function. If E is a K-vector subspace of H°(X, L). We denote
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by K(E) the sub-extension of K(X)/K generated by elements of the form ¢/s, where ¢ and
s are non-zero sections in K(E). We say that E is birational if K(E) = K(X). Moreover
L is said to be birational if K(H°(X, L)) = K(X).

ReEmMARK 8.5.2. Let L and M be line bundles on X, E be a vector subspace of HO(X, L),
s be a non-zero global section of M and

F={ts|te E} C H'(X,L® M).

Then by definition one has K(F) = K(E). In particular, if E is birational, so is F; if L is
birational, sois L ® M.

ProposiTioN 8.5.3. Let L be a big line bundle on X. For sufficiently positive integer
D, the line bundle L®? is birational.

Proor. Since L is big, there exist a positive integer ¢, an ample line bundle A and an
effective line bundle M on X such that L*? = A ® M. By replacing ¢ by a multiple, we
may assume that the graded K-algebra

@ HO(X, A®n)

neN

is generated by H°(X, A) and that L&+ s effective. For any a € N5, one has

X = Proj ( P H(x, A®“")),

neN

which implies that A®¢ is birational and hence L®% is birational. Moreover, since L®(4*1)
is effective, for any b € N1, the line bundle L®b(a+1) g also effective. Therefore, for any

(a,b) € N2, the line bundle L®47+*(4*1) s birational. Since g and ¢ + 1 are coprime, we

obtain that L®P is birational for sufficiently large p € N. O

DEFINITION 8.5.4. Let L = (L, ¢) be an adelic line bundle on X. If s € HO(X, L) is a
non-zero global section such that ||s]|,,, < 1 for any w € €, we say that the global section

s is effective. We say that L is effective if it admits at least an effective global section.

LemMa 8.5.5. Let L be an adelic line bundle such that L is big. For any t < o (L)
and any N € Ny, there exists an integer p > N and a vector subspace E of H*(X, L®P)
such that K(E) = K(X) and pmin(E) > pt.

Proor. By replacing L by one of its tensor powers, we may assume without loss

of generality that L is birational. For any n € N, let r, = dimg (H°(X, L®")). Since

t < Y (L), for sufficiently large n € N, one has

—~ —® —~ — 3
s (L)) > (1 + D)1 = Fimin (£u(D)) + 5v(Qu0) In (ra - 11).
Let F be a vector subspace of H(X, L®") such that

Timin (F) = fimax (f(Z°).

The existence of F'is ensured by [36, Theorem 4.3.58]. Let E be the image of F ®k HY(X,L)
by the K-linear map

HY(X,L®") @ H'(X,L) — H°(X,L®""), s&t > st.
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Since L is birational and F is non-zero, we obtain that E is birational. By [36, Corollary
5.6.2], one has

ﬁmin(E) 2 /«Tmin(F ®£,7r f* (Z))

> Fnin (F) + fin( (D) = 37(Q) In(dimy (F) )

= s (£ (L") + i (£ (D)) = 5¥(@ue) In(@imic (F) 1) > (n+ ).

]

THeEOREM 8.5.6 (Relative Fujita approximation). Let L be an adelic line bundle on X
such that L is big. For any real number t < [ (L), there exist a positive integer p, a
birational projective K-morphism g : X' — X, a relatively nef adelic line bundle A and an
effective adelic line bundle M on X’ such that A is big, g*(L®P) is isomorphic to A @ M

and [ (A) > pt.

Proor. Let p be a positive integer p and V be a birational vector subspace of
H°(X, L®P) such that

Finin() = i (Fo (L) > pt + 5 (@) In(cim (HO(X, L°P)).

Let g : X’ — X be the blow-up of L along the base locus of V, namely

X’ = Proj (Im ( BHs vy — P L®””)).
neN neN

Denote by E the exceptional divisor and by sg the global section of Ox (E) which trivializes
Ox (E) outside of the exceptional divisor. One has

Ox (1) = g"(L®") ® Ox(-E).
Moreover, the canonical surjective homomorphism

g (f (V) — Ox (1) (8.5)

induces a K-morphismi : X’ — P(V) suchthati*(Oy (1)) = Ox/ (1), where Oy (1) denotes
the universal invertible sheaf on P(V). Since V is birational, the line bundle Ox- (1) is big.

We equip V with the induced norm family of (||-|| ., ) weq and Ox- (1) with the quotient
metric family ¢’ = (¢/,)weq induced by (||| py,,)weq and the surjective homomorphism
(8:3). We identify Ox(E) with g*(L®P) ® Ox/(1)" and equip it with the tensor product
metric family. Then the section sg is effective. Moreover, by Proposition the adelic
line bundle Ox (1) is relatively nef, and the following inequality holds

- _ 3 )
Aoy (Ox: () > in(V) = 5v(Q) In(dimg (V) > pr.
as required. O

ReMARK 8.5.7. Let L be an adelic line bundle on X such that L is big. Let B be a

relatively ample adelic line bundle. There exists a positive integer N such that L®*™ ® B is
big for any m € N . Let t be a real number such that # < iy (L). There exists m € Nsy

such that

ey — acy L —. acy  —ON  — ey — —
mt = I (B) < (m - N) @25 (D) + 55 (L% @ B') < i85 (L @ B),

min
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where the second inequality comes from Proposition [8:3.3] If we apply Theorem [8:5.6]
oLl " ® EV, we obtain the existence of a positive integer p, a birational projective K-
morphism g : X’ — X, a relatively nef adelic line bundle A and an effective adelic line
bundle M on X’ such that A is big, g*(Z®’"” ® §v®p) is isomorphic to A ® M and

Y (A) > p(mt — @ (B)). (8.6)

min min
Let N = A ® g*(B)®P. This is a relatively ample line bundle, and one has
NeM=AeM®g (B)® =g (L°").
Moreover, one has

Hon (N) > it (A) + p s (87 (B) > iy (A) +p iy (B),

min min min min min
where the first inequality comes from Proposition[6.4.4] and the second comes from Theo-

rem[6.6.6] By (8.6), we obtain

~asy

Fon(N) > pmt.
Therefore, in Theorem the adelic line bundle A can be taken to be relatively ample.

8.6. Lower bound of intersection product

THEOREM 8.6.1. Let X be an integral projective K-scheme, and Lo, . . ., Lq be adelic
line bundles on X. Foranyi € {0,...,d}, let
0i = (Lo~ Li-1-Li+1--- La).

Suppose that

(1) Ly,...,Lgare relatively nef and Ly is pseudo-effective.

(2) if 8o =0, then [ipy (Lg) > —oc0, _

3) foranyie{l,...,d}, if 5; =0, then ﬁ;s]};(L,) > —o00,
Then the following inequality holds:

d
(Lo~ La)s > 60 fmw(Lo) + ) 6 fim (L) (8.7)
i=1
Proor. If the set . . .
{fmax (Lo)s o (L1), .- oo iy (La)}
contains —oo, then the inequality (877) is trivial. So we may assume without loss of
generality that

{fimax (Lo), o) (Ly), ..., 1oy (La)} € R.
Let M be an adelic line bundle on X such that M is big. For any n € Ny, let
Z()’n = Z?n ® M.
Foranyi € {1,...,n}, let
6;=(MLy---Li—y-Liy1---Lq)
8im = (LouLy -+ Li-1 - Liy1-+-Lg) = nd; +6; .

By Theorem (see also Remark|8.5.7), for any real number ¢ < [Ty (Lo.,), there exists
a positive integer p, a birational projective morphism g : X ’ — X, arelatively ample adelic
line bundle A and an effective adelic line bundle £ on X’ such that

%, 7OP —_ = ae i
g (Ly,) =A®E, [ (A)>pt.
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By Theorem|[6.6.6|for any i € {1,...,d}, one has
,Tf;fiyn(g*(z,-)) = lflﬁnle(zi)-
Therefore, by Proposition and Proposition [6.4.8] we obtain

d

(E-g"(L1)-++g"(La))s > D (E-Ly-+-Lioy - Li-+- La) i (L),
i=1

d
(A-g"(L1) -+ g (La))s > 60 iy (A) + D (A~ Ly Lioy - Li++ La) fio ().
i=1
Taking the sum, we obtain

d d
(Z?,Z “Ly-+-Lg)s > 80 o (A) + Z POin o (Li) > Sopt + Z POin Ho (Li).
i=1 i=1
Since ¢ is arbitrary, we deduce
d
(ZSZ “Ly-+-La)s > 60 fmax(Lo.n) + Z Siin o (Li).
i=1
Dividing the two sides by n and then taking the limit when n — +co, we obtain

d
(Lo~ La)s > 60 fm (L) + ) 6 fip (L)
i=1

8.7. Convergence of the first minimum
In this section, we let f : X — Spec K be an integral projective scheme over Spec K.

DerintTioN 8.7.1. Let E = (E, (||l ) wea) be an adelic vector bundle on S. For any
non-zero element s in E, let

deg(s) = - /Q In fIsflo, v(dw).

If E is non zero, we define

Amx (E) = sup deg(s).
seE\{0}
Clearly one has
Amax (E) < fmax (E). (8.8)

ProposiTiON 8.7.2. Let L = (L, ¢) and M = (M, ) be adelic line bundles on X such
that both H*(X, L) and H°(X, M) are non-zero. Then the following inequality holds:

Amax (f« (L ® M)) > Amax (fi(L)) + Amax (fx(M)).
ProoF. Let s and ¢ be respectively non-zero elements of H%(X, L) and H°(X, M). For
any w € £, one has
Istllgo+ue < sl - Nelly,,
which leads to
s (fu(L ® M)) > deg(st) > deg(s) +deg(r).

Taking the supremum with respect to s and ¢, we obtain the required inequality. O
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Let L be an adelic line bundle on X such that L is big. Similarly to Corollary ,
the sequence

1 —Q®n
;/lmdx(f*(L ))a ne N>1

converges to a real number, which we denote by A, (L) and called the asymptotic first

minimum of L. By definition, for any p € N5 one has
?EZX(L )= p/l?r?gl,x(z)-

Proposition also implies that, if L and M are adelic line bundles on X such that both
L and M are big, one has

iizx(L ® M) > Aax (L) + Amin (M) (8.9)
Similarly to Proposition [8.3.3] this inequality allows to extend continuously the function
A5 (+) to the cone of adelic line bundles L such that L is pseudo-effective: if L is an adelic
line bundle on X such that L is pseudo-effective, then, for any adelic line bundle A on X,
the sequence

l n _—
IR (L @A), el (8.10)

converges in R U {—co} and its limit does not depend on the choice of A. For the proof
of this statement one can following the strategy of the proof of Proposition in using
the inequality and the fact that, if A is a big line bundle and B is a line bundle on X,
then there exists a positive integer p such that BY ® A®? is big. We denote the limit of the
sequence (8.10) by Ay (L). By (8-8) we obtain that

Ammax (L) < Hinax (L) 8.11)

for any adelic line bundle L such that L is pseudo-effective.

8.8. Height inequalities

ProrosiTioN 8.8.1. Let f : X — Spec K be an integral projective scheme over Spec K
and L be an adelic line bundle on X which is relatively nef and such that (L) > 0. Then
the following inequality holds:

—d+1
(@) = = S e (D), (8.12)
@+ nd = |

Proor. We ﬁrst consider the case where L is relatively ample. As in the proof of

Proposition[6.7.1] one has
—d+1

Cs o BEET) o B (BT

(d+ 1)(Ld) s n n—+oo n Hmax

(L).
We now consider the general case. Let A be a relatively ample adelic line bundle on

X such that Z°" ® 4 is relatively ample for sufficiently large positive integer n. For any

neNy,letL, = L®" ®A. The particular case of the proposition proved above shows that
—d+1
(L ) Aasy ( )
(d + 1)(Ld) max n

if n is sufficiently large. Taking the limit when n — +oc0, by the relations

—d+1
L _ d
im Lo s =(T™s,  lim (L)

n—o+oo  pd+l n—too pd

= (LY
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and Proposition we obtain the desired result. O

ReMARK 8.8.2. Combining Propositions-and- we obtain that, if L is relatively
nef and if (L¢) > 0, then the inequality ,Z[frf 1yn(L) < iy (L) is true. This inequality also
holds for relatively nef adelic line bundle L with (L?) = 0. It suffices to choose an auxiliary
relatively ample adelic line bundle M and deduce the inequality from

1 1 —
i (L @ M) < —fimh (L™ @ M)

mm n
by taking the limit when n — +co.
THeoreM 8.8.3. Let X be a non-empty and reduced projective K-scheme and Ox be

the set of all integral closed subschemes of X. Let L = (L, ¢) be a relatively ample adelic
line bundle on X. Then the following equality holds:

(lelm(Y)+1)S
Ye@x (dim(Y) + 1) deg; (Y)~

fin (L) = it Fima (Lly) =

m1n

(8.13)

Proor. ForanyY € @x and any n € N, let Vy (L) be the image of the restriction map
HO(X, L®") — HO(Y, LS.

We equip Vy (L) with the quotient norm family & = (||| e quot)weg induced by
éng = (|I'lng,, ) wea to obtain adelic vector bundle on S.

Cram 8.8.4. ForanyY € Oy, the following equality holds

max(Vy (L), €Y
lim :umax( Y,n( ) fn) _ A?:Z\/x(LlY)

n—+oo n

Proor. Since L is ample, there exists N € N such that, for any n € Ny, one has
Vy.u(L) = HO(Y, L|2"). We denote by ¢* the restriction of the metric family ¢ to L|y. By
definition, for any n € N 5, one has

[RH——

Moreover, by [44, Theorem 1.3] (for the trivial valuation case we apply the method of [35,
Theorem 4.1] to reduce to non-trivial valuation case), one has

.
Jim —d, (&5 ngy) =0

where &,,v = ([l-ly ) weo-
By [36, Proposition 2.2.22 (5)], the function

1
(@ € Q) = ~duy (&, £pr)

is dominated. Therefore, by Lebesgue’s dominated convergence theorem we obtain

lim —d(gn,gwy)_ lim 1 / do (£, €ppr) v(dw). (8.14)
n—+oo n—+oo n Q

Finally, by [36, Proposition 4.3.31], one has

Amax(V n(L),fy):) /jmax(VY,n(L)agn Y) 1
£ - - : < ;d(é‘:r{’gmpy)

n n

Passing to limit when n — +o0, we obtain the desired equality. O
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Combining Claim [8:8:4] with [36, Theorem 7.2.4], we obtain
ﬁarjl};(z) > Yienf ﬂn?ax(LlY)

By Proposition[8.8.1] for any ¥ € Ox, one has
—dim(Y)+1
(L| im(Y)+ )S oy (L| )
(@m(Y) + 1) deg, (v) * Hmax(E
Finally, by Corollary[6.7.2} for any Y € @y, one has

- di 1
(Lm0

- > (D).
im(Y) + 1) deg, ()

Thus 8:13) is proved. o

COROLLARY 8.8.5. Let L be a relatively ample adelic line bundle on X. If we assume
that iy (L) > ﬁaqu (L), then one has

~asy _ . ~asy
mm( ) YE@I;]{‘{ }/lmax( |Y)

(lelm(Y)+l)S

inf inf @™ (Lly).
" yeox\(x) (dim(Y) + 1) deg, (Y)  yeox\(x) Hovin (L)

Proor. The first equality comes from (813) and the hypothesis [ (L) > [y (L).
By Propositions[8:8.1] and we obtain
(L|d1m(Y)+l)S

inf e (L inf inf  7* (Lly).

Ye@x\{X}”m“"( Iv) > Ye@x\{X} (dim(Y) + 1) deg, (Y) Ye@x\{X} Hinin (L)
Moreover, by Proposition | for any ¥ € ®x one has ynflyn(L|y) ’\:IYH(L) The
assertion is thus proved. O

ProposiTiON 8.8.6. Let X be an integral projective K-scheme and Ox be the set of all
integral closed subschemes of X. Let L = (L, ¢) be a relatively ample adelic line bundle
on X. Then the following inequality holds:

—(d+1)

(L )S 1 asy
g T3 yedt 8.15
(d+1)(L9) = d+1 Aman (1) + d+ 1 Ye@x\{X}Hde( I¥). (8.15)
In particular, if
—(d+1)
35)/ (L) (L )
max /(d+l)(Ld)9
then the inequality
—(d+1)
(T s

s > > ved {{X} Himax (Lly) (8.16)

holds.

Proor. The case where d = 0 is trivial. In the following, we suppose that 4 > 1. By
replacing L by a tensor power, we may assume that

V(L) = P HO(x, L)

neN
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is generated as K-algebra by V;(L). For any n € N, we let h°(L®") be the dimension of
HO(X,L®") over K. Let s be a non-zero global section of L and I, be the homogeneous
ideal of V,(L) generated by s. Then one can find a sequence

L=5h.ch.c...cL.=V.(L)

of homogeneous ideals of R, and non-zero homogeneous prime ideals P; ., i € {1,...,r},
of V,(L) such that
Vie{l,...,r}, Pi’.'ll‘,. Cli_l’..
We denote by Y; the integral closed subscheme of X defined by the homogeneous ideal P; ..
Consider the following sequence

Vo(L) —> Ioq e Ly s Ly =Vi(L)
s '

—> IO,j = e Ii,j — Ir’j:Vj(L)

= Il o> L = L =Via(L)

._S> IO,n = [i,n = Ir,n:Vn(L)

By [36} Proposition 4.3.13], one has

n o r n—1
deg(f,(L™) > 3 deg(li;/Ti1,j) +deg(s) Y| hO(LEF).  (8.17)
k=0

j=1 i=1
By [36] Proposition 7.1.6] and (8.14), one has

ﬁmin(li,m/li—l,m) S sy

I,EELEJC = > p o (Lly,). (8.18)
Moreover, by the asymptotic Riemann-Roch formula, one has
Ld
h()(L®k) — (d' kd + O(kd_l),

which leads to
n—1
1 ; 1
lim ——— » WOL®) = —.
n-iea nhO(LEN) g (L) =7
For any integers n and m such that 1 < m < n, we deduce from (8.17) that

deg(f.(L™") > > > deg(Ti ;/Ti1 ;)
j=1 i=1

Hmin(Ti,e/Ti-1,¢) i FOO(LET) = KO(LU-DY)

+ min inf

ie{l,...,r} €eNs,, € el
. n-1
+deg(s) Z RO (L®%).
k=0
Dividing the two sides by nh°(L®") and taking the limit when n — +co, we obtain
C™s o d o A/l 1 = .
(d+1)(L4) = d+1ie(l....r} tel,,, 14 d+ 108
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Since m is arbitrary, taking the limit when m — +co, by (8.18)) we obtain

—(d+1)
(L )S S d min ﬁasy
(d+1)(L9) ~ d+1ie{l,..,y ™0

By Theorem|8.8.3] for any i € {1, ..., r}, one has

~asy s ~asy T . ~asy T
#min(L|Yi) = Zggy[ llmax(le) > ZE@%B{{X} :umax(L|Z)-

(Lly,) + ———deg(s).

d+1

Since s is arbitrary, we obtain

—(d+1)

(L~ s 1~ — d o

LD > dar O+ g it i (Lly).
Y#X

Finally, replacing L by L% for p € N3, we obtain

—(d+1)
(L )s S 1

_ —Qp d . —asy +
(d + 1)(Ld) p(d + 1) max(f ( )) + d+1 )ésn@;g(#mdx( |Y)
+

Taking the limit when p — +oo, we obtain the inequality (8.13). m]

ProposITION 8.8.7. Let X be an integral projective scheme over Spec K and L be an
adelic line bundle on X such that L is big. Then the following inequality holds:
A(D) < sup inf k().
YeOx xe(X\Y)(©

Y#X
where (X \ Y)©) denotes the set of closed points of X \ Y, and
(Z|X)S 1 T
h+(x) = ————— =deg(x*(L)).
TR S M
Proor. See [36) Proposition 6.4.4]. m]

8.9. Minkowskian adelic line bundles

DeriniTION 8.9.1. Let X be a reduced projective K-scheme and L be an adelic line
bundle on X. We say that L is Minkowskian if the inequality below holds:
—dim(X)+1
)s

(L

Amax (1) > L) = G 3 T) deg (0

Moreover, L is said to be strongly Minkowskian if for any integral closed sub-scheme Y of X,
the restricted adelic line bundle L|y is Minkowskian. Note that the strongly Minkowskian
condition is satisfied in the following cases:

(1) S is the adelic curve associated with a number field, and the metrics of L over
non-Archimedean places are almost everywhere induced by a common integral
model defined over the ring of algebraic integers in the number field;

(2) S is the adelic curve associated with a regular projective curve over a field, and
the metrics of L are induced by an integral model of L over the base curve;

(3) S is the adelic curve of a single copy of the trivial absolute value.

The case (1) comes from the classic Minkowski theory of Euclidean lattices. The case

(2) is a consequence of Riemann-Roch theorem on curves. The case (3) follows from [36,
Remark 4.3.63].
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CoroLLARY 8.9.2. Let X be an integral projective K-scheme and L be a relatively
ample adelic line bundle on X. Assume that L is strongly Minkowskian. Then the following
inequality holds:

—(d+1)
(L~ s .
————— > inf hy(x), 8.19
e Dd) > oo, f .19

where X©) denotes the set of closed points of X. Moreover, one has

—~asy 7 _ . o
Moo (L) = xg(fm) h(x). (8.20)

Proor. We reason by induction on the dimension d of X. The case where d = 0 is
trivial. Assume that d > 1 and that the result is true for any integral projective K-scheme
of dimension < d. By Proposition[8.8.6| one has

—(d+1) 7 dim(Y)+1
(d+1)(L9) ~ veox\ix)” ™7 yeou\xy (dim(Y) + 1) deg, (Y)”
where the second inequality comes from Proposition For any ¥ € ®x such that
Y # X, one has dim(Y) < dim(X). Hence the induction hypothesis leads to

Thy™ s

> inf hy > inf h+(x). 8.21
(@m(¥) + 1) deg, (V) ~ iy ") > I8, Az () (8.21)

The inequality (8:19) is thus proved.
By Corollary the inequality

~asy /7 . .

Hin (L) < nf Chz(x)
holds. Conversely, by Theorem 8.8.3and the inequality (8:2T), one has

= dim(Y)+1
oy (L) = inf (Lly™ s
min veox (dim(Y) + 1) deg; (Y)

> inf inf h+(x) = inf h+(x).
” YeOx xey® ) xex® )

]

Lemma 8.9.3. Let 1 : X — Y be a generically finite and surjective morphism of
d-dimensional projective integral schemes over K. Let M be a relatively ample adelic line
bundle on'Y. Then we have the following:

(1) @ (x*(M)) = @™ (M).
@) AL () > 8.
(3) If M is Minkowskian, then n*(M) is also Minkowskian.

Proor. (1) By the Hilbert-Samual formula,

Mg

(M4)(dimY + 1)
and hence the assertion follows because

(" (M)**)s = (degm) (M) and  (x"(M)?) = (deg ) (M?).

(" (M)™)s

M) = (" (M)4) (dim X + 1)

and @™ (x*(M)) =

(2) is obvious because d’e\g(s) = d’e\g(n* (s)) for s € HO(Y, M) \ {0}. Moreover, (3) is
a consequence (1) and (2). m]
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ProposiTION 8.9.4. Let 7w : X — Y be a finite morphism of projective integral schemes
over K. Let M be an adelic line bundle on Y such that M is ample and M is semi-positive.
If M is strongly Minkowskian, then 7* (M) is also strongly Minkowskian.

Proor. Let Z be a subvariety of X. Then x|, : Z — n(Z) is a finite and surjective
morphism, and hence, by Lemma , 7 (M)|z = (n|z)*(M|(z)) is Minkowskian, as
required. o

RemaRk 8.9.5. Let L be a very ample line bundle on X. Then there exists a finite
and surjective morphism 7 : X — Pé such that n*(OPz(l)) ~ L. Let {sg,...,sq} be

a basis of HO(P%,OP?{(I)). For w € Q, let |||, be the norm on H()(Pdw,OP(;{ (1) =
HO(PY, Oga (1)) ® K, given by

max{|aolw, ..., laqlw} if w € Qfp,

llaosi + -+ +aasallw = > . )
\/|a0|w+~--+|ad|w if w € Qo,

where ag, . ..,aq € K,,. Let ¢, be the Fubini-Study metric of O]P;d (1) induced by ||| -
Then it is not difficult to see that (Opz (D), ¥ = (Ww)wen)is semlposmve and Minkowskian,
so that, by Lemma|(8.9.3] (L, 7*(y)) is Minkowskian.

8.10. Successive minima

Let X be a reduce projective scheme over Spec K and L be a relatively ample adelic
line bundle on X. Foranyi € {1,...,d + 1}, let

e;(L) = sup inf i (Llz).
Y C X closed Z € ©x
codim(Y)>i Z¢Y

By definition, the following inequalities hold:
61(2) Z... 2 ed+1(Z).

Moreover, by Theorem [8.8.3] one has
eas1(L) = o (L).
ProrosiTioN 8.10.1. Assume that the scheme X is integral. For any relatively ample

adelic line bundle L on X, the equality e1 (L) = [inay (L) holds.

Proor. If Y is a closed subscheme of codimension 1 of X, then X ¢ Y. Therefore,
~asy

the inequality e (L) < fimay (L) holds. In the following, we show the converse inequality.
Let ¢ be a real number such that 7 > e; (L). By definition, there exists a family (Z;);cy of
integral closed subschemes of ¥ such that [z, (L| z;) < tforanyi € [ and that the generic
points of Z; form a Zariski dense family in X.

Let m be a positive integer and E,, be a vector subspace of H%(X, L®™) such that

inin(Em) = Binan (£.(L). (8.22)
For any positive integer n, let F,, , be the image of ES" by the multiplication map
HO(X, LEm)on HO(X, LE™M).
By [36l Proposition 4.3.31 and Corollary 5.6.2] (see also Remark [A.3.3)), one has

fmin(Frnn) > n(ﬁmin(Em) - %v(Qm) ln(dimK(Em))). (8.23)
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Moreover, there exists i € I such that the generic point of Z; does not belong to the base
locus of E,,, (namely the closed subscheme of X defined by the ideal sheaf Im(E,,,® LV®" —
Ox)). Therefore the image of F,, ,, by the restriction map

HY(X,L®"™) — H®(Z;, L™ |z,)
is non-zero. By [36, Proposition 4.3.31], one has

,umm(Fm n) < ,umax((flz,) (L|§mn))
Combining this inequality with (8.22) and (8.23), we obtain
s oL € i ((F12) TIZ) + 5 () I (En).
Taking the limit when n — 400, we obtain
1 —em 3 .
Z/'lmax(f*(l‘ ) < t+ —V(Qm) In(dimg (E,)).

Taking the limit when m — +co, we obtain [inay (L) < 1. Since > e (L) is arbitrary, we
get [y (L) < e (L), as required. O

RemMARK 8.10.2. Let L be a relatively ample adelic line bundle on X. For any 7 € R
and any positive integer n, we let V/, (L) be the vector subspace of HO(X, L®") generated
by non-zero vector subspaces of minimal slope > nt and r, (¢) be the dimension of the base
locus of V! (L). For t € R, let

r(t) = llllrgig)f ra(2).
By using the method used in the proof of Proposition we can show that, for any
ief{l,...,d+1}
sup{r € R|r(r) < i} < e;(L).
It is a natural question to ask if the equality holds. Moreover, we expect that the following
inequality is true:

d+1
(d+ DY (L) > Z ei(L). (8.24)
i=1
Foranyi € {1,...,d + 1}, one has
ei(z) = sup lnf :umax(L|Z) sup L( x),
Y C X closed Y C X closed XE(X\Y)(O)
codim(Y)>i < ¢— Y codim(Y')>i

where (X \ Y)© denotes the set of closed points of X outside of Y. In the case where S is
the adelic curve consisting of places of a number field, by [8, Theorem 1.5], for any integral
closed subscheme Z of X, one has

/TI?I:ZX(L|Z) = Ssup inf hL(x)~

We@z x€(Z\W)©®
W#Z

If Z is not contained in Y, then

~asy .
L f  he(x) > f  hr(x).
,umax( |Z) (lnY)(O) L(x) xe(;(r{Y)(O) L(x)

Therefore, in this case e; (L) identifies with the i-th minimum of the height function A7 in
the sense of Zhang. In particular, the inequality (8:24) follows from [81] Theorem 5.2].
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8.11. Equidistribution theorem
Throughout this section, we assume that S is proper.

DerNiTioN 8.11.1. Let X be a reduced projective scheme over Spec K and L be a
relatively nef adelic line bundle on X. For any integral closed subscheme Y of X such that
Lly is big, we define the normalized height of Y with respect to L as

- di 1
(Lm0

(dim(Y) + 1) (L|3mX))"

hz(Y) =

TueoreM 8.11.2. Let X be an integral projective scheme over Spec K and L be an
adelic line bundle on X. We assume that L is big and semi-ample, and that ¢ is semi-
positive. Let (Yy,)nen be a sequence of integral closed subschemes of X. Assume that,

(1) the sequence (Yy)nen is generic, namely, for any strict closed subscheme Z of X,
the set {n e N : Y, C Z} is finite,
(2) foranyn € N, Lly, is big,
(3) the sequence (Y,)nen is small, namely the sequence (hy(Y,))nen converges to
hz(X).
Let Q' be a measurable subset of Q (i.e. Q' € A). Then the sequence (5Z,Yn,9')n€N
converges weakly to 6t y .. In other words, for any f € €Y(X), one has

lim 67, o (f) =67 x.0 (f)- (8.25)

n—+oo

Proor. First we assume that Q' = Q. For any f € %Q(X ), let

@A
Y(f) = l,lg}rgof (dim(Y,) + 1) ngL(Yn)) '

By Corollary (7.3.6, this is a concave function on €Y(X). Since the sequence (Y;,)ncn is
generic, W( f) is bounded from below by (see Proposition |8.10.1])

vol (Z(/))
(d+1)deg; (X)
Moreover, the hypothesis of the theorem implies that the equality

vol, (Z(f))
(d+1)deg; (X)

By Proposition|7.4.3] the function f - vol, (L(f)) is Gateaux differentiable at f = 0 and
its differential is given by the linear form

£ (d+1)deg; (X)o7 ().

Since ¥ is a concave function, there exists a linear form ¢ : ‘gg (X) — R such that
L(f) +¥P(0) > ¥(f) for any f € %S(X). We then deduce, by the equality (8.26), that
U(f) > of x(f) for any f € €Y(X), which leads to £ = 0f x(f). Thus 67 x(-) is the
unique linear form on €Y (X) such that o7 x(f) +¥(0) > ¥(f) forany f € B2(X).

By the condition (2) of the theorem, one has

Himan (L (1)) >

W (0) = (8.26)

. vol, (Lly,)
¥ O = i, Em¥,) + 1) deg, (T)
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and hence

W(f) - ¥(0) = liminf VOI/\/.(L(f)|Yn) - VOI/\/(LIY,I)
nhie  (dim(Y,) + 1) deg; (V)
Since the function o
(f € B(X)) = vol, (L(f)ly,)
is concave and Gateaux differentiable at f = 0 with differential STy, (), we obtain

Y(f) - ¥(0) <liminf oz, (f).
n—+oo tn
Applying this inequality to 7 f with ¢ > 0, and taking the limit when + — 0, we obtain
o7 x(f) < liminf o7y, (f).
Replacing f by —f, we obtain
6z x(f) > limsup oz, (f).

n—+oo
Therefore,
5Z,X(f) = nl_igloo 6Z,Yn (f)
The general case is a consequence of the previous case and Corollary

[m]

RemMARk 8.11.3. Let L be a big invertible Ox-module and let Z be its augmented
base locus. Note that Z is a proper closed subset of X. If (¥;,),en is a generic sequence
of integral closed subschemes of X, the set {n € N : Y, C Z} is finite. Therefore, for
sufficiently large n € N, the restriction of L to Y,, is big. This is a consequence of [11}

Theorem 1.5] on the positivity of restricted volumes.

RemaRk 8.11.4. Note that
51y o (F) = /Q (dw) /X o) 5y, (),

e = [ vd0) [ 07y @0,

so if v(Q") = 0, then 6Z,Y,,,Q’(f) = 07 x o (f) = 0. Thus Theorem 8.11.2| has a meaning

in the case where v(Q’) > 0.

RemaRrk 8.11.5. By Theorem [8.11.2] we can recover the equidistribution theorem
over an arithmetic function field including a number field case (cf. [60, Theorem 6.1]).

Theorem [8.11.2]also gives a partial answer for [77, Conjecture 5.4.1].



CHAPTER 9

Global positivity conditions

In this chapter, we study global positivity conditions, notably ampleness, nefness,
bigness and pseudo-effectivity. In the first and second sections, we define these positivity
conditions and discuss the links with the corresponding relative positivity conditions and
the positivity of asymptotic sectional invariants. The third section is a reminder on the
construction of the canonical metric family of an arithmetic dynamical system. Then in
the fourth section, we prove a theorem of Bogomolov conjecture type in the framework of
Abelian varieties over an adelic curve with Archimedean places. In the fifth section, we
discuss arithmetic dynamical systems.

As in the previous chapter, we fix an adelic curve S = (K, (Q, A, v), ¢) such that,
either (Q, A) is discrete, or K is countable. We assume in addition that K is perfect and
v(Q) ¢ {0,400},

9.1. Ampleness and nefness

In this section, we let X be a non-empty and reduced projective scheme over Spec K,
and let d be the dimension of X.

DerINITION 9.1.1. We say that an adelic line bundle L on X is ample if it is relatively
ample and if there exists € > 0 such that the inequality

hz(Y) > edeg; (Y)(dim(Y) + 1)
holds for any integral closed subscheme Y of X.

PrOPOSITION 9.1.2. Let L be an adelic line bundle which is relatively ample. Then the
Jfollowing statements are equivalent:
(1) Lis ample,
) @ (L) >0,
(3) there exists € > 0 such that, for any integral closed subscheme Y of X, one has

/ﬁzx (Z|Y) > &

Proor. This is a consequence of Theorem|[8.8.3] m|
ProrosiTiON 9.1.3. Ifzo, . ,Zd are ample adelic line bundles on X, then the in-
equality
(Lo---Lg)s >0
holds.
Proor. This is a consequence of Theorem[6.3.2]and Proposition i

ProposITION 9.1.4. Let L be an adelic line bundle which is relatively ample and
strongly Minkowskian. Then the following conditions are equivalent:

(1) L is ample,

121
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(2) there exists & > 0 such that, for any closed point x of X, one has hy(x) > &.

Proor. This is a consequence of Corollary [8.9.2} m]

DEerINITION 9.1.5. We say that an adelic line bundle L on X is nef if there exists an

ample adelic line bundle A and a positive integer N such that L™ ®A4is ample for any
ne N> N-

PRrOPOSITION 9.1.6. Let L be an adelic line bundle on X. The following conditions are
equivalent:
(1) L is nef,
(2) L is relatively nef and ﬁi;};(L) > 0.

Proor. Assume that L is nef. By definition, it is relatively nef. Let A be an ample
adelic line bundle and N be a positive integer such that L™ ®Ais ample for any n € Ny .
Then one has /1’ iYn(Z®" ® A) > 0, which leads to

_ 1 —eon  —
(@) = lim - (™" @A) > 0.

n—+oo p

Conversely, we assume that L is relatively nef and ﬁ: lyn (L) > 0. Since L is relatively

nef, there exists a relatively ample line bundle A and a positive integer N such that I”"®A

is relatively ample for any n € Nsy. By dilating the metrics of A, we may assume that
—~asy

ymin(Z) > (. Then, by Proposition |6.4.4| we obtain that

VneNsy, BT @A) >ni™ D)+ (A) > i (4) > 0.

min min min
—Q®n —.
Therefore L ® A is ample. O

ProprosiTiON 9.1.7. N Ifzo, ..., Ly are nef adelic line bundles on X, then the

inequality (Lo - -- Lg)s > 0 holds.

(2) If L is a nef adelic line bundle on X and ifg : Y — X is a projective K-morphism,
then the pullback g* (L) is nef.

(3) If L is a nef adelic line bundle on X, for any integral closed subscheme Y of X,

- dim(Y)+1

one has (L, )s = 0.

(4) If L is a relatively ample adelic line bundle on X such that hz(Y) > 0 for any
integral closed subscheme Y of X, then L is nef.

(5) If L is a relatively ample adelic line bundle on X such that iy (Lly) > 0 for
any integral closed subscheme Y of X, then L is nef.

Proor. The first statement is a consequence of Proposition[6.4.8|and Proposition[9.1.6]
The second statement follows from Lemma[6.6.1] Theorem[6.6.6]and Proposition[0.1.6] The
third statement is a consequence of the first and the second ones. The last two statements
are consequences of Theorem [8.8.3]and Proposition[9.1.6] m|

9.2. Bigness and pseudo-effectivity

In this section, we let X be an integral projective K-scheme f : X — Spec K and let d
be its dimension.
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DEFINI_TION 9.2.1. Let L be an adelic line bundle on X. We define the arithmetic
volume of L as

T —®n
3TN 1 deg+(f*(L ))
vol(L) = lmsup = i+ Dy
If \H(Z) > 0, we say that L is big. It has been shown in [36, Proposition 6.4.18] that L is
big if and only if L is big and fzoy (L) > 0.

ProprosiTiON 9.2.2. An ample adelic line bundle is big.

Proor. Let L be an ample adelic line bundle on X. Then one has iz’ (L) > 0, namely

for sufficiently large positive integer n one has fmin( f- (Z®n)) > 0. By [36, Proposition
4.3.13], for such n one has

— —Q®n - —Q®n
deg(fo(L ")) =deg, (fu(L 7)),
which leads to, by Theorem
Vl(Z) = (Z™Ns > 0,
where the inequality comes from Proposition Hence L is big. O

RemMARK 9.2.3. We expect that a variant of the method in the proof of Theorem [8.5.6]
leads to an arithmetic version of Fujita’s approximation theorem for big adelic line bundles,
which generalizes the results of [28,75].

_ PROBOSITION 92.4. Let Ly, ..., Ly be adelic line bundles on X. Ifzo is big and
Ly,...,Lg are ample, then

(Lo-+-Lg)s > 0.
Proor. This is a consequence of Theorem|3.6.1] o

DerINTTION 9.2.5. Let L be an adelic line bundle on X. We say L is pseudo-effective

if there exist a big adelic line bundle M on X and a positive integer ng such that I oM
is big for any n € Ny,,.

PRrOPOSITION 9.2.6. Let L be an adelic line bundle on X. The following assertions are
equivalent:
(1) L is pseudo-effective,
(2) L is pseudo-effective and gy (L) > 0.

Proor. Assume that L is pseudo-effective. Let M be a big adelic line bundle and ng be
a positive integer such that L™ e Mis big for any integer n > ng. In particular, L®" @ M
is big for any integer n > ng. Hence L is pseudo-effective. Moreover, for n > ng, one has
2 (L% ® M) > 0, which implies that

— . 1 —®n P
ﬁaggx(l‘) = nl_l)IPw ;/jﬁasgx(ld ® M) > 0.

Conversely, assume that L is pseudo-effective and fimay (L) > 0. Let M be a big adelic

line bundle on X. Since L is pseudo-effective, for any positive integer n, L®" ® M is big.
Moreover, by Proposition one has

asy —®n  — agy —. ey —
Hmax (L™ ® M) > 1 s (L) + fiax (M) > 0.

Hence L°" ® M is big for any n € N, which shows that L is pseudo-effective. O
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ProrosiTiON 9.2.7. (1) Let Ly, ..., Ly be adelic line bundles on X. Assume
that Ly is pseudo-effective and that Ly, ...,Lq are nef, then the inequality
(Lo -+ Lg)s > 0 holds.
(2) IfL is a pseudo-effective adelic line bundle on X and if g : Y — X is a surjective
and projective morphism, then the pullback g* (L) is also pseudo-effective.
(3) If L is nef, then it is pseudo-effective.

Proor. The first statement is a consequence of Theorem the second one is a
consequence of Proposition [8.4.2]

(3) Since L is nef, we obtain that L is nef, and hence is pseudo-effective. Let A be an
ample adelic line bundle. For any positive integer p, by Proposition one has

lasy —8p  —  asy — 1 gy —
]_?mz}ilx(L ® A) > /?;:ZX(L) + ;:ZZ?]:ZX(A)

Taking the limit when p — +co, we obtain fimey (L) > 0. By Proposition , L is

pseudo-effective. O

9.3. Canonical compactification

In this section, we recall several basic facts on the canonical compactification of an
algebraic dynamical system.

9.3.1. Local canonical compactification. Let (%, |-|) be a field equipped with a com-
plete absolute value. Let X be a geometrically integral projective scheme over k. In
particular, H%(X,Ox) = k. Let f : X — X be a surjective endomorphism of X over k
and L be a semiample line bundle on X. We assume that there exists an isomorphism
a: f*(L) ~ L® for some integer d > 2. It is well-known that there exists a unique semi-
positive metric ¢ o, of L*" such that & induces an isometry f*(L,¢r o) = (L, gpf,(,)@d
(cf. [36, Proposition 2.5.11]), that is, |-|r+(¢, ,) = |@(-)|ag; - The metric ¢ o is called
the (local) canonical compactification of L. Let us begin with the following lemma.

Lemma 9.3.1. Let A be a continuous function on X*, a € R and b € R.y. If
f*(A) =bA+a, then A is a constant and A = —a /(b — 1).

Proor. By our assumption,
max {1(x)} = b max{A(x)} +a and min{A(x)} =b min {A(x)} +a,
xeXan xexan xexan xexan

that is,
(6 —1) max {A(x)} = (b — 1) min {A(x)} = —a,

and hence the assertion follows. O
ProrosiTION 9.3.2. If we change the isomorphism a by ca (¢ € k™), then

-1/(d-1
|'|‘pf,(r(x = |C| /C )l'lﬂﬁf,a'

Proor. Indeed, we can find a continuous function 4 on X' such that ||y, .,
exp(4)|-lg; - Thus,
xS D () = Fr (rear = 1) Olagy.co = lel xp(dlaOlagy..
= exp(dAd+1og eIl f(ps.a)s

and hence f*(1) = dA + log|c|. Therefore, by Lemma [9.3.1} A is constant and A =
—log|c|/(d — 1), as required. O
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Let g : X — X be another surjective endomorphism of X such that there exists an
isomorphism g : g*(L) ~ L®° for some integer ¢ > 2. We assume that f o g = g o f. Let
us consider the following homomorphisms

g (f (L) —— g"(L®) —— L&
g*(a) ped

g (f*(L)) = f*(g"(L)) ﬁ fr(L®) T Lo,
Then there exists 7 € k* such that 829 o g* (@) = r - @®¢ o f*(B). In the case where r = 1,
we say that (f, @) is compatible with (g, 8).

ProposiTiON 9.3.3. One has |-|y, ; = |r| =1/ (d=1)(e=T) 'l .o In particular, if (f, @) is
compatible with (g, B), then ¢ o = Qg p.

Proor. We can find a continuous function A on X*" such that

I'le* (0r.0) = EXP(DIB)lewy, -
Thus
(e (oo = XPU O)F B Oles .00
= exp(f*()1a® (f*(B)(Ndegy.q-
On the other hand,
He (7 ran = 187 (@Ol gy = P2 (8" (@) (Dlaegy..
= CXp(/l)dlra'@e(f*(ﬁ)(')”decpf,a
= exp()rl1a® (f*(B)()dep;.or

so f*(1) = dAd +log|r|. Therefore, by Lemma [9.3.1} A is a constant function and A =
—log|r|/(d—1).

Here we set |-y, , = exp(u)||¢,, for some continuous function  on X*'. Then, as
I'lg* (g0 = IB()legg - OnE has

exp(8” (1)) g (wr.0) = g (0up) = 1BO)leqys = exple)|BC)leg;..
=explep — Vg (ps.0)s

that is, g*(u) = eu — A. Therefore, by Lemma[9.3.1] u is a constant and u = 2/(e — 1), and
hence

u=—log|r|/(d = 1)(e - 1),

as required. O
REMARK 9.3.4. If 829 o g*(a) = - a®¢ o f*(B) (r € kX), then, for ¢ € kX,

(cB)®? og*(@) =’ - B o g"(@) = (cr) - a® o f*(B) = (¢?"'r) - a® o f*(ch).

Thus if there exists ¢ € k such that ¢?~!r = 1, then (f, @) is compatible with (g, ¢8). In
particular, if k is algebraically closed, then, for (f, @), we can find 8 such that (f, @) is
compatible with (g, §).
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9.3.2. Global canonical compactification. Let K be a field equipped with an adelic
structure ((Q, A, v), ¢). We assume that v(A) ¢ {0, co}. Let X be a geometrically integral

projective variety over K and f : X — X be a surjective endomorphism of X over K. Let L

be a semiample line bundle on X such that there exists an isomorphism « : f*(L) — 1%

for some integer d > 2. For each w € Q, let ¢, be the local compactification of L, that s,
the isomorphism @, : £ (Ly,) — L& induces an isometry £ (Lo, ¢w) =~ (L, 90)®%.

ProposITION 9.3.5. If we set ¢ = (@) weq, then (L, @) is a nef adelic line bundle on
X. The family ¢ is called the global compactification of L.

Proor. Let g = (¢0,w)weq be a metric family of L such that (L, ¢p) is a relatively
nef adelic line bundle. By the assumption “v(A) ¢ {0, }”, we can find a non-negative
measurable function  on Q such that

i (Logo)+ [ dw)vida) >0,
Q

If we set %’M = exp(—Hw)) o, and gog = (cpgw)weg, then it is easy to see that

/j:i};(la ‘P(T)?) = ﬁamsi};(L, ©0) +/Ql9(a))v(da)) >0,
s0 (L, @) is nef by Proposition Thus we may assume that (L, o) is nef.

For each w € Q, one can find a continuous function 1,, on X2} such that

I'If*(sﬂo,m) = |a’w(')|d<ﬁo,w exp(dw).
Note that (Ox, (exp(dw)||w)weq) is an adelic line bundle. Let

n—1
1 .
how =0 and hy, o = Z R UANCIORNCE
i=0
and || = | exp(f,. ). Then, in the same way as [36, Proposition 2.5.11], one
Pn,w $0,w >

can see that {h, .}, , converges uniformly to a continuous function A , on X7} and

@ [ (Ly) — L2 induces an isometry

f::)(L(u’ (‘Pn—l,w)weQ) = (Lw» (90”,,0)(4) € Q)®d-

In particular, if we set |-|,,, ., = |-|¢.., €XP(1e0,w), then @, yields an isometry

fZ)(va (QOOO,w)weQ) = (Lo, (‘PM,w)weQ)@d,

and hence ¢, is the local canonical compactification of L,,. Thus, by the unique-
ness of the local canonical compactfication, we have ¢ o, = ¢, for all w € Q. Let
¢¥n = (¢Pn,w)wea- By [36 Proposition 6.1.29], (L, ¢) is measurable because (L, ¢,) is
measurable for all n. Moreover, in the same way as [36) Proposition 2.5.11], we obtains
Aw

du (9, 90) < %,

50 (w € Q) = du, (¢, @g,) is dominated. Thus (L, ¢) is dominated by [36, Proposi-
tion 6.1.12]. Further, as f*(L, ¢—1) =~ (L, ¢,,))®?, we can see that (L, ¢,,) is nef for all 7.
Therefore, (L, ¢) is also nef, as required. O

ReMARK 9.3.6. We assume that the adelic structure is proper.
(D Leta : f*(L) — L® be the isomorphism. If we change the isomorphism a by ca
(c € K*), then, by Proposition[9.3.2}

_ |1/ (d-1)
|.|‘Pf,('u/,w - |C|w I'ISDf,(Z,w
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for all w € Q. Thus, by the product formula, one has h(L, ¢y, .,) = M(L.¢s.o)-

(2) Let g : X — X be another surjective endomorphism of X over K. We assume that
f o g =go f and there exists an isomorphism 8 : g*(L) — L®¢ for some integer e > 2.
Then, by Proposition there exists » € K* such that

- d=D(e=D)
|'|4/-7f,a,w - |r|w |'|</7g,[§’,w'

for all w € Q. Therefore, by the product formula, one has iz ) = hy L.gep):

9.4. Bogomolov’s conjecture over a countable field of characteristic zero

Throughout this section, we assume that S is proper and that K is algebraically closed,
countable and of characteristic 0. We assume in addition that v(Qs) > 0 and v(A) ¢
{0, 1}.

Let X be a projective integral scheme over K and L be an adelic line bundle on X. The
essential minimum fless(L) of L is defined to be

fess(L) : ;gr;(xe(Xl{lZf)(K) hz(x)
where Z runs over the set of all proper closed subsets of X.

Let A be an abelian variety over Spec K. For any integer n, let [n] : A — A be the
morphism of multiplication by n. Let L be a symmetric ample invertible O4-module. If
we fix an isomorphism [2]*(L) ~ L®*, then, for each w € Q, we can assign the local
canonical compactification ¢,, (with respect to [2]) to L,,. If we set ¢ = (¢u)weas
then, by Proposition (L, ¢) is a nef adelic line bundle on X. Since [2] and [#n]
are commutative and K is algebraically closed, by Remark we can find a suitable
isomorphism [n]*(L) =~ L& such that the local canonical compatification of L, with
respect to [n] coincides with ¢,,.

Tueorem 9.4.1. Let X be an integral subscheme of A such that the stabilizer of X is
trivial. If dim X > 0, then the essential minimum fless(L|x) of X is strictly positive.

Proor. There exists an integer m > 1 such that the morphism
FoX™m— A" (g, xm) o (X2 — X X — Xmet)

is birational onto its image but not finite. We assume by contradiction that there exists a
generic sequence (xp)uen in X(K) such that h7(x,) converges to O when n — +oo. This
sequence permits us to construct a generic sequence (yn)nen in X™ such that hpem (y,)
converges to 0 when n — +oco. Moreover, since Néron-Tate height is a quadratic form, we
also deduce that hzg(W]) (f (yn)) converges to 0 when n — +oo, that is,

r}glgo hf*(zg""‘”)(y") =0.

Applying the equidistribution theorem (c.f. Theorem(8.11.2)) to the sequence (y,;)nen,
we deduce that the sequences of measures

o and O, —wim- neN
"y Q RO T eI

converge weakly to 6fzm and § . —wim-1 , respectively, and hence

XM Qg (L ), X" Qo

0 B(m-1)

Szom s . =0 7

), X" Qe
holds as measures (see Remark [7.6.6). Therefore, by Proposition [7.7.3] there exists Q' C
Q. such that v(Qs \ Q') = 0 and that

1((Lor @)™ ™ = £ (e1((Lo o)™~ MY
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on (X[¢,)% for any w € Q', where Xie, is the regular locus of X. The above equation leads

to a contradiction because ¢ ((Ly, ¢

Fier((Lus g™y m

vanishes at the diagonal points of (Xf,)). O

yBmymdim X 54 positive and

As a consequence of the above theorem, we have the following answer of Bogomolov’s
conjecture for K.

CoROLLARY 9.4.2. Let X be an integral subscheme of A. If fless(L|x) = 0, then X is a
translation of an abelian subvariety by a closed point of height 0.

Prookr. In the same argument as [62, the last paragraph in the proof of Theorem 9.20],
we may assume that the stabilizer of X is trivial. Thus, by Theorem|9.4.1} one has dim X = 0,
so we set X = {x}. Thus fiess(L|x) = h(x) = 0, as required. O

RemMARk 9.4.3. Assume that any finitely generated subfield of K has Northcott’s
property (cf. [38, Theorem 2.7.18]). Then any closed point of height O with respect to the
Néron-Tate height on the abelian variety A is a torsion point. Indeed, we choose a subfield
K’ of K such that A, L and x are defined over K’ and K’ is finitely generated over Q. Then,
by Northcott’s property, {nx | n € Z} is a finite group because hy(nx) = 0 for all n € Z, so
X is a torsion point.

ReEMARK 9.4.4. The geometric analogue of Bogomolov’s conjecture for Abelian va-
rieties over function fields has been proved by a series of works of Gubler [S0], Yamaki
[69; 70, 71} 72, [73], Gao-Habbegger [47], Cantat-Gao-Habegger-Xie [24]] and Xie-Yuan
[68]. It is an interesting question to investigate the condition (on the polarized Abelian
variety (A, L)) under which the result of Theorem holds without the assumption
v(Qw) > 0.

9.5. Dynamical systems over a countable field

Throughout this section, we assume that S is proper, v(A) € {0, +oo}, and that K is
algebraically closed and countable.

Let X be a projective integral scheme over K and L be an ample line bundle on X. Let
End(X; L) be the set of all endomorphisms f : X — X such that f*(L) ~ L& for some
d € Z-,. For each f € End(X; L), we denote the set of all preperiodic closed points by
Prep(f), that is,

Prep(f) := {x € X(K) | f™(x) = f"(x) for some m,n € Zy; with m # n}.

Moreover, let o5 = {¢f o} weq denote the global canonical compactification of L. Note
that, for each w € Q, ¢ , is semipositive and

f:;(va ‘Pf,w) = (Lw, ¢f,w)®d-
It is easy to see that
Prep(f) € {x € X(K) | h(L,o,)(x) = 0}. 9.1)

Indeed, as h(r, o) (f™ (X)) = h(r,p,) (f"(x)) for some positive integers m, n with m # n,
one has

d"h(L,pp) () = h(L,pp (X)) = hr,pp) (f" (X)) = d"h(L,4,) (X)),
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as required. Moreover, if S has Northcott’s property for any finitely generated subfield of
K, then

Prep(f) = {x € X(K) | h(r,p,)(x) = 0} 9.2)
because {f"(x) | n € Z3o} is finite if ~(z 4 ,)(x) = 0. The main theorem of this section is
following.

TueoreM 9.5.1. For f,g € End(X; L), the following are equivalent:

(D) h(Lpp) = M(L.gy)-
) {x € X(K) | hr,p,)(x) =0} = {x € X(K) | h(r,q,)(x) = O}
(3) {x € X(K) | h(L.gp)(X) = h(L,p,)(x) = O} is Zariski dense in X (K).

Proor. “(1) = (2)” and “(2) = (3)” are obvious because Prep(f) and Prep(g) are

Zariki dense in X (K). We assume (3). Choose a generic sequence {x, },en in
{x € X(K) | h(L,pp) (%) = h(L,pg)(x) = 0}
Since the sequence is small with respect to both /11, o) and h(L 4, ), by the equidistibution
theorem (cf. Theorem[8.11.2)), one has
O(Logy), X2 = O (L) X0
and hence, by Proposition[7.7.3] there exist Q" € A and an integrable function £ on Q such
that v(Q\ Q') = 0 and @, , = exp(£(w))¢y, . for all w € &'. Thus one can see
h(Lgp) = N(Lpq) +€

for some constant ¢. On the other hand, ¢ = 0 because the set

{x € X(K) | h(L.pp)(X) = h(L,g,) (x) =0}
is not empty. Thus one has (1). O

ReEMARK 9.5.2. By the above theorem, we can recover [78, Theorem 1.3].






APPENDIX A
Appendix

A.1. Tensorial semi-stability

We recall some constructions and facts of multi-linear algebra and classical invariant
theory. Then we prove a lifting theorem for invariants in a symmetric power of a tensor
product under the action of the product of special linear groups. In subsections[A.T.THA.T.6|
we fix a commutative ring k with unit.

A.1.1. Symmetric power. Let V be a free k-module of finite rank and § be a natural
number. We denote by V®° the 6-th tensor power of the k-module V. Note that the
symmetric group S acts k-linearly on V®9 by permuting the tensor factors. The quotient
k-module of V® by this action of S is denoted by S (V). The class of x; ® - - - ® x5 in
§9(V) is denoted by x; - - - x5. If e = (el-)l?’:l is a basis of V over k, then

e = l_[ e, a=(a)l, eN |a|:=a;+ - +as=0

form a basis of S®(V) over k. In particular, S°(V) is a free k-module. More generally, if
V is decomposed into a direct sum

v=vWg...ov®
of free sub-k-modules, then the k-linear map

@ StV ... st (V)) — §9(V), (A1)

b=(by,...,b,)eN"
|b|=b1+---+b,=6

which sends
X|® - ®X, € Sbl(V(l)) ® - -® Sb’(V(r))
to x ---x, € S%(V), is an isomorphism.
We call S¢(V) the §-th symmetric power of the free k-module V. Note that S¢ defines
a functor from the category of free k-modules of finite rank to itself. Moreover, it preserves
the extension of scalars, namely, for any commutative k-algebra A, one has
SO(VerA) =8%(V)® A.
The graded k-algebra structure of the tensor algebra
T(V) = EB yes
6eN
induces by passing to quotient a graded k-algebra structure on
Sym(V) := @ Se(V).
5eN

This k-algebra is commutative and finitely generated, and it is isomorphic to the polynomial
ring k[ X1, ..., X, ] over k, where r is the rank of V.

131
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A.1.2. Exterior power. Let V be a free k-module. We denote by
AV) = ASwv)
SeN

the quotient graded k-algebra of T (V) by the two-sided ideal generated by elements of the
formx ®x,x € V. If x1,...,xs are elements of V, the image of x; ® - - - ® x5 in AS (V) is
denoted by x| A - -+ A xs. Note that, if (e,-)f:1 is a basis of V over k, then

ey N Nejg, 1<ij<...<is<d

form a basis of A%(V) over k. The k-module A% (V) is called the §-th exterior power of V.
Note that A¢ also defines a functor from the category of free k-modules of finite rank to
itself, and preserves extensions of scalars.

If 6 is a natural number, we denote by t5 : A°(V) — V& the anti-symmetrization
map which sends x; A -+ A x5 € A%(V) to

Z sgn(o-)xrr(l) ® - ®Xg(s)-
(T€65

This is an injective GL(V)-linear map. It is however not a section of the projection
E®% — AO(V).

A.1.3. Schur functor. We denote by N the set of positive integers and by N®* the
set of sequences A = (4;);en,, of natural numbers indexed by N1 such that A; = 0 except
finitely many i. For any A = (1;);en,, € N®®, we denote by |A| the sum

Z Ai,
[ IS\
called the weight of A. If n is a natural number and A = (1y,...,4,) € N", by abuse of
notation we denote by A the sequence
(A1,...,2,,0,...,0,...) € N®=,
We call partition any sequence A = (4;);en,, € N®* such that
Arz2A>....

The value sup{i € N5 : A; > 0} (with the convention sup @ = 0) is called the length of
the partition A. For any 6 € N, we denote by &5 the set of partitions of weight §.

If 2 = (A;);en,, is a sequence in N®*_ we denote by A= (Zn)ner the sequence
defined as
L= > 1

ieNL1, 4i>n
We call A the transpose of A. Clearly one has
L>h>...
and hence A is a partition. Moreover, the following equalities hold:

S hi= Y =3 =3

neNy | (i’")EN2>1 ieNy| neNy €Ny
>
<A:
Ai>n n<a;

Note that the double transpose Ais equal to the sequence A sorted in the decreasing order.
The following graph illustrates the transpose of a partition.
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4

7o)

43

Let V be a free k-module of finite rank. For any
A=(A1,...,25,0,...,0,...) € N®,
we let
yol . yel g ... g V@0
AY V) =AM (V) @ --- @ AP (V),
SHV) =S (V)@ @S (V).

By the isomorphism (A1), we can identify S*(V) with a direct summand of S°(V®P).

Moreover, if A and u are two elements of N®, one has a commutative diagram of canonical
SL(V)-linear maps

V®/l ®V®u = N V®(/l+;1)

| |

SYV) ® SH(V) —= STH(V)
IfA=(A1,...,4,,0,...,0,...) is a partition if its transpose is of the form
A=(A1,...,24,0,...,0,...)
with ;fq > 0, we denote by L*(V) the image of the following composed map
MWV = A (V) @ @ At (V) 2 veltl B sTiy) g g 54 (V) = S(V),

where @, is induced by the anti-symmetrization maps A% (V) — V& and B, sends
X1 ® - ®x) to

(X120, 41X, 0041 * - 'x,11+---+/111_1+1)
® (X2X 042X +2042 * Xyt 42)
® + ® (XX XA+ dy Xl +A1)-
The following are two fundamental examples for partitions of 6 € N
LWy =A%), LI-D(w)=5°WV).

It can be shown that L1(V) is a free k-module of finite rank, and L? defines a functor from

the category of free k-modules of finite rank to itself (see [3, §11.2]). It is called the Schur
Sfunctor with respect to A.
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A.1.4. First fundamental theorem of classical invariant theory. In this subsection,
we assume that k is a field (of any characteristic). We recall the first fundamental theorem
of classical invariant theory in a form proved by De Concini and Procesi. We refer to [41,
Theorem 3.3] for proof, see also [42, Theorem 2.1].

THEOREM A.1.1. LetV be a finite-dimensional vector space over k, r be the dimension
of V over k, and p be a positive integer. Let 'V, ...,V, be p identical copies of V. We
consider the canonical action of the special linear group SL(V) on the symmetric algebra
Sym(Vi®---®V,,). Then the invariant sub-k-algebra Sym(V; ®- - -GBVP)SL(V) is generated
by one-dimensional k-vector subspaces of the form

Im(det(V) =ANV)—>V;®---9V, )

in identifying V;, ® - -- ® V;_with a direct factor of S" (V) & - - - @ V},) via the isomorphism
(A1), where i1, ...,i, are distinct elements of {1,...,p}, and in the above formula we
consider the anti-symmetrization map defined in §A.1.2]

RemMARrk A.1.2. Let A be a partition, p be the length of A, and 6 be the weight of A.
We identify (V) with a vector subspace of S° (V®P). Theorem shows that one can
lift the invariant vectors of S®(V®P) to tensor powers. More precisely, if S(V)S(Y) is not
zero, then & should be divisible by r, and S1(V)SL(Y) identifies with the image of

@ det(V)®(8/m) 5 s2(y).

(H1seests)r) €Y

/ll+"'+/46/r:/l

where 9, denotes the set of sequences in N®* of weight r and with coordinates in {0, 1},

and for any (u1,...,us/r) € 92,6/’ such that uj +- - - +pus/ = A, we consider the composed
map

det(V)®WO/M) 5 yoHI g ... @ VBHoIr — VO §Y(V),

where the first arrow is induced by anti-symmetrization maps.

A.1.5. Cauchy decomposition. In this subsection, we consider two free k-modules
of finite rank V and W. The symmetric algebra Sym(V ® W) is naturally equipped with a
structure of graded GL(V) x GL(W)-module. In the case where k contains Q, then it is
known that Sym(V ® W) is isomorphic as GL(V) x GL(W)-module to a direct sum

@ LY(V) ® LA(W),
A

where A runs over the set of all partitions. In general, such decomposition is not always
possible.

We equip the set N® with the lexicographic order. This is a total order. For any
§ € N, the GL(V) x GL(W)-module S°(V ® W) admits a decreasing filtration indexed by
P s such that the sub-quotient indexed by A is isomorphic to L*(V) ® L*(W). In particular,
§%(V ® W) admits a sub-GL(V) x GL(W)-module which is isomorphic to

LOW) @ L9 (W) = AS(V) @ AS(W)

This result is called the Cauchy decomposition formula for symmetric power. We refer the
readers to [3, Theorem III.1.4] for more details.
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A.1.6. Case of several modules. In this subsection, we apply Cauchy decomposition
formula to several k-modules. We first illustrate the case of three modules. Let Vi,
V,» and V3 be three free k-modules of finite rank and ¢ be a natural number. By Cauchy
decomposition formula, the symmetric power S (V; ®V,®V3) admits a decreasing filtration
of sub-GL(V}) X GL(V,) x GL(V3)-modules indexed by

Ps={1eN®® : 1| =6}
such that the subquotient indexed by A of the filtration is isomorphic to
LY(V) ® LYV, @ V3).

Let A = (/Tl, . ,/Tq,O, ...,0,...) be the transpose of A. By definition L’l(VZ ®V3)isa
sub-GL(V>) X GL(V3)-module of

SU(V,@V3) @+ ® S% (Vs ® V3). (A2)
We now apply Cauchy decomposition formula to each of the tensor powers

SY(Vy @ V3).

By passing to the tensor product of filtrations, we obtain a decreasing filtration of (A.2)
indexed by ‘@51 X e X g’;q (equipped with the lexicographic order), such that the sub-
quotient indexed by
(,Lt],...,/.tq) Eg’ﬁl X”'X'@Iq

is isomorphic to

LM (V) ®--- @ LHa(Vp) ® LM (V3) @ - - - ® LM (V3). (A3)
By combining all non-zero coordinates of u1, ..., i, into a single partition, we obtain a
partition n and can identify (A.3)) with a sub-GL(V2) X GL(V3)-module of " (V1) ® S (V3).
This filtration induces by restriction a decreasing filtration on L* (V> ®V3). The sub-quotient

of the latter indexed by (u1i, ..., uq) identifies with a sub-GL(V,) x GL(V3)-module of
(A.3). By induction we obtain the following result.

ProposiTioN A.1.3. Let d € Ny; and (Vi)l?l:1 be a family of free k-modules of finite
rank and & be a natural number. Let V be the tensor product Vi ® --- ® Vg and G =
SL(V1) X - - - X SL(Vy4). There exist a finite totally ordered set © s 4, a map

h=(hi,....,ha) : O54 — P4,

and a decreasing © s 4-filtration of S°(V) such that the subquotient indexed by a € ¢ 4
is isomorphic to a sub-G-module of

Shl(a)(Vl) ® - ® Shd(a)(vd).

Proor. We reason by induction on d. The case where d = 2 comes from Cauchy
decomposition formula. Assume that d > 3 and that the proposition has been proved for
d — 1 free k-modules of finite rank. We apply the induction hypothesis to Vi, ...,V -, and
Va-1 ® V4 to obtain a finite totally ordered set ® 5 45— and a map

h=(hi,....,ha-1) : Op4-1 — P!

together with a decreasing ® 5 4_;-filtration of S° (V) such that the subquotient indexed by
a € ©s 41 is isomorphic to a sub-G-module of

SOV @ -+ @ 2D (V) @ Sh (D (Vy_y ® V).
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Assume that hy_1(a) is of the form (44, ..., 45,0,...,0,...). We apply Cauchy decom-
position formula to $ (V;_; ® V) to obtain a decreasing filtration of

S (Vg @ Va)
indexed by %, X - - X &, such that the sub-quotient indexed by
(H1s- oo ftp) € Pay X+ X P,

is isomorphic to L' (V1) ®- - - Q L*P (V4_1) @ LM (V4) ® - - - @ L¥P (V), which identifies
a sub-GL(V;-1) X GL(V4)-module of some S7(V;_1) ® S"7(V,), where n is a partition
of weight 6. In this way we obtain a refinement of the ® 4 4_;-filtration of S°(V) which
satisfies the required property. The proposition is thus proved. O

THEOREM A.1.4. We keep the notation and the assumptions of Proposition|A.1.3] and
assume in addition that k is a field. For anyi € {1,...,d}, let r; be the dimension of V;
over k. If the space S° (V) of G-invariant vectors in S® (V) is non-zero, then § is divisible
by lem(ry,...,rq). Moreover, S°(V)© identifies with the image of the following k-linear
map

B det(m)®M - @ det(vVa) O — s2(V), (A4)

where for each (o1, . . .,04) € &%, we consider the composed map

det(V))®0/M) g ... @ det(V,)®(%/1) — > VPO g...@ VO

lﬁ]@"'@ﬂ'd

VPP . @Vl =V — §9(V)
where the first arrow is induced by the anti-symmetrization map.
Proor. By Proposition there exists a finite totally ordered set © s 4, a map
h=(hi,...,hq) : @54 — P4,

and a decreasing ® s _4-filtration ¥ of S 5(V) such that the subquotient indexed by a € O 4
is isomorphic to a sub-G-module of

Shl(a)(vl) ® - ® Shd(a)(Vd).

Let s be a non-zero element of S°(V)Y, a be the greatest element of @5 4 such that
s € F4(S9(V)). Let sq®(S°(V)) be the subquotient of the filtration 7 at a. By definition,
the canonical image of s in sq*(S%(V)) is a non-zero element of sq%(S°(V))%, which is
contained in

(Shl(a)(vl) Q- ® Shd(a)(vd))c =gh (a)(VI)SL(Vl) Q- -®Sh (a)(vd)SL(Vd)_

By Remark [A.1.2] there exists an element s’ in the image of (A.4) such that s — s” belongs
to
FP(S°(V)).
bE@ayd, b>a
Iterating this procedure we obtain that s actually belongs to the image of (A.4). The
assertion is thus proved. O
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A.2. Symmetric power norm

Throughout the section, we let k be a field and V be a finite-dimensional vector space
over k. We assume that the field k is equipped with an absolute value |-| such that & is
complete with respect to the topology induced by |-|. We also assume that the vector space
V is equipped with a norm ||-||, which is either ultrametric (when || is non-Archimedean) or
induced by an inner product (when || is Archimedean). We denote by ||-||. the dual norm
of ||-]| on the dual vector space VV. Recall that the norm ||-||. is defined as

£ )
viev, = sup L
xeV\{0} llxIl

It is also ultrametric or induced by an inner product.

A.2.1. Orthogonal basis. Let @ be an element of |0, 1]. We say that a basis (e,-)l?’: |
of V is a-orthogonal if the following inequality holds:
V(A1,...,da) €K7, fllier +- -+ Ageqll > @ max [4;] - le;l.
e{1,...,d}

A 1-orthogonal basis is also called an orthogonal basis. It is not hard to check that,
in the case where |-| is Archimedean (and ||| is induced by an inner product {,)), the
orthogonality is equivalent to the usual definition (cf. [36, Proposition 1.2.3]): a basis
(ei)l.d:1 is 1-orthogonal if and only if

V(i,j) € {l,...,d}?, ifi# jthen (e;e;)=0.
Assume that |-| is non-Archimedean. Let e = (ei)lfil be a basis of V and let ||-|| be the
norm of V defined as
V(Ao ) €k flArer + -+ Agealle = max || - [le;l.
ie{l,....d}

.....

Note that ||-||¢ is an ultrametric norm of V, and one has ||-|| < ||-||le (since the norm ||| is
ultrametric). Moreover, e is an orthogonal basis of (V, ||-||¢). For any « € ]0, 1] the basis
(ei)[fi: | is a-orthogonal with respect to ||-|| if and only if

d([l-ll I le) == sup |In|lx[| = In|lx|le| < |In(a)].
xeV\{0}
By the ultrametric Gram-Schimdt procedure (see for example [36, Proposition 1.2.30]), for
any a € ]0, 1[, the ultrametrically normed vector space (V, ||-||) admits an @-orthogonal
basis. Therefore, there exists a a sequence of ultrametric norms (||-||,ex) such that (V, ||-]|,)
admits an orthogonal basis for any n, and that

lim d([l-[I, [Ill) = 0.
n—+co

A.2.2. Direct sum. Let (V;,||-|l;), i € {1,...,0} be a family of finite-dimensional
normed vector space over k. We assume that, for any i € {1, ..., §}, the norm ||-||; is either
ultrametric or induced by an inner product. In the case where |-| is non-Archimedean, we
equip Vi & - - - & Vs with the ultrametric direct sum norm, defined as

V(xi,...,x5) eVi®---0Vs, |(x1,...,x8) = - max [l 1]; -
ie{l,...,86}

.....

In the case where |-| is Archimedean, we equip V| & - - - & Vs with the orthogonal direct
sum norm, namely

[
2 2
Gers - oxo) = Il
i=1
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A.2.3. Symmetric power norm. Let § be a natural number and let
T V®0 — §O(V)

be the surjective k-linear map which sends x; ® --- ® x5 € V® to x; ---xs. We equip
V&% with the e-tensor product norm or the orthogonal tensor product norm according to
whether |-| is non-Archimedean or Archimedean, respectively. We then equip S° (V) with
the quotient norm.

ProrosiTiON A.2.1. Assume that the absolute value |-| is non-Archimedean. Let
a €]0,1] and let e = (e,‘)l.”l:1 be an a-orthogonal basis of V. Then the elements

e, acN? |a|=6

form an a-orthogonal basis of S®(V). Moreover, for any a = (ay, .. .,aq) € N¢ such
that |a| = 6, one has

d d
a® [ Tlleal < lle®ll < [ Jllesll. (AS5)
i=1 i=1

Proor. Denote by f : {1,...,d}% — N¢ the map which sends (by,...,bs) to the
vector

d

(card({j e{l,....8}|b, = i}))izl.

Let 7 : V®9 — §9(V) be the projection map. For any
b=(by,....,bs)e{l,...,d}°,

denote by ey, the split tensor e, ® - -+ ® ep; € V0.

Fora = (ay,...,a,) € N" such that |a| = §, one has
lle“ || :inf{ Z Apep A =1, }
bef-'({a}) bef-'({a})

Hence (see [36, Remark 1.1.56])
lle“ll < llexl|“' -~ - [lenll“.

Since (ei)l.d=1 is an a-orthogonal basis, (ep)peq1, .. qys 1S an a®-orthogonal basis of V&°
(see [36l Proposition 1.2.19]). For any (Ap)pc f-1((a}) € k77" ta}) guch that

Ap =1,

bef-1({a})

one has
e - lleall < llexll -+ - lleall™ pe X ] <™ Apep|,
bef~'({a})
which leads to |[e?]] = a~%|le ]| - - - |leq]|®.
For any
s = Z Mpep € E®6,

be{l,...,n}%

one has

n(s) = (
aeN", |a|=6 ‘bef-'({a})
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Moreover,

lIsll > ® max lled|“ - lleall*  max |upl
a=(ay,...,aq)eN? bef-'({a})

>« max d||€1|

[ lleall®| D

a2 bef({a})

Y )

P bef ' ({a})

Therefore, we obtain that (e*),cyd, |4j=¢ forms an a®-orthogonal basis of S°(V), as re-
quired. O

RemARk A.2.2. Consider the case where || is the trivial absolute value. In this case,
the ultrametric norm ||-|| corresponds to a decreasing R-filtration ¥ on V such that

VieR, F(V)={xeV :|x| <e'}.
We can also express this R-filtration as an increasing sequence
0O=VpecVic...cV, =V
together with a decreasing sequence

M1 > o0 > Uy,

with F7(V) = V; when t € u;41, #i] N R, where by convention g = +o0 and p,41 = —oo.
For any ¢ € R, the subquotient

sq' (V) := 7—“’(\/)/ LJFr=m)

>0

is either the zero vector space when ¢ ¢ {u1,..., i, }, oris equal to V;/V;_ when t = y;.
By [36) Proposition 1.2.30], there exists an orthogonal basis e such that e N F*(V)
forms a basis of F* (V) for any ¢ € R. By Proposition|A.2.1] we obtain that the elements

e, acN? |a|=6

form an orthogonal basis of S®(V). Moreover, for any a = (ay,...,a,) € N" such that
|a| = 8, one has

d
el = ] llesll.
i=1

Therefore, if we equip S¢ (V) with the R-filtration induced by the symmetric product norm
of ||-||, for any ¢ € R one has a natural isomorphism

sd'(S°Vy = SV @@ STV, Vo).
b=(by.....b,)eN"
|b|=b1+--+b,=6
b+ +by =t
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A.2.4. Subquotient metric on symmetric power. In this subsection, we assume that
|| is non-Archimedean and ||-|| is ultrametric. We let |-|o be the trivial absolute value on
k and ||-||o be an ultrametric norm on V (with respect to the trivial absolute value), which
corresponds to an R-filtration ¥ on V, or an increasing sequence

O=VecVic...cV, =V
of vector subspaces of V together with a decreasing sequence

M1 > ... > Uy

of real numbers, as explained in Remark[A.2.2]

Let 6 be a natural integer. We equip S° (V) with the R-filtration corresponding to the
symmetric product norm of ||-||op. As we have seen in Remark for any ¢ € R, the
subquotient sq’ (S°(V)) is isomorphic to

D Svwe-es vV (A6)
b=(by,..., b,)eN"
|b|=by+-+b,=5
b+ +by pur=t
Note that the norm ||-|| induces by passing to subquotient a norm on each V;/V;_;, which
leads to a symmetric power norm on S?(V;/V;_;) for any b € N. For (by,...,b,) € N",
we equip S?'(Vy/Vy) ® --- ® SP7(V,./V,_) with the tensor product of symmetric power
norms (e-tensor product when || is non-Archimedean and orthogonal tensor product when
|| is Archimedean), and the vector space with the direct sum norm (ultrametric direct
sum if |-| is non-Archimedean and orthogonal direct sum if |-| is Archimedean).
Here we are interested in the comparison between the subquotient norm on sq’ (S%(V))
induced by the symmetric tensor power norm and the direct sum of tensor product norm on
described above.

ProposiTION A.2.3. Assume that the absolute value |-| is non-Archimedean. Then, for
any t € R the isomorphism

AV = P SV e @S (V) (A7)
b=(by,...,b,)eN"
|b|=bi+:--+by=6
bipy+:-+by =t
is an isometry.
Proor. Let @ be an element of ]0,1[. By [36, Proposition 1.2.30], for any i €
{1,...,r} there exists

e =(ef”,....el)) e (Vi\Viip®

such that
(a) the images of eY), R ei;_) in V;/V;_; form a basis of the latter, where d; =
dimg (V;/Vi-1),
(b) (e(l), e, e(’>) forms an a-orthogonal basis of V.

By Proposition|A.2.1] the elements
(e(l))a(l) .“(e(r))a(r)’ @V,.. . a")eN x...x N, \a“)| ... |a(r)| =5

form an «®-orthogonal basis of $¢ (V). We letx () = (xfi), ... ,x‘(;)) € (V;/Vi_1)%  where

x;,i) denotes the class of eﬁ.i) inV;/Vi_;. Since (eV, ..., e"")) forms an a-orthogonal basis

of V, we obtain that ) ) .
allef 1l < lxf1 < llef”l. (A8)
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Forany b = (by,...,b,) € N" such that by +-- - + b, = ¢, the vectors

a

(x(l))“(l)®---®(x(’)) (@, ..., a")y e NI x .. xN¥ Vie{l,..., r}, |a’| = b,
form an «°-orthogonal basis of
S (Vi/Vo) ® -+ ® S (Vi V).
Moreover, by and (A-8) we obtain that
“(e(l))a(” e (em)ya”
) @ (x()a

Therefore, under the isomorphism (A.7), the distance between the norms on the left hand
side and the right hand side is bounded from above by 36| In(a)|. Since @ € ]0, 1] is
arbitrary, we obtain that (A.7)) is actually an isometry. O

< 26| In(a)!.

A.2.5. Symmetric tensor. Let ¢ be a positive integer. We denote by
sym : V®° — y®9
sending x; ® - - @ x5 to
Z Xo(1) @ BXg(s)-

oeCs

ProrosiTiON A.2.4. Assume that the absolute value |-| is non-Archimedean. Let
§ € Nyi. We equip V®S with the e-tensor power norm of ||-||. Then the K-linear map
sym : V®9 — V®9 has operator norm < 1.

Proor. Let T be an element of V®4. If we consider T as a §-multilinear form on V'V,
then the e-tensor power norm of 7 is given by

IT(ay,...,as)|
Tl = sup —
(ar,emas)e(vi (oo il llasl.

Note that the element sym(T'), viewed as a §-multilinear form on V", is given by

sym(T)(ay,...,as) = Z T(@g(1)s- > Ao (5))-

0’665

Since the absolute value |-| is non-Archimedean, we obtain
[sym(T)(a1,..., @5)l < max [T(agq)..... @o(o)| <ITlle - llanll-- llasll.,
S
which shows || sym(7T)|| < ||T|| &- O

ProposITION A.2.5. Assume that the absolute value |-| is Archimedean. Let § € Ny.
We equip V®° with the orthogonal tensor power norm of ||-||. Then the K-linear map
sym : V®9 — V®3 has operator norm < 6.

Proor. Let (e j);.i:] be an orthonormal basis of V. Recall that an orthonormal basis of
(VO |I-II) is given by

e ® - ®ejs,  (Jiroorjs) €{l,...,d}°.
Let
T = Z a/le,11®---®e,156V®6.
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One has

ITIF= > ladl®

Let P54 be the set of vectors (ay,...,aq4) € N4 guch that a; + - -- + ag = 6. For each
a=(ay,...,aq) €Ss,let I, be the set of (A1,...,1s) € {1,...,d}? such that

Vie{l,....d}, a,= Z 1.

ie{l,..., 5}

Then the following equality holds
sym(T) = Z (Zaﬁ)a1!-~~ad! Z e ® - ®ey,,
az(ul ..... ad)ng(;yd A€l, /l:(/ll ..... /l(;)EIa

which leads to

2
0!
Isym@DIF= 3 (ailag)’| Y aa]
a=(ai,....aq) €Ps.a Ael, I d:
2
0!
< (Cll!"'ad!)z( Z |Cl/1|2)(ﬁ)
a=(a1 ..... ad)ee@g,d Ael, ar: dd:
= (8UITIH>.

]

REMARK A.2.6. Note that the k-linear map sym : V&® — V®9 factors though the
symmetric power S° (V). Moreover, in the case where k is of characteristic 0, the unique
k-linear map sym’ : S°(V) — V®? such that the composition

V®6 55 Sé(v) sym'z V®6

identifies with sym : V®% — V®9 is injective. The above propositions show that, if we
equip V®¢ with the e-tensor power norm (resp. orthogonal tensor power norm) of ||-| in the
case where |-| is non-Archimedean (resp. Archimedean) and equip S° (V) with the quotient
norm, then the operator norm of sym’ is bounded from above by 1 (resp. J!).

A.2.6. Determinant norm. Recall that we have fixed a finite-dimension normed vec-
tor space (V, ||-||) over k. Let r be the dimension of V over k. We denote by det(V) the
exterior power A" (V). This is a one-dimensional vector space over k. We equip it with the
determinant norm ||-||get, which is defined as

Vnedet(V), Inllaec=inf lxifl -+ [lx]l.
Xi)i_ €V"
nN=X1 A+ AXp

ProrosiTioN A.2.7. Assume that the absolue value |-| is non-Archimedean and the
norm ||-|| is ultrametric. Then the anti-symmetrization map det(V) — V& is an isometry
from (det(V), ||-||lger) fo its image, where we consider the e-tensor power norm on V®".

Proor. By the ultrametric Gram-Schmidt procedure, one can approximate the norm
Il by a sequence of norms for which V admits an orthogonal basis. Therefore, we may
assume without loss of generality that (V, [|-|[) has an orthogonal basis (e;);_,. By [36,
Proposition 1.2.25], one has

llev A== Aerll = llerll-- - llerl.
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Moreover, the anti-symmetrization of ey A - - - A e, is given by
Z sgn(o-)eu-(l) ® - ®eu(r)- (A.9)
oeC,
Since
{eg(l) ®---®ey) : OE€ S, }
is a subset of the orthogonal basis
e, ®---®ej, (ji,....Jr)e{l,...,r}",
we obtain that the norm of (A9) is equal to |le;|| - - - ||e,||. The proposition is thus proved.
O

RemARk A.2.8. In the case where |-| is Archimedean and ||-|| is induced by an inner
product, the above result is no longer true. The orthogonal tensor power norm of the
anti-symmetrization of an element 5 of det(V) is equal to V7! ||7]let.

A.3. Maximal slopes of symmetric power

In this section, we prove that, on an adelic curve of perfect underlying field and without
Archimedean places, the tensor product of semi-stable Hermitian adelic vector bundles
remains semi-stable. This allows to justify that the argument used in the proof of [36,
Proposition 5.3.1] is still valid in the positive characteristic case.

We fix a proper adelic curve S = (K, (2, A, v), ¢) with a perfect underlying field K.
We assume in addition that, either the o-algebra (A is discrete, or the field K is countable.

A.3.1. Tensorial semi-stability. In this subsection, we assume that Q. is empty,
namely the absolute value |-|,, is non-Archimedean for any w € Q. We let (E ,-)l.d: , bea
family of Hermitian adelic vector bundles on S and E be the orthogonal tensor product

Eie -k,

For any i € {1,...,d}, we let r; be the dimension E; over K. The purpose is to prove the
following estimate.

THeEOREM A.3.1. Let Q be a one-dimensional quotient vector space of E, equipped
with the quotient norm family. Then the following inequality holds:

d
deg(0) > ) fimin(E0). (A.10)
i=1

Proor. Let G be the product of special linear group schemes
SL(E|) X --- X SL(Eg).
Note that the algebraic group G acts on the scheme P(E) and the tautological line bundle
Og (1) is naturally equipped with a G-linear structure. In particular, the group
G(K) =SL(E;) x---xSL(Ey)
acts naturally on the sectional K-algebra

B HO®(E), Or(n) = ] §"(E) = Sym(E).

neN neN
Let x be the rational point of P(E) which is represented by the one-dimensional quotient
space Q.
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Step 1: We suppose firstly that x is semi-stable in the sense of geometric invariant
theory with respect to the G-linear line bundle Og(1). In other words, we assume that
there exists a positive integer § and a section in S°(E) = H°(P(E), Og(6)) invariant by
the action of G(K), which does not vanish at x. By Theorem [A.1.4] we obtain that § is
divisible by lem(ry, ..., rq) and there exists (o,...,04) € S s such that the following
composed map is non-zero

det(E)®/M) @ .- @ det(Eq)®®/"1) — > E®9 @ ... @ EY
lm...m

E??®-- @ ES® = E®°

|

SO(E) ————> F®9

Therefore, we obtain

d d d
— 5 — — s -
d > —deg(E;) =6 E)) >0 in(E;).
ee(0) Z] - deg(E)) ;u( ) ;ymm< )

Step 2: In this step, we assume that x is not semi-stable under the action of G with
respect to the G-linear line bundle Og(1). Note that this condition is equivalent to the

following: x is not semi-stable under the action of
GL(E;) X --- X GL(Ey)
with respect to
Op(r+rq) ® n* (det(E))®' ® - - - ® det(E)))®P4),
where 7 : P(E) — Spec K is the structural morphism and, for any i € {1,...,d},

ri---rq

bl‘ =

T
Then the inequality (A.I0) can be obtained following the same argument as in the proof of
[36, Theorem 5.6.1]. O

CorOLLARY A.3.2. Let (E[)lfil be a family of Hermitian adelic line bundles on S. For
any vector subspace F of E1 ® - - - ® E4, one has

d
A(F) < D lman (E).
i=1

In particular, le] AU Ed are all semi-stable, then El R -® Ed is also semi-stable.

Proor. We first treat the case where F is of dimension 1. We identify FV with a
quotient vector space of E) ® - - - ® E . By Theorem we obtain

d d
fi(F) = deg(F) = ~deg(F") < = ) fimin(E;{) = ), fimax (E),
i=1 i=1

where the last equality comes from [36, Corollary 4.3.27].

In the following, we consider the general case. Without loss of generality, we may
assume that F is the destabilizing vector subspace of E; ® --- ® E4. In particular, F is
semi-stable. Let s be the element of F¥ ® E; ® - - - ® E; be the element which corresponds
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to the inclusionmap f: F — E; ® --- ® E4. Let L be the one-dimension vector subspace
of F - E; ® - -- ® E; spanned by s. By the one-dimensional case of the statement proved
above, one has

d d
d’e\g(Z) < ﬁmax (FV) + Z ﬁmax(Ed) = ﬁ(?v) + Z ﬁmax (Ed)
i=1 i=1

d
= —i(F) + ) fimax (Ea)
i=1

since F is assumed to be semi-stable. Moreover, for any w € €, if we denote by ||-|| ., the
e-tensor product normon F), ® E1 ,, ® - - - ® E4 ,,, then ||s]|, identifies with the operator

norm of f,,, which is bounded from above by 1. Therefore one has d/e:g(Z) > 0, which
shows that

d
A(F) < Y @(Ea),
i=1

as required. O

RemMARK A.3.3. By passing to dual, we obtain from Corollary[A.3.2]that the inequality
(A:T0) actually holds for quotient vector subspace of E| ® - - - ® E4 of arbitrary rank. In
other words, the following inequality holds:

d
ﬁmin(El ®---Q® Ed) > Zﬁmin(Ei)-
i=1

Therefore, the results of [36, Chapter 5] still hold in the case where K is a perfect field of
positive characteristic. In particular, if F is a vector subspace of £ ® - - - ® E4, equipped
with the restriction of the orthogonal tensor product norm family, then the dual statement
of [36, Theorem 5.6.1] leads to the following inequality

A(F) < 7(F, |I-llo.r)

where ||-||o, denotes the restriction of the ultrametric norm (where we consider the trivial
absolute value on K) on E| ® - - - ® E4 by taking the e-tensor product of norms associated
with Harder-Narasimhan R-filtrations of £, ..., E 4.

A.3.2. Slope of a symmetric power.

PrOPOSITION A.3.4. Assume that Qe is empty. Let E be a Hermitian adelic vector
bundle on S and 6 be a positive number. The following equality holds

i(S°(E)) = 6 u(E).
Moreover, if E is semi-stable, then S° (E) is also semi-stable.

Proor. Let r be the dimension of E over K. Without loss of generality, we may assume
that r > 2. Let
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be a complete flag of vector subspaces of E. By Proposition|A.2.3| one has

deg(S°(EN = >, > aideg(Ei/E;i 1)
(ags..., a,y)eN” =1
aj+--+a,=06

e & (rt6-a-2
=Y deg(E;/E;_ )
21] eg(E;/ og(])a( 5 )

Note that

o (r+6-a-2 S lr+6—a-2 J 0—a—2
Za( +r—2 ):52( +r—; )_2(5_a)(r+6_2 )

a=0 a=0 a=0
5-1
o+r—1 r+d—a-2
= - -1
20 )- e (300
a=0
:66+r—1 -1 o+r—1 :(6_6(r—1)) 6+r—1'
r—1 r r r—1
Since
-1
dimK<S‘5<E>>=(”f§ )
we obtain

RSO (E) = 0 Y dea(Ei/Ei-1) = 6A(E).

i=1

In the case where E is semi-stable, by Corollary we obtain that E®6 is also
semi-stable. Moreover, its slope is also equal to § fZ(E). Since any quotient vector space of
S°(E) is also a quotient vector space of E®°, we obtain that, for any quotient vector space
Q of E®% one has

~ =~ —=®5 = s
Q) > (E™") = 6(E) = i(S°(E)).
Therefore S° (E) is also semi-stable. O

_ AJ3.3. Symmetric power. In this subsection, we fix a Hermitian adelic vector bundle
EonS.

THEOREM A.3.5. For any positive integer 6, the following inequality holds:
_ _ = 1 .
Jimax (% (E)) < 6 fimax (E) +v(Qeo) In(81) + 5v(Qeo) In(dimyg (E)). (A.11)

Moreover, in the case where Qo is empty, the norm (wWhere we consider the trivial abso-
Iute value on K) on S®(E) associated with the Harder-Narasimhan R-filtration of S® (E)
coincides with the e-symmetric power of that associated with the Harder-Narasimhan
R-filtration of E.

Proor. We first treat the case where Q. = @. Let ¥ be the Harder-Narasimhan
R-filtration of E, which correspond to a sequence

O0=EyCE C...CE, =E
of vector subspaces of E, together with a decreasing sequence

M1 > o0 > Uy
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of successive slopes. We equip S®(E) with the symmetric power of the R-filtration .
Note that the subquotient sq’ (S®(E)) of index ¢ is given by (see §A.2.4)

P st e o8V V).
b=(by,...,b,)EN"
b|=b+-+by=5
bypy+:+by py=t

By Corollary and Proposition[A.3.4] each Hermitian adelic vector bundle
S (E1/Eo) ® -+ ® S (E,[Er—1)

is semi-stable of slope
b],u] +-~+br,ur =1.
Therefore, the symmetric power of the R-filtration ¥ identifies with the Harder-Narasimhan
R-filtration of S°(E) and the maximal slope of S°(E) is equal to & [z, (E).
In the case where Q. is not empty, the field K is necessarily of characteristic 0. Let
sym’ : S9(E) — E®9 be the K-linear map induced by the symmetrization map (see
Remark[A2.6). Since K is of characteristic 0, this map is injective and hence

~ — =86 , - —®6
Fmax (S°(E)) < Fmax (E°°) + h(sym’) < fimax (B ) +v(Qeo) In(81).
By the dual statement of [36, Corollary 5.6.2], one has
~ =86 - =1 .
Ainax(E”") < 8fimax (E) + 57(Qee)8 In(dimg (E)).

Hence the desired inequality follows. O
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