
Huayi CHEN
Atsushi MORIWAKI

Arakelov geometry
over adelic curves
05/October/2019, Version 1.2

Springer Nature





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Metrized vector bundles: local theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Norms and seminorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Operator seminorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Quotient seminorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Topology of normed vector spaces of finite dimension . . . . . 7
1.1.5 Dual norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.6 Seminorm of the dual operator . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.7 Lattices and norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.8 Trivial valuation case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.9 Metric on the space of norms . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.10 Direct sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.11 Tensor product seminorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.1.12 Exterior power seminorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.1.13 Determinant seminorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.1.14 Seminormed graded algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.1.15 Norm of polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.2.1 Inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.2.2 Orthogonal basis of an inner product . . . . . . . . . . . . . . . . . . . . 44
1.2.3 Orthogonality in general cases . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.2.4 Orthogonality and lattice norms . . . . . . . . . . . . . . . . . . . . . . . . 55
1.2.5 Orthogonality and Hadamard property . . . . . . . . . . . . . . . . . . 56
1.2.6 Ultrametric Gram-Schimdt process . . . . . . . . . . . . . . . . . . . . . 59
1.2.7 Dual determinant norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.2.8 Ellipsoid of John and Löwner . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.2.9 Hilbert-Schmidt tensor norm. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1.3 Extension of scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.3.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



vi Contents

1.3.2 Direct sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
1.3.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
1.3.4 Extension of scalars in the real case . . . . . . . . . . . . . . . . . . . . . 100

2 Local metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.1 Metrised vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.1.1 Berkovich space associated with a scheme . . . . . . . . . . . . . . . 107
2.1.2 Metric on a vector bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.1.3 Base change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.2 Metrics on invertible sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.2.1 Dual metric and tensor product metric . . . . . . . . . . . . . . . . . . . 116
2.2.2 Distance between metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.2.3 Fubini-Study metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.3 Semi-positive metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.3.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.3.2 Model metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.3.3 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.3.4 Extension property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.4 Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.4.1 Reminder on Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.4.2 Linear system of a divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2.4.3 Q-Cartier and R-Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . 156

2.5 Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
2.5.1 Green functions of Cartier divisors . . . . . . . . . . . . . . . . . . . . . 160
2.5.2 Green functions for Q-Cartier and R-Cartier divisors . . . . . . 162
2.5.3 Canonical Green functions with respect to endmorphisms . . 164

3 Adelic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.1 Definition of Adelic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

3.2.1 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.2.2 Number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.2.3 Copies of the trivial absolute value . . . . . . . . . . . . . . . . . . . . . 171
3.2.4 Polarised varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3.2.5 Function field over Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.2.6 Polarised arithmetic variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.2.7 Amalgamation of adelic structures . . . . . . . . . . . . . . . . . . . . . . 177
3.2.8 Restriction of adelic structure to a subfield . . . . . . . . . . . . . . . 177
3.2.9 Restriction of adelic structure to a measurable subset . . . . . . 177

3.3 Finite separable extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.3.1 Integration along fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.3.2 Measurability of fibre integrals . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.3.3 Construction of the measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

3.4 General algebraic extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.4.1 Finite extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



Contents vii

3.4.2 General algebraic extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.5 Height function and Northcott property . . . . . . . . . . . . . . . . . . . . . . . . 199
3.6 Measurability of automorphism actions . . . . . . . . . . . . . . . . . . . . . . . . 202
3.7 Morphisms of adelic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

4 Vector bundles on adelic curves: global theory . . . . . . . . . . . . . . . . . . . . . 205
4.1 Norm families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.1.1 Definition and algebraic constructions . . . . . . . . . . . . . . . . . . . 205
4.1.2 Dominated norm families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.1.3 Measurability of norm families . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.1.4 Adelic vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
4.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.2 Adelic divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4.3 Arakelov degree and slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

4.3.1 Arakelov degree of adelic line bundles . . . . . . . . . . . . . . . . . . 242
4.3.2 Arakelov degree of adelic vector bundles . . . . . . . . . . . . . . . . 244
4.3.3 Arakelov degree of tensor adelic vector bundles . . . . . . . . . . . 249
4.3.4 Positive degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.3.5 Riemann-Roch formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
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Introduction

The purpose of this book is to build the fundament of an Arakelov theory over adelic
curves in order to provide a unified framework for the researches on arithmetic
geometry in several directions.

Let us begin with a brief description of the main ideas of Arakelov geometry. In
number theory, it is well known that number fields are similar to fields of rational
functions over algebraic curves defined over a base field, which is often assumed to
be finite. It is expected that the geometry of schemes of finite type over Z should be
similar to the algebraic geometry of schemes of finite type over a regular projective
curve. However, some nice properties, especially finiteness of cohomological groups
(in the case where the base field is finite), fail to hold in the arithmetic setting, which
prevents using geometrical methods to count the arithmetic objects. The core problem
is that schemes over SpecZ, even projective, are not “compact”, and in general it is
not possible to “compactify” them in the category of schemes. The seminal works
of Arakelov [4, 5] propose to “compactify” a scheme of finite type over SpecZ by
transcendental objects, such as the associated complex analytic variety, Hermitian
metrics, Green functions, and differential forms etc. In the case of relative dimension
zero, the idea of Arakelov corresponds to the classic approach in algebraic number
theory to include the infinite places of a number field to obtain a product formula,
and to introduce Hermitian norms on projective modules over an algebraic integer
ring to study the geometry of numbers and counting problems. Most interestingly,
the approach of Arakelov proposes an intersection theory for divisors on a projective
arithmetic surface (relative dimension one case), which is similar to the intersection
pairing of Cartier divisors on classic projective surfaces.

The works of Arakelov have opened a gate to a new geometric theory of arithmetic
varieties (schemes of finite type over SpecZ). Inspired by the classic algebraic ge-
ometry, many results have been obtained and enriched Arakelov’s geometry. Among
the wide literature, we can mention for example the arithmetic Hodge index the-
orem by Faltings [58] and Hriljac [87], arithmetic intersection theory of higher
dimensional arithmetic varieties and arithmetic Riemann-Roch theorem by Gillet
and Soulé [68, 69], see also [67]. Arakelov geometry also provides an alternative ap-
proach (compared to the classic Weil height theory) to the height theory in arithmetic

ix



x Introduction

geometry, see [4, 5, 139, 60, 23], (see also the approach of Philippon [122, 123],
and [136] for the comparison between Philippon height and Arakelov height). The
Arakelov height is often more precise than the Weil height machine since the choice
of a Hermitian metric on a line bundle permits to construct an explicit height function
associated with that line bundle (in the Weil heigh machine, the height function is
defined only up to a bounded function).

These advancements have led to fruitful applications in number theory, such as
the proof of Mordell’s conjecture by Faltings [57, 59] and the alternative proof by
Vojta [146] (see also the proof of Bombieri [11] and the generalisation of Vojta’s
approach to the study of subvarieties in an Abelian variety [60]), equidistribution of
algebraic points in an arithmetic variety and applications to Bogomolov’s conjecture
[140, 144, 157], algebraicity of formal leaves of algebraic foliation [18] etc.

Although the philosophy of Arakelov allows to inspire notions and results of
algebraic geometry and has already led to a rich arithmetic theory, the realisation
of Arakelov theory is rather different from that of the classic algebraic geometry
and usually gets involved subtle tools in analysis. The transition of technics on the
two sides is often obscure. For example, the abc conjecture, which can be easily
established in the function field setting by algebraic geometry tools (see [103]),
turns out to be very deep in the number field setting. Conversely, the Bogomolov’s
conjecture has been resolved in the number field setting, before the adaptation
of its proof in the function field setting by using Berkovich analytic spaces (see
[80, 149, 150]). It is therefore an interesting problem to provide a uniform fundament
for Arakelov geometry, both in the function field and number field settings, and the
adelic approach is a natural choice for this goal. We would like however to mention
that Durov [54] has proposed an approach of different nature to algebrify the Arakelov
geometry over number fields.

The theory of adèles in the study of global fields was firstly introduced by Cheval-
ley [49, Chapitre III] for function fields and by Weil [147] for number fields. This
theory allows to consider all places of a global filed in a unified way. It also leads to
a uniform approach in the geometry of numbers in global fields, either via the adelic
version of Minkowski’s theorems and Siegel’s lemma developed by McFeat [105],
Bombieri-Vaaler [13], Thunder [142], Roy-Thunder [128], or via the study of adelic
vector bundles developed by Gaudron [62], generalising the slope theory introduced
by Bost [16, 18].

Several works have been realised in the adelification of Arakelov theory. Besides
the result of Gaudron on adelic vector bundles over global fields mentioned above,
we can for example refer to [156] for adelic metrics on arithmetic line bundles and
applications to the Bogomolov problem for cycles. Moreover, Moriwaki [113] has
studied the birational geometry of adelic line bundles over arithmetic varieties. The
key point is to consider an arithmetic variety as a scheme of finite type over a global
field, together with a family of analytic varieties (possibly equipped with metrised
vector bundles) associated with the scheme, which is parametrised by the set of all
places of the global field. Classic objects in Arakelov geometry can be naturally
considered in this setting. For example, given a Hermitian line bundle over a classic
arithmetic variety (scheme of finite type over SpecZ), the algebraic structure of the
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line bundle actually induces, for each finite place of Q, a metric on the pull-back of
the line bundle on the corresponding analytic space.

In this book, we introduce the notion of adelic curves and develop an Arakelov
theory over them. By adelic curve we mean a field equipped with a family of absolute
values parametrised by a measure space, such that the logarithmic absolute value of
each non-zero element of the filed is an integrable function on the measure space,
with 0 as its integral. This property is called a product formula. Note that this notion
has been studied by Gubler [79] in the setting of height theory and is also considered
by Ben Yaakov and Hrushovski [8, 88] in a recent work on model theory of global
fields. Clearly the notion of adelic curve generalises the classic one of global field,
where the measure space is given by the set of all places of the global field equipped
with the discrete measure of local degrees. However, this is certainly not the only
motivation for the general notion of adelic curves. Our choice is rather inspired by
several bunches of researches which are apparently transversal to each other, which
we will resume as follows (we will explain further the reason for the choice of
terminology “adelic curve”).

1. Finitely generated extensions of a number field. From a point of view of
birational geometry, we expect that the field of rational functions of an algebraic
variety determines the geometric properties of the variety. In Arakelov geometry,
we consider integral schemes of finite type over SpecQ, whose function field is a
finitely generated extension of Q. Moriwaki [106] has developed an Arakelov height
theory for varieties over a finitely generated extension of a number field and applied
it to the study of Bogomolov problem over such a field (see [107], see also [108] for
a panoramic view). Burgos, Philippon and Sombra [34] have expressed the height of
cycles in a projective variety over a finitely generated extension of Q as an integral
of local heights over the set of places of the field.

2. Trivially valued field. In number theory, we usually consider non-trivial absolute
values on fields. Note that on any field there exists a trivial absolute value which takes
value 1 on each non-zero element of the field. Note that a trivial product formula
is satisfied in this setting. Although the trivially valued fields are very simple, the
corresponding geometry of numbers is rather rich, which has wide interactions with
the classic geometry of lattices or Hermitian vector bundles. In fact, given a finite-
dimensional vector space over a trivially valued field, the ultrametric norms on it
are canonically in bijection to the decreasing R-filtrations on the vector space. The
R-filtration is a key method of the works [40, 37, 39], where the main idea consists
in associating to each Hermitian vector bundle an R-filtration on the generic fibre,
which captures the arithmetic information such as successive minima or successive
slopes.

3. Harder-Narasimhan theory for vector bundles on higher dimensional varieties.
Harder and Narasimhan theory [84] is an important tool in the study of vector
bundles on a projective curve. In the geometry of Euclidean lattices, the counterpart
of Harder-Narasimhan theory has been proposed by Stuhler [138] and Grayson [71].
Later Bost [16] has generalised their works in the setting of Hermitian vector bundles
on the spectrum of the ring of algebraic integers in a number field. Moreover, he
has developed the slope inequalities in this framework and applied them to the study
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of algebraicity of formal schemes [18, 19, 20]. Note that the slope function and the
notion of semistability can be naturally defined for torsion-free coherent sheaves on
a polarised projective variety [141]. This allows Shatz [135] and Maruyama [102]
to develop a Harder-Narasimhan theory for general torsion-free coherent sheaves.
However, it seems that the analogue of their results in the arithmetic case is still
missing.

4. Fields of algebraic numbers, Siegel fields. The geometry of numbers for al-
gebraic (not necessarily finite) extensions plays an important role both in Diophan-
tine problems and in Arakelov geometry. Recall that the Minkowski’s theorem and
Siegel’s lemma in geometry of numbers admit an adelic version for number fields,
see [13, 105]. They also have an absolute counterpart over Q, see [128, 129, 155]. In
Arakelov geometry, a notion of Hermitian vector bundle over Q has been proposed
in the work [22] of Bost and Chen, on which the absolute Siegel’s lemma applies and
is useful in the study of tensorial semistability of classic Hermitian vector bundles.
Similarly, in the approach of Gaudron and Rémond [64] to the tensorial semistability,
the absolute Siegel’s lemma is also a key argument. In [65], the notion of Siegel
field has been proposed. A Siegel field is a subfield of Q on which an analogue of
Siegel’s lemma is true. In order to formulate a geometry of numbers for a Siegel
field, Gaudron and Rémond have introduced a topology on the space of all places of
such a field and a Borel measure on it.

5. Algebraic extensions of function fields. In [51], Corvaja and Zannier have stud-
ied the arithmetic of algebraic extensions of function fields. They have characterised
the infinite algebraic extensions of function fields of a curve which still satisfy a
product formula. They have also discussed several examples of product formulas
associated with algebraic surfaces in revealing the non-uniqueness of the extension
of a product formula under finite field extensions.

The above results are obtained in various settings of arithmetic geometry. It turns
out that these settings can be naturally included in the framework of adelic curves
(see §3.2 for details) in order to treat the geometry of various fields analogously
to that of vector bundles on projective curves. For example, on the field Q(T) of
rational functions with coefficients in Q, three types of absolute values are defined
(see §3.2.5 for details): the valuation corresponding to closed points of P1

Q
, the

natural extensions of p-adic absolute values, and the Archimedean absolute value
corresponding to divers embeddings of Q(T) in C. Note that Jensen’s formula for
Mahler measure shows that these absolute values, once suitably parametrised by a
measure space, satisfy a product formula. Thus we can consider it as an adelic curve.
This is actually a particular case of polarised arithmetic projective varieties, where
the polarisation provides a structure of adelic curve on the field of rational functions
on the projective variety. Moreover, algebraic coverings of an adelic curve can be
naturally constructed (see Section 3.4), which provides a framework for the study of
the arithmetic of algebraic extensions.

Note that Gubler [79] has introduced a similar notion of M-field and extended
the Arakelov height theory to this setting. An M-field is a field equipped with a
measure space and a family of functions parametrised by the measure space which
are absolute values almost everywhere, and the height of an arithmetic variety is
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defined as the integration along the measure space of local heights. However, our
main concern is to build up a suitable geometry of numbers while the purpose
of [79] is to extend the Arakelov height theory in a sufficiently general setting in
order to include the theory of Nevanlinna. In Diophantine geometry the geometry
of numbers is as important as a the height theory, particularly in the geometrisation
of the method of “auxiliary polynomials”. We propose the notion of adelic vector
bundles on adelic curves, which consist of a finite-dimensional vector space over the
underlying field, equipped with a measurable family of norms parametrised by the
measure space. Our choice facilites the study of algebraic constructions of adelic
vector bundles. The height of arithmetic varieties is described in a global way by
the asymptotic behaviour of graded linear series equipped with structures of adelic
vector bundles, rather than the integral of local heights.

In the framework of model theory, Ben Yaakov and Hrushovski [8, 88] also con-
sider the formalisme of a field equipped with a family of absolute value parametrised
by a measure space, which satisfied a product formula (called globally valued field in
their terminologies). Their work permits to considered classic Diophantine geometry
objects (in particular heights) in the model theory setting.

In order to set up a theory of adelic vector bundles over adelic curves, we present
in the first chapter various constructions and properties of seminormed vector spaces
over a complete valued field. Although the constructions and results are basic, the
subtleties in the interaction and the compatibility of divers algebraic constructions,
such as restriction, quotient, dual, tensor product, exterior powers etc, have not
been clarified in the literature in a systematic way. In particular, several classic
results in the functional analysis over C are no longer true in the non-Archimedean
setting. We choose carefully our approach of presentation to unify the treatment
of non-Archimedean and Archimedean cases whenever possible, and specify the
differences and highlight the subtleties in detail. A particular attention is paid to
the two constructions of tensor product seminorms: the π-tensor product and the ε-
tensor product. These notions have been firstly introduced by Grothendieck [73, 72]
in the setting of functional analysis over C. It turns out that similar constructions
can be defined more generally over an arbitrary complete valued field, and they are
useful for example in the study of seminorms on exterior powers.

The orthogonality is another theme discussed in the first chapter. Classically the
orthogonality is a natural notion in the study of inner product spaces. We consider an
equivalent form of this notion, which can be defined in the setting of finitely generated
seminormed vector spaces over an arbitrary complete valued field. This reformulation
has been used in [33] to study the arithmetic positivity on toric varieties. Here
it will serve as a fundamental tool to study ultrametrically normed spaces, inner
product spaces and the construction of orthogonal tensor products. In particular, an
analogue of the Gram-Schmidt process holds for finite-dimensional ultrametrically
seminormed spaces, which plays a key role in the compatibility of the determinant
norm with respect to short exact sequences.

We also discuss extension of seminorms under a valued extension of scalars. We
distinguish three extensions of seminorms, corresponding to the three types of tensor
product. The compatibility of extension of scalars with respect to divers algebraic
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construction is also explained. These constructions are used in the pull-back of an
adelic vector bundle by an algebraic covering of the adelic curve.

Note that in the classic Arakelov theory, usually we consider a vector space over
a global field equipped with a family of norms. However, from the point of view of
birational geometry, it is natural to consider metrics which admits singularity, that
is, degenerates on a closed subscheme (which is usually the base locus of a linear
series) to a family of seminorms. Moreover, in the study of algebraicity of formal
leaves of an arithmetic foliation, the canonical “metrics” on the tangent bundle are
often seminorms. We refer the readers to [21] for more details. Motivated by these
observations, we choose to present a panoramic view on the tools about general
seminormed vector spaces which could be useful in Arakelov geometry later.

The second chapter is devoted to a presentation of metrised line bundles on a
projective scheme over a complete valued field. It could be considered as a higher
dimensional version of the results presented in Chapter 1. We use Berkovich topology
to define continuous metrics on a vector bundle. Note that in the case where the base
field is C, our definition coincides with the classic definition of continuous metric on
a vector bundle over a complex analytic space (associated with a complex projective
scheme).

The Fubini-Study metric is another important ingredient of Chapter 2. It is closely
related to the positivity of metrics on line bundles. More precisely, a continuous
metric on a line bundle over a projective scheme defined over a complete valued
field is said to be semipositive if it can be written as a uniform limit of Fubini-Study
metrics. In the case where the absolute value is Archimedean, this definition is
equivalent to the semipositivity of the curvature current of the metric. In the case
where the absolute value is non-Archimedean and non-trivial, it is equivalent to the
semipositivity condition proposed in [36, Section 6.8] and [82, Section 6]. However,
in the trivial valuation case, it seems that our formulation is crucial to study the
positivity of the metrics.

In classic Hermitian geometry, the positivity is closely related to the extension
of sections of an ample line bundle with a control on the supremum norms. We
establish a non-Archimedean analogue of the extension property, generalising the
main result of [48] to the non-necessarily reduced case.

The third chapter is devoted to the fundament of adelic curves. We first give the
formal definition of this notion and illustrate by various examples. The algebraic cov-
erings of adelic curves occupy an important part of the chapter. As mentioned above,
an adelic curve is a field equipped with a family of absolute values parametrised by
a measure space, which satisfies a product formula. Given an algebraic extension
of the underlying field, there is a canonical family of absolute values parametrised
by a measure space fibered on the initial measure space and equipped with a dis-
integration kernel. This construction is important in the height theory for algebraic
points and in the study of Siegel and Northcott properties. Contrary to the approach
of [65], we do not assume the structural measurable space of an adelic curve to
be a topological space and do not adopt the topological construction of algebraic
coverings. Although it is possible to reduce the construction to the case of finite
extensions by an argument of passage to projective limit, even for the simplest case
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of finite separable extension of the underlying field, the problem is highly non-trivial.
The main subtleties come from the measurability of the fibre integral, which neither
follows from the classic disintegration theory, nor from the property of extension
of absolute values in algebraic number theory. The difficulty is resolved by using
symmetric polynomials and Vandermonde matrix.

The analogue in the adelic curve setting of the geometry of numbers occupies the
main part of the fourth chapter. Given an adelic curve, for any finite-dimensional
vector space over the underlying field, we consider families of norms indexed by the
structural measure space of the adelic curve. Natural measurability and dominancy
conditions are defined for such norm families. An adelic vector bundle is a finite-
dimensional vector space over the underlying field of the adelic curve, equipped with
a measurable and dominated norm family. In the case where the adelic curve arises
from a global field, this notion corresponds essentially to the notion of adelic vector
bundle in the work [62]. Note that in the classic global field case it is required that
almost all norms in the structure of an adelic vector bundle come from a common
integral model of the vector space. However, in our general setting of adelic curve, it
is not adequate to discuss integral models since the integral ring in an adelic curves
is not well defined. The condition of common integral model is replaced by the
dominancy condition, which in the global field case can be considered as uniform
limit of classic structure of adelic vector bundle.

The arithmetic invariants of adelic vector bundles are also discussed. For example,
the Arakelov degree of an adelic vector bundle is defined as the integral of the
logarithmic determinant norm of a non-zero maximal exterior power vector, similarly
as in the classic case of Hermitian vector bundle over an arithmetic curve. Moreover,
although the analogue of classic minima of lattices can not be reformulated in the
adelic curve setting, due to the lack of integral models, the version of Roy and Thunder
[128], which is based on the height function (or equivalently the Arakelov degree of
the non-zero vectors), can be naturally generalised in our setting of adelic curves.
However, it turns out that several fundamental results in geometry of numbers,
such as Minkowski’s theorems, are not true in the general setting, and the set of
vectors in the adelic unit ball is not the good generalisation of lattice points of norm
6 1. This phenomenon suggests that the slope method of Bost [16] might be more
efficient in Diophantine geometry. In fact, inspired by the Harder-Narasimhan theory
of vector bundles over curves, the notion of successive slopes has been proposed
in [138, 71] for Euclidean lattices and generalised in [16, 18] with applications to
the period and isogenies of abelian varieties, and algebraicity of formal schemes. In
the setting of adelic vector bundles on adelic curves, we establish an analogue of
Harder-Narasimhan theory and the slope method. In this sense, adelic vector bundles
on adelic curves have very similar properties as those of vector bundles on a regular
projective curve, or Hermitian vector bundles over an arithmetic curve. It is for this
reason that we have chosen the terminology of adelic curve. However, although the
successive minima and the successive slopes are close in the number field case (see
[15, 44]), they can differ much in the general adelic curve setting, even for the simple
case of a field equipped with several copies of the trivial absolute value. Note that
the semistability of adelic vector bundles over such adelic curves plays an important
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role in Diophantine geometry of projective spaces, as for example in the work of
Faltings and Wüstholz [61] (although not written explicitly in the language of the
slope theory). Our general setting of adelic vector bundles helps to understand the
roles of different arithmetic invariants should play in a Diophantine argument.

The adelic curve consisting of the trivial absolute value is also closely related
to the geometric invariant theory. In the fifth chapter of the book, we explain this
link and apply it to the estimation of the minimal slope of the tensor product of
two adelic vector bundles. In fact, an ultrametrically normed vector space over a
trivially valued field can be considered as a decreasing R-filtration of the vector
space. In the geometric invariant theory, an action of the multiplicative group on
a finite-dimensional vector space over a field corresponds to the decomposition of
the vector space into the direct sum of eigensubspaces and thus determines an R-
filtration of the vector space by the eigenvalues. Therefore we can reformulate the
Hilbert-Mumford criterion for general linear groups (or products of general linear
groups) in terms of a slope inequality for adelic vector bundles on the adelic curve
of one trivial absolute value.

Bogomolov (see [126]) has interpreted the semistability of a vector bundle over
a projective curve as an inequality linking the R-filtration and the Arakelov degree.
This result can also be viewed as a link between the geometric invariant theory and the
semistability in the theory of Harder-Narasimhan. Later Ramanan and Ramanathan
[124] have given an algebraic proof of the semistability of the tensor product of two
semistable vector bundles on a regular projective curve over a field of characteristic
0. In the number field case, Bost [17] has conjectured that the arithmetic analogue of
the tensorial semistability is also true. This conjecture is equivalent to the statement
that the tensor product of two Hermitian vector bundles has a minimal slope which
is bounded from below by the minimal slopes of the two Hermitian vector bundles.

In the setting of adelic vector bundles over adelic curves, we can consider the
natural generalisation of Bost’s conjecture stating that, if the underlying base field
of the adelic curve is perfect, then the tensor product of two semistable Hermitian
adelic vector bundles is also semistable. Besides the function field case proved
by Ramanan and Ramanathan, the generalised conjecture is also true in the case
where the adelic curve is given by a perfect field equipped with a finite number of
copies of the trivial absolute value (see [143]). We prove here a weaker version of
this conjecture, showing that the minimal slope of the tensor product of two (non-
necessarily Hermitian) adelic vector bundles is bounded from below by the sum of
the minimal slopes of the two adelic vector bundles, minus three half of the logarithm
of the rank of the tensor product bundle times the measure of Archimedean places.
In particular, the conjecture is true if the base field is of characteristic zero and all
absolute values in the adelic curve structure are non-Archimedean. This result is
similar to the works [38, 3, 64, 22] in the case where the adelic curve comes from
a number field. However, the strategy of proof is different. In fact, the common
point of the works cited above is a geometric version of Siegel’s lemma proved
by Zhang [155], which could be considered as an absolute version of Minkowski’s
second theorem, which is false for general adelic curves. Our method relies on the
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geometric invariant theory of grassmannian (with Plücker coordinates) and combines
the technics of [38] and [22].

The sixth chapter is devoted to the study of metrised line bundles on arithmetic
varieties over adelic curves. In the classic setting of adelic metrics such as [156, 113],
it was required that an adelic metric should coincides with an integral model metric
for all but finitely many places. Again the integral model metric is not adequate in our
setting of adelic curves, the suitable notions of dominancy and measurability occupy
thus an important part of the chapter. An adelic line bundle on a projective variety
is then defined to be an invertible sheaf equipped with a dominated and measurable
family of metrics parametrised by the adelic curve. In the setting of global fields,
our definition is slightly more general than the classic one, which includes the limits
of classic adelic line bundles. The analogue of some classic geometric invariants,
such as height function, essential minimum, and arithmetic volume function is also
discussed. In particular, in the definition of the arithmetic volume function, we use
the positive degree instead of the logarithmic cardinal of the small sections since the
latter is no longer adequate in the general setting. Note that the failure of Minkowski’s
first theorem brings several technical difficulties, notably the filtration by minima
and the filtration by slopes do not lead to the same arithmetic invariants, on the
contrary of the case of number fields as in [44]. Our strategy consists in introducing
a refinement of the method of arithmetic Newton-Okounkov bodies [26], which
allows to treat the case of graded linear series equipped with filtrations which are
not necessarily additive.

In the seventh and the last chapter, we relate the asymptotic minimal slope to
the absolute minimum of the height function of an adelic line bundle, which could
be considered as a generalisation of Nakai-Moishezon’s criterion in the setting of
Arakelov geometry over an adelic curve. In the case where the analogue of a strong
version of Minkowski’s first theorem holds for the adelic curve, we deduce from the
criterion an analogue of Siegel’s lemma for adelic vector bundles on the adelic curve.
Our work clarifies the arguments of geometric nature from several fundamental result
in the classic geometry of numbers.

Limited by the volume of the monograph, many aspects are not included in the
current text. First of all, an arithmetic intersection theory should be developed in
the setting of Arakelov geometry over an adelic curve, which allows to interpret
the height of arithmetic varieties as the arithmetic intersection numbers. Secondly,
by using the adelic curve of several copies of the trivial absolute value, we expect
to incorporate the conditions and results of geometric invariant theory into the
arithmetic setting. Thirdly, the geometry of adelic vector bundles should lead to a
Diophantine approximation theory of adelic curves. Finally, the fundamental works
achieved in the monograph could be applied to the study of Nevanlinna theory of
M-field proposed by Gubler.
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Chapter 1
Metrized vector bundles: local theory

The purpose of this chapter is to explain the constructions and properties of normed
vector spaces over a complete valued field. It will serve as the fundament for the global
study of adelic vector bundles. Note that we need to consider both Archimedean and
non-Archimedean cases. Hence we carefully choose the approach of presentation to
unify the statements whenever possible, and to clarify the differences.

Throughout the chapter, let k be a field equipped with an absolute value |·|. We
assume that k is complete with respect to the topology induced by |·|. We emphasise
that |·| could be the trivial absolute value on k, namely |a| = 1 for any a ∈ k \ {0}.
If the absolute value |·| is Archimedean, then k is either the field R of real numbers
or the field C of complex numbers. For simplicity, we assume that |·| is the usual
absolute value on R or C if it is Archimedean.

1.1 Norms and seminorms

Definition 1.1.1 Let V be a vector space over k. A map ‖·‖ : V → R>0 is called a
seminorm on V if the following conditions (a) and (b) are satisfied:

(a) for any a ∈ k and any x ∈ V , one has ‖ax‖ = |a| · ‖x‖;
(b) the triangle inequality: for any (x, y) ∈ V × V , one has ‖x + y‖ 6 ‖x‖ + ‖y‖.

The couple (V, ‖·‖) is called a seminormed vector space over k. If in addition the
following strong triangle inequality is satisfied

∀ (x, y) ∈ V2, ‖x + y‖ 6 max{‖x‖, ‖y‖},

we say that the seminorm ‖·‖ is ultrametric. Note that the existence of a non-
identically vanishing ultrametric seminorm on V implies that the absolute value |·|

on k is non-Archimedean. Furthermore, if the following additional condition (c) is
satisfied:

(c) for any x ∈ V \ {0}, one has ‖x‖ > 0,

1
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the seminorm ‖·‖ is called a norm on V , and the couple (V, ‖·‖) is called a normed
vector space over k.

If (V, ‖·‖) is a seminormed vector space over k, then

N‖ · ‖ := {x ∈ V : ‖x‖ = 0}

is a vector subspace of V , called the null space of ‖·‖. Moreover, if we denote by
π : V → V/N‖ · ‖ the linear map of projection, then there is a unique norm ‖·‖∼ on
V/N‖ · ‖ such that ‖·‖ = ‖·‖∼ ◦ π. The norm ‖·‖∼ is called the norm associated with
the seminorm ‖·‖.

Definition 1.1.2 Let f : W → V be a linear map of vector spaces over k and ‖·‖ be
a seminorm on V . We define ‖·‖ f : W → R>0 to be

∀ x ∈ W, ‖x‖ f := ‖ f (x)‖,

which is a seminorm on W , called the seminorm induced by f and ‖·‖. Clearly, if ‖·‖
is ultrametric, then also is ‖·‖ f . In the case where f is injective, ‖·‖ f is often denoted
by ‖·‖W ↪→V and is called the seminorm on W induced by ‖·‖, or the restriction of
‖·‖ to W .

Notation 1.1.3 Let (V, ‖·‖) be a seminormed vector space over k. If ε is a non-
negative real number, we denote by (V, ‖·‖)6ε or simply by V6ε the closed ball
{x ∈ V : ‖x‖ 6 ε} of radius ε centered at the origin. Similarly, we denote by
(V, ‖·‖)<ε or by V<ε the open ball {x ∈ V : ‖x‖ < ε}.

Proposition 1.1.4 Assume that |·| is non-trivial. Let λ ∈ ]0,1[ such that

λ < sup{|a| : a ∈ k×, |a| < 1}.

Let (V, ‖·‖) be a seminormed vector space over k and x be a vector in V such that
‖x‖ > 0. There exists b ∈ k× such that λ 6 ‖bx‖ < 1.

Proof Let a be an element in k× such that λ < |a| < 1. We take b = ap with

p =
⌊
ln(λ) − ln ‖x‖

ln |a|

⌋
.

By definition one has p 6 (ln(λ) − ln ‖x‖)/ln |a|. Hence |b| = |a|p > λ/‖x‖,
which leads to ‖bx‖ = |b| · ‖x‖ > λ. Moreover, since λ < |a| < 1 one has
ln(λ) < ln |a| < 0. Hence ln(λ)/ln |a| > 1, which implies that p > − ln ‖x‖/ln |a|.
Hence |b| = |a|p < ‖x‖−1, which leads to ‖bx‖ < 1. �

Proposition 1.1.5 Let (V, ‖·‖) be an ultrametrically seminormed vector space over k.

(1) If x1, . . . , xn are vectors of V such that the numbers ‖x1‖, . . . , ‖xn‖ are distinct,
then one has ‖x1 + · · · + xn‖ = max

i∈{1,...,n}
‖xi ‖.
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(2) The cardinal of the image of the composed map

V \ N‖ · ‖

‖ · ‖ // R>0 // R>0/|k× | (1.1)

is not greater than the dimension of V/N‖ · ‖ over k, where R>0 denotes the
multiplicative group of positive real numbers, and |k× | is the image of k× by |·|.

Proof (1) The statement is trivial when n = 1. Moreover, by induction it suffices to
treat the case where n = 2. Without loss of generality, we assume that ‖x1‖ < ‖x2‖.
Since ‖·‖ is ultrametric, one has ‖x1 + x2‖ 6 max{‖x1‖, ‖x2‖} = ‖x2‖. Moreover,

‖x2‖ = ‖x1 + x2 + (−x1)‖ 6 max{‖x1 + x2‖, ‖x1‖}.

Since ‖x2‖ > ‖x1‖, one should have ‖x2‖ 6 ‖x1 + x2‖. Therefore

‖x1 + x2‖ = ‖x2‖ = max{‖x1‖, ‖x2‖}.

(2) By replacing V by V/N‖ · ‖ and ‖·‖ by the associated norm, we may assume
that ‖·‖ is actually a norm. Denote by I the image of the composed map (1.1). For
each element α in I, we pick a vector xα in V \ {0} such that the image of xα by the
composed map is α. We will show that the family {xα}α∈I is linearly independent
over k and hence the cardinal of I is not greater than the dimension of V over k.
Assume that α1, . . . , αn are distinct elements of the set I and λ1, . . . , λn are non-zero
elements of k. Then the values ‖λ1xα1 ‖, . . . , ‖λnxαn ‖ are distinct. As the norm ‖·‖

is ultrametric, by (1) one has

‖λ1xα1 + · · · + λnxαn ‖ = max
i∈{1,...,n}

‖λi xi ‖ > 0.

Hence λ1xα1 + · · · + λnxαn is non-zero. �

Corollary 1.1.6 Let (V, ‖·‖) be an ultrametrically seminormed vector space of finite
dimension over k. Then we have the following:

(1) If |·| is a discrete valuation (namely |k× | is a discrete subgroup of R>0), then the
image of V \ N‖ · ‖ by ‖·‖ is a discrete subset of R>0.

(2) If |·| is the trivial absolute value, then the image of V by ‖·‖ is a finite set, whose
cardinal does not exceed dimk(V/N‖ · ‖) + 1.

1.1.1 Topology

Let (V, ‖·‖) be a seminormed vector space over k. The seminorm ‖·‖ induces a
pseudometric dist(·, ·) on V such that dist(x, y) := ‖x − y‖ for any (x, y) ∈ V2.
We equip V with the most coarse topology which makes continuous the functions
(y ∈ V) 7→ ‖x− y‖ for any x ∈ V . In other words, a subset U of V is open if and only
if, for any x ∈ U, there is a positive number ε such that {y ∈ V : ‖y − x‖ < ε} ⊆ U.
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This topology is said to be induced by the seminorm ‖·‖. The set V equipped with
this topology forms a topological vector space. For any vector subspace W of V , the
closure of W is also a vector subspace of V . In particular, if W is a hyperplane in V
(namely the kernel of a linear form), then either W is a closed vector subspace of V
or W is dense in V . For any x ∈ V , the pseudodistance between W and x is defined
as

dist(x,W) := inf{‖x − y‖ : y ∈ W}.

Then dist(x,W) = 0 if and only if x belongs to the closure of W . In particular, the
null space of (V, ‖·‖) is a closed subspace, which is the closure of the zero vector
subspace {0}. Thus the topological vector space V is separated if and only if ‖·‖ is
a norm.

Proposition 1.1.7 Let (V1, ‖·‖1) and (V2, ‖·‖2) be seminormed vector spaces over k,
and f : V1 → V2 be a k-linear map. Then we have the following:

(1) If the map f is continuous, then f (N‖ · ‖1 ) ⊆ N‖ · ‖2 .
(2) If there is a non-negative constant C such that ‖ f (x)‖2 6 C‖x‖1 for all x ∈ V1,

then the map f is continuous. The converse is true if either (i) the absolute value
|·| is non-trivial or (ii) dimk(V2/N‖ · ‖2 ) < ∞.

Proof (1) Since N‖ · ‖2 is a closed subset of V2, its inverse image by the continuous
map f is a closed subset of V1, which clearly contains 0 ∈ V1. Hence f −1(N‖ · ‖2 )

contains N‖ · ‖1 since N‖ · ‖1 is the closure of {0} in V1.
(2) Let {xn}n∈N be a sequence in V1 which converges to a point x ∈ V1. One has

‖ f (xn) − f (x)‖2 = ‖ f (xn − x)‖2 6 C‖xn − x‖1,

so that the sequence { f (xn)}n∈N converges to f (x). Hence the map f is continuous.
Assume that f is continuous. First we consider the case where the absolute value

|·| is not trivial. The set f −1((V2, ‖·‖2)<1) is an open subset of V1 (see Notation 1.1.3).
Hence there exists ε > 0 such that f −1((V2, ‖·‖2)<1) ⊇ (V1, ‖·‖1)<ε . As the absolute
value |·| is not trivial, there exists a ∈ k such that 0 < |a| < 1. Let us see that
‖ f (x)‖2 6 (ε |a|)−1‖x‖1 for all x ∈ V1. If x ∈ N‖ · ‖1 , then the assertion is obvious by
(1), so that we may assume that x < N‖ · ‖1 . Then there exists a unique integer n such
that

‖anx‖1 < ε 6 ‖an−1x‖1 = |a|n−1 · ‖x‖1.

Thus ‖ f (anx)‖2 < 1 and hence

‖ f (x)‖2 < |a|−n 6 (ε |a|)−1 · ‖x‖1,

as desired.
Next we assume that the absolute value |·| is trivial and dimk(V2/N‖ · ‖2 ) < ∞. By

(2) in Corollary 1.1.6 there exist positive numbers r and δ such that ‖y‖ 6 r for any
y ∈ V2 and that (V2, ‖·‖2)<δ = N‖ · ‖2 . If f is continuous, then there exists ε > 0 such
that

f −1(N‖ · ‖2 ) = f −1((V2, ‖·‖2)<δ) ⊇ (V1, ‖·‖1)<ε .
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Therefore one has ‖ f (x)‖2 6 (r/ε)‖x‖1 for all x ∈ V1. �

Remark 1.1.8 The hypothesis of non-triviality of the absolute value or

dimk(V2/N‖ · ‖2 ) < ∞

for the sufficiency part of the above proposition is essential. In fact, if V is an infinite-
dimensional vector space over a trivially valued field k, equipped with the norm ‖·‖

such that ‖x‖ = 1 for any x ∈ V \ {0}, then the topology on V induced by the norm
‖·‖ is discrete. In particular, any k-linear map from V to a normed vector space over
k is continuous. However, one can take a basis B of the vector space V (which is an
infinite set) and define a new norm ‖·‖ ′ on V such that ∑

x∈B

nx x
′ = max

x∈B, nx,0
ϕ(x),

where ϕ : B → ]0,+∞[ is a map which is not bounded. If f is the identity map
from (V, ‖·‖) to (V, ‖·‖ ′), then one can not find a non-negative constant C such that
‖x‖ ′ 6 C‖x‖ for all x ∈ V .

1.1.2 Operator seminorm

Let (V1, ‖·‖1) and (V2, ‖·‖2) be seminormed vector spaces over k. Let f : V1 → V2 be
a k-linear map. We say that the linear map f is bounded if there is a non-negative
constant C such that ‖ f (x)‖2 6 C‖x‖1 for all x ∈ V1. Note that if f is bounded, then
f is continuous and f (N‖ · ‖1 ) ⊆ N‖ · ‖2 by Proposition 1.1.7.

If f (N‖ · ‖1 ) ⊆ N‖ · ‖2 , we denote by ‖ f ‖ the element

sup
x∈V1\N‖·‖1

‖ f (x)‖2
‖x‖1

∈ [0,+∞].

If the relation f (N‖ · ‖1 ) ⊆ N‖ · ‖2 does not hold, then by convention ‖ f ‖ is defined to
be +∞. With this notation, the linear map f is bounded if and only if ‖ f ‖ < +∞.

We denote by L (V1,V2) the set of all bounded k-linear maps from V1 to V2, which
forms a vector space over k since, for ( f ,g) ∈ L (V1,V2)

2 and x ∈ V1 \ N‖ · ‖1 ,

‖( f + g)(x)‖2
‖x‖1

6


max

{
‖ f (x)‖2
‖x‖1

,
‖g(x)‖2
‖x‖1

}
if ‖·‖2 is ultrametric,

‖ f (x)‖2
‖x‖1

+
‖g(x)‖2
‖x‖1

otherwise.

The map ‖·‖ : L (V1,V2) −→ [0,+∞[ defined above is a seminorm, called the
operator seminorm. Moreover, from the above formula, we observe that, if ‖·‖2 is
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ultrametric, then the operator seminorm is also ultrametric. If ‖·‖2 is a norm, then
the operator seminorm is actually a norm, called operator norm.

In the case where either the absolute value |·| is non-trivial or dimk(V2/N‖ · ‖2 ) < ∞,
the space L (V1,V2) identifies with the vector space of all continuous k-linear maps
from V1 to V2 (see Proposition 1.1.7).

1.1.3 Quotient seminorm

Let g : V → Q be a surjective linear map of vector spaces over k and ‖·‖ be a
seminorm on V . We define ‖·‖V�Q to be

∀ y ∈ Q, ‖y‖V�Q := inf{‖x‖ : x ∈ V, g(x) = y}.

Then we have the following proposition:

Proposition 1.1.9 (1) ‖·‖V�Q is a seminorm on Q. Moreover, if ‖·‖ is ultrametric,
then also is ‖·‖V�Q.

(2) Let N‖ · ‖V�Q
be the null space of ‖·‖V�Q. Then g−1(N‖ · ‖V�Q

) coincides with the
closure of Ker(g) with respect to the topology induced by the seminorm ‖·‖. In
particlar, if Ker(g) is closed, then ‖·‖V�Q is a norm on Q.

Proof (1) In order to see the condition (a) in Definition 1.1.1, we may assume that
a , 0 since otherwise the assertion is obvious. Then

‖ay‖V�Q = inf{‖x ′‖ : x ′ ∈ V, g(x ′) = ay} = inf{‖ax‖ : x ∈ V, g(x) = y}

= |a| inf{‖x‖ : x ∈ V, g(x) = y} = |a| · ‖y‖V�Q .

Fix (y, y′) ∈ Q2. For any ε > 0, we can find (x, x ′) ∈ V2 such that g(x) = y,
g(x ′) = y′, ‖x‖ 6 ‖y‖V�Q + ε and ‖x ′‖ 6 ‖y′‖V�Q + ε . Then g(x + x ′) = y + y′

and

‖y + y′‖V�Q 6 ‖x + x ′‖ 6 ‖x‖ + ‖x ′‖ 6 ‖y‖V�Q + ‖y′‖V�Q + 2ε,

and hence (b) holds. If ‖·‖ is ultrametric, in a similar way we can see that ‖·‖V�Q is
also ultrametric.

(2) Let x ∈ V and y = g(x). It is easy to see ‖y‖V�Q = dist(x,Ker(g)). Therefore

x ∈ Ker(g) ⇐⇒ dist(x,Ker(g)) = 0 ⇐⇒ ‖y‖V�Q = 0,

as required. �

Given a vector subspace W of a seminormed vector space (V, ‖·‖), the seminorm
‖·‖V�V/W on V/W is called the quotient seminorm on V/W of the seminorm ‖·‖

on V . For simplicity, the seminorm ‖·‖V�V/W is often denoted by ‖·‖V/W . If the
vector subspace W is closed, then the seminorm ‖·‖V/W is actually a norm, called
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the quotient norm of ‖·‖ by the quotient map V � V/W . Note that the norm ‖·‖∼

identifies with the quotient norm of ‖·‖ by the quotient map V � V/N‖ · ‖ .

Proposition 1.1.10 Let (V, ‖·‖) be a seminormed vector space over k and W be
a vector subspace of V . The topology on V/W defined by the quotient seminorm
coincides with the quotient topology. In particular, the quotient map V → V/W is
continuous if we equip V/W with the quotient seminorm.

Proof Recall that the quotient topology is the finest topology on V/W which makes
the quotient map π : V → V/W continuous. In other words, a subset U of V/W is
open for the quotient topology if and only if π−1(U) is an open subset of V . If we
equip V/W with the topology induced by the quotient seminorm, then the quotient
map is continuous since ‖π‖ 6 1 (see Proposition 1.1.7). Moreover, if U is a subset
of V/W such that π−1(U) is an open subset of V , then, for any u ∈ U and any x0 ∈ V
such that π(x0) = u, there exists ε > 0 such that

{x ∈ V : ‖x − x0‖ < ε} ⊆ π−1(U).

Hence for any v ∈ V/W with ‖v−u‖ < ε , there exists x ∈ π−1(U) such that π(x) = v.
So U is an open subset of V/W for the topology defined by the quotient seminorm.
The proposition is thus proved. �

1.1.4 Topology of normed vector spaces of finite dimension

If V is a finite-dimensional k-vector space, then all norms on V induce the same
topology. More precisely, we have the following result (see [30] Chapter I, §2, no.3,
Theorem 2 and the remark on the page I.15).

Proposition 1.1.11 Assume that the vector space V is of finite dimension over k. If
‖·‖ and ‖·‖ ′ are norms on V , then there are positive constants C and C ′ such that
C‖·‖ ′ 6 ‖·‖ 6 C ′‖·‖ ′ on V . In particular, V is complete with respect to ‖·‖.1

Proof Let {ei}ri=1 be a basis of V and f : kr → V be the isomorphism given by
f (a1, . . . ,ar ) = a1e1 + · · · + arer . Here we consider the product topology on kr and
the topology induced by any norm ‖·‖ on V . By Proposition 1.1.7, it is sufficient to
show that f is a homeomorphism. Since

‖a1e1 + · · · + arer ‖ 6 max{|a1 |, . . . , |ar |}
r∑
i=1

‖ei ‖,

1 That is, for any sequence {xn }n∈N in V , if

lim
N→+∞

sup
(n ,m)∈N2

n>N , m>N

‖xn − xm ‖ = 0,

then there exists x ∈ V such that limn→∞ ‖xn − x ‖ = 0.
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f is continuous. It remains to show that f −1 is continuous.
We reason by induction on the dimension r of V . The case where r = 0 is trivial.

In the case where r = 1, as |a|/‖ae1‖ = 1/‖e1‖ for any a ∈ k×, f −1 is continuous
by Proposition 1.1.7.

Assume that the proposition has been proved for vector spaces of dimension
< r . Let W be the vector subspace of V generated by e1, . . . , er−1. By the induction
hypothesis, the map g : kr−1 → W sending (a1, . . . ,ar−1) ∈ kr−1 to a1e1 + · · · +

ar−1er−1 is a homeomorphism. In particular, the topological vector space W is
complete. As a consequence, W is a closed vector subspace of V . By the dimension
1 case of the proposition proved above, the map f from k to V/W sending a ∈ k to
a[er ] is a homeomorphism.

In the following, we show that, if U is an open neighbourhood of (0, . . . ,0) ∈

kr , then there exists ε > 0 such that f (U) contains all vectors x ∈ V satisfying
‖x‖ < ε . Without loss of generality, we may assume that U is the open multidisc
Br
δ , where Bδ = {a ∈ k : |a| < δ} and δ > 0. Since the map g : kr−1 → W is a

homeomorphism, there exists ε1 > 0 such that

g(Br−1
δ ) ⊇ {y ∈ W : ‖y‖ < ε1}.

Let δ′ = min{ε1/(2‖er ‖), δ}. Since the map f is a homeomorphism, there exists
ε2 > 0 such that

f (Bδ′) ⊇ {u ∈ V/W : ‖u‖V/W < ε2},

where we consider the quotient norm on V/W . We claim that

f (U) ⊇ {x ∈ V : ‖x‖ < ε}

with ε = 1
2 min{ε1, ε2}. In fact, if x is an element of V such that ‖x‖ < ε , then its

class in V/W has norm < ε2. Hence there exists ar ∈ Bδ′ such that [x] = ar [er ].
Moreover, one has

‖x − arer ‖ 6 ‖x‖ + |ar | · ‖er ‖ <
1
2
ε1 + δ

′‖er ‖ 6 ε1.

Hence there exists (a1, . . . ,ar−1) ∈ Br−1
δ such that g(a1, . . . ,ar−1) = x − arer . Thus

(a1, . . . ,ar ) is an element in Br
δ such that f (a1, . . . ,ar ) = x. The proposition is

proved. �

Corollary 1.1.12 Let f : V1 → V2 be a linear map of vector spaces over k, and let
‖·‖1 and ‖·‖2 be seminorms on V1 and V2, respectively. We assume that f (N‖ · ‖1 ) ⊆

N‖ · ‖2 and dimk(V2/N‖ · ‖2 ) < ∞. Then the following conditions are equivalent:

(a) the map f is continuous;
(b) f −1(N‖ · ‖2 ) is a closed vector subspace of V;
(c) ‖ f ‖ is finite.

Proof “(a)=⇒(b)”: Since f −1(N‖ · ‖2 ) is the inverse image by f of the closed subset
N‖ · ‖2 of V2, if f is continuous, then it is a closed subset of V1.
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“(b)=⇒(c)”: The assertion is trivial when f (V1) ⊆ N‖ · ‖2 . In the following, we
assume that f (V1) * N‖ · ‖2 . We set

Q := f (V1)/( f (V1) ∩ N‖ · ‖2 ) � ( f (V1) + N‖ · ‖2 )/N‖ · ‖2 , {0}.

Let ‖·‖Q be the quotient seminorm on Q induced by V1 → f (V1) → Q and ‖·‖1.
By Proposition 1.1.9 and the condition (b), the seminorm ‖·‖Q is actually a norm.
Moreover, we can consider Q as a vector subspace of V2/N‖ · ‖2 . Let ‖·‖ ′Q be the
restriction of ‖·‖∼2 to Q, where ‖·‖∼2 is the norm associated with the seminorm ‖·‖2.
By Proposition 1.1.11, there is a constant C with ‖·‖ ′Q 6 C‖·‖Q. Thus, for any
x ∈ V1 \ N‖ · ‖1 , one has

‖ f (x)‖2
‖x‖1

=
‖[ f (x)]‖ ′Q

‖x‖1
6

C‖[ f (x)]‖Q
‖x‖1

6 C,

which implies ‖ f ‖ 6 C.
“(c)=⇒(a)” follows from Proposition 1.1.7. �

Corollary 1.1.13 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k. Then we have the following:

(1) Every vector subspace of V containing N‖ · ‖ is closed.
(2) Let (V ′, ‖·‖ ′) be a seminormed vector space over k and f : V → V ′ be a linear

map of vector spaces over k such that f (N‖ · ‖) ⊆ N‖ · ‖′ . Then f is continuous
and ‖ f ‖ < +∞.

(3) A linear form on V is bounded if and only if its kernel contains N‖ · ‖ .

Proof (1) Let π : V → V/N‖ · ‖ be the canonical projection map and ‖·‖∼ be the norm
on V/N‖ · ‖ associated with ‖·‖. By Proposition 1.1.10, the linear map π is continuous.
If W is a vector subspace of V containing N‖ · ‖ , then one has W = π−1(π(W)). By
Proposition 1.1.11, π(W) is complete with respect to the induced norm of ‖·‖∼ on
π(W), so that π(W) is closed. Hence W is also closed since it is the inverse image of
a closed subset of V/N‖ · ‖ by a continuous linear map.

(2) By replacing V ′ by f (V), we may assume that dimk(V ′) < ∞. Thus the
assertion follows from (1) and Corollary 1.1.12.

(3) Let f : V → k be a linear form. If f is bounded, by Corollary 1.1.12, the kernel
of f is a closed vector subspace of V , hence it contains the closure of {0}, which is
N‖ · ‖ . Conversely, if Ker( f ) ⊇ N‖ · ‖ , then by (2), the linear form f is bounded. �

Proposition 1.1.14 (1) Let V
α

−→ W
β

−→ Q be a sequence of surjective linear maps
of finite-dimensional vector spaces over k. For any seminorm ‖·‖ on V , one has
‖·‖V�W ,W�Q = ‖·‖V�Q.

(2) Let

V
f //

α
����

W

β
����

V ′
g
// W ′
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be a commutative diagram of linear maps of finite-dimensional vector spaces
over k such that α and β are surjective. Then we have the following:

(2.a) Let ‖·‖V and ‖·‖W be seminorms on V and W; let ‖·‖V ′ and ‖·‖W ′ be
the quotient seminorms of ‖·‖V and ‖·‖W on V ′ and W ′, respectively. If
f (N‖ · ‖V ) ⊆ N‖ · ‖W , then g(N‖ · ‖V ′ ) ⊆ N‖ · ‖W ′ and ‖g‖ 6 ‖ f ‖.

(2.b) We assume that f and g are injective. Let ‖·‖W be a seminorm on W . Then
‖·‖W ,V ↪→W ,V�V ′ > ‖·‖W ,W�W ′,V ′↪→W ′ . Moreover, if Ker(β) ⊆ f (V), then
the equality ‖·‖W ,V ↪→W ,V�V ′ = ‖·‖W ,W�W ′,V ′↪→W ′ holds.

Proof (1) For q ∈ Q, one has

‖q‖V�W ,W�Q = inf
y∈W , β(y)=q

‖y‖V�W = inf
y∈W
β(y)=q

inf
x∈V
α(x)=y

‖x‖V

= inf
x∈V , β(α(x))=q

‖x‖V = ‖q‖V�Q,

as desired.
(2.a) By Proposition 1.1.9, α−1(N‖ · ‖V ′ ) is the closure of Ker(α) in V , hence is

equal to Ker(α)+ N‖ · ‖V . Let y′ be an element in N‖ · ‖V ′ . There then exists y ∈ N‖ · ‖V

such that α(y) = y′. Therefore

g(y′) = g(α(y)) = β( f (y)) ∈ N‖ · ‖W ′

since f (y) ∈ N‖ · ‖W .
It remains to prove that ‖g‖ 6 ‖ f ‖. Let x ′ be an element of V ′. For any x ∈ V

with α(x) = x ′, one has

‖g(x ′)‖W ′ = ‖g(α(x))‖W ′ = ‖β( f (x))‖W ′ 6 ‖ f (x)‖W 6 ‖ f ‖ · ‖x‖V ,

which leads to

‖g(x ′)‖W ′ 6 ‖ f ‖ inf
x∈V , α(x)=x′

‖x‖V = ‖ f ‖ · ‖x ′‖V ′ .

(2.b) Note that f (Ker(α)) = f (V) ∩ Ker(β). Therefore, for v ∈ V ,

‖α(v)‖W ,V ↪→W ,V�V ′ = inf{‖x‖W : x ∈ f (v) + ( f (V) ∩ Ker(β))}

and

‖α(v)‖W ,W�W ′,V ′↪→W ′ = inf{‖x‖W : x ∈ f (v) + Ker(β)},

so that the first assertion follows. Moreover, if Ker(β) ⊆ f (V), then f (V) ∩Ker(β) =
Ker(β). Thus the second assertion holds. �

Proposition 1.1.15 (1) Let f : V → W be a surjective linear map of vector spaces
over k, ‖·‖V be a seminorm on V and ‖·‖W be the quotient seminorm of ‖·‖V on
W . If the seminorm ‖·‖W does not vanish, then ‖ f ‖ = 1.
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(2) Let

V
f1 //

f2   @
@@

@@
@@

@ W1

g

��
W2

be a commutative digram of linear maps of finite-dimensional vector spaces over
k such that g is an isomorphism and dimk(W1) = dimk(W2) = 1. Let ‖·‖V , ‖·‖W1

and ‖·‖W2 be seminorms of V , W1 and W2, respectively. Then ‖ f2‖ = ‖ f1‖ · ‖g‖
provided that f1, f2 and g are continuous.

Proof (1) Since ‖v‖V > ‖ f (v)‖W for any v ∈ V , one has ‖ f ‖ 6 1. Let w be an
element of W such that ‖w‖W > 0. Since

‖w‖W = inf
v∈V , f (v)=w

‖v‖V ,

one has
1 = inf

v∈V , f (v)=w

‖v‖V

‖ f (v)‖W
> ‖ f ‖−1,

which leads to ‖ f ‖ > 1.
(2) As g is an isomorphism and dimk(W1) = dimk(W2) = 1, for any w1 ∈ W1,

‖g‖ · ‖w1‖W1 = ‖g(w1)‖W2 , Therefore,

‖ f2‖ = sup
v∈V\N‖·‖V

‖ f2(v)‖W2

‖v‖V
= sup

v∈V\N‖·‖V

‖g( f1(v))‖W2

‖v‖V

= sup
v∈V\N‖·‖V

‖g‖
‖ f1(v)‖W1

‖v‖V
= ‖g‖ · ‖ f1‖,

as required. �

Proposition 1.1.16 Let (V, ‖·‖V ) be a finite-dimensional seminormed vector space
over k, W be a vector subspace of V and Q be the quotient vector space V/W .
We denote by i : W → V and π : V → Q the inclusion map and the projection
map, respectively. Let ‖·‖W be the restriction of ‖·‖V to W and ‖·‖Q be the quotient
seminorm of ‖·‖V on Q. Then one has i(N‖ · ‖W ) ⊆ N‖ · ‖V and π(N‖ · ‖V ) ⊆ N‖ · ‖Q .
Moreover, the linear maps i and π induce short exact sequences

0 // N‖ · ‖W
// N‖ · ‖V

// N‖ · ‖Q
// 0 (1.2)

and
0 // W/N‖ · ‖W

// V/N‖ · ‖V
// Q/N‖ · ‖Q

// 0 , (1.3)

and the induced norm (resp. quotient norm) of ‖·‖∼V on W/N‖ · ‖W (resp. Q/N‖ · ‖Q )
identifies with ‖·‖∼W (resp. ‖·‖∼Q).
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Proof The relations i(N‖ · ‖W ) ⊆ N‖ · ‖V and π(N‖ · ‖V ) ⊆ N‖ · ‖Q follow directly from
the definition of induced and quotient seminorms. Moreover, by definition one has
N‖ · ‖W = N‖ · ‖V ∩ W .

For any element x ∈ V , π(x) lies in N‖ · ‖Q if and only if x ∈ W + N‖ · ‖V since
W + N‖ · ‖V is the closure of W in V . Therefore one has

N‖ · ‖Q � (W + N‖ · ‖V )/W � N‖ · ‖V /(W ∩ N‖ · ‖V ) = N‖ · ‖V /N‖ · ‖W ,

which proves that (1.2) is an exact sequence. The exactness of (1.2) implies that of
(1.3). Moreover, if x is an element of W , then

‖[x]‖∼W = ‖x‖W = ‖x‖V = ‖[x]‖∼V .

If u is an element in Q, then

‖[u]‖∼Q = ‖u‖Q = inf
y∈V , π(y)=u

‖y‖V = inf
v∈V/N‖·‖V

, π̃(v)=[u]
‖v‖∼V ,

where π̃ : V/N‖ · ‖V → Q/N‖ · ‖Q is the linear map induced by π. Hence ‖·‖∼Q identifies
with the quotient norm of ‖·‖∼V . �

1.1.5 Dual norm

Let (V, ‖·‖) be a seminormed vector space over k. We denote by V∗ the vector space
L (V, k) (where we consider |·| as a norm on k) of bounded k-linear forms on V
(which necessarily vanish on N‖ · ‖), called the dual normed vector space of V . The
operator norm on V∗ is called the dual norm of ‖·‖, denoted by ‖·‖∗. Note that in
general V∗ is different from the (algebraic) dual vector space V∨ := Homk(V, k).
One has

V∗ ⊆ (V/N‖ · ‖)
∨ = {ϕ ∈ V∨ : ϕ|N‖·‖

= 0}.

Proposition 1.1.17 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k. Then the map (V/N‖ · ‖)

∨ → V∨ sending ϕ ∈ (V/N‖ · ‖)
∨ to its composition

with the projection map V → V/N‖ · ‖ defines an isomorphism between (V/N‖ · ‖)
∨

and V∗. In particular, the equality V∗ = V∨ holds when ‖·‖ is a norm.

Proof By Corollary 1.1.13, a linear form on V is bounded if and only if its kernel
contains N‖ · ‖ . Therefore V∗ is canonically isomorphic to (V/N‖ · ‖)

∨. �

If x is an element of V , for any α ∈ V∗ one has

|α(x)| 6 ‖α‖∗ · ‖x‖. (1.4)

Therefore the linear form on V∗ sending α ∈ V∗ to α(x) ∈ k is bounded. Hence one
obtains a k-linear map from V to the double dual space V∗∗ whose kernel contains
N‖ · ‖ . It is called the canonical linear map from V to V∗∗. The double dual norm
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‖·‖∗∗ on V∗∗ induces by composition with the canonical k-linear map V → V∗∗ a
seminorm on V which we still denote by ‖·‖∗∗ by abuse of notation. Moreover, by
(1.4) we obtain

∀ x ∈ V, ‖x‖∗∗ 6 ‖x‖. (1.5)

We say that (V, ‖·‖) is reflexive if the k-linear map V → V∗∗ described above induces
an isometric k-linear isomorphism between the normed vector spaces (V/N‖ · ‖, ‖·‖

∼)

and (V∗∗, ‖·‖∗∗).
The following proposition shows that, in the Archimedean case, the seminorm

‖·‖∗∗ on V identifies with ‖·‖. In particular, a finite-dimensional seminormed vector
space over an Archimedean complete field is always reflexive. We will see further
in Corollary 1.2.12 that any finite-dimensional ultrametrically seminormed vector
space over k is also reflexive.

Proposition 1.1.18 Assume that the absolute value |·| is Archimedean. Let (V, ‖·‖)
be a seminormed vector space over k. For any x ∈ V one has ‖x‖ = ‖x‖∗∗.

Proof This is a direct consequence of Hahn-Banach theorem. In fact, if x is a vector in
V \N‖ · ‖ , then by Hahn-Banach theorem there exists a k-linear form f̃ : V/N‖ · ‖ → k
such that f̃ (π(x)) = ‖π(x)‖∼ and that | f̃ (π(y))| 6 ‖π(y)‖∼ for any y ∈ V , where
π : V → V/N‖ · ‖ is the canonical linear map. If we set f = f̃ ◦ π, then f (x) = ‖x‖
and | f (y)| 6 ‖y‖ for any y ∈ V . In particular, ‖ f ‖∗ = 1. Hence

‖x‖∗∗ >
| f (x)|
‖ f ‖∗

= ‖x‖.

Remark 1.1.19 The above proposition is not true when the absolute value |·| is
non-Archimedean. Let (V, ‖·‖) be a normed vector space over k. If the absolute
value |·| is non-Archimedean, then the dual norm ‖·‖∗ is necessarily ultrametric (cf.
Subsection 1.1.2). For the same reason, the double dual norm ‖·‖∗∗ is ultrametric,
and hence cannot identify with ‖·‖ on V once the norm ‖·‖ is not ultrametric. In
the next section, we will establish the analogue of the above proposition in the case
where V is of finite dimension over k and ‖·‖ is ultrametric (see Corollary 1.2.12).
We refer to [50] and [89] for more general results on non-Archimedean Hahn-Banach
theorem.

Proposition 1.1.20 Let (V, ‖·‖V ) be a seminormed vector space over k, W be a
vector subspace of V and Q = V/W be the quotient space. Let ‖·‖Q be the quotient
seminorm on Q induced by ‖·‖V . Then the map Q∗ → V∗ sending ϕ ∈ Q∗ to the
composition of ϕ with the projection map V → Q is an isometry from Q∗ to its image
(equipped with the induced norm), where we consider the dual norms ‖·‖Q,∗ and
‖·‖V ,∗ on Q∗ and V∗, respectively.

Proof Note that ‖v‖−1
Q = sup

x∈V , [x]=v

‖x‖−1
V for v ∈ Q \ N‖ · ‖Q . Thus, for ϕ ∈ Q∗,

‖ϕ‖Q,∗ = sup
v∈Q\N‖·‖Q

|ϕ(v)|

‖v‖Q
= sup

x∈V\N‖·‖V

|ϕ([x])|
‖x‖V

,
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as required. �

Remark 1.1.21 The dual statement of the above proposition for the dual of a re-
stricted seminorm is much more subtle. Let (V, ‖·‖V ) be a seminormed vector space
over k and W be a vector subspace of V . We denote by ‖·‖W the restriction of the
seminorm ‖·‖V to W . Then the restriction to W of bounded linear forms on V defines
a k-linear map π from V∗ to W∗. We are interested in the nature of the dual norm
‖·‖W ,∗. In the case where k is Archimedean, the k-linear map π : V∗ → W∗ is
surjective and the norm ‖·‖W ,∗ identifies with the quotient norm of ‖·‖V ,∗. This is a
direct consequence of Hahn-Banach theorem which asserts that any bounded linear
form on W extends to V with the same operator norm (see Lemma 1.2.48 for more
details). However, the non-Archimedean analogue of this result is not true, even in the
case where V is finite-dimensional. In fact, assume that (k, |·|) is non-Archimedean
and V is a finite-dimensional vector space of dimension > 2 over k, equipped with a
norm ‖·‖ which is not ultrametric. Then the double dual norm ‖·‖∗∗ on V is bounded
from above by ‖·‖ (see (1.5)), and there exists at least an element x ∈ V such that
‖x‖∗∗ < ‖x‖ since ‖·‖∗∗ is ultrametric but ‖·‖ is not. However, both norms ‖·‖∗∗
and ‖·‖ induce the same dual norm on V∨ (see Proposition 1.2.14). Therefore the
quotient norm of ‖·‖∗ on (k x)∨ can not identify with the dual norm of the restriction
of ‖·‖ to k x. We will show in Proposition 1.2.35 that the non-Archimedean analogue
of the above statement is true when the norm on V is ultrametric.

1.1.6 Seminorm of the dual operator

Let (V1, ‖·‖1) and (V2, ‖·‖2) be seminormed vector spaces over k, and f : V1 → V2
be a bounded linear map. Note that f (N‖ · ‖1 ) ⊆ N‖ · ‖2 by Proposition 1.1.7. For any
α ∈ V∗

2 , we let f ∗(α) be the linear form on V1 which sends x ∈ V1 to α( f (x)). Note
that for x ∈ V1 one has

| f ∗(α)(x)| = |α( f (x))| 6 ‖α‖2,∗ · ‖ f (x)‖2 6 ‖α‖2,∗ · ‖ f ‖ · ‖x‖1. (1.6)

Therefore f ∗(α) is a bounded linear form on V1. Thus f ∗ defines a linear map from
V∗

2 to V∗
1 .

Proposition 1.1.22 Let (V1, ‖·‖1) and (V2, ‖·‖2) be seminormed vector spaces over k
and f : V1 → V2 be a bounded linear map. Then one has ‖ f ∗‖ 6 ‖ f ‖. The equality
holds when ‖·‖2 = ‖·‖2,∗∗ on V2.

Proof By (1.6) we obtain that, if α is an element of V∗
2 , then one has

‖ f ∗(α)‖1,∗ 6 ‖ f ‖ · ‖α‖2,∗.

Hence ‖ f ∗‖ 6 ‖ f ‖. If we apply this inequality to f ∗, we obtain ‖ f ∗∗‖ 6 ‖ f ∗‖ 6 ‖ f ‖.
Let ι1 : V1 → V∗∗

1 and ι2 : V2 → V∗∗
2 be the canonical linear maps. For any vector x

in V1, one has f ∗∗(ι1(x)) = ι2( f (x)). Moreover, if ‖·‖2 = ‖·‖2,∗∗ on V2, then



1.1 Norms and seminorms 15

‖ f ∗∗‖ > sup
x∈V1 , ‖x ‖1,∗∗>0

‖ f ∗∗(ι1(x))‖2,∗∗

‖x‖1,∗∗
> sup

x∈V1 , ‖x ‖1>0

‖ f (x)‖2
‖x‖1

= ‖ f ‖,

as required. �

1.1.7 Lattices and norms

In this subsection, we assume that the absolute value |·| is non-Archimedean. Let
ok := {a ∈ k : |a| 6 1} be the closed unit ball of (k, |·|). It is a valuation ring,
namely for any a ∈ k \ ok one has a−1 ∈ ok (see [27] Chapter IV, §1, no.2). It
is a discrete valuation ring (namely a Noetherian valuation ring) if and only if the
absolute value |·| is discrete, namely the image of k× by |·| is a discrete subgroup of
(R>0,×) (see [27] Chapter IV, §3, no.6). In this case, ok is a principal ideal domain. In
particular, its maximal ideal {a ∈ k : |a| < 1} is generated by one element$, called
a uniformizing parameter of k. Note that, if the absolute value |·| is not discrete, then
|k× | is a dense subgroup of (R>0,×). This results from the facts that a subgroup of
(R,+) is either discrete or dense (cf. [32] Chapter V, §1, no.1 and §4, no.1) and that
the exponential function defines an isomorphism between the topological groups
(R,+) and (R>0,×).

Definition 1.1.23 Let V be a finite-dimensional vector space over k. A sub-ok-
module V of V is called a lattice of V if V generates V as a vector space over k
(i.e. the natural linear map V ⊗ok k → V is surjective) and V is bounded in V for
a certain norm on V (or equivalently for any norm on V , see Proposition 1.1.11). In
particular, if V is a sub-ok-module of finite type of V , which generates V as a vector
space over k, then it is a lattice in V . In this case, V is called a finitely generated
lattice of V . If V is a lattice of V , we define a function ‖·‖V on V as follows:2

∀ x ∈ V \ {0}, ‖x‖V := inf{|a| : a ∈ k×, a−1x ∈ V}, and ‖0‖V := 0.

Clearly, if V and V ′ are lattices of V such that V ⊆ V ′, then one has ‖·‖V > ‖·‖V′ .
Note that, if the absolute value |·| is trivial, then ok = k and the only lattice of V is
V itself.

Proposition 1.1.24 Let V be a finite-dimensional vector space over k, V be a lattice
of V and ‖·‖ be a norm on V . Assume that V is contained in the unit ball of (V, ‖·‖),
then one has ‖·‖V > ‖·‖.

Proof Let x ∈ V \ {0} and a be an element of k× such that a−1x ∈ V. One has

‖a−1x‖ = |a|−1 · ‖x‖ 6 1

2 Note that, in the case where | · | is not the trivial absolute value, one has

inf { |a | : a ∈ k×, a−10 ∈ V} = 0.

However, this equality does not hold when | · | is trivial.
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sinceV is contained in the unit ball of (V, ‖·‖). Therefore ‖x‖ 6 |a|. Thus we deduce
that

‖x‖ 6 inf{|a| : a ∈ k×, a−1x ∈ V} = ‖x‖V .

In the case where the absolute value |·| is non-trivial, the balls in an ultrametrically
normed vector space are natural examples of lattices.

Proposition 1.1.25 Assume that the absolute value |·| is non-trivial. Let V be a finite-
dimensional vector space over k, equipped with an ultrametric norm ‖·‖. For any
ε > 0 the balls V6ε = {x ∈ V : ‖x‖ 6 ε} and V<ε = {x ∈ V : ‖x‖ < ε} are both
lattices of V .

Proof Since the norm ‖·‖ is ultrametric, both ballsV6ε andV<ε are stable by addition.
Clearly they are also stable by the multiplication by an element in ok . Therefore they
are sub-ok-modules of V . Moreover, by definition they are bounded subsets of V . It
remains to verify that they generate V as a vector space over k. It suffices to treat
the open ball case. Let {ei}ri=1 be a basis of V over k. Since the absolute value |·| is
non-trivial, there exists a non-zero element a ∈ k such that |a| < 1. For sufficiently
large integer n ∈ N>0, one has ‖anei ‖ < ε for any i ∈ {1, . . . ,r}. Hence V<ε contains
a basis of the vector space V . �

The following proposition shows that each lattice defines a norm on the underlying
vector space.

Proposition 1.1.26 Let V be a finite-dimensional vector space over k and V be a
lattice of V . The map ‖·‖V is an ultrametric norm on V . Moreover, V is contained
in the unit ball of (V, ‖·‖V).

Proof In the case where the absolute value |·| is trivial, one has V = V and the
function ‖·‖V takes value 1 on V \ {0} and vanishes on {0}. The result is clearly
true in this case. In the following, we assume that |·| is non-trivial. For any x ∈ V ,
let Ax be the set of all a ∈ k× such that a−1x ∈ V. We claim that Ax is non-empty
and hence ‖x‖V is finite. Let {ei}ri=1 be a subset of V which forms a basis of V over
k. We write x in the form x = a1e1 + · · · + arer with (a1, . . . ,ar ) ∈ kr . Since k is
the fraction field of ok , there exists b ∈ k× such that ba1, . . . , bar are all in ok . Thus
bx ∈ V and hence b−1 ∈ Ax . Therefore ‖·‖V is a map from V to R>0.

Let x be an element of V and a ∈ k×. The map b 7→ ab defines a bijection between
Ax and Aax . Hence one has ‖ax‖V = |a| · ‖x‖V .

Let x and y be elements of V , a ∈ Ax and b ∈ Ay . One has {a−1x, b−1y} ⊆ V.
Note that

a−1(x + y) = a−1x + a−1y = a−1x + (a−1b)(b−1y),

b−1(x + y) = b−1x + b−1y = (b−1a)(a−1x) + b−1y.

Since ok is a valuation ring, either b−1a ∈ ok , or a−1b ∈ ok . Hence, either a ∈ Ax+y

or b ∈ Ax+y . Therefore ‖x + y‖V 6 max{‖x‖V, ‖y‖V }.
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It remains to verify that, if ‖x‖V = 0 then x = 0. Assume that there exists a
non-zero element x ∈ V such that ‖x‖V = 0. Then there exists a sequence {an}n∈N
in Ax such that limn→+∞ |an | = 0. However, one has a−1

n x ∈ V for any n ∈ N. This
contradicts the assumption that V is bounded.

If x is an element in V, then 1 belongs to Ax . Hence ‖x‖V 6 1. �

Definition 1.1.27 Let V be a finite-dimensional vector space over k and V be a
lattice of V . We call ‖·‖V the norm on V induced by the lattice V.

Proposition 1.1.28 Let V be a finite-dimensional vector space over k and r be its
dimension over k. Let V be a lattice of V . Assume that V is an ok-module of finite
type. Then it is a free ok-module of rank r .

Proof Since V is a sub-ok-module of V , it is torsion-free. By [27] Chapter VI, §4,
no.6, Lemma 1, any torsion-free module of finite type over a valuation ring is free.
Hence V is a free ok-module. Finally, since V generates V as a vector space over k,
any basis of V over ok is also a basis of V over k. Hence the rank of V over ok is r .�

Definition 1.1.29 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k. We define the default of purity of ‖·‖ as

dpur(‖·‖) := sup
x∈V\N‖·‖

dist(ln‖x‖, ln |k× |),

with
dist(ln‖x‖, ln |k× |) := inf{| ln‖x‖ − ln |a| | : a ∈ k×}.

We say that the seminorm ‖·‖ is pure if dpur(‖·‖) = 0, or equivalently, the image
of V \ N‖ · ‖ by ‖·‖ is contained in the closure of |k× | in R>0. By definition, if the
absolute value |·| is not discrete, then any seminorm on V is pure; if |·| is discrete,
then a seminorm ‖·‖ on V is pure if and only if its image is contained in that of |·|.
In the case where |·| is discrete, Moreover, for any lattice V of V , the norm ‖·‖V is
pure.

In the following, we study the correspondance between ultrametric norms and
lattices of a finite-dimensional vector space over k. Note that the behaviour depends
much on the discreteness of the absolute value |·|.

Proposition 1.1.30 Assume that the absolute value |·| is discrete.

(1) For any lattice V of V , one has (V, ‖·‖V)61 = V (see Notation 1.1.3).
(2) Any lattice V of V is a free ok-module of rank dimk(V).
(3) Assume in addition that the absolute value |·| is non-trivial. Let ‖·‖ be an

ultrametric norm on V and let V = (V, ‖·‖)61. Then one has ‖·‖ 6 ‖·‖V 6
|$ |−1‖·‖, where $ is a uniformizing parameter of k. In particular, the default
of purity of ‖·‖ is bounded from above by − ln |$ |. Moreover, if the norm ‖·‖ is
pure, then ‖·‖V = ‖·‖.
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Proof (1) By Proposition 1.1.26, one has V ⊆ (V, ‖·‖V)61. Let x be an element of
V such that ‖x‖V 6 1. In order to see that x ∈ V, we may assume that x , 0. There
is a sequence {αn}n∈N in k× such that α−1

n x ∈ V and limn→∞ |αn | = ‖x‖V . As |·| is
discrete, there is n ∈ N such that |αn | = ‖x‖V , so that αn ∈ ok because ‖x‖V 6 1.
Therefore, x ∈ αnV ⊆ V, and hence (V, ‖·‖V)61 ⊆ V.

(2) Let {ei}ri=1 be a basis of V over k. We equip V with the norm ‖·‖ such that

‖λ1e1 + · · · + λrer ‖ = max{|λ1 |, . . . , |λr |}

for any (λ1, . . . , λr ) ∈ kr . For any ε > 0, the ball

(V, ‖·‖)6ε = {a ∈ k : |a| 6 ε}r

is a free ok-module of rank r since ok is a principal ideal domain. Let V be a lattice.
Since it is bounded, it is contained in certain ball (V, ‖·‖)6ε . Thus V is an ok-module
of finite type, and hence a free ok-module of rank r by Proposition 1.1.28.

(3) By the definition of the uniformizing element, one has |k× | = {|$ |n : n ∈ Z}.
If x is a non-zero element in V and if Ax is the set of all a ∈ k× such that

‖a−1x‖ = |a|−1 · ‖x‖ 6 1,

then one has
{|a| : a ∈ Ax} = {|$ |n : n ∈ Z, |$ |n > ‖x‖}.

Since ‖x‖V = inf{|a| : a ∈ Ax}, one has ‖x‖V > ‖x‖ > |$ | · ‖x‖V . Combined
with the fact that the norm ‖·‖V is pure, this implies the inequality dpur(‖·‖) 6
− ln |$ |. If in addition the norm ‖·‖ is pure, ‖x‖V belongs to {|$ |n : n ∈ Z}.
Hence ‖x‖V = ‖x‖. �

Remark 1.1.31 Let V be a finite-dimensional vector space over k. We denote by
Lat(V) the set of all lattices of V , and by Nor(V) that of all ultrametric norms on V .
The correspondance (V ∈ Lat(V)) 7→ ‖·‖V defines a map from Lat(V) to Nor(V).
Proposition 1.1.30 shows that, if the absolute value |·| is discrete, then this map is
injective, and its image is precisely the set of all pure ultrametric norms.

Proposition 1.1.32 Assume that the absolute value |·| is not discrete.

(1) For any lattice V of V one has (V, ‖·‖V)<1 ⊆ V ⊆ (V, ‖·‖V)61. If in addition
there exists an ultrametric norm ‖·‖ on V such that V = (V, ‖·‖)61, then one
has V = (V, ‖·‖V)61.

(2) Let ‖·‖ be an ultrametric norm on V and V = (V, ‖·‖)61. Then ‖·‖ = ‖·‖V .

Proof (1) If x is an element of V, by the relation 1x = x ∈ V we obtain that
‖x‖V 6 1. Hence V ⊆ (V, ‖·‖V)61. In the following, we prove the inclusion relation
(V, ‖·‖V)<1 ⊆ V. Let x be an element in V such that ‖x‖V < 1. By definition there
exists a ∈ k×, |a| < 1, such that a−1x ∈ V. Since |a| < 1 one has a ∈ ok . Therefore
x = a(a−1x) ∈ V.

The second assertion of (1) is a direct consequence of (2). In the following, we
prove the statement (2). Let x be an element of V and
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Ax = {a ∈ k× : a−1x ∈ V} = {a ∈ k× : ‖x‖ 6 |a|}.

Since the image of |·| is dense in R+, one has ‖x‖V = inf{|a| : a ∈ Ax} = ‖x‖.
Hence ‖·‖V = ‖·‖. �

Remark 1.1.33 Let V be a finite-dimensional vector space over k. Proposition 1.1.32
shows that, if the absolute value |·| is not discrete, the map Lat(V) → Nor(V), sending
any lattice V of V to the norm ‖·‖V , is surjective (compare with Remark 1.1.31).

Proposition 1.1.34 Let V be a finite-dimensional vector space over k and V be a
lattice of V . Let V∨ = Homok (V,ok) be the dual ok-module of V. Then one has
‖·‖V ,∗ = ‖·‖V∨ on V∨.

Proof Let f be a non-zero element of V∨. Assume that a is an element of k× such
that a−1 f ∈ V∨. Then for any x ∈ V and any b ∈ k× such that b−1x ∈ V one has
a−1 f (b−1x) = (ab)−1 f (x) ∈ ok and hence |b| > | f (x)|/|a|. Since b is arbitrary one
has ‖x‖V > | f (x)|/|a| for any x ∈ V and hence |a| > ‖ f ‖V ,∗. Since a is arbitrary
we obtain ‖ f ‖V∨ > ‖ f ‖V ,∗.

Conversely, suppose that the operator norm of a non-zero linear form f : V → k
is bounded from above by 1, where we consider the norm ‖·‖V on V . Then for any
x ∈ V one has | f (x)| 6 ‖x‖V 6 1 and hence f (x) ∈ ok . This shows that f ∈ V∨

and hence ‖ f ‖V∨ 6 1. Therefore the unit ball of ‖·‖V∨ contains that of ‖·‖V ,∗.
Moreover, since the norm ‖·‖V is pure, also is its dual norm ‖·‖V ,∗. Therefore, the
norm ‖·‖V ,∗ coincides with the norm induced by its unit ball (see Propositions 1.1.30
and 1.1.32). Therefore, ‖·‖V∨ 6 ‖·‖V ,∗. The proposition is thus proved. �

1.1.8 Trivial valuation case

In this subsection, we study ultrametrically normed vector spaces over a trivially
valued field. We fix a field k equipped with the trivial absolute value |·|. If V is a
vector space over k, we denote byΘ(V) the set of all non-zero vector subspaces of V .
The set Θ(V) is equipped with the partial order of inclusion. If ‖·‖ is an ultrametric
norm on V , we denote byΨ(V, ‖·‖) the set of closed balls of V (centered at the origin)
which do not reduce to one point, namely (see Notation 1.1.3)

Ψ(V, ‖·‖) =
{
(V, ‖·‖)6r : r > 0, (V, ‖·‖)6r , {0}

}
.

Proposition 1.1.35 Let V be a finite-dimensional vector space equipped with an
ultrametric norm ‖·‖. The set Ψ(V, ‖·‖) is a totally ordered subset of Θ(V), whose
cardinal does not exceed the dimension of V over k.

Proof By definition the set Ψ(V, ‖·‖) is totally ordered with respect to the partial
order of inclusion. In the following, we show that any element W ∈ Ψ(V, ‖·‖) is
a vector subspace of V and hence belongs to Θ(V). Assume that W = (V, ‖·‖)6r
with r > 0. Since the absolute value on k is trivial, for any x ∈ W and any a ∈ k
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one has ‖ax‖ 6 ‖x‖ 6 r . Moreover, since the norm ‖·‖ is ultrametric, W is stable
by addition. Hence Ψ(V, ‖·‖) is a totally ordered subset of Θ(V). In particular, the
function dimk(·) : Ψ(V, ‖·‖) → N>1 is injective, which is bounded from above by
dimk(V). Therefore the cardinal of Ψ(V, ‖·‖) does not exceed dimk(V). �

The above proposition shows that the set Ψ(V, ‖·‖) actually forms an increasing
flag of non-zero vector subspaces of V . For any W ∈ Ψ(V, ‖·‖), let

ϕ‖ · ‖(W) := sup{t ∈ R : W ⊆ (V, ‖·‖)6e−t }.

Then ϕ‖ · ‖ is a strictly decreasing function onΨ(V, ‖·‖) in the sense that, if W1 and W2
are two elements ofΨ(V, ‖·‖) such that W1 ( W2, then one has ϕ‖ · ‖(W1) > ϕ‖ · ‖(W2).
The following proposition shows that the norm ‖·‖ is completely determined by the
increasing flag Ψ(V, ‖·‖) and the function ϕ‖ · ‖ .

Proposition 1.1.36 LetΨ be a totally ordered subset ofΘ(V) and ϕ : (Ψ,⊇) → (R,6)
be a function which preserves strictly the orders, that is, for any (W1,W2) ∈ Ψ

2 with
W1 ( W2, one has ϕ(W1) > ϕ(W2). Then there exists a unique ultrametric norm ‖·‖

on V such that Ψ(V, ‖·‖) = Ψ and ϕ‖ · ‖ = ϕ.

Proof We writeΨ in the form of an increasing flag V1 ( . . . ( Vn. For i ∈ {1, . . . ,n},
let ai = ϕ(Vi). Since ϕ preserves strictly the orders, one has a1 > . . . > an.
Let e = {ej}mj=1 be a basis of V which is compatible with the flag Ψ (namely
card(e ∩ Vi) = rkk(Vi) for any i ∈ {1, . . . ,n}). For any j ∈ {1, . . . ,m}, there exists a
unique i ∈ {1, . . . ,n} such that ej ∈ Vi \ Vi−1 (where V0 = {0} by convention) and
we let rj = e−ai . Let ‖·‖ be the ultrametric norm on V defined as

∀ (λ1, . . . , λm) ∈ km, ‖λ1e1 + · · · + λmem‖ = max
j∈{1,...,m}

λ j,0

rj .

Note that for r > 0 the ball (V, ‖·‖)6r identifies with the vector subspace generated by
those ej with rj 6 r . Hence one has Ψ(V, ‖·‖) = Ψ. Moreover, for any i ∈ {1, . . . ,n}
one has

ϕ‖ · ‖(Vi) = sup{t ∈ R : Vi ⊆ (V, ‖·‖)6e−t } = ai = ϕ(Vi).

Let ‖·‖ ′ be another ultrametric norm on V verifying the relations Ψ(V, ‖·‖ ′) = Ψ
and ϕ‖ · ‖′ = ϕ. For any r > 0, (V, ‖·‖ ′)6r = Vi if and only if r ∈ [e−ai ,e−ai+1 [, with
the convention a0 = +∞ and an+1 = −∞. Therefore one has (V, ‖·‖)6r = (V, ‖·‖ ′)6r
for any r > 0, which leads to ‖·‖ = ‖·‖ ′. �

Definition 1.1.37 Let V be a finite-dimensional vector space over k. A family F =

{F t (V)}t∈R of vector subspaces of V parametrised by R is called an R-filtration of
V if it is separated (F t (V) = {0} for sufficiently positive t), exhaustive (F t (V) = V
for sufficiently negative t) and left-continuous (the function (t ∈ R) → dimk(F

t (V))

is left-continuous).

Definition 1.1.38 Let V be a finite-dimensional vector space over k and F be an
R-filtration on V . Let r be the dimension of V over k. We define a map ZF :
{1, . . . ,r} → R as follows:
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∀ i ∈ {1, . . . ,r}, ZF(i) := sup{t ∈ R : dimk(F
t (V)) > i}.

By definition, for any t ∈ R and any i ∈ {1, . . . ,r} one has

ZF(i) > t ⇐⇒ dimk(F
t (V)) > i. (1.7)

Proposition 1.1.39 Let V be a finite-dimensional non-zero vector space over k and
F and G be R-filtrations on V . Let a ∈ R such that, for any t ∈ R one has
F t (V) ⊆ Gt−a(V). Then one has ZF(i) 6 ZG(i) + a for any i ∈ {1, . . . ,dimk(V)}.

Proof By the relation (1.7), for any i ∈ {1, . . . ,dimk(V)}, if ZF(i) > t, then
dimk(F

t (V)) > i, which implies that dimk(G
t−a(V)) > i and hence (still by the

relation (1.7)) ZG(i) > t − a. Therefore we obtain ZF(i) − a 6 ZG(i). �

Remark 1.1.40 Let V be a finite-dimensional vector space over k. There are canon-
ical bijections between the following three sets:

(A) the set of all pairs(
0 = V0 ( V1 ( . . . ( Vn = V, µ1 > . . . > µn

)
such that 0 = V0 ( V1 ( . . . ( Vn = V is an increasing sequence of vector
subspaces of V and µ1 > . . . > µn is a decreasing sequence of real numbers.

(B) the set of all R-filtrations F of V .
(C) the set of all ultrametric norms ‖·‖ of V over k.

In the following, we explain the construction of these canonical maps.

• (A)→(B): The associated R-filtration F on V with the data
(
V0 ( . . . ( Vn, µ1 >

. . . > µn
)

is defined by F t (V) := Vi if t ∈ ]µi+1, µi] ∩ R, where µ0 = +∞ and
µn+1 = −∞ by convention.

tµn µn−1 µn−3 µ3 µ2 µ1· · ·

Vn

Vn−1

Vn−2

V2

V1

V0

. . .

• (B)→(A): One has a sequence 0 = V0 ( V1 ( . . . ( Vn = V such that{
F t (V) : t ∈ R

}
= {V0,V1, . . . ,Vn}. A sequence µ1 > . . . > µn in R is given

by µi = sup{t : F t (V) = Vi} for i ∈ {1, . . . ,n}.

• (A)→(C): The corresponding norm ‖·‖ to the data
(
V0 ( . . . ( Vn, µ1 > . . . > µn

)
is given by
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‖x‖ =

{
e−µi if x ∈ Vi \ Vi−1,

0 if x = 0.

• (C)→(A): By Proposition 1.1.35, there is an increasing sequence

0 = V0 ( V1 ( . . . ( Vn = V

of subspaces of V such that Ψ(V, ‖·‖) = {V1, . . . ,Vn}. A decreasing sequence of real
numbers is given by µi = ϕ‖ · ‖(Vi) for i ∈ {1, . . . ,n}.

• (B)→(C): We define a function λF : V → R ∪ {+∞} such that

∀ x ∈ V, λF(x) := sup{t ∈ R : x ∈ F t (V)}.

Then the ultrametric norm ‖·‖ on V corresponding to F is given by

∀ x ∈ V, ‖x‖ = e−λF (x).

• (C)→(B): The corresponding R-filtration F to the norm ‖·‖ is given by F t (V) =

(V, ‖·‖)6e−t .

Let F be an R-filtration on V , which corresponds to an increasing flag 0 = V0 (
V1 ( . . . ( Vn = V together with a decreasing sequence µ1 > . . . > µn of real
numbers. Note that the sets {µ1, . . . , µn} and {ZF(1), . . . , ZF(r)} are actually equal,
where r denotes the dimension of V over k. Moreover, the value µi appears exactly
dimk(Vi/Vi−1) times in the sequence ZF(1), . . . , ZF(r).

1.1.9 Metric on the space of norms

Let V be a finite-dimensional vector space over k. We denote by NV the set of all
norms on V . If ‖·‖1 and ‖·‖2 are norms on V , by Proposition 1.1.11 we obtain that

sup
s∈V\{0}

��� ln ‖s‖1 − ln ‖s‖2

���
is finite. We denote by d(‖·‖1, ‖·‖2) this number, called the distance between ‖·‖1
and ‖·‖2. It is easy to see that the function d : NV ×NV → R>0 satisfies the axioms
of metric.

Remark 1.1.41 Let V be a finite-dimensional vector space over k and ‖·‖0 be a norm
on V , which is the trivial norm if the absolute value |·| is trivial (namely ‖x‖0 = 1
for any x ∈ V \ {0}). Let λ be a real number in ]0,1[. If the absolute value |·| is
non-trivial, we require in addition that λ < sup{|a| : a ∈ k×, |a| < 1}. We denote
by C the annulus {x ∈ V : λ 6 ‖x‖0 6 1}. Note that one has C = V \ {0} when |·| is
trivial. For any norm ‖·‖ on V , the restriction of the function ln‖·‖ to C is bounded,
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and the norm ‖·‖ is uniquely determined by its restriction to C (this is a consequence
of Proposition 1.1.4 when |·| is non-trivial). Thus we can identify NV with a closed
subset of Cb(C), the space of bounded and continuous functions on C equipped with
the sup norm. In particular, NV is a complete metric space.

Proposition 1.1.42 Let V be a finite-dimensional vector space over k, and ‖·‖1 and
‖·‖2 be norms on V .

(1) Let U be a vector subspace of V , ‖·‖U ,1 and ‖·‖U ,2 be the restrictions of ‖·‖1
and ‖·‖2 to U, respectively. Then one has d(‖·‖U ,1, ‖·‖U ,2) 6 d(‖·‖1, ‖·‖2).

(2) Let W be a quotient vector space of V , ‖·‖W ,1 and ‖·‖W ,2 be quotient norms of
‖·‖1 and ‖·‖2 on W , respectively. Then one has d(‖·‖W ,1, ‖·‖W ,2) 6 d(‖·‖1, ‖·‖2).

Proof (1) follows directly from the definition of the distance function.
(2) It is sufficient to show that��� ln ‖x‖W ,1 − ln ‖x‖W ,2

��� 6 d(‖·‖1, ‖·‖2).

for x ∈ W \ {0}. Clearly we may assume that ‖x‖W ,1 > ‖x‖W ,2. For ε > 0, one can
choose s ∈ V such that [s] = x and ‖s‖2 6 eε ‖x‖2,W . Then

0 < ln ‖x‖W ,1 − ln ‖x‖W ,2 6 ln ‖s‖1 − ln
(
e−ε ‖s‖2

)
= (ln ‖s‖1 − ln ‖s‖2) + ε 6 d(‖·‖1, ‖·‖2) + ε,

as desired. �

Proposition 1.1.43 Let V and W be finite-dimensional vector spaces over k, ‖·‖V ,1
and ‖·‖V ,2 be norms on V , and ‖·‖ be a norm on W . Let ‖·‖1 and ‖·‖2 be the operator
norms on L (V,W), where we consider the norm ‖·‖W on W , and the norms ‖·‖V ,1
and ‖·‖V ,2 on V , respectively. Then one has

d(‖·‖1, ‖·‖2) 6 d(‖·‖V ,1, ‖·‖V ,2). (1.8)

In particular, one has

d(‖·‖V ,1,∗, ‖·‖V ,2,∗) 6 d(‖·‖V ,1.‖·‖V ,2), (1.9)

Moreover, the equality in (1.9) holds when both norms ‖·‖V ,1 and ‖·‖V ,2 are reflexive.

Proof For (1.8), it is sufficient to show��� ln ‖ f ‖1 − ln ‖ f ‖2

��� 6 d(‖·‖V ,1, ‖·‖V ,2)

for f ∈ L (V,W) \ {0}. Clearly we may assume that ‖ f ‖1 > ‖ f ‖2. By definition one
has

‖ f ‖1 = sup
x∈V\{0}

‖ f (x)‖W
‖x‖V ,1

and ‖ f ‖2 = sup
x∈V\{0}

‖ f (x)‖W
‖x‖V ,2

,
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so that, for ε > 0, one can find x ∈ V \ {0} such that e−ε ‖ f ‖1 6 ‖ f (x)‖W/‖x‖V ,1.
Therefore,

0 < ln ‖ f ‖1 − ln ‖ f ‖2 6 ln
(
eε

‖ f (x)‖W
‖x‖V ,1

)
− ln

(
‖ f (x)‖W
‖x‖V ,2

)
= (ln ‖x‖V ,2 − ln ‖x‖V ,1) + ε 6 d(‖·‖V ,1, ‖·‖V ,2) + ε,

as desired.
In order to obtain (1.9), it suffices to apply (1.8) to the case where (W, ‖·‖) =

(k, |·|). If in addition both norms ‖·‖V ,1 and ‖·‖V ,2 are reflexive, then one has

d(‖·‖V ,1,∗, ‖·‖V ,2,∗) > d(‖·‖V ,1,∗∗, ‖·‖V ,2,∗∗) = d(‖·‖V ,1, ‖·‖V ,2).

Hence the equality holds. �

1.1.10 Direct sums

Let S be the set of all convex and continuous functions ψ : [0,1] → [0,1] such that
max{t,1 − t} 6 ψ(t) for any t ∈ [0,1].

t

1

1

1
2

1
2

0

max{t , 1 − t }

ψ(t )

Let ‖·‖ be a norm on R2, where we consider the usual absolute value |·|∞ on R. We
say that ‖·‖ is an absolute normalised norm if ‖(1,0)‖ = ‖(0,1)‖ = 1 and if

∀ (x, y) ∈ R2, ‖(x, y)‖ = ‖(|x |∞, |y |∞)‖.

By [14, §21, Lemma 3], the set of all absolute normalised norms on R2 can be
parametrised by the functional space S (see [133] for the higher dimensional gen-
eralisation of this result). If ‖·‖ is the absolute normalised norm corresponding to
ψ ∈ S , one has

‖(x, y)‖ = (|x | + |y |)ψ
(

|x |
|x | + |y |

)
.

In particular, one always has

‖(x, y)‖ > max(|x |∞, |y |∞) (1.10)
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Conversely, given an absolute normalised norm ‖·‖ onR2, the corresponding function
in S is

(t ∈ [0,1]) 7−→ ‖(t,1 − t)‖. (1.11)

For example, the function ψ(t) = max{t,1 − t}, t ∈ [0,1] corresponds to the
norm (x, y) 7→ max{|x |∞, |y |∞} on R2. If p > 1 is a real number, the function
ψp(t) = (tp + (1 − t)p)1/p , t ∈ [0,1] belongs to S ; it corresponds to the `p-norm
(x, y) 7→ (|x |p + |y |p)1/p .

Given a function ψ in S , or equivalently an absolute normalised norm on R2, for
any couple of finite-dimensional seminormed vector spaces over k, one can naturally
attach to the direct sum of the vector spaces a direct sum seminorm, which depends
on the function ψ.

Lemma 1.1.44 Let a, b, a′ and b′ be real numbers such that 0 6 a 6 a′ and
0 6 b 6 b′. We assume in addition that a + b > 0. If ψ is a function in S , then

(a + b)ψ
( a

a + b

)
6 (a′ + b′)ψ

( a′

a′ + b′

)
. (1.12)

Proof For any t ∈ [0,1], the value ψ(t) is bounded from below by t. Moreover,
one has ψ(1) = 1. The function t 7→ ψ(t)/t on ]0,1] is non-increasing. In fact, for
0 < s 6 t, by the convexity of the function ψ one has

ψ(t) = ψ
( t − s
1 − s

+
1 − t
1 − s

s
)
6

t − s
1 − s

ψ(1) +
1 − t
1 − s

ψ(s)

6
t − s
1 − s

·
ψ(s)

s
+

1 − t
1 − s

ψ(s) =
t
s
ψ(s).

In particular, one has

(a + b)ψ
( a

a + b

)
6 (a + b′)ψ

( a
a + b′

)
.

Moreover, the function from [0,1] to itself sending t ∈ [0,1] to ψ(1− t) also belongs
to S . By the above argument, we obtain that the function t 7→ ψ(1 − t)/t is also
non-increasing. Therefore

(a + b′)ψ
( a

a + b′

)
= (a + b′)ψ

(
1 −

b′

a + b′

)
6 (a′ + b′)ψ

(
1 −

b′

a′ + b′

)
.

The inequality (1.12) is thus proved. �

Proposition 1.1.45 Let (V, ‖·‖V ) and (W, ‖·‖W ) be finite-dimensional seminormed
vector spaces over k. For any ψ ∈ S , let ‖·‖ψ : V ⊕ W → R>0 be the map
such that ‖(v,w)‖ψ = 0 for (v,w) ∈ N‖ · ‖V ⊕ N‖ · ‖W and that, for any (x, y) ∈

(V ⊕ W) \ (N‖ · ‖V ⊕ N‖ · ‖W ),

‖(x, y)‖ψ := (‖x‖ + ‖y‖)ψ
(

‖x‖
‖x‖ + ‖y‖

)
.
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Then ‖·‖ψ is a seminorm on V ⊕ W such that N‖ · ‖ψ = N‖ · ‖V ⊕ N‖ · ‖W . Moreover, for
any (x, y) ∈ V × W one has

max{‖x‖, ‖y‖} 6 ‖(x, y)‖ψ 6 ‖x‖ + ‖y‖. (1.13)

Proof By definition, for any (x, y) ∈ V ⊕ W and any a ∈ k, one has

‖(ax,ay)‖ψ = |a| · ‖(x, y)‖ψ .

Moreover, for (x, y) < N‖ · ‖V ⊕ N‖ · ‖W , one has ‖(x, y)‖ψ > 0. Thus it remains to
verify the triangle inequality.

Let (x1, y1) and (x2, y2) be two elements in V ⊕W such that (x1 + x2, y1 + y2) does
not belong to N‖ · ‖V ⊕ N‖ · ‖W . One has

‖(x1 + x2, y1 + y2)‖ψ = (‖x1 + x2‖ + ‖y1 + y2‖)ψ(u),

where
u =

‖x1 + x2‖

‖x1 + x2‖ + ‖y1 + y2‖
.

Since ‖x1 + x2‖ 6 ‖x1‖ + ‖x2‖ and ‖y1 + y2‖ 6 ‖y1‖ + ‖y2‖, by Lemma 1.1.44 one
obtains that ‖(x1 + x2, y1 + y2)‖ψ is bounded from above by

(‖x1‖ + ‖x2‖ + ‖y1‖ + ‖y2‖)ψ(v),

with
v =

‖x1‖ + ‖x2‖

‖x1‖ + ‖x2‖ + ‖y1‖ + ‖y2‖
=

(
1 +

‖y1‖ + ‖y2‖

‖x1‖ + ‖x2‖

) −1

if ‖x1‖ + ‖x2‖ > 0, and v = 0 otherwise. If ‖x1‖ > 0, let

s =
‖x1‖

‖x1‖ + ‖y1‖
=

(
1 +

‖y1‖

‖x1‖

) −1
,

otherwise let s = 0. Similarly, if ‖x2‖ > 0, let

t =
‖x2‖

‖x2‖ + ‖y2‖
=

(
1 +

‖y2‖

‖x2‖

) −1
,

otherwise let t = 0. In the case where ‖x1‖ and ‖x2‖ are both > 0, one has

min
{
‖y1‖

‖x1‖
,
‖y2‖

‖x2‖

}
6

‖y1‖ + ‖y2‖

‖x1‖ + ‖x2‖
6 max

{
‖y1‖

‖x1‖
,
‖y2‖

‖x2‖

}
,

and therefore min{s, t} 6 v 6 max{s, t}. By the convexity of the function ψ we
obtain

ψ(v) 6
v − t
s − t

ψ(s) +
s − v

s − t
ψ(t).

Note that
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v − t
s − t

=
‖x1‖ + ‖y1‖

‖x1‖ + ‖x2‖ + ‖y1‖ + ‖y2‖
,

s − v

s − t
=

‖x2‖ + ‖y2‖

‖x1‖ + ‖x2‖ + ‖y1‖ + ‖y2‖
.

Thus we obtain the triangle inequality ‖(x1+x2, y1+y2)‖ψ 6 ‖(x1, y1)‖ψ+‖(x2, y2)‖ψ .
We now proceed with the proof of the inequalities (1.13). The second inequality

comes from the fact that ψ takes values 6 1. The first inequality is a consequence of
Lemma 1.1.44. In fact, by (1.12), when ‖x‖ > 0 one has

‖x‖ = (‖x‖ + 0)ψ
(

‖x‖
‖x‖ + 0

)
6 ‖(x, y)‖ψ .

Similarly, one has ‖y‖ 6 ‖(x, y)‖ψ . The proposition is thus proved. �

Definition 1.1.46 The seminorm ‖·‖ψ constructed in the above proposition is called
the ψ-direct sum of the seminorms of V and W .

Proposition 1.1.47 Let ‖·‖ be an absolute normalised norm on R2. Then the dual
norm ‖·‖∗ is also an absolute normalised norm, where HomR(R2,R) is identified with
R2 by using the isomorphism ι : R2 → HomR(R2,R) given by ι(x, y)(a, b) = ax+ by.

Proof Let (x, y) be an element of R2. One has (recall that |·|∞ denotes the usual
absolute value on R)

‖(x, y)‖∗ = sup
(0,0),(a,b)∈R2

|ax + by |∞
‖(a, b)‖

.

Since ‖·‖ is an absolute normalised norm on R2, from the above formula we deduce
that ‖(x, y)‖∗ = ‖(|x |∞, |y |∞)‖∗ for any (x, y) ∈ R2. Moreover, by (1.10) one has

‖(1,0)‖∗ = sup
(0,0),(a,b)∈R

|a|∞
‖(a, b)‖

= sup
0,a∈R

|a|∞
‖(a,0)‖

= 1.

Similarly, ‖(0,1)‖∗ = 1. Therefore, ‖·‖∗ is an absolute normalised norm on R2. �

Definition 1.1.48 Let ψ be an element of S , which corresponds to an absolute
normalised norm ‖·‖ on R2. The above proposition shows that the dual norm ‖·‖∗ is
also an absolute normalised norm. We denote by ψ∗ the element of S corresponding
to this dual norm. Note that ψ∗ is actually given by

ψ∗(t) = sup
λ∈]0,1[

{
λt + (1 − λ)(1 − t)

ψ(λ)

}
.

The following proposition studies the dual of a direct sum seminorm.

Proposition 1.1.49 Let (V, ‖·‖V ) and (W, ‖·‖W ) be finite-dimensional seminormed
vector spaces over k, ψ be an element in S , and ‖·‖ψ be the ψ-direct sum of ‖·‖V
and ‖·‖W . Let ψ0 ∈ S such that ψ0(t) = max{t,1 − t} for any t ∈ [0,1].

(1) Assume that the absolute value |·| is non-Archimedean. Then the dual norm
‖·‖ψ,∗ identifies with the ψ0-direct sum of ‖·‖V ,∗ and ‖·‖W ,∗.
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(2) Assume that the absolute value |·| is Archimedean. Then the dual norm ‖·‖ψ,∗
identifies with the ψ∗-direct sum of ‖·‖V ,∗ and ‖·‖W ,∗.

Proof Since the null space of the seminorm ‖·‖ is N‖ · ‖V ⊕ N‖ · ‖W , we obtain that a
linear form ( f ,g) ∈ V∨ ⊕W∨ vanishes on N‖ · ‖ψ if and only if it belongs to V∗ ⊕W∗.
In other words, one has (V ⊕ W)∗ = V∗ ⊕ W∗.

(1) Let ( f ,g) be an element in V∗ ⊕ W∗, one has

‖( f ,g)‖ψ,∗ = sup
(s,t)∈V ⊕W

max{ ‖s ‖V , ‖t ‖W }>0

| f (s) + g(t)|
‖(s, t)‖ψ

6 sup
(s,t)∈V ⊕W

max{ ‖s ‖V , ‖t ‖W }>0

max{| f (s)|, |g(t)|}
max{‖s‖V , ‖t‖W }

6 max{‖ f ‖V ,∗, ‖g‖W ,∗},

where the first inequality comes from (1.13) and the fact that the absolute value |·|

is non-Archimedean. Moreover, one has

‖( f ,g)‖ψ,∗ > sup
s∈V\N‖·‖V

| f (s) + g(0)|
‖(s,0)‖ψ

= ‖ f ‖V ,∗.

Similarly, one has

‖( f ,g)‖ψ,∗ > sup
t∈W\N‖·‖W

| f (0) + g(t)|
‖(0, t)‖ψ

= ‖g‖W ,∗.

Therefore ‖( f ,g)‖ψ,∗ = max{‖ f ‖V ,∗, ‖g‖W ,∗}.
(2) Let ‖·‖ be the absolute normalised norm on R2 corresponding to ψ and let

‖·‖∗ be its dual norm. For any (s, t) ∈ V ⊕ W , one has ‖(s, t)‖ψ = ‖(‖s‖V , ‖t‖W )‖.
Let ( f ,g) be an element in V∗ ⊕ W∗. One has

‖( f ,g)‖ψ,∗ = sup
(s,t)∈V ⊕W

max{ ‖s ‖V , ‖t ‖W }>0

| f (s) + g(t)|
‖(s, t)‖ψ

6 sup
(s,t)∈V ⊕W

max{ ‖s ‖V , ‖t ‖W }>0

‖ f ‖V ,∗ · ‖s‖V + ‖g‖W ,∗ · ‖t‖W
‖(‖s‖V , ‖t‖W )‖

= ‖(‖ f ‖V ,∗, ‖g‖W ,∗)‖∗.

Moreover, since k = R or C, by Hahn-Banach theorem, for any a > 0, there exists
s ∈ V such that ‖s‖V = a and that f (s) = ‖ f ‖V ,∗ · ‖s‖V . Similarly, for any b > 0,
there exists t ∈ W such that ‖t‖W = b and g(t) = ‖g‖W ,∗ · ‖t‖W . Therefore the
inequality in the above formula is actually an equality. �

Proposition 1.1.50 Let f : V → V ′ and g : W → W ′ be surjective linear maps of
finite-dimensional vector spaces over k. Let ‖·‖V and ‖·‖W be seminorms on V and
W , and let ‖·‖V ′ and ‖·‖W ′ be the quotient seminorms of ‖·‖V and ‖·‖W on V ′ and
W ′, respectively. Then the quotient seminorm ‖·‖V ⊕W ,ψ,V ⊕W�V ′⊕W ′ of ‖·‖V ⊕W ,ψ

on V ′ ⊕ W ′ coincides with ‖·‖V ′⊕W ′,ψ .
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Proof It is sufficient to see that

‖(x ′, y′)‖V ′⊕W ′,ψ = ‖(x ′, y′)‖V ⊕W ,ψ,V ⊕W�V ′⊕W ′

for all x ′ ∈ V ′ and y′ ∈ W ′ with ‖x ′‖V ′ + ‖y′‖W ′ > 0. Let x ∈ V and y ∈ W
with f (x) = x ′ and g(y) = y′. Then, as ‖x‖V > ‖x ′‖V ′ and ‖y‖W > ‖y′‖W ′ , by
Lemma 1.1.44, one has ‖(x ′, y′)‖V ′⊕W ′,ψ 6 ‖(x, y)‖V ⊕W ,ψ , so that

‖(x ′, y′)‖V ′⊕W ′,ψ 6 ‖(x ′, y′)‖V ⊕W ,ψ,V ⊕W�V ′⊕W ′ .

Let us consider the converse inequality. We choose sequences {xn}n∈N and
{yn}n∈N in V and W such that f (xn) = x ′, g(yn) = y′, limn→∞ ‖xn‖V = ‖x ′‖V ′

and limn→∞ ‖yn‖W = ‖y′‖W ′ .
We assume that ‖x ′‖V ′ + ‖y′‖W ′ > 0. Then as ‖xn‖V + ‖yn‖W > 0 for sufficiently

large n and ψ is continuous, one has

‖(x ′, y′)‖V ′⊕W ′,ψ = (‖x ′‖V ′ + ‖y′‖W ′)ψ

(
‖x ′‖V ′

‖x ′‖V ′ + ‖y′‖W ′

)
= lim

n→∞
(‖xn‖V + ‖yn‖W )ψ

(
‖xn‖V

‖xn‖V + ‖yn‖W

)
= lim

n→∞
‖(xn, yn)‖V ⊕W ,ψ > ‖(x ′, y′)‖V ⊕W ,ψ,V ⊕W�V ′⊕W ′,

as required. Otherwise, as

0 6 ‖(x ′, y′)‖V ⊕W ,ψ,V ⊕W�V ′⊕W ′ 6 ‖(xn, yn)‖V ⊕W ,ψ 6 ‖xn‖V + ‖yn‖W

and limn→∞ ‖xn‖V + ‖yn‖W = 0, one has

‖(x ′, y′)‖V ⊕W ,ψ,V ⊕W�V ′⊕W ′ = 0,

as desired. �

Remark 1.1.51 Let ψ be an element of S . Let {ψn}
∞
n=1 be a sequence of functions

given in the following ways:

∀a ∈ R>0, ψ1(a) = a,

∀(a, b) ∈ R2
>0, ψ2(a, b) =

{
(a + b)ψ

( a
a + b

)
if a + b > 0,

0 if a = b = 0,
∀(a1, . . . ,an) ∈ Rn>0, ψn(a1, . . . ,an) = ψ2(ψn−1(a1, . . . ,an−1),an).

Let (V1, ‖·‖1), . . . , (Vn, ‖·‖n) be finite-dimensional normed vector spaces over k. If
we define

‖(x1, . . . , xn)‖ψ := ψn(‖x1‖1, . . . , ‖xn‖n)

for (x1, . . . , xn) ∈ V1 ⊕ · · · ⊕ Vn, then, by Proposition 1.1.45, it yields a norm on
V1 ⊕ · · · ⊕ Vn.
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We assume that

∀ a1,a2,a3 ∈ R>0, ψ2(a1,ψ2(a2,a3)) = ψ2(ψ2(a1,a2),a3). (1.14)

Then it is easy to see that ψn(a1, . . . ,an) = ψ2(ψi(a1, . . . ,ai),ψn−i(ai+1, . . . ,an)) for
i ∈ {1, . . . ,n−1}, so that the construction of the norm ‖·‖ψ is associative. If we assume
ψ2(a, b) = ψ2(b,a) for all (a, b) ∈ R2

>0 in addition to (1.14), then ψn(a1, . . . ,an) is
symmetric, that is, for any permutation σ, ψn(aσ(1), . . . ,aσ(n)) = ψn(a1, . . . ,an),
which means that its construction is order independent.

1.1.11 Tensor product seminorms

Let V and W be seminormed vector spaces of finite dimension over k. On the tensor
product space V ⊗k W there are several natural ways to construct tensor product
seminorms. We refer the readers to the original article [73] of Grothendieck for
different constructions. In this subsection, we recall the π-tensor product and the
ε-tensor product. We refer to the book [131] for a more detailed presentation in the
Archimedean case.

Definition 1.1.52 Let (V1, ‖·‖1), . . . , (Vn, ‖·‖n) be seminormed vector spaces over k.
We define a map ‖·‖π : V1⊗k · · ·⊗kVn → [0,+∞[ such that, for any ϕ ∈ V1⊗k · · ·⊗kVn,

‖ϕ‖π := inf
{ N∑

i=1
‖x(i)1 ‖1 · · · ‖x(i)n ‖n : ϕ =

N∑
i=1

x(i)1 ⊗ · · · ⊗ x(i)n

}
. (1.15)

Note that ‖·‖π is a seminorm on V1 ⊗k · · · ⊗k Vn. For example, the triangle inequality
can be checked as follows: for ϕ,ψ ∈ V1 ⊗k · · · ⊗k Vn and a positive number ε , we
choose expressions

ϕ =

N∑
i=1

x(i)1 ⊗ · · · ⊗ x(i)n and ψ =

M∑
j=1

y
(j)
1 ⊗ · · · ⊗ y

(j)
n

such that

N∑
i=1

‖x(i)1 ‖1 · · · ‖x(i)n ‖n 6 ‖ϕ‖π + ε and
M∑
j=1

‖y
(j)
1 ‖1 · · · ‖y

(j)
n ‖n 6 ‖ψ‖π + ε .

Then, as

ϕ + ψ =

N∑
i=1

x(i)1 ⊗ · · · ⊗ x(i)n +
M∑
j=1

y
(j)
1 ⊗ · · · ⊗ y

(i)
n ,

one has
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‖ϕ + ψ‖π 6
N∑
i=1

‖x(i)1 ‖1 · · · ‖x(i)n ‖n +

M∑
j=1

‖y
(j)
1 ‖1 · · · ‖y

(j)
n ‖n 6 ‖ϕ‖π + ‖ψ‖π + 2ε,

as desired. We call ‖·‖π the π-tensor product of the seminorms ‖·‖1, . . . , ‖·‖n.
Any element ϕ in the tensor product space V1 ⊗k · · · ⊗k Vn can be considered

as a multilinear form on V∗
1 × · · · × V∗

n . In particular, if ϕ is of the form x1 ⊗

· · · ⊗ xn, the corresponding multilinear form sends ( f1, . . . , fn) ∈ V∗
1 × · · · × V∗

n to
f1(x1) · · · fn(xn) ∈ k. For any ϕ ∈ V1 ⊗k · · · ⊗k Vn, viewed as a k-multilinear form
on V∗

1 × · · · × V∗
n , let

‖ϕ‖ε := sup
( f1 ,..., fn)∈V

∗
1 ×···×V

∗
n

∀ i∈{1,...,n}, fi,0

|ϕ( f1, . . . , fn)|
‖ f1‖1,∗ · · · ‖ fn‖n,∗

.

Then ‖·‖ε is a seminorm on the tensor product space V1 ⊗k · · · ⊗k Vn, called the
ε-tensor product of seminorms ‖·‖1, . . . , ‖·‖n. It is a norm once the seminorms
‖·‖1, . . . , ‖·‖n are norms. Similarly to the dual norm case, if the absolute value |·|

is non-Archimedean, then the ε-tensor product ‖·‖ε is ultrametric. By Proposition
1.2.14 in the next section, we obtain that, in the case where all Vi are of finite type over
k, the ε-tensor product of ‖·‖1, . . . , ‖·‖n identifies with that of ‖·‖1,∗∗, . . . , ‖·‖n,∗∗.

Remark 1.1.53 Let (V1, ‖·‖1) and (V2, ‖·‖2) be seminormed vector spaces over k. Let
‖·‖ be the operator seminorm on the vector space L (V∗

1 ,V2), where we consider
the dual norm ‖·‖1,∗ on V∗

1 and the double dual seminorm ‖·‖2,∗∗ on V2. One has a
canonical k-linear map from V1 ⊗k V2 to L (V∗

1 ,V2) sending x ⊗ y ∈ V1 ⊗k V2 to the
bounded linear map (α ∈ V∗

1 ) 7→ α(x)y. We claim that the seminorm on V1 ⊗k V2
induced by ‖·‖ and the above canonical map identifies with the ε-tensor product ‖·‖ε
of ‖·‖1 and ‖·‖2. In fact, for any ϕ ∈ V1 ⊗k V2 one has

‖ϕ‖ = sup
f1∈V

∗
1 \{0}

‖ϕ( f1)‖2,∗∗

‖ f1‖1,∗
= sup

f1∈V
∗
1 \{0}

f2∈V
∗
2 \{0}

|ϕ( f1, f2)|
‖ f1‖1,∗‖ f2‖2,∗

= ‖ϕ‖ε .

In particular, if ‖·‖2 = ‖·‖2,∗∗ on V2, then the ε-tensor product norm ‖·‖ε identifies
with the operator seminorm if we consider tensors in V1 ⊗k V2 as k-linear operators
from (V∗

1 , ‖·‖1,∗) to (V2, ‖·‖2).

Proposition 1.1.54 We keep the notation of Definition 1.1.52. If ‖·‖ is a seminorm
on V1 ⊗k · · · ⊗k Vn such that ‖x1 ⊗ · · · ⊗ xn‖ 6 ‖x1‖1 · · · ‖xn‖n for any (x1, . . . , xn) ∈
V1 × · · · × Vn, then one has ‖·‖ 6 ‖·‖π . In particular, the seminorm ‖·‖ε is bounded
from above by ‖·‖π . Moreover, if ‖·‖1, . . . , ‖·‖n are norms, then ‖·‖π is also a norm.

Proof Let ϕ be an element of V1 ⊗k · · · ⊗k Vn. If ϕ is written in the form

ϕ =

N∑
i=1

x(i)1 ⊗ · · · ⊗ x(i)n ,
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where x(i)j ∈ Vj for any j ∈ {1, . . . ,n}, then one has

‖ϕ‖ 6
N∑
i=1

‖x(i)1 ⊗ · · · ⊗ x(i)n ‖ 6
N∑
i=1

‖x(1)1 ‖1 · · · ‖x(1)n ‖n.

Therefore we obtain ‖·‖ 6 ‖·‖π . Note that, for any (x1, . . . , xn) ∈ V1 × · · · × Vn one
has

‖x1 ⊗ · · · ⊗ xn‖ε = sup
( f1 ,..., fn)∈V

∗
1 ×···×V

∗
n

∀ i∈{1,...,n}, fi,0

| f1(x1)| · · · | fn(xn)|
‖ f1‖1,∗ · · · ‖ fn‖n,∗

= ‖x1‖1,∗∗ · · · ‖xn‖n,∗∗ 6 ‖x1‖1 · · · ‖xn‖n.

Therefore, one has ‖·‖ε 6 ‖·‖π . If the seminorms ‖·‖i (i ∈ {1, . . . ,n}) are norms,
then ‖·‖ε is a norm and hence ‖·‖π is also a norm. �

Remark 1.1.55 From the definition we observe that the ε-tensor product and π-
tensor product are commutative. Namely, if V1 and V2 are finite-dimensional normed
vector spaces over k, then the canonical isomorphism V1 ⊗k V2 → V2 ⊗k V1 is an
isometry if we consider ε-tensor products or π-tensor product norms on both sides.
The ε-tensor product and the π-tensor product are also associative. Namely, if V1,
V2 and V3 are finite-dimensional normed vector spaces over k, then the canonical
isomorphisms (V1⊗kV2)⊗kV3 → V1⊗kV2⊗kV3 and V1⊗k (V2⊗kV3) → V1⊗kV2⊗kV3
are both isometries.

Remark 1.1.56 Let (V1, ‖·‖1), . . . , (Vn, ‖·‖n) be finite-dimensional seminormed vec-
tor spaces over k. From the definition, we observe that, if (u1, . . . ,un) is an element
of V1 × · · · × Vn, then one has

‖u1 ⊗ · · · ⊗ un‖ε = ‖u1‖1,∗∗ · · · ‖un‖n,∗∗. (1.16)

If the seminormed vector spaces (V1, ‖·‖1), . . . , (Vn, ‖·‖n) are reflexive, by (1.16)
and Proposition 1.1.54, we obtain that, for any (u1, . . . ,un) ∈ V1 × · · · × Vn, one has

n∏
i=1

‖ui ‖i = ‖u1 ⊗ · · · ⊗ un‖ε 6 ‖u1 ⊗ · · · ⊗ un‖π .

Moreover, by definition one has ‖u1 ⊗ · · · ⊗ un‖π 6 ‖u1‖1 · · · ‖un‖n. Therefore

‖u1 ⊗ · · · ⊗ un‖ε = ‖u1 ⊗ · · · ⊗ un‖π = ‖u1‖1 · · · ‖un‖n. (1.17)

In particular, if V1, . . . ,Vn are seminormed vector spaces of dimension 1 over k (in
this case they are necessarily reflexive), then their ε-tensor product and π-tensor
product norms are the same. We simply call it the tensor product of the seminorms
‖·‖1, . . . , ‖·‖n.
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Proposition 1.1.57 Let (V1, ‖·‖1), . . . , (Vn, ‖·‖n) be finite-dimensional seminormed
vector spaces over k. Let ‖·‖∗,π and ‖·‖∗,ε be respectively the π-tensor product and
the ε-tensor product of the dual norms ‖·‖1,∗, . . . , ‖·‖n,∗. The ε-tensor product of
‖·‖1, . . . , ‖·‖n identifies with the seminorm induced by the dual norm ‖·‖∗,π,∗ on
(V∗

1 ⊗k · · · ⊗k V∗
n )

∗ by the natural linear map V1 ⊗k · · · ⊗k Vn → (V∗
1 ⊗k · · · ⊗k V∗

n )
∗.

If the absolute value |·| is Archimedean, then the π-tensor product of ‖·‖1, . . . , ‖·‖n
identifies with seminorm induced by the dual norm ‖·‖∗,ε,∗ on (V∗

1 ⊗k · · · ⊗k V∗
n )

∗ by
the natural linear map V1 ⊗k · · · ⊗k Vn → (V∗

1 ⊗k · · · ⊗k V∗
n )

∗.

Proof Let ϕ be an element in V1 ⊗k · · · ⊗k Vn, which can also be viewed as a k-
multilinear form on V∗

1 × · · · × V∗
n or a linear form on V∗

1 ⊗k · · · ⊗k V∗
n . Let α be an

element in V∗
1 ⊗k · · · ⊗k V∗

n . If α is written in the form

α =

N∑
i=1

f (i)1 ⊗ · · · ⊗ f (i)n ,

where f (i)j ∈ V∗
j , then one has ϕ(α) =

∑N
i=1 ϕ( f (i)1 , . . . , f (i)n ) and hence

|ϕ(α)| 6
N∑
i=1

|ϕ( f (i)1 , . . . , f (i)n )|.

Thus we obtain

|ϕ(α)|∑N
i=1 ‖ f (i)1 ‖1,∗ · · · ‖ f (i)n ‖n,∗

6

∑N
i=1 |ϕ( f (i)1 , . . . , f (i)n )|∑N

i=1 ‖ f (i)1 ‖1,∗ · · · ‖ f (i)n ‖n,∗

6 ‖ϕ‖ε .

Therefore ϕ is a bounded linear form on (V∗
1 ⊗k · · ·⊗kV∗

n , ‖·‖∗,π) and ‖ϕ‖∗,π,∗ 6 ‖ϕ‖ε .
For any ( f1, . . . , fn) ∈ (V∗

1 \ {0}) × · · · × (V∗
n \ {0}) one has

|ϕ( f1 ⊗ · · · ⊗ fn)|
‖ f1 ⊗ · · · ⊗ fn‖∗,π

=
|ϕ( f1, . . . , fn)|

‖ f1 ⊗ · · · ⊗ fn‖∗,π
>

|ϕ( f1, . . . , fn)|
‖ f1‖1,∗ · · · ‖ fn‖n,∗

.

Therefore one has ‖ϕ‖ε 6 ‖ϕ‖∗,π,∗. The first assertion is thus proved.
If |·| is Archimedean, any finite-dimensional normed vector space is reflexive.

By the first assertion, the dual norm of the π-tensor product of ‖·‖1, . . . , ‖·‖n is the
ε-tensor product of ‖·‖1,∗, . . . , ‖·‖n,∗. By taking the double dual seminorm we obtain
that the π-tensor product of ‖·‖1, . . . , ‖·‖n identifies with the seminorm induced by
‖·‖∗,ε,∗. �

Proposition 1.1.58 Let V and W be seminormed vector spaces over k, and Q be a
quotient space of V , equipped with the quotient seminorm. Let V0 be the kernel of the
projection map V → Q. Then the canonical isomorphism (V ⊗k W)/(V0 ⊗k W) →

Q⊗kW is an isometry, where we consider the π-tensor product seminorms on V ⊗kW
and Q ⊗k W , and the quotient seminorm on (V ⊗k W)/(V0 ⊗k W).

Proof Let ψ be an element of Q ⊗k W . One has
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‖ψ‖π = inf
{ N∑

i=1
‖αi ‖ · ‖yi ‖ : N ∈ N, ψ =

N∑
i=1

αi ⊗ yi

}
= inf

N ∈N
inf

(αi )
N
i=1∈Q

N

(yi )
N
i=1∈W

N

ψ=
∑N

i=1 αi ⊗yi

inf
(xi )

N
i=1∈V

N

[xi ]=αi

N∑
i=1

‖xi ‖ · ‖yi ‖ = inf
ϕ∈V ⊗W
[ϕ]=ψ

‖ϕ‖π .

Remark 1.1.59 We consider the ε-tensor product analogue of the above proposition.
Let f be an element of V ⊗k W , viewed as a k-bilinear form on V∗ × W∗. Then its
image g in Q ⊗k W corresponds to the restriction of f to Q∗ × W∗. By Proposition
1.1.20, the dual norm on Q∗ of the quotient seminorm identifies with the restriction
to Q∗ of the dual norm on V∗. Therefore, one has ‖g‖ε 6 ‖ f ‖ε . However, in the case
where the absolute value |·| is Archimedean, in general the inequality

‖g‖ε 6 inf
f ∈V ⊗kW
f |Q∗×W ∗=g

‖ f ‖ε

is strict. In fact, this problem is closely related to the extension property of the
normed vector space V∗, which consists of extending a linear operator defined on a
vector subspace of V∗ and valued in another seminormed vector space while keeping
the operator seminorm. In the case where the linear operator is a linear form (namely
valued in k), it is just a consequence of Hahn-Banach theorem. However, in general
the extension property does not hold, except in the cases where dimk(V) 6 2 or the
norm on V comes from a symmetric semipositive bilinear form (see §1.2.1 for the
notation). We refer the readers to [92, 132] for more details.

In the case where the absolute value |·| is non-Archimedean, any dual norm is
ultrametric, we will give a proof for the ε-tensor product analogue of Proposition
1.1.58, by using the ultrametric Gram-Schmidt process (see Proposition 1.2.36).

Proposition 1.1.60 Let (V, ‖·‖V ) and (W, ‖·‖W ) be seminormed vector spaces over
k, V0 be a vector subspace of V and ‖·‖V0 be the restriction of ‖·‖V to V0.

(1) Let ‖·‖π be the π-tensor product of ‖·‖V and ‖·‖W , ‖·‖π,0 be the π-tensor
product of ‖·‖V0 and ‖·‖W . Then the seminorm ‖·‖π,0 is bounded from below by
the restriction of ‖·‖π to V0 ⊗k W .

(2) Let ‖·‖ε be the ε-tensor product of ‖·‖V and ‖·‖W , and ‖·‖ε,0 be the ε-tensor
product of ‖·‖V0 and ‖·‖W . Then the seminorm ‖·‖ε,0 is bounded from below by
the restriction of ‖·‖ε to V0 ⊗k W .

Proof (1) Let ϕ be an element of V0 ⊗k W . By definition, for any writing of ϕ as∑N
i=1 xi ⊗ yi with {x1, . . . , xN } ⊆ V0 and {y1, . . . , yN } ⊆ W , one has

‖ϕ‖π 6
N∑
i=1

‖xi ‖V0 · ‖yi ‖W .

Therefore ‖ϕ‖π 6 ‖ϕ‖π,0.
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(2) We consider the canonical linear map V∗ → V∗
0 sending a bounded linear form

on V to its restriction to V0. Note that for any f ∈ V∗ one has ‖ f0‖V0 ,∗ 6 ‖ f ‖V ,∗,
where f0 is the restriction of f to V0. Therefore, for any element ϕ of V0 ⊗k W , viewed
as a bilinear form on V∗

0 × W∗ or as a bilinear form on V∗ × W∗ via the inclusion
V0 ⊗k W ⊆ V ⊗k W , one has

‖ϕ‖ε,0 = sup
( f0 ,g)∈V

∗
0 ×W

∗

f0,0, g,0

|ϕ( f0,g)|
‖ f ‖V0 ,∗‖g‖W ,∗

> sup
( f ,g)∈V ∗×W ∗

f,0, g,0

|ϕ( f ,g)|
‖ f ‖V ,∗‖g‖W ,∗

= ‖ϕ‖ε .

Proposition 1.1.61 Let n be a positive integer and

{(Vj, ‖·‖Vj )}
n
j=1 and {(Wj, ‖·‖Wj )}

n
j=1

be finite-dimensional seminormed vector spaces over k. For any j ∈ {1, . . . ,n}, let
fj : Vj → Wj be a bounded k-linear map. Let f : V1 ⊗k · · · ⊗Vn → W1 ⊗k · · · ⊗k Wn

be the k-linear map sending x1 ⊗ · · · ⊗ xn to f1(x1) ⊗ · · · ⊗ fn(xn).

(1) We equip the vector spaces V1 ⊗k · · · ⊗k Vn and W1 ⊗k · · · ⊗k Wn with the π-
tensor product seminorms of {‖·‖Vj }

n
j=1 and of {‖·‖Wj }

n
j=1, respectively. Then

the operator seminorm of f is bounded from above by ‖ f1‖ · · · ‖ fn‖.
(2) We equip the vector spaces V1 ⊗k · · · ⊗k Vn and W1 ⊗k · · · ⊗k Wn with the ε-

tensor product seminorms of {‖·‖Vj }
n
j=1 and of {‖·‖Wj }

n
j=1, respectively. Then

the operator seminorm of f is bounded from above by ‖ f ∗1 ‖ · · · ‖ f ∗n ‖.

Proof (1) Let ϕ be an element in V1 ⊗k · · · ⊗k Vn, which is written as

ϕ =

N∑
i=1

x(i)1 ⊗ · · · ⊗ x(i)n

where x(i)j ∈ Vj for any j ∈ {1, . . . ,n}. By definition, one has

f (ϕ) =
N∑
i=1

f1(x
(i)
1 ) ⊗ · · · ⊗ fn(x

(i)
n ).

Therefore

‖ f (ϕ)‖π 6
N∑
i=1

‖ f1(x
(i)
1 )‖W1 · · · ‖ fn(x

(i)
n )‖Wn

6

( n∏
i=1

‖ fi ‖
) N∑

i=1
‖x(i)1 ‖V1 · · · ‖x(i)n ‖Vn .

Thus ‖ f (ϕ)‖π 6 ‖ f1‖ · · · ‖ fn‖ · ‖ϕ‖π .
(2) Let ϕ be an element inV1⊗k · · ·⊗nVn, which can be viewed as a multilinear form

on V∗
1 × · · · ×V∗

n . Then the element f (ϕ) ∈ W1 ⊗k · · · ⊗k Wn, viewed as a multilinear
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form on W∗
1 × · · · ×W∗

n, sends (β1, . . . , βn) ∈ W∗
1 × · · · ×W∗

n to ϕ( f ∗1 (β1), . . . , f ∗n (βn)).
Thus for (β1, . . . , βn) ∈ (W∗

1 \ {0}) × · · · × (W∗
n \ {0}), one has

| f (ϕ)(β1, . . . , βn)|

‖β1‖W1 ,∗ · · · ‖βn‖Wn ,∗
6

‖ϕ‖ε ‖ f ∗1 (β1)‖V1 ,∗ · · · ‖ f ∗n (βn)‖Vn ,∗

‖β1‖W1 ,∗ · · · ‖βn‖Wn ,∗

6 ‖ϕ‖ε ‖ f ∗1 ‖ · · · ‖ f ∗n ‖,

so that ‖ f (ϕ)‖ε 6 ‖ϕ‖ε ‖ f ∗1 ‖ · · · ‖ f ∗n ‖, as required. �

1.1.12 Exterior power seminorm

Let V be a vector space over k and r be the dimension of V over k. For any i ∈ N, we
let ΛiV be the ith exterior power of the vector space V . It is a quotient vector space
of V ⊗i .

Definition 1.1.62 Let ‖·‖ be a seminorm on the vector space V and ‖·‖π be the
π-tensor power of ‖·‖ on V ⊗i . The ith π-exterior power seminorm of ‖·‖ onΛiV is by
definition the quotient seminorm onΛiV of ‖·‖π induced by the canonical projection
map V ⊗i → ΛiV sending x1 ⊗ · · · ⊗ xi to x1 ∧ · · · ∧ xi , denoted by ‖·‖Λi

π
, or simply

by ‖·‖Λi . Similarly, the ε-tensor product seminorm ‖·‖ε on V ⊗i induces by quotient
a seminorm on ΛiV , called the ith ε-exterior power of ‖·‖, denoted by ‖·‖Λi

ε
.

Proposition 1.1.63 Let (V, ‖·‖) be a seminormed vector space over k and i be a
natural number. For any (x1, . . . , xi) ∈ V i one has

‖x1 ∧ · · · ∧ xi ‖Λi
ε
6 ‖x1 ∧ · · · ∧ xi ‖Λi

π
6 ‖x1‖ · · · ‖xi ‖.

Proof The first inequality follows from Proposition 1.1.54.
Note that x1 ∧ · · · ∧ xi is the image of x1 ⊗ · · · ⊗ xi by the canonical projection

map V ⊗i → ΛiV . Therefore one has

‖x1 ∧ · · · ∧ xi ‖Λi
π
6 ‖x1 ⊗ · · · ⊗ xi ‖π 6 ‖x1‖ · · · ‖xi ‖,

where ‖·‖π denotes the π-tensor power of ‖·‖. �

Proposition 1.1.64 Let V and W be seminormed vector spaces over k and f : V →

W be a bounded k-linear map. Let i be a positive integer. The k-linear map f induces
by passing to the ith exterior power a k-linear map Λi f : ΛiV → ΛiW .

(1) If we equip ΛiV and ΛiW with the ith π-exterior power seminorms, then the
operator seminorm of Λi f is bounded from above by ‖ f ‖i .

(2) If we equip ΛiV and ΛiW with the ith ε-exterior power seminorms, then the
operator seminorm of Λi f is bounded from above by ‖ f ∗‖i .

Proof Let us consider a commutative diagram:
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V ⊗i f ⊗i //

��

W ⊗i

��
ΛiV

Λi f

// ΛiW

By (2.a) in Proposition 1.1.14, we obtain ‖Λi f ‖ 6 ‖ f ⊗i ‖. Thus the assertions follow
from Proposition 1.1.61. �

1.1.13 Determinant seminorm

Let V be a finite-dimensional vector space over k. Recall that the determinant of V
is defined as the maximal exterior power ΛrV of the vector space V , where r is the
dimension of V over k. It is a quotient space of dimension 1 of V ⊗r . We denote by
det(V) the determinant of V .

Definition 1.1.65 Assume that the vector space V is equipped with a seminorm ‖·‖.
We call the determinant seminorm of ‖·‖ on det(V) and we denote by ‖·‖det the π-
exterior power seminorm of ‖·‖, that is, quotient seminorm induced by the π-tensor
power seminorm on V ⊗r .

Proposition 1.1.66 (Hadamard’s inequality) Let (V, ‖·‖) be a finite-dimensional
seminormed vector space of dimension r > 0 over k. For any η ∈ det(V),

‖η‖det = inf
{
‖x1‖ · · · ‖xr ‖ : η = x1 ∧ · · · ∧ xr

}
.

In particular, the determinant seminorm is a norm if and only if ‖·‖ is a norm.

Proof If η is written in the form η = x1 ∧ · · · ∧ xr , where x1, . . . , xr are elements in
V , then it is the image of x1 ⊗ · · · ⊗ xr by the canonical projection V ⊗r → det(V).
Therefore one has ‖η‖det 6 ‖x1‖ · · · ‖xr ‖. Thus we obtain

‖η‖det 6 inf
{
‖x1‖ · · · ‖xr ‖ : η = x1 ∧ · · · ∧ xr

}
.

In the following, we prove the converse inequality. It suffices to treat the case
where η , 0. By definition one has

‖η‖det = inf
{ N∑

i=1
‖x(i)1 ‖ · · · ‖x(i)r ‖ : η =

N∑
i=1

x(i)1 ∧ · · · ∧ x(i)r

}
.

Let {x(i)j }i∈{1,...,N }, j∈{1,...,r } be elements in V such that η =
∑N

i=1 x(i)1 ∧ · · · ∧ x(i)r .
Let {ej}rj=1 be a basis of V and η0 = e1 ∧ · · · ∧ er . For any i ∈ {1, . . . ,N}, there
exists ai ∈ k such that x(i)1 ∧ · · · ∧ x(i)r = aiη0. Without loss of generality, we may
assume that all ai are non-zero and that
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‖x(1)1 ‖ · · · ‖x(1)r ‖

|a1 |
= min

i∈{1,...,N }

‖x(i)1 ‖ · · · ‖x(i)r ‖

|ai |
.

Note that one has

η = (a1 + · · · + aN )η0 =
(
1 +

a2
a1
+ · · · +

aN

a1

)
x(1)1 ∧ · · · ∧ x(1)r ,

and ���1 + a2
a1
+ · · · +

aN

a1

��� · ‖x(1)1 ‖ · · · ‖x(1)r ‖

6
(
1 +

���a2
a1

��� + · · · + ���aN

a1

���) ‖x(1)1 ‖ · · · ‖x(1)r ‖ 6
N∑
i=1

‖x(i)1 ‖ · · · ‖x(i)r ‖.

The proposition is thus proved. �

Remark 1.1.67 Let (V, ‖·‖) be a non-zero finite-dimensional normed vector space
over k. Let r be the dimension of V over k. Proposition 1.1.66 shows that

inf
{

‖x1‖ · · · ‖xr ‖
‖x1 ∧ · · · ∧ xr ‖det

: (x1, . . . , xr ) ∈ Vr , x1 ∧ · · · ∧ xr , 0
}
= 1. (1.18)

If the infimum is attained by some (e1, . . . , er ) ∈ Vr , then {ei}ri=1 is called an
Hadamard basis of (V, ‖·‖). By convention, the empty subset of the zero normed
vector space is considered as an Hadamard basis.

Corollary 1.1.68 Let V be a finite-dimensional seminormed vector space over k and
W be a vector subspace of V . The canonical isomorphism (see [28] Chapter III, §7,
no.7)

det(W) ⊗ det(V/W) −→ det(V) (1.19)

has seminorm 6 1, where we consider the determinant seminorm of the induced
seminorm on det(W) and that of the quotient seminorm on det(V/W), and the tensor
product seminorm on det(W) ⊗ det(V/W) (see Remark 1.1.56).

Proof Let {x1, . . . , xn} be a basis of W and {y1, . . . , ym} be elements in V \W whose
image in V/W forms a basis of V/W . By Proposition 1.1.66 one has

‖x1 ∧ · · · ∧ xn ∧ y1 ∧ · · · ∧ ym‖det 6 ‖x1‖ · · · ‖xn‖ · ‖y1‖ · · · ‖ym‖.

Note that if we replace each yi by an element y′i in the same equivalent class, one
has

x1 ∧ · · · ∧ xn ∧ y1 ∧ · · · ∧ ym = x1 ∧ · · · ∧ xn ∧ y′1 ∧ · · · ∧ y′m.

Hence we obtain

‖x1 ∧ · · · ∧ xn ∧ y1 ∧ · · · ∧ ym‖ 6 ‖x1‖ · · · ‖xn‖ · ‖[y1]‖ · · · ‖[ym]‖.

Therefore, for any η ∈ det(W) and η′ ∈ det(V/W) one has
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‖η ∧ η′‖det 6
(

inf
(x1 ,...,xn)∈W

n

x1∧···∧xn=η

‖x1‖ · · · ‖xn‖
) (

inf
(y1 ,...,ym)∈(V\W )m

[y1]∧···∧[ym]=η′

‖[y1]‖ · · · ‖[ym]‖
)
,

which leads to, by Proposition 1.1.66, the inequality ‖η ∧ η′‖det 6 ‖η‖det · ‖η
′‖det.�

Proposition 1.1.69 Let (V, ‖·‖V ) and (W, ‖·‖W ) be finite-dimensional seminormed
vector spaces over k, and n and m be respectively the dimensions of V and W over
k. We equip V ⊗k W with the π-tensor product seminorm ‖·‖π . Then the natural
k-linear isomorphism det(V ⊗k W) � det(V)⊗m ⊗k det(W)⊗n is an isometry, where
we consider the determinant seminorm of ‖·‖π on det(V ⊗kW) and the tensor product
of determinant seminorms on det(V)⊗m ⊗k det(W)⊗n.

Proof Let ‖·‖ ′ be the seminorm on det(V)⊗m ⊗ det(W)⊗n given by tensor product
of determinant seminorms. By Proposition 1.1.58, the seminorm ‖·‖ ′ identifies with
the quotient of the π-tensor power on (V ⊗k W)⊗nm of the seminorm ‖·‖π on V ⊗k W .
In other words, ‖·‖ ′ identifies with ‖·‖π,det. �

Proposition 1.1.70 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k and r be the dimension of V over k. Let i be a positive integer. Then the
canonical k-linear isomorphism det(ΛiV) → det(V)⊗(

r−1
i−1) is an isometry, where we

consider the ith π-exterior power seminorm on ΛiV .

Proof Consider the following commutative diagram

V ⊗i(ri)
p1 // //

p2
����

det(V)⊗(
r−1
i−1)

(ΛiV)⊗(
r
i)

p3
// // det(ΛiV)

'

OO

By definition, if we equip V ⊗i(ri) with the π-tensor product seminorm, then its
quotient seminorm on (ΛiV)⊗(

r
i) identifies with the π-tensor product of the π-

exterior power seminorm. Moreover, by Proposition 1.1.58, the quotient seminorm
on det(ΛiV) (induced by p3) of the tensor product of the π-exterior power seminorm
identifies with the determinant seminorm of the latter. Still by the same proposition,
the quotient seminorm on det(V)⊗(

r−1
i−1) induced by p1 identifies with the tensor

power of the determinant seminorm. Therefore the natural isomorphism det(ΛiV) →

det(V)⊗(
r−1
i−1) preserves actually the seminorms by using (1) in Proposition 1.1.14. �

1.1.14 Seminormed graded algebra

Let R• =
⊕

n∈N Rn be a graded k-algebra such that, for any n ∈ N, Rn is of
finite dimension over k. For any n ∈ N, let ‖·‖n be a seminorm on Rn. We say
that R• = {(Rn, ‖·‖n)}n∈N is a seminormed graded algebra over k if the following
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submultiplicativity condition is satisfied: for any (n,m) ∈ N2 and any (a, b) ∈ Rn ×

Rm, one has
‖a · b‖n+m 6 ‖a‖n · ‖b‖m.

Furthermore, we say that R• is of finite type if the underlying graded k-algebra R• is
of finite type over k.

Let M• =
⊕

m∈Z Mm be a Z-graded k-linear space and h be a positive integer. We
say that M• is an h-graded R•-module if M• is equipped with a structure of R•-module
such that

∀ (n,m) ∈ N × Z, ∀ (a, x) ∈ Rn × Mm, ax ∈ Mnh+m.

Let M• be an h-graded R•-module. Assume that each homogeneous component Mm

is of finite dimension over k and is equipped with a seminorm ‖·‖Mm . We say that
M• =

{
(Mm, ‖·‖Mm )

}
m∈Z

is a seminormed h-graded R•-module if the following
condition is satisfied: for any (n,m) ∈ N × Z and any (a, x) ∈ Rn × Mm, one has

‖a · x‖Mnh+m
6 ‖a‖n · ‖x‖Mm .

We say that an h-graded R•-module M• is of finite type if the underlying h-graded
R•-module M• is of finite type.

Proposition 1.1.71 Let R• = {(Rn, ‖·‖n)}n∈N be a seminormed graded algebra over
k. Let I• be a homogenous ideal of R• and R′

•
:= R•/I•.

(1) Let ‖·‖ ′n be the quotient seminorm on R′
n induced by ‖·‖n and Rn → R′

n. Then
R′

•
= {(R′

n, ‖·‖
′
n)}n∈N forms a seminormed graded algebra over k.

(2) Let M• = {(Mm, ‖·‖Mm )}m∈N be a normed h-graded R•-module and f• : M• →

N• be a homomorphism of h-graded modules over R•.3 We assume that I• ·N• = 0
and fm : Mm → Nm is surjective for all m ∈ Z. Let ‖·‖Nm be the quotient
seminorm on Nm induced by ‖·‖Mm and fm. Then N• = {(Nm, ‖·‖Nm )}m∈N

forms a seminormed h-graded R′
•
-module.

Proof First let us see the following:

∀ (n,m) ∈ N × Z, (a′, y) ∈ R′
n × Nm, ‖a′ · y‖Nnh+m

6 ‖a′‖ ′n · ‖y‖Nm . (1.20)

Indeed, for a fixed positive number ε , one can find a ∈ Rn and x ∈ Mm such that{
[a] = a′, ‖a‖n 6 eε ‖a′‖ ′n,

fm(x) = y, ‖x‖Mm 6 eε ‖y‖Nm .

Then, as fm(a · x) = a′ · y,

‖a′ · y‖Nnh+m
6 ‖a · x‖Mnh+m

6 ‖a‖n · ‖x‖Mm 6 e2ε ‖a′‖ ′n · ‖y‖Nm ,

3 That is, for each m ∈ Z, fm : Mm → Nm is a k-linear map such that fnh+m(a · x) = [a] · fm(x)
for all a ∈ Rn and x ∈ Mm .
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which implies (1.20) because ε is an arbitrary positive number. Applying (1.20) to
the case where M• = R• and N• = R′

•
, one has

∀ (n,n′) ∈ N2, ∀ (a′, b′) ∈ R′
n × R′

n′, ‖a′ · b′‖ ′n+n′ 6 ‖a′‖ ′n · ‖b′‖ ′n′ . (1.21)

Thus (1) is proved, so that (2) is also proved by (1.20). �

1.1.15 Norm of polynomial

Let k[X] be the polynomial ring of one variable over k. For f = anXn + · · ·+ a1X +
a0 ∈ k[X], We define ‖ f ‖ to be

‖ f ‖ := max{|an |, . . . , |a1 |, |a0 |}.

It is easy to see that ‖·‖ yields a norm of k[X] over k.

Proposition 1.1.72 For f ,g ∈ k[X], one has the following:

(1) If the absolute value of k is Archimedean, then

‖ f g‖ 6 min{deg( f ) + 1,deg(g) + 1}‖ f ‖ · ‖g‖,

where the degree of the zero polynomial is defined to be −1 by convention.
(2) If the absolute value of k is non-Archimedean, then ‖ f g‖ = ‖ f ‖ · ‖g‖.

Proof Clearly we may assume that f , 0, g , 0 and deg( f ) 6 deg(g). We set
f = anXn + · · · + a1X + a0,

g = bmXm + · · · + b1X + b0,

f g = cn+mXn+m + · · · + c1X + c0,

where n = deg( f ) and m = deg(g). Then

cl =
∑

(i, j)∈∆(l)

aibj,

where
∆(l) =

{
(i, j) : i + j = l, i ∈ {0, . . . ,n}, j ∈ {0, . . . ,m}

}
,

so that, as card(∆(l)) 6 n + 1, one has

|cl | 6


∑

(i, j)∈∆(l)

|ai | · |bj | 6 (n + 1)‖ f ‖ · ‖g‖ (Archimedean case),

max
(i, j)∈∆(l)

{|ai | · |bj |} 6 ‖ f ‖ · ‖g‖ (non-Archimedean case).
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Thus (1) and the inequality ‖ f g‖ 6 ‖ f ‖ · ‖g‖ in the non-Archimedean case are
obtained.

Finally let us consider the converse inequality in the non-Archimedean case. We
set

α = min{i : |ai | = ‖ f ‖} and β = min{ j : |bj | = ‖g‖}.

Note that if i + j = α + β and (i, j) , (α, β), then |ai | · |bj | < ‖ f ‖ · ‖g‖ because
either i < α or j < β. Therefore, |cα+β | = ‖ f ‖ · ‖g‖ by Proposition 1.1.5 and hence
‖ f g‖ > ‖ f ‖ · ‖g‖. �

1.2 Orthogonality

The orthogonality of bases plays an important role in the study of finite-dimensional
normed vector spaces. In the classic functional analysis overR orC, the orthogonality
often refers to a property related to an inner product. This property actually has an
equivalent form, which has an analogue in the non-Archimedean case. However, in a
finite-dimensional normed vector space over a non-Archimedean valued field, there
may not exist an orthogonal basis. One can remedy this problem by introducing an
approximative variant of the orthogonality. This technic is useful in the study of
determinant norms.

1.2.1 Inner product

In this subsection, we assume that the absolute value |·| is Archimedean. In this case
the field k is either R or C and we assume that |·| is the usual absolute value.

Let V be a vector space over k. A map 〈 ,〉 : V × V → k is called a semidefinite
inner product on V if the following conditions are satisfied:

(i) 〈x,ay + bz〉 = a〈x, y〉 + b〈x, z〉 for all (x, y, z) ∈ V3 and (a, b) ∈ k2.
(ii) 〈x, y〉 = 〈y, x〉 for any (x, y) ∈ V2, where 〈y, x〉 is the complex conjugation of

〈y, x〉.
(iii) 〈x, x〉 ∈ R>0 for any x ∈ V .

If 〈x, x〉 > 0 for any x ∈ V \ {0}, we just say that 〈 ,〉 is an inner product. Namely,
an inner product means either a scalar product or a Hermitian product according to
k = R or C. Note that the semidefinite inner product 〈 ,〉 induces a seminorm ‖·‖ on
V such that ‖x‖ = 〈x, x〉1/2 for any x ∈ V .

Proposition 1.2.1 Let V be a vector space over k, 〈 ,〉 be a semidefinite inner product
on V and ‖·‖ be the seminorm induced by 〈 ,〉.

(1) For any x ∈ N‖ · ‖ and any y ∈ V one has 〈x, y〉 = 〈y, x〉 = 0.
(2) The semidefinite inner product 〈 ,〉 induces by passing to quotient an inner

product 〈 ,〉∼ on V/N‖ · ‖ such that
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∀ (x, y) ∈ V2, 〈[x], [y]〉∼ = 〈x, y〉,

where [x] and [y] are the classes of x and y in V/N‖ · ‖ , respectively. Moreover,
one has (‖α‖∼)2 = 〈α,α〉∼ for any α ∈ V/N‖ · ‖ .

(3) Assume that V is of finite dimension over k. For any bounded linear form f on V
there exists an element y in V such that f (x) = 〈y, x〉 for any x ∈ V . Moreover,
the element y is unique up to addition by an element in N‖ · ‖ .

Proof (1) By Cauchy-Schwarz inequality, one has |〈x, y〉|2 6 ‖x‖2 · ‖y‖2 = 0.
Hence 〈x, y〉 = 0. Similarly, 〈y, x〉 = 0.

(2) By (1) and the properties (i) and (ii) of semidefinite inner product, we obtain
that, if x, x ′, y and y′ are vectors in V such that x − x ′ ∈ N‖ · ‖ and y− y′ ∈ N‖ · ‖ , then
〈x, y〉 = 〈x ′, y′〉. Therefore the semidefinite inner product 〈 ,〉 induces by passing to
quotient a function

〈 ,〉∼ : (V/N‖ · ‖) × (V/N‖ · ‖) −→ k .

From the definition it is straightforward to check that 〈 ,〉∼ is a semidefinite inner
product and 〈α,α〉∼ = (‖α‖∼)2 for any α ∈ V/N‖ · ‖ . It remains to verify that 〈 ,〉∼
is definite. Let x be an element in V such that 〈[x], [x]〉∼ = 0. Then one has
〈x, x〉 = ‖x‖2 = 0. Hence ‖x‖ = 0, namely x ∈ N‖ · ‖ .

(3) Since f is a bounded linear form, it vanishes on N‖ · ‖ . Hence there exists a
unique linear form f̃ : V/N‖ · ‖ → k such that f̃ ◦ π = f , where π : V → V/N‖ · ‖

is the projection map. Moreover, by Riesz’s representation theorem for usual finite-
dimensional inner product space, there exists a unique β ∈ V/N‖ · ‖ such that f̃ (α) =
〈β,α〉∼ for any α ∈ V/N‖ · ‖ . Hence we obtain that the equivalence class β equals the
set of y ∈ V such that f (x) = 〈y, x〉 for any x ∈ V . �

Let V be a finite-dimensional vector space over k equipped with a seminorm ‖·‖.
We say that the seminorm ‖·‖ is Euclidean (resp. Hermitian) if k = R (resp. k = C)
and if the seminorm ‖·‖ is induced by a semidefinite inner product. Note that if a
seminorm ‖·‖ on V is Euclidean (resp. Hermitian), then also is its dual norm on
V∗. In fact, if 〈 ,〉 is a semidefinite inner product on V and ‖·‖ is the corresponding
seminorm, then it induces (by Riesz’s representation theorem) an R-linear isometry
ι : (V/N‖ · ‖, ‖·‖

∼) → (V∗, ‖·‖∗) such that

∀ (x, y) ∈ V2, ι([x])(y) = 〈x, y〉.

Moreover, for a ∈ k and x ∈ V one has ι(ax) = a ι(x). Then the dual norm on V∗ is
induced by the following inner product 〈 ,〉∗:

∀ (α, β) ∈ (V∗)2, 〈α, β〉∗ = 〈ι−1(α), ι−1(β)〉∼.

Remark 1.2.2 Let ψ : [0,1] → [0,1] be the function t 7→ (t2 + (1 − t)2)1/2. If V
and W are finite-dimensional vector spaces over k equipped with semidefinite inner
products, then the direct sum seminorm ‖·‖ψ on V ⊕ W as constructed in §1.1.10 is
induced by the semidefinite inner product on V ⊕ W defined as

〈
(x, y), (x ′, y′)

〉
:=
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〈x, x ′〉 + 〈y, y′〉. The seminorm ‖·‖ψ is called the orthogonal direct sum of the
seminorms on V and W corresponding to their semidefinite inner products.

1.2.2 Orthogonal basis of an inner product

In this subsection, we assume that the absolute value |·| is Archimedean. Let V be
a finite-dimensional vector space over k equipped with a semidefinite inner product
〈 ,〉. Let ‖·‖ be the seminorm induced by 〈 ,〉. We say that a basis {e1, . . . , er } of V
is orthogonal if 〈ei, ej〉 = 0 for distinct indices i and j in {1, . . . ,r}. If in addition
〈ei, ei〉 = 1 for any i ∈ {1, . . . ,r} such that ei ∈ V \ N‖ · ‖ , we say that {e1, . . . , er } is
an orthonormal basis. Note that, if {e1, . . . , er } is an orthogonal basis, then

∀ (λ1, . . . , λr ) ∈ kr , ‖λ1e1 + · · · + λrer ‖2 =

r∑
i=1

|λi |
2 · ‖ei ‖2. (1.22)

Moreover, by the Gram-Schmidt process, there always exists an orthonormal basis
of V (cf. the proof of Proposition 1.2.30).

The following proposition provides an alternative form for the orthogonality
condition of a basis in a finite-dimensional vector space equipped with a semidefinite
inner product.

Proposition 1.2.3 Let V be a finite-dimensional vector space over k, equipped with
a semidefinite inner product 〈 ,〉. Let {ei}ri=1 be a basis of V . Then it is an orthogonal
basis if and only if the following condition is satisfied:

∀ (λ1, . . . , λr ) ∈ kr , ‖λ1e1 + · · · + λrer ‖ > max
i∈{1,...,r }

‖λiei ‖. (1.23)

Proof If {ei}ri=1 is an orthogonal basis of V , then by (1.22) we obtain that the
inequality (1.23) holds. Conversely, assume given a basis {ei}ri=1 of V which verifies
the condition (1.23). Then for any (λ1, . . . , λr−1) ∈ kr−1, one has

‖λ1e1 + · · · + λr−1er−1 + er ‖ > ‖er ‖,

which implies that er is orthogonal to the vector subspace generated by e1, . . . , er−1.
Indeed, ‖(±ε)ei + er ‖ > ‖er ‖ for ε > 0, which implies that ε ‖ei ‖2 ± 2〈ei, er 〉 > 0,
and hence ±〈ei, er 〉 > 0 by taking the limit when ε → 0, as required. Therefore by
induction we obtain that the basis {ei}ri=1 is an orthogonal basis. �

1.2.3 Orthogonality in general cases

In this subsection, we consider a general valued field (k, |·|), which is not necessarily
Archimedean. Let V be a finite-dimensional vector space over k and ‖·‖ be a semi-
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norm on V . We say that a basis {ei}ri=1 of V is orthogonal if for any (a1, . . . ,ar ) ∈ kr

one has
‖a1e1 + · · · + arer ‖ > max

i∈{1,...,r }
‖aiei ‖.

If in addition ‖ei ‖ = 1 for any i ∈ {1, . . . ,r} such that ei ∈ V \ N‖ · ‖ , we say that the
basis {ei}ri=1 is orthonormal. We have seen in Proposition 1.2.3 that this definition
is equivalent to the definition in §1.2.2 when the absolute value |·| is Archimedean
and the seminorm ‖·‖ is induced by a semidefinite inner product.

The existence of an orthogonal basis in the non-Archimedean case is not always
true. We refer the readers to [120, Example 2.3.26] for a counter-example. Thus we
need a refinement of the notion of orthogonality.

Definition 1.2.4 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k, and α ∈ ]0,1]. We say that a basis {e1, . . . , er } of V is α-orthogonal if for any
(λ1, . . . , λr ) ∈ kr one has

‖λ1e1 + · · · + λrer ‖ > αmax {|λ1 | · ‖e1‖, . . . , |λr | · ‖er ‖}.

Note that the 1-orthogonality is just the orthogonality defined in the beginning of
the subsection. We refer the readers to [120, §2.3] for more details about this notion.

Proposition 1.2.5 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k, α be an element in ]0,1], and e = {ei}ri=1 be an α-orthogonal basis of (V, ‖·‖).
Then the intersection of e with N‖ · ‖ forms a basis of N‖ · ‖ .

Proof Without loss of generality, we assume that e ∩ N‖ · ‖ = {e1, . . . , en}, where
n ∈ N, n 6 r . Suppose that N‖ · ‖ is not generated by e ∩ N‖ · ‖ , then there exists an
element x = λ1e1 + · · · + λrer in N‖ · ‖ which does not belong to the vector subspace
of V generated by e∩ N‖ · ‖ . Therefore there exists i ∈ {n+ 1, . . . ,r} such that λi , 0.
Since the basis e is α-orthogonal, one has

0 = ‖x‖ > α |λi | · ‖ei ‖ > 0,

which leads to a contradiction. �

Proposition 1.2.6 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k, α ∈ ]0,1] and e be an α-orthogonal basis of V . Let e′ be a subset of e and W be
the vector subspace of V generated by all vectors in e′.

(1) The set e′ is an α-orthogonal basis of W with respect to the restriction of ‖·‖ to
W .

(2) The image of e ∩ (V \ W) in V/W forms an α-orthogonal basis of V/W with
respect to the quotient seminorm of ‖·‖. Moreover, for any x ∈ e ∩ (V \ W),
the quotient seminorm of the class of x is bounded from below by α‖x‖. In
particular, if α = 1, namely e is an orthogonal basis, then for any element
x ∈ e∩ (V \W), the quotient seminorm of the class of x in V/W is equal to ‖x‖.
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Proof (1) Assume that e′ = {e1, . . . , en}. Since W is generated by the vectors in
e′, {e1, . . . , en} is a basis of W . Since e is an α-orthogonal basis of V , for any
(λ1, . . . , λn) ∈ kn one has

‖λ1e1 + · · · + λnen‖ > αmax{|λ1 | · ‖e1‖, . . . , |λn | · ‖en‖}.

Therefore {e1, . . . , en} is an α-orthogonal basis of W .
(2) Assume that e′ = {e1, . . . , en} and e ∩ (V \ W) = {en+1, . . . , er }. It is clear

that the canonical image of e ∩ (V \ W) in V/W forms a basis of V/W . It remains
to show that it is an α-orthogonal basis. Let ‖·‖ ′ be the quotient seminorm of ‖·‖

on V/W . For any i ∈ {n + 1, . . . ,r}, let yi be the canonical image of ei in V/W . Let
(λ1, . . . , λr ) be an element in kr . Since e is an α-orthogonal basis of (V, ‖·‖), for any
(λ1, . . . , λr ) ∈ kr one has

‖λ1e1 + · · · + λrer ‖ > α max
i∈{1,...,r }

|λi | · ‖ei ‖ > α max
i∈{n+1,...,r }

|λi | · ‖ei ‖.

Therefore, for any (λn+1, . . . , λr ) ∈ kr−n one has (note that yj = [ej])

‖λn+1yn+1 + · · · + λr yr ‖
′ > α max

i∈{n+1,...,r }
|λi | · ‖ei ‖ > α max

i∈{n+1,...,r }
|λi | · ‖yi ‖

′.

Hence {yi}
r
i=n+1 is an α-orthogonal basis of V/W . The first inequality also implies

that ‖yi ‖ ′ > α‖ei ‖ for any i ∈ {n+ 1, . . . ,r}. If α = 1, for any i ∈ {n+ 1, . . . ,r} one
has

‖yi ‖
′ > ‖ei ‖ > ‖yi ‖

′,

which leads to the equality ‖yi ‖
′ = ‖ei ‖. �

The following proposition shows that, in the Archimedean case, any finite-
dimensional normed vector space admits an orthogonal basis. In general case, for
any α ∈ ]0,1[, any finite-dimensional normed vector space admits an α-orthogonal
basis.

Proposition 1.2.7 Let (V, ‖·‖) be a finite-dimensional normed vector space over k.
Then we have the following:

(1) For any α ∈ ]0,1[, there exists an α-orthogonal basis of V .
(2) Any Hadamard basis of V is orthogonal (see Remark 1.1.67).
(3) If the field k is locally compact and the absolute value |·| is not trivial, then V

admits an Hadamard basis, which is also an orthogonal basis.

Proof (1), (2) By Proposition 1.1.66, we can choose a basis e = {ei}ri=1 such that

‖e1‖ · · · ‖er ‖
‖e1 ∧ · · · ∧ er ‖

6 α−1.

We claim that e = {ei}ri=1 is α-orthogonal. Let (λ1, . . . , λr ) be an element in kr and
x = λ1e1 + · · · + λrer . For any i ∈ {1, . . . ,r}, by Proposition 1.1.66 one has
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‖e1‖ · · · ‖er ‖
‖e1 ∧ · · · ∧ er ‖

6 α−1 ‖e1‖ · · · ‖ei−1‖ · ‖x‖ · ‖ei+1‖ · · · ‖er ‖
‖e1 ∧ · · · ei−1 ∧ x ∧ ei+1 ∧ · · · ∧ er ‖

.

Therefore one has ‖x‖ > α |λi | · ‖ei ‖. Since i ∈ {1, . . . ,r} is arbitrary, we obtain that
{ei}ri=1 is an α-orthogonal basis. A similar argument also shows that an Hadamard
basis is necessarily orthogonal.

(3) We assume that k is locally compact and |·| is not trivial. Then, as V is locally
compact, there is a0 ∈ k× such that (V, ‖·‖)6 |a0 | is compact. By Proposition 1.1.4, if
we choose λ with λ < sup{|a| : a ∈ k×, |a| < 1}, then, for any x ∈ V \ {0}, there is
b ∈ k× such that λ 6 ‖bx‖ < 1. Here we set

C = {x ∈ V : λ |a0 | 6 ‖x‖ 6 |a0 |},

which is a compact set in V . For (x1, . . . , xr ) ∈ (V \ {0})r , there are b1, . . . , br ∈ k×

such that λ 6 ‖bi xi ‖ < 1 for all i, so that (a0b1x1, . . . ,a0br xr ) ∈ Cr and

‖(a0b1x1) ∧ · · · ∧ (a0br xr )‖
‖a0b1x1‖ · · · ‖a0br xr ‖

=
‖x1 ∧ · · · ∧ xr ‖
‖x1‖ · · · ‖xr ‖

.

Hence the function
(x1, . . . , xr ) 7−→

‖x1 ∧ · · · ∧ xr ‖
‖x1‖ · · · ‖xr ‖

attains its maximal value on (V \ {0})r , which is equal to 1. The proposition is thus
proved. �

Remark 1.2.8 (1) In the case where |·| is trivial and ‖·‖ is ultrametric, there is an
orthogonal basis e for ‖·‖ by Proposition 1.2.30. Thus, by Proposition 1.2.23, e is
an Hadamard basis of (V, ‖·‖).

(2) We assume that k is an infinite field and the absolute value |·| is trivial. Fix a
map λ : P1(k) → [ 1

2 ,1]. Let π : k2 \ {(0,0)} → P1(k) be the natural map. We set

∀ x ∈ k2, ‖x‖λ :=

{
λ(π(x)) if x , (0,0),
0 if x = (0,0).

It is easy to see that ‖·‖λ satisfies the axioms of norm: (1) ‖ax‖λ = |a| · ‖x‖λ; (2)
‖x + y‖λ 6 ‖x‖λ + ‖y‖λ; (3) ‖x‖λ = 0 ⇐⇒ x = 0. Choosing an infinite subset
S = {ζ1, ζ2, . . . , ζn, . . .} of P1(k), we consider λ given by

λ(ζ) :=

{
1
2 + (

1
2 )

n if ζ ∈ S and ζ = ζn,
1 otherwise.

Then λ(P1(k)) ⊆ ] 1
2 ,1], and for any ε > 1/2 there is ζ ∈ P1(k) with λ(ζ) < ε .

Obviously {‖x‖λ : x ∈ k2} is an infinite set, which means that (2) in Corollary 1.1.6
does not hold without the assumption that the norm is ultrametric. Moreover, let us
see that there is no orthogonal basis for ‖·‖λ. Indeed, we assume that {e1, e2} is an
orthogonal basis for ‖·‖λ. By the property of λ, there is x ∈ k2 \ {(0,0)} such that
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‖x‖λ < min{‖e1‖λ, ‖e2‖λ}. If we set x = ae1 + be2 with (a, b) , (0,0), then

‖x‖λ > max{|a| · ‖e1‖λ, |b| · ‖e2‖λ} > min{‖e1‖λ, ‖e2‖λ},

which is a contradiction.

Corollary 1.2.9 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over k.
For any α ∈ ]0,1[, there exists an α-orthogonal basis of (V, ‖·‖). If the absolute value
|·| is non-trivial and (k, |·|) is locally compact, then (V, ‖·‖) admits an orthogonal
basis.

Proof If the absolute value |·| is non-trivial and (k, |·|) is locally compact, let α be
an element in ]0,1], otherwise let α be an element in ]0,1[. Let W be the quotient
vector space V/N‖ · ‖ , equipped with the quotient norm ‖·‖∼. By Proposition 1.2.7,
the normed vector space (W, ‖·‖∼) admits an α-orthogonal basis {xi}ni=1. For any
i ∈ {1, . . . ,n}, let ei be an element in the class xi . We also choose a basis {ej}rj=n+1
of N‖ · ‖ . Hence {ei}ri=1 becomes a basis of V . For any (λ1, . . . , λr ) ∈ kr one has

‖λ1e1 + · · · + λrer ‖ = ‖λ1x1 + · · · + λnxn‖∼ > α max
i∈{1,...,n}

|λi | · ‖xi ‖∼

= α max
i∈{1,...,n}

|λi | · ‖ei ‖ = α max
i∈{1,...,r }

|λi | · ‖ei ‖.

Lemma 1.2.10 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over k,
and α ∈ ]0,1]. If e = {ei}ri=1 is an α-orthogonal basis of V and if {e∨i }

r
i=1 is its dual

basis, then, for any i ∈ {1, . . . ,r}, ei < N‖ · ‖ if and only if e∨i ∈ V∗, and in this case
one has

1 6 ‖e∨i ‖∗ · ‖ei ‖ 6 α−1. (1.24)

Proof The hypothesis that ei < N‖ · ‖ actually implies that e∨i vanishes on N‖ · ‖ since
N‖ · ‖ is generated by e∩N‖ · ‖ (see Proposition 1.2.5). By Corollary 1.1.13, e∨i belongs
to V∗. Conversely, if ei belongs to N‖ · ‖ then e∨i is not a bounded linear form on V
since it takes non-zero value on ei ∈ N‖ · ‖ .

The first inequality of (1.24) comes from the formula (1.4) in §1.1.5. In the
following, we prove the second inequality. For any (λ1, . . . , λr ) ∈ kr one has

e∨i (λ1e1 + · · · + λrer ) = λi .

Hence
‖e∨i ‖∗ = sup

(λ1 ,...,λr )∈k
r

λi,0

|λi |

‖λ1e1 + · · · + λrer ‖
6 α−1‖ei ‖−1,

where the inequality comes from the hypothesis that the basis {ei}ri=1 is α-orthogonal
(so that ‖λ1e1 + · · · + λrer ‖ > α |λi | · ‖ei ‖). �

Proposition 1.2.11 Let V be a finite-dimensional seminormed vector space over k
and α ∈ ]0,1]. If {ei}ri=1 is an α-orthogonal basis of V and if {e∨i }

r
i=1 is the dual



1.2 Orthogonality 49

basis of {ei}ri=1, then {e∨i }
r
i=1 ∩V∗ is an α-orthogonal basis of V∗. Moreover, {ei}ri=1

is an α-orthogonal basis of (V, ‖·‖∗∗) and one has

α‖ei ‖ 6 ‖ei ‖∗∗ 6 ‖ei ‖. (1.25)

Proof By Proposition 1.2.5 and Lemma 1.2.10, the cardinal of {e∨i }
r
i=1 ∩V∗, which

is equal to that of {ei}ri=1 ∩ (V \ N‖ · ‖), is dimk(V∗) = dimk(V/N‖ · ‖). Therefore
{e∨i }

r
i=1 ∩ V∗ is a basis of V∗.

Consider ξ = a1e∨1 + · · · + are∨r in V∗. As ξ(ei) = ai we get that

‖ξ‖∗ >
|ai |
‖ei ‖

> α |ai | · ‖e∨i ‖∗

for any i ∈ {1, . . . ,r} such that ‖ei ‖ , 0, where the second inequality comes from
Lemma 1.2.10. This implies that {e∨i }

r
i=1 ∩ V∗ is an α-orthogonal basis of V∗.

Let x = λ1e1 + · · · + λrer be an element in V . Without loss of generality, we
assume that e ∩ N‖ · ‖ = {en+1, . . . , er }. By definition, for i ∈ {1, . . . ,n} one has

‖x‖∗∗ >
|e∨i (x)|

‖e∨i ‖∗
=

|λi |

‖e∨i ‖∗
. (1.26)

By Lemma 1.2.10, one has 1 6 ‖e∨i ‖∗ · ‖ei ‖ 6 α−1 and hence

‖x‖∗∗ > α |λi | · ‖ei ‖ > α |λi | · ‖ei ‖∗∗, (1.27)

where the last inequality comes from (1.5). For i ∈ {n + 1, . . . ,r} one has ‖ei ‖∗∗ =
‖ei ‖ = 0. Hence

‖x‖∗∗ > α max
i∈{1,...,r }

|λi | · ‖ei ‖∗∗,

which shows that {ei}ri=1 is an α-orthogonal basis of (V, ‖·‖∗∗). Moreover, (1.27) also
implies that ‖ei ‖∗∗ > α‖ei ‖ for i ∈ {1, . . . ,n}, which, joint with the relation

∀ i ∈ {n + 1, . . . ,r}, ‖ei ‖ = ‖ei ‖∗∗ = 0,

leads to the first inequality of (1.25). The second inequality of (1.25) comes from
(1.5). �

Corollary 1.2.12 We suppose that the absolute value |·| is non-Archimedean. Let
(V, ‖·‖) be a finite-dimensional seminormed vector space over k. Then the double dual
seminorm ‖·‖∗∗ on V is the largest ultrametric seminorm on V which is bounded from
above by ‖·‖, and one has ‖·‖ 6 dimk(V)‖·‖∗∗. If the seminorm ‖·‖ is ultrametric,
then one has ‖·‖∗∗ = ‖·‖.

Proof We have seen in Remark 1.1.19 that the double dual seminorm ‖·‖∗∗ is
ultrametric, and in the formula (1.5) of §1.1.5 that it is bounded from above by ‖·‖.
Let ‖·‖ ′ be an ultrametric seminorm on V such that ‖·‖ ′ 6 ‖·‖. We will show that
‖·‖ ′ 6 ‖·‖∗∗ and ‖·‖ 6 r ‖·‖∗∗, where r is the dimension of V over k.
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Let α ∈ ]0,1[. By Proposition 1.2.7, there exists an α-orthogonal basis {ei}ri=1 of
(V, ‖·‖). For any vector x = λ1e1 + · · · + λrer in V one has

α2‖x‖ ′ 6 α2 max
i∈{1,...,r }

|λi | · ‖ei ‖ 6 α max
i∈{1,...,r }

|λi | · ‖ei ‖∗∗ 6 ‖x‖∗∗,

where the second inequality comes from (1.25) and the third inequality follows
from the fact that {ei}ri=1 is an α-orthogonal basis for ‖·‖∗∗ (see Proposition 1.2.11).
Moreover, by the triangle inequality one has

α2‖x‖ 6 α2
r∑
i=1

|λi | · ‖ei ‖ 6 rα2 max
i∈{1,...,r }

|λi | · ‖ei ‖ 6 r ‖x‖∗∗

Since α ∈ ]0,1[ is arbitrary, we obtain ‖·‖ ′ 6 ‖·‖∗∗ and ‖·‖ 6 r ‖·‖∗∗. The first
assertion of the proposition is thus proved.

If ‖·‖ is ultrametric, it is certainly the largest ultrametric norm bounded from
above by ‖·‖. Hence one has ‖·‖ = ‖·‖∗∗. �

Remark 1.2.13 In Corollary 1.2.12, the constant dimk(V) in the inequality ‖·‖ 6
dimk(V)‖·‖∗∗ is optimal. We can consider for example the vector space V = kr

equipped with the `1-norm

∀ (a1, . . . ,ar ) ∈ kr , ‖(a1, . . . ,ar )‖`1 = |a1 | + · · · + |ar |.

Then its double dual norm is given by

∀ (a1, . . . ,ar ) ∈ kr , ‖(a1, . . . ,ar )‖`1 ,∗∗ = max{|a1 |, . . . |ar |}.

In particular, one has ‖(1, . . . ,1)‖`1 = r ‖(1, . . . ,1)‖`1 ,∗∗.

Proposition 1.2.14 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over the field k.

(1) The seminorm ‖·‖ and its double dual seminorm ‖·‖∗∗ induce the same dual
norm on the vector space V∗ of bounded linear forms.

(2) If W is a quotient space of dimension 1 of V , then the seminorms ‖·‖ and ‖·‖∗∗
induce the same quotient seminorm on W .

Proof (1) The Archimedean case follows from Proposition 1.1.18. It suffices to treat
the case where the absolute value |·| is non-Archimedean. Since ‖·‖∗ is ultrametric,
by Corollary 1.2.12, one has ‖·‖∗ = ‖·‖∗,∗∗ = ‖·‖∗∗,∗.

(2) If the kernel of the quotient map V → W does not contain N‖ · ‖ , then the
quotient seminorm of ‖·‖ on W vanishes because dimK W = 1. The quotient semi-
norm of ‖·‖∗∗ on W also vanishes since we have observed in the proof of (1) that
N‖ · ‖ = N‖ · ‖∗∗ . In the following we treat the case where the kernel of the projection
map V → W contains N‖ · ‖ , or equivalent, the quotient seminorms of ‖·‖ and ‖·‖∗∗
on W are actually norms. Since W is of dimension 1, any norm on W is uniquely
determined by its dual norm on W∨. Let ‖·‖W be the quotient norm on W induced
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by ‖·‖. By Proposition 1.1.20, the dual norm ‖·‖W ,∗ identifies with the restriction of
‖·‖∗ to W∨ (viewed as a vector subspace of V∗). By (1), the norm ‖·‖∗ identifies with
the dual norm of ‖·‖∗∗. As a consequence, ‖·‖W coincides with the quotient norm of
‖·‖∗∗. �

Proposition 1.2.15 We assume that the absolute value |·| is non-Archimedean. Let
(V, ‖·‖) be a finite-dimensional seminormed vector space over k and let r be the
dimension of V . Then the quotient seminorm of the ε-tensor product seminorm ‖·‖ε
on V ⊗r by the canonical quotient map V ⊗r → det(V) identifies with the determinant
seminorm on det(V) induced by ‖·‖. In particular, ‖·‖ and ‖·‖∗∗ induce the same
determinant seminorm on det(V).

Proof Denote by ‖·‖detε the quotient seminorm on det(V) of the ε-tensor product
seminorm on V ⊗r . We have seen in Proposition 1.1.54 that the ε-tensor product
seminorm is always bounded from above by the π-tensor product seminorm. There-
fore, one has ‖·‖detε 6 ‖·‖det. Moreover, if ‖·‖ is not a norm, then the seminorm ‖·‖det
vanishes. Hence the seminorm ‖·‖detε also vanishes. To prove the first assertion of
the proposition, it remains to verify the inequality ‖·‖det 6 ‖·‖detε in the case where
‖·‖ is a norm.

Consider a tensor vector ϕ in V ⊗r , which is also viewed as a k-multilinear form
on (V∨)r . By definition, one has

‖ϕ‖ε = sup
( f1 ,..., fr )∈(V

∨)r

∀ i∈{1,...,r }, fi,0

|ϕ( f1, . . . , fr )|
‖ f1‖∗ · · · ‖ fr ‖∗

.

Let α ∈ ]0,1[, {xi}ri=1 be an α-orthogonal basis of V , and {x∨i }
r
i=1 be its dual basis

of V∨. Assume that ϕ is written in the form

ϕ =
∑

I=(i1 ,...,ir )∈{1,...,r }r
aI (xi1 ⊗ · · · ⊗ xir ),

where aI ∈ k. Then one has

∀ (i1, . . . , ir ) ∈ {1, . . . ,r}r , ϕ(x∨i1, . . . , x
∨
ir
) = a(i1 ,...,ir ).

In particular,

∀ (i1, . . . , ir ) ∈ {1, . . . ,r}r , ‖ϕ‖ε >
|a(i1 ,...,ir ) |

‖x∨i1 ‖∗ · · · ‖x∨ir ‖∗
.

Note that the canonical image η of ϕ in det(V) is( ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

)
x1 ∧ · · · ∧ xr ,

whereSr is the symmetric group of order r , namely the group of all bijections from
the set {1, . . . ,r} to itself, and sgn(·) :Sr → {±1} denotes the character of signature.
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Hence

‖η‖det =
��� ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

��� · ‖x1 ∧ · · · ∧ xr ‖det,

6
��� ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

��� · ‖x1‖ · · · ‖xr ‖,
(1.28)

where the inequality follows from (1.18). Since the absolute value |·| is non-
Archimedean, one has

‖η‖det 6 ‖ϕ‖ε · ‖x1‖ · · · ‖xr ‖ · ‖x∨1 ‖∗ · · · ‖x∨r ‖∗ 6 ‖ϕ‖εα
−r ,

where the second inequality comes from Lemma 1.2.10. Since α ∈ ]0,1[ is arbitrary,
the first assertion is proved.

We proceed with the proof of the second assertion. By Proposition 1.2.14, the
seminorms ‖·‖ and ‖·‖∗∗ induce the same dual norm on V∗, and hence induce the
same ε-tensor product seminorm on V ⊗r . Therefore, by the first assertion of the
proposition, we obtain that they induce the same determinant seminorm on det(V).�

Remark 1.2.16 In the above proposition, the non-Archimedean assumption on the
absolute value is essential. In the Archimedean case, the inequality (1.28) only leads
to a weaker estimate ‖·‖det 6 r!‖·‖detε , where ‖·‖detε is the quotient seminorm on
det(V) induced by the ε-tensor product seminorm.

Definition 1.2.17 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k and r be the dimension of V over k. We denote by ‖·‖detε the quotient seminorm
of the ε-tensor power of ‖·‖ on V ⊗r by the canonical projection map V ⊗r → det(V),
called the ε-determinant seminorm of ‖·‖.

Proposition 1.2.18 We assume that the absolute value |·| is Archimedean. Let (V, ‖·‖)
be a finite-dimensional seminormed vector space over k and let r be the dimension
of V/N‖ · ‖ over k. Then the ε-determinant norm of the dual norm ‖·‖∗ on det(V∗)

is bounded from below by (r!)−1‖·‖∼det,∗, where ‖·‖∼det,∗ is the dual norm of the
determinant of the norm ‖·‖∼.

Proof By Corollary 1.1.13, one has V∗ = (V/N‖ · ‖)
∨. Moreover one has ‖·‖∗ = ‖·‖∼∗ .

Hence, by replacing (V, ‖·‖) by (V/N‖ · ‖, ‖·‖
∼), we may assume without loss of

generality that ‖·‖ is a norm.
Let ϕ be an element in V∨⊗r . Viewed as a k-multilinear form on Vr , one has

‖ϕ‖∗,ε = sup
(x1 ,...,xr )∈(V\{0})r

|ϕ(x1, . . . , xr )|
‖x1‖ · · · ‖xr ‖

.

Let {ei}ri=1 be a basis of V and {e∨i }
r
i=1 be its dual basis of V∨. Assume that ϕ is

written in the form

ϕ =
∑

I=(i1 ,...,ir )∈{1,...,r }r
aI (e∨i1 ⊗ · · · ⊗ e∨ir ),
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where aI ∈ k. Then for any (i1, . . . , ir ) one has

ϕ(ei1, . . . , eir ) = a(i1 ,...,ir ).

In particular,

‖ϕ‖∗,ε >
|a(i1 ,...,ir ) |

‖ei1 ‖ · · · ‖eir ‖
.

Note that the canonical image η of ϕ in det(V) is( ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

)
e∨1 ∧ · · · ∧ e∨r .

Therefore,

‖η‖det,∗ =

���� ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

���� · ‖e∨1 ∧ · · · ∧ e∨r ‖det,∗

=

���� ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

���� · 1
‖e1 ∧ · · · ∧ er ‖det

6 r!‖ϕ‖∗,ε
‖e1‖ · · · ‖er ‖

‖e1 ∧ · · · ∧ er ‖det
.

By (1.18), we obtain ‖η‖det,∗ 6 r!‖ϕ‖∗,ε . The proposition is thus proved. �

Proposition 1.2.19 Let {(Vj, ‖·‖j)}
d
j=1 be a finite family of finite-dimensional semi-

normed k-vector spaces and let α be a real number in ]0,1]. For any j ∈ {1, . . . , d},
let {e(j)i }

n j

i=1 be an α-orthogonal basis of Vj . Then

e(1)i1
⊗ · · · ⊗ e(d)id

, (i1, . . . , id) ∈
d∏
j=1

{1, . . . ,nj}

form an αd-orthogonal basis of V1 ⊗k · · · ⊗k Vd for the ε-tensor product norm ‖·‖ε
of {‖·‖j}dj=1. Moreover, if ‖·‖ is an ultrametric norm on V1 ⊗k · · · ⊗k Vd such that

‖x1 ⊗ · · · ⊗ xd ‖ 6 ‖x1‖1,∗∗ · · · ‖xd ‖d,∗∗

for any (x1, . . . , xd) ∈ V1 × · · · × Vd , then ‖·‖ 6 ‖·‖ε .

Proof Let
T =

∑
(i1 ,...,id )∈

∏d
j=1 {1,...,n j }

ai1 ,...,id e(1)i1
⊗ · · · e(d)id

be a tensor in V1 ⊗k · · · ⊗k Vd , where ai1 ,...,id ∈ k. We consider it as a k-multilinear
form on V∨

1 × · · · × V∨
d

. For any j ∈ {1, . . . , d}, let {ϕ(j)i }
n j

i=1 be the dual basis of
{e(j)i }

n j

i=1 and assume that
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{ϕ
(j)
i }

n j

i=1 ∩ V∗ = {ϕ
(j)
i }

n′j
i=1.

By Proposition 1.2.11, {ϕ
(j)
i }

n′j
i=1 is an α-orthogonal basis of V (j),∗. For any

(i1, . . . , id) ∈
∏d

j=1{1, . . . ,n
′
j} we have T(ϕ(1)i1

, . . . , ϕ
(d)
id

) = ai1 ,...,id , which leads
to

‖T ‖ε >
|ai1 ,...,id |

‖ϕ
(1)
i1
‖1,∗ · · · ‖ϕ

(d)
id

‖d,∗

> αd |ai1 ,...,id | · ‖e(1)i1
‖1,∗∗ · · · ‖e(d)id

‖d,∗∗

= αd |ai1 ,...,id | · ‖e(1)i1
⊗ · · · ⊗ e(d)id

‖ε,

where the second inequality follows from (1.24) and the equality comes from Re-
mark 1.1.56. This completes the proof of the proposition because

‖e(1)i1
⊗ · · · ⊗ e(d)id

‖ε = ‖e(1)i1
‖1,∗∗ · · · ‖e(d)id

‖d,∗∗

vanishes once (i1, . . . , id) <
∏d

j=1{1, . . . ,n
′
j} (see Lemma 1.2.10). Moreover, if ‖·‖

is an ultrametric norm on V1 ⊗k · · · ⊗k Vd such that

‖x1 ⊗ · · · ⊗ xd ‖ 6 ‖x1‖1,∗∗ · · · ‖xd ‖d,∗∗

for any (x1, . . . , xd) ∈ V1 × · · · × Vd , then

‖T ‖ 6 max
(i1 ,...,id )∈

∏d
j=1 {1,...,n j }

|ai1 ,...,id | · ‖e(1)i1
⊗ · · · ⊗ e(d)id

‖

6 max
(i1 ,...,id )∈

∏d
j=1 {1,...,n j }

|ai1 ,...,id | · ‖e(1)i1
‖1,∗∗ · ‖eid ‖d,∗∗ 6 α

−d ‖T ‖ε

By Proposition 1.2.7, for any α ∈ ]0,1[, there exist α-orthogonal bases of V1, . . . ,Vd

respectively. Hence ‖·‖ 6 ‖·‖ε . �

Corollary 1.2.20 Assume that the absolute value |·| is non-Archimedean. Let
{(Vj, ‖·‖j)}

d
j=1 be a finite family of finite-dimensional seminormed vector spaces over

k, and ‖·‖ε be the ε-tensor product of the seminorms ‖·‖1, . . . , ‖·‖d . Then the dual
norm ‖·‖ε,∗ coincides with the ε-tensor product of the dual norms ‖·‖1,∗, . . . , ‖·‖d,∗.

Proof Let α be an element of ]0,1[. For j ∈ {1, . . . , d}, let {e(j)i }
n j

i=1 be an α-
orthogonal basis of Vj over k (see Proposition 1.2.7) and {ϕ

(j)
i }

n j

i=1 be the dual

basis of {e(j)i }
n j

i=1, and assume that {ϕ(j)i }
n j

i=1 ∩ V∗
j = {ϕ

(j)
i }

n′j
i=1. Note that for any

(i1, . . . , id) ∈
∏d

j=1{1, . . . ,nj},

‖e(1)i1
⊗ · · · ⊗ e(d)id

‖ε = ‖ei1 ‖1,∗∗ · · · ‖eid ‖d,∗∗ , 0

if and only if (i1, . . . , id) ∈
∏d

j=1{1, . . . ,n
′
i}. Therefore,
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{ϕ
(1)
i1

⊗ · · · ⊗ ϕ
(d)
id

}
(i1 ,...,id )∈

∏d
j=1 {1,...,n

′
j }

forms a basis of the vector space of bounded linear forms on (V1 ⊗k · · · ⊗k Vd, ‖·‖ε),
which shows that (V1 ⊗k · · · ⊗k Vd)

∗ � V∗
1 ⊗k · · · ⊗k V∗

d
.

Let ‖·‖ ′ be the ε-tensor product of ‖·‖1,∗, . . . , ‖·‖d,∗. By definition, for any T in
V∗

1 ⊗k · · · ⊗k V∗
d
, one has

‖T ‖ ′ = sup
(s1 ,...,sd )∈V1×···×Vd

min{ ‖s1 ‖1 ,..., ‖sd ‖d }>0

|T(s1, . . . , sd)|
‖s1‖1,∗∗ · · · ‖sd ‖d,∗∗

= sup
(s1 ,...,sd )∈V1×···×Vd

min{ ‖s1 ‖1 ,..., ‖sd ‖d }>0

|T(s1, . . . , sd)|
‖s1 ⊗ · · · ⊗ sd ‖ε

6 ‖T ‖ε,∗,

where the second equality comes from (1.16). Conversely, if T is of the form ψ1 ⊗

· · · ⊗ ψd , where (ψ1, . . . ,ψd) ∈ V∗
1 × · · · × V∗

d
, then

‖T ‖ε,∗ = sup
f ∈V1⊗k · · ·⊗kVd

‖ f ‖ε,0

| f (ψ1, . . . ,ψd)|

‖ f ‖ε
6 ‖ψ1‖1,∗ · · · ‖ψd ‖d,∗.

By Proposition 1.2.19, we obtain ‖·‖ε,∗ 6 ‖·‖ ′. �

1.2.4 Orthogonality and lattice norms

In this subsection, we assume that the absolute value |·| is non-Archimedean and we
denote by ok the valuation ring of (k, |·|). Let V be a finite-dimensional vector space
over k and let r be the dimension of V .

Proposition 1.2.21 Let V be a lattice of V which is an ok-module of finite type (and
hence a free ok-module of rank r). Then any basis of V over ok is an orthonormal
basis of (V, ‖·‖V).

Proof Let {ei}ri=1 be a basis of V over ok . Note that an element a1e1 + · · · + arer
of V (with (a1, . . . ,ar ) ∈ kr ) belongs to V if and only if all ai are in ok . Let
x = λ1e1 + · · · + λrer be an element of V . If a is an element of k× such that a−1x
belongs to V, then one has a−1λi ∈ ok and hence |λi | 6 |a| for any i ∈ {1, . . . ,r}.
Therefore max{|λ1 |, . . . , |λr |} 6 ‖x‖V . Conversely, if j ∈ {1, . . . ,r} is such that

|λj | = max{|λ1 |, . . . , |λr |} > 0,

then one has λiλ−1
j ∈ ok for any i ∈ {1, . . . ,r}. Hence λ−1

j x ∈ V and

‖x‖V 6 |λj | = max{|λ1 |, . . . , |λr |}.
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Proposition 1.2.22 Assume that the absolute value |·| is non-trivial. Let λ ∈ ]0,1[
be a real number such that

λ < sup{|a| : a ∈ k×, |a| < 1}. (1.29)

Then, for any ultrametric norm ‖·‖ on V there exists a lattice of finite type V of V ,
such that ‖·‖ 6 ‖·‖V 6 λ

−1‖·‖.

Proof Let α ∈ ]0,1[ such that λ/α < sup{|a| : a ∈ k×, |a| < 1}. Let {ei}ri=1 be
an α-orthogonal basis of V (the existence of which has been proved in Proposition
1.2.7). By Proposition 1.1.4, by dilating the vectors ei , i ∈ {1, . . . ,r}, we may assume
that λ/α 6 ‖ei ‖ < 1 for any i. Let V be the free ok-module generated by {ei}ri=1. It
is a lattice of V . Moreover, by Proposition 1.2.21, {ei}ri=1 is an orthonormal basis of
(V, ‖·‖V). In particular, for any vector x = a1e1 + · · · + arer in V , one has

‖x‖V = max
i∈{1,...,r }

|ai | > max
i∈{1,...,r }

|ai | · ‖ei ‖ > ‖x‖.

Moreover, by the α-orthogonality of {ei}ri=1 one has

‖x‖ > α max
i∈{1,...,r }

|ai | · ‖ei ‖ > λ‖x‖V .

The proposition is thus proved. �

1.2.5 Orthogonality and Hadamard property

We have seen in Proposition 1.2.7 that an Hadamard basis of a finite-dimensional
normed vector space is necessarily orthogonal. The converse of this assertion is also
true when the absolute value |·| is non-Archimedean.

Proposition 1.2.23 We assume that the absolute value |·| is non-Archimedean. Let
(V, ‖·‖) be a finite-dimensional seminormed vector space over k, and let r be the
dimension of V over k. If α is an element in ]0,1] and if {xi}ri=1 is an α-orthogonal
basis of V , then one has

‖x1 ∧ · · · ∧ xr ‖ > αr ‖x1‖ · · · ‖xr ‖. (1.30)

In particular, if ‖·‖ is a norm, any orthogonal basis of V is an Hadamard basis.

Proof If N‖ · ‖ is non-zero, then the interserction of {xi}ri=1 with N‖ · ‖ is not empty
(see Proposition 1.2.5) and hence the inequality (1.30) holds. In the following, we
assume that ‖·‖ is a norm. Note that the case where V = {0} is trivial. Hence we
may assume that r > 0. Let {xi}ri=1 be an α-orthogonal basis of V . Let {yi}ri=1 be
an arbitrary basis of V and A = (ai j)i∈{1,...,r }, j∈{1,...,r } ∈ kr×r be the transition
matrix from {xi}ri=1 to {yi}

r
i=1, namely yi =

∑r
j=1 ai j xj for any i ∈ {1, . . . ,r}. By

the α-orthogonality of the basis {xi}ri=1 one has
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|ai j | 6 α−1 ‖yi ‖

‖xj ‖
.

Thus, by the assumption that the absolute value |·| is non-Archimedean, one has

‖y1 ∧ · · · ∧ yr ‖ = | det(A)| · ‖x1 ∧ · · · ∧ xr ‖ 6 α−r ‖y1‖ · · · ‖yr ‖

‖x1‖ · · · ‖xr ‖
· ‖x1 ∧ · · · ∧ xr ‖

and hence
‖x1 ∧ · · · ∧ xr ‖
‖x1‖ · · · ‖xr ‖

> αr
‖y1 ∧ · · · ∧ yr ‖

‖y1‖ · · · ‖yr ‖
.

Since the basis {yi}
r
i=1 is arbitrary, by Proposition 1.1.66 (see also Remark 1.1.67)

we obtain that
‖x1 ∧ · · · ∧ xr ‖
‖x1‖ · · · ‖xr ‖

> αr .

The proposition is thus proved. �

Remark 1.2.24 The Archimedean analogue of Proposition 1.2.23 is not true in
general. One can consider for example the case where V = R2 equipped with the
norm ‖·‖ such that ‖(a, b)‖ = max{|a|, |b|}, where |·| is the usual absolute value on
R. Let e1 = (1,0) and e2 = (0,1). The basis {e1, e2} is orthonormal. However,

‖e1 ∧ e2‖ =
 1
√

2
(e1 + e2) ∧

1
√

2
(e1 − e2)

 = 1
2
.

Therefore {e1, e2} is not an Hadamard basis.

The following proposition shows that the Archimedean analogue of Proposition
1.2.23 is true provided that the norm is induced by an inner product.

Proposition 1.2.25 Let (V, ‖·‖) be a finite-dimensional normed vector space over k.
Assume that the absolute value |·| is Archimedean and that the norm ‖·‖ is induced
by an inner product. Then any orthogonal basis of V is an Hadamard basis.

Proof The field k is locally compact, therefore V admits an Hadamard basis e =
{ei}ri=1, which is necessarily an orthogonal basis (see Proposition 1.2.7). Without
loss of generality, we may assume that e is an orthonormal basis. Let e′ = {e′i}

r
i=1 be

another orthonormal basis. There exists a unitary matrix A such that e′ = Ae. One
has | det(A)| = 1 and hence

‖e′1 ∧ · · · ∧ e′r ‖det = ‖e1 ∧ · · · ∧ er ‖det = 1 = ‖e′1‖ · · · ‖e′r ‖.

Therefore the basis {e′i}
r
i=1 is also an Hadamard basis. Thus we have proved that any

orthonormal basis is an Hadamard basis. If {xi}ri=1 is an orthogonal basis, and if
ei = ‖xi ‖−1xi for any i ∈ {1, . . . ,r}, then {ei}ri=1 is an orthonormal basis of V , which
is an Hadamard basis. We then deduce that {xi}ri=1 is also an Hadamard basis. �



58 1 Metrized vector bundles: local theory

Proposition 1.2.26 We assume that the absolute value |·| is trivial. Let (V, ‖·‖) be
an r-dimensional (r ∈ N>0), ultrametrically normed vector space over k, which
corresponds to an increasing sequence

0 = V0 ( V1 ( . . . ( Vn = V

of vector subspaces of V and a decreasing sequence µ1 > . . . > µn of real numbers
as described in Remark 1.1.40.

(1) A basis {xj}rj=1 of V is orthogonal if and only if card({xj}rj=1 ∩ Vi) = dimk(Vi)

for any i ∈ {1, . . . ,n}.
(2) Let α be an element of ]0,1] such that

∀ i ∈ {1, . . . ,n}, α > e−(µi−µi+1)/r ,

where µn+1 = −∞ by convention. Then any α-orthogonal basis of (V, ‖·‖) is
orthogonal.

Proof (1) Note that the restriction of ‖·‖ on each Vi \Vi−1 is constant and takes e−µi
as its value for i ∈ {1, . . . ,n}. Let

λ1 6 . . . 6 λr

be the increasing sequence of positive real numbers such that e−µi appears exactly
dimk(Vi)−dimk(Vi−1) times. Let {xj}rj=1 be a basis of V such that ‖x1‖ 6 . . . 6 ‖xr ‖.
For each i ∈ {1, . . . ,n}, the cardinal of {xj}rj=1 ∩ Vi does not exceed dimk(Vi), so
that ‖xj ‖ > λj for any j ∈ {1, . . . ,r} and hence

r∏
j=1

‖xj ‖ >
r∏
j=1

λj .

Moreover, if the equality card({xj}rj=1 ∩Vi) = dimk(Vi) holds for any i ∈ {1, . . . ,n},
then the basis {xj}rj=1 is an Hadamard basis, and hence is an orthogonal basis (by
Proposition 1.2.7 (2)). If there exists an index i ∈ {1, . . . ,n} such that card({xj}rj=1 ∩

Vi) < dimk(Vi), then there exists an element

x = λ1x1 + · · · + λr xr

of Vi and a j ∈ {1, . . . ,r} such that λj , 0 and xj ∈ V \Vi . As ‖x‖ 6 µi < ‖xj ‖, the
basis {xj}rj=1 is not orthogonal.

(2) Let {ej}rj=1 be an α-orthogonal basis of (V, ‖·‖). Without loss of generality,
we assume that ‖e1‖ 6 . . . 6 ‖er ‖. One has

{‖e1‖, . . . , ‖er ‖} ⊆ {λ1, . . . , λr } = {e−µ1, . . . ,e−µn }. (1.31)

Moreover, since
card({ej}rj=1 ∩ Vi) 6 dimk(Vi)
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for any i ∈ {1, . . . ,n}, one has ‖ej ‖ > λj for any j ∈ {1, . . . ,r}. Therefore, if the
strict inequality ‖ej ‖ > λj holds for some j ∈ {1, . . . ,r}, then, by (1.31), one can
find m such that m > j, ‖ej ‖ > λm and λmλ−1

j = eµi−µi+1 for some i, so that, by our
assumption,

‖ej ‖ > λj(λmλ−1
j ) = λjeµi−µi+1 > λjα

−r .

Therefore,
r∏̀
=1
‖e` ‖ > α−r

r∏̀
=1
λ` = α

−r ‖e1 ∧ · · · ∧ er ‖det.

This contradicts Proposition 1.2.23. Therefore one has ‖ej ‖ = λj for any j ∈

{1, . . . ,r} and hence, for each i ∈ {1, . . . ,n}, the cardinal of {ej}rj=1 ∩ Vi is equal to
dimk(Vi), which implies that {ej}rj=1 is an orthogonal basis. �

1.2.6 Ultrametric Gram-Schimdt process

In this subsection, we consider a refinement of Proposition 1.2.7. First we recall the
spherically completeness of a metric space.

Definition 1.2.27 We say that a metric space (X, d) is spherically complete if, for
any decreasing sequence

B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ Bn+1 ⊇ · · ·

of non-empty closed balls in X , one has
⋂∞

n=1 Bn , �. A normed vector space
(V, ‖·‖) over k is said to be spherically complete if (V, ‖·‖) is spherically complete
as a metric space. If (k, |·|), viewed as a normed vector space over k, is spherically
complete, we say that the valued field (k, |·|) is spherically complete.

Remark 1.2.28 If (k, |·|) is a discrete valuation field, then (k, |·|) is spherically com-
plete by [134, Proposition 20.2]. In particular, any locally compact non-Archimedean
valued field is spherically complete.

Lemma 1.2.29 Let (V, ‖·‖) be an ultrametrically normed vector space of finite di-
mension over k. Then we have the following:

(1) Let W be a vector subspace of V over k. If W equipped with the restriction ‖·‖W
of ‖·‖ to W is spherically complete, then, for x ∈ V , there is w ∈ W such that
dist(x,W) = ‖x − w‖.

(2) If (V, ‖·‖) has an orthogonal basis {ei}ri=1 and (k, |·|) is spherically complete,
then (V, ‖·‖) is also spherically complete.

Proof For a ∈ V and δ ∈ R>0, we set

B(a; δ) := {x ∈ V : ‖x − a‖ 6 δ}.

As ‖·‖ is ultrametric, we can easily see that



60 1 Metrized vector bundles: local theory

B(a; δ) = B(a′; δ) (1.32)

for all δ ∈ R>0 and a,a′ ∈ V with ‖a − a′‖ 6 δ.

(1) We can choose a decreasing sequence {δn}
∞
n=1 of positive numbers and a

sequence {wn}
∞
n=1 in W such that ‖x − wn‖ 6 δn and limn→∞ δn = dist(x,W). As

B(x; δn) ∩ W = B(wn; δn) ∩ W by (1.32), {B(x; δn) ∩ W}∞
n=1 yields a decreasing

sequence of non-empty closed balls in W . Thus, by our assumption, there is w ∈⋂∞
n=1 B(x; δn) ∩ W , so that ‖x − w‖ 6 δn for all n, that is, ‖x − w‖ 6 dist(x,W), as

required.

(2) Note that ‖a1e1 + · · · + arer ‖ = max{|a1 | · ‖e1‖, . . . , |ar | · ‖er ‖}, so that

B(a; δ) = Bk(a1; δ/‖e1‖)e1 + · · · + Bk(ar ; δ/‖er ‖)er

for a = a1e1 + · · · + arer ∈ V and δ ∈ R>0, where

Bk(λ; δ′) = {t ∈ k : |t − λ | 6 δ′}

for λ ∈ k and δ′ ∈ R>0. Therefore the assertion follows. �

In the case of an ultrametrically normed finite-dimensional vector space, Proposi-
tion 1.2.7 has the following refined form. This could be considered as an ultrametric
analogue of Gram-Schmidt orthogonalisation process.

Proposition 1.2.30 Let (V, ‖·‖) be an ultrametrically seminormed k-vector space of
dimension r > 1. Let

0 = V0 ( V1 ( V2 ( . . . ( Vr = V (1.33)

be a complete flag of subspaces of V . Fix a real number α such that

α ∈

{
]0,1], if (k, |·|) is spherically complete,
]0,1[, otherwise.

Then there exists an α-orthogonal basis e of V such that, for any i ∈ {1, . . . ,r},
card(Vi ∩ e) = i.

Proof If a basis e of V is such that, for any i ∈ {1, . . . ,r}, card(Vi ∩ e) = i, we say
that the basis e is compatible with the flag (1.33).

We begin with the proof of the particular case where ‖·‖ is a norm by induction
on r , the dimension of V over k. The case where r = 1 is trivial. Assume that the
proposition holds for all vector spaces of dimension < r , where r > 2. Applying the
induction hypothesis to Vr−1 and the flag 0 = V0 ( V1 ( . . . ( Vr−1 we get a basis
{e1, . . . , er−1} ofVr−1 compatible with the flag such that, for any (λ1, . . . , λr−1) ∈ kr−1

‖λ1e1 + · · · + λr−1er−1‖ > α
1/2 max

i∈{1,...,r−1}
|λi | · ‖ei ‖. (1.34)
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Let x be an element of V \Vr−1. The distance between x and Vr−1 is strictly positive
since Vr−1 is closed in V (see Proposition 1.1.11). Hence there exists y ∈ Vr−1 such
that

‖x − y‖ 6 α−1/2dist(x,Vr−1). (1.35)

In the case where α = 1 and (k, |·|) is spherically complete, the existence of y follows
from Lemma 1.2.29. We choose er = x − y. The basis {e1, . . . , er } is compatible
with the flag 0 = V0 ( V1 ( . . . ( Vr = V .

Let (λ1, . . . , λr ) be an element of kr . We wish to find a lower bound for the norm
of z = λ1e1 + · · · + λrer . By (1.35) we have that

‖z‖ > |λr | · dist(x,Vr−1) > α
1/2 |λr | · ‖er ‖.

This provides our lower bound when ‖λrer ‖ > ‖λ1e1 + · · ·+λr−1er−1‖. If ‖λrer ‖ <
‖λ1e1 + · · · + λr−1er−1‖ then we have

‖z‖ = ‖λ1e1 + · · · + λr−1er−1‖

because the norm is ultrametric (see Proposition 1.1.5). By the induction hypothesis
(1.34) we have that ‖z‖ > α |λi | · ‖ei ‖ for any i ∈ {1, . . . ,r − 1}. This completes the
proof of the proposition in the case where ‖·‖ is a norm.

We now consider the general seminorm case. Let W be the quotient vector space
V/N‖ · ‖ . For each i ∈ {0, . . . ,r}, let Wi be (Vi + N‖ · ‖)/N‖ · ‖ . Applying the particular
case of the proposition to (W, ‖·‖∼), we obtain the existence of an α-orthogonal basis
ẽ of W such that card(̃e ∩ Wi) = dimk(Wi). We set

I = {i ∈ {1, . . . ,r} : Wi−1 ( Wi} and J = { j ∈ {1, . . . ,r} : Wj−1 = Wj}.

If i ∈ I, then there is a unique element ui ∈ ẽ ∩ (Wi \ Wi−1), so that we can choose
ei ∈ Vi such that the class of ei in V/N‖ · ‖ is ui . If j ∈ J, then we can pick up
ej ∈ (N‖ · ‖ ∩ Vj) \ Vj−1. Indeed, as Vj \ Vj−1 , � and Vj ⊆ Vj−1 + N‖ · ‖ , we can find
x ∈ Vj \Vj−1, y ∈ Vj−1 and ej ∈ N‖ · ‖ with x = y+ej , and hence ej ∈ (N‖ · ‖∩Vj)\Vj−1.
By construction, e := {ei}ri=1 satisfies card(Vi∩e) = i for i ∈ {0, . . . ,r}. In particular,
e forms a basis of V .

Let us see that e is α-orthogonal. For any (λ1, . . . , λr ) ∈ kr , if we let x =
λ1e1 + · · · + λrer and u =

∑
i∈I λiui , then one has

‖x‖ = ‖u‖∼ > αmax
i∈I

|λi | · ‖ui ‖∼ = α max
i∈{1,...,r }

|λi | · ‖ei ‖,

where the inequality comes from the α-orthogonality of ẽ, as required. �

Corollary 1.2.31 Let (V, ‖·‖) be an ultrametrically seminormed vector space of finite
dimension over k. If (k, |·|) is spherically complete, then (V, ‖·‖) has an orthogonal
basis. In particular, (V, ‖·‖) is spherically complete.

Remark 1.2.32 Assume that the absolute value |·| is Archimedean. Let V be a finite-
dimensional vector space over k and ‖·‖ be a seminorm on V which is induced by
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an inner product. Given a complete flag

0 = V0 ( V1 ( V2 ( . . . ( Vr = V

of V , the Gram-Schmidt process permits to construct an orthogonal basis e of V
such that card(e ∩ Vi) = i for any i ∈ {1, . . . ,r}, along the same line as in the proof
of Proposition 1.2.30. The main point is that the field k is locally compact, and
hence the distance in (1.35) is actually attained by some point in Vr−1. For a general
seminorm, even though an orthogonal basis always exists, it is not always possible
to find an orthogonal basis which is compatible with a given flag.

Proposition 1.2.30 and the usual Gram-Schmidt process lead to the following
projection result.

Corollary 1.2.33 Let V be a finite-dimensional vector space over k equipped with a
seminorm ‖·‖ which is either ultrametric or induced by a semidefinite inner product.
Let V0 be a vector subspace of V . For any α ∈ ]0,1[ there exists a k-linear projection
π : V → V0 (namely π is a k-linear map and its restriction to V0 is the identity map)
such that ‖π‖ 6 α−1. If (k, |·|) is non-Archimedean and spherically complete, or if
‖·‖ is induced by a semidefinite inner product, we can choose the k-linear projection
π such that ‖π‖ 6 1.

Proof We first consider the ultrametric case. By Proposition 1.2.30, there exists anα-
orthogonal basis e = {ei}ni=1 of V such that card(e∩V0) = dimk(V0). Without loss of
generality, we may assume that e∩V0 = {ei}mi=1, where m = dimk(V0). Let π : V → V0
be the k-linear map sending λ1e1 + · · ·+ λnen ∈ V to λ1e1 + · · ·+ λmem ∈ V0. Since
the basis e is α-orthogonal, one has

‖λ1e1 + · · · + λnen‖ > α max
i∈{1,...,n}

‖λiei ‖ > α‖λ1e1 + · · · + λmem‖,

which implies that ‖π‖ 6 α−1.
If (k, |·|) is non-Archimedean and spherically complete, or if ‖·‖ is induced by an

inner product, we use the existence of an orthogonal basis e such that card(e∩V0) =
dimk(V0). By the same agrument as above, we obtain the existence of a linear
projection π : V → V0 such that ‖π‖ 6 1. �

Corollary 1.2.34 Let V be a finite-dimensional vector space over k and ‖·‖1 and ‖·‖2
be two seminorms on V . We assume that ‖·‖1 6 ‖·‖2 and that the seminorm ‖·‖2 is
either ultrametric or induced by a semidefinite inner product. If there exists a vector
x ∈ V such that ‖x‖1 < ‖x‖2, then one has ‖·‖ ′1,det < ‖·‖∼2,det on det(V/N‖ · ‖2 ) \ {0},
where ‖·‖ ′1 denotes the quotient seminorm of ‖·‖1 on V/N‖ · ‖2 .

Proof The condition ‖·‖1 6 ‖·‖2 implies that N‖ · ‖2 ⊆ N‖ · ‖1 . In particular, for any
x ∈ V , if we denote by [x] the class of x in V/N‖ · ‖2 , then one has

‖[x]‖ ′1 = ‖x‖1, ‖[x]‖∼2 = ‖x‖2.
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Therefore, by replacing V by V/N‖ · ‖2 , ‖·‖1 by ‖·‖ ′1, and ‖·‖2 by ‖·‖∼2 , we may assume
without loss of generality that ‖·‖2 is a norm. Moreover, the case where ‖·‖1 is not
a norm is trivial since the seminorm ‖·‖1,det vanishes. Hence it suffices to treat the
case where both seminorms ‖·‖1 and ‖·‖2 are norms.

Let λ = ‖x‖2/‖x‖1 > 1. We first consider the ultrametric case. By Proposition
1.2.30, for any α ∈ ]0,1[ there exists an α-orthogonal basis {ei}ri=1 of (V, ‖·‖2) such
that e1 = x. Hence See Proposition 1.2.23 for the first inequality

‖e1 ∧ · · · ∧ er ‖2,det > α
r ‖e1‖2 · · · ‖er ‖2

> λαr ‖e1‖1 · · · ‖er ‖1 > λα
r ‖e1 ∧ · · · ∧ er ‖1,det.

Since α ∈ ]0,1[ is arbitrary, one has ‖·‖2,det/‖·‖1,det > λ > 1.
The Archimedean case is very similar. There exists an orthogonal basis {ei}ri=1

of (V, ‖·‖) such that e1 = x. We then proceed as above in replacing α by 1. �

Proposition 1.2.35 Let V be a finite-dimensional vector space over k, equipped with
a seminorm ‖·‖V , which is ultrametric or induced by a semidefinite inner product. Let
(W, ‖·‖W ) be a seminormed vector space over k. For any k-vector subspace V0 of V ,
the k-linear map L (V,W) → L (V0,W), sending f ∈ L (V,W) to its restriction to
V0, is surjective, and the operator seminorm on L (V0,W) coincides with the quotient
seminorm induced by the operator seminorm on L (V,W). In particular, the dual
norm on V∗

0 identifies with the quotient of the dual norm on V∗ by the canonical
quotient map V∗ → V∗

0 .

Proof For any f ∈ L (V,W), the operator seminorm of f |V0 does not exceed that of
f . In the following, we show that, for any linear map g ∈ L (V0,W) and anyα ∈ ]0,1[,
there exists a k-linear map f : V → W extending g such that α‖ f ‖ 6 ‖g‖. By
Corollary 1.2.33, there exists a k-linear projection π : V → V0 such that ‖π‖ 6 α−1.
Let f = g ◦ π. Then ‖ f ‖ 6 α−1‖g‖. The proposition is thus proved. �

Proposition 1.2.36 Let V and W be finite-dimensional seminormed vector spaces
over k, V0 be a k-vector subspace of V , and Q be the quotient vector space V/V0.
We assume that, either the absolute value |·| is non-Archimedean, or the seminorm
on V is induced by a semidefinite inner product. Then the canonique isomorphism
(V⊗kW)/(V0⊗kW) → Q⊗kW is an isometry, where we consider the ε-tensor product
seminorms on V⊗kW and Q⊗kW , and the quotient seminorm on (V⊗kW)/(V0⊗kW).

Proof We have seen in Remark 1.1.59 that, for any f ∈ V ⊗k W viewed as a k-
bilinear form on V∗×W∗, its restriction to Q∗×W∗ has an ε-tensor product norm not
greater than that of f . In the following, we consider an element g ∈ Q ⊗k W , viewed
as a k-bilinear form on Q∗ ⊗k W∗. We will show that, for any α ∈ ]0,1[, there exists a
k-bilinear form f on V∗×W∗ extending g such that ‖ f ‖ε 6 α−1‖g‖ε . By Proposition
1.1.20, the dual norm on Q∗ identifies with the restriction of the dual norm on V∗. By
Corollary 1.2.33, there exists a k-linear projection π : V∗ → Q∗ such that ‖π‖ 6 α−1

(in the non-Archimedean case, we use the fact that any dual norm is ultrametric).
We let f be the k-bilinear form on V∗ × W∗ such that f (ξ, η) = g(π(ξ), η). Then for
(ξ, η) ∈ (V∗ \ {0}) × (W∗ \ {0}) one has
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| f (ξ, η)|
‖ξ‖∗‖η‖∗

=
|g(π(ξ), η)|

‖ξ‖∗‖η‖∗
6 α−1 |g(π(ξ), η)|

‖π(ξ)‖∗‖η‖∗
6 α−1‖g‖ε .

The proposition is thus proved. �

Corollary 1.2.37 We assume that the absolute value |·| is non-Archimedean. Let
(V, ‖·‖) be a finite-dimensional seminormed vector space over k and r be the dimen-
sion of V over k. Let i be a positive integer. Then the canonical k-linear isomorphism
det(ΛiV) → det(V)⊗(

r−1
i−1) is an isometry, where we consider the ith ε-exterior power

seminorm on ΛiV .

Proof Consider the following commutative diagram

V ⊗i(ri)
p1 // //

p2
����

det(V)⊗(
r−1
i−1)

(ΛiV)⊗(
r
i)

p3
// // det(ΛiV)

'

OO

By Proposition 1.2.36, if we equip V ⊗i(ri) with the ε-tensor product seminorm, then
its quotient seminorm on (ΛiV)⊗(

r
i) identifies with the ε-tensor product of the ε-

exterior power seminorm. Moreover, by Proposition 1.2.15, the quotient seminorm
on det(ΛiV) (induced by p3) of the tensor product of the ε-exterior power seminorm
identifies with the determinant seminorm of the latter. Still by the same proposition,
the quotient seminorm on det(V)⊗(

r−1
i−1) induced by p1 identifies with the tensor

power of the determinant seminorm. Therefore the natural isomorphism det(ΛiV) →

det(V)⊗(
r−1
i−1) is actually an isometry by using (1) in Proposition 1.1.14. �

Corollary 1.2.38 We assume that the absolute value |·| is non-Archimedean. Let
(V, ‖·‖) be a finite-dimensional normed vector space over k and i be a positive
integer. Then the ith ε-exterior power norm on ΛiV is the double dual norm of the
ith π-exterior power norm.

Proof By definition, the ith ε-exterior power norm ‖·‖Λi
ε

onΛiV is ultrametric and is
bounded from above by the ith π-exterior power norm. By Corollary 1.2.12, ‖·‖Λi

π ,∗∗

is the largest ultrametric norm bounded from above by the ith π-exterior power norm
‖·‖Λi

π
. In particular, one has ‖·‖Λi

π ,∗∗
> ‖·‖Λi

ε
and hence

‖·‖Λi
ε ,det 6 ‖·‖Λi

π ,∗∗,det 6 ‖·‖Λi
π ,det.

By Corollary 1.2.37, one has ‖·‖Λi
ε ,det = ‖·‖Λi

π ,det and hence the above inequalities
are actually equalities. By Corollary 1.2.34, we obtain ‖·‖Λi

ε
= ‖·‖Λi

π ,∗∗
. �

Proposition 1.2.39 Assume that |·| is non-Archimedean. Let V and W be finite-
dimensional seminormed vector spaces over k and n and m be respectively the
dimensions of V and W over k. We equip V ⊗k W with the ε-tensor product seminorm



1.2 Orthogonality 65

‖·‖ε . Then the natural k-linear isomorphism det(V ⊗k W) � det(V)⊗m ⊗k det(W)⊗n

is an isometry, where we consider the determinant seminorm of ‖·‖ε on det(V ⊗k W)

and the tensor product of determinant seminorms on det(V)⊗m ⊗k det(W)⊗n.

Proof Let ‖·‖ ′ be the seminorm on det(V)⊗m ⊗ det(W)⊗n induced by tensor product
of determinant seminorms. By Propositions 1.2.36 and 1.2.15, the seminorm ‖·‖ ′

identifies with the quotient of the ε-tensor power seminorm on (V ⊗k W)⊗nm of ‖·‖ε .
Therefore, by Proposition 1.2.15 the seminorm ‖·‖ ′ identifies with ‖·‖ε,det. �

Proposition 1.2.40 Let V be a finite-dimensional vector space over k and ‖·‖ be a
seminorm on V . We assume that the seminorm ‖·‖ is either ultrametric or induced
by a semidefinite inner product. For any vector subspace W of V , the canonical
isomorphism

det(W) ⊗k det(V/W) −→ det(V)

is an isometry, where we consider the determinant seminorm of the induced seminorm
on det(W) and that of the quotient seminorm on det(V/W), and the tensor product
seminorm on the tensor product space det(W) ⊗k det(V/W) (see Remark 1.1.56).

Proof By Proposition 1.1.16, if the seminorm ‖·‖ is not a norm, then either its
restriction to W is not a norm, or its quotient seminorm on V/W is not a norm. In
both cases, the seminorms on det(W) ⊗k det(V/W) and on det(V) vanish. Therefore
we may assume without loss of generality that ‖·‖ is a norm.

Let f : det(W) ⊗k det(V/W) → det(V) be the canonical isomorphism. We have
seen in Corollary 1.1.68 that the operator norm of f is 6 1. Since f is an isomorphism
between vector spaces of dimension 1 over k, to prove that f is an isometry, it suffices
to verify that ‖ f ‖ > 1.

We first treat the case where the norm ‖·‖ is ultrametric. By Proposition 1.2.30,
for any α ∈ ]0,1[, there exists an α-orthogonal basis e = {ei}ri=1 of V such that
card(e ∩ W) = dimk(W). Without loss of generality, we assume that {e1, . . . , en}
forms a basis of W , and en+1, . . . , er are vectors in V \W . For any i ∈ {n+ 1, . . . ,r},
let ei be the image of ei in V/W . By Proposition 1.2.23, one has

‖e1 ∧ · · · ∧ er ‖det > α
r · ‖e1‖ · · · ‖er ‖ > αr ‖e1‖ · · · ‖en‖ · ‖en+1‖ · · · ‖er ‖

> αr ‖e1 ∧ · · · ∧ en‖det · ‖en+1 ∧ · · · ∧ er ‖det,

where the last equality comes from Corollary 1.1.68. Therefore the operator norm
of f is bounded from below by αr . Since α ∈ ]0,1[ is arbitrary, one has ‖ f ‖ > 1.

For the Archimedean case where the norm ‖·‖ is induced by an inner product,
by the classic Gram-Schmidt process we can construct an orthonormal basis e of V
such that card(e ∩ W) = dimk(W). By Proposition 1.2.23, e is an Hadamard basis.
We then proceed as above in replacing α by 1 to conclude. �

In Proposition 1.2.40, the assumption on the seminorm is crucial. In order to
study the behaviour of the determinant seminorms of an exact sequence of general
seminormed vector spaces, we introduce the following invariant.
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Definition 1.2.41 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k. Let H(V, ‖·‖) be the set of all normes ‖·‖h on V/N‖ · ‖ which are either ultrametric
or induced by an inner product, and such that ‖·‖h > ‖·‖∼. We define ∆(V, ‖·‖) to be
the number (if ‖·‖ vanishe, by convention ∆(V, ‖·‖) is defined to be 1)

inf
{
‖·‖h,det

‖·‖∼det
: ‖·‖h ∈ H(V, ‖·‖)

}
∈ [1,+∞[,

where ‖·‖h,det and ‖·‖∼det are respectively determinant norms on det(V/N‖ · ‖) induced
by the norms ‖·‖h and ‖·‖∼. By definition, one has ∆(V, ‖·‖) = ∆(V/N‖ · ‖, ‖·‖

∼).
Moreover, if ‖·‖ is ultrametric or induced by a semidefinite inner product, then
∆(V, ‖·‖) = 1.

Proposition 1.2.42 Assume that |·| is non-Archimedean. Let (V, ‖·‖) be a finite-
dimensional seminormed vector space over k. One has

ln∆(V, ‖·‖) 6 dimk(V/N‖ · ‖) sup
x∈V\N‖·‖

(
ln‖x‖ − ln‖x‖∗∗

)
. (1.36)

In particular, ln∆(V, ‖·‖) 6 dimk(V/N‖ · ‖) ln(dimk(V/N‖ · ‖)).

Proof By replacing (V, ‖·‖) by (V/N‖ · ‖, ‖·‖
∼), we may assume without loss of

generality that ‖·‖ is a norm. Let

λ = sup
x∈V\{0}

(
ln‖x‖ − ln‖x‖∗∗

)
.

By definition one has ‖·‖ 6 eλ‖·‖∗∗. Note that the norm eλ‖·‖∗∗ is ultrametric.
Therefore

∆(V, ‖·‖) 6
erλ‖·‖∗∗,det

‖·‖det
= erλ,

where r is the dimension of V over k, and the equality comes from Proposition
1.2.15. The inequality (1.36) is thus proved. The last inequality results from (1.36)
and Corollary 1.2.12. �

Proposition 1.2.43 Let (V, ‖·‖) be a finite-dimensional normed vector space over k.
For any vector subspace W of V , the norm of the canonical isomorphism

f : det(W) ⊗ det(V/W) −→ det(V)

is bounded from below by

∆(W, ‖·‖W )∆(V/W, ‖·‖V/W )

∆(V, ‖·‖)
> ∆(V, ‖·‖)−1,

where ‖·‖W is the restriction of the norm ‖·‖ to the vector subspace W and ‖·‖V/W

is the quotient norm of ‖·‖ on the quotient space V/W .
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Proof Let ‖·‖h be a norm in H(V, ‖·‖). Let ‖·‖h,W and ‖·‖h,V/W be respectively
the restriction of ‖·‖h to W and the quotient norm of ‖·‖h on V/W . By Proposition
1.2.40, the canonical isomorphism

det(W, ‖·‖h,W ) ⊗ det(V/W, ‖·‖h,V/W ) −→ det(V, ‖·‖V ,h)

is an isometry. Hence

‖·‖h,det

‖·‖det
=

‖·‖h,W ,det‖·‖h,V/W ,det

‖ f ‖ · ‖·‖W ,det‖·‖V/W ,det
>

1
‖ f ‖

· ∆(W, ‖·‖W )∆(V/W, ‖·‖V/W ).

Since ‖·‖h ∈ H(V, ‖·‖) is arbitrary, we obtain the lower bound announced in the
proposition. �

Corollary 1.2.44 Let (V, ‖·‖V ) be a finite-dimensional seminormed vector space over
k, W be a vector subspace of V , ‖·‖W be the restriction of ‖·‖V to W , and ‖·‖V/W be
the quotient of ‖·‖V on V/W . One has

∆(W, ‖·‖W )∆(V/W, ‖·‖V/W ) 6 ∆(V, ‖·‖). (1.37)

In particular, ∆(W, ‖·‖W ) 6 ∆(V, ‖·‖) and ∆(V/W, ‖·‖V/W ) 6 ∆(V, ‖·‖).

Proof By Proposition 1.1.16, we can assume without loss of generality that ‖·‖V is
a norm. By Corollary 1.1.68, if we denote by f : det(W) ⊗ det(V/W) → det(V)

the canonical isomorphism, then ‖ f ‖ 6 1. The inequality (1.37) thus follows
from Proposition 1.2.43. Finally, by definition one has ∆(W, ‖·‖W ) > 1 and
∆(V/W, ‖·‖V/W ) > 1, thus we deduce from (1.37) the last two inequalities stated in
the corollary. �

Remark 1.2.45 Let (V, ‖·‖) be a finite-dimensional normed vector space over k. We
assume that the dimension r ofV/N‖ · ‖ is positive. In the case where the absolute value
|·| is non-Archimedean, Corollary 1.2.12 provides the upper bound ∆(V, ‖·‖) 6 rr .
This result is also true in the Archimedean case (which follows from the existence
of an orthogonal basis, see the beginning of §1.2.8 for details). However, as we will
see in the next subsection (cf. Theorem 1.2.54), in the Archimedean case one has a
better upper bound ∆(V, ‖·‖) 6 rr/2.

1.2.7 Dual determinant norm

Let (V, ‖·‖) be a finite-dimensional seminormed vector space over k. We denote
by ‖·‖∼det the determinant norm on det(V/N‖ · ‖) induced by ‖·‖∼, and denote by
‖·‖∼det,∗ the dual norm of ‖·‖∼det. Let ‖·‖∗,det be the determinant norm on det(V∗) �
det(V/N‖ · ‖)

∗ of the dual norm ‖·‖∗ on V∗. The purpose of this subsection is to
compare these two norms. We denote by δ(V, ‖·‖) the ratio
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δ(V, ‖·‖) :=
‖·‖∼det,∗

‖·‖∗,det
.

In the case where there is no ambiguity on the seminorm ‖·‖ on V , we also use the
abbreviate notation δ(V) to denote δ(V, ‖·‖). By definition, if η is a non-zero element
in det(V/N‖ · ‖) and if η∨ is its dual element in det(V∗), then one has

δ(V, ‖·‖)−1 = ‖η‖∼det · ‖η
∨‖∗,det. (1.38)

In particular, one has (see Proposition 1.2.15)

δ(V, ‖·‖) = δ(V/N‖ · ‖, ‖·‖
∼) = δ(V∗, ‖·‖∗). (1.39)

Proposition 1.2.46 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k. One has δ(V, ‖·‖) > 1.

Proof By (1.39) we may assume without loss of generality that ‖·‖ is a norm.
Let {ei}ri=1 be a basis of V , and {e∨i }

r
i=1 be its dual basis. One has

‖e∨1 ∧ · · · ∧ e∨r ‖det,∗ = ‖e1 ∧ · · · ∧ er ‖−1
det.

Therefore

δ(V, ‖·‖)−1 = ‖e1 ∧ · · · ∧ er ‖det · ‖e∨1 ∧ · · · ∧ e∨r ‖∗,det

6 ‖e1‖ · · · ‖er ‖ · ‖e∨1 ‖∗ · · · ‖e∨r ‖∗,

where the inequality comes from Proposition 1.1.66. If the basis {ei}ri=1 is α-
orthogonal, where α ∈ ]0,1[, by Lemma 1.2.10 one has δ(V, ‖·‖)−1 6 α−r . Since
for any α ∈ ]0,1[ there exists an α-orthogonal basis (see Proposition 1.2.7), one has
δ(V, ‖·‖) > 1. �

Proposition 1.2.47 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k. Assume that the absolute value |·| is non-Archimedean, or the seminorm ‖·‖

is induced by a semidefinite inner product. Then one has δ(V, ‖·‖) = 1.

Proof By (1.39) we may assume without loss of generality that ‖·‖ is a norm.
We first treat the case where the absolute value |·| is non-Archimedean. Let α ∈

]0,1[ and {ei}ri=1 be an α-orthogonal basis of (V, ‖·‖) (see Proposition 1.2.7 for the
existence of an α-orthogonal basis). Then the dual basis {e∨i }

r
i=1 is α-orthogonal with

respect to the dual norm ‖·‖∗ (see Proposition 1.2.11). In particular, by Proposition
1.2.23 one has

‖e1 ∧ · · · ∧ er ‖det
‖e1‖ · · · ‖er ‖

> αr ,
‖e∨1 ∧ · · · ∧ e∨r ‖∗,det

‖e∨1 ‖∗ · · · ‖e∨r ‖∗
> αr .

Therefore

δ(V, ‖·‖) =
‖e1 ∧ · · · ∧ er ‖−1

det
‖e∨1 ∧ · · · ∧ e∨r ‖∗,det

6 α−2r 1
‖e1‖ · · · ‖er ‖ · ‖e∨1 ‖∗ · · · ‖e∨r ‖∗

6 α−2r ,
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where the last inequality comes from Lemma 1.2.10. Since α is arbitrary, one has
δ(V, ‖·‖) 6 1.

The proof of the Archimedean case is quite similar, where we use the existence
of an orthogonal basis, which is also an Hadamard basis (see Proposition 1.2.25).
We omit the details. �

The following Lemma is the Archimedean counterpart of Proposition 1.2.35 (see
also the comparison in Remark 1.1.21).

Lemma 1.2.48 Assume that the absolute value |·| is Archimedean. Let (V, ‖·‖V ) be
a finite-dimensional seminormed vector space over k, W be a vector subspace of V ,
and ‖·‖W be the restriction of the seminorm ‖·‖V to W . Then the map F : V∗ → W∗,
which sends ϕ ∈ V∗ to its restriction to W , is surjective. Moreover, the quotient norm
on W∗ induced by the dual norm ‖·‖V ,∗ coincides with the norm ‖·‖W ,∗.

Proof Let ψ be an element in W∗. If ϕ is an element in V∗ which extends ψ, then
clearly one has ‖ϕ‖V ,∗ > ‖ψ‖W ,∗. Moreover, by Hahn-Banach theorem, there exists
ϕ0 ∈ V∗ which extends ψ and such that ‖ϕ0‖V ,∗ = ‖ψ‖W ,∗. Therefore, the map F is
surjective and the quotient norm on W∨ induced by ‖·‖V ,∗ coincides with ‖·‖W ,∗. �

Proposition 1.2.49 Let (V, ‖·‖V ) and (W, ‖·‖W ) be finite-dimensional seminormed
vector spaces over k, V0 be a k-vector subspace of V and ‖·‖V0 be the restriction of
‖·‖V on V0. Denote by ‖·‖ε and ‖·‖π the ε-tensor product and the π-tensor product
of the seminorms ‖·‖V and ‖·‖W , respectively.

(1) Assume that, either the absolute value |·| is Archimedean, or the seminorm ‖·‖V
is ultrametric. Then the ε-tensor product ‖·‖ε,0 of ‖·‖V0 and ‖·‖W identifies with
the restriction of ‖·‖ε to V0 ⊗k W .

(2) Assume that the seminorm ‖·‖V is either ultrametric or induced by a semidefinite
inner product. Then the π-tensor product ‖·‖π,0 of ‖·‖V0 and ‖·‖W coincides with
the restriction of ‖·‖π to V0 ⊗k W .

Proof (1) Let ϕ be a tensor in V0 ⊗k W , viewed as a bilinear form on V∗
0 × W∗. By

definition, one has

‖ϕ‖ε,0 = sup
( f0 ,g)∈V

∗
0 ×W

∗

f0,0, g,0

|ϕ( f0,g)|
‖ f0‖V0 ,∗ · ‖g‖W ,∗

.

Since the absolute value |·| is Archimedean or the norm ‖·‖V is ultrametric, by Propo-
sition 1.2.35 (for the ultrametric case) and Lemma 1.2.48 (for the Archimedean case),
the norm ‖·‖V0 ,∗ identifies with the quotient of ‖·‖V ,∗ by the canonical surjective map
V∗ → V∗

0 . Therefore, one has

sup
( f0 ,g)∈V

∗
0 ×W

∗

f0,0, g,0

|ϕ( f0,g)|
‖ f0‖V0 ,∗ · ‖g‖W ,∗

= sup
( f ,g)∈V ∗×W ∗

f,0, g,0

|ϕ( f ,g)|
‖ f ‖V ,∗ · ‖g‖W ,∗

,

which shows ‖ϕ‖ε,0 = ‖ϕ‖ε .
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(2) We have already seen in Proposition 1.1.60 (1) that ‖·‖π,0 is bounded from
below by the restriction of ‖·‖π to V0 ⊗k W . Let T be an element of V0 ⊗k W ,
which is written, as an element of V ⊗k W , in the form T =

∑N
i=1 xi ⊗ yi , where

{x1, . . . , xN } ⊆ V and {y1, . . . , yN } ⊆ W . By Corollary 1.2.33, for any α ∈ ]0,1[,
there exists a linear projection πα : V → V0 such that ‖πα‖ 6 α−1. Since T belongs
to V0 ⊗k W one has T =

∑N
i=1 πα(xi) ⊗ yi . Moreover,

‖T ‖0,π 6
N∑
i=1

‖πα(xi)‖V0 · ‖yi ‖W 6 α
−1

N∑
i=1

‖xi ‖V · ‖yi ‖W .

Since α and the writing T =
∑N

i=1 xi ⊗ yi are arbitrary, we obtain ‖T ‖0,π 6 ‖T ‖π . �

Proposition 1.2.50 Let (V, ‖·‖V ) and (W, ‖·‖W ) be seminormed vector spaces over k,
and ‖·‖π be the π-tensor product norm of ‖·‖V . We assume that ‖·‖W is ultrametric.
For any (x, y) ∈ V × W , one has ‖x ⊗ y‖π = ‖x‖V · ‖y‖W .

Proof By definition on has ‖x ⊗ y‖π 6 ‖x‖V · ‖y‖W . It then suffices to show that,
for any writing of x ⊗ y as

N∑
i=1

xi ⊗ yi,

with (x1, . . . , xn) ∈ Vn and (y1, . . . , yn) ∈ Wn, one has

‖x‖V · ‖y‖W 6
N∑
i=1

‖xi ‖V · ‖yi ‖W .

Therefore we may assume without loss of generality that V and W are finite-
dimensional vector spaces over k. Consider the k-linear map ` from W∗ to V sending
ϕ ∈ W∗ to

ϕ(y)x =
N∑
i=1

ϕ(yi)xi .

We equip W∗ with the dual norm ‖·‖W ,∗ and consider the operator norm of `. On
one hand, one has

‖`‖ = sup
ϕ∈W ∗\{0}

‖ϕ(y)x‖V
‖ϕ‖W ,∗

= sup
ϕ∈W ∗\{0}

|ϕ(y)| · ‖x‖V
‖ϕ‖W ,∗

= ‖y‖W ,∗∗ · ‖x‖V = ‖y‖W · ‖x‖V ,

where the last equality comes from Corollary 1.2.12 and the hypothesis that ‖·‖W is
ultrametric. On the other hand, one has
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‖`‖ = sup
ϕ∈W ∗\{0}

‖ϕ(y1)x1 + · · · + ϕ(yN )xN ‖V

‖ϕ‖W ,∗

6 sup
ϕ∈W ∗\{0}

N∑
i=1

|ϕ(yi)| · ‖xi ‖V
‖ϕ‖W ,∗

6
N∑
i=1

‖xi ‖V · ‖yi ‖W ,∗∗ =

N∑
i=1

‖xi ‖V · ‖yi ‖W ,

where the last equality follows from Corollary 1.2.12 and the hypothesis that ‖·‖W
is ultrametric again. The proposition is thus proved. �

The following result provides a variant of Proposition 1.2.43. Note that it gener-
alises (by using Proposition 1.2.47) Proposition 1.2.40.

Proposition 1.2.51 Let (V, ‖·‖) be a finite-dimensional normed vector space over k.
Assume that the absolute value |·| is Archimedean or the norm ‖·‖ is ultrametric.
For any vector subspace W of V , the norm of the canonical isomorphism

f : det(W) ⊗ det(V/W) −→ det(V)

is bounded from below by

δ(W, ‖·‖W )δ(V/W, ‖·‖V/W )

δ(V, ‖·‖)
> δ(V, ‖·‖)−1,

where we consider the restriction ‖·‖W of the norm ‖·‖ to the vector subspace W and
the quotient norm ‖·‖V/W of ‖·‖ on the quotient space V/W . In particular, one has

max
{
δ(W, ‖·‖W ), δ(V/W, ‖·‖V/W )

}
6 δ(V, ‖·‖).

Proof Let ‖·‖V/W be the quotient norm on V/W induced by ‖·‖V . By Proposition
1.1.20, the dual norm ‖·‖V/W ,∗ coincides with the restriction of the norm ‖·‖∗ to
(V/W)∨. Moreover, by Lemma 1.2.48 (for the Archimedean case) and Proposition
1.2.35 (for the non-Archimedean case), the quotient norm on W∨ induced by ‖·‖∗
identifies with the dual norm ‖·‖W ,∗. Let α and β be respectively non-zero elements
in det(W) and det(V/W). Let α∨ ∈ det(W∨) and β∨ ∈ det((V/W)∨) be their dual
elements, η be the image ofα⊗β by the canonical isomorphism det(W)⊗det(V/W) →

det(V), and η∨ be the image of α∨ ⊗ β∨ by the canonical isomorphism det(W∨) ⊗

det((V/W)∨) → det(V∨). Then η∨ is the dual element of η.
By Proposition 1.1.68, one has

‖η∨‖∗,det 6 ‖α∨‖W ,∗,det · ‖β
∨‖V/W ,∗,det.

Hence by (1.38) one has

δ(W, ‖·‖W )δ(V/W, ‖·‖V/W )

δ(V, ‖·‖)
=

‖η∨‖∗,det · ‖η‖det

‖α∨‖W ,∗,det‖α‖W ,det · ‖β‖V/W ,det‖β∨‖V/W ,∗,det

6
‖η‖det

‖α‖W ,det · ‖β‖V/W ,det
= ‖ f ‖.
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Finally, by Corollary 1.1.68, we obtain

δ(W, ‖·‖W )δ(V/W, ‖·‖V/W ) 6 δ(V, ‖·‖).

Since δ(W, ‖·‖W ) and δ(V/W, ‖·‖V/W ) are > 1 (see Proposition 1.2.46), we obtain
the last inequality. �

Corollary 1.2.52 Let V be a finite-dimensional vector space over k and ‖·‖ be a
norm on V . We assume that, either the norm ‖·‖ is ultrametric or the absolute value
|·| is Archimedean. If W1 and W2 are two k-vector subspaces of V , then the canonical
isomorphism

det(W1) ⊗ det(W2) −→ det(W1 ∩ W2) ⊗ det(W1 +W2) (1.40)

induced by the short exact sequence

0 // W1 ∩ W2 // W1 ⊕ W2 // W1 +W2 // 0

has operator norm 6 min{δ(W1), δ(W2)}/δ(W1 ∩ W2), where in the above formulae
we consider the restricted norms on the vector subspaces of V . In particular, if ‖·‖
is an ultrametric norm, then the linear map (1.40) has norm 6 1.

Proof Consider the short exact sequence

0 // W1 ∩ W2 // W1 // W1/(W1 ∩ W2) // 0 .

By Proposition 1.2.51, the canonical element η in

det(W1)
∨ ⊗ det(W1 ∩ W2) ⊗ det(G)

has norm 6 δ(W1)/δ(W1∩W2)δ(G), where G denotes the vector space W1/(W1∩W2)
equipped with the quotient norm ‖·‖G .

Similarly, consider the short exact sequence

0 // W2 // W1 +W2 // (W1 +W2)/W2 // 0 .

By Corollary 1.1.68, the canonical element η′ in

det(W2)
∨ ⊗ det(G′)∨ ⊗ det(W1 +W2)

has norm 6 1, where G′ denotes the vector space (W1 +W2)/W2 equipped with the
quotient norm ‖·‖G′ . Therefore we obtain

‖η ⊗ η′‖ 6 δ(W1)/δ(W1 ∩ W2).

Let f : G → G′ be the canonical isomorphism. One has ‖ f (x)‖G′ 6 ‖x‖G for
any x ∈ G. In particular, the canonical element of det(G) ⊗ det(G′)∨ has norme > 1.
We deduce that the canonical element of
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det(W1)
∨ ⊗ det(W2)

∨ ⊗ det(W1 ∩ W2) ⊗ det(W1 +W2)

has norm 6 δ(W1)/δ(W1 ∩ W2). By the symmetry between W1 and W2, we obtain
the announced inequality. �

Remark 1.2.53 We assume that the absolute value |·| is non-Archimedean. The result
of Corollary 1.2.52 is not true in general if the norm ‖·‖ is not ultrametic. However,
we can combine the proof of Corollary 1.2.52 and Proposition 1.2.43 to show that
the canonical isomorphism (1.40) in Corollary 1.2.52 has an operator norm bounded
from above by

min{∆(W1),∆(W2)}

∆(W1 ∩ W2)
.

The same argument also works in the Archimedean case.

1.2.8 Ellipsoid of John and Löwner

We assume that the absolute value |·| is Archimedean. Let V be a finite-dimensional
vector space over k, equipped with a norm ‖·‖. In this subsection, we discuss
the approximation of the norm ‖·‖ by Euclidean or Hermitian norms. Note that
Proposition 1.2.7 provides a result in this direction. Let {ei}ri=1 be an orthonormal
basis of V . Let 〈 ,〉 be an inner product on V such that {ei}ri=1 is orthogonal with
respect to the inner product, and that 〈ei, ei〉 = r for any i ∈ {1, . . . ,r}. If ‖·‖h denotes
the norm on V induced by the inner product 〈 ,〉, then for any x = λ1e1+· · ·+λrer ∈ V
one has

1
r
‖x‖h =

(
|λ1 |

2 + · · · + |λr |
2

r

) 1/2
6 max{|λ1 |, . . . , |λr |} 6 ‖x‖

and ‖x‖ 6 |λ1 | + · · · + |λr | 6 r1/2 ( |λ1 |
2 + · · · + |λr |

2) 1/2
= ‖x‖h .

The works of John [91] and Löwner provide a stronger result on the comparison
of inner product norms and general norms. We refer to the expository article of Henk
[86] for the history of this theory. For the convenience of the readers, we include the
statement and the proof of this result.

Theorem 1.2.54 (John-Löwner) Let V be a non-zero finite-dimensional vector
space over k, equipped with a norm ‖·‖. There exists a unique Euclidean or Hermi-
tian norm ‖·‖J bounded from above by ‖·‖ such that, for any Euclidean or Hermitian
norm ‖·‖h satisfying ‖·‖h 6 ‖·‖, one has ‖·‖h,det 6 ‖·‖J ,det. Moreover, for any x ∈ V ,
one has ‖x‖h 6 ‖x‖ 6 r1/2‖x‖h , where r is the dimension of V over k.

Proof We fix an arbitrary inner product 〈 ,〉′ on V and denote by Θ the vector space
(over R) of all endomorphisms of V which are self-adjoint with respect to the inner
product 〈 ,〉′. Recall that a k-linear map u : V → V is said to be self-adjoint with
respect to 〈 ,〉′ if and only if



74 1 Metrized vector bundles: local theory

∀ (x, y) ∈ V2, 〈u(x), y〉′ = 〈x,u(y)〉′.

Let Θ+ be the set of all positive definite self-adjoint operators. Since any pair of
self-adjoint operator can be simultaneously diagonalised by a basis of V , we obtain
thatΘ+ is a convex open subset ofΘ and that the function log det(·) is strictly concave
on Θ+.

Let B = {x ∈ V : ‖x‖ 6 1} be the unit ball of the norm ‖·‖. For any u ∈ Θ+, let
Bu = {x ∈ V : 〈x,u(x)〉′ 6 1}, which is the unit ball of the Euclidean or Hermitian
norm ‖·‖u on V defined as

∀ x ∈ V, ‖x‖2
u = 〈x,u(x)〉′.

Let Θ0 be the set of all u ∈ Θ+ such that Bu ⊇ B. Then for any u0 ∈ Θ0, the set

Θ(u0) := {u ∈ Θ0 : det(u) > det(u0)}

is a convex and compact subset of Θ. In fact, from the concavity and the continuity
of the function log det(·) we obtain that the setΘ(u0) is convex and closed. Moreover,
the condition Bu ⊇ B for u ∈ Θ0 implies that the setΘ(u0) is bounded inΘ. Therefore
the restriction of the function det(·) to Θ0 attains its maximal value at a unique point
u1 ∈ Θ0.

Let 〈 ,〉 be the inner product on V such that

∀ (x, y) ∈ V × V, 〈x, y〉 = 〈x,u1(y)〉
′.

We call it the John inner product associated with the norm ‖·‖. The corresponding
Euclidean or Hermitian norm ‖·‖J is called the John norm associated with ‖·‖.

In the following, we prove the relation

∀ x ∈ V, ‖x‖J 6 ‖x‖ 6 r1/2‖x‖J

under the supplementary assumption that the unit ball B is the convex hull of finitely
many orbits of the action of {a ∈ k : |a| = 1} on V .

Without loss of generality, we assume that 〈 ,〉′ = 〈 ,〉. For any x ∈ V such that
‖x‖ 6 1, let ϕx : Θ→ R be the linear functional which sends u ∈ Θ to 〈x,u(x)〉. If
u : V → V is a self-adjoint linear operator such that ϕx(u) 6 0 for any x ∈ B such
that 〈x, x〉 = 1, then one has Tr(u) 6 0. In fact, the condition

∀ x ∈ B, 〈x, x〉 = 1 =⇒ ϕx(u) 6 0

implies that Id+εu ∈ Θ0 for sufficiently small ε > 0 (here we use the supplementary
assumption that the convex body B is spanned by a finite number of orbits). Therefore
one has det(Id + εu) 6 det(Id) = 1, which leads to Tr(u) 6 0. Therefore, the linear
form Tr(·) lies in the closure of the positive cone of Θ∨ generated by ϕx(·) (x ∈ B,
〈x, x〉 = 1), namely there exist a sequence of elements {xn}n∈N in

B ∩ {x ∈ V : 〈x, x〉 = 1}
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and a sequence {λn}n>0 of real numbers such that

Tr(u) =
∑
n∈N

λn〈xn,u(xn)〉 (1.41)

for any u ∈ Θ. If we apply the identity to u = Id, we obtain

r =
∑
n∈N

λn〈xn, xn〉 =
∑
n∈N

λn. (1.42)

Let y be an element in V such that 〈y, y〉 = 1. We apply the identity (1.41) to the
linear map u(x) = 〈y, x〉y, and obtain

1 =
∑
n∈N

λn |〈xn, y〉|2∞.

Thus there should exist n ∈ N such that |〈xn, y〉|∞ > r−1/2 since otherwise we have

1 <
∑
n∈N

1
r
λn =

1
r
· r = 1,

where the first equality comes from (1.42), which leads to a contradiction. Since the
unit ball B = {x ∈ V : ‖x‖ = 1} is invariant by the multiplication by any λ ∈ k
with |λ | = 1, we obtain that, for any y ∈ V such that 〈y, y〉 = 1, there exists x ∈ B
such that Re〈y, x〉 > r−1/2.

We claim that the unit ball B = {x ∈ V : ‖x‖ 6 1} contains the set of all x ∈ V
such that 〈x, x〉 6 1/r . In fact, if x0 ∈ V is a point such that 〈x0, x0〉 6 1/r and that
‖x‖ > 1, we can choose an R-affine function f : V → R such that f (x0) = 0 and
that f (x) < 0 for any x ∈ B. Note that Re〈 ,〉 defines an inner product on V , where V
is viewed as a vector space over R if k = C. By Riesz’s theorem there exists y ∈ V
such that

∀ x ∈ V, f (x) = Re〈y, x〉 + f (0).

Without loss of generality, we may assume that 〈y, y〉 = 1. One has

0 = f (x0) = Re〈y, x0〉 + f (0) 6 〈y, y〉1/2〈x0, x0〉
1/2 + f (0) =

1
√

r
+ f (0).

Hence f (0) > −r−1/2. However, the above argument shows that there exists x ∈ B
such that Re〈y, x〉 > r−1/2. Hence one has

0 > f (x) = Re〈y, x〉 + f (0) > 0,

which leads a contradiction.
Since B ⊆ {x ∈ V : 〈x, x〉 6 1}, one has ‖x‖J 6 ‖x‖ for any x ∈ V . Moreover,

the relation
{x ∈ V : 〈x, x〉 6 1/r} ⊆ B = {x ∈ V : ‖x‖ 6 1}
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implies that ‖x‖ 6 r1/2‖x‖J . The theorem is thus proved under the supplementary
hypothesis.

For the general case, we can construct a decreasing sequence of norms {‖·‖n}n∈N
such that each unit ball {x ∈ V : ‖x‖n 6 1} verifies the supplementary hypothesis
mentioned above and that the sequence

sup
0,x∈V

‖x‖n
‖x‖

converges to 1 when n → +∞. For each n ∈ N, let ‖·‖n,J be the John norm associated
to the norm ‖·‖n. If we identify the set of Euclidean or Hermitian norms on V with
Θ+, we obtain that these John norms actually lies in a bounded subset ofΘ. Therefore
there exists a subsequence of {‖·‖n,J }n∈N which converges inΘ, whose limite should
be the John norm associated with ‖·‖ by the uniqueness of the John norm. Without
loss of generality we may assume that {‖·‖n,J }n∈N converges in Θ. By what we have
established above, for any n ∈ N one has

∀ x ∈ V, ‖x‖n,J 6 ‖x‖n 6 r1/2‖x‖n,J .

By taking the limit when n → +∞, we obtain the result announced in the theorem.�

Remark 1.2.55 Let (V, ‖·‖) be a finite-dimensional normed vector space overR orC
(equipped with the usual absolute value). Since (V, ‖·‖) is reflexive (see Proposition
1.1.18), we deduce that the dual norm ‖·‖J ,∗ is the unique norm on V∨ which is
bounded from below by ‖·‖∗ and such that the corresponding determinant norm
‖·‖J ,∗,det is minimal. In particular, one has

∆(V∨, ‖·‖∗) =
‖·‖J ,∗,det

‖·‖∗,det
.

Similarly, one has

∆(V, ‖·‖) =
‖·‖L,det

‖·‖det
, (1.43)

where ‖·‖L is the unique Euclidean or Hermitian norm on V which is bounded from
below by ‖·‖ and such that ‖·‖L,det is minimal (called the Löwner norm of ‖·‖),
which is also equal to ‖·‖∗,J ,∗. Theorem 1.2.54 then leads to

max{∆(V, ‖·‖),∆(V∨, ‖·‖∗)} 6 dimk(V)dimk (V )/2 (1.44)

We denote by λ(V, ‖·‖) the constant ‖η‖L,det · ‖η
∨‖J ,∗,det, where η is an arbitrary

non-zero element in det(V), and η∨ is its dual element in det(V∨). With this notation,
by (1.38) in §1.2.7 one has

∆(V∨, ‖·‖∗)∆(V, ‖·‖) = λ(V, ‖·‖)δ(V, ‖·‖). (1.45)

Note that one has ‖·‖J 6 ‖·‖ by definition. Hence we obtain
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λ(V, ‖·‖) =
‖·‖L,det

‖·‖J ,det
>

‖·‖L,det

‖·‖det
= ∆(V, ‖·‖), (1.46)

where the first equality comes from Proposition 1.2.47. Therefore the relation (1.45)
leads to ∆(V∨, ‖·‖∗) > δ(V, ‖·‖). Since δ(V, ‖·‖) and λ(V, ‖·‖) are both invariant by
duality, one obtains

δ(V, ‖·‖) 6 min{∆(V, ‖·‖),∆(V∨, ‖·‖∗)}

6 max{∆(V, ‖·‖),∆(V∨, ‖·‖∗)} 6 λ(V, ‖·‖).
(1.47)

Remark 1.2.56 We can deduce from Theorem 1.2.54 a similar result for seminorms.
Let (V, ‖·‖) be a finite-dimensional seminormed vector space over k. Let ‖·‖∼J be
the John norm associated with ‖·‖∼. It is induced by an inner product on V/N‖ · ‖ .
Let ‖·‖J be the seminorm on V given by the composition of ‖·‖∼J with the canonical
projection V → V/‖·‖. It is a seminorm induced by a semidefinite inner product.
Moreover, the following inequalities hold

‖·‖J 6 ‖·‖ 6 dimk(V/N‖ · ‖)
1/2‖·‖J .

1.2.9 Hilbert-Schmidt tensor norm

In this subsection, we assume that the absolute value |·| is Archimedean.
Let V and W be finite-dimensional vector spaces over k, equipped with semidef-

inite inner products. For f ∈ Homk(V∗,W), the adjoint operator f ∗ : W → V∗ of f
is defined by 〈 f (α), y〉 = 〈α, f ∗(y)〉∗ for all α ∈ V∗ and y ∈ W . Note that the adjoint
operator f ∗ exists for any f because the product 〈 ,〉∗ on V∗ is positive definite. We
can equip Homk(V∗,W) with the following semidefinite inner product 〈 ,〉HS:

∀ f ,g ∈ Homk(V∗,W), 〈 f ,g〉HS := Tr( f ∗ ◦ g).

This semidefinite inner product defines a seminorm on Homk(V∗,W), which induces
by the canonical linear map V ⊗k W → Homk(V∗,W) a seminorm ‖·‖HS on V ⊗K W ,
called the orthogonal tensor product of the seminorms of V and W , or Hilbert-
Schmidt seminorm. Note that if {xi}ni=1 and {yj}

m
j=1 are respectively orthogonal basis

of V and W , then {xi ⊗ yj}i∈{1,...,n}, j∈{1,...,m} is an orthogonal basis of V ⊗k W with
respect to 〈 ,〉HS. Moreover, for x ∈ V and y ∈ W one has

‖x ⊗ y‖HS = ‖x‖ · ‖y‖. (1.48)

In particular, if V and W are both of dimension 1 over k, then the orthogonal tensor
product seminorm on V ⊗k W coincides with the ε-tensor product and the π-tensor
product seminorms. In this case we just call it the tensor product seminorm.

The dual norm on V∗⊗kW∗ of the Hilbert-Schmidt seminorm on V⊗kW coincides
with the orthogonal tensor product of the dual norms on V∗ and W∗. Moreover, the
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orthogonal tensor product is commutative, namely the isomorphism from V ⊗k W to
W ⊗k V given by the transposition is actually an isometry under orthogonal tensor
product seminorms. Similarly, the orthogonal tensor product is associative. More
precisely, given three finite-dimensional vector spaces U, V and W over k, equipped
with semidefinite inner products, the natural isomorphism from (U ⊗k V) ⊗k W to
U ⊗k (V ⊗k W) is an isometry for orthogonal tensor product seminorms.

The following assertion, which is similar to Proposition 1.2.36, studies the quo-
tient norm of the orthogonal tensor product.

Proposition 1.2.57 Let V and W be finite-dimensional seminormed vector spaces
over k, V0 be a k-vector subspace of V , and Q be the quotient vector space V/V0
equipped with the quotient seminorm. We assume that the seminorms of V and
W are induced by semidefinite inner products. Then the canonical isomorphism
(V ⊗k W)/(V0 ⊗k W) → Q ⊗k W is an isometry, where we consider the orthogonal
tensor product seminorms on V ⊗k W and Q ⊗k W , and the quotient seminorm on
(V ⊗k W)/(V0 ⊗k W).

Proof By the Gram-Schmidt process we can identify the quotient space Q with the
orthogonal supplementary of V0 in V . Let e = {ei}ni=1 be an orthogonal basis of V
such that card(e ∩ V0) = dimk(V0). Then the projection V → Q defines an isometry
between Q and the vector subspace V1 of V generated by e \ V0. Let f = { fj}mj=1 be
an orthogonal basis of W . Then the basis e ⊗ f = {ei ⊗ fj}(i, j)∈{1,...,n}×{1,...,m} of
V ⊗k W is orthogonal. Moreover, one has

card((e ⊗ f ) ∩ (V0 ⊗k W)) = dimk(V0 ⊗k W).

Thus (e \ V0) ⊗ f forms an orthogonal basis of Q ⊗k W equipped with the quotient
seminorm (where we identify Q with V⊥

0 ). Hence the quotient seminorm on Q ⊗k W
identifies with the orthogonal tensor product seminorm. �

Proposition 1.2.58 Let (V, ‖·‖V ) and (W, ‖·‖W ) be finite-dimensional seminormed
vector space over k, V0 be a k-vector subspace of V and ‖·‖V0 be the restriction
of ‖·‖V on V0. We assume that the absolute value |·| is Archimedean and that the
seminorms ‖·‖V and ‖·‖W are induced by semidefinite inner products. Let ‖·‖ be
the orthogonal tensor product of ‖·‖V and ‖·‖W , and ‖·‖0 be the orthogonal tensor
product of ‖·‖V0 and ‖·‖W . Then ‖·‖0 identifies with the restriction of ‖·‖ to V0 ⊗k W .

Proof Note that ‖·‖∗ identifies with the orthogonal tensor product of ‖·‖V ,∗ and
‖·‖W ,∗, and ‖·‖0,∗ identifies with the orthogonal tensor product of ‖·‖V0 ,∗ and ‖·‖W ,∗.
Moreover, by Lemma 1.2.48, ‖·‖V0 ,∗ identifies with the quotient norm of ‖·‖∗ by
the canonical surjective map V∗ → V∗

0 . By Proposition 1.2.57, we obtain that
‖·‖0,∗ identifies with the quotient norm of ‖·‖∗ by the canonical surjective map
V∗ ⊗k W∗ → V∗

0 ⊗k W∗. Therefore, by Proposition 1.1.20, ‖·‖0 is the restriction of
‖·‖ to V0 ⊗k W . �

The following proposition compares ε-tensor product to orthogonal tensor prod-
uct.
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Proposition 1.2.59 LetV andW be finite-dimensional vector spaces over k, equipped
with semidefinite inner products. Let ‖·‖ε and ‖·‖HS be respectively the ε-tensor
product seminorm and the orthogonal tensor product seminorm on V ⊗k W . Then
‖·‖ε 6 ‖·‖HS 6 min{dimk(V∗),dimk(W∗)}1/2‖·‖ε .

Proof Without loss of generality, we may assume that dimk(V∗) 6 dimk(W∗). Let ϕ
be an element of V ⊗k W , viewed as a k-linear map from V∗ to W . Let λ1 > . . . > λr
be the eigenvalues of the positive semidefinite operator ϕ∗ ◦ ϕ. By definition, the
Hilbert-Schmidt seminorm of ϕ is ‖ϕ‖HS = (λ1+ . . .+λr )

1/2. Moreover, the operator
seminorm of ϕ is λ1/2

1 . In fact, if α1, . . . , αr are eigenvectors of ϕ∗ ◦ ϕ of eigenvalues
λ1, . . . , λr , respectively, then for any (a1, . . . ,ar ) ∈ kr one has

〈ϕ(a1α1 + . . . + arαr ), ϕ(a1α1 + . . . + arαr )〉

= 〈ϕ∗(ϕ(a1α1 + . . . + arαr )),a1α1 + . . . + arαr 〉 =
r∑
i=1

|ai |2λi .

Therefore one has ‖ϕ‖ε 6 ‖ϕ‖HS 6
√

r ‖ϕ‖ε . �

By using the duality between the ε-tensor product and π-tensor product (see
Proposition 1.1.57), we deduce from the previous proposition the following corollary.

Corollary 1.2.60 Let V and W be finite-dimensional vector spaces over k, equipped
with semidefinite inner products. Let ‖·‖π and ‖·‖HS be respectively the π-tensor
product and the orthogonal tensor product norms on V ⊗k W . Then one has

‖·‖π > ‖·‖HS > min{dimk(V∗),dimk(W∗)}−1/2‖·‖π .

The following proposition expresses the Hilbert-Schmidt norm of endomorphisms
in terms of the operator norm.

Proposition 1.2.61 Let V be a vector space of finite dimension r over k, equipped
with an inner product 〈 ,〉. Let f : V → V be an endomorphism of V . Then one has

〈 f , f 〉HS =

r∑
i=1

inf
g∈Endk (V )

rk(g)6i−1

‖ f − g‖2,

where ‖·‖ denotes the operator norm on Endk(V).

Proof Let {ei}ri=1 be an orthonormal basis of V consisting of the eigenvectors of the
self-adjoint operator f ∗ ◦ f . For any i ∈ {1, . . . ,r}, let λi be the eigenvalue of f ∗ ◦ f
corresponding to the eigenvector ei . Without loss of generality, we may assume that
λ1 > . . . > λr . Since the self-adjoint operator f ∗ ◦ f is positive semidefinite, one
has λr > 0. By definition, one has 〈 f , f 〉HS =

∑r
i=1 λi . In the following, we prove

that, for any i ∈ {1, . . . ,r}, one has

inf
g∈Endk (V )

rk(g)6i−1

‖ f − g‖2 = λi .
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Let π be the orthogonal projection of V to the vector subspace generated by
{e1, . . . , ei−1}. Then the endomorphism f ◦ π has rank 6 i − 1. Moreover, since
any orthogonal projection is self-adjoint, one has

( f − f π)∗( f − f π) = ( f ∗ − π f ∗)( f − f π) = f ∗ f + π f ∗ f π − π f ∗ f − f ∗ f π.

In particular, the linear endomorphism ( f − f π)∗( f − f π) sends an element a1e1 +
· · ·+arer in V to aiλiei+ · · ·+arλrer . Hence the operator norm of ( f − f π)∗( f − f π),
which is equal to the square of the operator norm of f − f π, is λi .

It remains to prove that, for any k-linear endomorphism g ∈ Endk(V) of rank
6 i − 1, one has ‖ f − g‖2 > λi . Let W be the vector subspace of V generated by
{e1, . . . , ei}. Since g has rank 6 i−1, one has Ker(g)∩W , {0}. Let x be a non-zero
vector in Ker(g) ∩ W . One has

‖( f − g)(x)‖2 = ‖ f (x)‖2 = 〈 f (x), f (x)〉 = 〈 f ∗( f (x)), x〉.

Since x ∈ W , one obtains ‖( f − g)(x)‖2 > λi ‖x‖2. Therefore ‖ f − g‖2 > λi . The
proposition is thus proved. �

Proposition 1.2.62 Let V be a finite-dimensional vector space over k, equipped with
a semidefinite inner product 〈 ,〉, r be the dimension of V , and ‖·‖det′ be the quotient
seminorm of the orthogonal tensor product seminorm on V ⊗r by the canonical
quotient map V ⊗r → det(V). Then one has ‖·‖det = (r!)1/2‖·‖det′ .

Proof If the seminorm associated with the semidefinite inner product on V is not a
norm, then both seminorms ‖·‖det and ‖·‖det′ vanish. It then suffices to treat the case
where 〈 ,〉 is an inner product.

Let ϕ be an element in V ⊗r . Let {ei}ri=1 be an orthonormal basis of V . We write
ϕ into the form

ϕ =
∑

I=(i1 ,...,ir )∈{1,...,r }r
aI (ei1 ⊗ · · · eir ).

Then the canonical image η of ϕ in det(V) is( ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

)
e1 ∧ · · · ∧ er ,

whereSr is the symmetric group of order r . Hence the Cauchy-Schwarz inequality
leads to

‖η‖det =
��� ∑
σ∈Sr

sgn(σ)a(σ(1),...,σ(r))

��� 6 (r!)1/2‖ϕ‖HS,

where ‖·‖HS denotes the orthogonal tensor product norm on V ⊗r . The equality is
attained when ϕ is of the form

∑
σ∈Sr

sgn(σ)eσ(1) ⊗ · · · ⊗ eσ(r). The proposition is
thus proved. �

Proposition 1.2.63 Let V and W be finite-dimensional seminormed vector spaces.
We assume that the seminorms ofV andW are induced by semidefinite inner products.
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Let n and m be respectively the dimensions of V and W over k. We equip the tensor
product V ⊗k W with the orthogonal tensor product seminorm ‖·‖HS. Then the
canonical isomorphism det(V ⊗k W) → det(V)⊗m ⊗ det(W)⊗n is an isometry, where
we consider the determinant of the Hilbert-Schmidt seminorm on det(V ⊗k W), and
the tensor product ‖·‖ ′ of determinant seminorms on det(V)⊗m ⊗ det(W)⊗n.

Proof The assertion is trivial when at least one of the seminorms of V and W is not
a norm since in this case both seminorms ‖·‖HS,det and ‖·‖ ′ vanish.

In the following, we assume that V and W are equipped with inner products. Let
{ei}ni=1 and { fj}mj=1 be respectively orthonormal bases of V and W , which are also
Hadamard bases (by Proposition 1.2.25). Then {ei ⊗ fj}(i, j)∈{1,...,n}×{1,...,m} is an
orthonormal basis of V ⊗k W . By Proposition 1.2.25, it is also an Hadamard basis.
Hence one has n∧

i=1

m∧
j=1

(ei ⊗ fj)


HS,det
= 1 =

(e1 ∧ · · · ∧ en)⊗m ⊗ ( f1 ∧ · · · ∧ fm)⊗n
′.

The proposition is thus proved. �

1.3 Extension of scalars

In this section, we suppose given a field extension K of k equipped with a complete
absolute value which extends |·| on k. By abuse of notation, we still use the notation
|·| to denote the extended absolute value on K . We can thus consider K as a normed
vector space over k, which is ultrametric if and only if the absolute value |·| on k is
non-Archimedean.

Let (V, ‖·‖) be a finite-dimensional seminormed vector space over k. We consider
the natural K-linear map from VK = V ⊗k K to L (V∗,K)which sends x⊗a ∈ V ⊗k K
(with x ∈ V and a ∈ K) to the k-linear map ( f ∈ V∗) 7→ a f (x). We equip V∗

with the dual norm and L (V∗,K) with the operator norm, which induces by this
natural K-linear map a seminorm on V ⊗k K denoted by ‖·‖K ,ε and called the
seminorm induced by ‖·‖ by ε-extension of scalars. Note that the seminorm ‖·‖K ,ε
is necessarily ultrametric if k is non-Archimedean. Moreover, if (K, |·|) is reflexive
as normed vector space over k (this condition is satisfied notably when K/k is a
finite extension), then the seminorm ‖·‖K ,ε is the ε-tensor product of ‖·‖ and the
absolute value on K (viewed as a norm on the k-vector space K), see Remark 1.1.53.

We denote by ‖·‖K ,π the π-tensor product seminorm on V ⊗k K of the seminorm
‖·‖ on V and the absolute value |·| on K , called the seminorm induced by ‖·‖ by
π-extension of scalars. If |·| is Archimedean and if the seminorm ‖·‖ is induced by
a semidefinite inner product, we denote by ‖·‖K ,HS the orthogonal tensor product of
the seminorm ‖·‖ on V and the absolute value |·| on K (in the Archimedean case the
extension K/k is always finite), called the seminorm induced by ‖·‖ by orthogonal
extension of scalars.
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In what follows, an element x ∈ V is often considered as an element of VK =

V ⊗k K by the inclusion map V → V ⊗k K sending x to x ⊗ 1.

1.3.1 Basic properties

In this subsection, we discuss some basic behaviour of norms induced by extension
of scalars.

Proposition 1.3.1 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k.

(1) For any x ∈ V one has ‖x‖K ,ε = ‖x‖∗∗, where ‖·‖∗∗ denotes the double dual
seminorm of ‖·‖. In particular, if either (k, |·|) is Archimedean or (V, ‖·‖) is
ultrametric, then one has ‖x‖K ,ε = ‖x‖ for any x ∈ V .

(2) For any x ∈ V one has ‖x‖K ,π = ‖x‖. If |·| is Archimedean and ‖·‖ is induced
by a semidefinite inner product, for any x ∈ V one has ‖x‖K ,HS = ‖x‖.

(3) For any y ∈ VK one has ‖y‖K ,ε 6 ‖y‖K ,π . If (k, |·|) is R equipped with the usual
absolute value, K = C, and ‖·‖ is induced by a semidefinite inner product, then
for any y ∈ VC one has

‖y‖C,ε 6 ‖y‖C,HS 6 ‖y‖C,π, (1.49)

min{dimR(V∗),2}−1/2‖y‖C,π 6 ‖y‖C,HS 6 min{dimR(V∗),2}1/2‖y‖C,ε .
(1.50)

Proof (1) Let `x : V∗ → k be the k-linear map sending any bounded linear form
f ∈ V∗ to f (x). Let ˜̀

x : V∗ → K be the composition `x with the inclusion
map k → K . The operator norms of `x and ˜̀

x are the same. Therefore one has
‖x‖K = ‖x‖∗∗. The last assertion comes from Proposition 1.1.18 and Corollary
1.2.12.

The first assertion of (2) follow from Remark 1.1.56 in the Archimedean case and
from Proposition 1.2.50 in the non-Archimedean case (note that the absolute value
on K , viewed as a norm when we consider K as a vector space over k, is ultrametric
once |·| is non-Archimedean). The second assertion follows from (1.48) in §1.2.9.

(3) The first assertion follows from (1) and Proposition 1.1.54.
In the case where (k, |·|) is R equipped with the usual absolute value, K = C, and

‖·‖ is induced by an inner product, the inequalities follow from Proposition 1.2.59
and Corollary 1.2.60. �

Remark 1.3.2

(1) Note that ‖·‖ and its double dual seminorm ‖·‖∗∗ induce the same dual norm
on V∗ (see Proposition 1.2.14). Hence they induce the same seminorm on VK

by ε-extension of scalars. Moreover, if K = k, then ‖·‖K ,ε identifies with the
double dual seminorm of ‖·‖ on V .
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(2) Assume that k = R, K = C and |·| is the usual absolute value on R. Suppose
that the norm ‖·‖ is induced by a semidefinite inner product 〈 ,〉. Note that 〈 ,〉
induces a semidefinite inner product 〈 ,〉C, given by

∀ x, y, x ′, y′ ∈ V, 〈x+iy, x ′+iy′〉C = 〈x, x ′〉+ 〈y, y′〉+i
(
〈x, y′〉− 〈y, x ′〉

)
.

Note that the seminorm corresponding to 〈 ,〉C identifies with the orthogonal
tensor product ‖·‖C,HS of ‖·‖ and |·|. Moreover, an orthogonal basis of (V, 〈 ,〉)
remains to be an orthogonal basis of (VC, 〈 ,〉C), which implies that ‖·‖C,HS is the
unique seminorm on VC extending ‖·‖ which is induced by a semidefinite inner
product. In particular, one has 〈 ,〉∗,C = 〈 ,〉C,∗, where 〈 ,〉∗ denotes the dual inner
product of 〈 ,〉 (see §1.2.1), and hence ‖·‖C,HS,∗ = ‖·‖∗,C,HS.

(3) Let V be a seminormed vector space of dimension 1 on k. Then the norms
‖·‖K ,ε and ‖·‖K ,π are the same since they take the same value on a non-zero
vector of V (by Proposition 1.3.1). Similarly, if |·| is Archimedean then one has
‖·‖K ,ε = ‖·‖K ,HS = ‖·‖K ,π . We just call this seminorm the seminorm induced
by ‖·‖ by extension of scalars and denote it by ‖·‖K .

Proposition 1.3.3 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k and N = N‖ · ‖ be the null space of ‖·‖.

(1) The null spaces of the seminorms ‖·‖K ,ε and ‖·‖K ,π are both equal to NK .
(2) A linear form on the K-vector space VK is bounded with respect to the seminorm

‖·‖K ,ε if and only if it is bounded with respect to ‖·‖K ,π . Moreover, the underlying
vector spaces of (VK , ‖·‖K ,ε)

∗ and (VK , ‖·‖K ,π)
∗ are both canonically isomorphic

to (VK/NK )
∨.

(3) The quotient norm on VK/NK induced by ‖·‖K ,ε (resp. ‖·‖K ,π) identifies with
the ε-extension of scalars ‖·‖∼K ,ε (resp. the π-extension of scalars ‖·‖∼K ,π) of the
norm ‖·‖∼.

Proof (1) Note that the relation ‖·‖K ,ε 6 ‖·‖K ,π holds (see Proposition 1.3.1 (3)),
so that it is sufficient to see that (i) ‖x‖K ,π = 0 for x ∈ NK and (ii) ‖x‖K ,ε > 0 for
x ∈ VK \ NK . Let {ei}ni=1 be a basis of V such that {ei}ri=1 forms a basis of N .

(i) We write x in the form x = λ1e1 + · · · + λrer with (λ1, . . . , λr ) ∈ Kr . One has

0 6 ‖x‖K ,π 6
r∑
i=1

|λi | · ‖ei ‖K ,π =
r∑
i=1

|λi | · ‖ei ‖ = 0,

where the first equality comes from Proposition 1.3.1 (2).
(ii) We set x = λ1e1 + · · · + λnen (λ1, . . . , λn ∈ K). If x does not belong to NK ,

then there exists j ∈ {r + 1, . . . ,n} such that λj , 0. Note that e∨j belongs to V∗.
Hence

‖x‖K ,ε >
|λj |

‖e∨j ‖∗
> 0.

(2) By Corollary 1.1.13 (3), a linear form on a finite-dimensional seminormed
vector space is bounded if and only if it vanishes on the null space of the seminorm.
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By (1) we obtain that both seminorms ‖·‖K ,ε and ‖·‖K ,π admit NK as the null space.
Hence we obtain the required result.

(3) We identify V∗ with (V/N)∨ and then the norm ‖·‖∗ identifies with the dual
norm of ‖·‖∼. Therefore by definition for any x ∈ VK one has ‖x‖K ,ε = ‖[x]‖∼K ,ε ,
where [x] denotes the class of x in VK/NK . The case of π-extension of scalars comes
from Proposition 1.1.58. �

The following proposition proves a universal property of the π-extension of
scalars.

Proposition 1.3.4 Let (V, ‖·‖) be a finite-dimensional seminormed vector space over
k. If ‖·‖ ′ is a seminorm on VK whose restriction to V is bounded from above by ‖·‖,
then the seminorm ‖·‖ ′ is bounded from above by ‖·‖K ,π . In particular, ‖·‖K ,π is the
largest seminorm on VK = V ⊗k K extending ‖·‖.

Proof For any x ∈ V and a ∈ K one has

‖x ⊗ a‖ ′ = |a| · ‖x ⊗ 1‖ ′ 6 |a| · ‖x‖.

By Proposition 1.1.54, we obtain ‖·‖ ′ 6 ‖·‖K ,π . �

Proposition 1.3.5 Let (V1, ‖·‖1) and (V2, ‖·‖2) be finite-dimensional seminormed vec-
tor spaces over k, and ‖·‖ be the π-tensor product seminorm of ‖·‖1 and ‖·‖2. Then
the norm ‖·‖K ,π identifies with the π-tensor product of ‖·‖1,K ,π and ‖·‖2,K ,π .

Proof Let ‖·‖ ′ be the π-tensor product of ‖·‖1,K ,π and ‖·‖2,K ,π . If s is an element
of V1 ⊗k V2, which is written as s = x1 ⊗ y1 + · · · + xn ⊗ yn, with (x1, . . . , xn) ∈ Vn

1
and (y1, . . . , y2) ∈ Vn

2 . Then one has

‖s‖ ′ 6
n∑
i=1

‖xi ‖1,K ,π · ‖yi ‖2,K ,π =

n∑
i=1

‖xi ‖1 · ‖yi ‖2.

Therefore one has ‖s‖ ′ 6 ‖s‖. By Proposition 1.3.4, the norm ‖·‖ ′ is bounded from
above by ‖·‖K ,π .

To prove the converse inequality, by Proposition 1.1.54, it suffices to show that, for
any split tensor u⊗v inV1,K⊗KV2,K one has ‖u⊗v‖K ,π 6 ‖u‖1,K ,π ·‖v‖2,K ,π . Assume
that u and v are written as u = λ1x1 + · · · + λnxn and v = µ1y1 + · · · + µmym with
(λ1, . . . , λn) ∈ Kn, (x1, . . . , xn) ∈ Vn

1 , (µ1, . . . , µm) ∈ Km and (y1, . . . , ym) ∈ Vm
2 .

Then one has

‖u ⊗ v‖K ,π 6
n∑
i=1

m∑
j=1

|λiµj | · ‖xi ⊗ yj ‖K ,π =

n∑
i=1

m∑
j=1

|λiµj | · ‖xi ⊗ yj ‖

=

n∑
i=1

m∑
j=1

|λiµj | · ‖xi ‖1 · ‖yj ‖2

=
( n∑
i=1

|λi | · ‖xi ‖1

) ( m∑
j=1

|µj | · ‖yj ‖2

)
.
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Since the decompositions u = λ1x1 + · · · + λnxn and v = µ1y1 + · · · + µmym are
arbitrary, we obtain

‖u ⊗ v‖K ,π 6 ‖u‖1,K ,π · ‖v‖2,K ,π .

Proposition 1.3.6 Assume that (k, |·|) is the field R equipped with the usual absolute
value and K = C. Let (V1, 〈 ,〉1) and (V2, 〈 ,〉2) be finite-dimensional vector spaces
over R equipped with semidefinite inner products, ‖·‖1 and ‖·‖2 be seminorms
corresponding to 〈 ,〉1 and 〈 ,〉2, respectively, and ‖·‖ be the orthogonal tensor
product of ‖·‖1 and ‖·‖2. Then the seminorm ‖·‖C,HS identifies with the orthogonal
tensor product of ‖·‖1,C,HS and ‖·‖2,C,HS.

Proof Let {xi}ni=1 and {yj}
m
j=1 be orthonormal bases of (V1, ‖·‖1) and (V2, ‖·‖2),

respectively. Then {xi ⊗ yj}(i, j)∈{1,...,n}×{1,...,m} is an orthonormal basis of (V1 ⊗R
V2, ‖·‖) and hence is an orthonormal basis of (V1,C⊗CV2,C, ‖·‖C,HS). Moreover, {xi}ni=1
and {yj}

m
j=1 are also orthonormal bases of (V1,C, ‖·‖1,C,HS) and (V2,C, ‖·‖2,C,HS),

respectively. Hence {xi ⊗ yj}(i, j)∈{1,...,n}×{1,...,m} is an orthonormal basis of V1,C ⊗C
V2,C with respect to the orthogonal tensor product of ‖·‖1,C,HS and ‖·‖2,C,HS. The
proposition is thus proved. �

Proposition 1.3.7 Let V be a finite-dimensional vector space over k, and ‖·‖1 and
‖·‖2 be two norms on V .

(1) One has

d(‖·‖1,K ,ε, ‖·‖2,K ,ε) = d(‖·‖1,∗∗, ‖·‖2,∗∗) 6 d(‖·‖1, ‖·‖2).

In particular, if both norms ‖·‖1 and ‖·‖2 are reflexive, then

d(‖·‖1,K ,ε, ‖·‖2,K ,ε) = d(‖·‖1, ‖·‖2).

(2) One has d(‖·‖1,K ,π, ‖·‖2,K ,π) = d(‖·‖1, ‖·‖2).
(3) Assume that |·| is Archimedean and that ‖·‖1 and ‖·‖2 are induced by inner

products. Then d(‖·‖1,K ,HS, ‖·‖2,K ,HS) = d(‖·‖1, ‖·‖2).

Proof (1) By Proposition 1.1.43, one has d(‖·‖1,∗, ‖·‖2,∗) 6 d(‖·‖1, ‖·‖2). By the
same argument as that of the proof of Proposition 1.1.43, we can show that
d(‖·‖1,K ,ε, ‖·‖2,K ,ε) 6 d(‖·‖1,∗, ‖·‖2,∗). Hence we obtain the inequality

d(‖·‖1,K ,ε, ‖·‖2,K ,ε) 6 d(‖·‖1, ‖·‖2).

By Proposition 1.2.14, for i ∈ {1,2}, ‖·‖i and ‖·‖i,∗∗ induce the same dual norm on
V∗, and hence ‖·‖i,K ,ε = ‖·‖i,∗∗,K ,ε . Therefore the above argument actually leads
to d(‖·‖1,K ,ε, ‖·‖2,K ,ε) 6 d(‖·‖1,∗∗, ‖·‖2,∗∗). Conversely, by Proposition 1.3.1 (1) we
obtain that ‖·‖1,K ,ε and ‖·‖2,K ,ε extend ‖·‖1,∗∗ and ‖·‖2,∗∗, respectively. Hence one
has d(‖·‖1,K ,ε, ‖·‖2,K ,ε) > d(‖·‖1,∗∗, ‖·‖2,∗∗).

The inequality d(‖·‖1,∗∗, ‖·‖2,∗∗) 6 d(‖·‖1, ‖·‖2) comes from Proposition 1.1.43.
The equality holds when both norms ‖·‖1 and ‖·‖2 are reflexive.
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(2) By Proposition 1.3.1 (2), ‖·‖1,K ,π and ‖·‖2,K ,π extend ‖·‖1 and ‖·‖2, respec-
tively, and hence d(‖·‖1,K ,π, ‖·‖2,K ,π) > d(‖·‖1, ‖·‖2). In the following, we prove
the converse inequality. If we set δ = d(‖·‖1, ‖·‖2), then e−δ 6 ‖s‖1/‖s‖2 6 eδ for
s ∈ V \ {0}, that is, ‖·‖1 6 eδ ‖·‖2 and ‖·‖2 6 eδ ‖·‖1. By Proposition 1.3.4, one
has ‖·‖1,K ,π 6 eδ ‖·‖2,K ,π . By the same reason, ‖·‖2,K ,π 6 eδ ‖·‖1,K ,π . Hence the
inequality d(‖·‖1,K ,π, ‖·‖2,K ,π) 6 δ = d(‖·‖1, ‖·‖2) holds.

(3) It suffices to treat the case where k = R and K = C. By Proposition
1.3.1 (2), ‖·‖1,K ,HS and ‖·‖2,K ,HS extend ‖·‖1 and ‖·‖2, respectively, and hence
d(‖·‖1,K ,HS, ‖·‖2,K ,HS) > d(‖·‖1, ‖·‖2). As in (2), if we set δ = d(‖·‖1, ‖·‖2), then
‖·‖1 6 eδ ‖·‖2 and ‖·‖2 6 eδ ‖·‖1. Let z be an element of VC, which is written as
z = x + iy, where x and y are vectors in V . Then one has

‖z‖2
1,C,HS = ‖x‖2

1 + ‖y‖2
1 6 e2δ(‖x‖2

2 + ‖y‖2
2 ) = e2δ ‖z‖2

2,C,HS.

Therefore ‖·‖1,HS,C 6 eδ ‖·‖2,HS,C. Similarly, ‖·‖2,C,HS 6 eδ ‖·‖1,C,HS, so that the
inequality d(‖·‖1,C,HS, ‖·‖2,C,HS) 6 δ = d(‖·‖1, ‖·‖2) holds. �

Proposition 1.3.8 Let (V1, ‖·‖1) and (V2, ‖·‖2) be finite-dimensional seminormed vec-
tor spaces over k, and f : V1 → V2 be a bounded k-linear map. Let fK : V1,K → V2,K
be the K-linear map induced by f .

(1) If we consider the seminorms ‖·‖1,K ,ε and ‖·‖2,K ,ε on V1,K and V2,K , respec-
tively, then the operator seminorm of fK is bounded from above by that of f ∗

(which is bounded from above by ‖ f ‖, see Proposition 1.1.22). The equality
‖ fK ‖ = ‖ f ‖ holds when (V2, ‖·‖2) is reflexive.

(2) If we consider the seminorms ‖·‖1,K ,π and ‖·‖2,K ,π on V1,K and V2,K , respec-
tively, then the operator seminorms of fK and f are the same.

(3) Assume that (k, |·|) is R equipped with the usual absolute value, K = C and
that ‖·‖1 and ‖·‖2 are induced by semidefinite inner products. If we consider the
norms ‖·‖1,K ,HS and ‖·‖2,K ,HS on V1,K and V2,K , respectively, then the operator
seminorms of fK and f are the same.

Proof (1) Let ϕ be an element of V1,K , viewed as a k-linear map from V∗
1 to K . Then

the element fK (ϕ) ∈ V2,K , viewed as a k-linear form from V∗
2 to K , sends β ∈ V∗

2 to
ϕ( f ∗(β)) ∈ K . One has

|ϕ( f ∗(β))| 6 ‖ϕ‖1,K ,ε · ‖ f ∗‖ · ‖β‖2,∗.

Therefore ‖ fK (ϕ)‖2,K ,ε 6 ‖ f ∗‖ · ‖ϕ‖1,K ,ε . Since ϕ is arbitrary, one has ‖ fK ‖ 6
‖ f ∗‖. The first assertion is thus proved.

Assume that (V2, ‖·‖2) is reflexive. For any element x ∈ V1 one has{
‖x‖1,K = ‖x‖1,∗∗ 6 ‖x‖1,

‖ fK (x)‖2,K ,ε = ‖ f (x)‖2,K ,ε = ‖ f (x)‖2,∗∗ = ‖ f (x)‖2

since (V2, ‖·‖2) is reflexive. Therefore one has



1.3 Extension of scalars 87

‖ fK ‖ > sup
x∈V1\N‖·‖1

‖ fK (x)‖2,K

‖x‖1,K
> sup

x∈V1\N‖·‖1

‖ f (x)‖2
‖x‖1

= ‖ f ‖.

(2) Since the norms ‖·‖1,K ,π and ‖·‖2,K ,π extend ‖·‖1 and ‖·‖2, respectively (see
Proposition 1.3.1), the operator seminorm ‖ f ‖ is bounded from above by ‖ fK ‖. It
suffices to prove the converse inequality. Let y be an element in V1,K , which is written
as y = x1 ⊗ a1 + · · ·+ xn ⊗ an, where (x1, . . . , xn) ∈ Vn

1 and (a1, . . . ,an) ∈ Kn. Then
one has fK (y) = f (x1) ⊗ a1 + · · · + f (xn) ⊗ an. Hence

‖ fK (y)‖2,K ,π 6
n∑
i=1

|ai | · ‖ f (xi)‖2 6 ‖ f ‖
n∑
i=1

|ai | · ‖xi ‖1.

As the decomposition y = x1 ⊗ a1 + · · · + xn ⊗ an is arbitrary, we obtain

‖ f (y)‖2,K ,π 6 ‖ f ‖ · ‖y‖1,K ,π .

(3) Since the seminorms ‖·‖1,C,HS and ‖·‖2,C,HS extend ‖·‖1 and ‖·‖2, respectively
(see Proposition 1.3.1), the operator seminorm ‖ f ‖ is bounded from above by ‖ fC‖.
Let z be an element of V1,C, written as u + iv, where u and v are vectors in V1. Then
one has fC(z) = f (u) + i f (v). Therefore

‖ fC(z)‖2 = ‖ f (u)‖2
2 + ‖ f (v)‖2

2 6 ‖ f ‖2(‖u‖2
1 + ‖u‖2

2 ) = ‖ f ‖2 · ‖z‖2
1,C,FS.

Hence ‖ fC‖2 = ‖ f ‖2. �

1.3.2 Direct sums

In this subsection, we discuss the behaviour of direct sums under scalar extension. We
fix a continuous and convex functionψ : [0,1] → [0,1] such that max{t,1−t} 6 ψ(t)
for any t ∈ [0,1] (cf. §1.1.10).

Proposition 1.3.9 Let (V, ‖·‖V ) and (W, ‖·‖W ) be finite-dimensional seminormed
vector spaces over k. Let ‖·‖ψ be the ψ-direct sum of ‖·‖V and ‖·‖W . Then for
( f ,g) ∈ VK ⊕ WK one has

max{‖ f ‖V ,K ,ε, ‖g‖W ,K ,ε} 6 ‖( f ,g)‖ψ,K ,ε . (1.51)

The equality holds if either (k, |·|) is non-Archimedean or ψ(t) = max{t,1 − t} for
any t ∈ [0,1]. Moreover, for any ( f ,g) ∈ VK ⊕ WK one has

‖( f ,0)‖ψ,K ,ε = ‖ f ‖V ,K ,ε, ‖(0,g)‖ψ,K ,ε = ‖g‖W ,K ,ε . (1.52)

Proof By Proposition 1.1.49, the dual norm ‖·‖ψ,∗ is a certain direct sum of ‖·‖V ,∗
and ‖·‖W ,∗. Hence one has
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‖α‖V ,∗ + ‖β‖W ,∗ > ‖(α, β)‖ψ,∗ > max{‖α‖V ,∗, ‖β‖V ,∗}. (1.53)

Therefore, for any ( f ,g) ∈ VK ⊕ WK one has

‖( f ,g)‖ψ,K ,ε > sup
(α,β)∈V ∗⊕W ∗

(α,β),(0,0)

| f (α) + g(β)|
‖α‖V ,∗ + ‖β‖W ,∗

= max{‖ f ‖V ,K ,ε, ‖g‖V ,K ,ε}

which proves (1.51). Moreover, for any f ∈ VK one has

‖( f ,0)‖ψ,K ,ε 6 sup
(α,β)∈V ∗⊕W ∗

(α,β),(0,0)

| f (α)|
max{‖α‖V ,∗, ‖β‖W ,∗}

= ‖ f ‖V ,K ,ε .

Therefore, by (1.51) we obtain the equality ‖( f ,0)‖ψ,K ,ε = ‖ f ‖V ,K . Similarly, for
any g ∈ WK one has ‖(0,g)‖ψ,K ,ε = ‖g‖W ,K ,ε .

Finally, we proceed with the proof of the equality part of (1.51). If (k, |·|) is
non-Archimedean, then the seminorm ‖·‖ψ,K ,ε is ultrametric and hence by (1.52)
one has

∀ ( f ,g) ∈ VK ⊕ WK , ‖( f ,g)‖ψ,K ,ε 6 max{‖ f ‖V ,K ,ε, ‖g‖W ,K ,ε},

which leads to (by (1.51)) the equality

∀ ( f ,g) ∈ VK ⊕ WK , ‖( f ,g)‖ψ,K ,ε = max{‖ f ‖V ,K ,ε, ‖g‖W ,K ,ε}.

In the case where k is Archimedean and ψ(t) = max{t,1 − t} for any t ∈ [0,1], one
has ‖(α, β)‖ψ,∗ = ‖α‖V ,∗ + ‖β‖W ,∗ for any (α, β) ∈ V∨ ⊕ W∨. Therefore

‖( f ,g)‖ψ,K ,ε = sup
(α,β)∈V ∗⊕W ∗

(α,β),(0,0)

| f (α) + g(β)|
‖α‖V ,∗ + ‖β‖W ,∗

= max{‖ f ‖V ,K ,ε, ‖g‖V ,K ,ε}.

Remark 1.3.10 Let ψ be an element of S (see §1.1.10), which corresponds to an
absolute normalised norm ‖·‖ on R2. Let ψ∗ be the element of S corresponding
to the dual norm ‖·‖∗ (see Definition 1.1.48). Suppose given finite-dimensional
seminormed vector spaces (V, ‖·‖V ) and (W, ‖·‖W ) over R (equipped with the usual
absolute value). By Proposition 1.1.49 (2), the dual norm of ‖·‖ψ (the ψ-direct sum
of ‖·‖V and ‖·‖W ) identifies with the ψ∗-direct sum of ‖·‖V ,∗ and ‖·‖W ,∗. Therefore,
for any ( f ,g) ∈ VC ⊕ WC, one has

‖( f ,g)‖ψ,C,ε = sup
(α,β)∈V ∗⊕W ∗

(α,β),(0,0)

| f (α) + g(β)|
‖(‖α‖V ,∗, ‖β‖W ,∗)‖∗

6 sup
(α,β)∈V ∗⊕W ∗

(α,β),(0,0)

‖ f ‖V ,C,ε · ‖α‖V ,∗ + ‖g‖W ,C,ε · ‖β‖W ,∗

‖(‖α‖V ,∗, ‖β‖W ,∗)‖∗
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= ‖(‖ f ‖V ,C,ε, ‖g‖W ,C,ε)‖.

In other words, the seminorm ‖·‖ψ,C,ε is bounded from above by the ψ-direct sum
of ‖·‖V ,C,ε and ‖·‖W ,C,ε .

Proposition 1.3.11 Let (V, ‖·‖V ) and (W, ‖·‖W ) be finite-dimensional seminormed
vector spaces over k. Let ‖·‖ψ be the ψ-direct sum of ‖·‖V and ‖·‖W , and ‖·‖K ,π,ψ
be the ψ-direct sum of ‖·‖V ,K ,π and ‖·‖W ,K ,π . Then ‖·‖K ,π,ψ 6 ‖·‖ψ,K ,π .

Proof Let (x, y) be an element of V ⊕ W . One has

‖(x, y)‖K ,π,ψ = (‖x‖V ,K ,π + ‖y‖W ,K ,π)ψ
( ‖x‖V ,K ,π
‖x‖V ,K ,π + ‖y‖W ,K ,π

)
= (‖x‖V + ‖y‖W )ψ

(
‖x‖V

‖x‖V + ‖y‖W

)
= ‖(x, y)‖ψ,

where the second equality comes from Proposition 1.3.1 (2). Therefore the seminorm
‖·‖K ,π,ψ extends ‖·‖ψ . By Proposition 1.3.4, it is bounded from above by ‖·‖ψ,K ,π .�

Proposition 1.3.12 Assume that (k, |·|) is the real field R equipped with the usual
absolute value. Let (V, 〈 ,〉V ) and (W, 〈 ,〉W ) be finite-dimensional vector spaces
over R, equipped with semidefinite inner products, ‖·‖V and ‖·‖W be seminorms
associated with 〈 ,〉V and 〈 ,〉W , respectively, and ‖·‖ be the orthogonal direct sum of
‖·‖V and ‖·‖W . Then ‖·‖C,HS is the orthogonal direct sum of ‖·‖V ,C,HS and ‖·‖W ,C,HS.

Proof Let ‖·‖ ′ be the orthogonal direct sum of ‖·‖V ,C,HS and ‖·‖W ,C,HS. It is a
seminorm on VC ⊕ WC which is induced by a semidefinite inner product. Moreover,
for any (x, y) ∈ V ⊕ W one has

‖(x, y)‖ ′ = (‖x‖2
V ,C,HS + ‖y‖2

V ,C,HS)
1/2 = (‖x‖2

V + ‖y‖2
V )

1/2 = ‖(x, y)‖,

where the second equality comes from Proposition 1.3.1 (2). Therefore, ‖·‖ ′ is a
seminorm extending ‖·‖ which is induced by a semidefinite inner product and hence
one has ‖·‖ ′ = ‖·‖C,HS (see Remark 1.3.2). �

1.3.3 Orthogonality

In this subsection, we discuss the preservation of the orthogonality under exten-
sion of scalars, and its consequences. We have seen in Remark 1.3.2 (2) that the
orthonormality is preserved by the orthogonal extension of scalars.

Proposition 1.3.13 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k, and α be a real number in ]0,1]. If e = {ei}ri=1 is an α-orthogonal basis of V
with respect to the norm ‖·‖, then it is also an α-orthogonal basis of VK with respect
to the norms ‖·‖K ,ε and ‖·‖K ,π .
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Proof Let e∨ = {e∨i }
r
i=1 be the dual basis of e. By Proposition 1.2.11, the intersection

e∨ ∩ V∗ is an α-orthogonal bases of V∗, and one has ‖e∨i ‖∗ 6 α−1‖ei ‖−1 for any
e∨i ∈ e∨ ∩ V∗ (see Lemma 1.2.10). If x = a1e1 + · · · + arer is an element of VK ,
where (a1, . . . ,ar ) ∈ Kr , and if `x : V∗ → K is the k-linear map sending ϕ ∈ V∗ to
a1ϕ(e1)+ · · ·+arϕ(er ), then for any i ∈ {1, . . . ,r} such that e∨i ∈ V∗ (or equivalently,
ei < N‖ · ‖) one has

‖`x ‖K ,ε >
|`x(e∨i )|

‖e∨i ‖∗
=

|ai |
‖e∨i ‖∗

> α |ai | · ‖ei ‖ > α |ai | · ‖ei ‖K ,ε,

where the last inequality comes from Proposition 1.3.1 and the relation (1.5). There-
fore e is also an α-orthogonal basis for ‖·‖K ,ε .

By Proposition 1.3.1 (3), one has ‖·‖K ,ε 6 ‖·‖K ,π . Therefore

‖x‖K ,π > ‖x‖K ,ε > α max
i∈{1,...,r }

|ai | · ‖ei ‖ = α max
i∈{1,...,r }

|ai | · ‖ei ‖K ,π,

where the last equality comes from Proposition 1.3.1 (2). �

By using the preservation of orthogonality of bases, we prove an universal prop-
erty of ε-extension of scalars, which is an ultrametric analogue of Proposition 1.3.4.

Proposition 1.3.14 Assume that the absolute value |·| is non-Archimedean. Let V be
a finite-dimensional vector space over k, equipped with a seminorm ‖·‖. Let ‖·‖ ′K
be an ultrametric seminorm on VK whose restriction to V is bounded from above by
‖·‖∗∗. Then one has ‖·‖ ′K 6 ‖·‖K ,ε . In particular, ‖·‖K ,ε is the largest ultrametric
seminorm on VK which extends ‖·‖∗∗.

Proof By Proposition 1.3.13, if α is an element of ]0,1[ and if {ei}ri=1 is an α-
orthogonal basis of (V, ‖·‖), then {ei}ri=1 is also anα-orthogonal basis of (VK , ‖·‖K ,ε).
In particular, for any (λ1, . . . , λr ) ∈ Kr one has

‖λ1e1 + · · · + λrer ‖ ′K 6 max
i∈{1,...,r }

|λi | · ‖ei ‖∗∗ 6 α−1‖λ1e1 + · · · + λrer ‖K ,ε .

Since (V, ‖·‖) admits an α-orthogonal basis for any α ∈ ]0,1[, we obtain ‖·‖ ′K 6
‖·‖K ,ε for any ultrametric seminorm ‖·‖ ′K with ‖·‖ ′K 6 ‖·‖∗∗ on V . �

Corollary 1.3.15 Let K ′ be an extension of K equipped with a complete absolute
value extending that on K . Let (V, ‖·‖) be a finite-dimensional seminormed vector
space over k. One has ‖·‖K ,\,K′,\ = ‖·‖K′,\ on VK′ , where \ = ε or π.

Proof The assertion is trivial when the absolute value |·| is Archimedean since in
this case k = R or C and hence either k = K or K = K ′. In the following, we assume
that the absolue value |·| is non-Archimedean.

By Proposition 1.3.14, ‖·‖K′,ε is the largest ultrametric seminorm on VK′ ex-
tending the seminorm ‖·‖∗∗ on V . Moreover, by Proposition 1.3.1, ‖·‖K ,ε is an
ultrametric seminorm on VK extending ‖·‖∗∗, and the seminorm ‖·‖K ,ε,K′,ε extends
‖·‖K ,ε . Therefore one has ‖·‖K ,ε,K′,ε 6 ‖·‖K′,ε . By the same reason, as the norm
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‖·‖K′,ε extends ‖·‖∗∗, its restriction to VK is bounded from above by ‖·‖K ,ε and
hence the restriction of ‖·‖K′,ε to VK coincides with ‖·‖K ,ε (since we have already
shown that ‖·‖K ,ε,K′,ε 6 ‖·‖K′,ε). Therefore one has ‖·‖K ,ε,K′,ε > ‖·‖K′,ε , still by
the maximality property (for ‖·‖K ,ε,K′,ε) proved in Proposition 1.3.14.

The case of π-extension of scalars is quite similar. By Proposition 1.3.1 (2),
the seminorm ‖·‖K ,π,K′,π extends ‖·‖K ,π on VK and hence extends ‖·‖ on V . By
the maximality property proved in Proposition 1.3.4, we obtain that ‖·‖K ,π,K′,π 6
‖·‖K′,π . In particular, the restriction of ‖·‖K′,π to VK is bounded from below by
‖·‖K ,π . Moreover, this restricted seminorm extends ‖·‖. Still by the maximality
property proved in Proposition 1.3.4, we obtain that the restriction of ‖·‖K′,π to VK is
bounded from above by ‖·‖K ,π . Therefore the restriction of ‖·‖K′,π to VK coincides
with ‖·‖K ,π . By Proposition 1.3.4, the norm ‖·‖K′,π is bounded from above by
‖·‖K ,π,K′,π . The proposition is thus proved. �

Proposition 1.3.16 Let (V, ‖·‖V ) be a finite-dimensional seminormed vector space
over k, Q be a quotient vector space of V , and ‖·‖Q be the quotient seminorm of
‖·‖V on Q.

(1) The seminorm ‖·‖Q,K ,π identifies with the quotient of ‖·‖V ,K ,π on QK .
(2) The seminorm ‖·‖Q,K ,ε is bounded from above by the quotient seminorm of

‖·‖V ,K ,ε on QK . The equality holds if one of the following conditions is satisfied:
(i) |·| is non-Archimedean; (ii) |·| is Archimedean and ‖·‖V is induced by a
semidefinite inner product; (iii) Q is of dimension 1 over k.

(3) Assume that |·| is Archimedean and ‖·‖V is induced by a semidefinite inner
product. Then ‖·‖Q,K ,HS identifies with the quotient of ‖·‖V ,K ,HS on QK .

Proof (1) follows directly from Proposition 1.1.58.
(2) Let ‖·‖ ′Q,K be the quotient of the seminorm ‖·‖V ,K ,ε on QK . Let p : V → Q

be the canonical linear map. Note that Q∗ ⊆ V∗ via ψ 7→ ψ ◦ p. Moreover, by
Proposition 1.1.20, ‖ψ ◦ p‖V ,∗ = ‖ψ‖Q,∗ for ψ ∈ Q∗. Thus, for s ∈ QK ,

‖s‖ ′Q,K = inf
x∈VK

pK (x)=s

sup
ϕ∈V ∗\{0}

|ϕK (x)|
‖ϕ‖V ,∗

> inf
x∈VK

pK (x)=s

sup
ψ∈Q∗\{0}

|ψK ◦ pK (x)|
‖ψ ◦ p‖V ,∗

= sup
ψ∈Q∗\{0}

|ψK (s)|
‖ψ‖Q,∗

= ‖s‖Q,K ,ε,

and hence the first assertion holds.
In the following, we prove the equality ‖·‖ ′Q,K = ‖·‖Q,K ,ε under each of the three

conditions (i), (ii) and (iii). We first assume that the condition (i) or (ii) is satisfied.
By Proposition 1.1.20, the dual norm ‖·‖Q,∗ identifies with the restriction of ‖·‖V ,∗
to Q∗. By Proposition 1.2.35, we obtain that the seminorm ‖·‖Q,K ,ε identifies with
the quotient seminorm of ‖·‖V ,K ,ε on QK .

Assume that the condition (iii) is satisfied and that the absolute value |·| is
Archimedean (the non-Archimedean case has already been proved above). Let f be
a continuous k-linear operator from Q∗ to K . Since Q is assumed to be of dimension
1 over k, the image of f is contained in a k-linear subspace of dimension 1 in K .
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Therefore by Hahn-Banach theorem we obtain that there exists a continuous k-linear
map g : V∗ → K extending f such that f and g have the same operator seminorm.
Hence the seminorm ‖·‖Q,K ,ε identifies with the quotient seminorm of ‖·‖V ,K ,ε on
QK .

(3) follows directly from Proposition 1.2.57. �

Proposition 1.3.17 Let (V, ‖·‖V ) be a finite-dimensional seminormed vector space
over k and W be a vector subspaces of V . Let ‖·‖W be the restriction of ‖·‖V to W .

(1) The restriction of ‖·‖V ,K ,ε to WK is bounded from above by ‖·‖W ,K ,ε . If |·|

is Archimedean or ‖·‖V is ultrametric, then the restriction of ‖·‖V ,K ,ε to WK

coincides with ‖·‖W ,K ,ε .
(2) The restriction of ‖·‖V ,K ,π to WK is bounded from above by ‖·‖W ,K ,π . It identifies

with ‖·‖W ,K ,π if ‖·‖V is ultrametric or induced by a semidefinite inner product.
(3) Assume that |·| is Archimedean and that ‖·‖V is induced by a semidefinite inner

product. Then the restriction of ‖·‖V ,K ,HS to WK identifies with ‖·‖W ,K ,HS.

Proof (1) Assume that |·| is non-Archimedean. By Proposition 1.3.1 (1), the semi-
norm ‖·‖V ,K ,ε extends ‖·‖V ,∗∗. The restriction of ‖·‖V ,K ,ε to V is then bounded from
above by ‖·‖V , which implies that the restriction of ‖·‖V ,K ,ε to W is bounded from
above by ‖·‖W . Since ‖·‖W ,∗∗ is the largest ultrametric seminorm on W which is
bounded from above by ‖·‖W (see Corollary 1.2.12), we deduce from Proposition
1.3.14 that the restriction of ‖·‖V ,K ,ε to W is bounded from above by ‖·‖W ,∗∗. By
Proposition 1.3.14, we obtain that the restriction of ‖·‖V ,K ,ε to WK is bounded from
above by ‖·‖W ,K ,ε .

If ‖·‖V is ultrametric or |·| is Archimedean, the dual norm ‖·‖W ,∗ coincides with
the quotient norm of ‖·‖V ,∗ induced by the canonical quotient map V∗ → W∗ (see
Proposition 1.2.35 for the ultrametric case, and Remark 1.1.21 for the Archimedean
case). Therefore, any f ∈ WK , viewed as a k-linear operator from W∗ to K or as
a k-linear operator from V∗ to K , has the same operator norm. In other words, the
restriction of ‖·‖V ,K to WK coincides with ‖·‖W ,K .

(2) follows directly from Proposition 1.2.49 (2).
(3) follows directly from Proposition 1.2.58. �

Proposition 1.3.18 Let (V, ‖·‖) be a finite-dimensional normed vector space over k.
We assume that either |·| is non-Archimedean or the norm ‖·‖ is induced by an inner
product. If {ei}ri=1 is an Hadamard basis of V , then it is also an Hadamard basis of
VK with respect to the norm ‖·‖K ,ε .

Proof By Proposition 1.2.7, {ei}ri=1 is an orthogonal basis with respect to ‖·‖. By
Proposition 1.3.13, it is also an orthogonal basis with respect to ‖·‖K ,ε . Hence it is
an Hadamard basis with respect to ‖·‖K ,ε (see Propositions 1.2.23 and 1.2.25). �

Proposition 1.3.19 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k. Let ‖·‖det,K be the seminorm induced by the determinant seminorm ‖·‖det of
‖·‖ by extension of scalars.
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(1) If either |·| is non-Archimedean or the seminorm ‖·‖ is induced by a semidefinite
inner product, then the determinant seminorm ‖·‖K ,ε,det of ‖·‖K ,ε on det(VK )

coincides with ‖·‖det,K .
(2) The determinant seminorm ‖·‖K ,π,det of ‖·‖K ,π coincides with ‖·‖det,K .
(3) Assume that (k, |·|) is R equipped with the usual absolute value and ‖·‖ is a

seminorm associated with a semidefinite inner product 〈 ,〉. Then the determinant
seminorm ‖·‖C,HS,det of ‖·‖C,HS coincides with ‖·‖det,C.

Proof (1) If ‖·‖ is not a norm, then ‖·‖K ,ε is not a norm either. In this case both
seminorms ‖·‖K ,ε,det and ‖·‖det,K vanish. Hence we may assume without loss of
generality that ‖·‖ is a norm.

We first assume that (V, ‖·‖) admits an Hadamard basis {ei}ri=1. By Proposition
1.3.18, it is also an Hadamard basis of (VK , ‖·‖K ,ε). Moreover, by Propositions 1.2.11
and 1.3.1, for any i ∈ {1, . . . ,r}, one has ‖ei ‖ = ‖ei ‖K ,ε . In particular, the vector
e1 ∧ · · · ∧ er has the same length under the determinant norms induced by ‖·‖ and
‖·‖K ,ε . This establishes the proposition in the particular case where (V, ‖·‖) admits
an Hadamard basis (and hence in the case where ‖·‖ is induced by an inner product,
see Proposition 1.2.7).

In the following, we assume that the absolute value |·| is non-Archimedean.
Let α be an element in ]0,1[ and {ei}ri=1 be an α-orthogonal basis of (V, ‖·‖). By
Proposition 1.3.13, it is also an α-orthogonal basis of (V, ‖·‖K ,ε). By Proposition
1.2.23, one has

‖e1 ∧ · · · ∧ er ‖K ,ε,det > α
r ‖e1‖K ,ε · · · ‖er ‖K ,ε

> α2r ‖e1‖ · · · ‖er ‖ > α2r ‖e1 ∧ · · · ∧ er ‖det,

where the second inequality comes from Propositions 1.3.1 and 1.2.11. Conversely,
one has

‖e1 ∧ · · · er ‖K ,ε det 6 ‖e1‖K ,ε · · · ‖er ‖K ,ε 6 ‖e1‖ · · · ‖er ‖ 6 α−r ‖e1 ∧ · · · ∧ er ‖det,

where the second inequality comes from Proposition 1.3.1 and the formula (1.5) in
§1.1.5, and the last inequality results from Proposition 1.2.23 . Thus one has

α−r ‖·‖det > ‖·‖K ,det > α
2r ‖·‖det.

Since α ∈ ]0,1[ is arbitrary, we obtain ‖·‖det,K = ‖·‖K ,ε,det.
(2) Let r be the dimension of V over k. Note that the r-th π-tensor power of the

norm ‖·‖K ,π on V ⊗K r
K � (V ⊗kr )⊗k K coincides with the π-tensor product of r copies

of ‖·‖ and the absolute value |·| on K (see Proposition 1.3.5). Hence by Proposition
1.1.58 its quotient norm on det(VK ) coincides with ‖·‖det,K .

(3) Let r be the dimension of V over k. Note that the r-th orthogonal tensor power
of the norm ‖·‖C,π on V ⊗Cr

C
� (V ⊗Rr ) ⊗R C coincides with the orthogonal tensor

product of r copies of ‖·‖ and the usual absolute value |·| on C (see Proposition
1.3.6). Hence by Proposition 1.2.62 its quotient seminorm on det(VC) coincides with
‖·‖det,C. �
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Proposition 1.3.20 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k.

(1) Let ‖·‖K ,ε,∗ be the dual norm of ‖·‖K ,ε and ‖·‖∗,K ,ε be the norm induced by
‖·‖∗ by the ε-extension of scalars. Then we have ‖·‖K ,ε,∗ > ‖·‖∗,K ,ε , and the
restrictions to V∗ of these two norms are both equal to the dual norm ‖·‖∗.
Moreover, the equality ‖·‖K ,ε,∗ = ‖·‖∗,K ,ε holds if |·| is non-Archimedean or if
V is of dimension 1 over k.

(2) The dual norm ‖·‖K ,π,∗ of ‖·‖K ,π is equal to ‖·‖∗,K ,ε on VK .

Proof (1) Let ϕ be an element in V∗
K . By definition one has

‖ϕ‖K ,ε,∗ = sup
x∈VK \N‖·‖K ,ε

|ϕ(x)|
‖x‖K

> sup
x∈V\N‖·‖∗∗

|ϕ(x)|
‖x‖∗∗

= ‖ϕ‖∗,K ,ε .

Note that for any x ∈ VK one has

‖x‖K ,ε = sup
α∈V ∗\{0}

|α(x)|
‖α‖∗

.

Therefore, if ϕ ∈ V∗ \ {0} then one has ‖x‖K ,ε > |ϕ(x)|/‖ϕ‖∗, which leads to

‖ϕ‖K ,ε,∗ 6 ‖ϕ‖∗ = ‖ϕ‖∗,K ,ε,

where the equality comes from Proposition 1.3.1 (in the non-Archimedean case we
use the fact that the norm ‖·‖∗ is ultrametric).

In the following we prove the equality ‖·‖K ,ε,∗ = ‖·‖∗,K ,ε under the assumption
that |·| is non-Archimedean or dimk(V) = 1. We treat firstly the case where dimk(V) =

1. In this case, either the seminorm ‖·‖ vanishes and V∗
K is the trivial vector space,

which has only one norm, or the seminorm ‖·‖ is a norm and for any non-zero
element η in V one has

‖η∨‖K ,ε,∗ = ‖η‖−1
K ,ε = ‖η‖−1 = ‖η∨‖∗ = ‖η∨‖∗,K ,ε,

where η∨ denotes the dual element of η in V∗ = V∨. Hence the equality ‖·‖K ,ε,∗ =

‖·‖∗,K ,ε always holds.
We now treat the case where the absolute value |·| is non-Archimedean. Note that

‖·‖K ,ε,∗ is an ultrametric norm on V∗ ⊗k K extending ‖·‖∗. Hence by Proposition
1.3.14 one has ‖·‖K ,ε,∗ 6 ‖·‖∗,K ,ε . Therefore the equality ‖·‖∗,K ,ε = ‖·‖K ,ε,∗ holds.

(2) If (k, |·|) is R equipped with the usual absolute value and if K = C, then
by Proposition 1.1.57, the norm ‖·‖∗,C,ε,∗ identifies with the π-tensor product of
‖·‖∗ and |·| (here we consider the absolute value |·| on C as a norm on a vector
space over R). Hence it is equal to the norm ‖·‖C,π,∗∗ on V∗∗

C
, which implies the

equality ‖·‖∗,C,ε = ‖·‖C,π,∗ since any finite-dimensional normed vector space over
R is reflexive.

Assume that |·| is non-Archimedean. By (1) and the fact that ‖·‖K ,ε 6 ‖·‖K ,π
(which results from Proposition 1.3.4 and Proposition 1.3.1 (1)), one has
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‖·‖∗,K ,ε = ‖·‖K ,ε,∗ > ‖·‖K ,π,∗,

which leads to
‖·‖K ,π,∗∗ > ‖·‖K ,ε,∗∗ = ‖·‖K ,ε,

where the equality comes from the fact that the norm ‖·‖K ,ε is ultrametric. Note the
the restriction of ‖·‖K ,π,∗∗ to V is bounded from above by ‖·‖ since ‖·‖ identifies with
the restriction of ‖·‖K ,π to V (see Proposition 1.3.1 (2)). As ‖·‖K ,π,∗∗ is ultrametric,
by Proposition 1.3.14 we obtain ‖·‖K ,π,∗∗ 6 ‖·‖K ,ε , which leads to the equality
‖·‖K ,π,∗∗ = ‖·‖K ,ε . By passing to the dual norms, using Proposition 1.2.14 (1) we
obtain ‖·‖K ,π,∗ = ‖·‖K ,ε,∗ = ‖·‖∗,K ,ε . �

The following proposition is an ε-tensor analogue of Propositions 1.3.5 and 1.3.6.

Proposition 1.3.21 We assume that the absolute value |·| on k is non-Archimedean.
Let (V1, ‖·‖1) and (V2, ‖·‖2) be finite-dimensional ultrametrically seminormed vector
space over k, and ‖·‖ be the ε-tensor product norm of ‖·‖1 and ‖·‖2. Then ‖·‖K ,ε
identifies with the ε-tensor product of ‖·‖1,K ,ε and ‖·‖2,K ,ε .

Proof Let ‖·‖ ′ε be the ε-tensor product of the norms ‖·‖1,K ,ε and ‖·‖2,K ,ε . By
Remark 1.1.53, it identifies with the seminorm induced by the operator seminorm
on the K-vector space HomK (V∗

1,K ,V2,K ) by the canonical K-linear map

V1,K ⊗K V2,K −→ HomK (V∗
1,K ,V2,K ),

where we consider the dual norm of ‖·‖1,K ,ε on V∗
1,K , which identifies with the norm

‖·‖1,∗,K ,ε induced by ‖·‖1,∗ by ε-extension of scalars (see (1) in Proposition 1.3.20).
By Proposition 1.3.8, for any f ∈ Homk(V∗

1 ,V2), the seminorm of fK identifies with
that of f . Therefore ‖·‖ ′ε is an ultrametric norm on V1,K ⊗K V2,K which extends the
ε-tensor product ‖·‖ε of ‖·‖1 and ‖·‖2. By Proposition 1.3.14, one has ‖·‖ ′ε 6 ‖·‖K ,ε .

In the following, we prove the converse inequality ‖·‖K ,ε 6 ‖·‖ ′ε . Let α ∈

]0,1[ and {ei}ni=1 and { fj}mj=1 be respectively α-orthogonal bases of (V1, ‖·‖1) and
(V2, ‖·‖2). By Proposition 1.2.19, they are also α-orthogonal bases of (V1,K , ‖·‖1,K ,ε)
and (V2,K , ‖·‖2,K ,ε), respectively. By Propsition 1.2.19, the basis {ei ⊗ fj}i∈{1,...,n},

j∈{1,...,m}

of V1,K ⊗K V2,K is α2-orthogonal with respect to the seminorm ‖·‖ ′ε . Hence for
(ai j)i∈{1,...,n},

j∈{1,...,m}

∈ Kn×m and T =
∑

i, j ai jei ⊗ fj ∈ V1,K ⊗K V2,K , one has

‖T ‖ ′ε > α
2 max
i∈{1,...,n}
j∈{1,...,m}

|ai j | · ‖ei ⊗ fj ‖ε > α2‖T ‖K ,ε .

Since α ∈ ]0,1[ is arbitrary, we obtain the inequality ‖·‖ ′ε > ‖·‖K ,ε . �

Proposition 1.3.22 We assume that the absolute value |·| of k is trivial. Let (V, ‖·‖) be
an ultrametrically seminormed vector space of finite dimension over k. Let (K, |·|K )
be an extension of (k, |·|) such that |·|K is non-trivial and complete. Let oK be the
valuation ring of (K, |·|K ) andmK be the maximal ideal of oK . Suppose the following
assumptions (1) and (2):
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(1) the natural map k → oK induces an isomorphism k
∼

−→ oK/mK ,
(2)

{
‖v′‖/‖v‖ : v, v′ ∈ V \ N‖ · ‖

}
∩ |K× |K ⊆ {1}.

Let ‖·‖K ,ε be the seminorm of VK induced by ‖·‖ by ε-extension of scalars. Then
‖·‖K ,ε is the only ultrametric seminorm on VK extending ‖·‖.

Proof We prove the assertion by induction on the dimension n of V over k. The case
where n = 1 is trivial. In the following, we suppose that the assertion has been proved
for seminormed vector spaces of dimension < n over k. Since ‖·‖ is ultrametric, one
has ‖·‖ = ‖·‖∗∗ (see Corollary 1.2.12). Let ‖·‖ ′ be another ultrametric seminorm on
VK extending ‖·‖. By Proposition 1.3.14, one has ‖·‖ ′ 6 ‖·‖K ,ε .

Let r be the dimension of V/N‖ · ‖ and {ei}ni=1 be an orthogonal basis of V such that
{ei}ni=r+1 forms a basis of N‖ · ‖ (see Proposition 1.2.5). If the equality ‖·‖ ′ = ‖·‖K ,ε
does not hold, then there exists a vector x ∈ VK such that ‖x‖ ′ < ‖x‖K ,ε . We write
x in the form x = a1e1 + · · · + anen with (a1, . . . ,an) ∈ Kn. Note that

‖ar+1er+1 + · · · + anen‖ ′ 6 max
i∈{r+1,...,n}

|ai | · ‖ei ‖ = 0.

For the same reason, ‖ar+1er+1 + · · · + anen‖K ,ε = 0. Therefore one has

‖a1e1 + · · · + arer ‖ ′ = ‖x‖ ′ < ‖x‖K ,ε = ‖a1e1 + · · · + arer ‖K ,ε .

By replacing x by a1e1 + · · · + arer we many assume without loss of generality that
ar+1 = · · · = an = 0.

We will prove that |ai |K · ‖ei ‖ are the same for i ∈ {1, . . . ,r} by contradiction.
Without loss of generality, we assume on the contrary that

|a1 |K · ‖e1‖ 6 · · · 6 |aj |K · ‖ej ‖ < |aj+1 |K · ‖ej+1‖ = · · · = |ar |K · ‖er ‖

with j ∈ {1, . . . ,r − 1}. Note that

‖x‖ ′ < ‖x‖K ,ε = max
i∈{1,...,r }

|ai |K · ‖ei ‖ = |ar |K · ‖er ‖.

Moreover, by the induction hypothesis, the norms ‖·‖ ′ and ‖·‖K ,ε coincide on Kej+1+
· · · + Ker . In particular, one has ‖aj+1ej+1 + · · · + arer ‖ ′ = |ar |K · ‖er ‖. Therefore,
if we let y = a1e1 + · · · + ajej , then one has

‖y‖ ′ = ‖x − (aj+1ej+1 + · · · + arer )‖ ′ = |ar |K · ‖er ‖

> max
i∈{1,..., j }

|ai |K · ‖ei ‖ = ‖y‖K ,ε,

which leads to a contradiction since ‖·‖ ′ 6 ‖·‖K ,ε . Hence we should have

|a1 |K · ‖e1‖ = · · · = |ar |K · ‖er ‖.

By the condition (2), we have ‖e1‖ = · · · = ‖er ‖ (namely the function ‖·‖ is
constant on V \ N‖ · ‖) and hence |a1 |K = · · · = |ar |K > 0. As |ai/ar |K = 1
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for any i ∈ {1, . . . ,r}, by the assumption (1), there exists a bi ∈ k× such that
|ai/ar − bi |K < 1, that is, |ai − biar |K < |ar |K . Thus, by Proposition 1.1.5,

‖x‖ ′ =
ar

r∑
i=1

biei +
r∑
i=1

(ai − biar )ei

′ = |ar |K · ‖er ‖ = ‖x‖K ,ε

because ar
r∑
i=1

biei

′ = |ar |K

 r∑
i=1

biei

′ = |ar |K ‖er ‖

and  r∑
i=1

(ai − biar )ei

′ < |ar |K ‖er ‖.

This leads to a contradiction. The proposition is thus proved. �

Proposition 1.3.23 We assume that k = R and that |·| is the usual absolute value. Let
{(Vi, ‖·‖i)}

n
i=1 be finite-dimensional seminormed vector spaces over k. We assume

that the seminorms ‖·‖i are induced by semidefinite inner products 〈 , 〉i and we let
‖·‖HS be their orthogonal tensor product. For i ∈ {1, . . . ,n}, let πi : Vi,C → Wi be
a quotient spaces of dimension 1 of Vi,C, and ‖·‖Wi be the quotient seminorm on Wi

induced by ‖·‖i,C. Let ‖·‖W be the quotient seminorm on W =
⊗n

i=1 Wi induced by
‖·‖HS,C and let ‖·‖ be the tensor product of ‖·‖Wi . Then one has

1
√

2
‖·‖ 6 ‖·‖W 6 (

√
2)n‖·‖.

Proof For any i ∈ {1, . . . ,n}, let ‖·‖ ′i be the seminorm on Vi,C induced by the
semidefinite inner product 〈 , 〉i,C. One has ‖·‖i,C 6 ‖·‖ ′i 6

√
2‖·‖i,C (see Remark

1.3.2 (2)). Let 〈 , 〉HS be the semidefinite inner product corresponding to the or-
thogonal tensor product seminorm ‖·‖HS and ‖·‖ ′ be the seminorm on

⊗n
i=1 Vi,C

induced by 〈 , 〉HS,C. Still by Remark 1.3.2 (2) one has ‖·‖HS,C 6 ‖·‖ ′ 6
√

2‖·‖HS,C.
Moreover, ‖·‖ ′ coincides with the orthogonal tensor product of the seminorms ‖·‖ ′i .

For i ∈ {1, . . . ,n}, let ‖·‖ ′Wi
be the quotient seminorms on Wi induced by ‖·‖ ′i . Let

‖·‖ ′W be the quotient seminorm on W induced by ‖·‖ ′. By Proposition 1.2.57, ‖·‖ ′W
coincides with the tensor product of the seminorms ‖·‖ ′Wi

. Moreover, by the relations
‖·‖i,C 6 ‖·‖ ′i 6

√
2‖·‖i,C we obtain ‖·‖Wi 6 ‖·‖ ′Wi

6
√

2‖·‖Wi , which implies

‖·‖ 6 ‖·‖ ′W 6 (
√

2)n‖·‖; (1.54)

by the relation ‖·‖HS,C 6 ‖·‖ ′ 6
√

2‖·‖HS,C we obtain

‖·‖W 6 ‖·‖ ′W 6
√

2‖·‖W . (1.55)

Combining (1.54) and (1.55), we obtain 1√
2
‖·‖ 6 ‖·‖W 6 (

√
2)n‖·‖. The proposition

is thus proved. �
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Proposition 1.3.24 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k and W be a quotient vector space of dimension 1 of V . Let ‖·‖W be the
quotient seminorm on W induced by ‖·‖.

(1) The seminorm ‖·‖W ,K coincides with the quotient seminorm on WK induced by
‖·‖K ,\, where \ = ε or π.

(2) Assume that (k, |·|) is R equipped with the usual absolute value, K = C, and ‖·‖

is induced by a semidefinite inner product. Then the seminorm ‖·‖W ,C coincides
with the quotient seminorm on WC induced by ‖·‖C,HS.

Proof (1) The case where \ = π follows directly from Proposition 1.1.58. In the
following, we consider the case where \ = ε.

Let ‖·‖WK be the quotient seminorm on WK induced by the seminorm ‖·‖K ,ε .
If the kernel of the quotient map V → W does not contain N‖ · ‖ , then the quotient
seminorm ‖·‖W vanishes since W is of dimension 1 over k. In this case the quotient
seminorm ‖·‖WK also vanishes since the kernel of the quotient map VK → WK does
not contain N‖ · ‖K ,ε = N‖ · ‖ ⊗k K (see Proposition 1.3.3).

In the following, we assume that the seminorm ‖·‖W is a norm. In this case
‖·‖WK is also a norm since the kernel of the quotient map VK → WK contains
N‖ · ‖K ,ε = N‖ · ‖ ⊗k K . We will show that the dual norms ‖·‖WK ,∗ and ‖·‖W ,K ,ε,∗

on W∨
K are equal. Since W is a vector space of dimension 1, it suffices to show

that the restrictions of these norms to W∨ are the same. We identify W∨
K with a

vector subspace of dimension 1 of V∨
K . By Proposition 1.1.20, the norm ‖·‖WK ,∗

coincides with the restriction of ‖·‖K ,ε,∗ to W∨
K , where ‖·‖K ,ε,∗ denotes the dual

seminorm of ‖·‖K ,ε . By (1) in Proposition 1.3.20, the restriction of ‖·‖K ,ε,∗ to V∨

coincides with ‖·‖∗. Therefore, the restriction of ‖·‖K ,ε,∗ to W∨ coincides with the
restriction of ‖·‖∗ to W∨, which identifies with the dual norm of ‖·‖W (by Proposition
1.1.20). By (1) in Proposition 1.3.20, one has ‖·‖W ,K ,∗ = ‖·‖W ,∗,K . Finally, since W
is of dimension 1, if k is non-Archimedean, then any norm on W∨ is ultrametric.
Hence by Proposition 1.3.1 (for both Archimedean and non-Archimedean cases),
the restriction of ‖·‖W ,K ,∗ = ‖·‖W ,∗,K to W∨ identifies with ‖·‖W ,∗. The assertion is
thus proved.

(2) follows directly from Proposition 1.2.57. �

Proposition 1.3.25 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k and W be a quotient space of dimension 1 of VK = V ⊗k K . We equip VK

with the seminorm ‖·‖K ,π induced by ‖·‖ by π-extension of scalars and W with the
quotient seminorm ‖·‖W of ‖·‖K ,π . Then for any ` ∈ W one has

‖`‖W = inf
s∈V , λ∈K×

[s]=λ`

|λ |−1‖s‖.

Proof By definition one has
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‖`‖W = inf
s∈VK , λ∈K

×

[s]=λ`

|λ |−1 · ‖s‖K ,π 6 inf
s∈V , λ∈K×

[s]=λ`

|λ |−1 · ‖s‖K ,π

= inf
s∈V , λ∈K×

[s]=λ`

|λ |−1 · ‖s‖,

where the last equality comes from Proposition 1.3.1.
Without loss of generality, we may assume that ` , 0. Let s be an element

in VK , which is written as s = a1x1 + · · · + anxn, where (a1, . . . ,an) ∈ Kn and
(x1, . . . , xn) ∈ V . For any i ∈ {1, . . . ,n}, let λi be the element of K such that
[xi] = λi`. Then [s] = λ` with λ = a1λ1 + · · · + arλr . Let

h = inf
t∈V , λ∈K×

[t]=λ`

|λ |−1 · ‖t‖.

For any i ∈ {1, . . . ,n} one has ‖xi ‖ > |λi |h. Hence

|λ |−1
n∑
i=1

|ai | · ‖xi ‖ > |λ |−1
n∑
i=1

|ai | · |λi |h > h.

The proposition is thus proved. �

Proposition 1.3.26 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over k. We assume one of the following conditions:

(i) (k, |·|) is non-Archimedean;
(ii) k = C equipped with the usual absolute value.

Let W be a quotient space of dimension 1 of V ⊗k K . Let ‖·‖W be the quotient
seminorm on W induced by ‖·‖K ,ε (the seminorm on V ⊗k K induced by ‖·‖ by
ε-extension of scalars). Then, for any ` ∈ W one has

‖`‖W = inf
s∈V , λ∈K×

[s]=λ`

|λ |−1‖s‖.

Proof The case where k = C equipped with the usual absolute value is trivial since
K = k. In the following, we assume that (k, |·|) is non-Archimedean.

By definition one has

‖`‖W = inf
s∈VK , λ∈K

×

[s]=λ`

|λ |−1 · ‖s‖K ,ε 6 inf
s∈V , λ∈K×

[s]=λ`

|λ |−1 · ‖s‖K ,ε

= inf
s∈V , λ∈K×

[s]=λ`

|λ |−1 · ‖s‖ 6 inf
s∈V , λ∈K×

[s]=λ`

|λ |−1 · ‖s‖,

where the last equality comes from Proposition 1.3.1.
We then prove the converse inequality. Let α be a real number in ]0,1[. By Propo-

sition 1.2.7 , there exists an α-orthogonal basis {si}ri=1 of (V, ‖·‖). By Proposition
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1.3.13, {si}ri=1 is also an α-orthogonal basis of (VK , ‖·‖K ). For each i ∈ {1, . . . ,r},
let λi ∈ K such that [si] = λi`. Let s = a1s1 + · · · + ar sr be an element in V ⊗k K ,
where (a1, . . . ,ar ) ∈ Kr . Assume that [s] is of the form λ`, where λ ∈ K×. Then
one has λ = a1λ1 + · · · + arλr , which leads to |λ | 6 maxi∈{1,...,r } |ai | · |λi | since the
absolute value is non-Archimedean. By the α-orthogonality of the basis {si}ri=1, we
obtain

|λ |−1 · ‖s‖K ,ε >
α

|λ |
max

i∈{1,...,r }
|ai | · ‖si ‖∗∗

> α min
i∈{1,...,r }

|λi |
−1‖si ‖∗∗ > α2 min

i∈{1,...,r }
|λi |

−1‖si ‖,

where the last inequality comes from Proposition 1.2.11. The proposition is thus
proved. �

Corollary 1.3.27 We keep the notation and hypotheses of Proposition 1.3.26. Let V ′

be a quotient k-vector space of V , equipped with the quotient seminorm ‖·‖ ′ induced
by ‖·‖. We assume that the projection map π : VK → W factorises through V ′

K . Then
the quotient seminorm on W induced by ‖·‖ ′K ,ε coincides with ‖·‖W .

Proof Let ‖·‖ ′W be the quotient seminorm on W induced by ‖·‖ ′K ,ε . We apply
Proposition 1.3.26 to (V ′, ‖·‖ ′) and W to obtain that, for any ` ∈ W , one has

‖`‖ ′W = inf
t∈V ′, λ∈K×

[t]=λ`

|λ |−1‖t‖ ′ = inf
s∈V , λ∈K×

[s]=λ`

|λ |−1‖s‖.

Still by Proposition 1.3.26, we obtain ‖`‖ ′W = ‖`‖W . �

1.3.4 Extension of scalars in the real case

In this subsection, we assume that (k, |·|) is the field R of real numbers equipped
with the usual absolute value.

Definition 1.3.28 Let V be a vector space over R. We say that a seminorm ‖·‖ on
VC := V ⊗R C is invariant under the complex conjugation if the equality ‖x + iy‖ =
‖x − iy‖ holds for any (x, y) ∈ V2.

Proposition 1.3.29 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over R. The seminorms ‖·‖C,ε and ‖·‖C,π are invariant under the complex conju-
gation. If ‖·‖ is induced by a semidefinite inner product, then ‖·‖C,HS is invariant
under the complex conjugation.

Proof These statements follow directly from the definition of different tensor product
seminorms and the fact that the absolute value on C is invariant under the complex
conjugation (namely |a + ib| = |a − ib| for any (a, b) ∈ R2). �
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Proposition 1.3.30 Let (V, ‖·‖)be a finite-dimensional vector space overR (equipped
with the usual absolute value) and ‖·‖ ′ be a seminorm on VC extending ‖·‖. Assume
that ‖·‖ ′ is invariant under the complex conjugation. Then for any (x, y) ∈ V2 one
has max{‖x‖, ‖y‖} 6 ‖x + iy‖ ′ 6 ‖x‖ + ‖y‖.
Proof One has

2‖x‖ = ‖2x‖ = ‖2x‖ ′ 6 ‖x + iy‖ ′ + ‖x − iy‖ ′ = 2‖x + iy‖ ′,

2‖y‖ = ‖2y‖ = ‖2iy‖ ′ 6 ‖x + iy‖ ′ + ‖iy − x‖ ′ = 2‖x + iy‖ ′.

Therefore ‖x + iy‖ ′ > max{‖x‖, ‖y‖}. The relation ‖x + iy‖ ′ 6 ‖x‖ + ‖y‖ comes
from the triangle inequality. �

Proposition 1.3.31 Let (V, ‖·‖) be a seminormed vector space over R. For any
(x, y) ∈ V2 one has

max{‖x‖, ‖y‖} 6 ‖x + iy‖C,ε 6 (‖x‖2 + ‖y‖2)1/2. (1.56)

Moreover, for any seminorm ‖·‖ ′ on VC extending ‖·‖ which is invariant under the
complex conjugation, one has

1
2
‖·‖ ′ 6 ‖·‖C,ε 6

√
2‖·‖ ′, (1.57)

‖·‖ ′ 6 ‖·‖C,π 6 2‖·‖ ′. (1.58)

Proof The first inequality of (1.56) comes from Propositions 1.3.29 and 1.3.30.
Moreover, one has

‖x + iy‖C,ε = sup
ϕ∈V ∗\{0}

√
ϕ(x)2 + ϕ(y)2

‖ϕ‖∗

6 sup
(ϕ1 ,ϕ2)∈(V ∗\{0})2

(
ϕ1(x)2

‖ϕ1‖
2
∗

+
ϕ2(y)

2

‖ϕ2‖
2
∗

) 1/2
= (‖x‖2 + ‖y‖2)1/2,

which proves the second inequality of (1.56).
By Proposition 1.3.30 , for any (x, y) ∈ V2, one has

1
2
‖x + iy‖ ′ 6

1
2
(‖x‖ + ‖y‖) 6 max{‖x‖, ‖y‖} 6 ‖x + iy‖C,ε,

where the last inequality comes from (1.56). Moreover, still by (1.56) one has

‖x + iy‖C,ε 6 (‖x‖2 + ‖y‖2)1/2 6
√

2 max{‖x‖, ‖y‖} 6 ‖x + iy‖ ′,

where the last inequality comes from Proposition 1.3.30. Hence (1.57) is proved.
Since the seminorm ‖·‖ ′ extends ‖·‖, by Proposition 1.3.4 one has ‖·‖ ′ 6 ‖·‖C,π .

Moreover, for any (x, y) ∈ V2 one has

‖x + iy‖C,π 6 ‖x‖ + ‖y‖ 6 2 max{‖x‖, ‖y‖} 6 2‖x + iy‖ ′,
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where the last inequality comes from Proposition 1.3.30. Hence (1.58) is proved. �

Proposition 1.3.32 Let (V, ‖·‖V ) be a finite-dimensional seminormed vector space
over R, Q be a quotient vector space of V and ‖·‖Q be the quotient seminorm of
‖·‖V on Q. Let ‖·‖ be a seminorm on VC extending ‖·‖V , which is invariant under
the complex conjugation. Then the quotient seminorm of ‖·‖ on QC extends ‖·‖Q. It
is moreover invariant under the complex conjugation.

Proof Denote by ‖·‖ ′ the quotient seminorm of ‖·‖ on QC. For q ∈ Q one has

‖q‖ ′ = inf
(x,y)∈V 2 ,

[x]=q, [y]=0

‖x + iy‖ 6 inf
x∈V , [x]=q

‖x‖.

Since ‖·‖ is invariant under the complex conjugation, for any (x, y) ∈ V2 one has
‖x+iy‖ > ‖x‖. Hence ‖q‖ ′ > inf

x∈V , [x]=q
‖x‖, so that ‖q‖ ′ = inf

x∈V , [x]=q
‖x‖. Therefore,

‖q‖ ′ = inf
x∈V , [x]=q

‖x‖ = inf
x∈V , [x]=q

‖x‖V = ‖q‖Q .

Finally, for any (p,q) ∈ Q2 one has

‖p + iq‖ ′ = inf
(x,y)∈V 2

([x],[y])=(p,q)

‖x + iy‖ = inf
(x,y)∈V 2

([x],[y])=(p,q)

‖x − iy‖ = ‖p − iq‖ ′.

Remark 1.3.33 Let (V, ‖·‖) be finite-dimensional seminormed vector space over R,
W be a quotient vector space of dimension one of VC := V ⊗R C. Let ‖·‖W be the
quotient seminorm on W induced by ‖·‖C,ε . If ` is a vector of W , then clearly one
has

‖`‖W 6 inf
s∈V , λ∈C×

[s]=λ`

|λ |−1‖s‖.

The equality is in general not satisfied (see the counter-example in Remark 1.3.37).
However, we can show that

2‖`‖W > inf
s∈V , λ∈C×

[s]=λ`

|λ |−1‖s‖. (1.59)

In fact, by definition one has

‖`‖W = inf
s∈VC , λ∈C

×

[s]=λ`

|λ |−1‖s‖C,ε .

Let s be an element in VC, which is written as s = s1 + is2, where s1 and s2 are
vectors in V . Assume that λ1 and λ2 are complex numbers such that [s1] = λ1` and
[s2] = λ2`. Then one has [s] = (λ1 + iλ2)`. By Proposition 1.3.31,

‖s‖C,ε > max{‖s1‖, ‖s2‖} >
1
2
(‖s1‖ + ‖s2‖),
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and |λ1 + iλ2 | 6 |λ1 | + |λ2 |. Hence

‖s‖C,ε
|λ1 + iλ2 |

>
1
2
·
‖s1‖ + ‖s2‖

|λ1 | + |λ2 |
>

1
2

inf
s∈V , λ∈C×

[s]=λ`

|λ |−1‖s‖.

Thus we obtain (1.59).
In particular, if V ′ is a quotient vector space of V such that the projection map

VC → W factorises through V ′
C
, ‖·‖ ′ is the quotient seminorm on V ′ induced by ‖·‖,

and ‖·‖ ′W is the quotient seminorm on W induced by ‖·‖ ′
C,ε

, then one has

‖·‖ ′W 6 ‖·‖W 6 2‖·‖ ′W .

In fact, by the above argument, for any non-zero element ` ∈ W one has

‖`‖ ′W 6 inf
t∈V ′, λ∈C×

[t]=λ`

|λ |−1‖t‖ = inf
s∈V , λ∈C×

[s]=λ`

|λ |−1‖s‖ 6 2‖`‖ ′W .

The following proposition should be compared with (2) and (3) in Propositions
1.3.19.

Proposition 1.3.34 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over R. Denote by ‖·‖det and ‖·‖C,ε,det the determinant seminorms induced by ‖·‖

and ‖·‖C,ε , respectively. Then one has

‖·‖C,ε,det 6 ‖·‖det,C 6
δ(VC, ‖·‖C,ε)
δ(V, ‖·‖)

‖·‖C,ε,det, (1.60)

where r is the dimension of V and ‖·‖det,C is the seminorm on det(V) ⊗R C induced
by ‖·‖det by extension of scalars.

Proof In the case where ‖·‖ is not a norm, both seminorms ‖·‖C,ε,det and ‖·‖det,C
vanish. In the following, we treat the case where ‖·‖ is a norm.

Let {ei}ri=1 be an Hadamard basis of (V, ‖·‖). One has

‖e1 ∧ · · · ∧ er ‖C,ε,det 6 ‖e1‖C,ε · · · ‖er ‖C,ε = ‖e1‖ · · · ‖er ‖ = ‖e1 ∧ · · · ∧ er ‖det,

where the first equality comes from Propositions 1.3.1 and 1.1.18. Hence we obtain

‖·‖C,ε,det 6 ‖·‖det,C.

Similarly, if {αi}ri=1 is an Hadamard basis of (V∨, ‖·‖∗), one has

‖α1 ∧ · · · ∧ αr ‖∗,det,C = ‖α1 ∧ · · · ∧ αr ‖∗,det = ‖α1‖∗ · · · ‖αr ‖∗,

where ‖·‖∗,det denotes the determinant norm of ‖·‖∗. Since α1, . . . , αr are elements
in V∨, by (1) in Proposition 1.3.20 one has ‖αi ‖∗ = ‖αi ‖C,ε,∗ for any i ∈ {1, . . . ,r},
where ‖·‖C,ε,∗ is the dual norm of ‖·‖C,ε . Hence we obtain
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‖α1 ∧ · · · ∧ αr ‖∗,det,C = ‖α1‖C,∗ · · · ‖αr ‖C,ε,∗ > ‖α1 ∧ · · · ∧ αr ‖C,ε,∗,det, (1.61)

where ‖·‖C,ε,∗,det denotes the determinant norm of ‖·‖C,ε,∗.
Let η be a non-zero element of det(V), and η∨ be its dual element in det(V∨). By

definition (see §1.2.7) one has

‖η‖det = δ(V, ‖·‖)−1‖η∨‖−1
∗,det, (1.62)

where ‖·‖∗,det is the determinant norm of the dual norm ‖·‖∗ on V∨. Since η∨ belongs
to V∨, by (1.61) we obtain ‖η∨‖∗,det = ‖η∨‖∗,det,C > ‖η∨‖C,ε,∗,det. Hence we obtain

‖η‖det 6 δ(V, ‖·‖)−1‖η∨‖−1
C,ε,∗,det =

δ(VC, ‖·‖C)
δ(V, ‖·‖)

‖η‖C,ε,det.

The proposition is thus proved. �

The following proposition shows that, in the Archimedean case, the norm obtained
by extension of scalars is “almost the largest” norm extending the initial one.

Proposition 1.3.35 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
overR. Let ‖·‖ ′ be a seminorm on VC which extends ‖·‖. Then one has ‖·‖ ′ 6 2‖·‖C,ε .

Proof Let s+it be an element of VC, where (s, t) ∈ V2. One has ‖s+it‖ ′ 6 ‖s‖+ ‖t‖.
By Proposition 1.3.31, max{‖s‖, ‖t‖} 6 ‖s + it‖C,ε . Hence we obtain ‖s + it‖ ′ 6
2‖s + it‖C,ε . �

Proposition 1.3.36 Let (V, ‖·‖) be a finite-dimensional seminormed vector space
over R. Let ‖·‖C,ε,∗ be the dual norm of ‖·‖C,ε and ‖·‖∗,C,ε be the norm on E∗

C
induced by ‖·‖∗ by ε-extension of scalars. One has ‖·‖C,ε,∗ 6 2‖·‖∗,C,ε .

Proof By (1) in Proposition 1.3.20, the restriction of ‖·‖C,ε,∗ to V∗ coincides with
‖·‖∗. Hence Proposition 1.3.35 leads to the inequality ‖·‖C,ε,∗ 6 2‖·‖∗,C,ε . �

Remark 1.3.37 The results of Proposition 1.3.19 is not necessarily true for a general
seminormed vector space over an Archimedean valued field. Consider the vector
space V = R2 equipped with the norm ‖·‖ such that

∀ (a, b) ∈ R2, ‖(a, b)‖ = (max{a, b,0}2 +min{a, b,0}2)1/2.

In other words, if a and b have the same sign, one has ‖(a, b)‖ = max{|a|, |b|};
otherwise ‖(a, b)‖ = (a2 + b2)1/2. The unit disc of this norm is represented by Figure
1.1. Let {e1, e2} be the canonical basis of R2, where e1 = (1,0) and e1 = (0,1). One
has

‖e1 ∧ e2‖det = inf
ad−bc,0

‖(a, b)‖ · ‖(c, d)‖
|ad − bc |

,

where ‖·‖det is the determinant norm induced by ‖·‖. Note that if a, b, c, d are four
real numbers such that max{|a|, |b|, |c |, |d |} 6 1 and that abcd > 0, then one has
|ad − bc | 6 max{|ad |, |bc |} 6 1 since ad and bc have the same sign. Hence
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Fig. 1.1 Unit ball of the norm ‖ · ‖

a

b

O 1

1

‖e1 ∧ e2‖det = inf
ad−bc,0
abcd<0

‖(a, b)‖ · ‖(c, d)‖
|ad − bc |

=
1
√

2
.

Moreover, (e1 + e2, e1 − e2) forms an Hadamard basis of (V, ‖·‖).
The dual norm of ‖·‖ is given by the following formula

∀ (λ, µ) ∈ R2, ‖λe∨1 + µe∨2 ‖∗ =

{
|λ | + |µ|, λµ < 0,
(λ2 + µ2)1/2, λµ > 0.

The unit disc of the dual norm is represented by Figure 1.2.

Fig. 1.2 Unit ball of the norm ‖ · ‖∗

λ

µ

O 1

1

Consider now a vector x + iy ∈ V ⊗R C, where x and y are vectors in V , and i is
the imaginary unit. One has

‖x + iy‖C,ε = sup
ϕ∈V∨\{0}

|ϕ(x) + iϕ(y)|
‖ϕ‖∗

= sup
ϕ∈V∨\{0}

(ϕ(x)2 + ϕ(y)2)1/2

‖ϕ‖∗
.

In particular, one has
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‖e1 + ie2‖C,ε = sup
(λ,µ),(0,0)

(λ2 + µ2)1/2

f (λ, µ)
,

where

f (λ, µ) =

{
|λ | + |µ|, λµ < 0,
(λ2 + µ2)1/2, λµ > 0.

Hence one has ‖e1 + ie2‖C,ε = 1. Similarly, one has ‖ie1 + e2‖C,ε = 1. Therefore

‖e1 ∧ e2‖C,ε,det =
1
2
‖(e1 + ie2) ∧ (ie1 + e2)‖C,ε,det 6

1
2
,

where ‖·‖C,ε,det is the determinant norm associated with ‖·‖C,ε . In particular, (e1 +
e2, e1 − e2) is no longer an Hadamard basis of (V ⊗R C, ‖·‖C,ε).

The above construction also provides a counter-example to the statement of
Proposition 1.3.26 in the case where (k, |·|) is R equipped with the usual absolute
value and K = C. Consider the surjective C-linear map π from C2 to C which sends
(z1, z2) ∈ C

2 to z1 − iz2. Let ‖·‖ ′ be the quotient norm on C induced by ‖·‖C,ε . Since
π(1, i) = 2 we obtain that

‖1‖ ′ 6
1
2
‖(1, i)‖C,ε =

1
2
.

However, for any non-zero element (λ, µ) ∈ R2 one has

‖(λ, µ)‖

|π(λ, µ)|
=

‖(λ, µ)‖√
λ2 + µ2

=

{
max(|λ |, |µ|)/

√
λ2 + µ2, λµ > 0,

1, λµ < 0,

which is bounded from below by 1/
√

2.



Chapter 2
Local metrics

Throughout the chapter, let k be a field equipped with an absolute value |·|. We
assume that k is complete with respect to this absolute value. If |·| is Archimedean,
we assume that it is the usual absolute value on R or C.

2.1 Metrised vector bundles

2.1.1 Berkovich space associated with a scheme

Definition 2.1.1 Let X be a k-scheme. The Berkovich space (as a set) associated
with X is defined as the set of pairs x = (p, |·|x), where p is a scheme point of X and
|·|x is an absolute value on the residue field κ(p), which extends the absolue value
|·| on k. If x = (p, |·|x) is an element of Xan, we denote by κ(x) the residue field κ(p)
and by κ̂(x) the completion κ(p) with respect to the absolute value |·|x . Note that
the absolute value |·|x extends naturally on κ̂(x). Denote by j : Xan → X the map
sending (p, |·|x) ∈ Xan to p ∈ X , called the specification map.

On the Berkovich space Xan, one can naturally define the Zariski topology, which
is the most coarse topology making the specification map j : Xan → X continuous.
Moreover, according to Berkovich [9], the construction of Xan allows to define a
finer topology, which we describe as follows. Let U be an open subscheme of X .
Each regular function f ∈ OX (U) determines a real-valued function | f | on j−1(U)

which sends any x ∈ j−1(U) = Uan to | f (x)|x , where f (x) denotes the residue class
of f in κ(x).

Definition 2.1.2 Let X be a scheme over Spec k. The Berkovich topology on Xan

is defined as the most coarse topology on Xan which makes the specification map
j : Xan → X and all functions of the form | f | continuous, where f runs over the
set of all regular functions on Zariski open subsets of the scheme X . We refer the
readers to [9, §3.4] for more details.
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108 2 Local metrics

The construction of Berkovich topological spaces associated with k-schemes is
functorial. Let X and Y be k-schemes and ϕ : X → Y be a k-morphism. It induces
a map ϕan : Xan → Y an, which sends (p, |·|x) ∈ Xan to the couple consisting of f (p)
and the restriction of |·|x on κ( f (p)). This map is called the map associated with the
morphism of k-schemes X → Y .

Proposition 2.1.3 Let ϕ : X → Y be a morphism of k-schemes. Then the map ϕan

between Berkovich spaces is continuous with respect to the Berkovich topologies.

Proof Clearly the map ϕan is continuous with respect to the Zariski topologies. It
suffices to prove that, for any regular function f on a Zariski open subset U of Y , the
function | f | ◦ ϕan is continuous. Let g be the image of f by the morphism of sheaves
OY → ϕ∗(OX ) in the structure of the morphism of schemes ϕ. It is a regular function
on ϕ−1(U). For any x ∈ ϕ−1(U)an, the residue field κ(x) is a valued extension of κ(y)
with y = ϕan(x). Moreover, g(x) is the canonical image of f (y) in κ(x). Therefore,
one has | f | ◦ ϕan = |g |, which is a continuous function. �

Remark 2.1.4 Assume that k is an Archimedean valued field, that is, k = R or C.
If X is a k-scheme, then the Berkovich space Xan identifies (as a set) with the set
X(C) of all complex points of X modulo the action of the Galois group Gal(C/k). In
particular, if X is the affine line A1

k
, then the Berkovich space associated with X is C

when k = C, and is C/τ when k = R, where τ denotes the complex conjugation. In
this case the Berkovich topology on Xan is generated by functions of the form |P(z)|,
where P is a polynomial in k[z]. Therefore, it coincides with the usual topology on
C or on C/τ. In fact, in the case where k = C, the usual topology on C is generated
by the functions (z ∈ C) 7→ |z − a| (where a ∈ C). In the case where k = R, the
usual topology on C/τ is generated by the functions

z 7−→ |z − a| · |z − a| = |z2 − 2Re(a)z + aā|, where a ∈ C.

For a general k-scheme X , any regular function f on X determines a function
f an on Xan valued in C (in the case where k = R, we identify (A1

k
)an with the upper

half-plane in C). By Proposition 2.1.3, the map f an is a continuous complex function
on Xan.

Proposition 2.1.5 Let X be a k-scheme, Xred be the reduced scheme associated with
X , and i : Xred → X be the canonical morphism. Then the associated continuous
map of Berkovich spaces ian : Xan

red → Xan is a homeomorphism.

Proof Note that the restrictions of the functors FX and FXred to Ek are the same.
Therefore ian is a bijection of sets. Moreover, it is an homeomorphism if we equip
Xan

red and Xan with the Zariski topologies. Let U be a Zariski open subset of X . By
definition OXred (U) is the reduced ring associated with OX (U). For any nilpotent
element s in OX (U) one has s(x) = 0 for any x ∈ X . As a consequence, if f is a
regular function of X on U and if f is its canonical image in OXred (U), then one has
| f | = | f | on Uan. Thus the Berkovich topologies on Xan and Xan

red are the same. �
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Remark 2.1.6 We assume that the absolute value |·| is non-Archimedean and non-
trivial. Let ok be the valuation ring of (k, |·|). Let A be a finitely generated ok-algebra,
which containsok as a subring. Let A = A ⊗ok k, which identifies with the localisation
of A with respect to ok \ {0}. Note that the Berkovich space (Spec A)an identifies
with the set of all multiplicative seminorms on A extending the absolute value |·| on
k. If x is a point of (Spec A)an, we denote by κ̂(x) the completion of the residue field
κ(x) with respect to the absolute value |·|x , and we let px be the k-morphism from
Spec κ̂(x) to Spec A corresponding to the point j(x) ∈ Spec A (see Definition 2.1.1
for the specification map j). Then px extends to an ok-morphism Px from Spec ox to
Spec A if and only if |a|x 6 1 for any a ∈ A . In this case the image of the maximal
ideal mx of ox by the morphism Px : Spec ox → Spec A identifies with the prime
ideal

(A , |·|x)<1 := {a ∈ A : |a|x < 1} of A ,

which lies in the fibre (Spec A )◦ of Spec A over the maximal ideal of ok . We denote
by (Spec A)an

A the subset of (Spec A)an of points x such that

sup
a∈A

|a|x 6 1

and by rA : (Spec A)an
A → (Spec A )◦ the map sending x ∈ (Spec A)an

A to (A , |·|x)<1,
called the reduction map. Note that the reduction map is always surjective (cf. [9,
Proposition 2.4.4] or [81, 4.13 and Proposition 4.14]).

Proposition 2.1.7 We assume that the absolute value |·| is non-trivial and non-
Archimedean and let ok be the valuation ring of (k, |·|). Let A be a finitely generated
ok-algebra and A be the localisation of A with respect to ok \ {0}. Then the integral
closure of A in A (that is, the integral closure of the image of A → A) identifies
with ⋂

x∈(Spec A)an
A

(A, |·|x)61,

where
(A, |·|x)61 = {a ∈ A : |a|x 6 1}.

In particular, if (k, |·|) is discrete, A is flat over ok and A /$A is reduced, then

A =
⋂

x∈(Spec A)an
A

(A, |·|x)61,

where $ is a uniformizing parameter of (k, |·|).

Proof Let B be the integral closure of A in A. We first show that B is contained
in (A, |·|x)61 for any x ∈ (Spec A)an

A . If a ∈ B, then there are a1, . . . ,an ∈ A such
that an + a1an−1 + · · · + an = 0. Therefore

|a|nx = |an |x = |a1an−1 + · · · + an |x 6 max
i∈{1,...,n}

|ai |x · |a|n−ix 6 max
i∈{1,...,n}

|a|n−ix ,

which implies that |a|x 6 1.
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Let a ∈ A such that a is not integral over A . Since A is a k-algebra of finite
type, it is a Noetherian ring which is non-zero (since a ∈ A). In particular, it
admits only finitely many minimal prime ideals S−1p1, . . . ,S−1pn, where p1, . . . ,pn
are prime ideals of A which do not intersect S := ok \ {0}. We show that there exists
j ∈ {1, . . . ,n} such that the canonical image of a in A/S−1pj is not integral overA /pj .
Assume that, for any i ∈ {1, . . . ,n}, fi is a monic polynomial in (A /pi)[T] such that
fi(λi) = 0, where λi is the class of a in A/S−1pi . Let Fi be a monic polynomial in
A [T] whose reduction modulo pi[T] coincides with fi . One has Fi(a) ∈ S−1pi for
any i ∈ {1, . . . ,n}. Let F be the product of the polynomials F1, . . . ,Fn. Then F(a)
belongs to the intersection

⋂n
i=1 S−1pi , hence is nilpotent, which implies that a is

integral over A . To show that there exists x ∈ (Spec A)an
A such that |a|x > 1 we

may replace A (resp. A) by A /pj (resp. A/S−1pj) and hence assume that A is an
integral domain without loss of generality.

Let b = a−1 in the fraction field of A. We assert that

bA [b] ∩ ok , {0} and 1 < bA [b].

We set a = a′/s for some a′ ∈ A and s ∈ S. Then s = ba′ ∈ bA [b] ∩ ok , so that
bA [b] ∩ ok , {0}. Next we assume that 1 ∈ bA [b]. Then there exist m ∈ N>1 and
(a′

1, . . . ,a
′
m) ∈ A m such that

1 = a′
1b + a′

2b2 + · · · + a′
mbm,

or equivalently am = a′
1am−1 + · · · + a′

m, which is a contradiction.
Let p be a maximal ideal of A [b] such that bA [b] ⊆ p. As p ∩ ok , {0} and

p ∩ ok ⊆ mk (where mk is the maximal ideal of ok), we have p ∩ ok = mk (since the
Krull dimension of ok is 11), and hence p lies in the fibre (Spec A [b])◦ of Spec A [b]
over mk . Note that A [b] is finitely generated over ok and A [b] ⊗ok k = A[b]. Thus,
since the reduction map

rA [b] : (Spec A[b])an
A [b] −→ (Spec A [b])◦

is surjective, there is x ∈ (Spec A[b])an
A [b]

such that rA [b](x) = p. Clearly x ∈

(Spec A)an
A . As b ∈ p, we have |b|x < 1, so that |a|x > 1 because ab = 1. Therefore,

a <
⋂

x∈(Spec A)an
A

(A, |·|x)61,

as required.
Finally we consider the last assertion. We assume that there is

a ∈
⋂

x∈(Spec A)an
A

(A, |·|x)61 \ A .

1 It suffices to see mk ⊆ p for a non-zero prime ideal p of ok . Fix e ∈ p \ {0}. If x ∈ mk , then
xne−1 ∈ ok for some positive integer n because |x | < 1, so that xn ∈ oke ⊆ p, and hence x ∈ p.



2.1 Metrised vector bundles 111

By the previous result, there are a1, . . . ,an ∈ A such that

an + a1an−1 + · · · + an−1a + an = 0.

One can choose a positive integer e such that $ea ∈ A and $e−1a < A . As

($ea)n +$ea1($
ea)n−1 + · · · +$e(n−1)an−1($

ea) +$enan = 0,

($ea)n = 0 in A /$A , so that $ea = 0 in A /$A because A /$A is reduced.
Therefore there is a′ ∈ A such that $ea = $a′, and hence $e−1a = a′ ∈ A
because A is flat over ok . This is a contradiction.

2.1.2 Metric on a vector bundle

Let X be a scheme over Spec k. We denote by FXan the sheaf of all real-valued
functions on the Berkovich topological space Xan. Let C0

Xan be the subsheaf of FXan

of continuous functions.

Definition 2.1.8 Let E be a locally free OX -module of finite rank. We call metric on
E any family ϕ = {|·|ϕ(x)}x∈Xan , where each |·|ϕ(x) is a norm on E(x) := E ⊗ κ̂(x),
κ̂(x) being the completion of κ(x) with respect to the absolute value |·|x . We use the
symbol |·|ϕ instead of the usual double bar symbol in order to distinguish a local
norm from a global seminorm (cf. Definition 2.1.15).

Note that the family ϕ actually defines a morphism of sheaves (of sets) from E to
j∗(FXan ), which sends each section s of E over a Zariski open subset U of X to the
function |s |ϕ : Uan → R>0 sending x ∈ Uan to

|s |ϕ(x) := |s(x)|ϕ(x),

where s(x) denotes the reduction of s in E(x). If this morphism of sheaves takes
values in j∗(C0

Xan ) (namely, for any section s of E on a Zariski open subset of X , the
function |s |ϕ is continuous with respect to the Berkovich topology), we say that the
metric ϕ is continuous.

Remark 2.1.9 Let E be a locally free OX -module of finite rank, equipped with a
continuous metric ϕ. Let F be a locally free sub-OX -module of E . For any x ∈ Xan,
the restriction of the norm |·|ϕ(x) to F(x) defines a norm on F(x). These norms
actually define a continuous metric on F. However, we don’t know if, for any quotient
vector bundle of E , the quotient norms of |·|ϕ(x) (x ∈ Xan) define a continuous metric
on the quotient bundle.

The following lemma is used in the proof of Proposition 2.1.12.

Lemma 2.1.10 Let M be a topological space and f be a non-negative function on
M . Suppose that, for any α ∈ ]0,1[, there exists a continuous function fα on M such
that α fα 6 f 6 fα. Then the function f is continuous.
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Proof Let x0 be a point of M . From the inequalities α fα 6 f 6 fα, we deduce

lim inf
x→x0

α fα(x) 6 lim inf
x→x0

f (x) 6 lim sup
x→x0

f (x) 6 lim sup
x→x0

fα(x).

Since the function fα is continuous, we obtain

α fα(x0) 6 lim inf
x→x0

f (x) 6 lim sup
x→x0

f (x) 6 fα(x0).

Moreover, one has α fα(x0) 6 f (x0) 6 fα(x0). Hence

lim inf
x→x0

f (x) 6 lim sup
x→x0

f (x) 6 α−1 f (x0) 6 α
−1 fα(x0) 6 α

−2 lim inf
x→x0

f (x).

Since α ∈ ]0,1[ is arbitrary and lim infx→x0 f (x) is finite, we obtain

lim inf
x→x0

f (x) = lim sup
x→x0

f (x) = f (x0).

The proposition is thus proved. �

Definition 2.1.11 Let π : X → Spec(k) be a k-scheme and V = (V, ‖·‖) be a finite-
dimensional normed vector space over k. For any x ∈ Xan, let |·|V ,ε(x) be the norm
on V ⊗k κ̂(x) induced by ‖·‖ by ε-extension of scalars, and |·|V ,π be the norm on
V ⊗k κ̂(x) induced by ‖·‖ by π-extension of scalars (see §1.3). If |·| is Archimedean
and if the norm ‖·‖ is induced by an inner product, for any x ∈ Xan, we denote
by |·|V ,HS(x) the norm on V ⊗k κ̂(x) induced by ‖·‖ by orthogonal extension of
scalars. For simplicity, the norms |·|V ,ε(x), |·|V ,π(x) and |·|V ,HS(x) are often denoted
by |·|ε(x), |·|π(x) and |·|HS(x), respectively.

Proposition 2.1.12 The norms |·|V ,ε(x), x ∈ Xan define a continuous metric on the
locally free OX -module π∗(V).

Proof Let U be a Zariski open subset of X and s be a section of π∗(V) over U. It
suffices to prove that the function (x ∈ Uan) 7→ |s |V ,ε(x) is continuous on Uan.

We first treat the non-Archimedean case. By Proposition 1.2.7, for any α ∈ ]0,1[,
there exists an α-orthogonal basis {ei}ni=1 of V . By Proposition 1.3.13, for any
x ∈ Xan, {ei}ni=1 is also an α-orthogonal basis of (V ⊗k κ̂(x), |·|V ,ε(x)). We can write
s into the form s = f1e1 + · · · + fnen, where f1, . . . , fn are regular functions on U.
Since {ei}ni=1 is an α-orthogonal basis and the norm |·|V ,ε(x) is ultrametric for any
x ∈ Uan, one has

∀ x ∈ Uan, α max
i∈{1,...,n}

| fi |x · |ei |V ,ε(x) 6 |s |V ,ε(x) 6 max
i∈{1,...,n}

| fi |x · |ei |V ,ε(x).

By Proposition 1.3.1, one has |ei |V ,ε(x) = ‖ei ‖∗∗ for any x ∈ Xan. Hence

∀ x ∈ Uan, α max
i∈{1,...,n}

| fi |x · ‖ei ‖∗∗ 6 |s |V ,ε(x) 6 max
i∈{1,...,n}

| fi |x · ‖ei ‖∗∗.

Note that the function (x ∈ Uan) 7→ | fi |x is continuous for any i. Hence the function
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(x ∈ Uan) 7−→ max
i∈{1,...,n}

| fi |x · ‖ei ‖∗∗

is also continuous. Since α ∈ ]0,1[ is arbitrary, by Lemma 2.1.10 we obtain that the
function (x ∈ Uan) 7→ |s |V ,ε(x) is continuous.

We now consider the Archimedean case. Let {ei}ni=1 be a basis of V . We write
the section s in the form f1e1 + · · · + fnen, where f1, . . . , fn are regular functions on
U. Note that f an

1 , . . . , f an
n are continuous complex functions on Uan. Since the norm

‖·‖C,ε is a continuous function on VC, we obtain that the map (see Remark 2.1.4)

(x ∈ Xan) 7−→ |s |V ,ε(x) = ‖ f an
1 (x)e1 + · · · + f an

n (x)en‖C,ε

is a continuous function on Uan. The proposition is thus proved. �

Proposition 2.1.13 We assume that the absolute value |·| is Archimedean. Let V =
(V, ‖·‖) be a finite-dimensional normed vector space over k.

(1) The norms |·|V ,π(x), x ∈ Xan define a continuous metric on the locally free
OX -module π∗(V).

(2) If the norm ‖·‖ is induced by an inner product, then the norms |·|V ,HS(x), x ∈ Xan

define a continuous metric on the locally free OX -module π∗(V).

Proof The proof is quite similar to the second part of the proof of Proposition 2.1.12,
where we use the continuity of the norms ‖·‖C,π and ‖·‖C,HS (in the case where the
norm ‖·‖ is induced by an inner product) on the topological space VC. �

Proposition 2.1.14 We assume that the field k is Archimedean. Let π : X → Spec(k)
be a k-scheme and V = (V, ‖·‖) be a finite-dimensional normed vector space over R.
For any x ∈ Xan, let |·|V (x) be the norm on V ⊗k κ̂(x) induced by ‖·‖ by \-extension
of scalars, where \ = ε, π or HS (in the case where ‖·‖ is induced by an inner
product) and let |·|V (x)∗ be the dual norm on V∨ ⊗k κ̂(x) of |·|V (x). Then the norms
|·|V (x)∗, x ∈ Xan define a continuous metric on the locally free OX -module π∗(V∨).

Proof Let {αi}ni=1 be a basis of V∨. Locally on a Zariski open subset U of X , any
element s ∈ H0(U, π∗(V∨)) can be written in the form s = f1α1 + · · · + fnαn, where
f1, . . . , fn are regular functions on U. Let ‖·‖C,\,∗ be the dual norm of ‖·‖C,\ (the
norm on VC induced by ‖·‖ by \-extension of scalars). We claim that

|s |V (x)∗ = ‖ f an
1 (x)α1 + · · · + f an

n (x)αn‖C,\,∗. (2.1)

The equality follows from the definition of |·|V (x)∗ when κ(x) = C. In the case where
κ(x) = R, the norm |·|V (x)∗ is the dual norm of ‖·‖. Hence it coincides with the
restriction of ‖·‖C,\,∗ to V∨ (see Proposition 1.3.20 (1), (2) and Remark 1.3.2 (2)
for the cases \ = ε, π and HS, respectively). Thus the equality (2.1) also holds in
this case. Since the norm ‖·‖C,\,∗ is a continuous function on V∨

C
, we obtain that the

function (x ∈ Uan) 7→ |s |V (x)∗ is continuous. �
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Definition 2.1.15 If the k-scheme X is proper, then the associated Berkovich space
Xan is compact (see [9] Proposition 3.4.8). In particular, if E is a locally free OX -
module equipped with a continuous metric ϕ, for any global section s ∈ H0(X,E),
the number

‖s‖ϕ := sup
x∈Xan

|s |ϕ(x)

is finite. Thus we obtain a map ‖·‖ϕ : H0(X,E) → R+, which is actually a seminorm
on the k-vector space H0(X,E).

Let Xred be the reduced scheme associated with X and Ered := E ⊗OX
OXred . Note

that the natural morphism Xan
red → Xan is a homeomorphism (see Proposition 2.1.5),

so that to give a continuous metric of E on Xan is equivalent to give a continuous
metric of Ered on Xan

red. The corresponding metric of Ered is denoted by ϕred. Moreover,
if X is proper and we denote the natural homomorphism H0(X,E) → H0(Xred,Ered)
by γE , then it is easy to see that ‖s‖ϕ = ‖γE (s)‖ϕred for any s ∈ H0(X,E). By (1)
in the following proposition, the null space of ‖·‖ϕ coincides with the kernel of γE ,
which is denoted by N(X,E). The induced norm on H0(X,E)/N(X,E) is denoted
by ‖·‖∼ϕ .

Proposition 2.1.16 (1) If X is reduced, then ‖·‖ϕ is actually a norm.
(2) For any x ∈ Xan, the image of N(X,E) ⊗k κ̂(x) by the natural homomorphism

H0(X,E) ⊗k κ̂(x) → E ⊗OX
κ̂(x) is zero, so that one has the induced homomor-

phism (H0(X,E)/N(X,E)) ⊗k κ̂(x) → E ⊗OX
κ̂(x). Moreover, if E is generated

by global sections, then (H0(X,E)/N(X,E))⊗k κ̂(x) → E ⊗OX
κ̂(x) is surjective

for all x ∈ Xan.
(3) If E is invertible and s ∈ N(X,E), then there is a positive integer n0 such that

s⊗n = 0 for any integer n such that n > n0.

Proof (1) It is sufficient to see that if ‖s‖ϕ = 0, then s = 0. Let η1, . . . , ηr be the
generic points of the irreducible components of X . Let η̃i be a point of Xan such that
j(η̃i) = ηi . By our assumption, |s |ϕ(η̃i) = 0, so that s(ηi) = 0 for all i. Therefore, one
has the assertion because X is reduced.

(2) We denote the natural homeomorphism Xan → Xan
red by p. Then we have the

following commutative diagram:

H0(X , E) ⊗k κ̂(x)
∼ //

��

H0(X , E) ⊗k κ̂(p(x))
γE ⊗id //

��

H0(Xred, Ered) ⊗k κ̂(p(x))

uujjjj
jjjj

jjjj
jjjj

E ⊗OX
κ̂(x)

∼ // Ered ⊗OXred
κ̂(p(x))

because Ered = E ⊗OX
OXred . Therefore one has (2).

(3) Let X =
⋃N

i=1 Spec(Ai) be an affine open covering of X such that, for each
i, there is a local basis ωi of E over Spec(Ai). For any i ∈ {1, . . . ,N}, let ai ∈ Ai

such that s = aiωi on Spec Ai . As s |Xred = 0, ai is a nilpotent element of Ai , so that
we can find a positive integer n0 such that s⊗n0 = 0. Therefore s⊗n = 0 for n > n0
because s⊗n = s⊗n0 ⊗ s⊗n−n0 . �
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2.1.3 Base change

Let k ′/k be a field extension equipped with an absolute value |·|′ which extends |·|

on k. We assume that k ′ is complete with respect to this absolute value.
Let X be a scheme over Spec k, X ′ be the fibre product X ×Spec k Spec k ′ and

p : X ′ → X be the morphism of projection. If (K, |·|K ) is a valued extension of
k ′ and f : Spec K → X ′ is a k ′-point of X ′ valued in K , then the composition
morphism π ◦ f is a k-point of X valued in K . This construction is functorial and
thus determines by passing to colimit a surjective map between Berkovich spaces
from X ′an to Xan which we denote by p\. We emphasise that X ′an is constructed
from the projective k ′-scheme X ′. Thus p\ differs from the map between Berkovich
spaces associated with p (considered as a k-morphism of schemes) as in Definition
2.1.2.

Proposition 2.1.17 The map p\ : X ′an → Xan defined above is continuous with
respect to the Berkovich topology.

Proof Let U be a Zariski open subset of X and g be a regular function on U. We
denote by g′ the pull-back of g by p, which is a regular function on p−1(U). For any
y ∈ X ′an one has |g′ |(y) = |g |(p\(y)). Hence |g | ◦ p\ is a continuous function on
p−1(U)an. Therefore the map p\ is continuous. �

Definition 2.1.18 Let E be a locally free OX -module of finite rank, equipped with a
metric ϕ and let Ek′ be the pull-back of E by the projection morphism p : X ′ → X . If
y is a point of X ′an and if x = p\(y), then the norm |·|ϕ(x) on E(x) = E⊗ κ̂(x) induces
by ε-extension (resp. π-extension) of scalars a norm on Ek′(y) � E(x) ⊗κ̂(x) κ̂(y),
denoted by |·|ϕk′ ,ε

(y) (resp. |·|ϕk′ ,π
(y)). These norms define a metric on Ek′ , denoted

by ϕk′,ε (resp. ϕk′,π), called the metric induced by ϕ by ε-extension (resp. π-
extension) of scalars.

Assume that the norm |·|ϕ(x) on E(x) is induced by an inner product. For any
point y ∈ X ′an such that x = p\(y), we let |·|ϕk′ ,HS (y) be the norm on Ek′(y) induced
by |·|ϕ(x) by orthogonal extension of scalars. These norms define a metric on Ek′ ,
denoted by ϕk′,HS and called the metric induced by ϕ by orthogonal extension of
scalars.

In the case where E is an invertible OX -module, the three metrics ϕk′,ε , ϕk′,π and
ϕk ,HS are the same (see Remark 1.3.2 (3)), and are just denoted by ϕk′ .

Proposition 2.1.19 Let L be an invertible OX -module equipped with a continuous
metric ϕ. Then one has the following:

(1) The metric ϕk′ is continuous.
(2) For all s ∈ H0(X, L), ‖s‖ϕ = ‖p∗(s)‖ϕk′

.

Proof Let U be a Zariski open subset of X and s ∈ H0(U, L). Then one has

|p∗(s)|ϕk′
= |s |ϕ ◦ p\ |p−1(U)an, (2.2)
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so that the assertion (2) follows. If we assume that L is trivialised by s over U,
then p∗(s) is a section in H0(p−1(U), Lk′) which trivialises Lk′ on p−1(U). Moreover,
by the above (2.2) together with Proposition 2.1.17, we obtain that |p∗(s)|ϕk′

is a
continuous function on p−1(U)an. Therefore one has the assertion (1). �

2.2 Metrics on invertible sheaves

Let X be a scheme over Spec k. In this section, we discuss constructions and prop-
erties of metrics on invertible OX -modules.

2.2.1 Dual metric and tensor product metric

Let L be an invertible OX -module and ϕ be a metric on L. Note that for any x ∈ Xan,
the norm |·|ϕ(x) is determined by its value on any non-zero element of L ⊗ κ̂(x).
In particular, to verify that the metric ϕ is continuous, it suffices to prove that there
exists a covering {Ui}i∈I of X by affine open subsets and for each i ∈ I there exists
a section si ∈ H0(Ui, L) which trivialises the invertible sheaf L on Ui such that the
function |si |ϕ is continuous on the topological space Uan

i .

Definition 2.2.1 Let L be an invertible OX -module. If ϕ is a metric on L, then the
dual OX -module L∨ is naturally equipped with a metric ϕ∨ such that, for sections α
and s of L∨ and L over a Zariski open subset U of X respectively, one has

∀ x ∈ Uan, |α(s)|(x) = |s |ϕ(x) · |α |ϕ∨ (x).

We call ϕ∨ the dual metric of ϕ and we also use the expression −ϕ to denote the
metric ϕ∨.

Proposition 2.2.2 Let X be a k-scheme, L be an invertible OX -module and ϕ be a
metric on L. If ϕ is a continuous metric, then ϕ∨ is also continuous.

Proof Let U be a Zariski open subset of X on which the invertible sheaves L and
L∨ are trivialised by sections s ∈ Γ(U, L) and α ∈ Γ(U, L∨) respectively. Then α(s)
is a regular function, and

|α |ϕ∨ =
|α(s)|
|s |ϕ

on Uan. Since the functions |α(s)| and |s |ϕ are all continuous, also is |α |ϕ∨ . Since U
is arbitrary, we obtain that ϕ∨ is a continuous metric. �

Definition 2.2.3 Let L be an invertible OX -module and n be a positive integer.
Suppose given a metric ϕ on L⊗n. Then the maps

(s ∈ H0(U, L)) 7−→ |sn |1/nϕ ,
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with U running over the set of all Zariski open subsets of X , define a metric on L,
denoted by 1

nϕ. If the metric ϕ is continuous, then also is 1
nϕ.

Definition 2.2.4 Suppose given two invertible OX -modules L1 and L2, equipped
with metrics ϕ1 and ϕ2 respectively. We denote by ϕ1 + ϕ2 the metric on L1 ⊗ L2
such that, for any Zariski open subset U of X and all sections s1 ∈ H0(U, L1),
s2 ∈ H0(U, L2), one has

∀ x ∈ Uan, |s1 · s2 |ϕ1+ϕ2 (x) = |s1 |ϕ1 (x) · |s2 |ϕ2 (x).

The metric ϕ1 + ϕ2 is called tensor product of ϕ1 and ϕ2. Note that, if the metrics
ϕ1 and ϕ2 are continuous, then also is ϕ1 + ϕ2. We also use the expression ϕ1 − ϕ2
to denote the metric ϕ1 + ϕ

∨
2 on L1 ⊗ L∨

2 . If L is an invertible OX -module equipped
with a metric ϕ, for any integer n ∈ N>1, we use the expression nϕ to denote the
metric ϕ + · · · + ϕ (n copies) on L⊗n.

Proposition 2.2.5 Let X be a scheme over Spec k, L1 and L2 be invertible OX -
modules, and ϕ1 and ϕ2 be continuous metrics on L1 and L2, respectively. Then
the canonical k-linear homomorphism H0(X, L1) ⊗k H0(X, L2) → H0(X, L1 ⊗ L2),
sending s1 ⊗ s2 ∈ H0(X, L1) ⊗k H0(X, L2) to s1 · s2, has operator norm 6 1, where
we consider the π-tensor product of ‖·‖ϕ1 and ‖·‖ϕ2 on the tensor product space,
and the norm ‖·‖ϕ1+ϕ2 on H0(X, L1 ⊗ L2). In particular, if s1 and s2 are elements in
H0(X, L1) and H0(X, L2), respectively, then the following inequality holds

‖s1 · s2‖ϕ1+ϕ2 6 ‖s1‖ϕ1 · ‖s2‖ϕ2 . (2.3)

Proof Let η be an element of H0(X, L1) ⊗k H0(X, L2), which is written as

η =

N∑
i=1

s(i)1 ⊗ s(i)2 ,

where s(1)1 , . . . , s(N )

1 are elements in H0(X, L1), s(1)2 , . . . , s(N )

2 are elements in
H0(X, L2). Let s be the element

N∑
i=1

s(i)1 · s(i)2

in H0(X, L1 ⊗ L2), which is the image of η by the canonical homomorphism

H0(X, L1) ⊗k H0(X, L2) −→ H0(X, L1 ⊗ L2).

For any x ∈ Xan one has
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|s |ϕ1+ϕ2 (x) =
��� N∑
i=1

s(i)1 · s(i)2

���
ϕ1+ϕ2

(x) 6
N∑
i=1

|s(i)1 · s(i)2 |ϕ1+ϕ2 (x)

=

N∑
i=1

|s(i)1 |ϕ1 (x) · |s
(i)
2 |ϕ2 (x) 6

N∑
i=1

‖s(i)1 ‖ϕ1 · ‖s(i)2 ‖ϕ2 .

Since x ∈ Xan is arbitrary, we obtain

‖s‖ϕ1+ϕ2 6
N∑
i=1

‖s(i)1 ‖ϕ1 · ‖s(i)2 ‖ϕ2 .

Therefore ‖s‖ϕ1+ϕ2 6 ‖η‖π , where ‖·‖π denotes the π-tensor product of ‖·‖ϕ1 and
‖·‖ϕ2 . The first assertion is thus proved.

If s1 and s2 are elements in H0(X, L1) and H0(X, L2) respectively, then one has

‖s1 · s2‖ϕ1+ϕ2 = sup
x∈Xan

|s1 · s2 |ϕ1+ϕ2 (x)

= sup
x∈Xan

|s1 |ϕ1 (x) · |s2 |ϕ2 (x) 6 ‖s1‖ϕ1 · ‖s2‖ϕ2,

as required. �

Remark 2.2.6 Assume that the absolute value |·| is non-Archimedean. The statement
of Proposition 2.2.5 remains true if we consider the ε-tensor product ‖·‖ε of ‖·‖ϕ1

and ‖·‖ϕ2 on the tensor product space H0(X, L1) ⊗k H0(X, L2). In fact, by Proposi-
tion 1.2.19, if {ei}ni=1 and { fj}mj=1 are α-orthogonal basis of (H0(X, L1), ‖·‖ϕ1 ) and
(H0(X, L2), ‖·‖ϕ2 ) respectively, then

{ei ⊗ fj}(i, j)∈{1,...,n}×{1,...,m}

is an α2-orthogonal basis with respect to ‖·‖ε , where α ∈ ]0,1[. For any

η =

n∑
i=1

m∑
j=1

ai jei ⊗ ej ∈ H0(X, L1) ⊗k H0(X, L2),

one has
‖η‖ε > α

2 max
(i, j)∈{1,...,n}×{1,...,m}

|ai j | · ‖ei ‖ · ‖ fj ‖,

which is bounded from below by α2 times the norm of the canonical image of η in
H0(X, L1 ⊗ L2) since the norm ‖·‖ϕ1+ϕ2 is ultrametric.
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2.2.2 Distance between metrics

Let ϕ be a metric on OX . Then − ln |1|ϕ is a function on Xan, where 1 denotes the
section of unity of OX . If ϕ is a continuous metric, then − ln |1|ϕ is a continuous
function. Conversely, any real-valued function g on Xan determines a metric on OX

such that the norm at x ∈ Xan of the section of unity of OX is e−g(x). The metric is
continuous if and only if the function g is continuous. Therefore the set of all metrics
on OX is canonically in bijection with the set of all real-valued function on Xan. This
correspondance also maps bijectively the set of all continuous metrics on OX to the
set C0(Xan) of all continuous real-valued functions on Xan.

Definition 2.2.7 Let L be an invertible OX -module. If ϕ and ϕ′ are two metrics on L,
then ϕ′− ϕ is a metric on L ⊗ L∨ � OX , hence corresponds to a real valued function
on Xan. By abuse of notation, we use the expression ϕ′ − ϕ to denote this function.
We say that the metric ϕ′ is larger than ϕ if ϕ′ − ϕ is a non-negative function and
we use the expressions ϕ′ > ϕ or ϕ 6 ϕ′ to denote the relation “ϕ′ is larger than ϕ”.
If ϕ and ϕ′ are metrics on L, we denote by d(ϕ, ϕ′) the element

sup
x∈Xan

|ϕ′ − ϕ|(x) ∈ R>0 ∪ {+∞},

called the distance between ϕ and ϕ′. Note that one has

d(ϕ, ϕ′) = sup
x∈Xan

�� ln |·|ϕ(x) − ln |·|ϕ′(x)
��. (2.4)

Proposition 2.2.8 If the k-scheme X is proper (so that the sup seminorms are de-
fined), then

d(‖·‖∼ϕ, ‖·‖
∼
ϕ′) 6 d(ϕ, ϕ′) (2.5)

(see §1.1.9 for the notion of distance between two norms and §1.1 for the notion of
norm associated with a seminorm).

Proof Fix s ∈ H0(X, L) \ N(X, L). For ε > 0, one can choose x ∈ Xan such that
e−ε ‖s‖ϕ1 6 |s |ϕ1 (x). Then

ln ‖s‖ϕ1 − ln ‖s‖ϕ2 6 ln |s |ϕ1 (x) − ln |s |ϕ2 (x) + ε 6 d(ϕ1, ϕ2) + ε,

so that one has ln ‖s‖ϕ1 − ln ‖s‖ϕ2 6 d(ϕ1, ϕ2) because ε is an arbitrary positive
number. In the same way, ln ‖s‖ϕ2 − ln ‖s‖ϕ1 6 d(ϕ1, ϕ2), and hence one obtains�� ln ‖s‖ϕ1 − ln ‖s‖ϕ2

�� 6 d(ϕ1, ϕ2),

which implies the assertion of the proposition. �

For any integer n ∈ Z one has nϕ′ − nϕ = n(ϕ′ − ϕ) and hence

d(nϕ′,nϕ) = |n|d(ϕ′, ϕ). (2.6)
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The distance function verifies the triangle inequality: if ϕ1, ϕ2 and ϕ3 are three
continuous metrics on L, then one has

d(ϕ1, ϕ3) 6 d(ϕ1, ϕ2) + d(ϕ2, ϕ3) (2.7)

because�� ln |·|ϕ1 (x) − ln |·|ϕ3 (x)
�� 6 �� ln |·|ϕ1 (x) − ln |·|ϕ2 (x)

�� + �� ln |·|ϕ2 (x) − ln |·|ϕ3 (x)
��

for any x ∈ Xan.

Definition 2.2.9 Let Y and X be two schemes over Spec k, and f : Y → X be a
k-morphism. Suppose given an invertible OX -module L, equipped with a metric
ϕ. Then the metric ϕ induces by pull-back a metric f ∗(ϕ) on Y such that, for any
y ∈ Y an, the norm |·| f ∗(ϕ)(y) is induced by |·|ϕ( f (y)) by extension of scalars. The
metric f ∗(ϕ) is called the pull-back of ϕ by f . For any section s of L on a Zariski
open subset U of X , one has

| f ∗(s)| f ∗(ϕ) = |s |ϕ ◦ f an | f −1(U)an . (2.8)

In particular, if the metric ϕ is continuous, then also is f ∗(ϕ).

Proposition 2.2.10 Let Y and X be two schemes over Spec k, f : Y → X be a
k-morphism, L be an invertible OX -module, and ϕ and ϕ′ be two metrics on L. Then
one has

d( f ∗(ϕ), f ∗(ϕ′)) 6 d(ϕ, ϕ′).

Moreover, the equality holds if f : Y → X is surjective.

Proof By (2.8), one has f ∗(ϕ) − f ∗(ϕ′) = (ϕ − ϕ′) ◦ f an. Hence

d( f ∗(ϕ), f ∗(ϕ′)) = sup
y∈Yan

| f ∗(ϕ) − f ∗(ϕ′)|(y) 6 sup
y∈Yan

|ϕ − ϕ′ |(y) = d(ϕ, ϕ′).

If f : Y → X is surjective, then f an : Y an → Xan is also surjective, so that the last
assertion follows. �

2.2.3 Fubini-Study metric

Let V be a finite-dimensional vector space over k. We denote by π : P(V) → Spec(k)
the projective space of V . Note that the functor FP(V ) from the category Ak of k-
algebras to the category of sets corresponding to P(V) (see §2.1) sends any k-algebra
A to the set of all projective quotient A-modules of V ⊗k A which are of rank 1. By
gluing morphisms of schemes, we obtain that, for any k-scheme f : X → Spec(k),
the set of all k-morphisms from X to P(V) is in functorial bijection with the set of all
invertible quotient OX -module of f ∗(V). In the case where X is the projective space
P(V), the invertible quotient OX -module of π∗(V) corresponding to the identity map
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P(V) → P(V) is called the universal invertible sheaf , denoted by OV (1). It verifies
the following universal property: for any k-scheme f : X → Spec k, a k-morphism
g : X → P(V) corresponds to the invertible quotient

g∗(p) : g∗(π∗(V)) � f ∗(V) −→ g∗(OV (1)),

where p : π∗(V) → OV (1) is the quotient homomorphism defining the universal
invertible sheaf.

Let V = (V, ‖·‖) be a normed vector space of finite dimension over k. For any
point x in the Berkovich space P(V)an, if the absolute value |·| is non-Archimedean,
we denote by |·|V (x) the norm on V ⊗k κ̂(x) induced by ‖·‖ by ε-extension of
scalars; if the absolute value |·| is Archimedean, we denote by |·|V (x) the norm
on V ⊗k κ̂(x) induced by ‖·‖ by π-extension of scalars. We emphasise that, in the
case where κ̂(x) = k (namely x corresponds to a rational point of P(V)), the vector
space V ⊗k κ̂(x) is canonically isomorphic to V and the norm |·|V (x) identifies
with the double dual norm of ‖·‖. We denote by |·|V ,FS(x) the quotient norm on
OV (1)(x) = OV (1) ⊗OP(V )

κ̂(x) induced by the norm |·|V (x) on V ⊗k κ̂(x), called the
Fubini-Study norm on OV (1)(x) induced by ‖·‖. For simplicity, the norm |·|V ,FS(x)
is often denoted by |·|FS(x).

Remark 2.2.11 It is a natural question to determine if the Fubini-Study metric can
be defined in a uniform way (for non-Archimedean and Archimedean cases). Let
V = (V, ‖·‖) be a finite-dimensional vector space over k. For any point x ∈ Xan, we
let |·|V ,ε(x) and |·|V ,π(x) be the norms on V ⊗k κ̂(x) induced by ‖·‖ by ε-extension
and π-extension of scalars respectively. If the absolute value |·| is non-Archimedean,
then both norms |·|V ,ε(x) and |·|V ,π(x) induce the same quotient norm on OV (1)(x).
In fact, by Proposition 1.3.20 (1), (2), the dual norms of both |·|V ,ε and |·|V ,π
identify with ‖·‖∗,κ̂(x),ε , and hence induce the same restricted norm on OV (1)(x)∨.
By Proposition 1.1.20, the dual norms of the quotient norms on OV (1)(x) of |·|V ,ε
and |·|V ,π are the same. Since OV (1)(x) is a vector space of dimension 1 over
κ̂(x), we obtain that these quotient norms are the same. In other words, in both the
Archimedean and non-Archimedean cases, we may use the π-extension of scalars to
define the Fubini-Study metric. However, for the reason of applications in the study
of adelic vector bundles, it is more convenient to consider the ε-extension of scalars
for the non-Archimedean case. We emphasis however that, in the Archimedean case,
if we apply the ε-extension of scalars instead of the π-extension of scalars, in general
we obtain a different metric from the Fubini-Study metric.

Proposition 2.2.12 Let V = (V, ‖·‖) be a finite-dimensional normed vector space
over k. Then the norms |·|V ,FS(x), x ∈ P(V)an described above define a continuous
metric on the universal invertible sheaf OV (1).

Proof By Proposition 1.2.14 (see also Remark 1.3.2), for any x ∈ P(V)an, the norms
‖·‖ and ‖·‖∗∗ induce the same Fubini-Study norm on OV (1)(x). Hence we may
assume without loss of generality that the norm ‖·‖ is ultrametric when (k, |·|) is
non-Archimedean.
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For any x ∈ P(V)an, let |·|V (x) be the norm on V ⊗k κ̂(x) induced by ‖·‖ by π-
extension of scalars, and let |·|V (x)∗ be the dual norm of |·|V (x). The norms |·|V (x)∗
define a metric ϕ on π∗(V∨). By Proposition 1.3.20 (1), (2), the norm |·|V (x)∗
coincides with the norm induced by ‖·‖∗ by ε-extension of scalars. Therefore, by
Proposition 2.1.12, we obtain that the metric ϕ is continuous.

The dual norm of the Fubini-Study norm |·|V ,FS(x) then coincides with the re-
striction of |·|V (x)∗ to OV (1)∨ ⊗ κ̂(x) by Proposition 1.1.20. Hence these dual norms
(for x ∈ P(V)an) form a continuous metric on OV (1)∨. Therefore the Fubini-Study
norms |·|V ,FS(x), x ∈ P(V)an define a continuous metric on OV (1) (see Proposition
2.2.2). �

Definition 2.2.13 Let V = (V, ‖·‖) be a finite-dimensional normed vector space over
k. The continuous metric on OV (1) formed by the Fubini-Study norms |·|V ,FS(x)
with x ∈ P(V)an is called the Fubini-Study metric on OV (1) associated with the norm
‖·‖ on V .

Remark 2.2.14 Let V = (V, ‖·‖) be a normed vector space over k and s be an element
of V . For any x ∈ P(V)an such that s(x) , 0, by definition one has

|s |V ,FS(x) = inf
t∈V ⊗k κ̂(x)
t(x)=s(x)

‖t‖κ̂(x),\

with \ = ε if |·| is non-Archimedean, and \ = π if |·| is Archimedean. In particular,
one has (see Proposition 1.3.1)

|s |V ,FS(x) 6 ‖s‖κ̂(x),\ = ‖s‖∗∗. (2.9)

Moreover, any rational point y ∈ P(V)(k) corresponds to a non-zero element βy :
V → k in the dual vector space V∨. The dual norm of βy identifies with the inverse
of the quotient norm of 1 ∈ k. Therefore one has

|s |V ,FS(y) =
|βy(s)|
‖βy ‖∗

and hence
sup

y∈P(V )(k)

|s(y)|V ,FS(y) = sup
y∈P(V )(k)

|βy(s)|
‖βy ‖∗

= ‖s‖∗∗.

Combing with (2.9), we obtain ‖·‖V ,FS = ‖·‖∗∗.
Let (k ′, |·|) be a valued extension of (k, |·|). Note that the fibre product P(V)×Spec k

Spec k ′ identifies with the projective space of V ′ := V⊗k k ′. The Fubini-Study metric
on OV (1) induces by base change a continuous metric on OV ′(1) which we denote by
{|·|V ,FS,k′(x)}x∈P(V ′)an . By Corollary 1.3.15 and Proposition 1.3.24, we obtain that
this metric coincides with the Fubini-Study metric associated with the norm ‖·‖k′,\
on V ′, where \ = ε if |·| is non-Archimedean and \ = π if |·| is Archimedean. In
particular, one has

‖·‖V ,FS,k′ = ‖·‖
V

′
,FS. (2.10)
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Definition 2.2.15 Let f : X → Spec k be a k-scheme and L be an invertible OX -
module. Suppose given a finite-dimensional vector space V over k and a surjective
OX -homomorphism β : f ∗(V) → L. Then the homomorphism β corresponds to a k-
morphism of schemes g : X → P(V) such that g∗(OV (1)) is canonically isomorphic
to L. If V is equipped with a norm ‖·‖, then the Fubini-Study metric on OV (1)
induces by pull-back a continuous metric on L, called the quotient metric induced
by the normed vector space (V, ‖·‖) and the surjective homomorphism β.

Definition 2.2.16 Let ` be a section of L over a Zariski open set U, which trivialises
the invertible sheaf L. The section ` yields the isomorphism ι : OU → L |U given by
a 7→ a`. We define ` : f ∗(V)|U → OU by ι−1 ◦ βU , that is, the following diagram is
commutative:

f ∗(V)|U
` //

βU ##H
HH

HH
HH

HH
OU

ι

��
L |U

If {ei}ri=1 is a basis of V , {e∨i }
r
i=1 is the dual basis of {ei}ri=1 and βU (ei) = ai` for

i ∈ {1, . . . ,n}, then ` is given by

` = a1e∨1 + · · · + are∨r .

For each x ∈ Uan, the evaluation of ` at x is denoted by `x , that is,

`x = a1(x)e∨1 + · · · + ar (x)e∨r ∈ Homκ̂(x)(V̂κ(x), κ̂(x)).

Proposition 2.2.17 Let f : X → Spec k be a k-scheme and L be an invertible
OX -module. Suppose given a finite-dimensional normed vector space (V, ‖·‖) over
k and a surjective OX -homomorphism β : f ∗(V) → L. Let ϕ be the quotient metric
induced by (V, ‖·‖) and β. For any section ` of L on a Zariski open subset U of X
which trivialises L on U, one has

∀ x ∈ Uan, |` |ϕ(x) = ‖`x ‖
−1
κ̂(x),\,∗

= ‖`x ‖
−1
∗,κ̂(x),ε

, (2.11)

where \ = ε if |·| is non-Archimedean and \ = π if |·| is Archimedean.

Proof For each x ∈ Uan, one has the following commutative diagram:

V̂κ(x)
`x //

βx %%JJ
JJJ

JJJ
JJ

κ̂(x)

ιx

��
L ⊗OU

κ̂(x)

By (1) in Lemma 1.1.15, the operator norm of βx is 1. Moreover, the operator
norm of `x is ‖`x ‖κ̂(x),\,∗ and that of ιx is |` |ϕ(x). As the operator norm of βx
is the product of the operator norms of `x and ιx by (2) in Proposition 1.1.15,
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we obtain |` |ϕ(x) = ‖`x ‖κ̂(x),\,∗. The equality ‖`x ‖
−1
κ̂(x),\,∗

= ‖`x ‖∗,κ̂(x),ε follows
from Proposition 1.3.20 (1), (2) for the non-Archimedean and Archimedean cases,
respectively. �

Remark 2.2.18 Let X be a quasi-projective k-scheme. The above construction shows
that any ample invertible OX -module admits a continuous metric. By Proposition
2.2.2, we deduce that, more generally, any invertible OX -module admits a continuous
metric.

Remark 2.2.19 Let f : X → Spec k be a k-scheme, L be an invertible OX -module,
V be a finite-dimensional vector space over k, and β : f ∗(V) → L be a surjective
OX -homomorphism. Let n be an integer, n > 1. Then β induces a surjective OX -
homomorphism β⊗n : f ∗(V ⊗n) → L⊗n. Let ‖·‖ be a norm on V and ϕ be the
quotient metric induced by (V, ‖·‖) and β. We claim that nϕ is the quotient metric
induced by (V ⊗n, ‖·‖\) and β⊗n, where ‖·‖\ denotes the \-tensor power of the norm
‖·‖, \ = ε if |·| is non-Archimedean and \ = π if |·| is Archimedean. In fact, if x is an
point in Xan and ` is a non-zero element of L ⊗ κ̂(x), then `⊗n is a non-zero element
of L⊗n ⊗ κ̂(x). By Propositions 1.3.21 and 1.3.5, the norm ‖·‖\,κ̂(x),\ on V ⊗n ⊗ κ̂(x)
coincides with the \-tensor power of ‖·‖κ̂(x),\. Consider the dual homomorphism

β∨⊗nx : (L∨ ⊗ κ̂(x))⊗n −→ (V∨ ⊗ κ̂(x))⊗n.

By Proposition 1.1.57 and Corollary 1.2.20, the dual norm ‖·‖\,κ̂(x),\,∗ coincides
with the ε-tensor power of ‖·‖κ̂(x),\,∗ = ‖·‖∗,κ̂(x),ε (see Proposition 1.3.20 (1),(2)). In
both cases one has

‖β∨⊗nx (`∨⊗n)‖\,κ̂(x),\,∗ = ‖β∨x (`
∨)‖n

κ̂(x),\,∗
= |`⊗n |nϕ(x)−1,

where the first equality comes from Remark 1.1.56, and the second comes from
Proposition 1.1.20.

Proposition 2.2.20 Let f : X → Spec k be a scheme over Spec k and L be an
invertible OX -module. Let V be a finite-dimensional vector space and β : f ∗(V) → L
be a surjective homomorphism. If ‖·‖ and ‖·‖ ′ are two norms on V and if ϕ and
ϕ′ are quotient metrics on L induced by V = (V, ‖·‖) and V ′ = (V, ‖·‖ ′) (and the
surjective homomorphism β) respectively, then one has d(ϕ, ϕ′) 6 d(‖·‖, ‖·‖ ′).

Proof Let x be a point of Xan, |·|V (x) and |·|
V

′(x) be the norms on V ⊗ κ̂(x) induced
by ‖·‖ and ‖·‖ ′ by extension of scalars. Proposition 1.3.7 leads to

d(|·|V (x), |·|V ′(x)) 6 d(‖·‖, ‖·‖ ′).

Since |·|ϕ(x) and |·|ϕ′(x) are respectively the quotient norms of |·|V (x) and |·|
V

′(x),
by Proposition 1.1.42 one has d(|·|ϕ(x), |·|ϕ′(x)) 6 d(|·|V (x), |·|V ′(x)). Therefore

d(ϕ, ϕ′) = sup
x∈Xan

d(|·|ϕ(x), |·|ϕ′(x)) 6 sup
x∈Xan

d(|·|V (x), |·|V ′(x)) 6 d(‖·‖, ‖·‖ ′),

as required. �
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Definition 2.2.21 Let π : X → Spec(k) be a projective k-scheme, L be an invertible
OX -module, which is generated by global sections, and ϕ be a continuous metric on L.
By Proposition 2.1.16, for each x ∈ Xan, the homomorphism (H0(X, L)/N(X, L)) ⊗
κ̂(x) → L ⊗ κ̂(x) induced by H0(X, L) ⊗ κ̂(x) → L ⊗ κ̂(x) is surjective, so that one
has a quotient norm |·|′(x) on L ⊗ κ̂(x) induced by ‖·‖∼ϕ . The family {|·|′(x)}x∈Xan

of metrics is denoted by ϕFS, that is, |·|ϕFS (x) := |·|′(x) for x ∈ Xan, called the
Fubini-Study metric associated with ϕ. Let Xred be the reduced scheme associated
with X and Lred := L ⊗OX

OXred . Let V be the image of H0(X, L) → H0(Xred, Lred).
Then ‖·‖∼ϕ is a norm of V and ϕFS is the quotient metric induced by the surjection
V ⊗ OXred → Lred and ‖·‖∼ϕ . In particular, ϕFS is continuous. For an integer n > 1,
we set ϕn = (nϕ)FS.

By Propositions 1.3.26 and 1.3.25, for any point x ∈ Xan and any non-zero
element ` ∈ L ⊗OX

κ̂(x), one has

|` |ϕFS (x) = inf
s∈H0(X ,L), λ∈κ̂(x)×

s(x)=λ`

|λ |−1
x · ‖s‖ϕ . (2.12)

This equality is fundamental in the study of quotient metrics.

Proposition 2.2.22 Let π : X → Spec k be a projective k-scheme and L be an
invertible OX -module generated by global sections, equipped with a continuous
metric ϕ. Then the following assertions hold.

(1) For any integer n ∈ N>1, one has ϕn > nϕ, where ϕn denotes the Fubini-Study
metric associated with nϕ.

(2) The sup seminorm ‖·‖ϕn on Vn := H0(X, L⊗n) induced by ϕn coincides with
‖·‖nϕ .

(3) Let M be another invertible OX -module generated by global sections, equipped
with a continuous metric ψ. Then (ϕ + ψ)FS 6 ϕFS + ψFS. In particular, for any
pair (m,n) of positive integers one has ϕn+m 6 ϕn + ϕm.

(4) For any integer n > 1, one has d(ϕn,nϕ) 6 nd(ϕ1, ϕ). In particular, if ϕ1 = ϕ
then ϕn = nϕ for any n ∈ N>1.

(5) Let ϕ′ be another continuous metric on L. Then one has d(ϕn, ϕ′n) 6 nd(ϕ, ϕ′)
for any n ∈ N>1.

Proof For any n ∈ N>1, we denote by Vn the vector space H0(X, L⊗n) over k.
(1) Let x be a point of Xan and ` be an element of L⊗n ⊗ κ̂(x). Note that, for any

s ∈ Vn, one has |s |nϕ(x) 6 ‖s‖nϕ , so that, by (2.12), one obtains

|` |ϕn (x) = inf
s∈Vn , λ∈κ̂(x)

× ,
s(x)=λ`

|λ |−1
x · ‖s‖nϕ > inf

s∈Vn , λ∈κ̂(x)
× ,

s(x)=λ`

|λ |−1
x · |s |nϕ(x) = |` |nϕ(x),

as desired.

(2) By (1), one has ‖·‖ϕn > ‖·‖nϕ . In the following, we prove the converse
inequality. If s is a global section of L⊗n, for any x ∈ Xan, by (2.12), one has
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|s |ϕn (x) = inf
t∈Vn , λ∈κ̂(x)

×

t(x)=λs(x)

|λ |−1
x · ‖t‖nϕ 6 ‖s‖nϕ .

Hence ‖s‖ϕn = supx∈Xan |s |ϕn (x) 6 ‖s‖nϕ .

(3) Let x be a point of Xan, ` and `′ be elements of L ⊗ κ̂(x) and M ⊗ κ̂(x)
respectively. By (2.12) together with (2.3) one has

|` · `′ |(ϕ+ψ)FS (x) = inf
s∈H0(X ,L⊗M), λ∈κ̂(x)×

s(x)=λ` ·`′

|λ |−1
x · ‖s‖ϕ+ψ

6 inf
(t ,t′)∈H0(X ,L)×H0(X ,M)

(µ,η)∈(κ̂(x)×)2

t(x)=µ`, t′(x)=η`′

|µη |−1
x · ‖t · t ′‖ϕ+ψ

6 inf
(t ,t′)∈H0(X ,L)×H0(X ,M)

(µ,η)∈(κ̂(x)×)2

t(x)=µ`, t′(x)=η`′

(
|µ|−1

x · ‖t‖ϕ
) (

|η |−1
x · ‖t ′‖ψ

)
= |` |ϕFS (x) · |`

′ |ψFS (x),

For the last assertion, note that

ϕn+m = (nϕ + mϕ)FS 6 (nϕ)FS + (mϕ)FS = ϕn + ϕm.

(4) By (3), one has ϕn 6 nϕ1. Moreover, by (1), one has ϕn > nϕ and ϕ1 > ϕ.
Hence 0 6 ϕn − nϕ 6 nϕ1 − nϕ = n(ϕ1 − ϕ), which implies

d(ϕn,nϕ) = sup
x∈Xan

(ϕn − nϕ)(x) 6 n sup
x∈Xan

(ϕ1 − ϕ)(x) = nd(ϕ1, ϕ).

(5) By Proposition 2.2.20 together with (2.5), one has

d(ϕn, ϕ′n) 6 d(‖·‖∼nϕ, ‖·‖
∼
nϕ′) 6 d(nϕ,nϕ′) = nd(ϕ, ϕ′),

where the equality comes from (2.6). �

Proposition 2.2.23 Let π : X → Spec k be a projective k-scheme and L be an
invertible OX -module. Suppose given a normed vector space (V, ‖·‖) and a surjective
homomorphism β : π∗(V) → L. Let ϕ be the quotient metric on L induced by (V, ‖·‖)
and β. Then, one has the following:

(1) Let f : V → H0(X, L) be the adjoint homomorphism of β : π∗(V) → L. Then,
‖ f (v)‖ϕ 6 ‖v‖ for any v ∈ V .

(2) For any integer n > 1, ϕn = nϕ.

Proof (1) By Propositions 1.3.26 and 1.3.25, for x ∈ Xan,

| f (v)|ϕ(x) = inf
t∈V , λ∈κ̂(x)×

f (t)(x)=λ f (v)(x)

|λ |−1
x · ‖t‖ 6 ‖v‖,
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so that one has (1).

(2) By Proposition 2.2.22 (4), it suffices to verify that ϕ1 = ϕ. Note that ϕ1 > ϕ
(by Proposition 2.2.22 (1)). In the following, we prove the converse inequality. Let
x be a point of Xan and ` be an element of L ⊗ κ̂(x). By (1) and (2.12) together with
Propositions 1.3.26 and 1.3.25, one has

|` |ϕ1 (x) = inf
s∈H0(X ,L)
λ∈κ̂(x)×

s(x)=λ`

|λ |−1
x · ‖s‖ϕ 6 inf

s′∈V , λ∈κ̂(x)×

f (s′)(x)=λ`

|λ |−1
x · ‖ f (s′)‖ϕ

6 inf
s′∈V , λ∈κ̂(x)×

f (s′)(x)=λ`

|λ |−1
x · ‖s′‖ = |` |ϕ(x).

Therefore one has ϕ1 = ϕ. �

2.3 Semi-positive metrics

Let (k, |·|) be a complete valued field and π : X → Spec k be a projective k-scheme.
In this section, we discuss positivity conditions of continuous metrics on invertible
OX -modules.

2.3.1 Definition and basic properties

Let L be an invertible OX -module equipped with a continuous metric ϕ. We assume
that L is generated by global sections. We have constructed in Definition 2.2.21
a sequence of quotient metrics {ϕn}n∈N>1 . By Proposition 2.2.22 (1) and (4), we
obtain that {d(ϕn,nϕ)}n∈N>1 is a sub-additive non-negative sequence and the nor-
malised sequence {d(ϕn,nϕ)/n}n∈N>1 is bounded from above. Hence the sequence
{d(ϕn,nϕ)/n}n∈N>1 converges in R+. We denote by dp(ϕ) the limit

dp(ϕ) := lim
n→+∞

1
n

d(ϕn,nϕ), (2.13)

called the default of positivity of the metric ϕ. By definition, for any integer m ∈ N>1,
one has

dp(mϕ) = m dp(ϕ). (2.14)

We say that the metric ϕ is semipositive if one has dp(ϕ) = 0. Clearly, if the metric ϕ is
semipositive, then for any integer m > 1, the metric mϕ on L⊗m is also semipositive.
Conversely, if there is an integer m > 1 such that mϕ is semipositive, then the metric
ϕ is also semipositive.

More generally, we assume that L is semiample (namely a positive tensor power
of L is generated by global sections). Let n be a positive integer such that L⊗n is
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generated by global sections. The quantity dp(nϕ)/n does not depend on the choice
of n by (2.14), so that we define dp(ϕ) to be dp(nϕ)/n. It is easy to see that (2.14)
still holds under the assumption that L is semiample. We say that ϕ is semipositive
if dp(ϕ) = 0.
Remark 2.3.1 Let (V, ‖·‖) be a normed vector space of finite dimension over k and
β : π∗(V) → L be a surjective homomorphism. Let ϕ be the quotient metric on L
induced by (V, ‖·‖) and β. Then, by Proposition 2.2.23, ϕ is semipositive.
Proposition 2.3.2 Let L be a semiample invertible OX -module, equipped with a
continuous metric ϕ. If ϕ is semipositive, then nϕ is semipositive for any n ∈ N>1.
Conversely, if there exists an integer n ∈ N>1 such that nϕ is semipositive, then the
metric ϕ is also semipositive.

Proof This follows from (2.14), which also holds for a continuous metric on a
semiample invertible OX -module. �

The following proposition shows that semipositive metrics form a closed subset
in the topological space of continuous metrics.
Proposition 2.3.3 Let L be a semiample invertible OX -module, equipped with a con-
tinuous metric ϕ. Suppose that there is a sequence of semipositive metrics {ϕ(m)}n∈N
on L such that

lim
m→+∞

d(ϕ(m), ϕ) = 0.

Then the metric ϕ is also semipositive.

Proof For any integer p > 1, one has

d(pϕ(m), pϕ) = pd(ϕ(m), ϕ).

Therefore, by replacing L by a certain tensor power L⊗p and ϕ by pϕ, we may
assume without loss of generality that L is generated by global sections. Thus the
metrics ϕ(m)

n and ϕn are well defined for any m ∈ N and any n ∈ N>1. Moreover, by
Proposition 2.2.22 (5) we obtain that

d(ϕ(m)
n , ϕn) 6 nd(ϕ(m), ϕ).

Note that for m ∈ N and n ∈ N>1 one has

d(ϕn,nϕ) 6 d(ϕn, ϕ
(m)
n ) + d(ϕ(m)

n ,nϕ(m)) + d(nϕ(m),nϕ)

6 d(ϕ(m)
n ,nϕ(m)) + 2d(ϕ(m), ϕ).

By taking the limit when n tends to the infinity, we obtain

dp(ϕ) 6 2d(ϕ(m), ϕ) + dp(ϕ(m)) = 2d(ϕ(m), ϕ),

where the equality comes from the hypothesis that the metrics ϕ(m) are semipositive.
By taking the limit when m tends to the infinity, we obtain the semipositivity of the
metric ϕ. �
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Remark 2.3.4 Proposition 2.2.23 shows that quotient metrics on an invertible OX -
module are semipositive. Let L be a semiample invertible OX -module and ϕ be a
continuous metric on L. For any n ∈ N>1 such that L⊗n is generated by global
sections, let ϕ(n) be a continuous metric on L such that nϕ(n) is a quotient metric. If
limn→+∞ d(ϕ(n), ϕ) = 0, then the metric ϕ is semipositive. This is a consequence of
Propositions 2.3.2 and 2.3.3.

Proposition 2.3.5 Let X be a projective k-scheme, L and L ′ be semiample invertible
OX -modules, equipped with continuous metrics ϕ and ϕ′, respectively. One has
dp(ϕ+ϕ′) 6 dp(ϕ)+dp(ϕ′). In particular, if both metrics ϕ and ϕ′ are semipositive,
then the metric ϕ + ϕ′ on the tensor product L ⊗ L ′ is also semipositive.

Proof By (2.14), we may assume that L and L ′ are generated by global sections.
For any integer n > 1, one has a natural k-linear homomorphism

H0(X, L⊗n) ⊗ H0(X, L ′⊗n) −→ H0(X, (L ⊗ L ′)⊗n)

given by the tensor product. Moreover, by Proposition 2.2.5, for s ∈ H0(X, L⊗n) and
s′ ∈ H0(X, L ′⊗n) one has

‖ss′‖n(ϕ+ϕ′) 6 ‖s‖nϕ · ‖s′‖nϕ′ .

By Proposition 2.2.22 (3), we obtain (ϕ + ϕ′)n 6 ϕn + ϕ
′
n and hence

d((ϕ + ϕ′)n,n(ϕ + ϕ′)) 6 d(ϕn,nϕ) + d(ϕ′n,nϕ
′).

Dividing the two sides of the inequality by n, by passing to limit when n tends to the
infinity we obtain dp(ϕ + ϕ′) 6 dp(ϕ) + dp(ϕ′). �

Proposition 2.3.6 Let L be a semiample invertible OX -module, equipped with a
continuous metric ϕ. Then the following are equivalent:

(1) The metric ϕ is semipositive.
(2) For any ε > 0, there is a positive integer n such that, for all x ∈ Xan, we can find

s ∈ H0(X, L⊗n)κ̂(x) \ {0} with ‖s‖nϕ,κ̂(x) 6 enε |s |nϕ(x).

Proof (1) =⇒ (2): By our assumption, there is a positive integer n such that

|·|nϕ(x) 6 |·|ϕn (x) 6 enε/2 |·|nϕ(x)

for all x ∈ Xan. Moreover, there is an s ∈ H0(X, L⊗n)κ̂(x) \ {0} such that ‖s‖nϕ,κ̂(x) 6
enε/2 |s |ϕn (x). Therefore,

‖s‖nϕ,κ̂(x) 6 enε/2 |s |ϕn (x) 6 enε |s |nϕ(x).

(2)=⇒ (1): For a positive integer m, there is a positive integer am such that, for any
x ∈ Xan, we can find s ∈ H0(X, L⊗am )κ̂(x) \ {0} with ‖s‖amϕ,κ̂(x) 6 eam/m |s |amϕ(x).
Note that
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|s |amϕ(x) 6 |s |ϕam
(x) 6 eam/m |s |amϕ(x),

which implies that

0 6
1

am

(
ln |·|ϕam

(x) − ln |·|amϕ(x)
)
6

1
m

for all x ∈ Xan, so that dp(ϕ) = 0. �

Theorem 2.3.7 Let X be an irreducible and reduced projective scheme over SpecC,
L be a semiample invertible OX -module and ϕ be a continuous metric of L. Then
the following are equivalent:

(1) The first Chern current c1(L, ϕ) is positive.
(2) For any positive number ε > 0, there is a positive integer n such that, for all

x ∈ X , we can find s ∈ H0(X, L⊗n) \ {0} with ‖s‖nϕ 6 enε |s |nϕ(x).
(3) The metric ϕ is semipositive.

Proof The proof of “(1) =⇒ (2)” is very technical. For the proof, we refer to the
papers [155] and [112, Theorem 0.2]. “(2) =⇒ (3)” is nothing more than Proposi-
tion 2.3.6. Here let us consider the following claim:

Claim 2.3.8 Let M be an invertible OX -module, V = (V, ‖·‖) be a finite-dimensional
normed vector space over C and V ⊗C OX → M be a surjective homomorphism. We
assume that there is a basis {ei}ri=1 of V such that

∀ (a1, . . . ,ar ) ∈ Cr , ‖a1e1 + · · · + arer ‖ = max{|a1 |, . . . , |ar |}.

Let ψ be the quotient metric of M induced by V and V ⊗C OX → M . Then the first
Chern current c1(M,ψ) is semipositive. �

Proof Let {e∨i }
r
i=1 be the dual basis of V . Then it is easy to see that the dual norm

‖·‖∗ of ‖·‖ is given by

∀a1, . . . ,ar ∈ C, ‖a1e∨1 + · · · + are∨r ‖∗ = |a1 | + · · · + |ar |.

For v ∈ V , the global section of M over X corresponding to v is denoted by ṽ.
Let s be a local basis of M over a Zariski open set U. We set ẽi = ais for some
holomorphic function ai on U. Then, by Proposition 2.2.17, the function

x 7−→ − ln |s |ψ(x) = ln(|a1 |(x) + · · · + |ar |(x))

is plurisubharmonic on Uan because ln(|a1 |(·)+ · · ·+ |ar |(·)) is plurisubharmonic on
Uan. �

Let us see that (3) =⇒ (1). Clearly we may assume that L is generated by global
sections. For each n > 1, let rn := dimC H0(X, L⊗n) and {en,i}

rn
i=1 be an orthonormal

basis of H0(X, L⊗n) with respect to ‖·‖nϕ . If we set

‖a1en,1 + · · · + arn en,r ‖ ′n := max{|a1 |, . . . , |arn |}
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for a1, . . . ,arn ∈ C, then ‖·‖ ′n 6 ‖·‖nϕ 6 rn‖·‖ ′n. Let ψn be the quotient metric of
L⊗n by ‖·‖ ′n. Then d(ϕn,ψn) 6 ln(rn) because ψn 6 ϕn 6 rnψn. Therefore, as

d( 1
nψn, ϕ) 6 d( 1

nψn,
1
nϕn) + d( 1

nϕn, ϕ) 6
1
n ln(rn) + d( 1

nϕn, ϕ),

one has limn→∞ d( 1
nψn, ϕ) = 0 by our assumption. This means that, for a local basis

s of L over an open set U, the sequence {− 1
n ln |s⊗n |ψn }

∞
n=1 converges to − ln |s |ϕ

uniformly on any compact set in U. As − 1
n ln |s⊗n |ψn is plurisubharmonic by the

above claim, − ln |s |ϕ is also plurisubharmonic, as required. �

Corollary 2.3.9 Let T be a reduced complex analytic space and ‖·‖ be a norm of
Cn. If f1, . . . , fn are holomorphic functions on T , then log ‖( f1, . . . , fn)‖ is plurisub-
harmonic on T .

Proof First of all, recall the following fact (cf. [99, Corollary 2.9.5]):

If u is a plurisubharmonic function on Cn and f1, . . . , fn are holomorphic functions on
T , then u( f1, . . . , fn) is plurisubharmonic on T .

Thus it is sufficient to see that f (z1, . . . , zn) := log ‖(z1, . . . , zn)‖ is plurisubharmonic
on Cn \ {(0, . . . ,0)}. Let Cn ⊗C OPn−1

C
→ OPn−1

C
(1) be the surjective homomorphism

given by ei 7→ Xi , where {ei}ni=1 is the standard basis of Cn and (X1 : · · · : Xn) is
a homogeneous coordinate of Pn−1

C
. Let us consider the dual norm ‖·‖∗ of ‖·‖ on

Cn, that is, we identify the dual space (Cn)∨ with Cn in the natural way. Let ϕ be
the quotient metric of OPn−1

C
(1) induced by ‖·‖∗ and Cn ⊗C OPn−1

C
→ OPn−1

C
(1). Note

that Xi gives a local basis of OPn−1
C

(1) over {Xi , 0} and Xi =
∑n

j=1(Xj/Xi)ej (see
Definition 2.2.16), so that by Proposition 2.2.17 together with the fact ‖·‖∗∗ = ‖·‖,
one has − log |Xi |ϕ = log ‖Xi ‖ on {Xi , 0}. Therefore, by Theorem 2.3.7 together
with the previous fact, the function

(z1, . . . , zn) 7−→ log ‖(
z1
zi
, . . . , zi−1

zi
,1, zi+1

zi
, . . . , znzi )‖

is plurisubharmonic on Cn \ {zi = 0}. Note that

f (z1, . . . , zn) = log |zi | + log ‖(
z1
zi
, . . . , zi−1

zi
,1, zi+1

zi
, . . . , znzi )‖,

so that f is plurisubharmonic on Cn \ {zi = 0} for all i, and hence f is plurisubhar-
monic on Cn \ {(0, . . . ,0)}. �

2.3.2 Model metrics

In this subsection, we assume that the absolute value |·| is non-Archimedean and
non-trivial. We denote by ok the valuation ring of (k, |·|). Let X → Spec(k) be a
projective k-scheme and L be an invertible OX -module. By model of (X, L), we refer
to a projective ok-scheme X equipped with an invertible OX -module L such that
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the generic fibre of X coincides with X and that the restriction of L to X coincides
with L. If X → Spec(ok) is of finite presentation (resp. flat), then the model (X ,L )

is called a coherent model (resp. flat model) of (X, L). If (k, |·|) is discrete, then any
model is a coherent model because ok is noetherian. Note that if (X ,L ) is a coherent
model, then OX is coherent (cf. Remark 2.3.10, (1)). Let (X ,L ) be a model of
(X, L) and (OX )tor be the torsion part of OX as an ok-module. Note that (OX )tor
is an ideal of OX . If we set X ′ = Spec(OX /(OX )tor) and L ′ = L |X ′ , then
(X ′,L ′) is a flat model of (X, L) (cf. Remark 2.3.10, (1)).

As in Definition 2.1.1, we denote by j : Xan → X the specification map. Let x be
a point in Xan and let px : Spec κ̂(x) → X be the k-morphism of schemes defined by
x, where κ̂(x) is the completion of the residue field κ(x) of j(x) with respect to the
absolute value |·|x . Let (X ,L ) be a model of (X, L). The composition of px with
the inclusion morphism X → X then defines a ok-morphism from Spec κ̂(x) to X .
By definition L ⊗ κ̂(x) is the pull-back sheaf p∗x(L). By the valuative criterion of
properness (see [74] Chapter II, Theorem 7.3.8), there exists a unique ok-morphism
Px from Spec(ox) to X which identifies with px on the generic fibre, where ox is
the valuation ring of κ̂(x). The image of the maximal ideal of ox by Px , denoted
by rX (x), is called the reduction point of x. Note that rX (x) belongs to the special
fibre of X → Spec(ok). Furthermore P∗

x(L ) is a lattice in L ⊗ κ̂(x) (see §1.1.7).
We denote by |·|L (x) the norm on L ⊗ κ̂(x) defined by this lattice, namely

∀ ` ∈ L ⊗ κ̂(x), |` |L (x) := inf{|a|x : a ∈ κ̂(x)×, a−1` ∈ P∗
x(L )}.

The family of norms {|·|L (x)}x∈Xan forms a metric on L which we denote by ϕL ,
called the metric induced by the model (X ,L ).If we consider (X ′,L ′) as before,
then one can easily see that ϕL = ϕL ′

Let (X ,L ) be a model of (X, L). Let H0(X ,L )tor be the torsion part
of H0(X ,L ). We denote H0(X ,L )/H0(X ,L )tor by H̃0(X ,L ). Note that
H̃0(X ,L ) is an ok-submodule of H0(X, L) such that H0(X, L) = H̃0(X ,L ) ⊗ok k
(cf. [78, Chapter I, Proposition 9.3.2]).

Remark 2.3.10 (1) Recall that a valuation ring is a Prüfer domain, which is a
generalisation of Dedekind domain (non-necessarily Noetherian). In particular,
an ok-module is flat if and only if it is torsion free (see [27] Chapter VII, §2,
Exercices 12 and 14). Further, if an ok-module is flat and finitely generated, then
it is a free ok-module of finite rank. Moreover, by [70, Theorem 7.3.3], ok is stably
coherent, that is, any polynomial ring with finite variables is a coherent ring, so
that any ok-algebra of finite presentation is coherent (cf. [1, Proposition 1.4.2]).

(2) Let A be an ok-algebra such that A is of finite presentation over ok . Let
S = ok \ {0} and A = S−1A . Note that A is a finitely generated k-algebra. Let I
be an ideal of A. We choose f1, . . . , fr ∈ A such that I is generated by f1, . . . , fr
in A. Let B = A/I and B = A /(A f1 + · · · + A fr ). Then B = S−1B and B
is of finite presentation over ok . In particular, B is a coherent ring. The scheme
Spec(B) is called a coherent extension of Spec(B) over ok . If we set I = I∩A ,
then the quotient ring B′ = A /I is a torsion-free ok-module because one has
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an injective ring homomorphism B ↪→ B, and hence it is flat. The scheme
Spec(B′) is called the Zariski closure of Spec(B) in Spec(A ).

(3) Let (X ,L ) be a coherent model of (X, L). Then, by [1, Corollaire 1.4.8],
H0(X ,L ) is a finitely generated ok-module, so that H̃0(X ,L ) is a free ok-
module of finite rank (cf. (1)). Moreover, as H0(X, L) = H̃0(X ,L ) ⊗ok k,
H̃0(X ,L ) is a finitely generated lattice of H0(X, L) (see Definition 1.1.23).

Remark 2.3.11 Let X and Y be projective ok-schemes and f : Y → X an
ok-morphisme. Let X and Y be the generic fibres of X and Y respectively, and
fk : X → Y be the morphism induced by f . Let L be an invertible sheaf on X and
L be the restriction of L to the generic fibre X . Then the model (X ,L ) induces
a metric |·|L on the invertible sheaf L. The couple (Y , f ∗(L )) forms a model of
(Y, f ∗

k
(L)). Note that the model metric |·| f ∗(L ) on f ∗

k
(L) coincides with the pull-back

of the metric |·|L by fk (see Definition 2.2.9).

Proposition 2.3.12 Let L be an invertible OX -module which is generated by global
sections. Let ϕL be the metric induced by a model (X ,L ) of (X, L). Let ϕ be a
continuous metric of L and H := {s ∈ H̃0(X ,L ) : ‖s‖ϕ 6 1}. Moreover, let E
be a lattice of H0(X, L) such that E ⊆ H̃0(X ,L ). Then one has the following:

(1) If H ⊗ok OX → L is surjective, then ϕ 6 ϕL .
(2) If ϕ is the quotient metric on L induced by ‖·‖E (see Definition 1.1.27 for the

norm induced by a lattice),then ϕ > ϕL .
(3) If ϕ is the quotient metric on L induced by ‖·‖E , and the natural homomorphism

E ⊗ok OX → L is surjective, then ϕ = ϕL .

Proof For x ∈ Xan, let px : Spec κ̂(x) → X be the k-morphism of schemes defined
by x, and Px : Spec ox → X be the ok-morphism extending px . Moreover, let
πx : H0(X, L) ⊗k κ̂(x) → p∗x(L) be the natural homomorphism.

(1) By our assumption, H ⊗ok ox → P∗
x(L ) is surjective, so that, if ` lies in

P∗
x(L ), then there exist s1, . . . , sn in H and a1, . . . ,an in ox such that πx(a1s1+· · ·+

ansn) = `. For any i ∈ {1, . . . ,n}, let `i = πx(si). Then one has ` = a1`1+ · · ·+an`n.
As si ∈ H , one has |`i |ϕ(x) 6 1 for any i, which leads to |` |ϕ(x) 6 1. By Proposition
1.1.24, one obtains |·|ϕ(x) 6 |·|ϕL

(x). The assertion (1) is thus proved.

(2) Note that p∗x(L) is a quotient vector space of dimension 1 of H0(X, L) ⊗k κ̂(x)
and |·|ϕ(x) is the quotient norm on p∗x(L) induced by ‖·‖E ,κ̂(x). By Proposition 1.3.26,
for ` ∈ p∗x(L) \ {0} one has

|` |ϕ(x) = inf
s∈H0(X ,L), λ∈κ̂(x)×

πx (s)=λ`

|λ |−1‖s‖E . (2.15)

Let s ∈ H0(X, L) and λ ∈ κ̂(x)× such that πx(s) = λ`. By definition one has

‖s‖E = inf{|a| : a ∈ k×, a−1s ∈ E }.

If a is an element in k× such that a−1s ∈ E ⊆ H̃0(X ,L ), then a−1λ` ∈ P∗
x(L )

because P∗
x(L ) contains the image of H0(X ,L ) ⊗ok ox in p∗x(L) by πx . Hence



134 2 Local metrics

|a−1λ` |ϕL
(x) = |a|−1 |λ | · |` |ϕL

(x) 6 1,

which implies that |` |ϕL
(x) 6 |λ |−1 |a|. Since a is arbitrary with a−1s ∈ E , one

obtains |` |ϕL
(x) 6 |λ |−1‖s‖E , which leads to |` |ϕL

(x) 6 |` |ϕ(x).

(3) By (2), it is sufficient to see ϕ 6 ϕL . Note that for s ∈ E, one has ‖s‖ϕ 6 1,
so that E ⊆ H . Thus, by (1), one obtains ϕ 6 ϕL because H ⊗ok OX → L is
surjective. �

Corollary 2.3.13 Let E be a finite-dimensional vector space over k, E be a finitely
generated lattice in E and ‖·‖E be the norm on E induced by the lattice E (see Defi-
nition 1.1.27). Then the Fubini-Study metric (see Definition 2.2.13) on the invertible
OP(E)-module OE (1) induced by ‖·‖E coincides with the metric induced by the model
(P(E),OE(1)) of (P(E),OE (1)).

Remark 2.3.14 We assume that L is very ample. Let E be a finitely generated lattice
in H0(X, L). Fix a free basis e0, . . . , eN of E as an ok-module. Then P(H0(X, L)) and
P(E) can be identified with PN

k
and PNok , respectively. Let I be the defining homoge-

neous ideal of X inPN
k

and f1, . . . , fr be homogeneous polynomials inok[X0, . . . ,XN ]

such that I is generated by f1, . . . , fr in k[X0, . . . ,XN ], where X0, . . . ,XN are the in-
determinates corresponding to the basis e0, . . . , eN . Let

X = Proj(ok[X0, . . . ,XN ]/( f1, . . . , fr )) and L = OPNok
(1)

���
X
.

Then X is called a coherent extension of X and (X ,L ) is a coherent model of
(X, L). Moreover, Proposition 2.3.12 shows that the quotient metric on L induced by
the norm ‖·‖E coincides with the metric induced by the model (X ,L ).

Proposition 2.3.15 Let L and M are two invertible OX -modules. Suppose that X is
a projective ok-scheme such that Xk = X . If L and M are invertible OX -modules
such that (X ,L ) and (X ,M ) are models of (X, L) and (X,M) respectively, then
one has ϕL ⊗M = ϕL + ϕM .

Proof Let x be a point of Xan, s and t be element in LrX (x) and MrX (x) which
trivialise the invertible sheaves L and M around rX (x) respectively, and ` =
P∗

x(s), m = P∗
x(t), where Px : Spec(ox) → X is the unique ok-morphism

extending the k-morphism Spec κ̂(x) → X corresponding to the point x. Since `
and m are generators of the free ox-modules (of rank 1) P∗

x(L ) and P∗
x(M ),

one has |` |L (x) = |m|M (x) = 1. Moreover, P∗
x(s ⊗ t) is a generator of the free

ox-module P∗
x(L ⊗ M ), we obtain that |` ⊗ m|L ⊗M (x) = 1. Hence one has

ϕL ⊗M = ϕL + ϕM . �

Proposition 2.3.16 Let X be a projective k-scheme and L be an invertible OX -
module. Let (X ,L ) be a model of (X, L).

(1) The metric ϕL on L is continuous.
(2) If (X ,L ) is coherent, then the ok-module H̃0(X ,L ) is contained in the unit

ball of H0(X, L) with respect to the seminorm ‖·‖ϕL
.
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(3) If (X ,L ) is flat, the absolute value |·| is discrete, X is reduced and the central
fibre of X → Spec(ok) is reduced, then H0(X ,L ) coincides with the unit ball
of H0(X, L) with respect to ‖·‖ϕL

and ‖·‖ϕL
= ‖·‖H0(X ,L ).

Proof (1) We choose an ample invertible OX -module A such that L ⊗ A and
A are generated by global sections (cf. [74, Corollarie 4.5.11]). Let E and F
be finitely generated lattices of H0(X, L ⊗ A) and H0(X, A), respectively, such that
E ⊆ H0(X ,L ⊗A ), F ⊆ H0(X ,A ) and E ⊗OX → L ⊗A and F ⊗OX → A
are surjective, where A = A |X . Let ϕ1 and ϕ2 be the quotient metrics of L ⊗ A
and A induced by ‖·‖E and ‖·‖F , respectively. Then ϕ1 and ϕ2 are continuous by
Proposition 2.2.12 and Definition 2.2.15. Moreover, by Proposition 2.3.12, ϕL ⊗A =

ϕ1 and ϕA = ϕ2. Therefore one has the assertion because ϕL = ϕL ⊗A − ϕA =

ϕ1 − ϕ2 by Proposition 2.3.15.

(2) Let s be a section in H0(X ,L ), viewed as an element in H0(X, L), by
definition one has

∀ x ∈ Xan, ‖s‖ϕL
(x) 6 1.

Hence H0(X ,L ) is contained in the closed unit ball of (H0(X, L), ‖·‖ϕL
).

(3) Let E be the unit ball of H0(X, L) with respect to ‖·‖ϕL
. First let us see that

H0(X ,L ) = E . (2.16)

By (2), H0(X ,L ) ⊆ E . Let X =
⋃N

i=1 Spec(Ai) be an affine open covering of
X such that Ai is of finite type over ok and L has a local basis `i over Spec(Ai).
For s ∈ E , we set s = fi`i and fi ∈ Ai := S−1Ai , where S = ok \ {0}. Then, for
x ∈ (Spec Ai)

an
Ai

(cf. Remark 2.1.6), |s |ϕL
(x) = | fi |x 6 1. Therefore, as the central

fibre X◦ of X → Spec(ok) is reduced, by the last assertion of Proposition 2.1.7,
one has fi ∈ Ai , and hence s ∈ H0(X ,L ).

Next we need to see that
‖·‖ϕL

= ‖·‖E . (2.17)

Let $ be a uniformising parameter of ok , X◦ be the fibre of X over the maximal
ideal of ok and L◦ be the restriction of L to X◦, that is, L◦ = L /$L . The short
exact sequence

0 // L
$ · // L // L◦

// 0

gives rise to an exact sequence:

0 // H0(X ,L )
$ · // H0(X ,L ) // H0(X◦,L◦),

that is, the natural homomorphism

H0(X ,L )/$H0(X ,L ) −→ H0(X◦,L◦) (2.18)

is injective. Moreover, by Proposition 1.1.30, one has

‖·‖ϕL
6 ‖·‖E . (2.19)
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Here we claim that if ‖s‖E = 1 for s ∈ H0(X, L), then ‖s‖ϕL
= 1. Obviously

‖s‖ϕL
6 1 by (2.19). As H0(X ,L ) = E by (2.16), one has s ∈ H0(X ,L ) and s

is not zero in H0(X ,L )/$H0(X ,L ), so that by the injectivity of (2.18), s is not
zero in H0(X◦,L◦). Let ξ be a closed point X◦ with s(ξ) , 0. Let `ξ be a local
basis of L around ξ. Then s = f `ξ and f ∈ O×

X ,ξ . On the other hand, since the
reduction map r : Xan → X◦ is surjective, one can find x ∈ Xan with r(x) = ξ. Then
|s |ϕL

(x) = | f |x = 1, so that ‖s‖ϕL
= 1, as desired.

In general, for s ∈ H0(X, L) \ {0}, there is an integer e such that ‖$es‖E = 1, so
that ‖$es‖ϕL

= 1, and hence ‖s‖E = ‖s‖ϕL
= |$ |−e. �

Proposition 2.3.17 Let X be a projective k-scheme, L be an ample invertible OX -
module and (X ,L ) be a model of (X, L). Assume that there exists an invertible
OX -module M such that L ⊗n ⊗M is ample for any integer n > 1. Then the metric
ϕL is semipositive.

Proof Let π : X → Spec ok be the structural morphism. First we assume that L is
ample. We choose a positive integer n such that L ⊗n is very ample. Then we have
a closed embedding ι : X → P(En) with En := H̃0(X ,L ⊗n), which is induced by
the canonical (surjective) homomorphism π∗(π∗(L ⊗n)) = π∗(En) → L ⊗n. Note
that one has L ⊗n = ι∗(OEn (1)). Moreover, En is a lattice in En := H0(X, L⊗n).
By Proposition 2.3.12, the metric ϕL ⊗n = nϕL (see Proposition 2.3.15 for this
equality) coincides with the quotient metric on L⊗n induced by the norm ‖·‖En ,
hence is semipositive (see Proposition 2.2.23). By Proposition 2.3.2, we obtain that
the metric ϕL is also semipositive.

Let us see a general case. Let M be the restriction of M to X . Since L is ample,
for a sufficiently positive integer n0 > 1, the invertible OX -module L⊗n0 ⊗ M∨ is
ample. Thus for any integer n > n0 one has (by Proposition 2.3.5)

n dp(ϕL ) = dp(ϕL ⊗n ) 6 dp(ϕL ⊗n0 ⊗M∨ ) + dp(ϕL ⊗(n−n0)⊗M ) = dp(ϕL ⊗n0 ⊗M∨ ),

where the first equality comes from (2.14), and the second equality comes from
the previous observation (i.e. the semi-positivity of the metric ϕL ⊗(n−n0)⊗M ). Since
n > n0 is arbitrary, we obtain that dp(ϕL ) = 0, namely ϕL is a semipositive metric.�

Remark 2.3.18 Note that if one can find an invertible OX -module M such that
L ⊗n ⊗ M is ample for any integer n > 1, then it is easy to see that L is nef. Under
the assumption that π : X → Spec ok is of finite presentation (for example, the
absolute value |·| is discrete), the converse holds by [76, Corollaire 9.6.4].

Proposition 2.3.19 Let π : X → Spec k be a projective scheme over Spec k and
L be an ample invertible OX -module, equipped with a continuous metric ϕ which
is semipositive. Then, for a sufficiently positive integer n0, there exist sequences
{(Xn,Ln)}n∈N, n>n0 and {En}n∈N, n>n0 starting from n0 such that, for each n > n0,
L⊗n is very ample, En is a finitely generated lattice of H0(X, L⊗n), (Xn,Ln) is a
coherent model of (X, L⊗n) as constructed in Remark 2.3.14 (note that Ln is very
ample), and that

lim
n→+∞

1
n

d(ϕLn ,nϕ) = 0. (2.20)
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Proof Let λ ∈ ]0,1[ be a number such that

λ < sup{|a| : a ∈ k×, |a| < 1}.

For any n ∈ N>1, let Vn = H0(X, L⊗n). Since L is ample, one can find a sufficiently
positive integer n0 such that, for n > n0, the canonical homomorphism π∗(Vn) → L⊗n

is surjective and the corresponding k-morphism X → P(Vn) is a closed embedding.
By Proposition 1.2.22, there exists a lattice of finite type En of Vn such that

d(‖·‖En , ‖·‖nϕ) 6 ln(λ−1).

Let Xn be a coherent extension of X in P(En) (see Remark 2.3.14) and Ln be the
restriction of OP(En)(1) to Xn. Moreover, the metric on L⊗n induced by Ln coincides
with the quotient metric on L⊗n induced by (Vn, ‖·‖En ) and the canonical quotient
homomorphism π∗(Vn) → L⊗n (see Remark 2.3.14). Therefore by Proposition 2.2.20
one has

d(ϕLn ,nϕ) 6 d(‖·‖En , ‖·‖nϕ) 6 ln(λ−1)

as required. �

2.3.3 Purity

Let X → Spec k be a projective k-scheme, L be an invertible OX -module and ϕ be a
continuous metric on X . If the norm ‖·‖ϕ on H0(X, L) is pure, we say that the metric
ϕ is pure. If nϕ is pure for all n ∈ N>1, we say that ϕ is stably pure. Note that, if the
absolute value |·| is not discrete, then any continuous metric on L is stably pure (cf.
Proposition 1.1.32).

Proposition 2.3.20 We assume that the absolute value |·| is discrete. Let X be a
projective and reduced k-scheme and L be an invertible OX -module. If (X ,L ) is
a model of (X, L) such that the central fibre of X → Spec ok is reduced, then the
metric ϕL is stably pure.

Proof Note that for any n ∈ N>1 one has nϕL = ϕL ⊗n and (X ,L ⊗n) is a model
of (X, L⊗n). Therefore it suffices to show that ϕL is a pure metric. By Proposition
2.3.16, the norm ‖·‖ϕL

is induced by the lattice H0(X ,L ), hence it is pure. �

2.3.4 Extension property

In this subsection, we introduce the extension property of an ample invertible module
with a semipositive continuous metric, that is, an extension of a section with a control
on the norm.
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Throughout this subsection, let π : X → Spec(k) be a projective k-scheme and
L be an invertible OX -module, equipped with a continuous metric ϕ. Let us begin
with the following lemma.

Lemma 2.3.21 Let Y be a closed subscheme of X . For n ∈ N, n > 1, let
γn : H0(X, L⊗n) → H0(Y, L⊗n

��
Y
) be the restriction map. For any element ` of

H0(Y, L |Y ) \ N(Y, L |Y ), we define aϕ,n(`) ∈ [0,∞] to be

aϕ,n(`) :=


∞ if γ−1

n ({`⊗n}) = �,

inf
s∈H0(X ,L⊗n)

s |Y=`
⊗n

(
ln ‖s‖nϕ − ln ‖`‖nϕ |Y

)
otherwise,

where ϕ|Y denotes the restriction of ϕ to L |Y , defined as the pull-back of ϕ by the
inclusion morphisme Y → X (see Definition 2.2.9). Then we have the following:

(1) The sequence {aϕ,n(`)}n∈N is subadditive, that is, aϕ,n+n′(`) 6 aϕ,n(`)+aϕ,n′(`)
for n,n′ ∈ N.

(2) Let ϕ′ be another continuous metric of L. If γ−1
n ({`⊗n}) , �, then

|aϕ,n(`) − aϕ′,n(`)| 6 2n d(ϕ, ϕ′).

Proof (1) Clearly we may assume that γ−1
n ({`⊗n}) , � and γ−1

n′ ({`
⊗n′}) , �. Then

γ−1
n+n′({`

⊗n+n′}) , �, so that

aϕ,n+n′(`) = inf
s′′∈H0(L⊗n+n′ )

s′′ |Y=`
⊗n+n′

(
ln ‖s′′‖(n+n′)ϕ − ln ‖`‖n+n

′

ϕ |Y

)
6 inf

(s,s′)∈H0(L⊗n)×H0(L⊗n′ )

s |Y=`
⊗n ,s′ |Y=`

⊗n′

(
ln ‖s ⊗ s′‖(n+n′)ϕ − ln ‖`‖n+n

′

ϕ |Y

)
6 inf

(s,s′)∈H0(L⊗n)×H0(L⊗n′ )

s |Y=`
⊗n ,s′ |Y=`

⊗n′

(
ln ‖s‖nϕ + ln ‖s′‖n′ϕ − ln ‖`‖n+n

′

ϕ |Y

)
= aϕ,n(`) + aϕ,n′(`),

as required.

(2) Clearly we may assume that aϕ,n(`) > aϕ′,n(`). For any ε > 0, choose
s ∈ H0(X, L⊗n) such that s |Y = `⊗n and

ln ‖s‖nϕ′ − ln ‖`‖nϕ′ |Y
6 aϕ′,n(`) + ε .

Then, by using (2.5) and (2.6),

aϕ,n(`) − aϕ′,n(`) 6 (ln ‖s‖nϕ − ln ‖`‖nϕ |Y ) − (ln ‖s‖nϕ′ − ln ‖`‖nϕ′ |Y
) + ε

6
�� ln ‖s‖nϕ − ln ‖s‖nϕ′

�� + �� ln ‖`‖nϕ |Y − ln ‖`‖nϕ′ |Y

�� + ε
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6 d(‖·‖nϕ, ‖·‖nϕ′) + nd(‖·‖ϕ |Y , ‖·‖ϕ′ |Y ) + ε

6 d(nϕ,nϕ′) + nd(ϕ|Y , ϕ′ |Y ) + ε 6 2n d(ϕ, ϕ′) + ε,

so that the assertion follows because ε is an arbitrary positive number. �

Definition 2.3.22 Let Y be a closed subscheme of X . For ` ∈ H0(Y, L |Y ), we say that
` has the extension property for the metric ϕ if, for any ε > 0, there exists n0 ∈ N,
n0 > 1, such that for any integer n, n > n0, there exists a section s ∈ H0(X, L⊗n)

satisfying
s |Y = `⊗n and ‖s‖nϕ 6 eεn‖`‖nϕ |Y . (2.21)

If ` ∈ N(Y, L |Y ), then ` has the extension property for the metric ϕ. Indeed, by
Proposition 2.1.16 (3), there is a positive integer n0 such that `⊗n = 0 for all integer
n > n0, so that if we choose s = 0 ∈ H0(X, L⊗n), then the above properties (2.21)
hold. In this sense, in order to check the extension property, we may assume that
` < N(Y, L |Y ).

For any non-zero element ` of H0(Y, L |Y )\N(Y, L |Y ), we let

λϕ(`) = lim sup
n→+∞

aϕ,n(`)
n

∈ [0,+∞]. (2.22)

We call λϕ(`) the extension obstruction index of `.

Definition 2.3.23 We assume that H0(X, L⊗n) → H0(Y, L | ⊗nY ) is surjective for all
n > 1. Let ‖·‖nϕ,quot be the quotient seminorm of H0(Y, L | ⊗nY ) induced by ‖·‖nϕ and
the surjective homomorphism H0(X, L⊗n) → H0(Y, L | ⊗nY ). For ` ∈ H0(Y, L | ⊗nY ),
we define ‖`‖

(n)
ϕ,quot to be

‖`‖
(n)
ϕ,quot :=

(
‖`⊗n‖nϕ,quot

) 1/n
.

It is easy to see that

‖`‖
(∞)

ϕ,quot := lim
n→∞

‖`‖
(n)
ϕ,quot = inf

n>0
‖`‖

(n)
ϕ,quot ∈ R>0 (2.23)

and
‖`‖ϕ |Y 6 ‖`‖

(∞)

ϕ,quot (2.24)

because

‖`n ⊗ `n′ ‖(n+n′)ϕ,quot 6 ‖`n‖nϕ,quot‖`n′ ‖n′ϕ,quot and ‖`n‖nϕ |Y 6 ‖`n‖nϕ,quot

for all `n ∈ H0(Y, L | ⊗nY ) and `n′ ∈ H0(Y, L | ⊗n
′

Y ).

Proposition 2.3.24 We assume that ` < N(Y, L |Y ) and there exists a positive integer
n1 such that, for all n > n1, `⊗n lies in the image of the restriction map H0(X, L⊗n) →

H0(Y, L | ⊗nY ). Then one has the following:

(1) λϕ(`) = lim
n→+∞

aϕ,n(`)
n

= inf
n>1

aϕ,n(`)
n

.



140 2 Local metrics

(2) The following are equivalent:

(2.a) ` has the extension property for ϕ.
(2.b) For any ε > 0, there are a positive integer n and a section s ∈ H0(X, L⊗n)

such that s |Y = `⊗n and ‖s‖nϕ 6 eεn‖`‖n
ϕ |Y

.
(2.c) λϕ(`) = 0.

(3) We assume that H0(X, L⊗n) → H0(Y, L | ⊗nY ) is surjective for all n > 1. Then,
the above equivalent properties are also equivalent to ‖`‖ϕ |Y = ‖`‖

(∞)

ϕ,quot.

Proof (1) is a consequence of Fekete’s lemma because the sequence {aϕ,n}n∈N is
subadditive by Lemma 2.3.21.

“(2.a) =⇒ (2.b)” is obvious.

“(2.b)=⇒ (2.c)”: For any ε > 0, there is a positive integer n such that aϕ,n(`) 6 nε ,
so that, by (1),

0 6 λϕ(`) = inf
n>1

aϕ,n(`)
n

6 ε,

and hence one has (2.c).

“(2.c) =⇒ (2.a)”: Since λϕ(`) = lim
n→+∞

aϕ,n(`)
n

by (1), we can see (2.a).

(3) Note that aϕ,n(`)/n = ln ‖`‖
(n)
ϕ,qout − ln ‖`‖ϕ |Y , so that λϕ(`) = ln ‖`‖

(∞)

ϕ,qout −
ln ‖`‖ϕ |Y . Thus the assertion follows. �

Remark 2.3.25 (1) Let ϕ′ be another metric on L. By Lemma 2.3.21 one has

|aϕ,n(`) − aϕ′,n(`)| 6 2n d(ϕ, ϕ′),

provided that aϕ,n(`) or aϕ′,n(`) is finite. We deduce from this inequality that,
λϕ(`) is finite if and only if λϕ′(`) is finite. Moreover, when these numbers are
finite, one has

|λϕ(`) − λϕ′(`)| 6 2d(ϕ, ϕ′). (2.25)

(2) We assume that λϕ(`) < ∞. Then one has

λnϕ(`
⊗n) = nλϕ(`) (2.26)

for all n > 0. Indeed,

λnϕ(`
⊗n) = lim

m→∞

anϕ,m(`⊗n)
m

= lim
m→∞

aϕ,nm(`)
m

= n lim
m→∞

aϕ,nm(`)
nm

= nλϕ(`).

(3) Let X ′ be a closed subscheme of X such that Y ⊆ X ′. We assume that there is
a positive integer n0 such that, for all n > n0, H0(X, L⊗n) → H0(X ′, L⊗n

��
X′) is

surjective. Then
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λϕ |X′ (`) 6 λϕ(`). (2.27)

Indeed, as ‖s |X′ ‖ϕ |X′ 6 ‖s‖ϕ for all s ∈ H0(X, L⊗n) and H0(X, L⊗n) →

H0(X ′, L⊗n
��
X′) is surjective for all n > n0, one has aϕ |X′ ,n(`) 6 aϕ,n(`) for

all n > n0, so that the assertion follows.

2.3.4.1 A generalisation of a result in [155] and [111]

Let X be a d-dimensional integral smooth scheme over C. Let Y be a closed and
reduced subscheme of X defined by an ideal sheaf I on X , that is, I =

√
I and

Y = Spec(OX/I). Let µI : XI → X be the blowing-up along I, that is, XI =

Proj
(⊕∞

m=0 Im
)
. Let µ̃ : X̃I → XI be the normalisation of XI . Furthermore, let

µ′ : X ′ → X̃I be a desingularisation of X̃I such that µ′ yields an isomorphism

X ′ \ µ′−1
(Sing(X̃I ))

∼
−→ X̃I \ Sing(X̃I ).

We denote the compositions

X ′ µ′

−→ X̃I
µ̃

−→ XI
µI
−→ X .

by µ, that is, µ := µI ◦ µ̃ ◦ µ′. Note that X ′ \ µ−1(Y )
∼

−→ X \ Y via µ.

Lemma 2.3.26 There are positive integers m0 and c such that µ∗(ImOX′) ⊆ Im−c

for all m > m0 + c.

Proof Let us consider the following claim:

Claim 2.3.27 (a) µ′∗(ImOX′) = ImOX̃I
for all integer m > 0.

(b) There is a positive integer c such that µ̃∗(ImOX̃I
) ∩ OXI ⊆ Im−cOXI for all

integer m > c.
(c) There is a positive integer m0 such that µI ,∗(ImOXI ) = Im for all integer m > m0.

�

Proof (a) Note that ImOX̃I
is invertible and ImOX′ = µ′∗(ImOX̃I

). Moreover as X̃I

is normal, µ′∗(OX′) = OX̃I
, so that the assertion follows from the projection formula.

(b) We choose an affine open covering XI =
⋃N

i=1 Spec(Ai). Let Ãi be the normal-
isation of Ai . Then X̃I =

⋃N
i=1 Spec(Ãi) is an affine open covering. Note that Ãi is a

finitely generated Ai-module, so that, by Artin-Lees lemma (cf. [7, Corollary 10.10]),
there is a positive constant ci such that Im Ãi ∩ Ai = Im−ci (Ic Ãi ∩ Ai) for all m > ci ,
which implies Im Ãi ∩ Ai ⊆ Im−ci Ai . Therefore, if we set c = max{c1, . . . , cN }, then
one has the assertion.

(c) This is essentially proved in [85, Chapter II, Theorem 5.19]. Indeed, at the
final line in the proof of the above reference, it says that “S′

n = Sn for all sufficiently
large n”, which is nothing more than the assertion of (c) because OXI (m) = ImOXI .�
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Let us go back to the proof of the lemma. This is a local question, so that we may
assume that X = Spec(A) for some finitely generated regular C-algebra A. Note that
µ∗(ImOX′) ⊆ OX . Therefore, it is sufficient to see that, if f ∈ ImOX′ for f ∈ A,
then f ∈ Im−c . First of all, by (a), f ∈ ImOX̃I

, so that f ∈ µ̃∗(ImOX̃I
) ∩ OXI , and

hence, by (b), f ∈ Im−cOXI . Note that m − c > m0. Therefore, one has f ∈ Im−c , as
required. �

We assume that X is projective. Let L be an ample invertible OX -module and ϕ
be a C∞-metric of L such that c1(L, ϕ) is positive. Let U be an open set (in the sense
of the analytic topology) of X such that Y ⊆ U. The proof of [111, Theorem 7.6]
works well even if we change the exponent d of ρ by a positive number δ except (3)
in Claim 2, which should be

“If δ > d, then ρ−δ is not integrable on any neighborhood of Y”.

At page 231, line 6 from the bottom, one constructs a C∞-section l ′ of L⊗n over X ,
which is holomorphic on U ′ and satisfies the integrability condition∫

X

|l ′ |2ρ−δΦ < ∞. (2.28)

Let E1, . . . ,Er be irreducible components of µ−1(Y ). We set

IOX′ = −(a1E1 + · · · + arEr ) and KX′ = µ∗(KX ) + b1E1 + · · · + brEr .

Note that ai > 0 and bi > 0 for all i.

Lemma 2.3.28 If ei is the multiplicity of l ′ along Ei , then ei > aiδ − bi − 1 for
i = 1, . . . ,r .

Proof Let η be a closed point of Ei\Sing(E1+· · ·+Er ) and ξ = µ(η). Let {y1, . . . , yd}
be a local coordinate of X ′ on an open neighbourhood W of η such that Ei is defined
by y1 = 0. Let x1, . . . , xd be a local coordinate of X ′ on an open neighborhood V of
ξ. In the following, if it is necessary, we will shrink V and W freely. First of all, we
may assume that

µ(W) ⊆ V . (2.29)

Moreover, we can find a positive constant C such that

Φ > C(
√
−1)d(dx1 ∧ dx̄1) ∧ · · · ∧ (dxd ∧ dx̄d) (2.30)

on V . Let ω be a local basis of L on V . Note that ρ can be writen by

ρ = (| f1 |2 + · · · + | fN |2)|ωm |

on V , where f1, . . . , fN are generators of I on V , so that there is a positive constant
C ′ such that

µ∗(ρ) 6 C ′ |y1 |
2ai (2.31)
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on W . Further one has

µ∗((
√
−1)d(dz1 ∧ dz̄1) ∧ · · · ∧ (dzd ∧ dz̄d))

= |y1 |
2bi |u|2(

√
−1)d(dy1 ∧ d ȳ1) ∧ · · · ∧ (dyd ∧ d ȳd)

on W , where u is a nowhere vanishing holomorphic function on W , so that

µ∗((
√
−1)d(dz1 ∧ dz̄1) ∧ · · · ∧ (dzd ∧ dz̄d))

> C ′′ |y1 |
2bi (

√
−1)d(dy1 ∧ d ȳ1) ∧ · · · ∧ (dyd ∧ d ȳd) (2.32)

holds on W for some positive constant C ′′. If we set l ′ = f ′ωn, then f ′ = yei1 g on W
such that g is not identically zero on Ei |W , so that one can find (0, α2, . . . , αn) ∈ Ei |W
and a positive number r such that g , 0 on

Wr = {(y1, . . . , yr ) ∈ W : |yj − αj | 6 r for all j = 1, . . . , d},

where α1 = 0. Therefore one can find a positive constant C ′′′ such that

µ∗(|l ′ |2) > C ′′′ |y1 |
2ei (2.33)

on Wr . Thus, if we set yj − αj = rj exp(
√
−1θ j) for j = 1, . . . , d, then, by (2.28),

(2.29), (2.30), (2.31), (2.32) and (2.33),

∞ >

∫
X

|l ′ |2ρ−δΦ >
∫
V

|l ′ |2ρ−δΦ

>

∫
V

C |l ′ |2ρ−δ(
√
−1)d(dx1 ∧ dx̄1) ∧ · · · ∧ (dxd ∧ dx̄d)

> C
∫
Wr

µ∗(|l ′ |2ρ−δ(
√
−1)d(dx1 ∧ dx̄1) ∧ · · · ∧ (dxd ∧ dx̄d))

> CC ′−δC ′′C ′′′

∫
Wr

|y1 |
2ei+2bi−2aiδ(

√
−1)d(dy1 ∧ d ȳ1) ∧ · · · ∧ (dyd ∧ d ȳd)

> CC ′−δC ′′C ′′′

∫
[0,r]d×[0,2π]d

r2ei+2bi−2aiδ+1
1 r2 · · · rddr1 · · · drddθ1 · · · dθd

> CC ′−δC ′′C ′′′2πdr2(d−1)
∫
[0,r]

r2ei+2bi−2aiδ+1
1 dr1,

so that 2ei + 2bi − 2aiδ + 1 > −1, as required. �

By virtue of Lemma 2.3.28 together with Lemma 2.3.26, one has the following
generalisation of [155, Lemma 2.6] and [111, Theorem 7.6].

Theorem 2.3.29 Let Y ′ be a closed subscheme of X defined by an ideal sheaf J on X ,
that is, Y ′ = Spec(OX/J). Let U be a Zariski open subset of X containing Y ′. Then
there are a positive integer n0 and a positive constant C such that, for any integer
n > n0 and lU ∈ H0(U, L⊗n) with ‖lU ‖nϕU < ∞, there is l ∈ H0(X, L⊗n) such that
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l |Y′ = lU |Y′ and ‖l‖nϕ 6 Cn2d ‖lU ‖nϕU , where ‖lU ‖nϕU := sup{|lU |nϕ(x) : x ∈

Uan}.

Proof Let I :=
√

J and Y := Spec(OX/I). One can find a ∈ Z>1 such that Ia ⊆ J.
We fix a positive number δ with

δ > max
i=1,...,r

{
bi + 1

ai

}
+ c + m0 + a,

where c and m0 are the positive integers in Lemma 2.3.26. The proof of [111,
Theorem 7.6] is carried out by using the exponent δ instead of d. The point is to
show that l |Y′ = lU |Y′ . By Lemma 2.3.28,

ei > aiδ − bi − 1 > ai(c + m1 + a),

so that, there is a Zariski closed set Z of µ−1(Y ) such that dim Z 6 d − 2 and

µ∗(l ′) ∈ Ic+m1+aµ∗(L⊗n)
��
µ−1(U′)\Z

.

As Ic+m1+aµ∗(L⊗n) is invertible, one can see that µ∗(l ′) ∈ Ic+m1+aµ∗(L⊗n)
��
µ−1(U′)

,
and hence, by Lemma 2.3.26, l ′ ∈ Im1+aL⊗n ⊆ IaL⊗n. Therefore the class of l ′

in L⊗n/JL⊗n is zero over Y ′, and hence l |Y′ = lU |Y′ . The remaining estimates are
same as the proof of [111, Theorem 7.6]. �

Corollary 2.3.30 Let X , L and Y ′ be the same as in Theorem 2.3.29. Let ϕ a
continuous metric of L such that the first Chern current c1(L, ϕ) is positive. Then,
for ` ∈ H0(Y ′, L |Y′), ` has the extension property for ϕ.

Proof Clearly we may assume that ` < N(Y ′, L |Y′). As L is ample, there is a
C∞-metric ψ on L such that c1(L,ψ) is a positive form.

Claim 2.3.31 If the corollary holds for any C∞-metric of L with the semipositive
Chern form, then the corollary holds in general. �

Proof Let φ be a continuous function such that ψ−ϕ = φ. It is well known that there
is a sequence {φn}∞n=1 of C∞-functions on Xan such that ϕn := ψ−φn is a C∞-metric
of L with the semipositive Chern form and {φn}

∞
n=1 converges uniformly to φ (for

example, see [10, Theorem 1] or [109, Lemma 4.2]). Thus limn→∞ d(ϕ, ϕn) = 0.
By our assumption, λϕn (`) = 0, so that λϕ(`) 6 2d(ϕ, ϕn), and hence the assertion
follows. �

We fix a positive number ε . By the above claim, we may assume that ϕ is C∞, so
that if we set f = ψ − ϕ, then f is a C∞ function. Note that for λ ∈ ]0,1[, ϕ + λ f
gives rise to a positive Chern form because ϕ + λ f = (1 − λ)ϕ + λψ. We choose
λ0 ∈ ]0,1[ such that

λ0 sup{| f (x)| : x ∈ Xan} 6 ε .

We set ϕ′ = ϕ + λ0 f . Then
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e−ε |·|ϕ(x) 6 |·|ϕ′(x) 6 eε |·|ϕ(x) (2.34)

for all x ∈ Xan. We choose a positive integer a such that

H0(X, L⊗a) → H0(Y ′, L⊗a
��
Y′)

is surjective, so that one can find t such that t ∈ H0(X, L⊗a) and t |Y′ = `⊗a. We also
choose an open set U of X such that Y ′ ⊆ U and

‖t‖aϕ′
U
6 eaε ‖l⊗a‖ aϕ′ |Y′ . (2.35)

By the above theorem, there are a positive integer n1 and a positive constant C such
that, for any n > n1, one can find s ∈ H0(X, L⊗an) such that s |Y′ = `⊗an and

‖s‖naϕ′ 6 Cn2d ‖t⊗n‖naϕ′
U
. (2.36)

Let n2 be a positive integer such that n2 > n1 and

Cn2d 6 eεan (2.37)

for n > n2. Therefore, using (2.34), (2.35), (2.36) and (2.37), one has

‖s‖naϕ 6 enaε ‖s‖naϕ′ 6 enaε
(
Cn2d ‖t‖naϕ′

U

)
6 e2naε ‖t‖naϕ′

U
6 e3naε ‖l‖anϕ′ |Y′

6 e4naε ‖l‖anϕ |Y′
,

which means that λaϕ(l⊗a) 6 4aε , so that λϕ(l) 6 4ε . Therefore one has λϕ(l) = 0
because ε is an arbitrary positive number. �

2.3.4.2 Extension property over an Archimedean field

We assume that k is either R or C and the absolute value of k is the standard absolute
value.

Theorem 2.3.32 Let X be a projective scheme over k, L be an ample invertible
OX -module and ϕ be a semipositive continuous metric metric of L. For any closed
subscheme Y of X and any ` ∈ H0(Y, L |Y ), ` has the extension property for ϕ.

Proof Clearly we may assume that ` < N(Y, L |Y ). Let us see the following claim:

Claim 2.3.33 (1) We assume that k = C, X = Pn, L = O(1) and ϕ is the Fubini-
Study metric arising from a norm ‖·‖ on H0(Pn,O(1)). Then the assertion of the
theorem holds.

(2) We assume that k = R, X = Pn, L = O(1) and ϕ is the Fubini-Study metric
arising from a norm ‖·‖ on H0(Pn,O(1)). Then the assertion of the theorem
holds. �
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Proof (1) By Theorem 2.3.7, the first Chern current c1(L, ϕ) is positive, so that (1)
is a consequence of Corollary 2.3.30.

(2) We consider XC, LC and ϕC. Then ϕC is the Fubini-Study metric induced
by the norm ‖·‖C on H0(X, L) ⊗R C by Proposition 1.3.24. Thus, by using the case
(1), for any ε > 0, there is a positive integer n0 such that, for any n > n0, we
can find s ∈ H0(XC, L⊗n

C
) with s |YC = `⊗n and ‖s‖nϕC 6 enε ‖`‖n

ϕC |Y
. First of

all, note that ‖`‖ϕC |Y = ‖`‖ϕ |Y . If we set s = σ + iτ (σ,τ ∈ H0(X, L⊗n)), then
(σ |Y ) + i(τ |Y ) = `⊗n, so that τ |Y = 0, and hence σ |Y = `

⊗n. Moreover, for any
x ∈ Xan

C
one has ‖σ+iτ‖nϕC (x) = ‖σ−iτ‖nϕC (x), so that ‖σ+iτ‖nϕC = ‖σ−iτ‖nϕC .

We then deduce that

2‖σ‖nϕ = 2‖σnϕC ‖ 6 ‖σ + iτ‖nϕC + ‖σ − iτ‖nϕC = 2‖s‖nϕC .

Thus one has the assertion in this case. �

We choose n1 such that, for all n > n1, L⊗n is very ample. Then ϕn is the
restriction of the Fubini-Study metric ϕ‖ · ‖nϕ of O(1) to P(H0(X, L⊗n)) induced by
the norm ‖·‖nϕ . Thus, by the above claim together with (2.27),

0 6 λϕn (`
⊗n) 6 λϕ‖·‖nϕ

(`⊗n) = 0,

and hence λnϕ(`⊗n) 6 2d(nϕ, ϕn) by (2.25). Since λnϕ(`⊗n) = nλϕ(`) by (2.26),
one has

0 6 λϕ(`) 6 2d(ϕ, 1
nϕn).

Therefore, the assertion follows. �

2.3.4.3 Extension property over a non-Archimedean field

In this subsection, we fix a field k equipped with a non-Archimedean absolute value
|·|, under which the field k is complete.

Proposition 2.3.34 We assume that |·| is non-trivial. Let X be a projective k-scheme,
L be an invertible OX -module and (X ,L ) be a model of (X, L). Let s be a global
section of L such that ‖s‖ϕL

6 1. Then there exists an element a ∈ ok \ {0} such
that asn belongs to H0(X ,L ⊗n) for all integers n > 1.

Proof Let (Ui)
N
i=1 be a covering of X by affine open subsets, such that Ui =

Spec(Ai) and the invertible sheaf L trivialises on each Ui , that is, L |Ui
= Aisi

for some si ∈ L (Ui). Then the restriction of s to Ui := Ui ∩ X can be written in the
form λisi , where λi ∈ Ai = S−1Ai and S = ok \ {0}. Note that for x ∈ (Ui)

an
Ai

, the
reduction point of x is in Ui (cf. Remark 2.1.6), so that since ‖s‖ϕL

6 1, we obtain
that

|λi |x = |λi |x · |si |ϕL
(x) = |s |ϕL

(x) 6 ‖s‖ϕL
6 1

for any x ∈ (Ui)
an
Ai

. By Proposition 2.1.7, λi is integral over the ring Ai , namely
Ai[λi] is an Ai-module of finite type. In particular, there exists an integer di > 1
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such that, for any integer n > 1,

λni ∈ Ai +Aiλi + · · · +Aiλ
di
i .

Moreover, there exists ai ∈ ok \ {0} such that

{aiλi, . . . ,aiλ
di
i } ⊂ Ai .

We then obtain that aiλni ∈ Ai for any integer n > 1. Finally, let a =
∏N

i=1 ai ∈

ok \ {0}. For any integer n > 1 and any i ∈ {1, . . . ,N}, one has

(asn)|Ui = (aλni )s
n
i ∈ H0(Ui,L

⊗n).

Since X is flat over Spec(ok), these sections glue together to be a global section of
L ⊗n. The proposition is thus proved. �

Proposition 2.3.35 We assume that |·| is non-trivial. Let X be a projective k-scheme,
L be an ample invertible OX -module and Y be a closed subscheme of X . Let u > 1 be
an integer such that L⊗u is very ample, and (X ,L ) be a coherent model of (X, L⊗u)

as constructed in Remark 2.3.14. Assume that ϕ = 1
u ϕL . Let ϕY be the restriction of

the metric ϕ to L |Y . For any positive number ε and any ` ∈ H0(Y, L |Y ), there exists
an integer n > 1 and a section s ∈ H0(X, L⊗n) such that s |Y = `n and

‖s‖nϕ 6 enε ‖`‖nϕY .

In other words, one has λϕ(`) = 0 if ` < N(Y, L |Y ).

Proof Clearly we may assume that ` < N(Y, L |Y ). We choose a positive integer m
such that

e−mε/2 < sup{|a| : a ∈ k×, |a| < 1}.

By Proposition 1.1.4, on H0(Y, L | ⊗mY )/N(Y, L | ⊗mY ), there is α ∈ k× such that

e−mε/2 6 ‖α`m‖mϕY 6 1. (2.38)

One can find a coherent extension Y of Y such that Y is a closed subscheme of X
(see Remark 2.3.14). By Proposition 2.3.34, there exists an element β ∈ ok \ {0}
such that

β(α`m)pu ∈ H0(Y ,L ⊗mp |Y )

for any integer p > 1. Moreover, since the invertible sheaf L is ample, for sufficiently
positive integer p, by [1, Corollaire 1.4.10], the restriction map

H0(X ,L ⊗mp) −→ H0(Y ,L ⊗mp |Y )

is surjective because the defining ideal of Y is coherent. Hence we can choose
p ∈ N>1 such that

|β|−1 6 empuε/2 (2.39)
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and that there exists t ∈ H0(X ,L ⊗mp) verifying t |Y = β(α`m)pu . We then take
n = mpu and s = β−1α−put ∈ H0(X, L⊗n). One has s |Y = `n and

‖s‖nϕ = |β |−1 · |α |−pu · ‖t‖nϕ 6 |β |−1 · |α |−pu

6 empuε/2 ·
(
emε/2‖`m‖mϕY

) pu
= enε · ‖`m‖pumϕY 6 enε ‖`‖nϕY

,

where the first inequality comes from Proposition 2.3.16 (2), the second one from
(2.39) and (2.38), and the last one from (2.3). The first part of the proposition is thus
proved, so that the last assertion follows from Proposition 2.3.24. �

Theorem 2.3.36 Let X be a projective k-scheme and L be an ample invertible
OX -module, equipped with a semipositive continuous metric ϕ. Let Y be a closed
subscheme of X and ` be an element in H0(Y, L |Y ). Then ` has the extension property
for ϕ.

Proof Clearly we may assume that ` < N(Y, L |Y ). First we assume that the absolute
value |·| on k is non-trivial. By Proposition 2.3.19, for sufficiently positive integer n,
there exists a sequence (Xn,Ln) of coherent models of (X, L⊗n) as constructed in
Remark 2.3.14, and that

lim
n→+∞

1
n

d(ϕLn ,nϕ) = 0. (2.40)

For any n ∈ N>1, let ϕ(n) = 1
nϕLn . By Proposition 2.3.35 (see also Remark 2.3.25),

one has λϕ(n) (`) = 0. Therefore, by the relations (2.25) and (2.40), we obtain that
λϕ(`) = 0.

In the following, we treat the trivial valuation case. The main idea is to introduce
the field of formal Laurent series over k in order to reduce the problem to the non-
trivial valuation case. We assume that the absolute value |·| is trivial. We denote by
k ′ the field k((T)) of formal Laurent series over k, namely k ′ is the fraction field of
the ring k[[T]] of formal series over k. Note that k[[T]] is a discrete valuation ring.

Claim 2.3.37 The field extension k ⊆ k ′ is separable. �

Proof We may assume that the characteristic p of k is positive. First let us see the
following claim:

SubClaim 2.3.38 Let E be a finite extension of k and {ωi}
e
i=1 be a basis of E over

k. Then we have the following:

(i) Let (g1, . . . ,ge) ∈ (k ′)e. Ifω1g1+· · ·+ωege = 0 in E((T)), then g1 = · · · = ge = 0.
(ii) Let { fi}si=1 be a family of elements in k ′ which is linearly independent over k

and (c′1, . . . , c
′
s) be an element of E s . If c′1 f1 + · · · + c′s fs = 0 in E((T)), then

c′1 = · · · = c′s = 0. �

Proof (i) is trivial if we consider the coefficients of g1, . . . ,ge.

(ii) We set c′i =
∑e

j=1 ci jωj for some ci j ∈ k. Then
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s∑
i=1

c′i fi =
e∑
j=1

(
s∑

i=1
ci j fi

)
ωj = 0,

so that, by (i),
∑s

i=1 ci j fi = 0 for all j. Therefore ci j = 0 for all i, j, as desired. �

By [29, Théorème 2 in Chapter V, §25, n◦4], it is sufficient to see that if f1, . . . , fs ∈
k((T)) are linearly independent over k, then f p1 , . . . , f ps are linearly independent over
k. We assume that c1 f p1 + · · · + cs f ps = 0 for some c1, . . . , cs ∈ k. Let E be a finite
extension field of k such that we can find c′i ∈ E with ci = (c′i )

p for all i. Then∑s
i=1 c′i fi = 0 because

0 =
s∑

i=1
ci f pi =

(
s∑

i=1
c′i fi

) p

.

Thus, by (ii), one has c′i = 0, as requested. �

Let us consider a subset Σ of R given by

Σ =

∞⋃
n=0

⋃
(v,v′)∈(H0(X ,L⊗n)\N(X ,L⊗n))2

Q(ln ‖v‖nϕ − ln ‖v′‖nϕ).

Since
{‖v‖nϕ : v ∈ H0(X, L⊗n)}

is a finite set by Corollary 1.1.6, one has #(Σ) 6 ℵ0, so that one can choose
α ∈ R>0 \ Σ. We denote by vT (·) the corresponding valuation on k ′, and by |·|′ the
absolute value on k ′ defined as

∀ a ∈ k ′, |a|′ = e−αvT (a).

Note that this absolute value extends the trivial absolute value on k. We denote by
Xk′ and Yk′ the fibre products X ×Spec k Spec k ′ and Y ×Spec k Spec k ′, respectively,
and by p : Xk′ → X and pY : Yk′ → Y the morphism of projections.

As explained in §2.1.3, the morphism p corresponds to a map p\ : Xan
k′

→ Xan.
This map is actually surjective. In fact, if K is a field extension of k, equipped with
an absolute value extending the trivial absolute value on k, then we can equip the
field K(T) of rational functions of one variable with the absolute value such that

∀F = a0 + a1T + · · · + anTn ∈ K[T], |F | = max
i∈{0,...,n}

|ai | · e−αi .

This absolue value extends the restriction of |·|′ to k(T). Hence the completion �K(T)
of K(T) with this absoute value is a valued extension of k ′. If f : Spec K → X is
a k-morphism defining a point x in Xan, then it gives rise to a k ′-morphism from
Spec �K(T) to Xk′ , which defines a point y in X ′an such that p\(y) = x.

The surjectivity of p\ implies that the restriction of the seminorm ‖·‖nϕk′
to

H0(X, L) coincides with ‖·‖nϕ . In fact, if s is a section in H0(X, L⊗n), then one has
‖p∗(s)‖nϕk′

= ‖s‖nϕ ◦ p\. Therefore
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‖p∗(s)‖nϕk′
= sup

y∈X′an
‖p∗(s)‖nϕk′

(y) = sup
y∈X′an

‖s‖nϕ(p\(y)) = ‖s‖nϕ,

where the last equality comes from the surjectivity of the map p\. For (v, v′) ∈

(H0(X, L⊗n) \ N(X, L⊗n))2, if ‖v‖nϕ/‖v′‖nϕ ∈ |k ′× |, then

ln ‖v‖nϕ − ln ‖v′‖nϕ = −α vT (a(T))

for some a(T) ∈ k ′×. As

α <
⋃

(v,v′)∈(H0(X ,L⊗n)\N(X ,L⊗n))2

Q(ln ‖v‖nϕ − ln ‖v′‖nϕ),

we obtain vT (a(T)) = 0, so that ‖v‖nϕ = ‖v′‖nϕ . By Proposition 1.3.22, the semi-
norm ‖·‖nϕk′

identifies with ‖·‖nϕ,k′,ε , the ε-extension of scalars of ‖·‖nϕ .
Let Xred and Yred be the reduced schemes associated with X and Y , respectively.

By Claim 2.3.37, Xred,k′ := Xred ×Spec k Spec k ′ and Yred,k′ := Yred ×Spec k Spec k ′ are
reduced (see [75, Proposition IV.(4.6.1)]), so that

N
(
Xk′, L⊗n

k′

)
= N(X, L⊗n) ⊗k k ′ and N

(
Yk′, Lk′ |

⊗n
Yk′

)
= N(Y, L |Y ) ⊗k k ′,

where Lk′ = L ⊗k k ′.
By (2.25), without loss of generality, we may assume that L is very ample and

that ϕ is the quotient metric on L induced by a ultrametric norm ‖·‖ on V =
H0(X, L)/N(X, L) and the natural surjection β : V ⊗ OXred → L |Xred . We may
also assume that the restriction map H0(X, L⊗n) → H0(Y, L |⊗nY ) is surjective for all
n > 1.

For n > 1, let

Vn := H0(X, L⊗n)/N(X, L⊗n) and VY ,n = H0(Y, L | ⊗nY )/N(Y, L | ⊗nY ).

Note that V1 = V , and Vn and VY ,n are isomorphic to the images of

H0(X, L⊗n) → H0(Xred, L | ⊗nXred
) and H0(Y, L | ⊗nY ) → H0(Yred, L | ⊗nYred

),

respectively. Let Vk′ be the vector space V ⊗k k ′ and let ‖·‖k′,ε be the norm on
Vk′ induced by V by ε-extension of scalars. Then the surjective homomorphism
β : V ⊗ OXred → L |Xred induces a surjective homomorphism βk′ : Vk′ ⊗ OXred,k′ →

Lk′ |Xred,k′
. By Proposition 1.3.24, the metric ϕk′ of Lk′ obtained by ϕ by extension

of scalars coincides with the quotient metric on Lk′ induced by (Vk′, ‖·‖k′,ε) and βk′ .
Therefore, by Theorem 2.3.36, for any ε > 0, there exist an integer n > 1 and a
section s′ ∈ H0(Xk′, L⊗n

k′
) such that s′ |Yk′ = p∗Y (`)

n and

‖s′‖nϕk′
6 enε ‖p∗Y (`)‖

n
ϕY ,k′

where ϕY ,k′ is the metric on (L |Y ) ⊗k k ′ � Lk′ |Yk′ induced by ϕY by extension of
scalars, which equals the restriction of ϕk′ to Yk′ .
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Let {e1, . . . , eαn , f1, . . . , fβn } be an orthogonal basis of H0(X, L⊗n) with respect
to ‖·‖nϕ such that { f1, . . . , fβn } form a basis of the kernel of the restriction map
H0(X, L⊗n) → H0(Y, L |⊗nY ) (see Proposition 1.2.30 for the existence of such an
orthogonal basis). We set

s′ =
αn∑
i=1

ai(T)ei +
βn∑
j=1

bj(T) fj,

where (a1(T), . . . ,aαn (T), b1(T), . . . , bβn (T)) ∈ (k ′)αn+βn . Note that

s′ |Yk′ = a1(T) e1 |Y + · · · + aαn (T) eαn

��
Y

and { e1 |Y , . . . , eαn

��
Y
} forms a basis of H0(Y, L | ⊗nY ). Since the restriction of s′

to Yk′ can be written as the pull-back of an element in H0(Y, L |⊗nY ), one can see
that a1(T), . . . ,aαn (T) ∈ k, so that a1(T), . . . ,aαn (T) are denoted by a1, . . . ,aαn .
Therefore if we set s = a1e1 + · · · + aαn eαn , then s ∈ H0(X, L⊗n), s |Y = `⊗n, and

‖s‖nϕ 6 max
i∈{1,...,αn }

{|ai | · ‖ei ‖nϕ}

6 max
{

max
i∈{1,...,αn }

|ai | · ‖ei ‖nϕ, max
j∈{1,...,βn }

|bj(T)|′ · ‖ fj ‖nϕ
}

= ‖s′‖nϕk′
6 eεn‖p∗Y (`)‖

n
ϕY ,k′

= eεn‖`‖nϕY ,

where the first equality comes from the fact that {e1, . . . , eαn , f1, . . . , fβn } forms an
orthogonal basis of H0(Xk′, L⊗n

k′
) with respect to ‖·‖nϕk′

(see Proposition 1.3.13).
The theorem is thus proved. �

Remark 2.3.39 Let X be a scheme of finite type over k and F be a coherent OX -
module. Let Xred be the reduced structure of X . The reduced i-th cohomology group
of F , denoted by Hi

red(X,F ), is defined to be the image of the homomorphism

Hi(X,F ) → Hi (Xred, F |Xred

)
.

Using the reduced cohomology group, one has the following variant of Theo-
rem 2.3.36:

We assume that X is projective. Let L be an ample invertible OX -module, equipped with a
semipositive continuous metric ϕ. LetY be a closed subscheme of X and ` be an element of
H0

red(Y , L |Y ). Then, for any ε > 0, there exist a positive integer n and s ∈ H0
red(X , L

⊗n)

such that s |Y = l⊗n and ‖s ‖′nϕ 6 enε ( ‖l ‖′ϕY
)n , where s |Y is the image of s by the

homomorphism H0
red(X , L

⊗n) → H0
red(Y , L |⊗nY ).

Since H0
red(X, L

⊗n) and H0
red(Y, L | ⊗nY ) are subgroups of

H0(Xred, L | ⊗nXred
) and H0(Yred, L | ⊗nYred

),

respectively, the proof of the above result can be done in the similar way as Theo-
rem 2.3.36.
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2.4 Cartier divisors

In this section, we recall Cartier divisors and linear systems. Further we introduceQ-
Cartier andR-Cartier divisors on an integral scheme and study their basic properties.

2.4.1 Reminder on Cartier divisors

Let X be a scheme. For any open subset U of X , we denote by SX (U) the set of
all elements a ∈ OX (U) such that the homomorphisme of OU -modules OU → OU

defined as the homothety by a is injective. This is a multiplicative subset of OX (U).
Moreover, SX is a subsheaf of sets of OX . We denote by MX the sheaf of rings
associated with the presheaf

U 7−→ OX (U)[SX (U)−1],

called the sheaf of meromorphic functions2 on X . The canonical homomorphisms
OX (U) → OX (U)[SX (U)−1] of rings induce a homomorphism of sheaves of rings
OX → MX . The sections of MX on an open subset U of X are called meromorphic
fonctions on U.

Remark 2.4.1 Let U be an open subset of X . Any element a in SX (U) is a regular
element (namely the homothety OX (U) → OX (U) defined by a is injective). of
OX (U). It is not true in general that SX (U) contains all regular elements of OX (U).
However, if U is an affine open subset of X , SX (U) identifies with the set of all
regular elements in OX (U). In fact, an element a ∈ OX (U) is in SX (U) if and only if
its image in the local ring OX ,x is a regular element for any x ∈ U. The announced
property thus results from the faithful flatness of

OX (U) −→
⊕
x∈U

OX ,x,

provided that U is an affine open subset. In particular, if X is an integral scheme,
then MX is the constant sheaf associated to the local ring of the generic point of X
(which is a field). We use the notation R(X) to denote the field of all meromorphic
functions on X . If X is defined over a field K , R(X) is often denoted by K(X).

Denote by O×
X the sheaf of abelian groupes described as follows. For any open

subset U of X , O×
X (U) is the set of elements a ∈ OX (U) such that the homothety

OU → OU defined by a is an isomorphism. Similarly, denote by M ×
X the sheaf of

abelian groupes on X whose section space over any open subset U ⊆ X is the set of
all meromorphic functions ϕ on U such that the homothety MU → MU defined by
ϕ is an isomorphism. This is a subsheaf of multiplicative monoids of MX .

2 The definition in [77, IV.20] is not adequate, see [97] for details.
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Definition 2.4.2 We call Cartier divisor on X any global section of the quotient sheaf
M ×

X /O
×
X , that is, a data of a Zariski open covering X =

⋃
α Uα of X and a section

sα ∈ M ×
X (Uα) over Uα for each α, which is called a local equation over Uα, such

that sαs−1
β ∈ O×

X (Uα ∩ Uβ) for all α and β. The group of all Cartier divisors on X is
denoted by Div(X), where the group law is written additively. We say that a Cartier
divisor D is effective if it is a section of (M ×

X ∩ OX )/O
×
X . We use the expression

D > 0 to denote the condition “D is effective”. Moreover, for D1,D2 ∈ Div(X), an
expression D1 > D2 is defined by D1 − D2 > 0.

The Cartier divisors are closely related to invertible sheaves. Let D be a Cartier
divisor on X . Denote by OX (D) the sub-OX -module of MX generated by −D.
Namely, if X =

⋃
α Uα is an open covering of X and sα is a local equation of D

over Uα, then OX (D)|Uα
= OUα s−1

α . Note that OX (D) is an invertible OX -module
since it is locally generated by a regular element. We say that the Cartier divisor D is
ample (resp. very ample) if the invertible sheaf OX (D) is ample (resp. very ample).
By definition, one has OX (−D) � OX (D)∨. Moreover, if D1 and D2 are two Cartier
divisors, thenOX (D1+D2) � OX (D1)⊗OX (D2). Thus the map sending a divisor D to
the isomorphism class of OX (D) defines a homomorphism from Div(X) to the Picard
group Pic(X) (namely the group of isomorphism classes of invertible OX -modules).
This homomorphism is surjective notably when X is a reduced scheme with locally
finite irreducible components, or a quasi-projective scheme over a Noetherian ring
(cf. [77, IV.21.3.4-5]). We recall a simple proof of this result for the particular case
where X is an integral scheme.

Proposition 2.4.3 Let X be an integral scheme. Then the homomorphism Div(X) →

Pic(X) constructed above is surjective.

Proof Let η be the generic point of X and R(X) be the field of all meromorphic
functions on X . Let L be an invertible sheaf and s be a non-zero element in Lη . Then
the maps H0(U, L) → R(X), t 7→ tη/s (where U denotes an open subset of X) define
a OX -linear homomorphisme from L to MX . The images of local trivialisations of
L by this homomorphism define a global section of M ×

X /O
×
X , whose opposite D is

a Cartier divisor such that OX (D) � L. �

Remark 2.4.4 Let X be an integral scheme and L be an invertible OX -module. Let
η be the generic point of X . We call rational section of L any element in Lη . Note
that for any non-empty open subset U of X , the restriction map H0(U, L) → Lη
is injective. By abuse of language, we also call a section of L on a non-empty
open subset of X a rational section of L. The proof of the above proposition shows
that any non-zero rational section s of L defines a Cartier divisor of X , which we
denote by div(s). One can verify that, if L and L ′ are two invertible OX -modules
and if s and s′ are respectively non-zero rational sections of L and L ′, then one has
div(ss′) = div(s) + div(s′).

The exact sequence of abelian sheaves

1 // O×
X

//M ×
X

//M ×
X /O

×
X

// 0
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induces a long exact sequence of cohomology groups

1 // H0(X,O×
X )

// H0(X,M ×
X )

div // Div(X)
θ // H1(X,O×

X ) . (2.41)

Note that the cohomology group H1(X,O×
X ) identifies with the Picard group Pic(X)

of X (cf. [78, 0.5.6.3]), and θ is just the group homomorphism sending any Cartier
divisor D to the isomorphism class of the invertibleOX -moduleOX (D). The image of
the group homomorphism div(·) is denoted by PDiv(X). The divisors in PDiv(X) are
called principal divisors. The quotient group Div(X)/PDiv(X) is called the divisor
class group of X , denoted by Cl(X). The exactness of the sequence (2.41) shows
that the homomorphism from Cl(X) to Pic(X), sending the equivalent class of a
Cartier divisor D to the isomorphism class of the invertible sheaf OX (D) is injective.
It is an isomorphism once X is a reduced scheme with locally finite irreducible
components, or a quasi-projective scheme over a Noetherian ring. We write this
result as a corollary of Proposition 2.4.3 in the particular case where X is an integral
scheme.

Corollary 2.4.5 Let X be an integral scheme. The homomorphism from Cl(X) to
Pic(X) sending the equivalence class of a divisor class D to the isomorphism class
of OX (D) is an isomorphism.

If two Cartier divisors D and D′ of X differ by a principal divisor, namely lie in
the same class in Cl(X), we say that they are linearly equivalent.

Proposition 2.4.6 We assume that X is locally Noetherian and normal. Let D be a
Cartier divisor on X and D =

∑
Γ∈X(1) aΓΓ be the expansion as a Weil divisor, where

X (1) is the set of all codimension one points of X . Then D > 0 if and only if aΓ > 0
for all Γ ∈ X (1).

Proof It is suuffuent to show that if aΓ > 0 for all Γ ∈ X (1), then D > 0. Let fx be
a local equation of D at x ∈ X . By our assumption, fx ∈ OX ,Γ for all Γ ∈ X (1) and
x ∈ {Γ}, so that, by virtue of [104, THEOREM 38],

fx ∈
⋂

x∈{Γ}, Γ∈X(1)

OX ,Γ = OX ,x,

and hence the assertion follows. �

2.4.2 Linear system of a divisor

In this subsection, we fix an integral scheme X , and denote by R(X) the field of all
rational functions on X .

Definition 2.4.7 Let D be a Cartier divisor of X . We define
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H0(D) := { f ∈ R(X)× : div( f ) + D > 0} ∪ {0},

called the complete linear system of the divisor D. It forms a subgroup of R(X) with
respect to the additive composition law and is invariant by the multiplication by a
scalar in K . Hence it is a K-vector subspace of R(X).

We obtain from the definition that, if D and D′ are two Cartier divisors which are
linearly equivalent, and g is a non-zero rational function such that D′ = D + div(g).
Then the map f 7→ f g defines a bijection from H0(D) to H0(D′).

Let D be a Cartier divisor of X . Being a sub-OX -module of MX , the invertible
sheaf OX (D) shares the same generic fibre with MX , which is also canonically
isomorphic to the field R(X). Therefore the unit element in R(X) defines a rational
section of D which we denote by sD . One can verify that div(sD) = D and sD+D′ =

sDsD′ for any couple (D,D′) of Cartier divisors of X .

Lemma 2.4.8 Let D be a Cartier divisor of X and sD be the meromorphic section
of OX (D) constructed above. Then D is an effective divisor if and only if sD extends
to a global section of OX (D).

Proof Assume that D is an effective divisor. Then the invertibleOX -moduleOX (−D)

is actually an invertible ideal sheaf of OX since it is generated by D. Let s : OX →

OX (D) be the homomorphism of OX -modules which is dual to the inclusion map
OX (−D) → OX . It defines a global section of OX (D) whose value at the generic
point coincides with sD .

Conversely, if L is an invertible sheaf on X and if s is a non-zero global section of
L, then div(s) is an effective Cartier divisor. In particular, if sD extends to a global
section of OX (D), then D = div(sD) is an effective divisor. �

Proposition 2.4.9 Let D be a Cartier divisor of X . A rational function f lies in
H0(D) if and only if f sD extends to a global section of OX (D).

Proof By definition, for any non-zero meromorphic function f ∈ K , the relation
f sD = sdiv( f )+D holds. The Lemma 2.4.8 shows that f sD extends to a global section
of OX ⊗ OX (D) � OX (D) if and only if div( f ) + D is an effective divisor. The
proposition is thus proved. �

Remark 2.4.10 (1) Let L be an invertible OX -module. The Proposition 2.4.9 shows
that, if s is a non-zero meromorphic section of L, then the relation t 7→ t/s defines
an isomorphism between the groups H0(X, L) and H0(div(s)). In particular, if
D is a Cartier divisor, then H0(D) is canonically isomorphic to H0(X,OX (D)).

(2) Assume that the scheme X is defined over a ground field k, then the field of
rational functions R(X) is an extension of k. Moreover, for any Cartier divisor
D of X , H0(D) is a k-vector subspace of R(X).
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2.4.3 Q-Cartier and R-Cartier divisors

As in the previous subsection, X denotes an integral scheme. Let K be either Z, Q
or R. An element of DivK(X) := Div(X) ⊗Z K is called a K-Cartier divisor on X .
Note that a Z-Cartier divisor is a usual Cartier divisor. A K-Cartier divisor can be
regarded as an element of

H0(X, (M ×
X /O

×
X ) ⊗Z K) = H0(X, (M ×

X ⊗Z K)/(O
×
X ⊗Z K)),

so that, for any point x ∈ X , there are an open neighborhood U of x and f ∈

(M ×
X ⊗Z K)

��
U

such that D is defined by f over U. Note that if f ′ ∈ (M ×
X ⊗Z K)

��
U

also defines D over U, then f / f ′ ∈ (O×
X ⊗Z K)

��
U

. The element f is called a local
equation of D. Moreover, the morphism of groups K(X)× → Div(X) induces by
extension of scalars a K-linear map K(X)× ⊗Z K → DivK(X) which we denote by
divK(·).

Let D be aK-Cartier divisor on X . Let fx be a local equation of D around x. Note
that the condition fx ∈ O×

X ⊗ZK does not depend on the choice of the local equation
of D around x, so that we define SuppK(D) to be

SuppK(D) = {x ∈ X : fx < O×
X ⊗Z K}.

Proposition 2.4.11 (1) SuppK(D) is a closed subset of X .
(2) If D is a Cartier divisor, then SuppQ(D) =

⋂∞
n=1 SuppZ(nD). In particular,

SuppQ(D) ⊆ SuppZ(D). Moreover, if X is normal, then SuppQ(D) = SuppZ(D).
(3) If D is a Q-Cartier divisor, then SuppQ(D) = SuppR(D).

Proof The proof can be found in [113, Section 1.2]. �

Definition 2.4.12 Let D be a K-Cartier divisor on X . We say that D is K-effective,
denoted by D >K 0, if, for every x ∈ X , a local equation of D can be expressed
by f a1

1 · · · f arr , where f1, . . . , fr ∈ OX ,x \ {0} and a1, . . . ,ar ∈ R>0. Similarly as
Definition 2.4.7, we define H0

K(D) to be

H0
K(X,D) := {ϕ ∈ R(X)× : div(ϕ) + D >K 0} ∪ {0}.

Note that in the case where K = Z, H0
Z(X,D) coincides with H0(D) in Defini-

tion 2.4.7.

Proposition 2.4.13 Let D be a K-Cartier divisor on X . Then we have the following:

(1) We assume that K = Q. Then D >Q 0 if and only if D >R 0.
(2) We assume thatK = Q. Then the natural map H0

Q
(X,D) → H0

R(X,D) is bijective.
(3) We assume that K = Z and X is locally Noetherian and normal. Then D >Z 0 if

and only if D >Q 0.
(4) We assume thatK = Z and X is locally Noetherian and normal. Then the natural

map H0
Z(X,D) → H0

Q
(X,D) is bijective.

(5) If a ∈ H0(X,OX ) and ϕ ∈ H0
K(X,D), then aϕ ∈ H0

K(X,D).
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(6) If X is locally Noetherian and normal, then H0
K(X,D) forms a H0(X,OX )-

submodule of R(X).

Proof (1) Obviously D >Q 0 implies D >R 0. Conversely we assume that D >R 0.
Let fx be a local equation of D at x ∈ X . Then there are f1, . . . , fr ∈ OX ,x \ {0} and
a1, . . . ,ar ∈ R>0 such that fx = f a1

1 · · · f arr . Note that fx ∈ R(X)× ⊗Z Q, so that,
by Lemma 2.4.14 as below, there are a′

1, . . . ,a
′
r ∈ Q>0 such that fx = f

a′1
1 · · · f a

′
r

r .
Therefore, D is Q-effective.

(2) Let ϕ ∈ H0
R(X,D) \ {0}. Then D + div(ϕ) >R 0. Note that D + div(ϕ) is a

Q-Cartier divisor, so that, by (1), D+div(ϕ) >Q 0, which means ϕ ∈ H0
Q
(X,D)\ {0}.

(3) We assume that D >Q 0. Let D =
∑
Γ aΓΓ be the expansion as a Weil divisor.

Then aΓ > 0 for all Γ. Thus D > 0 by Proposition 2.4.6.

(4) is a consequence of (3).
(5) is obvious.

(6) By (5), it is sufficient to show that if ϕ,ψ ∈ H0
K(X,D), then ϕ+ψ ∈ H0

K(X,D).
If we set D =

∑
Γ αΓΓ (αΓ ∈ K) and div(ϕ) =

∑
Γ ordΓ(ϕ)Γ as a Weil divisor for

ϕ ∈ R(X)×, then

div(ϕ) + D >K 0 ⇐⇒ ∀ Γ, ordΓ(ϕ) + αΓ > 0

by [113, Lemma 1.2.4] together with (1). Moreover, for ϕ,ψ ∈ R(X),

ordΓ(ϕ + ψ) > min{ordΓ(ϕ),ordΓ(ψ)}.

Therefore (6) follows. �

Lemma 2.4.14 Let V be a vector space over Q. Then we have the following:

(1) WR ∩ V = W for any vector subspace W of V .
(2) Let x, x1, . . . , xr ∈ V such that x = a1x1 + · · · + ar xr for some a1, . . . ,ar ∈ R.

Then, for any ε > 0, there are a′
1, . . . ,a

′
r ∈ Q such that x = a′

1x1 + · · · + a′
r xr

and |a′
i − ai | 6 ε for all i.

Proof (1) is obvious because V/W → (V/W)R is injective and (V/W)R = VR/WR.

(2) We consider the homomorphism ψ : Qr → V sending (t1, . . . , tr ) ∈ Qr to
t1x1 + · · · + tr xr . Denote by W the image of ψ. By (1), the point x belongs to W . We
pick an element b in ψ−1({x}). Let ψR : Rr → VR be the scalar extension of ψ, that is,
ψR(α1, . . . , αr ) = α1x1+ · · ·+αr xr for any (α1, . . . , αr ) ∈ R

r , whose image is WR. As
Ker(ψR) = Ker(ψ)R, Ker(ψ) is dense in Ker(ψR). Therefore, ψ−1({x}) = b +Ker(ψ)
is dense in ψ−1

R ({x}) = b + Ker(ψR), which implies the assertion of (2). �

Example 2.4.15 The study of effective Q-Cartier or R-Cartier divisors on non-
normal schemes is more subtle than that in the normal case. This phenomenon
can be shown by the following examples, which have been discussed in [47]. Let
X := Proj(k[T0,T1,T2]/(T0T2

2 −T3
1 ) over a field k, Ui := {Ti , 0}∩ X (i = 0,1,2) and
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x := T1/T0, y := T2/T0 on U0. Then U0 = X \ {(0 : 0 : 1)} and U2 = X \ {(1 : 0 : 0)},
so that X = U0 ∪ U2. Note that y/x is not regular at (1 : 0 : 0) and y/x ∈ O×

X ,ζ for
all ζ ∈ U0 ∩ U2. Let D be a Cartier divisor on X given by

D =

{
(y/x) on U0,

(1) on U2.

(1) As y/x is not regular at (1 : 0 : 0), D is not effective as a Cartier divisor. On the
other hand, since

2D =

{
(x) on U0,

(1) on U2,

D is effective as a Q-Cartier divisor. As a consequence, 1 < H0(X,D) and
1 ∈ H0

Q
(X,D), that is, H0(X,D) → H0

Q
(X,D) is not surjective.

(2) We assume that char(k) = 0. We set ϕ := x/y. As ϕ = T1/T2 is regular on U2,
ϕ ∈ H0(X,D). Here let us see 1 + ϕ < H0

Q
(X,D). We assume the contrary, that

is, 1 + ϕ ∈ H0
Q
(X,D). Then

(1 + ϕ)(y/x) = 1 + y/x

is Q-effective on U0, so that there is a positive integer N such that (1+ y/x)N is
regular on U0. Here we claim that (y/x)i is regular over U0 for an integer i > 2.
Indeed, we set i = 2 j + ε , where j > 1 and ε ∈ {0,1}. Then as

(y/x)i = (y/x)2j+ε = (y2)j yε x−2j−ε = x j−ε yε ,

the assertion follows. Note that

y/x = (1/N)

(
(1 + y/x)N − 1 −

N∑
i=2

(
N
i

)
(y/x)i

)
,

so that y/x is regular on U0. This is a contradiction because y/x is not regular
on U0.

(3) Next we assume that char(k) = 2. We set U ′
0 := U0 \ {(1 : 1 : 1)}. Note that

X = U ′
0 ∪ U2 and 1 + y/x ∈ O×

X ,ζ for all ζ ∈ U ′
0 ∩ U2, so that we set

D′ :=

{
(1 + y/x) on U ′

0,

(1) on U2.

Since y/x is not regular at (1 : 0 : 0), we have D′ , 0. Moreover, as (1+ y/x)2 =
1 + x, we have

2D′ =

{
(1 + x) on U ′

0,

(1) on U2,
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and hence 2D′ = 0 because 1 + x ∈ O×
X ,ζ for all ζ ∈ U ′

0. Therefore, the natural
homomorphism Div(X) → DivK(X) is not injective. Furthermore SuppK(D′) =

�, but SuppZ(D′) = {(1 : 0 : 0)}.

Proposition 2.4.16 We assume that X is locally Noetherian and normal. Let D be
an R-effective R-Cartier divisor on X . Then there are effective Cartier divisors
D1, . . . ,Dn and positive real numbers a1, . . . ,an such that D = a1D1 + · · · + anDn.

Proof If D = 0, then the assertion is obvious, so that we may assume that D , 0. We
choose prime divisors Γ1, . . . ,Γn and a1, . . . ,an ∈ R>0 such that D = a1Γ1+· · ·+anΓn
as a Weil divisor. We set{

V = {E = c1Γ1 + · · · + cnΓn : (c1, . . . , cn) ∈ Qn and E is a Q-Cartier divisor},
VR := V ⊗Q R, P = VR ∩ (R>0Γ1 + · · · + R>0Γn).

Then P is an open cone in VR and D ∈ P. Thus the assertion follows. �

We assume that X is projective over a field k. AnK-Cartier divisor D on X is said
to be ample if there are ample Cartier divisors D1, . . . ,Dn and (a1, . . . ,an) ∈ Kn

>0
such that D = a1D1 + · · · + anDn.

Proposition 2.4.17 Let A be an ample R-Cartier divisor on X and D1, . . . ,Dm be
Cartier divisors on X . Then there is a positive number δ such that A +

∑m
j=1 δjDj is

ample for all δ1, . . . , δm ∈ R with |δ1 | + · · · + |δm | < δ. In particular, the ampleness
of R-Cartier divisors is an open condition.

Proof We choose ample Cartier divisors A1, . . . , An and (a1, . . . ,an) ∈ Rn
>0 such

that A = a1 A1 + · · · + anAn. Let l be a positive rational number such that l A1 ± Dj

is ample for any j ∈ {1, . . . ,m}. Note that

A +
m∑
j=1

δjDj =

m∑
j=1

|δj |
(
l A1 + sign(δj)Dj

)
+ (a1 − l(|δ1 | + · · · + |δm |)) A1 +

m∑
i=2

ai Ai,

where

sign(a) =

{
1 if a > 0,
−1 if a < 0.

Therefore, if we choose δ = a1/l, then A +
∑m

j=1 δjDj is ample. �

Proposition 2.4.18 We assume that X is locally Noetherian and normal. Let D be an
R-effective R-Cartier divisor on X . Let s1, . . . , sn ∈ Rat(X)× ⊗ZQ and (a1, . . . ,an) ∈
Rn such that a1, . . . ,an are linearly independent over Q and D + (sa1

1 · · · san
n ) is

R-effective. Then, for any ε > 0, there is a positive number δ such that if |a′
1 − a1 | +

· · · + |a′
n − an | 6 δ, then (1 + ε)D + (sa

′
1

1 · · · sa
′
n

n ) is R-effective.
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Proof We set φ = sa1
1 · · · san

n . Let us see that Supp((si)) ⊆ Supp((φ)) for all i.
Otherwise there is a prime divisor Γ such that ordΓ(si) , 0 and ordΓ(φ) = 0, so
that

∑n
j=1 aj ordΓ(sj) = 0, which contradicts to the linear independency of a1, . . . ,an

over Q. If Supp((φ)) = ∅, then Supp((si)) = ∅ for all i, and hence the assertion is
obvious, so that we may assume that Supp((φ)) , ∅. Let Γ1, . . . ,Γm be distinct prime
divisors such that Supp((φ)) = Γ1 ∪ · · · ∪ Γm. Then we can set (si) =

∑m
l=1 hilΓl for

some hil ∈ Q. If we set γl =
∑n

i=1 aihil , then ((φ)) =
∑m

l=1 γlΓl . As Supp((φ)) =
Γ1 ∪ · · · ∪ Γm, one has γl , 0 for all l. We set

L+ = {l ∈ {1, . . . ,m} : γl > 0} and L− = {l ∈ {1, . . . ,m} : γl < 0}.

As ordΓl (D)+ γl > 0, one has ordΓl (D) > 0 for all l ∈ L−. We set C = maxi,l{|hil |}
and choose δ > 0 such that

Cδ < min{|γ1 |, . . . , |γm |} and Cδ 6 ε min
l∈L−

{ordΓl (D)}.

Let a′
1, . . . ,a

′
n ∈ R such that |a′

1 − a1 |+ · · ·+ |a′
n − an | 6 δ. If we set γ′

l
=

∑n
i=1 a′

ihil ,
then |γ′

l
− γl | 6 Cδ, so that {l | γ′

l
> 0} = L+ and {l | γ′

l
< 0} = L−. Further, for

l ∈ L−, we have

(1 + ε) ordΓl (D) + γ′l = (ordΓl (D) + γl) + (ε ordΓl (D) + (γ′l − γl))

> ε ordΓl (D) − Cδ > 0.

Therefore (1 + ε)D + (sa
′
1

1 · · · sa
′
n

n ) is R-effective because

ordΓl ((1 + ε)D + (s
a′1
1 · · · sa

′
n

n )) = (1 + ε) ordΓl (D) + γ′l

for l ∈ {1, . . . ,m}. �

2.5 Green functions

Let k be a field equipped with an absolute value |·|, which is complete. If |·| is
Archimedean, we assume that it is the usual absolute value on R or C. Let X be an
integral projective scheme over Spec k.

2.5.1 Green functions of Cartier divisors

Let Xan be the Berkovich topological space associated with X . We denote by
C0

gen(X
an) the set of all continuous functions on a non-empty Zariski open subset of

Xan, modulo the following equivalence relation
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f ∼ g
def
⇐⇒ f and g coincide on a non-empty Zariski open subset.

Note that the addition and the multiplication of functions induce a structure of R-
algebra on the set C0

gen(X
an). Moreover, for any non-empty Zariski open subset U of

X , we have a natural R-algebra homomorphism from C0(Uan) to C0
gen(X

an). Since
Uan is dense in Xan (see [9] Corollary 3.4.5), we obtain that this homomorphism
is injective. Moreover, the R-algebra C0

gen(X
an) is actually the colimit of the system

C0(Uan) in the category of R-algebras, where U runs over the set of all non-empty
Zariski open subsets of X . We say that an element of C0

gen(X
an) extends to a con-

tinuous function on Uan if it belongs to the image of the canonical homomorphism
C0(Uan) → C0

gen(X
an).

Remark 2.5.1 Let f be an element of C0
gen(X

an). If U is a non-empty Zariski open
subset of X such that f extends to a continuous function on Uan, then, by the injec-
tivity of the canonical homomorphism C0(Uan) → C0

gen(X
an) there exists a unique

continuous function on Uan whose canonical image in C0
gen(X

an) is f . Therefore,
by gluing of continuous functions we obtain the existence of a largest Zariski open
subset Uf of X such that f extends to a continuous function on Uan

f
. The set Uan

is called the domain of definition of the element f . By abuse of notation, we still
use the expression f to denote the continuous function on Uan

f
corresponding to the

element f ∈ C0
gen(X

an).

If f is a non-zero rational function on X , then it is an invertible regular function
on a non-empty Zariski open subset U of X . Therefore ln | f | is a continuous function
on Uan, which determines an element of C0

gen(X
an). Note that this element does not

depend on the choice of the non-empty Zariski open subset U. We still denote by
ln | f | this element by abuse of notation.

Definition 2.5.2 Let D be a Cartier divisor on X . We call Green function of D any
element g of C0

gen(X
an) such that, for any local equation f of D over a non-empty

Zariski open subset U, the element g + ln | f | of C0
gen(X

an) extends to a continuous
function on Uan.

Example 2.5.3 Let f be a non-zero rational function on X . Then div( f ) is a Cartier
divisor. By definition, − ln | f | is a Green function of div( f ). More generally, let L
be an invertible OX -module, equipped with a continuous metric ϕ. Let s a non-zero
rational section of L. Then the function − ln |s |ϕ , which is well defined outside of
the zero points and poles of the section s and is continuous, determines an element
of C0

gen(X
an). It is actually a Green function of the divisor div(s). In particular, we

deduce from Remark 2.2.18 that, for any Cartier divisor D on X , there exists a Green
function of D.

Remark 2.5.4 One can also construct a metrized invertible sheaf from a Cartier
divisor equipped with a Green function. Let D be a Cartier divisor on X and g be a
Green function of D. If f is a rational function of X which defines the divisor D on a
non-empty Zariski open subset, then the element f −1sD is a section of the invertible
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sheaf OX (D) which trivialises the latter on U. Note that the element −(g + ln | f |)
of C0

gen(X
an) extends to a continuous function on Uan. We denote by | f −1sD |g the

exponential of this function, which defines a continuous metric on the restriction of
L to U. By gluing we obtain a continuous metric on L which we denote by ϕg. By
definition one has g = − ln |sD |g in C0

gen(X
an).

Proposition 2.5.5 (1) An element g in C0
gen(X

an) is a Green function of the trivial
Cartier divisor if and only if it extends to a continuous function on Xan.

(2) Let D and D′ be Cartier divisors on X and g,g′ be Green functions of D and D′,
respectively. Then, for (a,a′) ∈ Z2, ag + a′g′ is a Green function of aD + a′D′.

Proof (1) follows from the definition.

(2) Let f and f ′ be local equations of D and D′, respectively. Then f a f ′a
′

is
a local equation of aD + a′D′. As g + ln | f | and g′ + ln | f ′ | extend to continuous
functions locally,

a(g + ln | f |) + a′(g′ + ln | f ′ |) = ag + a′g′ + ln
��� f a · f ′a

′
���

is locally continuous, as required. �

We denote by D̂iv(X) the set of all pairs of the form (D,g), where D is a Cartier
divisor on X and g is a Green function of D. The above proposition shows that
D̂iv(X) forms a commutative group with the composition law

((D1,g1), (D2,g2)) 7−→ (D1 + D2,g1 + g2).

One has a natural homomorphism of groups D̂iv(X) → Div(X) sending (D,g) to D.
The kernel of this homomorphism is C0(Xan).

2.5.2 Green functions for Q-Cartier and R-Cartier divisors

Let K be either Q or R. Let f be an element of R(X)× ⊗Z K, that is,

f = f a1
1 · · · f arr , ( f1, . . . , fr ) ∈ (R(X)×)r and (a1, . . . ,ar ) ∈ Kr .

Then one can consider an element of C0
gen(X

an) given by a1 ln | f1 | + · · · + ar ln | fr |,
which dose not depend on the choice of the expression f = f a1

1 · · · f arr . Indeed,
let f = gb1

1 · · · g
bl
l

be another expression of f . Let us choose an affine open set
U = Spec(A) such that f1, . . . , fr ,g1, . . . ,gl belong to A×. For x ∈ Uan, as the
seminorm |·|x is multiplicative, |·|x naturally extends to a map |·|x : A× ⊗Z K→ R,
so that | f1 |a1

x · · · | fr |
ar
x = |g1 |

b1
x · · · |gl |

bl
x . Therefore,

a1 ln | f1 | + · · · + ar ln | fr | = b1 ln |g1 | + · · · + bl ln |gl |

on Uan, which shows the assertion. We denote the above function by ln | f |.
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Definition 2.5.6 Let D be aK-Cartier divisor on X . We say an element g ∈ C0
gen(X

an)
is a D-Green function or Green function of D if, for any point x ∈ Xan and any
local equation f of D on a Zariski neighbourhood of j(x), g + log | f | extends to a
continuous function around x. We denote by D̂ivK(X) the set of all pairs of the form
(D,g), where D is a K-Cartier divisor on X and g is a Green function of D. Note
that D̂ivK(X) is actually a vector space over K, which is the quotient of D̂iv(X) ⊗ZK
by the vector subspace generated by elements of the form λ(D,g) − (λD, λg), where
(D,g) ∈ D̂iv(X) and λ ∈ K.

Proposition 2.5.7 (1) Let g be a Green function of the trivial K-Cartier divisor.
Then g extends to a continuous function on Xan.

(2) Let D and D′ be K-Cartier divisors on X and g,g′ be Green functions of D and
D′, respectively. Then, for a,a′ ∈ K, ag+ a′g′ is a Green function of aD+ a′D′.

Proof It can be proven in the same way as Proposition 2.5.5. �

Proposition 2.5.8 Let K be either Z or Q or R. Let D be an effective K-Cartier
divisor on X and g be a Green function of D. Then the element e−g of C0

gen(X)

extends to a non-negative continuous function on Xan.

Proof Locally on a Zariski open subset U = Spec(A) of X , the divisor D is defined
by f a1

1 · · · f arr (where f1, . . . , fr are elements of A \ {0} and a1, . . . ,ar are elements
of K>0) and the element g + ln | f | of C0

gen(X
an) extends to a continuous function on

Uan. Hence e−g = | f | · e−(g+ln | f |) extends to a continuous function on Xan, which is
non-negative. �

Definition 2.5.9 Let K be either Z or Q or R.

(1) For f ∈ H0
K(D), | f | exp(−g) extends to a continuous function. Indeed, as D+( f )

is effective and g− ln | f | is a Green function of D+( f ), by the above proposition,
| f | exp(−g) = exp(−(g−ln | f |)) is a continuous function. We denote the function
| f | exp(−g) by | f |g. Moreover, sup{| f |g(x) : x ∈ Xan} is denoted by ‖ f ‖g.

(2) Let D be an effectiveK-Cartier divisor on X and g be a Green function of X . By
abuse of notation, we use the expression g to denote the map − ln(e−g) : Xan →

R∪ {+∞}, where e−g is the non-negative continuous function on Xan described
in Proposition 2.5.8. We say that an element (D,g) of D̂iv(X) or D̂ivR(X) is
effective if D is effective and the map g takes non-negative values.

(3) Let D = (D,g) be an element of D̂ivK(X). We define Ĥ0
K(D) to be

Ĥ0
K(D) := { f ∈ R(X)× : D + (̂ f ) is effective} ∪ {0}.

Note that Ĥ0
K(D) = { f ∈ H0

K(D) : ‖ f ‖g 6 1}.

Remark 2.5.10 Let (D,g) be an element of D̂ivK(X) and s be an element of R(X)×.
Let (D′,g′) = (D + div(s),g − ln |s |). Then the map H0

K(D
′) → H0

K(D) sending f ∈

H0
K(D

′) to f s is a bijection. Moreover, for any f ∈ H0
K(D

′) one has ‖ f ‖g′ = ‖ f s‖g.
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2.5.3 Canonical Green functions with respect to endmorphisms

Given a polarised dynamical system on a projective variety over Spec K one can
attach to the polarisation divisor a canonical Green function, which is closely related
to the canonical local height function. We refer the readers to [116] for the original
work of Néron in the Abelian variety case, and to [35, 155] for general dynamic
systems in the setting of canonical local height and canonical metric respectively.
See [95] for the non-Archimedean case.

Let X be an integral projective scheme over Spec k and f : X → X be a surjective
endomorphism of X over k. Let D be a Cartier divisor on X . We assume that there
are an integer d and s ∈ R(X)× such that d > 1 and f ∗(D) = dD + div(s). We fix
a Green function g0 of D. Then there exists a unique continuous function λ on Xan

such that
( f an)∗(g0) = dg0 − log |s | + λ.

We set

h0 = 0 and hn =
n−1∑
i=0

1
di+1 (( f an)i)∗(λ) (n > 1).

Proposition 2.5.11 (1) If n > m, then one has

‖hn − hm‖sup 6
‖λ‖sup

dm(d − 1)
.

(2) The sequence {hn}n>1 of continuous functions on Xan converges uniformly to a
continuous function h on Xan.

(3) For all n > 1, one has

( f an)∗(g0 + hn−1) = d(g0 + hn) − log |s |.

(4) There is a unique Green function g of D with ( f an)∗(g) = dg − log |s | on Xan.
(5) If OX (D) is semiample, then ϕg is semipositive.

Proof (1) Note that

‖hn − hm‖sup 6
n−1∑
i=m

1
di+1 ‖(( f an)i)∗(λ)‖sup =

‖λ‖sup

dm+1

n−m−1∑
i=0

1
di

6
‖λ‖sup

dm+1

∞∑
i=0

1
di
=

‖λ‖sup

dm(d − 1)
,

as required.

(2) is a consequence of (1).

(3) In the case where n = 1, the assertion is obvious. If n > 2, then
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( f an)∗(g0 + hn−1) = dg0 − log |s | + λ +
n−2∑
i=0

1
di+1 (( f an)i+1)∗(λ)

= d

(
g0 +

1
d
λ +

n−2∑
i=0

1
di+2 (( f an)i+1)∗(λ)

)
− log |s |

= d(g0 + hn) − log |s |.

(4) By (3), one has

( f an)∗(g0 + h) = d(g0 + h) − log |s |,

so that if we set g = g0 + h, then the desired Green function is obtained.
Next we consider the uniqueness of g. Let g′ be another Green function of D with

( f an)∗(g′) = dg′ − log |s | on Xan. Then ( f an)∗(g′ − g) = d(g′ − g) on Xan. Note that
there is a continuous function θ on Xan with θ = g′ − g, so that ( f an)∗(θ) = dθ. Here
we consider the sup norm ‖·‖sup of continuous functions. Then

‖θ‖sup = ‖( f an)∗(θ)‖sup = ‖dθ‖sup = d‖θ‖sup,

and hence ‖θ‖sup = 0. Therefore, θ = 0.

(5) Since OX (D) is semiample, there is a semipositive metric ϕ0 of OX (D) (see
Remark 2.3.4). Let t be a non-zero rational section of OX (D) such that div(t) = D.
We set g0 = − ln |t |ϕ0 . By (3), dϕg0+hn = ( f an)∗(ϕg0+hn−1 )+ ϕlog |s | . Note that ϕlog |s |

is a semipositive metric of OX (−div(s)). Therefore, by induction on n together with
Proposition 2.3.2 and Proposition 2.3.5, one can see that ϕg0+hn is semipositive for
n > 0, and hence ϕg = ϕg0+h is also semipositive by Proposition 2.3.3. �

Definition 2.5.12 A Green function g of D is called the canonical Green function
of D with respect to f if ( f an)∗(g) = dg − log |s | on Xan.





Chapter 3
Adelic curves

The theory of adèles in the study of global fields was firstly introduced by Chevalley
[49, Chapitre III] in the function field setting and by Weil [147] in the number field
setting. This theory allows to consider all places of a global field in a unified way. It
also leads to a uniform approach in the geometry of numbers in global fields, either
via the adelic version of Minkowski’s theorems and Siegel’s lemma developed by
McFeat [105], Bombieri-Vaaler [13], Thunder [142], Roy-Thunder [128], or via the
study of adelic vector bundles developed by Gaudron [62], generalising the slope
theory introduced by Stuhler [138], Grayson [71] and Bost [16, 18]. The adelic point
of view is also closely related to the Arakelov geometry approach to the height theory
in arithmetic geometry. Recall that the Arakelov height theory has been developed
by Arakelov [4, 5], Szpiro [139], Faltings [60], Bost-Gillet-Soulé [23], (compare
to the approach of Philippon [122], see also [136] for the comparison of these
approaches). We refer the readers to [156] for an application of the Arakelov height
theory in the adelic setting to the Bogomolov problem. The Arakelov height theory
has been generalised by Moriwaki [106] to the setting of finitely generated fields
over a number field (see also [108] for a panoramic view of this theory).

The purpose of this chapter is to develop a formal setting of adelic curves, which
permits to include the above examples of global fields and finitely generated exten-
sions of global fields, as well as less standard examples such as the trivial absolute
value, polarised projective varieties and arithmetic varieties, and the combination
of different adelic structures. More concretely, we consider a field equipped with a
family of absolute values on the field, indexed by a measure space, which verifies
a “product formula” (see Section 3.1 below). This construction is similar to that of
M-field introduced by Gubler [79] (see [34] for the height theory of toric varieties in
this setting, and the work of Ben Yaakov and Hrushovski in the model theory frame-
work). Moreover, Gaudron and Rémond [65] have studied Siegel’s lemma for fields
of algebraic numbers with a similar point of view. However, our main concern is to
establish a general setting with which we can develop not only the height theory but
also the geometry of adelic vector bundles and birational Arakelov theory. Therefore
our choice is different from the previous works. In particular, we require that the
absolute values are well defined for all places (same as the setting of globally valued
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field of Ben Yaakov and Hrushovski, compare to [79, §2]) and we pay a particular
attention to the algebraic coverings of adelic curves and the measurability properties
(see Sections 3.3-3.4). We prove that, for any adelic curve S with underlying field
K and any algebraic extension L of K , there exists a natural structure of adelic
curve on L whose measure space is fibred over that of S with a disintegration kernel
(compare to [65]). Curiously, even in the simplest case of finite separable extensions,
this result is far from simple (see for example Theorem 3.3.4). The main subtleties
appear in the proof of the measurability of the fibre integral, which is neither classic
in the theory of disintegration of measures nor in the extension of absolute values in
algebraic number theory. We combine the monotone class theorem (in a functional
form) in measure theory with divers technics in algebra and number theory such as
symmetric polynomials and Vandermonde matrix to resolve this problem.

The chapter is organized as follows. In Section 3.1 we give the definition of adelic
curves and discuss several basic measurability properties concerning Archimedean
absolute values. Various examples of adelic curves are presented in Section 1.2.
In the subsequent two sections, we discuss algebraic extensions of adelic curves.
The finite separable extension case is treated in Section 1.3, where we establish
the measurability of fibre integrals (Theorem 3.3.4) and the construction of the
extended adelic curve (Theorem 3.3.7). Section 3.4 is devoted to the generalisation
of these results to arbitrary algebraic extensions case, where the compatibility of the
construction in the situation of successive extensions (Theorem 3.4.12) is proved.
These results will serve as the fundament for the geometry of adelic vector bundles
and birational Arakelov geometry over adelic curves developed in further chapters.

3.1 Definition of Adelic curves

Let K be a commutative field and MK be the set of all absolute values on K . We call
adelic structure on K a measure space (Ω,A, ν) equipped with a map φ : ω 7→ |·|ω
from Ω to MK satisfying the following properties:

(i) A is a σ-algebra on Ω and ν is a measure on (Ω,A);
(ii) for any a ∈ K× := K\{0}, the functionω 7→ ln |a|ω isA-measurable, integrable

with respect to the measure ν.

The data (K, (Ω,A, ν), φ) is called an adelic curve. Moreover, the space Ω and the
map φ : Ω → MK are called a parameter space of MK and a parameter map,
respectively. We do not require neither the injectivity nor the surjectivity of φ.
Further, if the equality ∫

Ω

ln |a|ω ν(dω) = 0 (3.1)

holds for each a ∈ K×, then the adelic curve (K, (Ω,A, ν), φ) is said to be proper.
The equation (3.1) is called a product formula.

The set of all ω ∈ Ω such that |·|ω is Archimedean (resp. non-Archimedean) is
written as Ω∞ (resp. Ωfin). For any element ω ∈ Ω, let Kω be the completion of
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K with respect to the absolute value |·|ω . Note that |·|ω extends by continuity to an
absolute value on Kω which we still denote by |·|ω .

Proposition 3.1.1 Let (K, (Ω,A, ν), φ) be an adelic curve. The set Ω∞ of all ω ∈ Ω

such that the absolute value |·|ω is Archimedean belongs to A.

Proof The result of the proposition is trivial if the characteristic of K is positive since
in this case the set Ω∞ is empty. In the following, we assume that the characteristic
of K is zero. Let f be the function onΩ defined as f (ω) = ln |2|ω . ThenΩ∞ = {ω ∈

Ω : f (ω) > 0}. Hence Ω∞ is a measurable set. �

In the case where |·|ω is Archimedean, the field Kω is equal to R or C. However,
the absolute value |·|ω does not necessarily identify with the usual absolute value
on Kω . By Ostrowski’s theorem (see [117] Chapter II, Theorem 4.2), there exists a
number κ(ω) ∈ ]0,1] such that |·|ω equals |·|κ(ω) on Q, where |·| denotes the usual
absolute value on C. Therefore one has |·|ω = |·|κ(ω) on Kω = R or C.

Proposition 3.1.2 If we extend the domain of definition of the function κ to Ω by
taking the value 0 on Ω \ Ω∞, then the function κ is A-measurable and integrable
with respect to ν. In particular, if the function κ is bounded from below on Ω∞ by a
positive number, then one has ν(Ω∞) < +∞.

Proof The result of the proposition is trivial if Ω∞ is empty. In the following, we
assume that Ω∞ is non-empty. In this case the field K is of characteristic zero. One
has

∀ω ∈ Ω∞, ln |2|ω = κ(ω) ln(2),

so that
∀ω ∈ Ω, κ(ω) =

max{0, ln |2|ω}
ln(2)

.

Therefore the A-measurability and ν-integrability of the functionω 7→ ln |2|ω imply
the results of the proposition. �

Proposition 3.1.3 Let S = (K, (Ω,A, ν), φ) be an adelic curve. We assume that the
field K is countable. Let Ω0 be the set of points ω ∈ Ω such that the absolute value
|·|ω on K is trivial. Then Ω0 belongs to A.

Proof By definition,

Ω0 =
⋂
a∈K×

{
ω ∈ Ω : |a|ω = 1

}
.

Since the function (ω ∈ Ω) 7→ |a|ω is A-measurable, the set {ω ∈ Ω : |a|ω = 1}
belongs to A. Since K× is a countable set, we obtain that Ω0 also belongs to A. �
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3.2 Examples

We introduce several fundamental examples of proper adelic curves. Some of them
are very classic objects in algebraic geometry or in arithmetic geometry.

3.2.1 Function fields

Let k be a field, C be a regular projective curve over Spec k and K be the field of all
rational functions on C. We denote by Ω the set of all closed points of the curve C,
equipped with the discrete σ-algebra A (namely A is the σ-algebra of all subsets
of Ω). For any closed point x of C, the local ring OC ,x is a discrete valuation ring
whose fraction field is K . We let ordx(·) : K → Z ∪ {+∞} be the discrete valuation
on K of valuation ring OC ,x and |·|x be the absolute value on K defined as

∀ a ∈ K×, |a|x = e−ordx (a).

Let nx := [k(x) : k] be the degree of the residue field of x. Thus we obtain a map
φ : Ω→ MK sending x ∈ Ω to |·|x . We equip the measurable space (Ω,A) with the
measure ν such that ν({x}) = nx . The relation

∀ a ∈ K×,
∑
x∈Ω

nx ordx(a) = 0

shows that the equality ∫
Ω

ln |a|x ν(dx) = 0

holds for any a ∈ K×. Therefore (K, (Ω,A, ν), φ) is a proper adelic curve.

3.2.2 Number fields

Let K be a number field. Denote by Ω the set of all places of K , equipped with
the discrete σ-algebra. For any ω ∈ Ω, let |·|ω be the absolute value on K in the
equivalence class ω, which extends either the usual Archimedean absolute value on
Q or one of the p-adic absolute values (such that the absolute value of p is 1/p). Thus
we obtain a map φ : Ω → MK sending ω ∈ Ω to |·|ω . For each ω ∈ Ω, let nω be
the local degree [Kω : Qω], where Kω and Qω denote respectively the completion
of K and Q with respect to the absolute value |·|ω . Let ν be the measure on (Ω,A)

such that ν({ω}) = nω for any ω ∈ Ω. Note that the usual product formula (cf. [117]
Chapter III, Proposition 1.3) asserts that

∀ a ∈ K×,
∏
ω∈Ω

|a|[Kω :Qω ]
ω = 1,
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which can also be written in the form

∀ a ∈ K×,

∫
Ω

ln |a|ω ν(dω) = 0.

Therefore (K, (Ω,A, ν), φ) is a proper adelic curve.

3.2.3 Copies of the trivial absolute value

Let K be any field and (Ω,A, ν) be an arbitrary measure space. For each ω ∈ Ω, let
|·|ω be the trivial absolute value on K , namely one has |a|ω = 1 for any a ∈ K×. We
denote by φ : Ω → MK the map sending all elements of Ω to the trivial absolute
value on K . Then the equality

∀ a ∈ K×,

∫
Ω

ln |a|ω ν(dω) = 0

is trivially satisfied. Therefore the data (K, (Ω,A, ν), φ) form a proper adelic curve.

3.2.4 Polarised varieties

Let k be a field and X be an integral and normal projective scheme of dimension
d > 1 over Spec k. Let K = k(X) be the field of rational functions on X andΩ = X (1)

be the set of all prime divisors in X , equipped with the discrete σ-algebra A. We
also fix a family {Di}

d−1
i=1 of ample divisors on X . Let ν be the measure on (Ω,A)

such that
∀Y ∈ Ω = X (1), ν({Y }) = deg(D1 · · · Dd−1 ∩ [Y ]).

Thus we obtain a measure space (Ω,A, ν).
For each Y ∈ Ω, let OX ,Y be the local ring of X on the generic point of Y . It is a

discrete valuation ring since it is a Noetherian normal domain of Krull dimension 1.
Moreover, its fraction field is K . We denote by ordY (·) the corresponding valuation
on K and by |·|Y the absolute value on K with |·|Y := e−ordY (·). Thus we obtain a map
φ from Ω to the set of all absolute values on K , sending Y ∈ Ω to |·|Y .

For any rational function f ∈ K×, let ( f ) be the principal divisor associated with
f , which is

( f ) :=
∑
Y ∈Ω

ordY ( f ) · Y .

Therefore, the relation deg(D1 · · · Dd−1 · ( f )) = 0 can be written as∫
Ω

ln | f |Y ν(dY ) = 0.
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Hence (K, (Ω,A, ν), φ) is a proper adelic curve.

3.2.5 Function field over Q

Let K = Q(T) be the field of rational functions of one variable T and with coefficients
in Q. We consider K as the field of all rational functions on P1

Q
. Any closed point

x ∈ P1
Q

defines a discrete valuation on K which we denote by ordx(·). Let ∞ be the
rational point of P1

Q
such that

ord∞( f /g) = deg(g) − deg( f )

for polynomials f and g inQ[T] such that g , 0. Then the open subschemeP1
Q
\{∞} is

isomorphic to A1
Q

. Therefore any closed point x of P1
Q

different from ∞ corresponds
to an irreducible polynomial Fx in Q[T] (up to dilation by a scalar in Q×). By
convention we assume that Fx ∈ Z[T] and that the coefficients of Fx are coprime.
Let H(x) be the Mahler measure of the polynomial Fx , defined as

H(x) := exp
( ∫ 1

0
ln |Fx(e2πit )| dt

)
.

Note that if the polynomial Fx is written in the form

Fx(T) = adTd + · · · + a1T + a0 = ad(T − α1) · · · (T − αd),

then one has (by Jensen’s formula, see [90])

H(x) = |ad |

d∏
j=1

max{1, |αj |} > 1.

Let |·|x be the absolute value on Q(T) such that

∀ ϕ ∈ Q(T), |ϕ|x = H(x)− ordx (ϕ).

For any prime number p, let |·|p be the natural extension to Q(T) of the p-adic
absolute value on Q constructed as follows. For any

f = adTd + · · · + a1T + a0 ∈ Q[T]

let
| f |p := max

j∈{0,...,d}
|aj |p .

Note that one has | f g |p = | f |p · |g |p for f and g in Q[T] (see [12] Lemma 1.6.3
for example) and thus the function |·|p on Q[T] extends in a unique way to a
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multiplicative function onQ(T). Moreover, the extended function satisfies the strong
triangle inequality and therefore defines a non-Archimedean absolute value onQ(T).

Denote by [0,1]∗ the set of t ∈ [0,1] such that e2πit is transcendental. For any
t ∈ [0,1]∗, let |·|t be the absolute value on Q(T) such that

∀ ϕ ∈ Q(T), |ϕ|t := |ϕ(e2πit )|,

where |·| denotes the usual absolute value of C. The absolute value |·|t is
Archimedean.

Denote byΩ the disjoint unionΩh qP q [0,1]∗, whereΩh is the set of all closed
points of P1

Q
\ {∞}, and P denotes the set of all prime numbers. Let φ : Ω→ MK be

the map sendingω ∈ Ω to |·|ω . We equipΩh and P with the discrete σ-algebras, and
[0,1]∗ with the restriction of the Borel σ-algebra on [0,1]. Let A be the σ-algebra
on Ω generated by the above σ-algebras on Ωh , P and [0,1]∗ respectively. Let ν
be the measure on Ω such that ν({x}) = 1 for x ∈ Ωh , that ν({p}) = 1 for any
prime number p and that the restriction of ν on [0,1]∗ coincides with the Lebesgue
measure. Then for any f ∈ K[T] \ {0} one has∫

Ω

ln | f |ω ν(dω) =
∑
x∈Ωh

ln | f |x +
∑
p∈P

ln | f |p +
∫
[0,1]∗

ln | f (e2πit )| dt .

Since [0,1] \ [0,1]∗ is negligible with respect to the Lebesgue measure, we obtain
that ∫

[0,1]∗
ln | f (e2πit )| dt =

∫ 1

0
ln | f (e2πit )| dt

is equal to the logarithm of the Mahler measure of the polynomial f . In particular,
if we write the polynomial f in the form

f = aFr1
x1 · · · Frn

xn
,

where x1, . . . , xn are distinct closed points of P1
Q
\ {∞}, and a ∈ Q×. Then one has∫

[0,1]∗
ln | f (e2πit )| dt = ln |a| +

n∑
j=1

rj ln H(xj).

Therefore one has∫
Ω

ln | f |ω ν(dω) =
n∑
j=1

(−rj) ln H(xj) +
∑
p∈P

ln |a|p +
∫
[0,1]∗

ln | f (e2πit )| dt = 0.

Hence (K, (Ω,A, ν), φ) is a proper adelic curve.
This example of proper adelic curve is much less classic and may looks artificial.

However, it is actually very natural from the Arakelov geometry point of view. In
fact, one can consider Q(T) as the field of the rational functions on the arithmetic
variety P1

Z := Proj(Z[X,Y ]) with T = X/Y . Then the relation
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∀ ϕ ∈ K×,

∫
Ω

ln |ϕ|ω ν(dω) = 0

can be interpreted as
d̂eg(ĉ1(OP1

Z
(1), ‖·‖) · (̂ϕ)) = 0,

where ‖·‖ is the continuous Hermitian metric of OP1
Z
(1) given by

‖aX + bY ‖(ξ1 : ξ2) =
|aξ1 + bξ2 |

max{|ξ1 |, |ξ2 |}

and (̂ϕ) is the arithmetic divisor associated with the rational function ϕ. The integrals
of ln |ϕ|ω on Ωh , P and I∗ correspond to the horizontal, vertical and Archimedean
contributions in the arithmetic intersection product, respectively.

3.2.6 Polarised arithmetic variety

The previous example treated in Subsection 3.2.5 can be considered as a very
particular case of adelic structures arising from polarised arithmetic varieties. Let K
be a finitely generated field over Q and d be its transcendental degree over Q. Let k
be the set of all algebraic elements of K over Q. Note that k is a finite extension over
Q. A normal model of K over Q means an integral and normal projective scheme X
over Q such that the rational function field of X is K .

For simplicity, the set of all C-valued points of Spec(K) is denoted by K(C), that
is, K(C) is the set of all embeddings of K into C. Let X be a normal projective model
of K over Q, namely X is an integral normal projective Q-scheme, whose field of
rational functions identifies with K . Let Spec(K) → X be the canonical morphism.
Considering the composition

Spec(C) −→ Spec(K) −→ X,

we may treat K(C) as a subset of X(C). Note that

K(C) = X(C) \
⋃
Y(X

Y (C),

where Y runs over all prime divisors on X . Indeed, “⊆” is obvious. Conversely, let
x ∈ X(C) \

⋃
Y(X Y (C). Then, for any f ∈ K×, f has no zero and pole at x as

a rational function on X(C), so that we have a homomorphism K → C given by
f 7→ f (x), as required. Note that the restriction to K(C) of the Zariski topology on
X(C) does not depend on the choice of X . In fact, for any non-empty Zariski open
set U of X , K(C) is a subset of U(C), so that if X ′ is another normal model of K
over Q and U is a common open set of X and X ′, then K(C) is a subset of U(C). For
x ∈ K(C), we set |·|x := |σx(·)|, where σx is the corresponding embedding K ↪→ C.
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Let Ok be the ring of integers in k. For any maximal ideal p of Ok , let vp be the
absolute value of k given by

vp(·) = #(Ok/p)
−ordp(·).

Let kp be the completion of k with respect to vp. By abuse of notation, the natural
extension of vp to kp is also denoted by vp. Let X be a normal projective model of
K , Xp := X ×Spec(k) Spec(kp) and h : Xp → X be the natural projection. Let Xan

p be
the analytification of Xp in the sense of Berkovich [9]. For x ∈ Xan

p , the associated
scheme point of Xp is denoted by px . We say that x is a generic point of Xan

p if h(px)

is the generic point of X . The set of all generic points of Xan
p is denoted by Kan

p . If U
is a non-empty Zariski open set of X , then Kan

p ⊆ Uan
p , so that Kan

p and the Berkovich
topology of Kan

p do not depend on the choice of the model X . Moreover, as before,
we can see that

Kan
p = Xan

p \
⋃
Y(X

Y an
p ,

where Y runs over all prime divisors on X . For x ∈ Kan
p , the corresponding seminorm

|·|x induces an absolute value of K because K is contained in the residue field of Xp
at px . By abuse of notation, it is also denoted by |·|x .

The Zariski-Riemann space ZR(K/k) of K over k is defined by the set of all
discrete valuation rings O such that k ⊆ O ⊆ K and the fraction field of O is
K . For O ∈ ZR(K/k), the associated valuation of K is denoted by ordO . We set
|·|O := exp(− ordO(·)).

Let Ωfin
geom := ZR(K/k), Ωfin

p := Kan
p , Ω∞ := K(C) and

Ω := Ωfin
geom q

∐
p∈Max(Ok )

Ω
fin
p q Ω∞,

where Max(Ok) is the set of all maximal ideals of Ok . Let φ : Ω → MK be the
map ω 7→ |·|ω . Here we consider the σ-algebra A on Ω generated by the discrete
σ-algebra on Ωfin

geom, the Borel σ-algebra on Ωfin
p with respect to the topology of Kan

p

for each p ∈ Max(Ok), and the Borel σ-algebra on Ω∞ with respect to the topology
of K(C). In order to introduce a measure on (Ω,A), let us fix a normal model X of
K and nef adelic arithmetic R-Cartier divisors

D1 = (D1,g1), . . . ,Dd = (Dd,gd)

of C0-type on X (for details of adelic arithmetic R-Cartier divisors, see [113]). The
collection (X; D1, . . . ,Dd) is called a polarisation of K . Let X (1) be the set of all
prime divisors on X . The Radon measure on Xan

p given by

ϕ 7−→ d̂egp((D1,g1,p) · · · (Dd,gd,p); ϕ)

is denoted by µ(D1 ,g1,p),...,(Dd ,gd ,p). A measure ν on Ω is defined as follows: ν on
Ωfin

geom is a discrete measure given by
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ν({O}) =

{
d̂eg

(
D1 · · · Dd · (Γ,0)

)
if O = OX ,Γ for some Γ ∈ X (1),

0 otherwise,

ν on Ωfin
p is the restriction of 2µ(D1 ,g1,p),...,(Dd ,gd ,p) to Kan

p , and ν on Ω∞ is given by
2c1(D1,g1,∞)∧ . . .∧c1(Dd,gd,∞). Then (K, (Ω,A, ν)) yields a proper adelic structure
of K . Indeed, for each f ∈ K×, the product formula can be checked as follows:∫

Ω

ln | f |ω ν(dω) =
∑
Γ∈X(1)

− ordΓ( f )d̂eg
(
D1 · · · Dd · (Γ,0)

)
+

∑
p∈Max(Ok )

∫
Kan
p

ln | f |2dµ(D1 ,g1,p),...,(Dd ,gd ,p)

+

∫
K(C)

ln | f |2c1(D1,g1,∞) ∧ . . . ∧ c1(Dd,gd,∞).

For a proper subvariety of Y of X , Y an
p and Y (C) are null sets with respect to the

measures µ(D1 ,g1,p),...,(Dd ,gd ,p) and c1(D1,g1,∞) ∧ . . .∧ c1(Dd,gd,∞), respectively. In
addition, we have only countably many prime divisors on X . Therefore, the above
equation implies∫

Ω

ln | f |ω ν(dω) = −d̂eg
(
D1 · · · Dd · (( f ),0)

)
+

∑
p∈Max(Ok )

∫
Xan
p

ln | f |2dµ(D1 ,g1,p),...,(Dd ,gd ,p)

+

∫
X(C)

ln | f |2c1(D1,g1,∞) ∧ . . . ∧ c1(Dd,gd,∞).

On the other hand,

0 = d̂eg
(
D1 · · · Dd · (̂ f )

)
= d̂eg ©«D1 · · · Dd ·

©«( f ),
∑

p∈Max(Ok )

− ln | f |2[p] − ln | f |2[∞]
ª®¬ª®¬

= d̂eg
(
D1 · · · Dd · (( f ),0)

)
−

∑
p∈Max(Ok )

∫
Xan
p

ln | f |2dµ(D1 ,g1,p),...,(Dd ,gd ,p)

−

∫
X(C)

ln | f |2c1(D1,g1,∞) ∧ . . . ∧ c1(Dd,gd,∞),

as desired.
This proper adelic structure is denoted by S(X; D1, . . . ,Dd).
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3.2.7 Amalgamation of adelic structures

Let K be a field,(
(Ω,A, ν), φ : Ω→ MK

)
and

(
(Ω′,A ′, ν′), φ′ : Ω′ → MK

)
be two adelic structures on K . Then the disjoint union of measure spaces

(Ω,A, ν) q (Ω′,A ′, ν′)

together with the map Φ : Ω q Ω′ → MK extending both φ and φ′ form also
an adelic structure on K . If S and S′ denote the adelic curves (K, (Ω,A, ν), φ) and
(K, (Ω′,A ′, ν′), φ′) respectively, then we use the expression S q S′ to denote the
adelic curve (

K, (Ω,A, ν) q (Ω′,A ′, ν′),Φ
)
,

called the amalgamation of the adelic curves S and S′. Similarly, one can define the
amalgamation for any finite family of adelic arithmetic structures on the field K .
Note that if S and S′ are proper, then S q S′ is also proper. In fact, for any a ∈ K×

one has ∫
Ω

ln |a|ω ν(dω) +
∫
Ω′

ln |a|ω ν′(dω) = 0.

3.2.8 Restriction of adelic structure to a subfield

Let S = (K, (Ω,A, ν), φ) be an adelic curve and let K0 be a subfield of K . Let
φ0 : Ω → MK0 be the map sending ω ∈ Ω to the restriction of |·|ω to K0. Then φ0
defines an adelic structure on K0, called the restriction of the adelic structure of S to
K0. If S is proper, then its restriction to K0 is also proper.

3.2.9 Restriction of adelic structure to a measurable subset

Let S = (K, (Ω,A, ν), φ) be an adelic curve and Ω0 be an element of A. Let A0 be
the restriction of the σ-algebra A to Ω0 and ν0 be the restriction of the measure to
Ω0. Then (K, (Ω0,A0, ν0), φ|Ω0 ) is an adelic curve, called the restriction of S to Ω0.
Note that this adelic curve is not necessarily proper, even if the adelic curve S is
proper.
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3.3 Finite separable extensions

Let S = (K, (ΩK ,AK , νK ), φK ) be an adelic curve. Let K ′/K be a finite and separable
extension. For each ω ∈ ΩK , let MK′,ω be the set of all absolute values on K ′ which
extend the absolute value |·|ω on K . Let ΩK′ be the disjoint union∐

ω∈ΩK

MK′,ω .

One has a natural projection πK′/K : ΩK′ → ΩK which sends the elements of
MK′,ω to ω. Let φK′ : ΩK′ → MK′ be the map induced by the inclusion maps
MK′,ω → MK′ . If x is an element of ΩK′ , we also use the expression |·|x to denote
the corresponding absolute value. Note that the following diagram is commutative

ΩK′

πK′/K //

φK′

��

ΩK

φK

��
MK′

$K′/K

// MK

and identifies ΩK′ with the fibre product of MK′ and ΩK over MK in the category
of sets, where $K′/K sends any absolute value on K ′ to its restriction to K . We
equip the set ΩK′ with the σ-algebra AK′ generated by πK′/K and all real-valued
functions of the form (x ∈ ΩK′) 7→ |a|x , where a runs over K ′. Namely it is the
smallestσ-algebra onΩK′ which makes these maps measurable1, where we consider
the σ-algebra AK on ΩK and the Borel σ-algebra on R.

We aim to construct a measure νK′ on the measurable space (ΩK′,AK′) such that
the direct image of νK′ by πK′/K coincides with νK . Note that on each fibre MK′,ω

of πK′/K there is a natural probability measure PK′,ω such that

∀ x ∈ MK′,ω, PK′,ω({x}) =
[K ′

x : Kω]
[K ′ : K]

. (3.2)

We refer to [117] Chapter II, Corollary 8.4 for a proof of the equality∑
x∈MK′ ,ω

[K ′
x : Kw]

[K ′ : K]
= 1. (3.3)

Intuitively the family of probability measures {PK′,ω}ω∈ΩK should form the disin-
tegration of the measure νK′ with respect to νK . However, as we will show below,
the construction of the measure νK′ relies actually on a subtil application of the
monotone class theorem and the properties of extensions of absolute values.

1 A map f : X′ → X of measurable spaces (X′, A′) and (X , A) is said to be measurable if
f −1(B) ∈ A′ for all B ∈ A.
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3.3.1 Integration along fibres

If f is a function on ΩK′ valued in R, we define IK′/K ( f ) to be the function on ΩK

which sends ω ∈ ΩK to ∑
x∈MK′ ,ω

[K ′
x : Kω]

[K ′ : K]
f (x).

This is an R-linear operator from the vector space of all real-valued functions on
ΩK′ to that of all real-valued functions on ΩK . The equality (3.3) shows that IK′/K

sends the constant function 1 on ΩK′ to that on ΩK . The following properties of the
linear operator IK′/K are straightforward.

Proposition 3.3.1 Let f be a real-valued function on ΩK′ and ϕ be a real-valued
function on ΩK . Let ϕ̃ = ϕ ◦ πK′/K . Then

IK′/K (ϕ̃ f ) = ϕIK′/K ( f ).

Proof By definition, for any ω ∈ ΩK one has(
IK′/K (ϕ̃ f )

)
(ω) =

∑
x∈MK′ ,ω

[K ′
x : Kω]

[K ′ : K]
ϕ̃(x) f (x)

=
∑

x∈MK′ ,ω

[K ′
x : Kω]

[K ′ : K]
ϕ(ω) f (x).

Proposition 3.3.2 Let K ′′/K ′/K be successive finite separable extensions of fields.
Let f be a real-valued function on ΩK′ and f̃ = f ◦ πK′′/K′ , where πK′′/K′ : ΩK′′ →

ΩK′ sends any absolute value in ΩK′′,ω to its restriction to K ′, viewed as an element
in ΩK′,ω (ω ∈ ΩK ). Then one has

IK′′/K ( f̃ ) = IK′/K ( f ). (3.4)

Proof For any ω ∈ ΩK , one has(
IK′′/K ( f̃ )

)
(ω) =

∑
y∈MK′′ ,ω

[K ′′
y : Kω]

[K ′′ : K]
f̃ (y)

=
∑

x∈MK′ ,ω

∑
y∈MK′′ ,ω

y |K′=x

[K ′′
y : K ′

x]

[K ′′ : K ′]
·
[K ′

x : Kω]
[K ′ : K]

f (x),

which can also be written as∑
x∈MK′ ,ω

[K ′
x : Kω]

[K ′ : K]
f (x)

∑
y∈MK′′ ,ω

y |K′=x

[K ′′
y : K ′

x]

[K ′′ : K ′]
.
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Therefore the desired equality follows from the relation∑
y∈MK′′ ,ω

y |K′=x

[K ′′
y : K ′

x]

[K ′′ : K ′]
= 1.

Corollary 3.3.3 Let ϕ be an AK -measurable function on ΩK . One has

IK′/K (ϕ ◦ πK′/K ) = ϕ.

Proof It suffices to apply the previous proposition to the successive extensions
K ′/K/K and then use the fact that IK/K is the identity map to obtain the result. �

3.3.2 Measurability of fibre integrals

The following theorem shows that the operator IK′/K sends anAK′-measurable func-
tion to an AK -measurable function. This result is fundamental in the construction
of a suitable measure on the measurable space (ΩK′,AK′).

Theorem 3.3.4 For any real-valued AK′-measurable function f , the function
IK′/K ( f ) is AK -measurable.

Proof Step 1: We first prove that, if a is a primitive element of the finite separable
extension K ′/K (namely K ′ = K(a)) and if fa is the function on ΩK′ sending
x ∈ ΩK′ to |a|x , then the function IK′/K ( fa) is AK -measurable.

Let Kac be an algebraic closure of K containing K ′. For each ω ∈ ΩK , we extend
the absolute value |·|ω to Kac via an embedding of Kac into an algebraic closure
Kac
ω of Kω . We still denote by |·|ω the extended absolute value on Kac by abuse of

notation.

Lemma 3.3.5 Let d ∈ N>1 and {α1, . . . , αd} be a finite family of distinct elements
in Kac. For any ω ∈ ΩK , one has

max
j∈{1,...,d}

|αj |ω = lim sup
N→+∞

���� d∑
i=1

αN
i

���� 1
N

ω

. (3.5)

Moreover, for any separable element c ∈ Kac, the function

(ω ∈ ΩK ) 7−→ max
τ∈AutK (Kac)

|τ(c)|ω

is AK -measurable. �

Proof First of all, by the triangle inequality one has
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i=1

αN
i

���� 1
N

ω

6 d1/Nmax{|α1 |ω, . . . , |αd |ω}.

Therefore

max{|α1 |ω, . . . , |αd |ω} > lim sup
N→+∞

���� d∑
i=1

αN
i

���� 1
N

ω

.

Without loss of generality, we can assume that

|α1 |ω = . . . = |α` |ω > |α`+1 |ω > . . . > |αd |ω,

where ` ∈ {1, . . . , d}. For i ∈ {1, . . . , `}, let βi = αi/α1. One has β1 = 1 and

|β1 |ω = . . . = |β` |ω = 1.

For any integer N > 1, one has

©«
βN1 + · · · + β

N
`

...
βN+`−1

1 + · · · + βN+`−1
`

ª®®¬ =
©«

1 . . . 1
β1

1 . . . β1
`

...
. . .

...
β`−1

1 . . . β`−1
`

ª®®®®¬
©«
βN1
...
βN
`

ª®®¬
Let K̂ac be the completion of Kac with respect to |·|ω . We equip the vector space
(K̂ac)` with the following norm

∀ (z1, . . . , z`) ∈ (K̂ac)`, ‖(z1, . . . , z`)‖ := max
i∈{1,...,` }

|zi |ω .

Then the vector (βN1 , . . . , β
N
`
) has norm 1 with respect to ‖·‖. Moreover, the Vander-

monde matrix above is invertible since β1, . . . , β` are distinct. Therefore the norm of
the vector ( ∑̀

i=1
βNi , . . . ,

∑̀
i=1

βN+`−1
i

)
is bounded from below by a positive constant which does not depend on N , which
shows that the sequence ���� d∑

i=1

( αi
α1

) N
����
ω

, N ∈ N, N > 1

does not converge to zero when N → +∞. This implies that

lim sup
N→+∞

���� d∑
i=1

αN
i

���� 1
N

ω

> |α1 |ω = max{|α1 |ω, . . . , |αd |ω}.

The equality (3.5) is thus proved.
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We now proceed with the proof of the second statement. Let

Td − λ1Td−1 + · · · + (−1)dλd ∈ K[T]

be the minimal polynomial of c over K , and α1, . . . , αd be its roots in Kac. Since c
is a separable element, these roots are distinct. By definition, for k ∈ {1, . . . , d} one
has

λk =
∑

(i1 ,...,ik )∈{1,...,d}k
i1<...<ik

αi1 · · · αik .

By the fundamental theorem on symmetric polynomials (see for example [55, §10-
11]), if F is a polynomial in K[X1, . . . ,Xd] which is invariant by the action of the
symmetric group Sd by permuting the variables, then there exists a polynomial
G ∈ K[T1, . . . ,Td] such that

F(α1, . . . , αd) = G(λ1, . . . , λd).

In particular, one has F(α1, . . . , αd) ∈ K and hence the function

(ω ∈ ΩK ) 7−→ |F(α1, . . . , αd)|ω

is AK -measurable. For any N ∈ N, N > 1, the sum
∑d

i=1 α
N
i can be written as a

symmetric polynomial evaluated at (α1, . . . , αd), thus the function

(ω ∈ ΩK ) 7−→

���� d∑
i=1

αN
i

����
ω

is AK -measurable. Combining this observation with the equality (3.5), we obtain
that the function

(ω ∈ ΩK ) 7−→ max
τ∈AutK (Kac)

|τ(c)|ω = max
i∈{1,...,d}

|αi |ω

is AK -measurable. �

We now continue with the proof of the statement that the function IK′/K is AK -
measurable. Let {γ1, . . . , γn} be the orbit of a under the action of AutK (Kac). For
any ω ∈ ΩK , let (s1(ω), . . . , sn(ω)) be the array (|γ1 |ω, . . . , |γn |ω) sorted in the
decreasing order. Let k be an arbitrary element of {1, . . . ,n}. For any ω ∈ ΩK , one
has

s1(ω) · · · sk(ω) = max
(i1 ,...,ik )∈{1,...,n}k

i1<...<ik

max
τ∈AutK (Kac)

|τ(γi1 · · · γik )|ω .

By Lemma 3.3.5, we obtain that the function s1 · · · sk is AK -measurable. Therefore
all the functions s1, . . . , sn onΩK areAK -measurable. In particular, if fa : ΩK′ → R
is the function sending x ∈ ΩK′ to |a|x , where a is the primitive element of the finite
separable extension K ′/K fixed in the beginning of the step, then for any ω ∈ ΩK

one has (we refer the readers to [117, page 163] for the second equality)
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IK′/K ( fa)

)
(ω) =

∑
x∈MK′ ,ω

[K ′
x : Kω]

[K ′ : K]
fa(x) =

1
n

n∑
i=1

|γi |ω =
1
n

n∑
i=1

si(ω),

which implies that IK′/K ( fa) is AK -measurable.
Step 2: We then prove that, for any element b ∈ K ′, the function IK′/K ( fb) onΩK

is AK -measurable, where fb denotes the function on ΩK′ sending x ∈ ΩK′ to |b|x .
We consider the sub-extension K(b)/K of K ′/K . It is a finite and separable

extension of K and b is a primitive element. Let g be the function on ΩK(b) sending
y ∈ ΩK(b) to |b|y . One has

fb = g ◦ πK′/K(b),

where the map πK′/K(b) : ΩK′ → ΩK(b) is defined as in Proposition 3.3.2. By (3.4),
one obtains

IK′/K ( fb) = IK(b)/K (g).

By the result obtained in Step 1, the function IK(b)/K (g) on ΩK is AK -measurable.
This proves the measurability of the function IK′/K ( fb).

Step 3: We are now able to apply the monotone class theorem to prove the
announced measurability property.

Let H be the set of all non-negative and bounded functions f on ΩK′ such that
the function IK′/K ( f ) on ΩK is AK -measurable. Note that the constant function
1 on ΩK′ belongs to H since IK′/K (1) coincides with the constant function 1 on
ΩK . If f and g are two functions in H such that f > g, then f − g ∈ H since
IK′/K ( f − g) = IK′/K ( f ) − IK′/K (g) is AK -measurable. Moreover, Proposition 3.3.1
shows that, if f and g are two functions in H , and ϕ and ψ are two non-negative and
bounded AK -measurable functions on ΩK , ϕ̃ = ϕ ◦ πK′/K and ψ̃ = ψ ◦ πK′/K , then
the function ϕ̃ f + ψ̃g belongs to H since

IK′/K (ϕ̃ f + ψ̃g) = ϕIK′/K ( f ) + ψIK′/K (g)

is AK -measurable. Finally, the operator IK′/K preserves pointwise limit. Therefore,
if { fn}n∈N is a uniformly bounded sequence of functions in H which converges
pointwisely to a function f , then one has f ∈ H . These properties show that H is a
λ-family (see Definition A.1.1) on ΩK′ .

Let C be the set of all non-negative and bounded functions on ΩK′ which can
be written in the form fb ϕ̃, where b is an element of K ′, ϕ is a non-negative and
bounded AK -measurable function on ΩK , and ϕ̃ = ϕ ◦ πK′/K . Note that if b1 and
b2 are two elements of K ′ then one has

fb1b2 = fb1 fb2 .

Therefore the family C is stable by multiplication. By the result obtained in Step 2
and Proposition 3.3.1, we obtain that C ⊆ H . The monotone class theorem (Theorem
A.1.3) then implies that the family H contains all non-negative and bounded σ(C)-
measurable functions. Finally, any non-negative σ(C)-measurable function on ΩK′

can be written as the limit of an increasing sequence of non-negative and bounded
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σ(C)-measurable functions, and any real-valued σ(C)-measurable function is the
difference of two non-negative σ(C)-measurable functions. Therefore, for any real-
valued σ(C)-measurable function f , the function IK′/K ( f ) is AK -measurable.

Step 4: It remains to prove that the σ-algebras σ(C) and AK′ are the same.
Clearly one has σ(C) ⊆ AK′ since any function in C is AK′-measurable. To prove
the equality it suffices to show that any function of the form fb with b ∈ K ′ is
σ(C)-measurable. Let

Tm + µ1Tm−1 + · · · + µm ∈ K[T]

be the minimal polynomial of b over K . Then for any ω ∈ ΩK and any x ∈ MK′,ω ,
one has

|b|x 6 m · max{1, |µ1 |ω, . . . , |µm |ω} (3.6)

since otherwise one should have

1 >
|µ1 |ω
|b|x

+ · · · +
|µm |ω
|b|x

>
m∑
i=1

|µi |ω

|b|ix
,

which contradicts the equality

bm = −µ1bm−1 − · · · − µm.

For any N ∈ N, let AN be the set

{ω ∈ ΩK : max{|µ1 |ω, . . . , |µm |ω} 6 N} ∈ AK .

The relation (3.6) shows that the function fb · (1lAN ◦ πK′/K ) is non-negative and
bounded. Hence it belongs to C. Finally, since

fb = lim
N→+∞

fb · (1lAN ◦ πK′/K ),

we obtain that the function fb is σ(C)-measurable. The theorem is thus proved. �

3.3.3 Construction of the measure

In this subsection, we describe the construction of a suitable measure on the measur-
able space (ΩK′,AK′) to form an adelic structure on K ′ and prove some compatibility
results.

Definition 3.3.6 We denote by νK′ : AK′ → R+∪{+∞} the map defined as follows:

∀ A ∈ AK′, νK′(A) :=
∫
ΩK

IK′/K (1lA) dνK .

By Theorem 3.3.4, this map is well defined.



3.3 Finite separable extensions 185

Theorem 3.3.7 (1) The map νK′ is a measure on the measurable space (ΩK′,AK′)

such that, for any non-negative AK′-measurable function f on ΩK′ one has∫
ΩK′

f dνK′ =

∫
ΩK

IK′/K ( f ) dνK . (3.7)

(2) A real-valued AK′-measurable function f on ΩK′ is integrable with respect
to νK′ if and only if IK′/K (| f |) is integrable with respect to νK . Moreover, the
equality (3.7) also holds for all real-valued A ′

K -measurable functions on ΩK′

which are integrable with respect to νK′ .
(3) The direct image of the measure νK′ by the measurable map πK′/K coincides

with νK , namely for any real-valued AK -measurable function ϕ on ΩK which
is non-negative (resp. integrable with respect to νK ), the function ϕ ◦ πK′/K is
non-negative (resp. integrable with respect to νK′), and one has∫

ΩK′

(ϕ ◦ πK′/K ) dνK′ =

∫
ΩK

ϕ dνK . (3.8)

(4) S′ = (K ′, (ΩK′,AK′, νK′), φK′) is an adelic curve.
(5) For b ∈ K ′ \ {0}, one has

[K ′ : K]

∫
ΩK′

ln |b|x dνK′ =

∫
ΩK

ln |NK′/K (b)|ω dνK , (3.9)

where NK′/K (b) is the norm of b with respect to the extension K ′/K . In particular,
if S is proper, then S′ is also proper.

Proof (1) The operator IK′/K preserves pointwise limits. Therefore, if {An}n∈N is a
countable family of disjoint sets in AK′ and if A =

⋃
n∈N An, one has

νK′(A) =
∫
ΩK

IK′/K (1lA) dνK =
∫
ΩK

∑
n∈N

IK′/K (1lAn ) dνK =
∑
n∈N

νK′(An),

where the last equality comes from the monotone convergence theorem.
The set of all non-negative and bounded AK′-measurable functions f which

verify the equality (3.7) forms a λ-family. Moreover, this λ-family contains the set
of all functions of the form 1lA (A ∈ AK′), which is stable by multiplication. By
Theorem A.1.3, we obtain that the equality (3.7) actually holds for all non-negative
and bounded AK′-measurable functions, and hence holds for general non-negative
AK′-measurable functions by the monotone convergence theorem again.

(2) The equality (3.7) clearly implies that a real-valued AK′-measurable function
f on ΩK′ is integrable with respect to νK′ if and only if IK′/K (| f |) is integrable
with respect to νK . Moreover, if f is a real-valued AK′-measurable function on ΩK′

which is integrable with respect to νK′ , then the equality (3.7) applied to max( f ,0)
and −min( f ,0) shows that
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ΩK′

max( f ,0) dνK′ =

∫
ΩK

IK′/K (max( f ,0)) dνK

and ∫
ΩK′

(−min( f ,0)) dνK′ =

∫
ΩK

IK′/K (−min( f ,0)) dνK .

Since these numbers are finite, the difference of the above two equalities leads to∫
ΩK′

f dνK′ =

∫
ΩK

IK′/K ( f ) dνK .

(3) By the two assertions proved above, one has∫
ΩK′

(ϕ ◦ πK′/K ) dνK′ =

∫
ΩK

IK′/K (ϕ ◦ πK′/K ) dνK .

By Corollary 1.2.33, one has

IK′/K (ϕ ◦ πK′/K ) = ϕ.

Thus we obtain (3.8).
(4) Let b be an element in K ′\{0} and fb be the function onΩK′ sending x ∈ ΩK′

to |b|x . Let λ = NK′/K (b) be the norm of b with respect to the extension K ′/K . For
any ω ∈ ΩK one has (see [117] Chapter II, Corollary 8.4 and page 161)∏

x∈MK′ ,ω

|b|[K
′
x :Kω ]

x = |λ |ω,

which implies that

IK/K′(ln fb) =
1

[K ′ : K]
ln fλ, (3.10)

where fλ is the function on ΩK which sends ω ∈ ΩK to |λ |ω .
Let ΩK ,∞ be the set of all ω ∈ ΩK such that |·|ω is an Archimedean absolute

value. By Proposition 3.1.1, this is an element of AK . Similarly, let ΩK′,∞ be
the set of all x ∈ ΩK′ such that the absolute value |·|x is Archimedean. One has
ΩK′,∞ = π

−1
K′/K

(ΩK ,∞). We will prove the integrability of ln fb on ΩK′ \ ΩK′,∞ and
on ΩK′,∞, respectively. For this purpose we use a refinement of the method in the
Step 4 of the proof of Theorem 3.3.4.

Let
Tm + µ1Tm−1 + · · · + µm ∈ K[T]

be the minimal polynomial of b over K . Then for any ω ∈ ΩK \ ΩK ,∞ and any
x ∈ MK′,ω , one has

|b|x 6 max{1, |µ1 |ω, . . . , |µm |ω}.

Otherwise one should have
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1 > max
i∈{1,...,m}

|µi |ω
|b|x

> max
i∈{1,...,m}

|µi |ω

|b|ix
.

However, the equality
bm = −µ1bm−1 − · · · − µm.

implies that
|b|mx 6 max

i∈{1,...,m}
|µi |ω · |b|m−i

x ,

which leads to a contradiction. Therefore, if we denote by g the function

ω 7−→ max{0, ln |µ1 |ω, . . . ln |µm |ω} (3.11)

on ΩK , then ln fb is bounded from above by g ◦ πK′/K on ΩK \ ΩK ,∞. Moreover,
by the definition of adelic curves, the functions ω 7→ ln |µi |ω is integrable for any
i ∈ {1, . . . ,m}, hence also is the function g. The function

(g ◦ πK′/K − ln fb)1lΩK′\ΩK′ ,∞

is non-negative, and

IK′/K ((g ◦ πK′/K − ln fb)1lΩK′\ΩK′ ,∞
)

=
(
IK′/K (g ◦ πK′/K ) − IK′/K (ln fb)

)
1lΩK \ΩK ,∞

=
(
g −

1
[K ′ : K]

ln fλ
)
1lΩK \ΩK ,∞

is an integrable function with respect to νK , where the first equality comes from
Proposition 3.3.1 and the fact that IK′/K is a linear operator, and the second equal-
ity comes from Corollary 1.2.33 and (3.10). By the second assertion of the the-
orem, the function (g ◦ πK′/K − ln fb)1lΩK′\ΩK′ ,∞

is integrable, and hence also is
(ln fb)1lΩK′\ΩK′ ,∞

.
We now consider the Archimedean case. We assume that Ω∞ is non-empty. Then

the characteristic of the field K is zero. In particular, it contains Q as its prime field.
Moreover, for any x ∈ MK′,ω , one has

|b|x 6 mκ(ω) · max{1, |µ1 |ω, . . . , |µm |ω}, (3.12)

where κ(ω) is the exponent of |·|ω as a power of the usual absolute value on Kω = R
or C. Otherwise one should have

1 >
|µ1 |

1/κ(ω)
ω

|b|1/κ(ω)
x

+ · · · +
|µm |

1/κ(ω)
ω

|b|1/κ(ω)
x

>
m∑
i=1

|µi |
1/κ(ω)
ω

|b|i/κ(ω)
x

.

However, the equality
bm = −µ1bm−1 − · · · − µm.

implies that
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|b|m/κ(ω)
x 6 |µ1 |

1/κ(ω)
ω |b|(m−1)/κ(ω)

x + · · · + |µm |
1/κ(ω)
ω

since |·|
1/κ(ω)
ω and |·|

1/κ(ω)
x are absolute values on K ′ and K respectively (which

extend the usual absolute value on Q). Therefore, the function ln fb is bounded from
above by (ln(m)κ+g)◦πK′/K onΩK ,∞, where g is the function defined in (3.11), and
we have extended the function κ onΩK by taking the value 0 onΩK \ΩK ,∞. Since the
function ln(m)κ + g is integrable, by the same argument as in the non-Archimedean
case, we obtain the integrability of the function ln fb on ΩK′,∞.

(5) follows from (3.7) and (3.10).

3.4 General algebraic extensions

Let S = (K, (ΩK ,AK , νK ), φK ) be an adelic curve. In this section, we consider the
construction of adelic curves from S whose underlying field are general algebraic
extensions of K .

3.4.1 Finite extension

Let K ′′ be a finite extension of K and K ′ be the separable closure of K in the field
K ′′. By the result of the previous section, one can construct an adelic structure on
the field K ′ which we denote by ((ΩK′,AK′, νK′), φK′).

Note that K ′′ is a purely inseparable extension of K ′ (see [29] Chapter V, §7, no.7,
Proposition 13.a). If q is the degree of the extension K ′′/K ′, then for any α ∈ K ′′

one has αq ∈ K ′ (see [29] Chapter V, §5, no.1, Proposition 1). In particular, any
absolute value |·| on K ′ extends in a unique way to K ′′ and one has

∀α ∈ K ′′, |α | = |αq |1/q, (3.13)

where |α | denotes the extended absolute value on K ′′ evaluated on α, and |αq |

denotes the initial absolute value on K ′ evaluated on αq . In other words, the sets
MK′ and MK′′ are in canonical bijection. This observation permits to construct, for
any α ∈ K ′′ \ {0} the function

ΩK′ → R, (x ∈ ΩK′) 7→ ln |α |x

This function is clearly AK′-measurable since one has

∀ x ∈ ΩK′, ln |α |x =
1
q

ln |αq |x .

Moreover, it is also integrable with respect to νK′ and one has
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ΩK′

ln |α |x νK′(dx) =
1
q

∫
ΩK′

ln |αq |x νK′(dx). (3.14)

This fact shows that
(K ′′, (ΩK′,AK′, νK′), φK′)

is actually an adelic curve, where we identify MK′ with MK′′ . Note that the relation
(3.13) shows that AK′ is also the smallest σ-algebra onΩK′ which makes the canon-
ical projection map ΩK′ → ΩK and the functions (x ∈ ΩK′) 7→ |α |x measurable,
where α ∈ K ′′.

Definition 3.4.1 We denote by S ⊗K K ′′ the adelic curve

(K ′′, (ΩK′,AK′, νK′), φK′)

constructed as above, called the finite extension of S induced by the extension
of fields K ′′/K . We also use the expression πK′′/K to denote the projection map
πK′/K : ΩK′ → ΩK described in the previous section. Similarly, we also use the
expression IK′′/K to denote the operator IK′/K . Note that Ω′

K identifies also with the
fibre product ofΩK and MK′′ over MK in the category of sets since MK′ and MK′′ are
the same. Similarly, φK′ identifies with the projection map fromΩK′ = ΩK×MK MK′′

to MK′′ = MK′ . Note that if S is proper, then S ⊗K K ′′ is also proper (cf. (3.14) and
Theorem 3.3.7, (5)).

In the following, we will prove that the above construction of adelic curves is
compatible with successive finite extensions. The lemma below is important for the
proof.

Lemma 3.4.2 Let L/K be a finite extension of fields, |·|v be an absolute value on K ,
and |·|w be an absolute value on L extending |·|v . Let Ksc be the separable closure
of K in L. Then the completion Ksc

w of Ksc with respect to the absolute value |·|w
identifies with the separable closure of Kv in Lw .

Proof The case where |·|v is Archimedean is trivial since the characteristic of the
field K is then zero and hence Ksc = L. In the following, we assume that |·|v is non-
Archimedean. We first prove that the extension Ksc

w /Kv is separable. Let α ∈ Ksc

be a primitive element (see [29] Chapter V, §7, no.4 Theorem 1 for its existence)
of the separable extension Ksc/K and let F be its minimal polynomial. Assume that
F is decomposed in Ksc

v [T] into the product of distinct irreducible polynomials as
F = F1 · · · Fm. Since F is a separable polynomial, the same are the polynomials
F1, . . . ,Fm. For any extension |·|w of the absolute value |·|v to Ksc, there exists an
index i ∈ {1, . . . ,m} such that Ksc

w � Kv[T]/(Fi) (see [117] Chapter II, Propositions
8.2 and 8.3). Therefore the extension Ksc

w /Kv is separable.
In the following, we prove that the extension Lw/Ksc

w is purely inseparable. Note
that Lw = Kv(L) = Ksc

w (L). Since the extension L/Ksc is purely inseparable, we
obtain that the extension Lw/Ksc

w is also purely inseparable since it is generated by
purely inseparable elements (see [29] Chapter V, §7, no.2, the corollary of Propo-
sition 2). By [29] Chapter V, §7, no.7, Proposition 13.c, we obtain that Ksc

w is the
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separable closure of Kv in Lw since Ksc
w /Kv is separable and Lw/Ksc

w is purely
inseparable. �

Remark 3.4.3 Let K ′′/K be a finite extension of fields and denote by

(K ′′, (Ω′′,A ′′, ν′′), φ′′)

the adelic curve S ⊗K K ′′. The above lemma allows to write the operator IK′′/K in
the following form: for any real-valued A ′′-measurable function f on Ω′′

∀ω ∈ ΩK , (IK′′/K ( f ))(ω) =
∑

x∈MK′′ ,ω

[K ′′
x : Kω]s

[K ′′ : K]s
f (x),

where for any finite extension L2/L1 of fields, the expression [L2 : L1]s denotes the
separable degree of the extension L2/L1.

Proposition 3.4.4 Let K2/K1/K be successive finite extensions of fields. If

((ΩK ,AK , νK ), φK )

is an adelic structure on K and S is the corresponding adelic curve, then one has

(S ⊗K K1) ⊗K1 K2 = S ⊗K K2.

Moreover, one has

πK1/K ◦ πK2/K1 = πK2/K , IK1/K ◦ IK2/K1 = IK2/K , (3.15)

where we have used the conventions of notation described in Definition 3.4.1.

Proof We denote by (K1, (Ω1,A1, ν1), φ1) and (K2, (Ω2,A2, ν2), φ2) the adelic curves
S ⊗K K1 and S ⊗K K2 respectively. First of all, set-theoretically one has

Ω2 =
∐
ω∈ΩK

MK2 ,ω =
∐
ω∈ΩK

∐
x∈MK1 ,ω

MK2 ,x =
∐
x∈Ω1

MK2 ,x,

and hence
πK2/K = πK1/K ◦ πK2/K1

Moreover, if f is a real-valued function on Ω2, by Lemma 3.4.2 and Remark 3.4.3,
for any ω ∈ ΩK one has

(IK2/K ( f ))(ω) =
∑

y∈MK2 ,ω

[K2,y : Kω]s
[K2 : K]s

f (y)

=
∑

x∈MK1 ,ω

[K1,x : Kω]s
[K1 : K]s

∑
y∈MK2 ,x

[K2,y : K1,x]s

[K2 : K1]s
f (y) = IK1/K (IK2/K1 ( f ))(ω),
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where in the second equality we have used the multiplicativity of the separable
degree (see [29] Chapter V, §6, no.5).

We then show that the map πK2/K1 is A2-measurable. Since the σ-algebra A1 is
generated by πK1/K and functions of the form fa : (x ∈ Ω1) 7→ |a|x with a ∈ K1, it
suffices to prove that the maps πK1/K ◦ πK2/K1 and fa ◦ πK2/K1 are A2-measurable.
We have shown that πK1/K ◦ πK2/K1 = πK2/K , which is clearly A2-measurable by
the definition of the adelic curve S ⊗K K2. Moreover, if a is an element in K1,
then the map fa ◦ πK2/K1 sends y ∈ Ω2 to |a|y . Hence it is also A2-measurable. In
particular, the σ-algebra A2 contains the σ-algebra A ′

2 in the adelic structure of
(S ⊗K K1) ⊗K1 K2, namely the smallest σ-algebra which makes the map πK2/K1 and
all functions of the form (y ∈ ΩK ) 7→ |α |y measurable, where α runs over K2.

From the equality πK1/K ◦ πK2/K1 = πK2/K we also obtain that π−1
K2/K

(AK ) is
contained in π−1

K2/K1
(A1), and thus is contained inA ′

2 since πK2/K1 isA ′
2-measurable.

Since A2 is the smallest σ-algebra on Ω2 which makes the map πK2/K and all
functions of the form (y ∈ ΩK ) 7→ |α |y measurable, we obtain that A2 ⊆ A ′

2.
Combining with the result obtained above, we obtain that the σ-algebras A2 and A ′

2
coincide.

Finally, the relation IK1/K ◦ IK2/K1 = IK2/K shows that the measure ν2 coincides
with the measure in the adelic structure of the adelic curve (S ⊗K K1) ⊗K1 K2. The
proposition is thus proved. �

3.4.2 General algebraic extensions

We now consider an algebraic extension L of K which is not necessarily finite. Let
EL/K be the set of all finite extensions of K which are contained in L. This set is
ordered by the relation of inclusion. Moreover, it is also filtered in the sense that, if
K1 and K2 are two finite extensions of K which are contained in L, then there exists
a finite extension K3 ∈ EL/K such that K3 ⊇ K1 ∪ K2.

By the result obtained in the previous subsection, for each element K ′′ in EL/K , we
can equipped K ′′ with a natural adelic structure induced from the adelic structure of
S, as described in Definition 3.4.1. We denote by ((ΩK′′,AK′′, νK′′), φK′′) this adelic
structure. Moreover, Proposition 3.4.4 shows that, for successive finite extensions
K2/K1/K of the field K which are contained in L, there exist a natural projection

πK2/K1 : (ΩK2,AK2 ) −→ (ΩK1,AK1 )

together with a disintegration operator IK2/K1 from the vector space of all real-
valued AK2 -measurable functions onΩK2 to that of all real-valued AK1 -measurable
functions on ΩK1 , which sends νK2 -integrable functions to νK1 -integrable functions.
These data actually define a functor from a filtered ordered set to the category of
measure spaces. Intuitively one can define an adelic structure on L whose measure
space part is the projective limit of this functor. However, the projective limite in the
category of measure spaces does not exist in general (the product of infinitely many
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measures need not make sense). Therefore more careful treatment is needed for our
setting of projective system of finite extensions of adelic curves. Our strategy is to
construct the fibres as projective limits of probability spaces, which always exist.

For anyω ∈ ΩK , let ML,ω be the set of all absolute values on L which extend |·|ω .
Let ΩL be the disjoint union of all ML,ω with ω runs through ΩK . In other words,
ΩL is the fibre product of ΩK and ML over MK . The inclusion maps ML,ω → ML

define a map from ΩL to ML which we denote by φL . Moreover, for any extension
K ′′ ∈ EL/K and any ω ∈ ΩK , one has a natural map from ML,ω to MK′′,ω defined by
restriction of absolute values. These maps induce a map from ΩL to ΩK′′ which we
denote by πL/K′′ . If x is an element of ΩK′′ , we denote by ML,x the set of absolute
values on L which extends |·|x . It identifies with the inverse image of {x} by πL/K′′ .
If K1 ⊆ K2 are extensions in EL/K , then one has

πL/K1 = πK2/K1 ◦ πL/K2 . (3.16)

Proposition 3.4.5 For any K ′′ ∈ EL/K , the map πL/K′′ : ΩL → ΩK′′ is surjective.

Proof Let x be an element in ΩK′′ . The absolute value |·|ω extends in a unique way
to the algebraic closure (K ′′

x )
ac of K ′′

x (see [117] Chapter II, Theorem 4.8). Therefore,
if we choose an embedding of L into (K ′′

x )
ac, then we obtain an absolute value on L

which extends |·|x . �

Similarly to [65, Lemma 2.1], the set ΩL described above gives an explicit
construction of the projective limit of the projective system {ΩK′′}K′′∈EL/K

in the
category of sets, where {πL/K′′}K′′∈EL/K

are universal maps. In fact, any absolute
value on L is uniquely determined by its restrictions on the subfields in EL/K .
We equip ΩL with the σ-algebra AL generated by the maps πL/K′′ (namely the
smallest σ-algebra which makes all maps πL/K′′ measurable) where K ′′ runs over
EL/K . Thus (ΩL,AL) identifies with the projective limit of the projective system{
(ΩK′′,AK′′)

}
K′′∈EL/K

in the category of mesurable spaces.
Let ω be an element in ΩK . We equip ML,ω with the smallest σ-algebra AL,ω

such that the restriction of πL/K′′ to ML,ω is measurable for any K ′′ ∈ EL/K , where
we consider the discrete σ-algebra on MK′′,ω = π

−1
K′′/K

({ω}). Let VL,ω be the set of
all real-valued functions on ΩL which can be written in the form f ◦ (πL/K′′ |ML ,ω ),
where K ′′ is an element of EL/K , and f is a function on MK′′,ω . Let

IL/K ,ω : VL,ω −→ R

be the map which sends any function of the form f ◦ (πL/K′′ |ML ,ω ) to the integral∫
MK′′ ,ω

f dPK′,ω, (3.17)

where K ′ is the separable closure of K in K ′′, and PK′,ω is the probability measure
on MK′,ω defined in (3.2). Similarly to (3.15), the fibre integral is compatible with
successive finite extensions of the field K and the map IL/K ,ω is well defined since
the value of the integral (3.17) does not depend on the choice of the field K ′′ upon
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which we write the function in VL,ω as the composition of a function on MK′′,ω with
πL/K′′ |ML ,ω .

Proposition 3.4.6 The set VL,ω forms an algebra overRwith respect to the composi-
tion laws of addition and multiplication of functions, and the map IL/K ,ω : VL,ω → R
is an R-linear operator. Moreover, it induces a probability measure on the measur-
able space (ML,ω,AL,ω).

Proof The first assertion comes from the fact that the set EL/K is filtered, which
implies that any finite collection of functions in VL,ω descend on the same space
MK′′,ω , where K ′′ ∈ EL/K . In particular, the family D of subsets A ⊆ ML,ω such that
1lA ∈ VL,ω is an algebra (of sets), which generates AL,ω as a σ-algebra. Moreover,
the map PL,ω : D → R+ which sends A ∈ D to IL/K ,ω(1lA) is an additive functional.
Clearly it sends ML,ω to 1.

The σ-algebra AL,ω is actually the Borel algebra of the projective limit topology
on ML,ω (namely the most coarse topology on ML,ω which makes all maps πL/K′′

continuous, where K ′′ ∈ EL/K ). This topology also identifies with the induced
topology on ML,ω viewed as a subset of

∏
F ∈EL/K

MF ,ω (equipped with the product
topology), where on each set MF ,ω we consider the discrete topology. Note that
ML,ω is actually a closed subset of this product space since it is the intersection of
closed subsets of the form

WK′′ :=
{
(xF )F ∈EL/K

∈
∏

F ∈EL/K

MF ,ω : πK′′/F (xK′′) = xF for F ⊆ K ′′

}
.

Therefore, by Tychonoff’s theorem, we obtain that ML,ω is actually a compact
topological space. Moreover, any set in D is open and closed since it is the inverse
image of a discrete set by a continuous map. Therefore, the sets in D are open and
compact. As a consequence, if {An}n∈N is a sequence of disjoint sets in D whose
union also lies in D, then for sufficiently large n one has An = �. Hence the function
PL,ω : D → R+ is actually σ-additive. By Carathéodory’s extension theorem, the
function PL,ω extends to a Borel probability measure on (ML,ω,AL,ω) such that

IL/K ,ω( f ) =
∫
ML ,ω

f dPL,ω .

The proposition is thus proved. �

Remark 3.4.7 Let VL be the vector space of all real-valued functions f onΩL which
can be written as g ◦ πL/K′′ , where K ′′/K is a finite extension which is contained in
L. Then the above construction leads to a linear operator IL/K from VL to the vector
space of all real-valued functions on Ω, sending f ∈ VL to the function

(ω ∈ Ω) 7−→ IL/K ,ω( f |ML ,ω ).

Clearly, if g is a real-valued function on Ω, then IL/K (g ◦ πL/K ) = g.
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The above proposition allows to define the fibre integrals for non-negative AL-
measurable functions on ΩL .

Proposition 3.4.8 Let f be a non-negative AL-measurable function on ΩL . For
any ω ∈ ΩK , the restriction of f to ML,ω is AL,ω-measurable. Moreover, the
map IL/K ( f ) from ΩK to [0,+∞] which sends ω ∈ ΩK to

∫
ML ,ω

f (x)PL,ω(dx) is
AK -measurable.

Proof Let H be the set of all bounded non-negative functions f on ΩK such that
f |ML ,ω is AL,ω-measurable for any ω ∈ ΩK and that the map

(ω ∈ ΩK ) 7−→

∫
ML ,ω

f (x)PL,ω(dx)

is AK -measurable. Then H is a λ-family of non-negative functions on ΩL (see
Definition A.1.1). Moreover, the set H contains the subset C of all bounded non-
negative functions of the form g ◦ πL/K′′ , where K ′′ is an element in EL/K and g is
an AK′′-measurable function on ΩK′′ . In fact, for any ω ∈ ΩK , one has∫

ML ,ω

g(πL/K′′(x))PL,ω(dx) = IK′′/K (g)(ω).

SinceC is stable under multiplication, by the monotone class theorem A.1.3 we obtain
that the family H actually contains all non-negative, bounded and σ(C)-measurable
functions. By definition, AL is the σ-algebra generated by the maps πL/K′′ with
K ′′ ∈ EL/K . Therefore one has AL = σ(C). Thus we obtain the result of the
proposition for bounded non-negative AL-measurable functions. For general non-
negative AL-measurable function f , we can apply the assertion of the proposition
to the functions {min( f ,n)}n∈N which form an increasing sequence converging to f .
Passing to limit when n goes to the infinity, we obtain the result for f . �

The above proposition allows to construct a measure νL on the measurable space
(ΩL,AL) such that, for any subset A of AL , one has

νL(A) =
∫
ΩK

( ∫
ML ,ω

1lA(x)PL,ω(dx)
)
νK (dω).

For any non-negative AL-measurable function f on ΩL , one has∫
ΩL

f (x) νL(dx) =
∫
ΩK

( ∫
ML ,ω

f (x)PL,ω(dx)
)
νK (dω). (3.18)

We denote by IL/K ( f ) the map from ΩK to [0,+∞] which sends ω ∈ ΩK to∫
ML ,ω

f (x)PL,ω(dx). More generally, for any AL-measurable function f such that
IL/K (| f |) is a real-valued function, we define IL/K ( f ) as the real-valued function

IL/K (max( f ,0)) − IL/K (−min( f ,0)).
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Note that, if f is of the form g◦πL/K′′ where K ′′ ∈ EL/K and g is anAK′′-measurable
function, then IL/K ( f ) is always well defined, and one has

IL/K (g ◦ πL/K′′) = IK′′/K (g). (3.19)

With this notation, the equality (3.18) can also be written as∫
ΩL

f dνL =
∫
ΩK

IL/K ( f ) dνK . (3.20)

Thus we obtain the following result.

Proposition 3.4.9 An AL-measurable function f is νL-integrable if and only if
IL/K (| f |) is νK -integrable. Moreover, IL/K defines a continuous linear operator
from L 1(ΩL,AL, νL) to L 1(ΩK ,AK , νK ), and the equality (3.20) also holds for
νL-integrable functions.

Note that the relations (3.19) and (3.20) also imply that, if g is a function in
L 1(ΩK ,AK , νK ), then g ◦ πL/K belongs to L 1(ΩL,AL, νL), and one has∫

ΩL

(g ◦ πL/K ) dνL =
∫
ΩK

g dνK . (3.21)

The following proposition shows that (L, (ΩL,AL, νL), φL) forms an adelic curve.

Proposition 3.4.10 For any non-zero element a ∈ L, the function

(z ∈ ΩL) 7−→ ln |a|z

is AL-measurable. Moreover, if S = (K, (ΩK ,AK , νK ), φK ) is proper, then

(L, (ΩL,AL, νL), φL)

is also proper.

Proof Denote by g the function on ΩL such that g(z) = ln |a|z . We choose a finite
extension K ′′ ∈ EL/K which contains a. Let f : ΩK′′ → R be the function which
sends x ∈ ΩK′′ to ln |a|x . Then f is an AK′′-measurable function on ΩK′′ . Since
the function g identifies with the composition f ◦ πL/K′′ , we obtain that g is AL-
measurable.

We assume that S is proper. For any ω ∈ ΩK , one has

IL/K (g)(ω) = IL/K ,ω(g) = IK′′/K ( f )(ω).

Therefore we obtain ∫
ΩL

g dνL =
∫
ΩK

IK′′/K ( f ) dνK = 0,

where the second equality comes from Theorem 3.3.7, (1) and (5). �
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Definition 3.4.11 Let S = (K, (ΩK ,AK , νK ), φK ) be an adelic curve and L/K be
an algebraic extension. The adelic curve (L, (ΩL,AL, νL), φL) is called an algebraic
extension of S, denoted by S ⊗K L.

The following result, which is similar to Proposition 3.4.4, shows the compatibility
property of the algebraic extensions of adelic curves.

Theorem 3.4.12 Let S = (K, (ΩK ,AK , νK ), φK ) be an adelic curve and L2/L1/K be
successive algebraic extensions of fields. Then one has

(S ⊗K L1) ⊗L1 L2 = S ⊗K L2. (3.22)

Moreover, the following relations hold

πL1/K ◦ πL2/L1 = πL2/K , IL1/K ◦ IL2/L1 = IL2/K . (3.23)

Proof Let (L1, (Ω1,A1, ν1), φ1) and (L2, (Ω2,A2, ν2), φ2) be the adelic curves S⊗K L1
and S ⊗K L2 respectively. First of all, set-theoretically one has

Ω2 =
∐
ω∈ΩK

ML2 ,ω =
∐
ω∈ΩK

∐
x∈ML1 ,ω

ML2 ,x =
∐
x∈Ω1

ML2 ,x,

and hence
πL2/K = πL1/K ◦ πL2/L1 .

Moreover, for any extension K1 ∈ EL1/K the map πL2/K1 isA2-measurable. Therefore
πL2/L1 : Ω2 → Ω1 is an A2-measurable map since the σ-algebra A1 is generated
by the maps πL1/K1 with K1 ∈ EL1/K .

We now proceed with the proof of the equalities (3.22) and (3.23) with the
supplementary assumption that the extension L2/L1 is finite. We first show that the
σ-algebra A2 coincides with that in the adelic structure of (S ⊗K L1) ⊗ L2, namely
the smallest σ-algebra A ′

2 on Ω2 such that πL2/L1 and all functions of the form
(y ∈ Ω2) 7→ |a|y are A ′

2-measurable, where a ∈ L2. We have already shown that the
map πL2/L1 is measurable. Hence by proposition 3.4.10, we obtain that A ′

2 ⊆ A2.
Conversely, for any extension K1 ∈ EL1/K one has

πL2/K1 = πL1/K1 ◦ πL2/L1,

and hence

π−1
L2/K1

(AK1 ) = π
−1
L2/L1

(π−1
L1/K1

(AK1 )) ⊆ π−1
L2/L1

(A1) ⊆ A ′
2.

If K2 is an extension in EL2/K , then K1 := K2 ∩ L1 ∈ EL1/K . Moreover, the σ-algebra
AK2 is generated by πK2/K1 and the functions of the form x 7→ |a|x on ΩK2 , where
a ∈ K2. Note that πL2/K1 = πL1/K1 ◦πL2/L1 is A ′

2-measurable, and for any a ∈ K2, the
composition of the function x 7→ |a|x on ΩK2 with πL2/K2 , which identifies with the
function y 7→ |a|y on ΩL2 , is also A ′

2-measurable, we obtain that the map πL2/K2 is
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actually A ′
2-measurable. Since A2 is the smallest σ-algebra which makes all πL2/K2

measurable, where K2 ∈ EL2/K , we obtain A2 ⊆ A ′
2. Therefore one has A2 = A ′

2.
It remains to establish the relation IL1/K (IL2/L1 ( f )) = IL2/K ( f ) for any non-

negative A2-measurable function on Ω2. By induction it suffices to treat the case
where [L2 : L1] is a prime number. Moreover, similarly to the proof of Proposition
3.4.8, by using the monotone class theorem, we only need to verify the equality
IL1/K (IL2/L1 ( f )) = IL2/K ( f ) for functions f of the form g◦πL2/K2 , where K2 ∈ EL2/K

and g is a non-negative AK2 -measurable function on ΩK2 . If K2 belongs to EL1/K ,
one has IL2/L1 ( f ) = g ◦ πL1/K2 , and therefore

IL1/K (IL2/L1 ( f )) = IK2/K (g) = IL2/K ( f ),

where the second equality comes from (3.19). Otherwise one has [K2 : K1] = [L2 :
L1] since [K2 : K1] divides [L2 : L1] which is a prime number, where K1 denotes
the intersection of K2 with L1. Moreover, there exists an element a ∈ K2 such that
K2 = K1(a) and L2 = L1(a). If a is totally inseparable over K1, then it is also totally
inseparable over L1. In this case IL2/L1 ( f ) = f = g◦πL1/K1 and therefore the equality
IL1/K (IL2/L1 ( f )) = IL2/K ( f ) also holds in this case.

In the following, we assume that the element a is separable over K1. Let

P(T) = T p + b1T p−1 + · · · + bp ∈ K1[T]

be the minimal polynomial of a over K1. Since p is a prime number, and a < L1, we
obtain that it is also the minimal polynomial of a over L1. In particular, the element
a is also separable over L1. Let y be an element in Ω1 and x = πL1/K1 (y). Assume
that

P = P1 · · · Pr

is the splitting of the polynomial P in the ring K1,x[T] into the product of dis-
tinct irreducible polynomials. Then the polynomials P1, . . . ,Pr correspond to points
x1, . . . , xr which form the set π−1

K2/K1
({x}). Moreover, one has (see (3.2) for the

definition of PK2 ,x)

PK2 ,x({xi}) =
deg(Pi)

p
.

Assume that each Pi splits in L1,y into the product of distinct irreducible polynomials
as

Pi = Qi,1 · · ·Qi,ni .

Then each factor Qi, j corresponds to a point yi, j in π−1
L2/L1

({y}) and one has

PL2 ,y(xi, j) =
deg(Qi, j)

p
.

Therefore, if a non-negative function f on Ω2 is of the form g ◦ πL2/K2 , where g is a
AK2 -measurable function on ΩK2 , then one has
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IL2/L1 ( f )

)
(y) =

r∑
i=1

ni∑
j=1

deg(Qi, j)

p
g(x) =

deg(Pi)

p
g(x) =

(
IK2/K1 (g)

)
(x),

which shows that
IL2/L1 ( f ) = IK2/K1 (g) ◦ πL1/K1 .

Therefore one has

IL1/K (IL2/L1 ( f )) = IL1/K (IK2/K1 (g) ◦ πL1/K1 )

= IK1/K (IK2/K1 (g)) = IK2/K (g) = IL2/K ( f ),

where the second and the last equalities come from (3.19). Thus we have established
the second equality in (3.23), which implies that the measure in the adelic structure
of (S ⊗K L1) ⊗L1 L2 coincides with the measure ν2 in the adelic structure of S ⊗K L2.
The theorem is then established in the particular case where [L2 : L1] is finite.

In the following, we will prove the general case of the theorem. Note that the
previously proved case actually implies that, for any finite extension L ′′ of L1, the
map πL2/L′′ is A2-measurable since the σ-algebra AL′′ in the adelic structure of
(S ⊗K L1) ⊗ L ′′ coincides with that in the adelic structure of S ⊗K L ′′, which
is generated by the maps πL′′/K′′ with K ′′ ∈ EL′′/K . In particular, if we denote
by A ′

2 the σ-algebra in the adelic structure of (S ⊗K L1) ⊗L1 L2, then one has
A ′

2 ⊆ A2. Conversely, for any K2 ∈ EL2/K , one has πL2/K2 = πL′′/K2 ◦ πL2/L′′ ,
where L ′′ = L1K2 is an element in EL2/L1 . Hence πL2/K2 is A ′

2-measurable. Since
K2 ∈ EL2/L is arbitrary, we obtain that A2 ⊆ A ′

2 and hence A2 = A ′
2.

Again it remains to establish the equality IL1/K (IL2/L1 ( f )) = IL2/K ( f ) for any
non-negative A2-measurable function f on Ω2, which can be written in the form
g◦πL2/K2 , where K2 ∈ EL2/K . Let L ′′ = K2L1. One has L ′′ ∈ EL2/L1 and g◦πL2/K2 =

g ◦ πL′′/K2 ◦ πL2/L′′ . Therefore (3.19) implies

IL2/K (g ◦ πL2/K2 ) = IL′′/K (g ◦ πL′′/K2 ) = IK2/K (g).

Moreover, also by (3.19) one obtains

IL1/K (IL2/L1 (g ◦ πL2/K2 )) = IL1/K (IL2/L1 (g ◦ πL′′/K2 ◦ πL2/L′′)))

= IL1/K (IL′′/L1 (g ◦ πL′′/K2 )) = IL′′/K (g ◦ πL′′/K2 ) = IK2/K (g),

where the third equality comes from the proved case of finite extensions. Thus we
establish the relation IL1/K ◦ IL2/L1 = IL2/K which implies that the measure ν2
identifies with that in the adelic structure of (S ⊗K L1) ⊗L1 L2. The theorem is thus
proved. �

Proposition 3.4.13 Let S = (K, (ΩK ,AK , νK ), φK ) be an adelic curve and L/K be an
algebraic extension. Let (L, (ΩL,AL, νL), φL) be the adelic curve S ⊗K L. Then AL

is the smallest σ-algebra making the canonical projection map πL/K : ΩL → ΩK

and the functions (x ∈ ΩL) 7→ |a|x measurable for all a ∈ L.
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Proof By definition the projection map πL/K is AL-measurable. Moreover, by
Proposition 3.4.10, for any a ∈ L, the function (x ∈ ΩL) 7→ |a|x is AL-measurable.

Suppose that F is a map from a measurable space (E,E) to ΩL such that the
composed map πL/K ◦F and the functions (y ∈ E) 7→ |a|F(y) are measurable, where
a ∈ L. We will show that F is measurable if we consider the σ-algebra AL on ΩL .
This implies that AL is contained in the smallest σ-algebra making the canonical
projection ΩL → ΩK and the functions (x ∈ ΩL) 7→ |a|x measurable, where a ∈ L.

Recall that AL is the smallest σ-algebra making the projection maps πL/K′′ :
ΩL → ΩK′′ measurable, where K ′′/K runs over the set of finite extensions contained
in L. To show the measurability of F it suffices to verify the measurability of
πL/K′′ ◦ F for any finite extension K ′′/K contained in L. Moreover, since AK′′ is
the smallest σ-algebra making the projection map πK′′/K : ΩK′′ → ΩK and the
functions (x ∈ ΩK′′) 7→ |a|x measurable, where a ∈ K ′′, we are reduced to verify
the measurability of πK′′/K ◦ πL/K′′ ◦ F = πL/K ◦ F and

(y ∈ E) 7−→ |a|πL/K′′ (F(y)), where a ∈ K ′′. (3.24)

By the assumption on F, the map πL/K ◦ F is measurable. Moreover, since a ∈ K ′′,
one has

|a|πL/K′′ (F(y)) = |a|F(y).

Hence the function in (3.24) is also measurable. The proposition is thus proved. �

3.5 Height function and Northcott property

Let S = (K, (Ω,A, ν), φ) be a proper adelic curve and Kac be an algebraic closure of
K . Let S ⊗K Kac = (Kac, (ΩKac,AKac, νKac ), φKac ) be the algebraic extension of S by
Kac.

Definition 3.5.1 For (a0,a1, . . . ,an) ∈ (Kac)n+1\{(0, . . . ,0)}, we define the invariant
hS(a0, . . . ,an) to be

hS(a0, . . . ,an) :=
∫
ΩKac

ln
(
max{|a0 |χ, . . . , |an |χ}

)
νKac (dχ).

By the product formula, hS(λa0, . . . , λan) = hS(a0, . . . ,an) for all λ ∈ Kac \ {0}, so
that there is a map Pn(Kac) → R such that the following diagram is commutative:

(Kac)n+1 \ {(0, . . . ,0)}

��

hS // R

Pn(Kac)

77ooooooooooooo
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By abuse of notation, the map Pn(Kac) → R is also denoted by hS . For x ∈ Pn(Kac),
the value hS(x) is called the height of x with respect to the adelic curve S.

Definition 3.5.2 We say that S has the Northcott property if the set

{a ∈ K : hS(1 : a) 6 C}

is finite for any C > 0. In the cases of Example 3.2.2, Example 3.2.5 and Exam-
ple 3.2.6, the Northcott property holds (for details, see [106] and [108]).

The purpose of this section is to prove the following theorem:

Theorem 3.5.3 (Northcott’s theorem) If S has the Northcott property, then the set
{x ∈ Pn(Kac) : hS(x) 6 C, [K(x) : K] 6 δ} is finite for any C and δ.

Before starting the proof of Theorem 3.5.3, we need to prepare two lemmas.

Lemma 3.5.4 Let K ′ be a finite normal extension of K . Then hS(1 : σ(α)) = hS(1 :
α) for all α ∈ K ′ and σ ∈ AutK (K ′).

Proof Let K ′′ be the separable closure of K in K ′ and q = [K ′ : K ′′]. Then
σ |K′′ ∈ AutK (K ′′) and aq ∈ K ′′. If the assertion holds for the extension K ′′/K , then

qhS(1 : σ(α)) = hS(1 : σ(αq)) = hS(1 : αq) = qhS(1 : α),

so that we may assume that the extension K ′/K is separable.
For χ ∈ π−1

K′/K
({ω}) and τ ∈ Gal(K ′/K), a map (β ∈ K ′) 7→ |τ(β)|χ gives

rise to an element of π−1
K′/K

({ω}), which is denoted by χτ . In this way, one has an
action Gal(K ′/K) × π−1

K′/K
({ω}) → π−1

K′/K
({ω}) given by (τ, χ) 7→ χτ . Note that

the action is transitive (cf. [117, Chapter II, Proposition 9.1]) and Gal(K ′
χ/Kω) =

StabGal(K′/K)(χ) (cf. [117, Chapter II, Proposition 9.6]). In particular, [K ′
χ : Kω] =

[K ′
χ′ : Kω] for all χ, χ′ ∈ π−1

K′/K
({ω}). Therefore,

IK′/K (ln(max{1, |σ(α)|}))(ω) =
∑

χ∈π−1
K′/K

({ω })

[K ′
χ : Kω]

[K ′ : K]
ln(max{1, |σ(α)|χ})

=
∑

χ∈π−1
K′/K

({ω })

[K ′
χσ : Kω]

[K ′ : K]
ln(max{1, |α |χσ })

= IK′/K (ln(max{1, |α |}))(ω),

and hence the assertion follows. �

For a polynomial F = anXn + · · · + a1X + a0 ∈ Kac[X] \ {0}, we define hS(F)
to be hS(F) := hS(an : · · · : a1 : a0). If we set ‖F‖χ := max{|an |χ, . . . , |a0 |χ} for
χ ∈ ΩKac as in Subsection 1.1.15, then

hS(F) =
∫
ΩKac

ln(‖F‖χ) νKac (dχ).
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Lemma 3.5.5 For F,G ∈ Kac[X] \ {0}, one has

hS(FG) 6 hS(F) + hS(G) + ln min{deg(F) + 1,deg(G) + 1}
∫
Ω∞

ν(dω).

Proof By Proposition 1.1.72,

hS(FG) =

∫
ΩKac

ln(‖FG‖χ)νKac (dχ)

6

∫
ΩKac

(
ln(‖F‖χ) + ln(‖G‖χ)

)
νKac (dχ)

+

∫
Ω∞

ln(min{deg(F) + 1,deg(G) + 1})ν(dω),

so that the assertion follows. �

Proof (Proof of Theorem 3.5.3) Clearly we may assume that C > 0 and δ > 1. Let
us begin with the following special case:

Claim 3.5.6 The set {α ∈ Kac : hS(1 : α) 6 C, [K(α) : K] 6 δ} is finite. �

Proof Let F be the minimal monic polynomial of α over K . We set F = Xn +

an−1Xn−1 + · · · + a1X + a0 = (X − α1) · · · (X − αn) and K ′ = K(α1, . . . , αn), where
α1 = α. Then, by Lemma 3.5.4 and Lemma 3.5.5,

hS(F) 6
n∑
i=1

hS(X − αi) + (n − 1) ln(2)
∫
Ω∞

ν(dω)

=

n∑
i=1

hS(1 : αi) + (n − 1) ln(2)
∫
Ω∞

ν(dω)

= nhS(1 : α) + (n − 1) ln(2)
∫
Ω∞

ν(dω)

6 δC + (δ − 1) ln(2)
∫
Ω∞

ν(dω).

Note that hS(1 : ai) 6 hS(F) and ai ∈ K for all i = 0, . . . ,n − 1, so that one can see
that there are finitely many possibilities of F because S has the Northcott property.
Therefore the assertion of the claim follows. �

Let us go back to the proof of Theorem 3.5.3. For i = 0, . . . ,n, let

Υi := {x = (x0 : · · · : xn) ∈ Pn(Kac) : hS(x) 6 C, [K(x) : K] 6 δ, xi , 0}.

It is sufficient to show that #(Υi) < ∞ for all i. Without loss of generality, we may
assume that i = 0. Then

Υ0 = {a = (a1, . . . ,an) ∈ (Kac)n : hS(1,a) 6 C, [K(a) : K] 6 δ}.
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Note that [K(ai) : K] 6 [K(a1, . . . ,an) : K] and hS(1 : ai) 6 hS(1,a1, . . . ,an) for
all i = 1, . . . ,n. Thus the assertion is a consequence of the above special case. �

Corollary 3.5.7 We assume that S has the Northcott property. Let K ′ be a finite
extension of K . Then S ⊗K K ′ has also the Northcott property.

Remark 3.5.8 Theorem 3.5.3 can be generalised to the case of an adelic vector
bundle. For details, see Proposition 6.2.3.

3.6 Measurability of automorphism actions

Let S = (K, (Ω,A, ν), φ) be an adelic curve and L/K be an algebraic extension. We
denote by AutK (L) the group of field automorphisms of L which are K-linear. The
group AutK (L) acts on ML as follows: for any τ ∈ AutK (L) and any x ∈ ML , one
has

∀ a ∈ L, |a|τ(x) = |τ(a)|x .

Moreover, by definition the restrictions of the absolute values |·|x and |·|τ(x) on K
are the same. Therefore we obtain an action of the K-linear automorphism group
AutK (L) on the set ΩL = Ω×MK ML (where we consider trivial actions of AutK (L)
on Ω and on MK ).

Proposition 3.6.1 Let S = (K, (ΩK ,AK , νK ), φK ) be an adelic curve and L/K be
an algebraic extension. For any τ ∈ AutK (L), the action of τ on ΩL is measurable,
where on ΩL we consider the σ-algebra AL in the adelic structure of S ⊗K L.

Proof By Proposition 3.4.13 the σ-algebra AL is the smallest σ-algebra which
makes measurable the canonical projection map πL/K : ΩL → ΩK and the functions
(x ∈ ΩL) 7→ |a|x , where a ∈ L. Let τ ∈ AutK (L). To show the measurability of the
action of τ on ΩL , it suffices to verify the measurability of the map πL/K ◦ τ and the
functions (x ∈ ΩL) 7→ |a|τ(x) with a ∈ L. Note that by definition πL/K ◦ τ = πL/K
and |α |τ(x) = |τ(α)|x . The proposition is thus proved. �

Proposition 3.6.2 Let S = (K, (ΩK ,AK , νK ), φK ) be an adelic curve and L/K be a
finite extension. Let F : ΩL → R be an AL-measurable function. For any ω ∈ Ω,
let

f (ω) = max
x∈π−1

L/K
({ω })

F(x).

Then the function f : ΩK → R is AK -measurable.

Proof We first assume that the extension L/K is normal. By [27], Chapitre VI, §8,
n◦6, Proposition 7, for any ω ∈ ΩK , the action of the K-linear automorphism group
AutK (L) on ML,ω is transitive. As a consequence, if we denote by F̃ the function

max
τ∈AutK (L)

F ◦ τ,
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then for each ω ∈ ΩK , the restriction of F̃ to π−1
L/K

({ω}) is constante, the value of
which is equal to f (ω). By Proposition 3.6.1, for any τ ∈ AutK (L), the action of τ
onΩL is measurable and hence the function F ◦τ is AL-measurable. Since AutK (L)
is a finite set, we deduce that the function F̃ is also AL-measurable. By Proposition
3.4.8, the function f = IL/K (F̃) is AK -measurable.

In the general case, we pick a finite normal extension L1/K which contains L. By
applying the proved result to the function F ◦ πL1/L , we still obtain the measurability
of the function f . The proposition is thus proved. �

3.7 Morphisms of adelic curves

In this section, we consider morphism of adelic curves.

Definition 3.7.1 Let S = (K, (Ω,A, ν), φ) and S′ = (K ′, (Ω′,A ′, ν′), φ′) be two adelic
curves, we call morphism from S′ to S any triplet α = (α#, α#, Iα), where

(a) α# : K → K ′ is a field homomorphism,
(b) α# : (Ω′,A ′) → (Ω,A) is a measurable map such that the following diagram is

commutative
Ω′

φ′

��

α# // Ω

φ

��
MK′

−◦α#
// MK

and that the direct image of ν′ by α# coincides with ν, namely, for any function
f ∈ L 1(Ω,A, ν), one has ∫

Ω′

f ◦ α# dν′ =
∫
Ω

f dν.

(c) Iα : L1(Ω′,A ′, ν′) → L1(Ω,A, ν) is a disintegration kernel of α#, namely Iα is
a linear map such that, for any element g ∈ L1(Ω′,A ′, ν′), one has∫

Ω

Iα(g) dν =
∫
Ω′

g dν′,

and for any function f ∈ L 1(Ω,A, ν) one has Iα sends the equivalence class of
f ◦ α# to that of f .

Naturally, if S, S′ and S′′ are adelic curves and if α = (α#, α#, Iα) : S′ → S
and β = (β#, β#, Iβ) : S′′ → S are morphisms of adelic curves, then α ◦ β :=
(β# ◦ α#, α# ◦ β#, Iα ◦ Iβ) forms a morphism of adelic curves from S′′ to S. Thus the
adelic curves and their morphisms form a category.

Example 3.7.2 Let S = (K, (Ω,A, ν), φ) be an adelic curve.
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(1) If S ⊗K K ′ = (K ′, (ΩK′,AK′, νK′), φK′) is an algebraic extension of S, then the
triplet (K ↪→ K ′, πK′/K , IK′/K ) is a morphism of adelic curves from S ⊗K K ′ to
S, where IK′/K : L1(ΩK′,AK′, νK′) → L1(Ω,A, ν) is the linear map induced by
IK′/K : L 1(ΩK′,AK′, νK′) → L 1(Ω,A, ν).

(2) Assume that K0 is a subfield of K . Let S0 be the field K0 equipped with the
restriction to K0 of the adelic structure of S (see Subsection 3.2.8). Then the
triplet (K0 ↪→ K, IdΩ, IdL1(Ω,A,ν)) forms a morphism of adelic curves from S to
S0.

(3) Let K = Q(T) be the field of rational functions of one variable T with coefficients
in Q. Let S = (K, (Ω,A, ν), φ) constructed in Subsection 3.2.5. Recall that
(Ω,A, ν) is written as a disjoint union Ωh

∐
P

∐
[0,1]∗, where Ωh is the set of

closed points ofP1
Q

,P is the set of prime numbers, and [0,1]∗ is the subset of [0,1]
of t such that e2πit is transcendental. Let SQ = (Q, (ΩQ,AQ, νQ), φQ) be the adelic
curve defined in Subsection 3.2.2 and S̃Q = (Q, (Ω̃Q, ÃQ, ν̃Q), φ̃Q) be the adelic
curve consisting of the filed Q equipped with the amalgamation of the adelic
structure of SQ and a family of copies of the trivial absolute value on Q indexed
byΩh . We can also write Ω̃ as the disjoint union of three subsetsΩh

∐
P

∐
{∞},

where 0 denotes the trivial absolute value on Q and ∞ denotes the infinite place
of Q. Let α# : Q → Q(T) be the inclusion map. Let α# : Ω → Ω̃Q be the map
which sends any element of Ωh

∐
P to itself and send any element of [0,1]∗

identically to ∞. Finally, let Iα : L1(Ω,A, ν) → L1(Ω̃Q, ÃQ, ν̃Q) be the linear
map sending the equivalence class of any function f ∈ L 1(Ω,A, ν) to that of
the function Iα( f ) sending ω ∈ Ωh

∐
P to f (ω) and ∞ to

∫
[0,1]∗

f (t) dt. Then
the triplet (α#, α#, Iα) forms a morphism of adelic curves from S to S̃Q.



Chapter 4
Vector bundles on adelic curves: global theory

The purpose of this chapter is to study the geometry of adelic curves, notably the
divisors and vector bundles.

4.1 Norm families

Let S = (K, (Ω,A, ν), φ) be an adelic curve (see §3.1). Recall that, for any ω ∈ Ω, we
denote by |·|ω the absolute value of K indexed by ω. Note that, in the case where |·|ω
is Archimedean, there exists a constant κ(ω), 0 < κ(ω) 6 1, such that |·|ω = |·|κ(ω),
where |·| denotes the usual absolute value on R or C. For simplicity, we assume that
κ(ω) = 1 for any ω ∈ Ω∞, namely |·|ω identifies with the usual absolute value on R
or C. Note that this assumption is harmless for the generality of the theory since in
general case we can replace the absolute values {|·|ω}ω∈Ω∞

by the usual ones and
consider the measure dν̃ = (1lΩ\Ω∞

+ κ1lΩ∞
) dν instead.

4.1.1 Definition and algebraic constructions

Let E be a vector space of finite dimension over K . We denote by NE the set of norm
families {‖·‖ω}ω∈Ω, where each ‖·‖ω is a norm on EKω := E ⊗K Kω . We say that a
norm family ξ = {‖·‖ω}ω∈Ω is ultrametric onΩ\Ω∞ if the norm ‖·‖ω is ultrametric
for any ω ∈ Ω \ Ω∞. We say that a norm family {‖·‖ω}ω∈Ω in NE is Hermitian if
the following conditions are satisfied:

(a) for any ω ∈ Ω \ Ω∞, the norm ‖·‖ω is ultrametric (namely the norm family is
ultrametric on Ω \Ω∞);

(b) for any ω ∈ Ω∞, the norm ‖·‖ω is induced by an inner product (see §1.2.1),
namely there exists an inner product 〈 , 〉ω on EKω such that ‖`‖ω = 〈`, `〉

1/2
ω

for any ` ∈ EKω .

205
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We denote by HE the subset of NE consisting of all Hermitian norm families. In the
following, we describe some algebraic constructions of norm families.

4.1.1.1 Multiplication by a numerical function

Let E be a finite-dimensional vector space over K , ξ = {‖·‖ω}ω∈Ω ∈ NE and
f : Ω → ]0,+∞[ be a positive function on Ω. We denote by f ξ the norm family
{ f (ω)‖·‖ω}ω∈Ω in NE .

4.1.1.2 Restrict and quotient norm families

Let E be a finite-dimensional vector space over K and ξ = {‖·‖E ,ω}ω∈Ω be a norm
family in NE . Let F be a vector subspace of E . For any ω ∈ Ω, let ‖·‖F ,ω be the
restriction of the norm ‖·‖E ,ω to FKω (see Definition 1.1.2). Then {‖·‖F ,ω}ω∈Ω forms
a norm family in NF , called the restriction of ξ to F. Similarly, if G is a quotient
vector space of E , then each norm ‖·‖E ,ω induces by quotient a norm ‖·‖G,ω on
GKω (see §1.1.3). Thus we obtain a norm family {‖·‖G,ω}ω∈Ω in NG , called the
quotient of ξ on G. Note that, if the norm family ξ is ultrametric on Ω \ Ω∞ (resp.
Hermitian), then all its restrictions and quotients are also ultrametric on Ω \ Ω∞

(resp. Hermitian).

4.1.1.3 Direct sums

Let S be the set of all convex and continuous functions f : [0,1] → [0,1] such
that max{t,1 − t} 6 f (t) for any t ∈ [0,1]. If E and F are finite-dimensional vector
spaces over K and if ξE = {‖·‖E ,ω}ω∈Ω and ξF = {‖·‖F ,ω}ω∈Ω are respectively
norm families in NE and NF , for any family ψ = {ψω}ω∈Ω of elements of S we
define a norm family ξE ⊕ψ ξF = {‖·‖ω}ω∈Ω in NE⊕F (see Subsection 1.1.10) such
that, for any (x, y) ∈ EKω ⊕ FKω ,

‖(x, y)‖ω := (‖x‖E ,ω + ‖y‖F ,ω)ψω

( ‖x‖E ,ω
‖x‖E ,ω + ‖y‖F ,ω

)
.

We call ξE ⊕ψ ξF the ψ-direct sum of ξE and ξF . If both norm families ξE and ξF
are Hermitian, and if

ψω(t) =

{
max{t,1 − t}, ω ∈ Ω \Ω∞,

(t2 + (1 − t)2)1/2, ω ∈ Ω∞,

then the direct sum ξE ⊕ψ ξF belongs to HE⊕F . We call it the orthogonal direct sum
of ξE and ξF .
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4.1.1.4 Dual norm family

Let E be a vector space of finite dimension over K and ξ = {‖·‖ω}ω∈Ω be a norm
family in NE . The dual norms (see §1.1.5) {‖·‖ω,∗}ω∈Ω form a norm family in NE∨ ,
called the dual of ξ, denoted by ξ∨. Note that ξ∨ is always ultrametric onΩ\Ω∞, and
it is Hermitian if ξ is. Moreover, if for any ω ∈ Ω \Ω∞ the norm ‖·‖ω is ultrametric,
then one has (ξ∨)∨ = ξ, where we identify E with its double dual space E∨∨ (see
Proposition 1.1.18 and Corollary 1.2.12). In particular, if E is a K-vector space of
dimension 1, then one has (ξ∨)∨ = ξ.

4.1.1.5 Tensor products

Let {Ei}
n
i=1 be a family of finite-dimensional vector spaces over K . For any i ∈

{1, . . . ,n}, let ξi = {‖·‖i,ω}ω∈Ω be an element of NEi . We denote by ξ1 ⊗π · · · ⊗π ξn
the norm family {‖·‖ω,π}ω∈Ω in NE1⊗···⊗En , where ‖·‖ω,π is the π-tensor product
of the norms ‖·‖i,ω , i ∈ {1, . . . ,n} (see §1.1.11). The norm family ξ1 ⊗π · · · ⊗π ξn is
called the π-tensor product of ξ1, . . . , ξn. Similarly, we denote by ξ1 ⊗ε · · · ⊗ε ξn the
norm family inNE1⊗···⊗En consisting of ε-tensor products (see §1.1.11) of the norms
‖·‖1,ω, . . . , ‖·‖n,ω . We call ξ1 ⊗ε · · · ⊗ε ξn the ε-tensor product of ξ1, . . . , ξn. We also
introduce the following mixed version of ε-tensor product and π-tensor product. We
denote by ξ1 ⊗ε,π · · · ⊗ε,π ξn consisting of the norms ‖·‖ω,ε if ω ∈ Ω \ Ω∞ and
‖·‖ω,π if ω ∈ Ω∞. This norm family is called the ε, π-tensor product of ξ1, . . . , ξn.
Note that the ε-tensor product and the ε, π-tensor product are both ultrametric on
Ω \Ω∞.

If all norm families ξ1, . . . , ξn are Hermitian, we denote by ξ1 ⊗ · · · ⊗ ξn the norm
family {‖·‖ω}ω∈Ω in HE1⊗···⊗En , where for each ω ∈ Ω \ Ω∞, the norm ‖·‖ω is the
ε-tensor product of {‖·‖i,ω}i∈{1,...,n}, and for each ω ∈ Ω∞, the norm ‖·‖ω is the
orthogonal tensor product (see §1.2.9) of {‖·‖i,ω}i∈{1,...,n}. We call ξ1 ⊗ · · · ⊗ ξn the
orthogonal tensor product of ξ1, . . . , ξn.

4.1.1.6 Exterior powers

Let E be a finite-dimensional vector space over K and ξ = {‖·‖E ,ω}ω∈Ω be a norm
family in NE . Let i be a non-negative integer. We equip E ⊗i with the ε, π-tensor
power of the norm family ξ, which induces by quotient a norm family on the exterior
power Λi(E) which we denote by Λiξ.

4.1.1.7 Determinant

Let E be a finite-dimensional vector space over K and ξ = {‖·‖E ,ω}ω∈Ω be a
norm family in NE . Each norm ‖·‖E ,ω induces a determinant norm ‖·‖det(E),ω on
det(E) ⊗K Kω � det(EKω ) (see §1.1.13). The norm family {‖·‖det(E),ω}ω∈Ω is called
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the determinant of ξ, denoted by det(ξ). By Proposition 1.2.15 we obtain that det(ξ)
coincides with Λrξ, where r is the dimension of E over K .

4.1.1.8 Extension of scalars

Let E be a vector space of finite dimension over K and ξ = {‖·‖ω}ω∈Ω be a norm
family inNE . Let L/K be an algebraic extension of the field K and ((ΩL,AL, νL), φL)
be the adelic structure of the adelic curve S ⊗K L. We construct a norm family
ξL = {‖·‖x}x∈ΩL ∈ NE⊗K L as follows: for any x ∈ ΩL whose canonical image inΩ is
ω, if |·|ω is non-Archimedean, ‖·‖x is the norm ‖·‖ω,Lx ,ε on (EKω )⊗Kω Lx induced by
‖·‖ω by ε-extension of scalars; otherwise ‖·‖x is the norm ‖·‖ω,Lx ,π on (EKω )⊗Kω Lx

induced by ‖·‖ω by π-extension of scalars (see §1.3). By Proposition 1.3.20 (1), if
the dimension of E over K is 1, then the norm family (ξ∨)L identifies with the
dual norm family of ξL . Moreover, by Corollary 1.3.15, if L2/L1/K are successive
algebraic extensions, then one has (ξL1 )L2 = ξL2 , where we identify E ⊗K L2 with
(E ⊗K L1) ⊗L1 L2.

Let ξ = {‖·‖ω}ω∈Ω ∈ HE be a Hermitian norm family, where for ω ∈ Ω, the
norm ‖·‖ω is induced by an inner product 〈 , 〉ω . We denote by ξHL = {‖·‖x}x∈ΩL ∈

HE⊗K L the Hermitian norm family defined as follows. For any x ∈ ΩL \ΩL,∞ over
ω ∈ Ω \ Ω∞, one has ‖·‖x = ‖·‖ω,Lx ,ε ; for any x ∈ ΩL,∞ over ω ∈ Ω∞, ‖·‖x is the
norm ‖·‖ω,Lx ,HS induced by the inner product 〈 , 〉ω,Lx on ELx which extends 〈 , 〉ω
on EKω (namely ‖·‖x is the orthogonal tensor product norm of ‖·‖ω and |·|x if we
identify ELx with EKω ⊗Kω Lx , see Remark 1.3.2). One has (ξ∨)HL = (ξHL )∨ (see
Proposition 1.3.20 (1) for the ultrametric part and Remark 1.3.2 for the inner product
part).

4.1.1.9 Comparison of norm families

Let E be a finite-dimensional vector space over K , and ξ = {‖·‖ω}ω∈Ω and ξ ′ =
{‖·‖ ′ω}ω∈Ω be two elements of NE . We say that ξ is smaller than ξ ′ if for any ω ∈ Ω

one has ‖·‖ω 6 ‖·‖ ′ω . The condition “ξ is smaller than ξ” is denoted by ξ 6 ξ ′ or
ξ ′ > ξ.

4.1.1.10 Local distance

Let E be a finite-dimensional vector space over K , and ξ = {‖·‖ω}ω∈Ω and ξ ′ =
{‖·‖ ′ω}ω∈Ω be two norm families in NE . For any ω ∈ Ω, let

dω(ξ, ξ ′) := sup
s∈EKω \{0}

��� ln ‖s‖ω − ln ‖s‖ ′ω
���.
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We call dω(ξ, ξ ′) the local distance onω of the norm families ξ and ξ ′. By Proposition
1.1.43, one has

dω(ξ∨, (ξ ′)∨) 6 dω(ξ, ξ ′), (4.1)

and the equality holds if ω ∈ Ω∞ or if ‖·‖ω and ‖·‖ ′ω are both ultrametric.

4.1.2 Dominated norm families

Let E be a finite-dimensional vector space over K and ξ = {‖·‖ω}ω∈Ω be a norm
family in NE .

Definition 4.1.1 We say that the norm family ξ is upper dominated if, for any
non-zero element s ∈ E , there exists a ν-integrable function A(·) on Ω such that
ln ‖s‖ω 6 A(ω) ν-almost everywhere. Note that the upper dominancy is equivalent
to

∀s ∈ E \ {0},
∫
Ω

ln ‖s‖ω ν(dω) < +∞

with the notation of Definition A.4.1. Similarly, we say that the norm family ξ is
lower dominated if, for any non-zero element s ∈ E , there exists a ν-integrable
function B(·) on Ω such that B(ω) 6 ln ‖s‖ω ν-almost everywhere. Note that the
lower dominancy is equivalent to

∀s ∈ E \ {0},
∫
Ω

ln ‖s‖ω ν(dω) > −∞.

Definition 4.1.2 We say that ξ is dominated if ξ and ξ∨ are both upper dominated.
Note that the upper dominancy of ξ and ξ∨ implies the lower dominancy of ξ∨ and
ξ, respectively, because (see Proposition A.4.7) ln ‖α‖ω,∗+ ln ‖s‖ω > 0 for all s ∈ E
and α ∈ E∨ with α(s) = 1, so that if ξ is dominated, then ξ and ξ∨ are upper and
lower dominated.

Remark 4.1.3 If ξ is a dominated norm family, then also is ξ∨. In fact, for anyω ∈ Ω

one has ‖·‖ω,∗∗ 6 ‖·‖ω (see (1.5)). Therefore the upper dominancy of ξ implies that
of ξ∨∨. The converse is true when ‖·‖ω is ultrametric for ω ∈ Ω \ Ω∞ since in this
case one has ‖·‖ω,∗∗ = ‖·‖ω for any ω ∈ Ω (see Proposition 1.1.18 and Corollary
1.2.12).

Remark 4.1.4 It is not true that if ξ is upper and lower dominated then it is dominated.
Consider the following example. Let K be an infinite field. We equip K with the
discrete σ-algebra A and let ν be the atomic measure on K such that ν({a}) = 1
for any a ∈ K . For any a ∈ K , let |·|a be the trivial absolute value on K . Then
S = (K, (K,A, ν), {|·|a}a∈K ) forms an adelic curve. Consider now the vector space
E = K2 over K . For any a ∈ K let ‖·‖a be the norm on K2 such that
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‖(x, y)‖a =


0, if x = y = 0,
1/2, if y = ax, x , 0,
1, else.

Then for any vector s ∈ K2, s , 0, one has ‖s‖a = 1 for all except at most one a ∈ K .
Therefore the function (a ∈ K) 7→ ln ‖s‖a on K is integrable, and in particular
dominated. Therefore the norm family ξ = {‖·‖a}a∈K is upper dominated and lower
dominated. However, for any a ∈ K , the dual norm ‖·‖a,∗ on K2 (we identify K2

with the dual vector space of itself in the canonical way) satisfies

‖(x, y)‖a,∗ =


0, if x = y = 0,
1, if x = −ay, y , 0
2, else.

Therefore, for any non-zero element s ∈ K2, one has ln ‖s‖a,∗ = ln(2) for all except
at most one element a ∈ K . The dual norm family ξ∨ is thus not upper dominated.

Example 4.1.5 A fundamental example of dominated norm family is that arising
from a basis. Let E be a vector space of finite dimension r over K , and e = {e1, . . . , er }
be a basis of E over K . For any algebraic extension L/K and any x ∈ ΩL , let ‖·‖e,x
be the norm on E ⊗K Lx such that, for any (λ1, . . . , λr ) ∈ Lr

x ,

‖λ1e1 + · · · + λrer ‖e,x :=

{
maxi∈{1,...,r } |λi |x, if x ∈ ΩL \ΩL,∞

|λ1 |x + · · · + |λr |x, if x ∈ ΩL,∞,

where ΩL,∞ denotes the set of all x ∈ ΩL such that the absolute value |·|x is
Archimedean. Let ξe be the norm family {‖·‖e,ω}ω∈Ω. Note that one has ξe,L =
{‖·‖e,x}x∈ΩL for any algebraic extension L/K . Moreover, for any non-zero vector
s = a1e1 + · · · + arer ∈ E ⊗K L, with (a1, . . . ,ar ) ∈ Lr , one has

∀ x ∈ ΩL, ln ‖s‖e,x 6 max
i∈{1,...,r }

ai,0

ln |ai |x + ln(r)1lΩL ,∞ (x).

Since the functions x 7→ ln |a|x are νL-integrable for all a ∈ L \ {0} and since
νL(ΩL,∞) < +∞ (see Proposition 3.1.2), we obtain that the function (x ∈ ΩL) 7→

ln ‖s‖e,x is νL-integrable. If we denote by {e∨1 , . . . , e
∨
r } the dual basis of e, then for

any α = a1e∨1 + · · · + are∨r ∈ E∨ ⊗K L with (a1, . . . ,ar ) ∈ Lr and any x ∈ ΩL one
has

‖α‖e,x,∗ = max{|a1 |x, . . . , |ar |x}.

Therefore the function (x ∈ ΩL) 7→ ‖α‖e,x,∗ is A-measurable. If α , 0, then the
function (x ∈ ΩL) 7→ ln ‖α‖e,x,∗ is νL-integrable. Hence the norm family ξe,L is
dominated. Note that (see page 209 for the definition of the local distance function)

∀ x ∈ ΩL, dx((ξe,L)
∨, ξe∨ ,L) 6 ln(r)1lΩL ,∞ (x), (4.2)
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where e∨ denotes the dual basis of e.

Proposition 4.1.6 Let E be a finite-dimensional vector space over K , ξ1 and ξ2 be
norm families in NE . We assume that ξ1 is dominated. If the local distance function
(ω ∈ Ω) 7→ dω(ξ1, ξ2) is ν-dominated (see Definition A.4.9), then the norm family ξ2
is dominated. In particular, if there exists a basis e of E over K such that the function
(ω ∈ Ω) 7→ dω(ξe, ξ2) is ν-dominated, then the norm family ξ2 is dominated.

Proof Assume that ξi is of the form {‖·‖i,ω}ω∈Ω, i ∈ {1,2}. Let s be a non-zero
element in E . For any ω ∈ Ω, one has,

ln ‖s‖2,ω − ln ‖s‖1,ω 6 dω(ξ1, ξ2) ν-almost everywhere.

Moreover, since the norm family ξ1 is dominated, one has∫
Ω

ln ‖s‖1,ω ν(dω) < +∞;

since the local distance function d(ξ1, ξ2) is dominated, one has∫
Ω

dω(ξ1, ξ2) ν(dω) < +∞.

Therefore by Proposition A.4.4 one has∫
Ω

ln ‖s‖2,ω ν(dω) 6
∫
Ω

ln ‖s‖1,ω ν(dω) +
∫
Ω

dω(ξ1, ξ2) ν(dω) < +∞.

By (4.1), one has dω(ξ∨1 , ξ
∨
2 ) 6 dω(ξ1, ξ2) for any ω. Hence the same argument as

above applied to the dual norm families shows that

∀α ∈ E∨ \ {0},
∫
Ω

ln ‖α‖2,ω,∗ ν(dω) < +∞.

Therefore, the norm family ξ2 is dominated. To establish the last assertion, it suffices
to apply the obtained result to the case where ξ1 = ξe (see Example 4.1.5 for the fact
that the norm family ξe is dominated). �

Proposition 4.1.7 Let E be a vector space of finite dimension over K and ξ =
{‖·‖ω}ω∈Ω be an element of NE which is dominated. Then for any basis e =
{e1, . . . , er } of E , there exists a ν-integrable function Ae on Ω such that, for any
algebraic extension L/K and any x ∈ ΩL one has (note that ξK = ξ∨∨ in the case
where L = K)

dx(ξL, ξe,L) 6 Ae(πL/K (x)). (4.3)

In particular, the local distance function (x ∈ ΩL) 7→ dx(ξL, ξe,L) is νL-dominated.

Proof Let x be an element in ΩL . Assume that s is a non-zero vector of ELx which
is written as s = a1e1 + · · · + arer with (a1, . . . ,ar ) ∈ Lr

x . Then one has
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‖s‖x 6


max

i∈{1,...,r }
(|ai |x · ‖ei ‖x), if x ∈ ΩL \ΩL,∞,

r∑
i=1

|ai |x · ‖ei ‖x, if x ∈ ΩL,∞.

Thus ln ‖s‖x 6 ln ‖s‖e,x +maxi∈{1,...,r } ln‖ei ‖x . Moreover, one can also interpret

sup
0,s∈ELx

‖s‖e,x
‖s‖x

as the operator norm of the Lx-linear map

IdELx
: (ELx , ‖·‖x) −→ (ELx , ‖·‖e,x),

which is equal to the operator norm of the dual Lx-linear map

IdE∨
Lx

: (E∨
Lx
, ‖·‖e,x,∗) −→ (E∨

Lx
, ‖·‖x,∗)

since the norm ‖·‖e,x is reflexive (see Proposition 1.1.22). Let {e∨i }
r
i=1 be the dual

basis of e. For any α = b1e∨1 + · · · + bre∨r ∈ E∨
Lx

, one has

‖α‖x,∗ 6


max

i∈{1,...,r }
(|bi |x · ‖e∨i ‖x,∗), if x ∈ ΩL \ΩL,∞,

r∑
i=1

|bi |x · ‖e∨i ‖x,∗, if x ∈ ΩL,∞.

Thus we obtain

ln ‖α‖x,∗ − ln ‖α‖e,x,∗ 6 max
i∈{1,...,r }

ln ‖e∨i ‖x,∗ + ln(r)1lΩL ,∞ (x).

Therefore, for any s ∈ EL , one has

− max
i∈{1,...,r }

ln‖ei ‖x 6 ln ‖s‖e,x − ln ‖s‖x 6 max
i∈{1,...,r }

ln ‖e∨i ‖x,∗ + ln(r)1lΩL ,∞ (x).

(4.4)
Note that, if ω = πL/K (x), then one has (see Proposition 1.3.1)

∀ i ∈ {1, . . . ,r}, ‖ei ‖x = ‖ei ‖ω,∗∗.

Moreover, if ω = πL/K (x) belongs to Ω \Ω∞, then

‖e∨i ‖x,∗ = ‖e∨i ‖ω,Lx ,ε,∗ = ‖e∨i ‖ω,∗,Lx ,ε = ‖e∨i ‖ω,∗,

where the second equality comes from Proposition 1.3.20 (1) and the last one comes
from Proposition 1.3.1. If ω = πL/K (x) ∈ Ω∞, then

‖e∨i ‖x,∗ = ‖e∨i ‖ω,Lx ,π,∗ = ‖e∨i ‖ω,∗,Lx ,ε = ‖e∨i ‖ω,∗,
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where the second equality comes from Proposition 1.3.20 (2), and the last one
comes from Proposition 1.3.1. Since the norm family ξ is dominated, there exists a
ν-integrable function A on Ω such that (see Remark 4.1.3)

max
i∈{1,...,r }

max{ln ‖ei ‖ω,∗∗, ln ‖e∨i ‖ω,∗} 6 A(ω) ν-almost everywhere.

Therefore, by (4.4), we obtain

dx(ξL, ξe,L) 6 Ae(πL/K (x)) ν-almost everywhere,

with
∀ω ∈ Ω, Ae(ω) := A(ω) + ln(r)1lΩ∞

(ω).

Note that the function Ae is ν-integrable on (Ω,A). The proposition is thus proved.�

Corollary 4.1.8 Let E be a vector space of finite dimension over K , ξ1 and ξ2 be
norm families in NE which are dominated and ultrametric onΩ\Ω∞. Then the local
distance function (ω ∈ Ω) 7→ dω(ξ1, ξ2) is ν-dominated.

Proof Let e be a basis of E over K . By Proposition 4.1.7, the local distance functions
(ω ∈ Ω) 7→ dω(ξ1, ξe) and (ω ∈ Ω) 7→ dω(ξ2, ξe) are both ν-dominated. Since for
any ω ∈ Ω one has

dω(ξ1, ξ2) 6 dω(ξ1, ξe) + dω(ξ2, ξe),

by Propositions A.4.2 and A.4.4 the function (ω ∈ Ω) 7→ dω(ξ1, ξ2) is ν-dominated.�

Remark 4.1.9 The assertion of Corollary 4.1.8 does not necessarily hold without the
condition that the norm families are ultrametric on Ω \ Ω∞. Consider the following
counter-example. Let K be an infinite field, A be the discrete σ-algebra on K
and ν be the atomic measure on K such that ν({a}) = 1 for any a ∈ K . For any
a ∈ K , let |·|a be the trivial absolute value on K . We consider the adelic curve
S = (K, (K,A, ν), {|·|a}a∈K ). For any a ∈ K , let ‖·‖a be the norm on K2 such that

‖(x, y)‖a =


0, if x = y = 0,
2, if y = ax, x , 0,
1, else.

Note that for any s ∈ K2 \ {(0,0)}, one has ‖s‖a = 1 for all except at most one a ∈ K .
Therefore the norm family ξ = {‖·‖a}a∈K is upper dominated. If we identify K2

with the dual vector space of itself in the canonical way, then for any a ∈ K one has

∀ (x, y) ∈ K2, ‖(x, y)‖a,∗ =

{
0, if x = y = 0,
1, else.

Hence the dual norm family ξ∨ is also upper dominated. Now let e = {(1,0), (0,1)}
be the canonical basis of K2. For any a ∈ K one has
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∀ (x, y) ∈ K2, ‖(x, y)‖e,a =

{
0, if x = y = 0,
1, else.

Therefore one has da(ξ, ξe) = ln(2) for any a ∈ K . Since K is an infinite set, the local
distance function (a ∈ K) 7→ da(ξ, ξe) is clearly not upper dominated.

Corollary 4.1.10 Let E be a finite-dimensional vector space over K and ξ =
{‖·‖ω}ω∈Ω be a norm family in NE . The following assertions are equivalent:

(1) the norm family ξ is dominated and the local distance function (ω ∈ Ω) 7→

dω(ξ, ξ∨∨) is ν-dominated;
(2) for any basis e of E , the local distance function (ω ∈ Ω) 7→ dω(ξ, ξe) is

ν-dominated;
(3) there exists a basis e of E such that the local distance function (ω ∈ Ω) 7→

dω(ξ, ξe) is ν-dominated.

Proof “(1)=⇒(2)”: Note that the norm family ξ∨∨ is ultrametric onΩ\Ω∞. Moreover
it is dominated since ξ is dominated (see Remark 4.1.3). By Proposition 4.1.7, we
obtain that, for any basis e of E , the local distance function (ω ∈ Ω) 7→ dω(ξ∨∨, ξe)
is ν-dominated. By the assumption that the function (ω ∈ Ω) 7→ dω(ξ, ξ∨∨) is
ν-dominated, we deduce that the function (ω ∈ Ω) 7→ dω(ξ, ξe) is also ν-dominated.

“(2)=⇒(3)” is trivial.
“(3)=⇒(1)”: By Proposition 4.1.6, the norm family ξ is ν-dominated. By Proposi-

tion 4.1.7, the function (ω ∈ Ω) 7→ dω(ξ∨∨, ξe) is ν-dominated. Since dω(ξ, ξ∨∨) 6
dω(ξ, ξe) + dω(ξ∨∨, ξe), we obtain that the function (ω ∈ Ω) 7→ dω(ξ, ξ∨∨) is ν-
dominated. �

Definition 4.1.11 Let E be a finite-dimensional vector space over K and ξ be a norm
family on E . We say that ξ is strongly dominated if it is dominated and if the function
(ω ∈ Ω) 7→ dω(ξ, ξ∨∨) is ν-dominated (or equivalently, (E, ξ) satisfies any of the
assertions in Corollary 4.1.10).

Remark 4.1.12 Let E be a finite-dimensional vector space over K and ξ be a norm
family on E . If the norm family ξ is ultrametric on Ω \ Ω∞, then the function
(ω ∈ Ω) 7→ dω(ξ, ξ∨∨) is identically zero (and hence is ν-dominated). Therefore,
in this case ξ is dominated if and only if it is strongly dominated. In particular, in
the case where E is of dimension 1 over K , the norm family ξ is dominated if and
only if it is strongly dominated. Moreover, if ξ is a dominated norm family on a
finite-dimensional vector space, then the dual norm family ξ is strongly dominated
since it is dominated (see Remark 4.1.3) and ultrametric on Ω \Ω∞.

Corollary 4.1.13 Let E be a vector space of finite dimension over K and ξ =
{‖·‖ω}ω∈Ω be a norm family in NE . If ξ is dominated, then for any algebraic
extension L/K the norm family ξL is strongly dominated. Conversely, if there exists
an algebraic extension L/K such that the norm family ξL is dominated and if the
function (ω ∈ Ω) 7→ dω(ξ, ξ∨∨) is ν-dominated, then the norm family ξ is also
dominated.
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Proof Assume that the norm family ξ is dominated. By Proposition 4.1.7, for any
basis e of E , the local distance function (x ∈ ΩL) 7→ dx(ξL, ξe,L) is νL-dominated.
Therefore, by Proposition 4.1.6 we obtain that the norm family ξL is strongly domi-
nated.

Conversely, we assume that L/K is an algebraic extension and ξL is dominated.
Let e be a basis of E over K . Since ξL is dominated and since the norms in the family
ξL corresponding to non-Archimedean absolute values are ultrametric, the function
f : (x ∈ ΩL) 7→ dx(ξL, ξe,L) is νL-dominated. Moreover, by Proposition 1.3.7, one
has f = g ◦ πL/K , where g sends ω ∈ Ω to dω(ξ∨∨, ξe) (one has ξe = ξ∨∨e since it
is ultrametric on Ω \ Ω∞). Since the function f is νL-dominated, there exists a νL-
integrable function A on ΩL such that | f | 6 A almost everywhere. By Proposition
3.4.9, the function IL/K (A) is ν-integrable. Moreover, one has IL/K (| f |) = |g | since
| f | = |g | ◦ πL/K (see Remark 3.4.7). Therefore, the function g is ν-dominated
by the ν-integrable function IL/K (A), which implies that the norm family ξ∨∨ is
dominated. Finally, by Proposition 4.1.6 and the assumption that the function (ω ∈

Ω) 7→ dω(ξ, ξ∨∨) is ν-dominated, we obtain that the norm family ξ is dominated. �

Remark 4.1.14 Let E be a finite-dimensional vector space over K . Corollary 4.1.10
implies that there exist Hermitian norm families on E which are dominated. In
fact, let e = {ei}ri=1 be a basis of E over K . Consider the following norm family
ξ = {‖·‖ω}ω∈Ω with

‖a1e1 + · · · + arer ‖ω =

{
maxi∈{1,...,r } |ai |ω, if ω ∈ Ω \Ω∞,( ∑r

i=1 |ai |
2
ω

) 1/2
, if ω ∈ Ω∞,

for all (a1, . . . ,ar ) ∈ Kr
ω . It is a Hermitian norm family on E . Note that one has

dω(ξ, ξe) 6 1
2 ln(r)1lΩ∞

(ω). Therefore (ω ∈ Ω) 7→ dω(ξ, ξe) is a ν-dominated func-
tion on Ω. By Corollary 4.1.10, we obtain that ξ is a dominated norm family.

Let ξ be a Hermitian norm family on E . If ξ is dominated, then for any algebraic
extension L/K , the norm family ξHL is dominated. In fact, by Corollary 4.1.10, the
norm family ξL is dominated. By Proposition 1.3.1 (3), the local distance function
(x ∈ ΩL) 7→ dx(ξL, ξ

H
L ) is bounded from above by 1

2 ln(2)1lΩL ,∞ . By Proposition
4.1.6, we obtain that the norm family ξHL is dominated.

Proposition 4.1.15 Let E be a finite-dimensional vector space over K and L/K be
an algebraic extension of fields. For any ω ∈ Ω, we fix an extension |·|L,ω on L of
the absolute value |·|ω and denote by Lω the completion of L with respect to the
extended absolute value. Let e = {ei}ri=1 be a basis of E ⊗K L. For any ω ∈ Ω, let
‖·‖ ′ω be the norm on E ⊗K Lω defined as

∀ (λ1, . . . , λr ) ∈ Lr
ω, ‖λ1e1 + · · · + λrer ‖ ′ω = max

i∈{1,...,r }
|λi |L,ω

and let ‖·‖ω be the restriction of ‖·‖ ′ω to E ⊗K Kω . Then the norm family ξ =
{‖·‖ω}ω∈Ω in NE is strongly dominated.

Proof We first prove that, for any element b ∈ L, the function
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(ω ∈ Ω) 7−→ ln |b|L,ω

is bounded from above by a ν-integrable function. Let

F(X) = Xn + an−1Xn−1 + · · · + a0 ∈ K[X]

be the minimal polynomial of b. By the same argument as in the proof of Theorem
3.3.7 (4), we obtain that

ln |b|ω 6 1lΩ∞
(ω) ln(n) +max{0, ln |a0 |ω, . . . , ln |an−1 |ω}.

By Proposition 3.1.2, the function 1lΩ∞
is ν-integrable. Moreover, by the definition

of adelic curves, for any i ∈ {0, . . . ,n − 1} such that ai , 0, the function (ω ∈ Ω) 7→

ln |ai |ω is also ν-integrable, we thus obtain the assertion.
Let f = { fi}ri=1 be a basis of E over K and A = (ai j)(i, j)∈{1,...,r }2 ∈ Mr×r (L) be

the transition matrix between e and f , namely

∀ i ∈ {1, . . . ,r}, fi =
r∑
j=1

ai jej .

Let (bi j)(i, j)∈{1,...,r }2 ∈ Mr×r (L) be the inverse matrix of A. Then one has

∀ i ∈ {1, . . . ,r}, ei =
r∑
j=1

bi j fj .

By the above assertion, there exists a ν-integrable function g on Ω such that

∀ω ∈ Ω, max
(i, j)∈{1,...,r }2

max{ln |ai j |ω, ln |bi j |ω} 6 g(ω).

We will prove that the local distance function d(ξ, ξf ) is ν-dominated. Let ω ∈ Ω

and x = λ1 f1 + · · · + λr fr be an element of E ⊗K Kω . One has

x =
r∑
i=1

λi

r∑
j=1

ai jej =
r∑
j=1

( r∑
i=1

ai jλi

)
ej .

Therefore

ln ‖x‖ω = max
j∈{1,...,r }

ln
���� r∑
i=1

ai jλi

����
L,ω

6 max
i∈{1,...,r }

ln |λi |ω + g(ω) + ln(r)1lΩ∞
(ω)

6 ln ‖x‖f ,ω + g(ω) + ln(r)1lΩ∞
(ω).

Similarly, if we write x as x = µ1e1 + · · · + µrer , with (µ1, . . . , µr ) ∈ Lr
ω , one has

x =
r∑
i=1

µi

r∑
j=1

bi j fj =
r∑
j=1

( r∑
i=1

bi j µi

)
fj .
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Namely λj =
∑r

i=1 bi j µi for any j ∈ {1, . . . ,r}. If ω ∈ Ω \Ω∞ then

ln ‖x‖f ,ω = ln
(

max
j∈{1,...,r }

|λj |ω

)
= ln

(
max

j∈{1,...,r }

���� r∑
i=1

bi j µi

����
ω

)
6 ln

(
max

i∈{1,...,r }
|µi |L,ω

)
+ g(ω) = ln ‖x‖ω + g(ω).

If ω ∈ Ω∞, then

ln ‖x‖f ,ω = ln
( r∑
j=1

|λj |ω

)
= ln

( r∑
j=1

���� r∑
i=1

bi j µi

����
ω

)
6 ln

(
max

i∈{1,...,r }
|µi |L,ω

)
+ g(ω) + ln(r2) = ln ‖x‖ω + g(ω) + ln(r2).

Therefore, one has

∀ω ∈ Ω, dω(ξ, ξf ) 6 g(ω) + 2 ln(r)1lΩ∞
(ω),

which implies that the local distance function d(ξ, ξf ) is ν-dominated. By Corollary
4.1.10, we obtain that the norm family ξ is dominated. �

The following proposition is a criterion of the dominance property in the case
where the vector space is of dimension 1.

Proposition 4.1.16 Let E be a vector space of dimension 1 over K and ξ =
{‖·‖ω}ω∈Ω be a norm family on E . Then the following conditions are equivalent:

(1) the norm family ξ is dominated;
(2) for any non-zero element s ∈ E , the function (ω ∈ Ω) 7→ ln ‖s‖ω is ν-dominated;
(3) there exists a non-zero element s ∈ E such that the function (ω ∈ Ω) 7→ ln ‖s‖ω

is ν-dominated.

Proof “(1)=⇒ (2) =⇒ (3)” are trivial. In the following, we prove “(3)=⇒(1)”. If s′

is a non-zero element of E , then we can write it in the form s′ = as, where a is a
non-zero element of K . Then one has

∀ω ∈ Ω, ln ‖s′‖ω = ln |a|ω + ln ‖s‖ω = ln |a|ω + ln ‖s‖ω .

Since the function (ω ∈ Ω) 7→ ln ‖s‖ω is ν-dominated and the function (ω ∈

Ω) 7→ ln |a|ω is ν-integrable, we obtain that the function (ω ∈ Ω) 7→ ln ‖s′‖ω is
ν-dominated. Moreover, if we denote by s∨ the dual element of s in E∨, then one has

ln ‖s∨‖ω,∗ = − ln ‖s‖ω (4.5)

for any ω ∈ Ω. By the same argument as above, we obtain that, for any non-zero
element α ∈ E∨, the function (ω ∈ Ω) 7→ ln ‖α‖ω,∗ is ν-dominated. Therefore the
norm family ξ is dominated. �
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Let K ′ be a finite extension field of K and let

SK′ = S ⊗K K ′ = (K ′, (ΩK′,AK′, νK′), φK′)

be the algebraic extension of S by K ′. Let E be a finite-dimensional vector space
over K and EK′ = E ⊗K K ′. Note that, for any ω ∈ Ω and any ω′ ∈ ΩK′ such
that πK′/K (ω

′) = ω, the vector space E ⊗K Kω can be naturally considered as a
Kω-vector subspace of EK′ ⊗K′ K ′

ω′ .

Proposition 4.1.17 Let ξ = {‖·‖ω}ω∈Ω and ξ ′ = {‖·‖ ′ω′}ω′∈ΩK′ be norm familes of
E and EK′ , respectively, such that

∀ω ∈ Ω, ∀ω′ ∈ π−1
K′/K ({ω}), ∀s ∈ E ⊗K Kω, ‖s‖ω = ‖s‖ ′ω′ . (4.6)

If ξ ′ is dominated (resp. strongly dominated), then ξ is also dominated (resp. strongly
dominated).

Proof Assume that ξ ′ is dominated. Let s be a non-zero element of E . By the
assumption (4.6) one has∫

Ω

ln‖s‖ω ν(dω) =
∫
ΩK′

ln‖s‖ ′ω′ νK′(dω′) < +∞.

Hence the norm family ξ is upper dominated. Let α be a non-zero element in E∨.
For any ω ∈ Ω and any ω′ ∈ π−1

K′/K
({ω}), one has

‖α‖ω,∗ = sup
s∈(E⊗KKω )\{0}

|α(s)|ω
‖s‖ω

= sup
s∈(E⊗KKω )\{0}

|α(s)|ω
‖s‖ ′ω′

6 ‖α‖ ′ω′,∗.

Since (ξ ′)∨ is upper dominated, we deduce that ξ∨ is also upper dominated.
Assume that ξ ′ is strongly dominated. Let eee = {ei}ni=1 be a basis of E . Then, for

ω ∈ Ω and ω′ ∈ π−1
K′/K

(ω),

dω′(ξ ′, ξeee,K′) = sup
s′∈(EK′ ⊗K′K′

ω′ )\{0}

��� ln ‖s′‖ ′ω′ − ln ‖s′‖eee,K′,ω′

���
> sup

s∈(E⊗KKω )\{0}

��� ln ‖s‖ ′ω′ − ln ‖s‖eee,K′,ω′

���
= sup

s∈(E⊗KKω )\{0}

��� ln ‖s‖ω − ln ‖s‖eee,ω
��� = dω(ξ, ξeee).

By our assumption together with Corollary 4.1.10, the function (ω′ ∈ ΩK′) 7→

dω′(ξ ′, ξeee,K′) is νK′-dominated, that is, there is an integrable function A′ on ΩK′

such that dω′(ξ ′, ξeee,K′) 6 A′(ω′) for all ω′ ∈ ΩK′ , so that the above estimate implies
that dω(ξ, ξeee) 6 IK′/K (A′)(ω) for all ω ∈ Ω. By Proposition 3.4.9, one has∫

ΩK′

A′(ω′) νK′(dω′) =

∫
Ω

IK′/K (A′)(ω) ν(dω)
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and hence ξ is strongly dominated by Corollary 4.1.10 again. �

Corollary 4.1.18 Let f : X → Spec K be a geometrically reduced projective K-
scheme and L be an invertible OX -module. Let XK′ := X ×SpecK Spec K ′ and
LK′ := L ⊗K K ′. For each ω ∈ Ω and ω′ ∈ ΩK′ , Xω , Lω , XK′,ω′ and LK′,ω′ are
defined by{

Xω := X ×Spec(K) Spec(Kω), Lω := L ⊗K Kω,
XK′,ω′ := XK′ ×Spec(K′) Spec(K ′

ω′), LK′,ω′ := LK′ ⊗K′ K ′
ω′ .

Moreover, for each ω ∈ Ω and ω′ ∈ π−1
K′/K

(ω), let ϕω be a metric of Lω on
Xω , and ϕK′,ω′ be the metric of LK′ obtained by ϕω by the extension of scalars
(cf. Definition 2.1.18). Let ‖·‖ϕω and ‖·‖ϕK′ ,ω′ be the sup norms on H0(Xω, Lω)
and H0(XK′,ω′, LK′,ω′) associated with the metrics ϕω and ϕK′,ω′ , respectively. If
ξK′ =

{
‖·‖ϕK′ ,ω′

}
ω′∈ΩK′

on H0(XK′, LK′) is dominated, then ξ = {‖·‖ϕω }ω∈Ω on
H0(X, L) is also dominated.

Proof For ω ∈ Ω, ω′ ∈ π−1
K′/K

(ω) and s ∈ H(Xω, Lω), one has ‖s‖ϕK′ ,ω′ = ‖s‖ϕω
(see Proposition 2.1.19), so that the assertion follows from Proposition 4.1.17. �

The following proposition shows that the dominance property is actually preserved
by most of the algebraic constructions on norm families.

Proposition 4.1.19 (1) Let E be a finite-dimensional vector space over K and ξ be
a dominated (resp. strongly dominated) norm family on E . Then the restriction
of ξ to any vector subspace of E is a dominated (resp. strongly dominated) norm
family.

(2) Let E be a finite-dimensional vector space over K and ξ be a dominated (resp.
strongly dominated) norm family on E . Then the quotient norm family of ξ on
any quotient vector space of E is a dominated (resp. strongly dominated) norm
family.

(3) Let E be a finite-dimensional vector space over K and ξ be an element of NE .
If ξ is dominated, then the norm family ξ∨ is strongly dominated.

(4) Let E and F be finite-dimensional vector spaces over K , and ξE and ξF be
elements of NE and NF , respectively. Let ψ : Ω → S be a map such that
ψ = ψ0 outside of a measurable subset Ω′ of Ω with ν(Ω′) < +∞, where ψ0
denotes the function in S sending t ∈ [0,1] to max{t,1 − t}. If both norm
families ξE and ξF are dominated (resp. strongly dominated), then the ψ-direct
sum ξE ⊕ψ ξF is also dominated (resp. strongly dominated).

(5) Let E and F be finite-dimensional vector spaces over K , and ξE and ξF be
elements of NE and NF , respectively. Assume that both norm families ξE and
ξF are dominated. Then the ε-tensor product ξE ⊗ε ξF and the ε, π-tensor
product ξE ⊗ε,π ξF are strongly dominated. If in addition both norm families ξE
and ξF are Hermitian, then the orthogonal tensor product ξE ⊗ ξF is strongly
dominated.
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(6) Let E be a finite-dimensional vector space over K and ξ be an element of NE .
Assume that ξ is dominated. Then, for any i ∈ N, the exterior power norm family
Λiξ is strongly dominated. In particular, the determinant norm family det(ξ) is
strongly dominated.

Proof (1) and (2) in the dominated case: We first show the following claim: if
ξ = {‖·‖ω}ω∈Ω is an upper dominated norm family, then all its restrictions and
quotients are also upper dominated. Let F be a vector space of E and ξF = {‖·‖ω}ω∈Ω

be the restriction of ξ to F. For any s ∈ F\{0} and anyω ∈ Ω one has ‖s‖F ,ω = ‖s‖ω .
Since the norm family ξ is upper dominated, the function (ω ∈ Ω) 7→ ln‖s‖F ,ω is
upper dominated. Let G be a quotient vector space of E and ξG = {‖·‖G,ω}ω∈Ω

be the quotient of ξ on G. For any t ∈ G \ {0} and any s ∈ E which represents
the class t in G, one has ‖t‖G,ω 6 ‖s‖ω for any ω ∈ Ω. Therefore the function
(ω ∈ Ω) 7→ ln‖t‖G,ω is upper dominated.

Let ξ = {‖·‖ω}ω∈Ω be a norm family on E such that the dual norm family ξ∨ is
upper dominated. Let G be a quotient vector space of E . We identify G∨ with a vector
subspace of E∨. By Proposition 1.1.20, if ξG denotes the quotient norm family of ξ
on G, then ξ∨G identifies with the restriction of ξ∨ to G∨. By the claim proved above,
we obtain that ξ∨G is upper dominated. Similarly, if F is a vector subspace of E and
if ξF = {‖·‖F ,ω}ω∈Ω is the restriction of ξ to F, then, for any ω ∈ Ω, ‖·‖F ,ω,∗ is
bounded from above by the quotient of the norm ‖·‖ω,∗ on F∨ (viewed as a quotient
vector space of E∨). Therefore, by the claim proved above, we obtain that the norm
family ξ∨F is upper dominated.

(1) in the strongly dominated case: Let F be a vector subspace of E . Let f
be a basis of F. We complete it into a basis e of E . For any ω ∈ Ω one has
dω(ξF , ξf ) 6 dω(ξ, ξe). Since the function (ω ∈ Ω) 7→ dω(ξ, ξe) is ν-dominated,
also is the function (ω ∈ Ω) 7→ dω(ξF , ξf ). By Corollary 4.1.10, we obtain that the
norm family ξF is strongly dominated.

(2) in the strongly dominated case: Let g = {gi}
m
i=1 be a basis of G. For any

i ∈ {1, . . . ,m}, we choose a vector ei in E such that the canonical image of ei in
G is gi . We complete the family {ei}mi=1 into a basis e of E . Then for any ω ∈ Ω

one has dω(ξG, ξg) 6 dω(ξ, ξe). Therefore, the function (ω ∈ Ω) 7→ dω(ξG, ξg) is
ν-dominated, which implies that ξG is strongly dominated.

(3) has already been shown in Remark 4.1.3, see also Remark 4.1.12 for the strong
dominancy.

(4) in the dominated case: We first show the following claim: if both norm families
ξE and ξF are upper dominated, then also is the direct sum ξE ⊕ψ ξF . In fact, if (s, t)
is an element in E ⊕ F, for ω ∈ Ω \Ω′ one has

‖(s, t)‖ω = max{‖s‖E ,ω, ‖t‖F ,ω},

and for ω ∈ Ω′, one has

‖(s, t)‖ω 6 ‖s‖E ,ω + ‖t‖F ,ω 6 2 max{‖s‖E ,ω, ‖t‖F ,ω},
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where ‖·‖ω denotes the norm indexed by ω in ξE ⊕ψ ξF . Therefore the function
(ω ∈ Ω) 7→ ‖(s, t)‖ω is upper dominated.

Let ψ ′ be the map from Ω to S sending any ω ∈ Ω \Ω∞ to ψ0 and any ω ∈ Ω∞

to ψ(ω)∗ (see Definition 1.1.48). By Proposition 1.1.49 we obtain that (ξE ⊕ψ ξF )
∨

identifies with ξ∨E ⊕ψ′ ξ∨F . By the claim proved above, if ξ∨E and ξ∨F are upper
dominated, then also is (ξE ⊕ψ ξF )

∨.
(4) in the strongly dominated case: Let e′ and e′′ be bases of E and F respectively,

and e be the disjoint union of e′ and e′′, viewed as a basis of E ⊕ F. Since ξE and
ξF are both dominated, by Corollary 4.1.10 there exist ν-integrable functions A′ and
A′′ such that

dω(ξE, ξe′) 6 A′(ω), dω(ξF , ξe′′) 6 A′′(ω) ν-almost everywhere.

Moreover, if (s, t) is an element in E ⊕ F, for ω ∈ Ω \Ω′ one has

‖(s, t)‖ω = max{‖s‖E ,ω, ‖t‖F ,ω},

and for ω ∈ Ω′, one has

max{‖s‖E ,ω, ‖t‖F ,ω} 6 ‖(s, t)‖ω 6 ‖s‖E ,ω + ‖t‖F ,ω 6 2 max{‖s‖E ,ω, ‖t‖F ,ω},

where ‖·‖ω denotes the norm indexed by ω in ξE ⊕ψ ξF . Therefore

dω(ξE ⊕ψ ξF , ξe) 6 max{A′(ω), A′′(ω)} + ln(2)1lΩ′(ω) ν-almost everywhere.

Note that the function (ω ∈ Ω) 7→ max{A′(ω), A′′(ω)}+ ln(2)1lΩ′(ω) is ν-integrable.
Hence the norm family ξE ⊕ψ ξF is strongly dominated (by Corollary 4.1.10).

(5) By (3), the norm families ξ∨∨E and ξ∨∨F are both dominated. Therefore, without
loss of generality, we may assume that ‖·‖E ,ω and ‖·‖F ,ω are ultrametric norms for
ω ∈ Ω\Ω∞ (see Definition 1.1.52 , see also Proposition 1.2.14). Let e = {ei}ni=1 and
f = { fj}mj=1 be bases of E and F over K , and let e⊗ f = {ei⊗ fj}(i, j)∈{1,...,n}×{1,...,m}.
Note that e ⊗ f is a basis of E ⊗ F. Moreover, for any ω ∈ Ω, the norm ‖·‖e⊗ f ,ω

identifies with the ε-tensor product of the norms ‖·‖E ,ω and ‖·‖F ,ω . Since the norm
families ξE and ξF are dominated, there exist ν-integrable functions AE and AF on
Ω such that

dω(ξE, ξe) = sup
0,s∈E

��� ln ‖s‖E ,ω − ln ‖s‖e,ω
��� 6 AE (ω) ν-almost everywhere, (4.7)

and

dω(ξF , ξf ) = sup
0,t∈F

��� ln ‖t‖F ,ω − ln ‖t‖f ,ω
��� 6 AF (ω) ν-almost everywhere.

By (4.1), we obtain

dω(ξ∨E, ξ
∨
e ) = sup

0,α∈E∨

��� ln ‖α‖E ,ω,∗ − ln ‖α‖e,ω,∗

��� 6 AE (ω) ν-almost everywhere,
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which implies (see (4.2))

dω(ξ∨E, ξe∨ ) 6 AE (ω) + ln(n)1lΩ∞
(ω) ν-almost everywhere.

Therefore, for any ω ∈ Ω and any non-zero tensor ϕ ∈ HomK (E∨,F) � E ⊗K F,
one has (see Remark 1.1.53)��� ln ‖ϕ‖ε,ω − ln ‖ϕ‖e⊗ f ,ω

��� = ���� sup
0,α∈E∨

ln
‖ϕ(α)‖F ,ω

‖α‖E ,ω,∗
− sup

0,α∈E∨

ln
‖ϕ(α)‖f ,ω

‖α‖e∨ ,ω

����
6 AE (ω) + AF (ω) + ln(n)1lΩ∞

(ω)

ν-almost everywhere, where ‖·‖ε,ω denotes the ε-tensor product of ‖·‖E ,ω and
‖·‖F ,ω . Therefore the ε-tensor product norm family ξE ⊗ε ξF is dominated (and
hence is strongly dominated since it is ultrametric on Ω \ Ω∞, see Remark 4.1.12).
By using the fact that ξE ⊗ε,π ξF = (ξ∨E ⊗ε ξ

∨
F )

∨ (see Corollary 1.2.20 and Proposition
1.1.57 for the non-Archimedean and the Archimedean cases respectively), we deduce
the dominance property of ξE ⊗ε,π ξF from the above result and the assertion (3)
of the Proposition. Finally, by Propositions 1.2.59 and 4.1.6, we deduce that the
orthogonal tensor product norm family ξE ⊗ ξF is also strongly dominated, provided
that ξE and ξF are both Hermitian.

(6) is a direct consequence of (2) and (5) since Λiξ is a quotient norm family of
the i-th ε, π-tensor power of ξ. �

Remark 4.1.20 Let E be a finite-dimensional vector space over K . We denote by
DE the subset of NE of all strongly dominated norm families ξ = {‖·‖ω}ω∈Ω on
E . By Corollary 4.1.8, we obtain that, for any pair (ξ, ξ ′) of norm families in DE ,
the local distance function (ω ∈ Ω) 7→ dω(ξ, ξ ′) is ν-dominated. This observation
allows to construct a function dist(·, ·) on DE × DE , defined as (see §A.4 for the
definition of the upper integral

∫
Ω

h(ω) ν(dω))

dist(ξ, ξ ′) :=
∫
Ω

dω(ξ, ξ ′) ν(dω).

Clearly this function is symmetric with respect to its two variables, and verifies the
triangle inequality, where the latter assertion follows from the triangle inequality of
the local distance function and Proposition A.4.4. Therefore, dist(·, ·) is actually a
pseudometric on DE . Moreover, for any pair (ξ, ξ ′) of elements of DE , dist(ξ, ξ ′) = 0
if and only if ξω = ξ ′ω ν-almost everywhere (see Proposition A.4.10). Therefore,
the pseudometric dist(·, ·) induces a metric on the quotient space of DE modulo the
equivalence relation

ξ ∼ ξ ′ ⇐⇒ ξω = ξ
′
ω ν-almost everywhere.

This quotient metric space is actually complete. In fact, assume that {ξn}n∈N is a
Cauchy sequence in DE . Then we can pick a subsequence {ξnk }k∈N such that
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∀ k ∈ N,

∫
Ω

(
1l{d(ξnk ,ξnk+1 )>2−k }

)
ν(dω) 6 2−k .

The set of ω ∈ Ω such that {ξnk ,ω}k∈N is not a Cauchy sequence (with respect the
the metric defined in §1.1.9) is a ν-negligible set. Let ξ be a norm family such that
{ξnk ,ω}k∈N converges to ξω ν-almost everywhere (see Remark 1.1.41 for the local
completeness). Then, by the same argument as in the proof of Proposition A.4.14,
we obtain that dist(ξn, ξ) converges to 0 when n goes to the infinity.

4.1.3 Measurability of norm families

Let E be a vector space of finite dimension over K and ξ = {‖·‖ω}ω∈Ω be a
norm family in NE . We say that the norm family ξ is A-measurable (or simply
measurable when there is no ambiguity on the σ-algebra A) if for any s ∈ E the
function (ω ∈ Ω) 7→ ‖s‖ω is A-measurable. By definition, if the norm family ξ
is A-measurable on Ω, then also is its restriction to a vector subspace of E . The
following proposition shows that measurable direct sums preserve the measurability
of norm families.

Proposition 4.1.21 Let E and F be finite-dimensional vector spaces over K and
ξE = {‖·‖E ,ω}ω∈Ω, ξF = {‖·‖F ,ω}ω∈Ω be respectively norm families inNE andNF ,
which are both A-measurable. For any map ψ : Ω → S which is A-measurable,
where we consider the Borel σ-algebra on S induced by the topology of uniform
convergence, the direct sum ξE ⊕ψ ξF = {‖·‖ψ,ω}ω∈Ω is A-measurable.

Proof Consider the map g : S × [0,+∞[2 → R

g(η,a, b) −→

{
0, a + b = 0,
(a + b)η(a/(a + b)), a + b , 0.

We claim that the map g is continuous. Let {(ηn,an, bn)}n∈N be a sequence in
S × [0,+∞[2 which converges to (η,a, b) ∈ S × [0,+∞[2. If a + b , 0, then
an/(an + bn) converges to a/(a + b), and therefore��ηn(an/(an + bn)) − η(a/(a + b))

��
6

��ηn(an/(an + bn)) − η(an/(an + bn))
�� + ��η(an/(an + bn)) − η(a/(a + b))

��
6 ‖ηn − η‖sup +

��η(an/(an + bn)) − η(a/(a + b))
��

converges to 0 when n tends to the infinity. We then deduce that

lim
n→+∞

g(ηn,an, bn) = g(η,a, b).

If a + b = 0, then
lim

n→+∞
g(ηn,an, bn) = 0 = g(η,a, b)
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since the sequence of functions {ηn}n∈N is uniformly bounded and an+bn converges
to 0 when n tends to the infinity.

Note that S is a closed subset of C0([0,1]), the space of all continuous real
functions on [0,1]. Since C0([0,1]) admits a countable topological basis (see [32]
Chapter X, §3.3, Theorem 1), also is S . Being a metric space, the topological space
S is thus separable. Therefore, the Borel σ-algebra of the product topological space
S × [0,+∞[2 coincides with the product σ-algebra of the Borel σ-algebras of S
and [0,+∞[2 (see [93] Lemma 1.2). In particular, the function F is measurable with
respect to the product σ-algebra. If (s, t) is an element in E ⊕ F, then one has

‖(s, t)‖ψ,ω = g(ψ(ω), ‖s‖E ,ω, ‖t‖F ,ω),

which is an A-measurable function since the maps ψ,ω 7→ ‖s‖E ,ω andω 7→ ‖t‖F ,ω
are all A-measurable. �

Proposition 4.1.22 (1) Let E be a vector space of dimension 1 over K and ξ be
a norm family in NE . Then ξ is A-measurable if and only if there exists an
element s ∈ E \ {0} such that the function (ω ∈ Ω) 7→ ‖s‖ω is A-measurable.

(2) Let E be a vector space of dimension 1 over K and ξ be a norm family in NE

which is A-measurable. Then the dual norm family ξ∨ is also A-measurable.
(3) Let E1 and E2 be vector spaces of dimension 1 over K , and ξ1 and ξ2 be norm

families in NE1 and NE2 respectively. We assume that both norm families ξ1 and
ξ2 are A-measurable. Then the tensor product ξ1 ⊗ ξ2 (which is also equal to
ξ1 ⊗ε ξ2 and ξ1 ⊗π ξ2) is also A-measurable.

(4) Let E be a vector space of dimension 1 over K and ξ be a norm family in NE .
Assume that there exists an integer n > 1 such that ξ⊗n is A-measurable, then
the norm family ξ is also measurable.

Proof (1) The necessity follows from the definition. For the sufficiency, we assume
that there exists s ∈ E \{0} such that the function (ω ∈ Ω) 7→ ‖s‖ω isA-measurable.
If s′ is a general element in E , there exists a ∈ K such that s′ = as. Note that for any
ω ∈ Ω one has

‖s′‖ω = |a|ω · ‖s‖ω .

Since the function (ω ∈ Ω) 7→ |a|ω is A-measurable, we obtain that the function
(ω ∈ Ω) → ‖s′‖ω is A-measurable.

(2) Let s be a non-zero element of E andα be the element of E∨ such thatα(s) = 1.
For any ω ∈ Ω one has ‖α‖ω = ‖s‖−1

ω . Since the function (ω ∈ Ω) 7→ ‖s‖ω is A-
measurable, we obtain that the function (ω ∈ Ω) 7→ ‖α‖ω is also A-measurable.
Therefore, by (1) we obtain that the norm family ξ∨ is A-measurable on Ω.

(3) Let s1 and s2 be non-zero elements of E1 and E2 respectively. Then s1 ⊗ s2
is a non-zero element of E1 ⊗ E2. Moreover, for any ω ∈ Ω one has ‖s1 ⊗ s2‖ω =
‖s1‖ω · ‖s2‖ω . Since the functions (ω ∈ Ω) 7→ ‖s1‖ω and (ω ∈ Ω) 7→ ‖s2‖ω are
A-measurable, we obtain that the function (ω ∈ Ω) 7→ ‖s1 ⊗ s2‖ω is A-measurable.
By (1), the norm family ξ1 ⊗ ξ2 is A-measurable.

(4) Let s be a non-zero element of E . For any ω ∈ Ω, one has ‖s⊗n‖ω = ‖s‖nω .
Hence ‖s‖ω = ‖s⊗n‖1/n

ω . Since ξ⊗n is A-measurable, the function (ω ∈ Ω) 7→
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‖s⊗n‖ω is A-measurable. As a consequence, the function (ω ∈ Ω) 7→ ‖s‖ω is also
A-measurable. By (1), we obtain that the norm family ξ is A-measurable. �

Remark 4.1.23 It is not clear that other algebraic constructions of norm families
preserve the A-measurability. We consider the following counter-example. Let K =
R and (Ω,A, ν) be the set R equipped with the Borel σ-algebra and the Lebesgue
measure. Let φ : Ω → MR be the constant map which sends any point of Ω to the
trivial absolute value. Then (K, (Ω,A, ν), φ) is an adelic curve. Let f : R→ ]0,1] be
a map which is not Borel measurable. Let E be a vector space of dimension 2 over
R and {e1, e2} be a basis of E . For each t ∈ Ω = R, let ‖·‖t be the norm on E such
that ‖λ(e1 + te2)‖t = f (t) for λ ∈ R \ {0}, and ‖s‖t = 1 if s ∈ E \ R(e1 + te2). Then
ξ = {‖·‖t }t∈R is an element of NE . Note that, for any s ∈ E the function t 7→ ‖s‖t is
Borel measurable on R since it is constant except at most one point of R. However,
if we denote by G the quotient space E/Re2 and by ξG = {‖·‖G,t }t∈R the quotient
norm family of ξ. The one has

∀ t ∈ R,
[e1]


G,t
= f (t).

Therefore the quotient norm family ξG is not A-measurable on Ω.

The following results show that, at least in the particular case where K is a
countable set, the algebraic constructions of norm families defined in the previous
subsection preserve the A-measurability of norm families.

Proposition 4.1.24 We assume that, either A is discrete, or the field K admits a
countable subfield K0 which is dense in Kω for any ω ∈ Ω.

(1) Let E be a vector space of finite dimension over K and ξ = {‖·‖ω}ω∈Ω be a
norm family in NE which is A-measurable. Then

(1.a) for any quotient space G of E , the quotient norm family ξG = {‖·‖G,ω}ω∈Ω

on G of ξ is A-measurable;
(1.b) the dual norm family ξ∨ = {‖·‖ω,∗}ω∈Ω is A-measurable;
(1.c) for any algebraic extension L/K , the norm family ξL = {‖·‖x}x∈ΩL on

EL := E ⊗K L is AL-measurable. If in addition ξ is Hermitian, then the
norm family ξHL is AL-mesurable.

(2) Let E and F be finite-dimensional vector spaces over K , ξE = {‖·‖E ,ω}ω∈Ω and
ξF = {‖·‖F ,ω}ω∈Ω be respectively norm families in NE and NF . We assume
that ξE and ξF are both A-measurable. Then

(2.a) the π-tensor product ξE ⊗π ξF , the ε-tensor product ξE ⊗ε ξF and the
ε, π-tensor product ξE ⊗ε,π ξF are all A-measurable;

(2.b) if in addition the norm families ξE and ξF are Hermitian, the orthogonal
tensor product ξE ⊗ ξF = {‖·‖E⊗F ,ω}ω∈Ω is A-measurable.

(3) Let E be a finite-dimensional vector space over K and ξE = {‖·‖E ,ω}ω∈Ω be
a norm family in NE which is A-measurable. Then the exterior product norm
family Λiξ is A-measurable for any i ∈ N. In particular, the determinant norm
family det(ξ) is A-measurable.



226 4 Vector bundles on adelic curves: global theory

(4) Let E be a finite-dimensional vector space over K , and ξ = {‖·‖ω}ω∈Ω and
ξ ′ = {‖·‖ ′ω}ω∈Ω be two A-measurable norm families in NE . Then the local
distance function ω 7→ dω(ξ, ξ ′) is A-measurable.

Proof It suffices to treat the case where K admits a countable subfield which is dense
in all Kω .

(1.a) Let p : E → G be the projection map and F be its kernel. Let F0 be a
finite-dimensional K0-vector subspace of F which generates F as a vector space over
K . Note that for any ω ∈ Ω the set F0 is dense in FKω . For any ` ∈ G and any ω ∈ Ω,
one has

‖`‖G,ω = inf
s∈E , p(s)=`

‖s‖ω = inf
t∈F0

‖s0 + t‖ω,

where s0 is an element of E such that p(s0) = `. As the norm family ξE is A-
measurable on Ω, the function (ω ∈ Ω) 7→ ‖s‖ω is A-measurable for any s ∈ E .
Hence the function ω 7→ ‖`‖G,ω is also A-measurable since it is the infimum of a
countable family of A-measurable functions.

(1.b) Let E0 be a finite-dimensional K0-vector subspace of E which generates E
as a vector space over K . For any α ∈ E∨ and any ω ∈ Ω, one has

‖α‖ω,∗ = sup
s∈E\{0}

|α(s)|ω
‖s‖ω

= sup
s∈E0\{0}

|α(s)|ω
‖s‖ω

since E0 \ {0} is dense in EKω \ {0}. As the norm family ξE is A-measurable
on Ω, the function (ω ∈ Ω) 7→ ‖s‖ω is A-measurable for any s ∈ E . Moreover,
α(s) belongs to K , and thus the function ω 7→ |α(s)|ω is A-measurable. Hence
the function (ω ∈ Ω) 7→ ‖α‖ω,∗ is A-measurable since it is the supremum of a
countable family of A-measurable functions.

(1.c) Let H0 be a finite-dimensional K0-vector subspace of E∨ which generates
E∨ as a vector space over K . Then H0 \ {0} is dense in E∨

Kω
\ {0} for any ω ∈ Ω.

Let s be an element in EL . For any x ∈ ΩL , let

‖s‖ω,Lx ,ε = sup
ϕ∈E∨

Kω
\{0}

|ϕ(s)|x
‖ϕ‖ω,∗

= sup
ϕ∈H0\{0}

|ϕ(s)|x
‖ϕ‖ω,∗

,

where ω = πL/K (x), and ‖·‖ω,∗ denotes the dual norm of ‖·‖ω . We have seen in
(1.b) that the dual norm family ξ∨ = {‖·‖ω,∗}ω∈Ω is A-mesurable on Ω. Therefore
the function

(x ∈ ΩL) 7−→ ‖ϕ‖πL/K (x),∗,

which is the composition of the A-measurable function ω 7→ ‖ϕ‖ω,∗ with πL/K ,
is AL-measurable. Moreover, the function x 7→ |ϕ(s)|x on ΩL is AL-mesurable.
Therefore, the function x 7→ ‖s‖ω,Lx ,ε onΩL , which is the supremum of a countable
family of measurable functions, is also measurable. Therefore the norm family
{‖·‖ ′x}x∈ΩL is measurable. This result applied to ξ∨ shows that the norm family
{‖·‖ω,∗,Lx ,ε}x∈ΩL is measurable. By Proposition 1.3.20 (1), (2), the norm family ξL
identifies with the dual of {‖·‖ω,∗,Lx ,ε}x∈ΩL , and hence is measurable.
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Assume that the norm family ξ is Hermitian. Let s be an element of EL , which is
written as s1 ⊗ λ1 + · · · + sn ⊗ λn, where (s1, . . . , sn) ∈ En and (λ1, . . . , λn) ∈ Ln.
For any x ∈ ΩL one has

‖s‖2
x =

n∑
i=1

n∑
j=1

〈si, sj〉πL/K (x)〈λi, λj〉x .

Note that the function

(ω ∈ Ω∞) 7→ 〈si, sj〉ω =
1
2
(
‖si + sj ‖2

ω − ‖si ‖2
ω − ‖sj ‖2

ω

)
is A|Ω∞

-measurable (hence its composition with πL/K |ΩL ,∞ is AL |ΩL ,∞ -measurable)
and the function

(x ∈ ΩL,∞) 7−→ 〈λi, λj〉x =
1
2
(
|λi + λj |

2
x − |λi |

2
x − |λj |

2
x

)
is AL |ΩL ,∞ -measurable. Therefore the function (x ∈ ΩL) 7→ ‖s‖2

x is AL-measurable
on ΩL,∞. Moreover, by the measurability of ξL proved above, this function is also
AL-measurable on ΩL \ΩL,∞. Hence it is AL-measurable.

(2.a) Let s be an element of E ⊗ F, ϕ be the K-linear map from E∨ to F which
corresponds to s, and r be the rank of ϕ. Let {ϕi}ni=1 be a basis of E∨ such that
ϕr+1, . . . , ϕn belong to the kernel of f and let {ei}ni=1 be the dual basis of {ϕi}ni=1.
For i ∈ {1, . . . ,r}, let fi be the image of αi by ϕ. We complete the family { fi}ri=1 to
a basis { fj}mj=1 of F. One has

s = e1 ⊗ f1 + · · · + er ⊗ fr .

Let E0 and F0 be K0-vector subspaces of E and F generated by {ei}ni=1 and { fj}mj=1
respectively.

By definition, for ω ∈ Ω one has

‖s‖π,ω = inf

{
N∑
i=1

‖xi ‖E ,ω · ‖yi ‖F ,ω :
s = x1 ⊗ y1 + · · · + xN ⊗ yN
for some N ∈ N, (x1, . . . , xN ) ∈ EN

Kω

and (y1, . . . , yN ) ∈ FN
Kω

}
.

We claim that ‖s‖π,ω is eqal to

‖s‖ ′π,ω := inf

{
N∑
i=1

‖xi ‖E ,ω · ‖yi ‖F ,ω :
s = x1 ⊗ y1 + · · · + xN ⊗ yN
for some N ∈ N, (x1, . . . , xN ) ∈ EN

0
and (y1, . . . , yN ) ∈ FN

0

}
.

(4.8)
Clearly ‖s‖π,ω is bounded from above by ‖s‖ ′π,ω . We will show that ‖s‖π,ω >
‖s‖ ′π,ω . By Proposition 1.1.11, there exists α ∈ ]0,1] such that the bases {ei}ni=1 and
{ fj}mj=1 of EKω and FKω are both α-orthogonal (see Definition 1.2.4). Assume that
s is written in the form
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s = x1 ⊗ y1 + · · · + xN ⊗ yN ,

where (x1, . . . , xN ) ∈ EN
Kω

and (y1, . . . , yN ) ∈ FN
Kω

. For any ε > 0, there exist
(x ′

1, . . . , x
′
N ) ∈ EN

0 and (y′1, . . . , y
′
N ) ∈ FN

0 such that

sup
`∈{1,...,N }

max{‖x` − x ′
` ‖E ,ω, ‖y` − y′` ‖F ,ω} 6 ε . (4.9)

We write x` − x ′
` into the form

x` − x ′
` =

n∑
i=1

a`,iei, where (a`,1, . . . ,a`,n) ∈ Kn
ω .

Since the basis {ei}ni=1 is α-orthogonal, one has

ε > ‖x` − x ′
` ‖E ,ω > α max

i∈{1,...,n}
|a`,i |ω · |ei ‖E ,ω . (4.10)

Similarly, if we write y` − y′` as

m∑
j=1

b`, j fj, (a`,1, . . . ,a`,m) ∈ Km
ω ,

one has
ε > ‖y` − y′` ‖F ,ω > α max

j∈{1,...,m}
|b`, j |ω · ‖ fj ‖F ,ω . (4.11)

Let
M = sup

`∈{1,...,N }

max{‖x ′
` ‖E ,ω, ‖y` ‖F ,ω}.

If we write x ′
` and y` into linear combinations of {ei}ni=1 and { fj}mj=1 respectively:

x ′
` =

n∑
i=1

c`,iei, y` =

m∑
j=1

d`, j fj,

one has

M > α max
i∈{1,...,n}

|c`,i |ω · ‖ei ‖E ,ω and M > α max
j∈{1,...,m}

|d`, j |ω · ‖ fj ‖F ,ω . (4.12)

Note that

s − x ′
1 ⊗ y′1 − · · · − x ′

N ⊗ y′N =

N∑̀
=1
(x` ⊗ y` − x ′

` ⊗ y′`)

=

N∑̀
=1
((x` − x ′

`) ⊗ y` + x ′
` ⊗ (y` − y′`))
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=

n∑
i=1

m∑
j=1

( N∑̀
=1

a`,id`, j + c`,ib`, j
)

ei ⊗ fj .

For (i, j) ∈ {1, . . . ,n} × {1, . . . ,m}, let

Ai, j =

N∑̀
=1

a`,id`, j + c`,ib`, j .

Since {ei ⊗ fj}(i, j)∈{1,...,n}×{1,...,m} is a basis of E0 ⊗K0 F0 over K0 and a basis of
EKω ⊗Kω FKω over Kω , one obtains that Ai, j ∈ K0 for any (i, j) ∈ {1, . . . ,n} ×
{1, . . . ,m}. Therefore one has

‖s‖ ′π,ω 6
N∑̀
=1

‖x ′
` ‖E ,ω · ‖y′` ‖F ,ω +

n∑
i=1

m∑
j=1

|Ai, j |ω · ‖ei ‖E ,ω · ‖ fi ‖F ,ω

6
N∑̀
=1
(‖x` ‖E ,ω + ε)(‖y` ‖F ,ω + ε) +

n∑
i=1

m∑
j=1

|Ai, j |ω · ‖ei ‖E ,ω · ‖ fi ‖F ,ω

6
N∑̀
=1
(‖x` ‖E ,ω + ε)(‖y` ‖F ,ω + ε) + α−2εmnMN,

where the first inequality comes from the definition (4.8) of ‖·‖ ′π,ω , the second
inequality results from (4.9), and the third inequality comes from (4.10), (4.11) and
(4.12). Since ε is arbitrary, we obtain ‖s‖ ′π,ω 6

∑N
`=1 ‖x` ‖ · ‖y` ‖, which leads to

‖s‖ ′π,ω 6 ‖s‖π,ω since the writing s = x1 ⊗ y1 + · · · + xN ⊗ yN is arbitrary.
As the set⋃
N ∈N

{(x1, . . . , xN , y1, . . . , yN ) ∈ EN
0 × FN

0 : s = x1 ⊗ y1 + · · · + xN ⊗ yN }

is countable, we obtain that the function (ω ∈ Ω) 7→ ‖s‖π,ω = ‖s‖π′,ω is A-
measurable. Therefore the norm family ξE ⊗π ξF is A-measurable.

By Proposition 1.1.57 one has ξE ⊗ε ξF = (ξ∨E ⊗π ξ
∨
F )

∨. Hence by the (1.b)
of the proposition established above, we obtain that the norm family ξE ⊗ε ξF is
also A-measurable. Finally, by Corollary 1.2.20 and Proposition 1.1.57 one has
ξE ⊗ε,π ξF = (ξ∨E ⊗ε ξ

∨
F )

∨. Therefore the norm family ξE ⊗ε,π ξF is also A-
measurable.

(2.b) We proceed with the measurability of the orthogonal tensor product norm
family in assuming that both norm families ξE and ξF are Hermitian. In the first step,
we treat a particular case where E = F∨ and ξE = ξ∨F . In this case the tensor product
space E ⊗K F is isomorphic to the space EndK (F) of K-linear endomorphisms of F,
and the ε-tensor product norm family ξ∨F ⊗ε ξF identifies with the family of operator
norms. Let {xi}ni=1 be a basis of F over K and F0 be the K0-vector subspace of F
generated by {xi}ni=1. By using the basis {xi}ni=1 one can identify EndK0 (F0) with
Mn×n(K0), the space of all matrices of size n×n with coefficients in K0. Similarly, for
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anyω ∈ Ω, one can identify EndKω (FKω )with the space Mn×n(Kω) of all matrices of
size n× n with coefficients in Kω . In particular, EndK0 (F0) is dense in EndKω (FKω ).

For any f ∈ EndK (F) and any ω ∈ Ω∞, let ‖ f ‖HS,ω be the Hilbert-Schmidt norm
of f . By Proposition 1.2.61, one has

‖ f ‖HS,ω =

( r∑
i=1

inf
g∈EndKω (FKω )

rk(g)6i−1

‖ f − g‖2
ω

) 1/2
,

where ‖·‖ω denotes the operator norm on EndKω (FKω ). Note that the set

{g ∈ EndK0 (F0) : rk(g) 6 i − 1}

is dense in
{g ∈ EndKω (FKω ) : rk(g) 6 i − 1}.

Hence

‖ f ‖HS,ω =

( r∑
i=1

inf
g∈EndK0 (F0)

rk(g)6i−1

‖ f − g‖2
ω

) 1/2
.

By the result of (2.a) on the measurability of ε-tensor product, the function

(ω ∈ Ω∞) 7→ ‖ f − g‖ω

is A|Ω∞
-measurable. Hence we deduce the A|Ω∞

-measurability of the function
(ω ∈ Ω∞) 7→ ‖ f ‖HS,ω . Finally, since the norm ‖·‖E⊗F ,ω identifies with the ε-tensor
product ‖·‖ε,ω for ω ∈ Ω \Ω∞, by the result of (2.a), the function (ω ∈ Ω \Ω∞) 7→

‖ f ‖E⊗F ,ω is A|Ω\Ω∞
-measurable. Thus we obtain the A-measurability of the norm

family ξE ⊗ ξF .
We now consider the general case. Let T be a tensor vector in E ⊗K F, viewed as

a linear map from E∨ to F. Let G be the direct sum E∨ ⊕ F and ξG be the orthogonal
direct sum of ξ∨E and ξF . By Proposition 4.1.21 and the result obtained in (1.b), the
norm family ξG is A-measurable. Moreover, the linear map T : E∨ → F induces a

K-linear endomorphism f =
(
0 0
T 0

)
of E∨⊕F. For anyω ∈ Ω∞, the Hilbert-Schmidt

norm ofT with respect to ‖·‖E ,ω and ‖·‖F ,ω identifies with the Hilbert-Schmidt norm
of f with respect to the orthogonal direct sum norm ‖·‖E∨⊕F ,ω . By the particular case
proved above, we obtain the measurability of the function (ω ∈ Ω∞) 7→ ‖T ‖E⊗F ,ω .
Combined with the measurability of ξE ⊗ε ξF proved in (2.a), which implies the
measurability of the function (ω ∈ Ω\Ω∞) 7→ ‖T ‖E⊗F ,ω , we obtain that the function
(ω ∈ Ω) 7→ ‖T ‖E⊗F ,ω is A-measurable. The assertion is thus proved.

(3) We equip E ⊗i with the i-th ε, π-tensor power of ξ. By (2.a), this norm family
is A-measurable. The exterior power norm family is its quotient. By (1.a) we obtain
that the norm family Λiξ is A-measurable.

(4) Let E0 be a finite-dimensional K0-vector subspace of E , which generates E
as a K-vector space. For any ω ∈ Ω, E0 is dense in EKω . Therefore one has
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dω(ξ, ξ ′) = sup
0,s∈E0

��� ln ‖s‖ω − ln ‖s‖ ′ω
���.

Since E0 is a countable set and since the functions (ω ∈ Ω) 7→ ‖s‖ω and (ω ∈ Ω) 7→

‖s‖ ′ω are both measurable, we obtain that the function (ω ∈ Ω) 7→ dω(ξ, ξ ′) is also
measurable. �

Remark 4.1.25 We assume that K is a number field. Let S = (K, (Ω,A, ν), φ) be the
standard adelic curve as in Subsection 3.2.2. Let E be a finite-dimensional vector
space over K and ξ = {‖·‖ω}ω∈Ω be a norm family of E . Since A is the disctere
σ-algebra, every function on Ω is measurable, so that (E, ξ) is measurable.

Theorem 4.1.26 We assume that K admits a countable subfield K̃ which is dense
in Kω for any ω ∈ Ω∞. Let E be a finite-dimensional vector space over K and
ξ = {‖·‖ω}ω∈Ω be a measurable norm family on E which is ultrametric on Ω \Ω∞.
For any ε > 0, there exists a measurable Hermitian norm family ξH = {‖·‖Hω }ω∈Ω

on E such that ‖·‖Hω = ‖·‖ω for any ω ∈ Ω \Ω∞ and that

‖·‖ω 6 ‖·‖Hω 6 (r + ε)1/2‖·‖ω

for any ω ∈ Ω∞, where r denotes the dimension of E over K .

Proof The assertion is trivial when Ω∞ is empty. In what follows, we assume that
Ω∞ is non-empty. In this case the field K is of characteristic 0. We divide the proof
of the theorem into two steps.

Step 1: In this step, we show that there is a family {ϕω}ω∈Ω∞
of embeddings

ϕω : K → C such that |·|ω = |ϕω(·)| for all ω ∈ Ω∞ and, for any a ∈ K̃ , the function
(ω ∈ Ω∞) 7→ (ϕω(a) ∈ C) is A|Ω∞

-measurable, where |·| denotes the usual absolute
value on C.

For each ω ∈ Ω∞, we fix an embedding ϕ̃ω : K → C such that |·|ω = |ϕ̃ω(·)|. We
denote by fω(a) and gω(a) the real part and the imaginary part of ϕ̃ω(a), respectively,
that is, ϕ̃ω(a) = fω(a) +

√
−1gω(a) for a ∈ K . We claim that, for any a ∈ K , the

function (ω ∈ Ω∞) 7→ fω(a) is A|Ω∞
-measurable. In fact, we can write fω(a) as

|a + 1
2 |

2
ω − |a|2ω − 1

4 . Therefore the claim follows from the definition of adelic curve.
Moreover, for any a ∈ K , the function (ω ∈ Ω∞) 7→ gω(a)2 is measurable since we
can write gω(a)2 as |a|2ω − fω(a)2. In particular, the function (ω ∈ Ω∞) 7→ |gω(a)| is
measurable. As a consequence, for any couple of elements (a, b) in K , the function
(ω ∈ Ω∞) 7→ gω(a)gω(b) is measurable because

gω(a)gω(b) = 1
2 (gω(a + b)2 − gω(a)2 − gω(b)2).

Claim 4.1.27 Let a be an element of K . Assume that s : Ω∞ → {1,−1} is a map such
that the function (ω ∈ Ω∞) 7→ s(ω)gω(a) isA|Ω∞

-measurable. Then for any function
η : Ω∞ → R such that the function (ω ∈ Ω∞) 7→ gω(a)η(ω) is A|Ω∞

-measurable,
the function (ω ∈ Ω∞) 7→ s(ω)η(ω)1lgω (a),0 is A|Ω∞

-measurable. In particular, for
any b ∈ K , the function (ω ∈ Ω∞) 7→ s(ω)gω(b)1lgω (a),0 is A|Ω∞

-measurable. �
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Proof Let ha,s : Ω∞ → R be the function defined by

ha,s(ω) :=

{
s(ω)gω(a)−1 = (s(ω)gω(a))−1, if gω(a) , 0,
0, if gω(a) = 0.

As the function (ω ∈ Ω∞) 7→ s(ω)gω(a) is A|Ω∞
-measurable, also is ha,s . Since the

function (ω ∈ Ω∞) 7→ gω(a)η(ω) is measurable, we deduce that the function

(ω ∈ Ω∞) 7−→ ha,s(ω)gω(a)η(ω) = s(ω)η(ω)1lgω (a),0

is A|Ω∞
-measurable, which proves the first assertion. The second assertion follows

from the first one and the fact that the function (ω ∈ Ω∞) 7→ gω(a)gω(b) is A|Ω∞
-

measurable. �

In the following, we show that there exists a map s : Ω∞ → {1,−1} such that,
for any a ∈ K̃ , the function (ω ∈ Ω∞) 7→ s(ω)gω(a) is A|Ω∞

-measurable. Since K̃
is countable, we can write its elements in a sequence {an}n∈N. We will construct
by induction a decreasing sequence of functions sn : Ω∞ → {1,−1} (n ∈ N) which
satisfy the following conditions:

(1) for any n ∈ N and any i ∈ {0, . . . ,n}, the function (ω ∈ Ω∞) 7→ sn(ω)gω(ai) is
A|Ω∞

-measurable,
(2) for any n ∈ N, one has

{ω ∈ Ω∞ : sn(ω) = 1} ⊇ {ω ∈ Ω∞ : gω(a0) = · · · = gω(an) = 0}.

In the case where n = 0, we just choose

s0(ω) =

{
1, if gω(a0) > 0,
−1, if gω(a0) < 0.

Then one has s0(ω)gω(a0) = |gω(a0)|. Therefore the function

(ω ∈ Ω∞) 7→ s0(ω)gω(ai)

is A|Ω∞
-measurable. Moreover, by definition one has

{ω ∈ Ω∞ : s0(ω) = 1} ⊇ {ω ∈ Ω∞ : gω(a0) = 0}.

Assume that the functions s0, . . . , sn have been constructed, which satisfy the condi-
tions above. We choose

sn+1(ω) =

{
−sn(ω), if gω(a0) = · · · = gω(an) = 0 and gω(an+1) < 0,
sn(ω), otherwise.

Clearly, if gω(a0) = · · · = gω(an) = gω(an+1) = 0, then sn+1(ω) = sn(ω) = 1, so that
the above condition (2) for sn+1 is satisfied. Moreover, if gω(a0) = · · · = gω(an) = 0
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and gω(an+1) < 0, then sn(ω) = 1 and sn+1(ω) = −sn(ω) = −1. Hence we always
have sn+1(ω) 6 sn(ω) for any ω ∈ Ω∞. For any i ∈ {0, . . . ,n} and any ω ∈ Ω∞ one
has

sn+1(ω)gω(ai) = sn(ω)gω(ai)

since sn+1(ω) = sn(ω) once gω(ai) , 0. Hence by the induction hypothesis the
function (ω ∈ Ω∞) 7→ sn+1(ω)gω(ai) is A|Ω∞

-measurable.
In what follows, we show that the function (ω ∈ Ω∞) 7→ sn+1(ω)gω(an+1) is also

A|Ω∞
-measurable. For any i ∈ {0, . . . ,n}, the set

{ω ∈ Ω∞ : gω(ai) = 0} = {ω ∈ Ω∞ : gω(ai)2 = 0}

belongs to A since the function (ω ∈ Ω∞) 7→ gω(ai)2 is A|Ω∞
-measurable. By

Claim 4.1.27, the function

(ω ∈ Ω∞) 7−→ sn+1(ω)gω(an+1)1lgω (a0),0 (4.13)

is A|Ω∞
-measurable. Similarly, for any i ∈ {1, . . . ,n} we deduce from the A|Ω∞

-
measurability of the function

(ω ∈ Ω) 7−→ gω(ai)gω(an+1)1lgω (a0)=0 · · · 1lgω (ai−1)=0

that the function

(ω ∈ Ω) 7−→ sn+1(ω)gω(an+1)1lgω (a0)=0 · · · 1lgω (ai−1)=01lgω (ai ),0 (4.14)

is A|Ω∞
-measurable. Moreover, the function

(ω ∈ Ω∞) 7−→ sn+1(ω)gω(an+1)1lgω (a0)=· · ·=gω (an)=0 (4.15)

is A|Ω∞
-measurable since sn+1(ω)gω(an+1) = |gω(an+1)| once the condition

gω(a0) = · · · = gω(an) = 0 holds and since the set

{ω ∈ Ω∞ : gω(a0) = · · · = gω(an) = 0}

= {ω ∈ Ω∞ : gω(a0)
2 = · · · = gω(an)2 = 0}

belongs to A. We then obtain the A|Ω∞
-measurability of the function (ω ∈ Ω∞) 7→

sn+1(ω)gω(an+1) since we can write the function as the sum of (4.13), (4.15) and
(4.14) for i ∈ {1, . . . ,n}. Let s be the limit of the decreasing sequence of func-
tions {sn}n∈N. For any n ∈ N, the function (ω ∈ Ω∞) 7→ sm(ω)gω(an) is A|Ω∞

-
measurable for any integer m > n. By passing to limit when m → +∞, we obtain
that the function (ω ∈ Ω∞) 7→ s(ω)gω(an) is A|Ω∞

-measurable.
Here we define ϕω : K → C to be

ϕω :=

{
ϕ̃ω if s(ω) = 1,
the complex conjugation of ϕ̃ω if s(ω) = −1.
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By the measurability result proved above, we obtain that, for any a ∈ K̃ , the function
(ω ∈ Ω∞) 7→ ϕω(a) is A|Ω∞

-measurable.

Step 2: Let Ω∞,c be the set of ω ∈ Ω∞ such that Kω = C. Then one has

Ω∞ \Ω∞,c =
⋂
a∈K̃

{ω ∈ Ω∞ : ϕω(a) ∈ R}.

Therefore, the sets Ω∞,c and Ω∞ \ Ω∞,c belong to A (by Proposition 3.1.1, the set
Ω∞ belongs to A).

Let {ei}ri=1 be a basis of E over K . We consider Cr×r as the space of complex
matrices of size r × r and equip it with the Euclidean topology and Borel σ-algebra.

Let r ′ = r + ε. For any ω ∈ Ω∞,c , let G(ω) be the set of all matrices A ∈ Cr×r

such that, for any (λ1, . . . , λr ) ∈ K̃r , if we note (x1, . . . , xr ) = (ϕω(λ1), . . . , ϕω(λr )),
then one has

‖x1e1 + · · · + xrer ‖2
ω 6 (x1, . . . , xr )A∗A

©«
x1
...

xr

ª®®¬ 6 r ′‖x1e1 + · · · + xrer ‖2
ω,

where A∗ = t A. For any ω ∈ Ω∞ \Ω∞,c , let G(ω) be the set of all matrices A ∈ Cr×r

such that, for any (λ1, . . . , λr ) ∈ K̃r and any (λ′1, . . . , λ
′
r ) ∈ K̃r , if we note

(z1, . . . , zr ) := (ϕω(λ1) +
√
−1ϕω(λ′1), . . . , ϕω(λr ) +

√
−1ϕω(λ′r )),

then

‖z1e1 + · · · + zrer ‖2
ω,C 6 (z1, . . . , zr )A∗A

©«
z1
...

zr

ª®®¬ 6 r ′‖z1e1 + · · · + zrer ‖2
ω,C,

where the norm ‖·‖ω,C is defined as follows

∀ (x, y) ∈ E2
Kω
, ‖x +

√
−1y‖ω,C := (‖x‖2

ω + ‖y‖2
ω)

−1/2.

For any A ∈ Cr×r , let E(A) be the subset of Cr defined as

{x ∈ Cr : t xA∗Ax 6 1}.

For any ω ∈ Ω∞, let

Bω := {(x1, . . . , xr ) ∈ Cr : ‖x1e1 + · · · + xrer ‖ω,C 6 1}.

Then a matrix A belongs to G(ω) if and only if the following conditions hold

(r ′)−1/2Bω ⊆ E(A) ⊆ Bω .
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In fact, this relation is equivalent to, for any (z1, . . . , zr ) ∈ Cr ,

‖z1e1 + · · · + zrer ‖2
ω,C 6 (z1, . . . , zr )A∗A

©«
z1
...

zr

ª®®¬ 6 r ′‖z1e1 + · · · + zrer ‖2
ω,C. (4.16)

Hence it implies that A ∈ G(ω). The converse implication is also true since ϕω(K̃)+√
−1ϕω(K̃) is dense in C if Kω = R, and ϕω(K̃) is dense in C if Kω = C.
Let δ > 0 such that (1 + δ)

√
r <

√
r ′. By Theorem 1.2.54 (see also Remark

1.2.55), there exists a Hermitian matrix A0 such that

(1 + δ)−1r−1/2Bω ⊆ E(A0) ⊆ (1 + δ)−1Bω .

This shows that A0 belongs to the interior of G(ω) and hence the interior G(ω)◦ of
G(ω) is not empty. We denote by F(ω) the closure of G(ω)◦. If U is an open subset
of Cr×r , one has

{ω ∈ Ω∞ : U ∩ F(ω) , �} = {ω ∈ Ω∞ : U ∩ G(ω)◦ , �}

=
⋃

A∈Q
r×r

∩U

{ω ∈ Ω∞ : A ∈ G(ω)◦},

where Q denotes the set of algebraic numbers in C. For any matrix A ∈ Cr×r

{ω ∈ Ω∞,c : A ∈ G(ω)◦} =
⋃

µ∈Q∩(0,1)

⋂
λ=(λ1 ,...,λr )∈K̃r

Ω∞,c(µ,λ),

where Ω∞,c(µ,λ1, . . . , λr ) is the set of ω ∈ Ω∞,c such that

(1 + µ)‖λ1e1 + · · · + λrer ‖2
ω 6 (ϕω(λ1), . . . , ϕω(λr ))A∗A

©«
ϕω(λ1)

...
ϕω(λr )

ª®®¬
6 (1 − µ)r ′‖λ1e1 + · · · + λrer ‖2

ω .

Note that Ω∞(µ,λ1, . . . , λr ) belongs to A since the functions

(ω ∈ Ω∞) 7−→ ‖λ1e1 + · · · + λrer ‖2
ω

and
(ω ∈ Ωω) 7−→ ϕω(λi) (i ∈ {1, . . . ,r})

are A|Ω∞
-measurable. We then deduce that {ω ∈ Ω∞,c : A ∈ G(ω)◦} belongs to

A. Similarly,
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{ω ∈ Ω∞ \Ω∞,c : A ∈ G(ω)◦}

=
⋃

µ∈Q∩(0,1)

⋂
λ=(λ1 ,...,λr )∈K̃

r

λ′=(λ′1 ,...,λ
′
r )∈K̃

r (Ω∞\Ω∞,c )(µ,λ,λ′)

,

where (Ω∞ \Ω∞,c)(µ,λ, λ
′) is the set of ω ∈ Ω∞,c such that

(1 + µ)
(
‖λ1e1 + · · · + λrer ‖2

ω + ‖λ1e1 + · · · + λrer ‖2
ω

)
6 (z1(ω), . . . , zr (ω))A∗A

©«
z1(ω)
...

zn(ω)

ª®®¬
6 (1 − µ)r ′

(
‖λ1e1 + · · · + λrer ‖2

ω + ‖λ′1e1 + · · · + λ
′
rer ‖2

ω

)
.

Hence {ω ∈ Ω∞ \Ω∞,c : A ∈ G(ω)◦} belongs to A.
Gathering the results we obtained, one can conclude that

{ω ∈ Ω∞ : U ∩ F(ω) , �}

belongs to A, so that by the measurable selection theorem of Kuratowski and
Ryll-Nardzweski (see A.2.1), we obtain that there exists an A|Ω∞

-measurable map
α : Ω∞ → Cr×r such that α(ω) belongs to F(ω) for any (ω ∈ Ω). Finally, for any
ω ∈ Ω∞ and any (λ1, . . . , λr ) ∈ Kr

ω we let (where we extend ϕω by continuity to
Kω → C)

‖λ1e1 + · · · + λrer ‖Hω :=

(ϕω(λ1), . . . , ϕω(λr ))α(ω)
∗α(ω)

©«
ϕω(λ1)

...
ϕω(λr )

ª®®¬


1/2

.

Then ‖·‖Hω is a Hermitian norm which satisfies

‖·‖ω 6 ‖·‖Hω 6 (r + ε)1/2‖·‖ω .

For ω ∈ Ω \ Ω∞, let ‖·‖Hω := ‖·‖ω . Then by the measurability of the map α(·) we
obtain that the norm family ξH := {‖·‖Hω }ω∈Ω is measurable. The theorem is thus
proved. �

4.1.4 Adelic vector bundles

In this section, we introduce the notion of adelic vector bundles on an adelic curve
S = (K, (Ω,A, ν), φ). An adelic vector bundle is a finite-dimensional vector space
E over K equipped with a family of norms indexed by Ω, which satisfies some
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measurability and dominance conditions so that the height of non-zero vectors is
well defined (see Definition 4.1.28). In the classic setting of global fields, the notion
of adelic vector bundles was defined differently in the literature (see for example
[62]): one requires that almost all norms come from a common integral model of
E . However, in our setting it is not relevant to consider integral models. The readers
will discover the link between our definition and the classic one via the dominance
property described in Proposition 4.1.7.

Definition 4.1.28 Let E be a finite-dimensional vector space over K , and ξ be a
norm family in NE . If both norm families ξ and ξ∨ are A-measurable on Ω and if
ξ is dominated (resp. strongly dominated), we say that the couple (E, ξ) is an adelic
vector bundle (resp. a strongly adelic vector bundle) on S. The rank of an adelic
vector bundle or a strongly adelic vector bundle (E, ξ) is defined as the dimension of
E over K .

If the norm family ξ is Hermitian (in this case (E, ξ) is necessarily a strongly
adelic vector bundle), we say that (E, ξ) is a Hermitian adelic vector bundle on S. If
the dimension of E is 1 (in this case ξ is necessarily Hermitian), we say that (E, ξ)
is an adelic line bundle on S.

Proposition 4.1.29 Let E be a vector space of dimension 1 over K and ξ be a norm
family in NE . If ξ is A-measurable and dominated, then (E, ξ) is an adelic line
bundle on S.

Proof Since E is of dimension 1 over K , any dominated norm family is strongly dom-
inated (see Remark 4.1.12). Moreover, by Proposition 4.1.22, if ξ is A-measurable,
then also is ξ∨. �

Proposition 4.1.30 Let (E, ξ) be an adelic line bundle on S. Then (E∨, ξ∨) is an
adelic line bundle on S.

Proof By definition, the norm family ξ∨ is A-measurable on Ω. Moreover, by
Proposition 4.1.19 (3), the norm family ξ∨ is dominated. By Proposition 4.1.29, we
obtain that (E∨, ξ∨) is an adelic line bundle on S. �

The following proposition is fundamental in the height theory of rational points
in a projective space over an adelic curve.

Proposition 4.1.31 Let (E, ξ) be an adelic vector bundle on S.

(1) Any vector subspace of dimension 1 of E equipped with the restriction of the
norm family ξ forms an adelic line bundle on S.

(2) Any quotient vector space of dimension 1 of E equipped with the quotient norm
family of ξ forms an adelic line bundle on S.

Proof (1) Let F be a vector subspace of rank 1 of E and ξF be the restriction of ξ
to F. Clearly ξF is A-measurable. Moreover, by Proposition 4.1.19 (1), the norm
family ξF is dominated. By Proposition 4.1.29, (F, ξF ) is an adelic line bundle on S.

(2) Let G be a quotient space of dimension 1 of E and ξG be the quotient of the
norm family ξ on G. Then G∨ identifies with a vector subspace of dimension 1 of E∨
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and ξ∨G identifies with the restriction of ξ∨ to G∨ (see Proposition 1.1.20). Therefore
(G∨, ξ∨G) is an adelic line bundle on S. Finally, by Proposition 4.1.30 and the fact that
ξG = ξ

∨∨
G (where we identify G with G∨∨), we obtain that (G, ξG) is an adelic line

bundle on S. �

Proposition 4.1.32 (1) Let (E, ξ) be an adelic vector bundle (resp. a strongly adelic
vector bundle) on S, F be a vector subspace of E and ξF be the restriction of
ξ to F. If the norm family ξ∨F is A-measurable, then (F, ξF ) is an adelic vector
bundle (resp. a strongly adelic vector bundle) on S.

(2) Let (E, ξ) be an adelic vector bundle (resp. a strongly adelic vector bundle) on
S, G be a quotient vector space of E and ξG be the quotient norm family of ξ.
If the norm family ξG is A-measurable, then (G, ξG) is an adelic vector bundle
(resp. a strongly adelic vector bundle) on S.

(3) Let (E, ξ) be an adelic vector bundle on S. Assume that the norm family ξ∨∨ is
measurable. Then (E∨, ξ∨) is a strongly adelic vector bundle on S.

(4) Let (E, ξE ) and (F, ξF ) be adelic vector bundles on S. If the norm families
ξE ⊗ε ξF and (ξE ⊗ε ξF )

∨ are A-measurable, then (E ⊗ F, ξE ⊗ε ξF ) is a
strongly adelic vector bundle on S. Similarly, (E ⊗ F, ξE ⊗ε,π ξF ) is a strongly
adelic vector bundle on S provided that the both norm families ξE ⊗ε,π ξF and
(ξE ⊗ε,π ξF )

∨ are measurable. If in addition ξE and ξF are both Hermitian,
and if both norm families ξE ⊗ ξF and (ξE ⊗ ξF )

∨ are A-measurable, then the
orthogonal tensor product (E ⊗ F, ξE ⊗ ξF ) is a Hermitian adelic vector bundle
on S.

(5) Let (E, ξ) be an adelic vector bundle on S. If det(ξ) is A-measurable then
(det(E),det(ξ)) is an adelic line bundle on S.

Proof These assertions are direct consequences of Proposition 4.1.19. We just men-
tion below some particular points. For the assertion (1), since ξ is A-measurable,
by definition ξF is also measurable. For the assertion (2), since ξ∨ is A-measurable,
and ξ∨G identifies with the restriction of ξ∨ to G∨, it is also A-measurable. For the
last assertion, since det(E) is of dimension 1 on K , the A-measurability of det(ξ)
implies that of its dual. �

Corollary 4.1.33 Let (E1, ξ1) and (E2, ξ2) be adelic line bundles on S. Then the
tensor product (E1 ⊗ E2, ξ1 ⊗ ξ2) is also an adelic line bundle on S.

Proof By Proposition 4.1.22 (3), the tensor product norm family ξ1 ⊗ ξ2 is A-
measurable. By Proposition 4.1.32 (4), we obtain that (E1 ⊗ E2, ξ1 ⊗ ξ2) is an adelic
line bundle on S. �

Remark 4.1.34 By using the measurability results obtained in the previous subsec-
tion (notably Proposition 4.1.24), we obtain that the assertions of Proposition 4.1.32
remain true without supplementary measurability assumptions, if the σ-algebra A is
discrete, or if the field K admits a countable subfield which is dense in all completions
Kω , ω ∈ Ω.

In the case of direct sums, the measurability result in Proposition 4.1.21 leads to
the following criterion (without any condition on K).
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Proposition 4.1.35 Let (E, ξE ) and (F, ξF ) be adelic vector bundles (resp. a strongly
adelic vector bundle) on S, and ψ : (ω ∈ Ω) 7→ ψω ∈ S be an A-measurable map.
We assume that there exists a measurable subset Ω′ of Ω such that ν(Ω′) < +∞ and
that ψω = ψ0 on Ω \ Ω′, where ψ0 denotes the function in S sending t ∈ [0,1] to
max{t,1 − t}. Then (E ⊕ F, ξE ⊕ψ ξF ) is an adelic vector bundle (resp. a strongly
adelic vector bundle) on S.

Proof Since (E, ξE ) and (F, ξF ) are adelic vector bundles (resp. strongly adelic
vector bundles) on S, the norm families ξE , ξF , ξ∨E and ξ∨F are all A-measurable,
and the norm families ξE and ξF are dominated (resp. strongly dominated).

By Proposition 4.1.21, the ψ-direct sum ξE ⊕ψ ξF is also A-measurable. Let
ψ ′ = {ψ ′

ω}ω∈Ω be the family in S such that ψω = ψ0 on Ω \ Ω∞ and ψ ′
ω = ψω,∗

(see Definition 1.1.48) on Ω∞, then one has

(ξE ⊕ψ ξF )
∨ = ξ∨E ⊕ψ′ ξ∨F .

Note that the map from S to itself sending ϕ ∈ S to ϕ∗ is continuous. This is
a consequence of (1.11) and Proposition 1.1.43. Therefore, the map ψ ′ is also A-
measurable. Still by Proposition 4.1.21, we obtain that the norm family (ξE ⊕ ξF )

∨

is A-measurable.
By Proposition 4.1.19 (4), the norm family ξE ⊕ψ ξF is dominated (resp. strongly

dominated). Therefore (E ⊕ F, ξE ⊕ψ ξF ) is an adelic vector bundle (resp. strongly
adelic vector bundle) on S. �

4.1.5 Examples

In this subsection, we present several examples of adelic vector bundles, which
include most classic constructions.

Torsion free coherent sheaves

Let k be a field and X be a normal projective scheme of dimension d > 1 over Spec k,
equipped with a family {Di}

d−1
i=1 of ample divisors on X . Let K = k(X) be the field

of rational functions on X and Ω = X (1), equipped with the discrete σ-algebra. We
have seen in §3.2.4 that S = (K, (Ω,A, ν), φ) is an adelic curve, where the measure
ν is defined as

∀Y ∈ Ω = X (1), ν({Y }) = deg(D1 · · · Dd−1 ∩ [Y ])

and the map φ : Ω→ MK sends Y ∈ Ω to |·|Y = e− ordY (·).
Let E be a torsion-free (namely the canonical homomorphism E → E∨∨ is

injective) coherent sheaf on X and E := E ⊗OX
K . The latter is a finite-dimensional

vector space over K . Moreover, for any Y ∈ Ω, E ⊗OX
OX ,Y is a torsion-free module
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of finite type over the discrete valuation ring OX ,Y (the local ring of X at the generic
point of Y ), hence is a free OX ,Y -module of finite rank. We define a norm ‖·‖Y on
E ⊗K KY as follows

∀ s ∈ E ⊗K KY , ‖s‖Y := inf{|a|Y : a ∈ K×
Y , a−1s ∈ E ⊗OX

ÔX ,Y },

where ÔX ,Y is the completion of OX ,Y , which identifies with the valuation ring of
KY (the completion of K with respect to |·|Y ). This norm is clearly ultrametric. Thus
we obtain a Hermitian norm family in NE , which we denote by ξE . Note that the
dual norm family ξ∨

E
identifies with ξE∨ , where E∨ denotes the dual OX -module of

E.
Since torsion-free coherent sheaves are locally free on codimension 1, we obtain

that, for any basis e of E , the norms ‖·‖Y and ‖·‖e,Y are identical for all but a finite
number of Y ∈ Ω. Therefore, the couple (E, ξE) is a strongly adelic vector bundle on
S.

Hermitian vector bundles on an arithmetic curve

Let K be a number field and OK be the ring of algebraic integers in K . Recall that
a Hermitian vector bundle on SpecOK is by definition a couple (E, {‖·‖σ}σ:K→C),
where E is a projectiveOK -module of finite rank, and for any embeddingσ : K → C,
‖·‖σ is a Hermitian norm on E⊗OK ,σC. We also require that the norms {‖·‖σ}σ:K→C

are invariant under the complex conjugation, namely for s1, . . . , sn in E, λ1, . . . , λn
in C, and σ : K → C, one has

‖λ1 ⊗ s1 + · · · + λn ⊗ sn‖σ = ‖λ1 ⊗ s1 + · · · + λn ⊗ sn‖σ .

We let E := E ⊗OK
K .

Let S = (K, (Ω,A, ν), φ) be the adelic curve associated with the number field K ,
as described in §3.2.2. Recall that Ω is the set of all places of K , A is the discrete
σ-algebra on Ω and ν({ω}) = [Kω : Qω].

Recall that any finite place of K is determined by a maximal ideal p of OK . Let
ÔK ,p be the completion of the local ring OK ,p, which is also the valuation ring of
Kp. We construct a norm ‖·‖p as follows

∀ s ∈ E ⊗K Kp, ‖s‖p := inf{|a|p : a ∈ K×
p , a−1s ∈ E ⊗OK

ÔK ,p}.

Let v be an Archimedean place of K . Then v corresponds to an embedding σ of K
into C, we let ‖·‖v be the restriction of ‖·‖σ to E ⊗K Kv . Note that the condition
that the norms {‖·‖σ}σ:K→C are invariant under the complex conjugation ensures
that the norm ‖·‖v does not depend on the choice of the embedding σ : K → C
corresponding to v. Thus we obtain a norm family ξ = {‖·‖v}v∈Ω in NE . Since E is
a locally free sheaf, we obtain that, for any basis e of E over K , one has ‖·‖v = ‖·‖e,v
for all but a finite number of v.
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Ultrametrically normed vector space over a trivially valued field

Let K be an arbitrary field and Ω be the one point set {ω}. Let |·|ω be the trivial
absolute value on K . We then obtain an adelic curve S by taking the discrete σ-
algebra A on Ω and the measure ν on (Ω,A) such that ν({ω}) = 1. Then any
ultrametrically normed finite-dimensional vector space over K is a strongly adelic
vector bundle on S.

Remark 4.1.36 Let K be a number field and E be a finite-dimensional vector space
over K . In [62, §3], a structure of adelic vector bundle on E has been defined as a
norm family ξ ∈ NE such that, for all but finitely many ω ∈ Ω (where Ω denotes
the set of all places of K), the norm ξω is induced by a projective OK -module of
finite type E. Clearly such a structure of adelic vector bundle is a dominated norm
family. We denote by D◦

E the subset of DE consisting of all structures of adelic
vector bundles in the sense of [62]. We claim that D◦

E is dense in DE (with respect
to the metric dist(·, ·) defined in Remark 4.1.20). In other words, given a dominated
norm family ξ on E , there exists a sequence {ξn}n∈N in D◦

E which converges to
ξ. In fact, we can choose an arbitrary element ξ0 in D◦

E . The main point is that, if
we modify finitely many norms in the family ξ0, we still obtain a norm family in
D◦

E . Since the local distance function d(ξ, ξ0) is ν-dominated, we can construct a
sequence {Ωn}n>1 of subsets of Ω, such that Ω \Ωn is a finite set and that

lim
n→+∞

∫
Ω

1lΩn (ω)dω(ξ, ξ0) ν(dω) = 0. (4.17)

We then let ξn be the norm family such that

ξn,ω =

{
ξ0,ω, ω ∈ Ωn

ξω, ω ∈ Ω \Ωn.

Then the sequence {ξn}n∈N is contained in D◦
E and converges to ξ (see (4.17)).

Combined with the completeness of the space DE explained in Remark 4.1.20, we
obtain that DE is actually the completion of the metric space D◦

E .

4.2 Adelic divisors

Let S = (K, (Ω,A, ν), φ) be an adelic curve. We call adelic divisor on S any element
ζ in the vector space L1(Ω,A, ν) (see Section A.5). For the reason of customs
of arithmetic geometry, we use the notation D̂ivR(S) to denote the vector space
L1(Ω,A, ν).

If ζ is an adelic divisor on S, we define its Arakelov degree as

deg(ζ) :=
∫
Ω

ζ(ω) ν(dω) ∈ R. (4.18)
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The function deg is a continuous linear form on D̂ivR(S). If a is an element of K×,
we denote by (̂a) the adelic divisor represented by the function which sends ω ∈ Ω

to − ln |a|ω , called the adelic divisor associated with a. The map

(̂·) : K× −→ D̂ivR(S)

is additive and hence extends to anR-linear homomorphism from K×⊗ZR to D̂ivR(S),
which we denote by (̂·)R. The closure of the image of this map is denoted by �PDivR(S)
and the elements of this vector space are called principal adelic divisors. We denote
by ĈlR(S) the quotient space D̂ivR(S)/�PDivR(S). Note that it forms actually a Banach
space with respect to the quotient norm. Two adelic divisors lying in the same
equivalent class in ĈlR(S) are said to be R-linearly equivalent.

We say that an adelic divisor ζ on S is effective if ζ is ν-almost everywhere non-
negative. Denote by D̂ivR(S)+ the cone of all effective adelic divisors on S. Clearly,
if ζ is effective, then deg(ζ) > 0.

Let S′ = (K ′, (Ω′,A ′, ν′), φ′) be another adelic curve and α = (α#, α#, Iα) : S′ →

S be a morphism of adelic curves (see Section 3.7). If ζ is an adelic divisor on S,
which is represented by an element f ∈ L 1(Ω,A, ν), we denote by α∗(ζ) the adelic
divisor on S′ represented by the function f ◦ α# (the equivalence class of f ◦ α#
does not depend on the choice of the representative f since ν identifies with the
direct image of ν′ by α#). If ζ ′ is an adelic divisor on S′, we denote by α∗(ζ ′) the
adelic divisor Iα(ζ ′) on S. Since Iα is a disintegration kernel of ν′ over ν, one has
α∗(α

∗(ζ)) = ζ for any adelic divisor ζ on S.
We assume that S is proper. Then one has deg(ζ) = 0 if ζ is a principal adelic

divisor. This is a direct consequence of the product formula and the fact that deg(·) is
a continuous linear operator. Therefore the R-linear map deg(·) induces by passing
to quotient a continuous R-linear map from ĈlR(S) to R which sends any class [ζ]
to deg(ζ). We still denote this linear map by deg(·) by abuse of notation.

4.3 Arakelov degree and slopes

The purpose of this section is to generalise the theory of Arakelov degree and slopes
to the setting of adelic vector bundles over adelic curves. Throughout the section,
let S = (K, (Ω,A, ν), φ) be a proper adelic curve. For all subsections except the first
one, we assume in addition that, either the σ-algebra A is discrete, or there exists a
countable subfield K0 of K which is dense in all Kω , ω ∈ Ω.

4.3.1 Arakelov degree of adelic line bundles

Definition 4.3.1 Let E be a finite-dimensional vector space over K and ξ be a
dominated and measurable norm family on E . If s is a non-zero vector of E , then the
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function (ω ∈ Ω) 7→ ln‖s‖ω is ν-dominated and A-measure, hence is ν-integrable.
We denote d̂ivξ (s) by the adelic divisor defined by this function, which is called the
adelic divisor of s with respect to ξ. We define the Arakelov degree of s with respect
to ξ as the Arakelov degree of d̂ivξ (s), that is,

d̂egξ (s) := deg
(
d̂ivξ (s)

)
= −

∫
Ω

ln ‖s‖ω ν(dω).

Moreover, by the product formula (3.1) we obtain that, for any a ∈ K×, one has

d̂egξ (as) = d̂egξ (s). (4.19)

Remark 4.3.2 We assume E = Kn and ξ = {‖·‖ω}ω∈Ω is given by

‖(a1, . . . ,an)‖ω = max{|a1 |ω, . . . , |an |ω}

for each ω ∈ Ω. Then hS(s) = −d̂egξ (s) for all s ∈ E \ {0} (for the definition of hS ,
see Defintion 3.5.1).

Remark 4.3.3 Let E be a finite-dimensional vector space over K and ξ = {‖·‖ω}ω∈Ω

be a family of seminorms, where ‖·‖ω is a seminorm on E ⊗K Kω . If s is an element
of E such that the function (ω ∈ Ω) 7→ ‖s‖ω is measurable and upper dominated,
we denote by d̂egξ (s) the value

−

∫
Ω

ln‖s‖ω ν(dω) ∈ ]−∞,+∞].

Since the adelic curve S is proper, for any a ∈ K×, one has d̂egξ (as) = d̂egξ (s). This
notation will be used in Chapter 7 on families of supremum seminorms.

Definition 4.3.4 Let (E, ξ) be an adelic line bundle on S. We call Arakelov degree of
(E, ξ) the number d̂egξ (s), where s is a non-zero element of E . Note that the relation
(4.19) shows that the definition does not depend on the choice of the non-zero
element s of E . We denote the Arakelov degree of (E, ξ) by d̂eg(E, ξ).

Proposition 4.3.5 Let (E, ξ) be an adelic line bundle on S. Then (E∨, ξ∨) is also an
adelic line bundle on S. Moreover, one has

d̂eg(E∨, ξ∨) = −d̂eg(E, ξ). (4.20)

Proof By Proposition 4.1.30, the couple (E∨, ξ∨) is also an adelic line bundle, so
that the Arakelov degree d̂eg(E∨, ξ∨) is well defined. If α is a non-zero element of
E∨ and s is a non-zero element of E then one has

∀ω ∈ Ω, |α(s)|ω = ‖α‖ω,∗ · ‖s‖ω .

By the product formula
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Ω

ln |α(s)|ω ν(dω) = 0,

we obtain the equality (4.20). �

Proposition 4.3.6 Let (E1, ξ1) and (E2, ξ2) be adelic line bundles on S. Let E =
E1 ⊗K E2 and ξ = ξ1 ⊗ε ξ2 (which is also equal to ξ1 ⊗ ξ2 and ξ1 ⊗π ξ2). Then one
has

d̂eg(E1 ⊗ E2, ξ1 ⊗ ξ2) = d̂eg(E1, ξ1) + d̂eg(E2, ξ2). (4.21)

Proof Let s1 and s2 be non-zero elements of E1 and E2, respectively. For anyω ∈ Ω,
one has

ln ‖s1 ⊗ s2‖ω = ln ‖s1‖ω + ln ‖s2‖ω . (4.22)

By taking the integral with respect to ν, we obtain the equality (4.21). �

4.3.2 Arakelov degree of adelic vector bundles

From now on and until the end of the section, we assume that, either the σ-algebra
A is discrete, or there exists a countable subfield K0 of K which is dense in each
Kω , where ω ∈ Ω.

Definition 4.3.7 Let (E, ξ) be an adelic vector bundle on S. By Proposition 4.1.32,
(det(E),det(ξ)) is an adelic line bundle on S. We define the Arakelov degree of (E, ξ)
as

d̂eg(E, ξ) := d̂eg(det(E),det(ξ)).

Note that, the Arakelov degree of the zero adelic vector bundle is 0. By Proposition
1.2.15, one has det(ξ) = det(ξ∨∨). Therefore

d̂eg(E, ξ) = d̂eg(E, ξ∨∨). (4.23)

Proposition 4.3.8 Let (E, ξ) be a Hermitian adelic vector bundle on S. One has

d̂eg(E, ξ) = −d̂eg(E∨, ξ∨). (4.24)

Proof The determinant of E∨ is canonically isomorphic to the dual vector space of
det(E), and the norm family det(ξ∨) identifies with det(ξ)∨ under this isomorphism
(see Proposition 1.2.47), provided that ξ is Hermitian. Therefore, by Proposition
4.3.5 we obtain the equalities. �

Definition 4.3.9 Let (E, ξ) be an adelic vector bundle on S. We denote by δ(ξ) the
function on Ω sending ω ∈ Ω to δω(ξ) := δ(EKω , ‖·‖ω) (see §1.2.7). Recall that the
function δ(ξ) is identically 1 on Ω \Ω∞ (see Proposition 1.2.47), and takes value in
[1,rr/2] onΩ∞ (see Proposition 1.2.46 and the inequalities (1.44) and (1.47)), where
r is the dimension of E over K . In particular, the function ln δ(ξ) is ν-dominated
since it is bounded and vanishes outside a set of finite measure.
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Similarly, we denote by ∆(ξ) the function on Ω sending ω ∈ Ω to ∆ω(ξ) :=
∆(EKω , ‖·‖ω) (see Definition 1.2.41). This function is bounded from below by the
constant function 1. Moreover, it identifies with the constant function 1 if ξ is
Hermitian.

Proposition 4.3.10 Let (E, ξ = {‖·‖ω}ω∈Ω) be an adelic vector bundle on S. Then
the function (ω ∈ Ω) 7→ δω(ξ) is A-measurable and its logarithm is integrable with
respect to ν. It is a constant function of value 1 when ‖·‖ω is induced by an inner
product once ω ∈ Ω∞. Moreover, the following relations hold

0 6 d̂eg(E, ξ) + d̂eg(E∨, ξ∨)

=

∫
Ω

ln(δω(ξ)) ν(dω) 6
1
2

dimK (E) ln(dimK (E))ν(Ω∞). (4.25)

In particular, one has d̂eg(E, ξ) + d̂eg(E∨, ξ∨) = 0 if for any ω ∈ Ω∞ the norm ‖·‖ω
is induced by an inner product.

Proof By Proposition 4.1.32, we obtain that both couples (det(E),det(ξ)) and
(det(E∨),det(ξ∨)) are adelic line bundles on S. Let η be a non-zero element in
det(E) and η∨ be its dual element in det(ξ). By (1.38), one has

(− ln ‖η‖ω,det) + (− ln ‖η∨‖ω,∗,det) = ln δω(ξ).

Therefore the function (ω ∈ Ω) 7→ δω(ξ) isA-measurable. Moreover, by Proposition
1.2.47 we obtain that δω(ξ) = 1 if ω ∈ Ω \ Ω∞ or if ω ∈ Ω∞ and the norm ‖·‖ω is
induced by an inner product. Therefore (4.25) follows from the inequalities

0 6 ln δ(ξ) 6
1
2

dimK (E) ln(dimK (E))1lΩ∞
,

which also implies the ν-integrability of ln δ(ξ). �

Proposition 4.3.11 Let (E, ξ) be a strongly adelic vector bundle on S. The function
ln∆(ξ) is ν-dominated.

Proof Let e = {ei}ri=1 be a basis of E over K . By Corollary 4.1.10, the local distance
function (ω ∈ Ω) 7→ dω(ξ, ξe) is ν-dominated. We write the norm families ξ and ξe
in the form of ξ = {‖·‖ω}ω∈Ω and ξe = {‖·‖e,ω}ω∈Ω, respectively. Let ω ∈ Ω. If
‖·‖h,ω is a norm on EKω bounded from below by ‖·‖e,ω , which is either ultrametric
or induced by an inner product, then the norm edω (ξ,ξe )‖·‖h,ω is bounded from below
by ‖·‖ω . This norm is also ultrametric or induced by an inner product. Therefore we
obtain that

ln∆ω(ξ) 6 ln∆ω(ξe) + dω(ξ, ξe) 6
1
2

r ln(r)1lΩ∞
(ω) + dω(ξ, ξe),

where the second inequality comes from (1.44). Since ν(Ω∞) < +∞ (see Proposition
3.1.2), we obtain that the function ln∆(ξ) is ν-dominated. �
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Definition 4.3.12 Let E = (E, ξ) be an adelic vector bundle on S. We denote by
δ(E) the integral

∫
Ω

ln(δω(ξ)) ν(dω), which is also equal to d̂eg(E, ξ) + d̂eg(E∨, ξ∨)

(see Proposition 4.3.10). We denote by ∆(E) the lower integral
∫
Ω

ln(∆ω(ξ)) ν(dω),
which takes value in [0,+∞]. It is finite once the function (ω ∈ Ω) → dω(ξ, ξ∨∨) is
ν-dominated (see Proposition 4.3.11), namely E is a strongly adelic vector bundle.

Let E , F and G be vector spaces of finite dimension over K , and ξE , ξF and ξG
be norm families in NE , NF and NG respectively. We say that a diagram

0 // (F, ξF )
f // (E, ξE )

g // (G, ξG) // 0

is an exact sequence if

0 // F
f // E

g // G // 0

is an exact sequence of vector spaces over K and if the norm family ξF is the
restriction of ξE to F, and the norm family ξG is the quotient of the norm family of
ξE on G (see §4.1.1, page 206). Note that if ξE is Hermitian, then both norm families
ξF and ξG are Hermitian.

Proposition 4.3.13 Let (E, ξ) be an adelic vector bundle over S and

0 = E0 ⊆ E1 ⊆ . . . ⊆ En = E

be a flag of vector subspaces of E . For any i ∈ {1, . . . ,n}, let ξi be the restriction of
ξ to Ei and let ηi be the quotient norm family of ξi on Ei/Ei−1. Then one has

n∑
i=1

d̂eg(Ei/Ei−1, ηi) 6 d̂eg(E, ξ) (4.26)

and

d̂eg(E, ξ) − ∆(E, ξ) 6
n∑
i=1

(
d̂eg(Ei/Ei−1, ηi) − ∆(Ei/Ei−1, ηi)

)
. (4.27)

If in addition ξ is ultrametric on Ω \Ω∞, then

d̂eg(E, ξ) − δ(E, ξ) 6
n∑
i=1

(
d̂eg(Ei/Ei−1, ηi) − δ(Ei/Ei−1, ηi)

)
. (4.28)

In particular, if ξ is Hermitian, then one has

d̂eg(E, ξ) =
n∑
i=1

d̂eg(Ei/Ei−1, ηi). (4.29)
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Proof For any i ∈ {1, . . . ,n}, we have an exact sequence

0 // (Ei−1, ξi−1) // (Ei, ξi) // (Ei/Ei−1, ηi) // 0 .

In particular, one has a canonical isomorphism (see [28] Chapter III, §7, no.7,
Proposition 10)

det(Ei) � det(Ei−1) ⊗ det(Ei/Ei−1).

For any i ∈ {1, . . . ,n}, we pick a non-zero element αi ∈ det(Ei/Ei−1) and let
βi = α1 ⊗ · · · ⊗ αi , viewed as an element in det(Ei). By convention, let β0 be the
element 1 ∈ det(E0) � K . By Corollary 1.1.68 and Proposition 1.2.43, one has

ln ‖αi ‖ω + ln ‖βi−1‖ω + ln
∆ω(ξi−1)∆ω(ηi)

∆ω(ξi)
6 ln ‖βi ‖ω 6 ln ‖αi ‖ω + ln ‖βi−1‖ω .

If ξ is ultrametric on Ω \Ω∞, then by Proposition 1.2.51, one has

ln ‖αi ‖ω + ln ‖βi−1‖ω + ln
δω(ξi−1)δω(ηi)

δω(ξi)
6 ln ‖βi ‖ω,

Taking the sum with respect to i, we obtain

n∑
i=1

− ln ‖αi ‖ω 6 − ln ‖βn‖ω 6
( n∑
i=1

− ln ‖αi ‖ω

)
+ ln∆ω(ξ) −

( n∑
i=1

ln∆ω(ηi)
)

(4.30)
and, in the case where ξ is ultrametric on Ω \Ω∞,

− ln ‖βn‖ω 6
( n∑
i=1

− ln ‖αi ‖ω

)
+ ln δω(ξ) −

( n∑
i=1

ln δω(ηi)
)
.

By taking the integrals with respect to ν, we obtain the inequalities (4.26) and
(4.28). Moreover, (4.30) leads to

− ln‖βn‖ω +
n∑
i=1

ln∆ω(ηi) 6
( n∑
i=1

− ln ‖αi ‖ω

)
+ ln∆ω(ξ).

Taking the lower integrals, by Proposition A.4.5 and the inequality (A.4) we obtain
(4.27).

If ξ is a Hermitian norm family, then each ηi is a Hermitian norm family, i ∈

{1, . . . ,n}. By Proposition 4.3.10, all functions ln δ(ξ) and ln δ(ηi) vanish. Therefore
the equality (4.29) holds. �

Proposition 4.3.14 Let (E, ξ) be an adelic vector bundle on S. If L/K is an algebraic
extension of fields, then one has det(ξL) = det(ξ)L . In particular, d̂eg(E, ξ) =
d̂eg(EL, ξL).

Proof The relation det(ξL) = (det ξ)L comes from (1) (for the non-Archimedean
case) and (2) (for the Archimedean case) in Proposition 1.3.19.
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Let α be a non-zero element of det(E). For any x ∈ ΩL and ω = πL/K (x),
one has ln ‖α‖x = ln ‖α‖ω . By taking the integral with respect to νL , we obtain
d̂eg(E, ξ) = d̂eg(EL, ξL). �

Definition 4.3.15 Let (E, ξE ) and (F, ξF ) be adelic vector bundles on S. Let f : E →

F be a K-linear map. If f is non-zero, we define the local height function of f as the
real-valued function on Ω sending ω ∈ Ω to ln ‖ fKω ‖, where fKω is the Kω-linear
map EKω → FKω induced by f , and ‖ fKω ‖ is its operator norm.

Proposition 4.3.16 Let (E, ξE ) and (F, ξF ) be adelic vector bundles, and f : E → F
be a K-linear map. The local height function of f is A-measurable. If (E, ξE ) and
(F, ξF ) are strongly adelic vector bundles, then the local height function of f is
ν-dominated.

Proof We first prove the measurability of the local height function. The statement is
trivial when theσ-algebra A is discrete. In the following, we prove the measurability
under the hypothesis that there exists a countable subfield K0 of K which is dense
in each Kω . In this case there exists a countable sub-K0-module E0 of E which
generates E as a vector space over K . For any ω ∈ Ω, viewed as a subset of EKω , E0
is dense. Therefore one has

‖ fKω ‖ = sup
x∈E0\{0}

‖ f (x)‖F ,ω
‖x‖E ,ω .

Since (E, ξE ) and (F, ξF ) are adelic vector bundles, for any x ∈ E0, the functions
(ω ∈ Ω) 7→ ‖x‖E ,ω and (ω ∈ Ω) 7→ ‖ f (x)‖F ,ω are A-measurable. Therefore the
function (ω ∈ Ω) 7→ ln‖ fKω ‖ is A-measurable.

We now proceed with the proof of the dominancy of the function. We consider f
as an element of E∨ ⊗ F and equip this vector space with the norm family ξ∨E ⊗ε ξF
denoted by {‖·‖ω,ε}ω∈Ω. By Remark 1.1.53, the norm of

fKω : (EKω , ‖·‖E ,ω,∗∗) → (FKω , ‖·‖F ,ω,∗∗)

identifies with ‖ f ‖ω,ε . By Proposition 4.1.19 (3) and (5), the norm family ξ∨E ⊗ε ξF
is dominated. Hence the function (ω ∈ Ω) 7→ ln‖ f ‖ω,ε is ν-dominated. Note that
one has �� ln‖ fKω ‖ − ln‖ f ‖ω,ε

�� 6 dω(ξE, ξ∨∨E ) + dω(ξF , ξ∨∨F ),

where ‖ fKω ‖ denotes the operator norm of fKω : (EKω , ‖·‖E ,ω) → (FKω , ‖·‖F ,ω).
As the local distance functions (ω ∈ Ω) 7→ dω(ξE, ξ∨∨E ) and (ω ∈ Ω) 7→ dω(ξF , ξ∨∨F )

are ν-dominated, we obtain that the function (ω ∈ Ω) 7→ ln‖ fKω ‖ is ν-dominated.
The proposition is thus proved. �

Definition 4.3.17 Let (E, ξE ) and (F, ξF ) be adelic vector bundles, and f : E → F
be a K-linear map. We define the height h( f ) of f as the lower integral∫

Ω

ln ‖ fKω ‖ ν(dω).
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By Remark 1.1.53, in the case where ξE and ξF are ultrametric on Ω \Ω∞, one has

h( f ) = −d̂egξ∨E ⊗ε ξF
( f ).

Proposition 4.3.18 Let (E1, ξ1) and (E2, ξ2) be adelic vector bundles on S and f :
E1 → E2 be a K-linear isomorphism. One has

d̂eg(E1, ξ1) − d̂eg(E2, ξ2) = h(det( f )). (4.31)

In particular,
d̂eg(E1, ξ1) 6 d̂eg(E2, ξ2) + rh( f ). (4.32)

Proof By definition one has

h(det( f )) = −d̂eg
(
det(E1)

∨ ⊗ det(E2),det(ξ1)
∨ ⊗ det(ξ2)

)
= −d̂eg(E1, ξ1) + d̂eg(E2, ξ2),

(4.33)

where the second equality comes from Propositions 4.3.5 and 4.3.6. Finally the
inequality (4.32) is a consequence of (4.31) and Proposition 1.1.64. �

4.3.3 Arakelov degree of tensor adelic vector bundles

Let E = (E, ξE ) and F = (F, ξF ) be adelic vector bundles on S. We denote by
E ⊗ε,π F the couple (E ⊗K F, ξE ⊗ε,π ξF ), called the ε, π-tensor product of E and F.
By Proposition 4.1.32 (see also Remark 4.1.34), E ⊗ε,π F is an adelic vector bundle
on S. If both E and F are Hermitian adelic vector bundles, we denote by E ⊗ F
the couple (E ⊗K F, ξE ⊗ ξF ), called the orthogonal tensor product of E and F. By
Proposition 4.1.32, E ⊗ F is a Hermitian adelic vector bundle on S.

Proposition 4.3.19 Let E = (E, ξE ) and F = (F, ξF ) be adelic vector bundles on S.
One has

d̂eg(E ⊗ε,π F) = dimK (F) d̂eg(E) + dimK (E) d̂eg(F). (4.34)

If E and F are Hermitian adelic vector bundles, then one has

d̂eg(E ⊗ F) = dimK (F) d̂eg(E) + dimK (E) d̂eg(F). (4.35)

Proof Let n and m be the dimensions of E and F over K respectively. By Propositions
1.1.69 and 1.2.39, under the canonical isomorphism

det(E)⊗m ⊗ det(F)⊗n � det(E ⊗K F),

the norm family det(ξE )⊗m ⊗ det(ξF )⊗n identifies with det(ξE ⊗ε,π ξF ). Therefore
the equality (4.34) results from Proposition 4.3.6.

The equality (4.35) can be proved in a similar way by using Propositions 1.2.63
and 1.2.39. �
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4.3.4 Positive degree

Let (E, ξ) be an adelic vector bundle on S. We define the positive degree of (E, ξ) as

d̂eg+(E, ξ) := sup
F⊆E

d̂eg(F, ξF ),

where F runs over the set of all vector subspaces of E , and ξF denotes the restriction
of ξ to F. Clearly one has d̂eg(E, ξ) > 0.

Proposition 4.3.20 Let (E, ξE ) be an adelic vector bundle on S, F be a vector
subspace of E and G be the quotient space of E by F. Let ξF be the restriction of ξE
to F and ξG be the quotient of ξE on G. Then one has

d̂eg+(F, ξF ) 6 d̂eg+(E, ξE ) 6 d̂eg+(F, ξF ) + d̂eg+(G, ξG) + ∆(E, ξE ). (4.36)

If in addition (E, ξE ) is ultrametric on Ω \Ω∞, then

d̂eg+(F, ξF ) 6 d̂eg+(E, ξE ) 6 d̂eg+(F, ξF ) + d̂eg+(G, ξG) + δ(E, ξE ). (4.37)

Proof The first inequality of (4.36) follows directly from the definition of positive
degree. In the following, we prove the second inequality of (4.36).

Let E1 be a vector subspace of E , F1 = F ∩ E1 and G1 be the canonical image of
E1 in G. Then we obtain the following short exact sequence of adelic vector bundles:

0 // (F1, ξF1 )
// (E1, ξE1 )

// (G1, ξG1 )
// 0 ,

where ξE1 is the restriction of the norm family ξE , ξF1 is the restriction of ξE1 to
F1 and ξG1 is the quotient norm family of ξE1 on G1. Note that the norm family
ξF1 coincides with the restricted norm family of ξF induced by the inclusion map
F1 → F. Moreover, if we denote by ξ ′G1

the restricted norm family induced by the
inclusion map G1 → G, then the identity map (G1, ξG1 ) → (G1, ξ

′
G1
) has norm 6 1

(see Proposition 1.1.14 (2.b)) on any ω ∈ Ω. In particular, by Proposition 4.3.18 one
has

d̂eg(G1, ξG1 ) 6 d̂eg(G1, ξ
′
G1
) 6 d̂eg+(G, ξG).

Therefore, by Proposition 4.3.13, one has

d̂eg(E1, ξE1 ) 6 d̂eg(F1, ξF1 ) + d̂eg(G1, ξG1 ) + ∆(E1, ξE1 )

6 d̂eg+(F, ξF ) + d̂eg+(G, ξG) + ∆(E1, ξE1 )

6 d̂eg+(F, ξF ) + d̂eg+(G, ξG) + ∆(E, ξE ),

where the last inequality comes from Corollary 1.2.44. Similarly, by Propositions
4.3.13 and 1.2.51, in the case where ξE is ultrametric on Ω \Ω∞ we have

d̂eg(E1, ξE1 ) 6 d̂eg+(F, ξF ) + d̂eg+(G, ξG) + δ(E, ξE ).
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Since E1 ⊆ E is arbitrary, we obtain (4.37). �

Proposition 4.3.21 Let (E, ξ = {‖·‖ω}ω∈Ω) be an adelic vector bundle on S. Then
we have the following:

(1) Let (F, η) be an adelic vector bundle on S such that F is a vector subspace of E
and η > ξF on F. Then d̂eg+(F, η) 6 d̂eg+(F, ξF ) 6 d̂eg+(E, ξ).

(2) Let ϕ be an integrable function on Ω. Then
d̂eg+(E,exp(−ϕ)ξ) 6 d̂eg+(E, ξ) + dimK (E)

����∫
Ω

ϕ(ω) ν(dω)
����,

d̂eg+(E,exp(ϕ)ξ) > d̂eg+(E, ξ) − dimK (E)

����∫
Ω

ϕ(ω) ν(dω)
���� .

Moreover, if
∫
Ω

ϕ ν(dω) > 0, then

d̂eg+(E, ξ) 6 d̂eg+(E,exp(−ϕ)ξ) and d̂eg+(E,exp(ϕ)ξ) 6 d̂eg+(E, ξ).

Proof (1) The inequality d̂eg+(F, ξF ) 6 d̂eg+(E, ξ) has been proved in Proposi-
tion 4.3.20. For ε > 0, there is a vector subspace W of F such that

d̂eg+(F, η) − ε 6 d̂eg(W, ηW ),

so that
d̂eg+(F, η) − ε 6 d̂eg(W, ηW ) 6 d̂eg(W, ξW ) 6 d̂eg+(F, ξF ),

as required.
(2) Let F be a vector subspace of E over K . Then

d̂eg(F,exp(−ϕ)ξF ) = d̂eg(F, ξF ) + dimK (F)
∫
Ω

ϕ(ω) ν(dω), (4.38)

so that if
∫
Ω

ϕν(dω) > 0, then d̂eg(F,exp(−ϕ)ξF ) > d̂eg(F, ξF ), which leads to the
third inequality. Moreover, by (4.38),

d̂eg(F,exp(−ϕ)ξF ) 6 d̂eg+(E,exp(−ϕ)ξ) + dimK (E)

����∫
Ω

ϕ(ω) ν(dω)
���� ,

and hence the first inequality follows.
If we set ξ ′ = exp(ϕ)ξ, then the first and third inequalities imply the second and

fourth inequalities, respectively. �
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4.3.5 Riemann-Roch formula

Here we consider a Riemann-Roch formula of an adelic vector bundle on S.

Proposition 4.3.22 Let V = (V, ξ) be an adelic vector bundle on S. Then one has

0 6 d̂eg(V) −

(
d̂eg+(V

∨∨) − d̂eg+(V
∨)

)
6 δ(V). (4.39)

If ξ is ultrametric on Ω \Ω∞, then one has

0 6 d̂eg(V) −

(
d̂eg+(V) − d̂eg+(V

∨)

)
6 δ(V). (4.40)

Proof Let ε > 0. We choose a vector subspace W of V such that d̂eg(W, ξW ) >

d̂eg+(V) − ε , where ξW is the restriction of ξ to W . Let ξ∨ be the dual norm family
of ξ on V∨, ξV/W be the quotient norm family of ξ on V/W , and ξ∨

V/W
be the dual

norm family of ξV/W on (V/W)∨. If we consider (V/W)∨ as a vector subspace of
V∨, then ξ∨

V/W
identifies with the restriction of ξ∨ to (V/W)∨ by Proposition 1.1.20,

so that
d̂eg((V/W)∨, ξ∨V/W ) 6 d̂eg+(V

∨, ξ∨).

On the other hand, one has

d̂eg((V/W)∨, ξ∨V/W ) + d̂eg(V/W, ξV/W ) > 0

by Proposition 4.3.10 and

d̂eg(W, ξW ) + d̂eg(V/W, ξV/W ) 6 d̂eg(V, ξ)

by Proposition 4.3.13. Therefore,

d̂eg+(V
∨, ξ∨) > d̂eg((V/W)∨, ξ∨V/W ) > − d̂eg(V/W, ξV/W )

> d̂eg(W, ξW ) − d̂eg(V, ξ) > d̂eg+(V, ξ) − d̂eg(V, ξ) − ε

and hence
d̂eg+(V) − d̂eg+(V

∨) 6 d̂eg(V). (4.41)

Replacing V by V∨ in (4.41), we obtain

d̂eg+(V
∨) − d̂eg+(V

∨∨) 6 d̂eg(V∨), (4.42)

which, by Proposition 4.3.10, implies the second inequality of (4.39). Replacing V
by V∨∨ in (4.41), by the fact that ‖·‖ω,∗∗,∗ = ‖·‖ω,∗ for any ω ∈ Ω (see Proposition
1.2.14 (1)) and the equality (4.23) we obtain

d̂eg+(V
∨∨) − d̂eg+(V

∨) 6 d̂eg(V), (4.43)
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which leads to the first inequality of (4.39).
In the case where ξ is ultrametric onΩ\Ω∞, one has ‖·‖ω = ‖·‖ω,∗∗ for allω ∈ Ω

by Proposition 1.1.18 (Archimedean case) and Corollary 1.2.12. Thus (4.40) follows
from (4.39). �

4.3.6 Comparison of ̂deg+ and ̂h0 in the classic setting

In this subsection, we compare d̂eg+ with the invariant ĥ0 in the classic settings of
vector bundles on a regular projective curve and Hermitian vector bundles on an
arithmetic curve.

4.3.6.1 Function field case

Let k be a field, C be a regular projective curve over Spec k and K = k(C) be
the field of rational functions on C. Let Ω be the set of all closed points of the
curve C, equipped with the discrete σ-algebra A and the measure ν such that
ν({x}) = [k(x) : k] for any x ∈ Ω. Let φ : Ω → MK be the map sending x to
|·|x = e−ordx (·). We have seen in §3.2.1 that S = (K, (Ω,A, ν), φ) is an adelic curve.

Let E be a locally free OC-module of finite type and E = EK := E ⊗OC
K be its

generic fibre. For any x ∈ Ω, let ‖·‖x be the norm on E ⊗K Kx defined as

∀ s ∈ E ⊗K Kx, ‖s‖x = inf{|a|x : a ∈ K×
x , a−1s ∈ E ⊗OC ,x

ÔC ,x, }

where ÔC ,x is the completion of OC ,x , which identifies with the valuation ring of
Kx . Then ξE = {‖·‖x}x∈Ω forms a Hermitian norm family on E and (E, ξE) is an
adelic vector bundle on Ω. Note that the Arakelov degree of (E, ξE) identifies with
the degree of the locally free OC-module E, namely

d̂eg(E, ξE) = deg(c1(E) ∩ [C]).

The Harder-Narasimhan flag of (E, ξE) is also related to the classic construction of
Harder-Narasimhan filtration of E. In fact, there exists a unique flag of locally free
OC-modules

0 = E0 ( E1 ( . . . ( En = E

such that each sub-quotient Ei/Ei−1 is a locally free OC-module which is semistable
and that

µ(E1/E0) > µ(E2/E1) > . . . > µ(En/En−1).

Then the Harder-Narasimhan flag of the Hermitian adelic vector bundle (E, ξE) is
given by

0 = E0,K ( E1,K ( . . . ( En,K = E .



254 4 Vector bundles on adelic curves: global theory

The notion of positive degree for locally free OC-modules of finite rank has been
proposed in [42] and compared with the dimension (over k) of the vector space of
global sections, by using the Riemann-Roch formula on curves. For any locally free
OC-module of finite rank E, we denote by h0(E) the dimension of H0(C,E) over k.

Theorem 4.3.23 Let g(C) be the genus of C relatively to the field k (namely g(C) =

h0(ωC/k), ωC/k being the relative dualising sheaf of C over Spec k). For any locally
free OC-module of finite rank E, one has

|h0(E) − d̂eg+(E, ξE)| 6 dimK (E)max(g(C) − 1,1). (4.44)

We refer the readers to [42, §2] for a proof.

4.3.6.2 Number field case

Let K be a number field andΩ be the set of all places of K , equipped with the discrete
σ-algebra A. For each ω ∈ Ω, we denote by |·|ω the absolute value on K extending
either the usual absolute value on Q or one of the p-adic absolute values (with
|p|ω = p−1 in the latter case). We let Kω (resp. Qω) be the completion of K (resp.
Q) with respect to the absolute value |·|ω . Let ν be the measure on the measurable
space (Ω,A) such that ν({ω}) = [Kω : Qω]. Then S = (K, (Ω,A, ν), φ : ω 7→ |·|ω)

forms an adelic curve.
Let OK be the ring of algebraic integers in K . Recall that a Hermitian vector

bundle on SpecOK is by definition the data E = (E, {‖·‖σ}σ∈Ω∞
) of a projective

OK -module of finite type E together with a family of norms, where ‖·‖σ is a norm
on the vector space E ⊗OK

Kω which is induced by an inner product. Similarly to the
function field case, theOK -module structure ofE induces, for each non-Archimedean
place p ∈ Ω \Ω∞, an ultrametric norm ‖·‖p on E ⊗OK

Kp as follows :

∀ s ∈ E ⊗OK
Kp, ‖s‖p = inf{|a|p : a ∈ K×

p , a−1s ∈ E ⊗OK
Op},

where Op is the valuation ring of Kp. Let E be E⊗OK
K and let ξ

E
be the norm family

{‖·‖ω}ω∈Ω. Then the couple (E, ξ
E
) forms an adelic vector bundle on S, which is

said to be induced by E.
Recall that the space Ĥ0(E) of “global sections” of E is defined as

Ĥ0(E) := {s ∈ E : supσ∈Ω∞
‖s‖σ 6 1} = {s ∈ E : supω∈Ω ‖s‖ω 6 1}.

This is a finite set. However it does not possess a natural vector space structure
over a base field. We define (compare to the case of function field of a regular
projective curve over a finite field) ĥ0(E) to be ln card(Ĥ0(E)). The invariants ĥ0(E)

and d̂eg+(E, ξE) have been compared in [42, §6] (see also [37]). We denote by

– Bn the unit ball in Rn, where n ∈ N,
– vol(Bn) the Lebesgue measure of Bn, which is equal to πn/2/Γ(n/2 + 1),
– r1(K) the number of real places of K ,
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– r2(K) the number of complex places of K .

Theorem 4.3.24 Let E be a Hermitian vector bundle on SpecOK , and (E, ξ
E
) be

the adelic vector bundle on S induced by E. then

| ĥ0(E) − d̂eg+(E, ξE)| 6 dimK (E) ln |DK | + C(K,dimK (E)),

where DK is the discriminant of K over Q, and for any n ∈ N,

C(K,n) := n[K : Q] ln(3) + n(r1(K) + r2(K)) ln(2) +
n
2

ln |DK |

− r1 ln(vol(Bn)n!) − r2 ln(V(B2n)(2n)!) + ln(([K : Q]n)!).

4.3.7 Slopes and slope inequalities

Let (E, ξ) be an adelic vector bundle on S such that E , {0}. We define the slope of
(E, ξ) as

µ̂(E, ξ) :=
d̂eg(E, ξ)
dimK (E)

.

We define the maximal slope of (E, ξ) as

µ̂max(E, ξ) := sup
0,F⊆E

µ̂(F, ξF ),

where F runs over the set of all non-zero vector subspaces of E and ξF denotes the
restriction of ξ to F. Similarly, we define the minimal slope of (E, ξ) as

µ̂min(E, ξ) = inf
E�G,{0}

µ̂max(G, ξG), (4.45)

where G runs over the set of all non-zero quotient spaces of E , and ξG denotes the
quotient norm family of ξ. By definition one has µ̂min(E) 6 µ̂max(E) and µ̂(E) 6
µ̂max(E) (note that here the vector space E has been assumed to be non-zero). If
E = 0 is the zero adelic vector bundle, we define by convention

µ̂max(0) := −∞, µ̂(0) := 0, µ̂min(0) := +∞.

Proposition 4.3.25 Let E = (E, ξE ) be a non-zero adelic vector bundle on S. One
has

µ̂min(E) + µ̂max(E∨) > 0, (4.46)

provided that µ̂max(E∨) < +∞ (we will show in Proposition 4.3.30 that this condition
is always satisfied, and, as a consequence of the current proposition, that one has
µ̂min(E) > −∞).

Proof Let G be a non-zero quotient vector space of E and ξG be the quotient
norm family of ξE . Note that G∨ identifies with a vector subspace of E∨ and by
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Proposition 1.1.20, the dual norm family ξ∨G identifies with the restriction of ξ∨E to
G∨. By Proposition 4.3.10, one has

0 6 µ̂(G, ξG) + µ̂(G∨, ξ∨G) 6 µ̂max(G, ξG) + µ̂max(E∨, ξ∨E ).

Since G is arbitrary, we obtain the inequality (4.46). �

Classically in the setting of vector bundles over a regular projective curve or in
that of Hermitian vector bundle over an arithmetic curve, the minimal slope is rather
defined as the minimal value of slopes of quotient bundles. A direct analogue would
replace µ̂max by µ̂ in (4.45) for the definition of the minimal slope. However, it can
be shown that the two definitions are actually equivalent.

Proposition 4.3.26 Let E be a non-zero adelic vector bundle on S. One has

µ̂min(E) = inf
E�G,{0}

µ̂(G),

where G runs over the set of non-zero quotient vector spaces of E , and in G we
consider the quotient norm family of that in E .

Proof Clearly µ̂min(E) > infE�G,{0} µ̂(G), so that we assume by contradiction that

µ̂min(E) > inf
E�G,{0}

µ̂(G).

We fix ε ∈ R>0 such that

inf
E�G,{0}

µ̂(G) < µ̂min(E) − ε.

Among the non-zero quotient vector spaces of E of slope bounded from above by
µ̂min(E) − ε, we choose a G having the least dimension over K , that is, µ̂(G) 6
µ̂min(E) − ε and if Q is a non-zero quotient vector space of E such that dimK (Q) <
dimK (G), then µ̂min(E) − ε < µ̂(Q). As µ̂min(E) − ε < µ̂max(G), one can find a
non-zero subspace G′ such that µ̂min(E) − ε < µ̂(G

′
). Note that G′ ( G. We have a

short exact sequence

0 // G′ // G // G/G′ // 0 ,

which leads to (by Proposition 4.3.13)

d̂eg(G′) + d̂eg(G/G′) 6 d̂eg(G). (4.47)

On the other hand, since 0 < dimK (G/G′) < dimK (G), one has

d̂eg(G′) + d̂eg(G/G′) = dimK G′ µ̂(G′) + dimK (G/G′)µ̂(G/G′)

> dimK (G′)(µ̂min(E) − ε) + dimK (G/G′)(µ̂min(E) − ε)

= dimK (G)(µ̂min(E) − ε),
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and hence µ̂(G) > µ̂min(E) − ε by (4.47). This is a contradiction.

Corollary 4.3.27 Let E = (E, ξE ) be a non-zero adelic vector bundle on S. One has

µ̂min(E∨) + µ̂max(E) 6
1
2

ln(dimK (E)) ν(Ω∞). (4.48)

Moreover, one has µ̂min(E∨) + µ̂max(E) = 0 if E is Hermitian.

Proof Let F be a non-zero vector subspace of E and ξF = {‖·‖F ,ω}ω∈Ω be the
restriction of ξE = {‖·‖E ,ω}ω∈Ω to F. For any ω ∈ Ω, ‖·‖F ,ω,∗ is bounded from
above by the quotient norm of ‖·‖E ,ω,∗ by the canonical surjective map E∨

Kω
→ F∨

Kω
.

Hence by Proposition 4.3.26, one has µ̂(F∨) > µ̂min(E∨). Therefore,

µ̂(F) + µ̂min(E∨) 6 µ̂(F) + µ̂(F∨) =
1

dimK (F)

∫
Ω

ln(δω(ξF )) ν(dω)

6
1
2

ln(rkK (F))ν(Ω∞),

where the equality follows from Proposition 4.3.10 and the last inequality comes
from Remark 1.2.55. Since F is arbitrary, we obtain (4.48).

If E is Hermitian, then for any non-zero vector subspace F of E one has

µ̂(F) + µ̂min(E∨) 6 µ̂(F) + µ̂(F∨) = 0,

which leads to µ̂min(E∨)+ µ̂max(E) 6 0. As we have seen that µ̂min(E∨)+ µ̂max(E) >
0 in Proposition 4.3.25 (note that E∨∨ = E when E is Hermitian), the equality
µ̂min(E∨) + µ̂max(E) = 0 holds. �

4.3.8 Finiteness of slopes

Let E = (E, ξ) be an adelic vector bundle on S such that ξ is Hermitian. We assume
that the vector space E is non-zero and we denote by Θ(E) the set of all K-vector
subspaces of E . For any F ∈ Θ(E), the vector subspace F equipped with the restricted
norm family forms a Hermitian adelic vector bundle on S (see Proposition 4.1.32).
We denote by F this Hermitian adelic vector bundle. Note that the dimension and the
Arakelov degree define two functions onΘ(E), which satisfy the following relations:
for any pair (E1,E2) of elements in Θ(E), one has

dimK (E1 ∩ E2) + dimK (E1 + E2) = dimK (E1) + dimK (E2), (4.49)

d̂eg(E1 ∩ E2) + d̂eg(E1 + E2) > d̂eg(E1) + d̂eg(E2), (4.50)

where the inequality (4.50) comes from Corollary 1.2.52.
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Proposition 4.3.28 Let E be a non-zero vector space of finite dimension over K
and Θ(E) be the set of all vector subspaces of E . Assume given two functions
r : Θ(E) → R+ and d : Θ(E) → R which verify the following conditions:
(1) the function r(·) takes value 0 on the zero vector subspace of E and takes positive

values on non-zero vector subspaces of E;
(2) for any couple (E1,E2) of elements in Θ(E) one has

r(E1 ∩ E2) + r(E1 + E2) = r(E1) + r(E2)

and
d(E1 ∩ E2) + d(E1 + E2) > d(E1) + d(E2);

(3) d({0}) 6 0.
Then the function µ = d/r attains its maximal value µmax on the set Θ∗(E) of all
non-zero vector subspaces of E . Moreover, there exists a non-zero vector subspace
Edes of E such that µ(Edes) = µmax and which contains all non-zero vector subspaces
F of E such that µ(F) = µmax.

Proof The first relation in the condition (2) implies that, if L1, . . . , Ln are vector
subspaces of dimension 1 of E , which are linearly independent, then one has

r(L1 + · · · + Ln) = r(L1) + · · · + r(Ln).

In particular, if L and L ′ are different vector subspaces of dimension 1 in E then one
has r(L) = r(L ′). In fact, if s and s′ are non-zero vectors of L and L ′ respectively,
and L ′′ is the vector subspace of E generated by s + s′ (which is of dimension 1),
then one has

r(L) + r(L ′′) = r(L + L ′) = r(L ′) + r(L ′′).

Therefore the function r(·) is proportional to the dimension function. Without loss
of generality, we may assume that the function r(·) identifies with the dimension
function.

We prove the proposition by induction on the dimension of the vector space E .
The case where the r(E) = 1 is trivial. In the following, we assume that r(E) > 2
and that the proposition has been proved for vector spaces of dimension < r(E).
If for any non-zero vector subspace F of E one has µ(F) 6 µ(E), then there is
nothing to prove since µ(E) = µmax and E = Edes. Otherwise there exists a non-
zero vector subspace E ′ of E such that µ(E ′) > µ(E). Moreover, we can choose
E ′ such that r(E ′) is maximal (among the non-zero vector subspaces of E having
this property). Clearly one has r(E ′) < r(E). Hence by the induction hypothesis
the restriction of the function µ(·) to Θ∗(E ′) attains its maximum, and among the
non-zero vector subspaces of E ′ on which the restriction of the function µ(·) toΘ(E ′)

attains the maximal value there exists a greatest one E ′
des with respect to the relation

of inclusion. Let Edes := E ′
des be this vector space. We claim that Edes verifies the

properties announced in the proposition.
Let F be a non-zero vector subspace of E . If F ⊆ E ′, then clearly one has

µ(F) 6 µ(Edes). Otherwise the dimension of F ∩ E ′ is smaller than r(F) and the
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dimension of F + E ′ is greater than r(E ′). Moreover, since F ∩ E ′ ⊆ E ′, one has
(here we use the condition that d({0}) 6 0 to treat the case where F ∩ E ′ = {0})

d(F ∩ E ′) 6 µ(Edes)r(F ∩ E ′);

since F + E ′ ) E ′, one has µ(F + E ′) 6 µ(E) < µ(E ′). Therefore

d(F ∩ E ′) + d(F + E ′) = µ(F ∩ E ′)r(F ∩ E ′) + µ(F + E ′)r(F + E ′)

< µ(Edes)r(F ∩ E ′) + µ(E ′)r(F + E ′).

Combining this relation with the inequality in the condition (2) of the proposition,
we obtain

µ(Edes)r(F ∩ E ′) + µ(E ′)r(F + E ′) > µ(E ′)r(E ′) + µ(F)r(F).

By the equality in the condition (2), we deduce

µ(F)r(F) < µ(Edes)r(F ∩ E ′) + µ(E ′)(r(F) − r(F ∩ E ′)) 6 µ(Edes)r(F).

Therefore, the function µ(·) attains its maximal value µmax at Edes. Moreover, if F
is a non-zero vector subspace of E such that µ(F) = µ(Edes), then one should have
F ⊆ E ′, and hence F ⊆ Edes by the induction hypothesis. The proposition is thus
proved. �

Definition 4.3.29 Let E be a non-zero Hermitian adelic vector bundle on S. We can
apply the above proposition to the functions of dimension and of Arakelov degree to
obtain the existence of a (unique) non-zero vector subspace Edes of E such that

µ̂(Edes) = µ̂max(E) = sup
0,F ∈Θ(E)

µ̂(F)

and which contains all non-zero vector subspaces of E on which the function µ̂
attains the maximal slope of E . The vector subspace Edes is called the destabilising
vector subspace of the Hermitian adelic vector bundle E . If Edes = E , we say that
the Hermitian adelic vector bundle E is semistable. In particular, for any non-zero
Hermitian adelic vector bundle E on S, the Hermitian adelic vector bundle Edes is
always semistable.

Proposition 4.3.30 Let (E, ξ) be a non-zero adelic vector bundle on S. Then one has
µ̂max(E, ξ) < +∞ and µ̂min(E, ξ) > −∞.

Proof Let r be the dimension of E over K . We first prove the inequality µ̂max(E, ξ) <
+∞ in the particular case where ξ is ultrametric on Ω \ Ω∞. By Theorem 4.1.26,
there exists a measurable Hermitian norm family ξH on E such that

∀ω ∈ Ω, dω(ξ, ξH ) 6
1
2

ln(r + 1)1lΩ∞
(ω).

Therefore, for any non-zero vector subspace F of E one has
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�� 6 1

2
ln(r + 1)ν(Ω∞).

Moreover, by Proposition 4.3.28, the maximal slope µ̂max(E, ξH ) is finite. Therefore
one has µ̂max(E, ξ) < +∞.

We now proceed with the proof of the relation µ̂max(E, ξ) < +∞ in the general
case. We write ξ in the form {‖·‖ω}ω∈Ω. Note that for any ω ∈ Ω one has ‖·‖ω,∗∗ 6
‖·‖ω . Therefore µ̂max(E, ξ∨∨) > µ̂max(E, ξ). The norm family ξ∨∨ is ultrametric
on Ω \ Ω∞, and (E, ξ∨∨) is an adelic vector bundle (see Proposition 4.1.32 (1)).
By the particular case proved above, one has µ̂max(E, ξ∨∨) < +∞. Thus we obtain
µ̂max(E, ξ) < +∞.

Applying the above proved result to (E∨, ξ∨) we obtain µ̂max(E∨, ξ∨) < +∞.
Therefore, by Proposition 4.3.25 we obtain µ̂min(E, ξ) > −∞.

4.3.9 Some slope estimates

The following proposition is a natural generalisation of the slope inequalities to the
setting of adelic curves. We refer the readers to [18, §4.1] for this theory in the classic
setting of Hermitian vector bundles over an algebraic integer ring.

Proposition 4.3.31 Let (E1, ξ1) and (E2, ξ2) be adelic vector bundles on S, and
f : E1 → E2 be a K-linear map.

(1) If f is injective, then one has µ̂max(E1, ξ1) 6 µ̂max(E2, ξ2) + h( f ).
(2) If f is surjective, then one has µ̂min(E1, ξ1) 6 µ̂min(E2, ξ2) + h( f ).
(3) If f is non-zero, then one has µ̂min(E1, ξ1) 6 µ̂max(E2, ξ2) + h( f ).

Proof (1) The assertion is trivial if f is the zero map since in this case E1 = {0}
and µ̂max(E1, ξ1) = −∞ by convention. In the following, we assume that the linear
map f is non-zero. Let F1 be a non-zero vector subspace of E1 and F2 be its image
in E2. Let g : F1 → F2 be the restriction of f to F1. It is an isomorphism of vector
spaces. Moreover, if we equip F1 and F2 with induced norm families, by Proposition
4.3.18 one has

µ̂(F1, ξF1 ) 6 µ̂(F2, ξF2 ) + h(g) 6 µ̂max(E2, ξ2) + h( f ),

where ξF1 and ξF2 are restrictions of ξ1 and ξ2 to F1 and F2, respectively. Since F1 is
arbitrary, we obtain the inequality µ̂max(E1, ξ1) 6 µ̂max(E2, ξ2) + h( f ).

(2) The assertion is trivial if f is the zero map since in this case E2 = {0}
and µ̂min(E2, ξ2) = +∞ by convention. In the following, we assume that the linear
map f is non-zero. Let G2 be a non-zero quotient vector space of E2 and f̃ be the
composition of f with the quotient map E2 → G2. Let F1 be the kernel of f̃ , G1 be
the quotient space E1/F1, and g : G1 → G2 be the K-linear map induced by f̃ . It is
a K-linear isomorphism. By (1), one has



4.3 Arakelov degree and slopes 261

µ̂min(E1, ξ1) 6 µ̂max(G1, ξG1 ) 6 µ̂max(G2, ξG2 ) + h(g) 6 µ̂max(G2, ξG2 ) + h( f ),

where ξG1 and ξG2 are the quotient norm family of ξ1 and ξ2, respectively. Since G2
is arbitrary, one obtains µ̂min(E1, ξ1) 6 µ̂min(E2, ξ2) + h( f ).

(3) Let G be the image of E1 by f , which is non-zero since f is non-zero. We
equip G with the restriction ξG of ξ2 to G. As G is non-zero, one has µ̂min(G, ξG) 6
µ̂max(G, ξG) 6 µ̂max(E2, ξ2). By (2), one has µ̂min(E1, ξ1) 6 µ̂min(G, ξG) + h( f ).
Hence µ̂min(E1, ξ1) 6 µ̂max(E2, ξ2) + h( f ). �

Proposition 4.3.32 Let (E ′, ξ ′) and (E, ξ) be adelic vector bundles on S, and f :
E ′ → E be an injective K-linear map. Let E ′′ be the quotient vector space E/ f (E ′)

and ξ ′′ be the quotient norm family of ξ on E ′′. Then the following inequality holds

µ̂min(E, ξ) > min(µ̂min(E ′, ξ ′) − h( f ), µ̂min(E ′′, ξ ′′)). (4.51)

If in addition µ̂min(E ′, ξ ′) − h( f ) > µ̂min(E ′′, ξ ′′), then the equality µ̂min(E, ξ) =
µ̂min(E ′′, ξ ′′) holds.

Proof The inequality (4.51) is trivial if E = {0} since in this case one has
µ̂min(E, ξ) = +∞ by convention. Moreover, one has E ′′ = {0} since E ′′ is a quotient
vector space of E . Therefore the equality µ̂min(E, ξ) = µ̂min(E ′′, ξ ′′) holds.

In the following, we assume that E , {0}. Let Q be a quotient vector space of E
and ξQ be the quotient norm family of ξ. Let π : E → Q be the quotient map. If the
composed map π ◦ f is non-zero, by Proposition 4.3.31 (3), one has

µ̂min(E ′, ξ ′) 6 µ̂max(Q, ξQ) + h(π ◦ f ) 6 µ̂max(Q, ξQ) + h( f ).

Otherwise the quotient map π : E → Q factorises through E ′′ and by Proposition
4.3.31 (2) one has

µ̂min(E ′′, ξ ′′) 6 µ̂min(Q, ξQ) 6 µ̂max(Q, ξQ).

Since Q is arbitrary, the inequality (4.51) is true.
If µ̂min(E ′, ξ ′) − h( f ) > µ̂min(E ′′, ξ ′′), then (4.51) implies

µ̂min(E, ξ) > µ̂min(E ′′, ξ ′′).

Moreover, by Proposition 4.3.31 (2) one has

µ̂min(E, ξ) 6 µ̂min(E ′′, ξ ′′).

Hence the equality µ̂min(E, ξ) = µ̂min(E ′′, ξ ′′) holds. �

Proposition 4.3.33 Let {(Ei, ξEi )}
n
i=1 be a family of adelic vector bundles, where

n ∈ N, n > 2. Assume that

E0 := {0}
α1 // E1

α2 // E2
α3 // E3 // · · ·

αn−1 // En−1
αn // En

(4.52)
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is a sequence of injective K-linear maps. For any i ∈ {1, . . . ,n}, let βi =
αn ◦ · · · ◦αi+1, where by convention βn := IdEn . For any i ∈ {1, . . . ,n}, let Qi be
the quotient space Ei/αi(Ei−1) and ξQi be the quotient norm family of ξEi . Then one
has

µ̂min(En, ξEn ) > min
i∈{1,...,n}

(
µ̂min(Qi, ξQi ) − h(βi)

)
Proof The case where n = 2 was proved in Proposition 4.3.32. In the following, we
assume that n > 3 and that the proposition has been proved for the case of n − 1
adelic vector bundles. For any i ∈ {2, . . . ,n}, let E ′

i be the cokernel of the composed
linear map

αi ◦ · · · ◦α2 : E1 −→ Ei

and let ξE′
i
be the quotient norm family of ξEi on E ′

i . Let E ′
1 = {0}. Then the sequence

(4.52) induces a sequence of K-linear maps

E ′
1 := {0}

α′
2 // E ′

2
α′

3 // E ′
3

// · · ·
α′
n−1 // E ′

n−1
α′
n // E ′

n . (4.53)

For any i ∈ {2, . . . ,n}, let β′i = α′
n

◦ · · · ◦α′
i+1, where by convention β′n = IdE′

n
.

For any i ∈ {2, . . . ,n}, let Q′
i be the quotient space E ′

i /α
′
i (E

′
i−1) and ξQ′

i
be the

quotient norm family of ξE′
i
. Note that Q′

i is canonically isomorphic to Qi , and
under the canonical isomorphism Qi � Q′

i , the norm family ξQi identifies with ξQ′
i

(see Proposition 1.1.14). Therefore one has µ̂min(Qi, ξQi ) = µ̂min(Q′
i, ξQ′

i
) for any

i ∈ {2, . . . ,n}. Applying the induction hypothesis to (4.53) we obtain

µ̂min(E ′
n, ξE′

n
) > min

i∈{2,...,n}
(µ̂min(Qi, ξQi ) − h(β′i ))

> min
i∈{2,...,n}

(µ̂min(Qi, ξQi ) − h(βi)),

where the second inequality comes from Proposition 1.1.14. Finally, by Proposition
4.3.32 one has

µ̂min(En, ξEn ) > min
{
µ̂min(E ′

n, ξE′
n
), µ̂min(E1, ξE1 ) − h(β1)

}
.

The proposition is thus proved. �

Proposition 4.3.34 Let E and F be adelic vector bundles on S. One has

µ̂(E ⊗ε,π F) = µ̂(E) + µ̂(F).

If E and F are both Hermitian, then

µ̂(E ⊗ F) = µ̂(E) + µ̂(F).

Proof These equalities are direct consequences of Proposition 4.3.19. �

Proposition 4.3.35 Let E = (E, ξE ) and F = (F, ξF ) be adelic vector bundles on S.
One has
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µ̂max(E ⊗ε,π F) > µ̂max(E) + µ̂max(F). (4.54)

If E and F are Hermitian adelic vector bundles, then

µ̂max(E ⊗ F) > µ̂max(E) + µ̂max(F). (4.55)

Proof Let E1 and F1 be vector subspaces of E and F respectively. Let ξE1 and ξF1

be the restrictions of ξE and ξF to E1 and F1 respectively. By Proposition 4.3.34,
one has

µ̂(E1 ⊗ε,π F1) = µ̂(E1) + µ̂(F1).

If ξE and ξF are both Hermitian, then

µ̂(E1 ⊗ F1) = µ̂(E1) + µ̂(F1).

By Proposition 1.1.60, if we denote by ξ the restriction of ξE ⊗ε,π ξF to E1 ⊗ F1,
then the identity map from E1 ⊗ε,π F1 to (E1 ⊗k F1, ξ) has height 6 0 and therefore

µ̂(E1) + µ̂(F1) = µ̂(E1 ⊗ε,π F1) 6 µ̂(E1 ⊗k F1, ξ) 6 µ̂max(E ⊗ε,π F).

Similarly, if both norm families ξE and ξF are Hermitian, then by Proposition 1.2.58
the restriction of ξE ⊗ ξF to E1 ⊗K F1 identifies with ξE1 ⊗ ξF1 . Hence

µ̂(E1) + µ̂(F1) = µ̂(E1 ⊗ F1) 6 µ̂max(E ⊗ F).

Since E1 and F1 are arbitrary, we obtain the inequalities (4.54) and (4.55). �

Lemma 4.3.36 Let (E, ξ) be an adelic vector bundle over S. Then we have the
following:

(1) Let ψ be an integrable function on Ω. Then

µ̂max(E,eψξ) = µ̂max(E, ξ) −
∫
Ω

ψ ν(dω).

(2) If µ̂max(E, ξ) 6 0, then d̂eg+(E, ξ) = 0.

Proof (1) Let F be a non-zero vector subspace of E . Then, as

µ̂(F,eψξF ) = µ̂(F, ξF ) −
∫
Ω

ψ ν(dω),

we obtain (1).

(2) Let F be a non-zero vector subspace of E . By our assumption, µ̂(F, ξF ) 6 0,
that is, d̂eg(F, ξF ) 6 0, so that the assertion follows. �
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4.3.10 Harder-Narasimhan filtration: Hermitian case

It had been discovered by Stuhler [138] (generalised by Grayson [71]) that the
Euclidean lattices and vector bundles on projective algebraic curves share some
common constructions and properties such as slopes and Harder-Narasimhan filtra-
tion etc. Later Bost has developed the slope theory of Hermitian vector bundles over
spectra of algebraic integer rings, see [16, Appendice] (see also [137] and [18, §4.1]
for more details, and [62, 22, 65] for further generalisations).

The Hermitian adelic vector bundles on S form a category in which a theory
of Hader-Narasimhan filtration can be developed in a functorial way. We refer the
readers to [2, 41] for more details. In this subsection, we adopt a more direct approach
as in [22].

Let E be a non-zero Hermitian adelic vector bundle on S. We can construct in a
recursive way a flag

0 = E0 ( E1 ( . . . ( En = E

of vector subspaces of E such that Ei/Ei−1 = (E/Ei−1)des, called the Harder-
Narasimhan flag of E , where E/Ei−1 is equipped with the quotient norm family, and
Ei/Ei−1 is equipped with the subquotient norm family (namely the restriction of the
norm family of E/Ei−1 to Ei/Ei−1).

Proposition 4.3.37 Let E be a non-zero Hermitian adelic vector bundle on S and

0 = E0 ( E1 ( . . . ( En = E

be the Harder-Narasimhan flag of E . Then each subquotient Ei/Ei−1 is a semistable
Hermitian adelic vector bundle. Moreover, if we let µi = µ̂(Ei/Ei−1) for i ∈

{1, . . . ,n}, then one has µ1 > . . . > µn.

Proof We reason by induction on the length n of the Harder-Narasimhan flag. When
n = 1, the assertion is trivial. In the following, we suppose that n > 2. By definition

0 = E1/E1 ( E2/E1 ( . . . ( En/E1

is the Harder-Narasimhan flag of E/E1. Therefore the induction hypothesis leads to
µ2 > . . . > µn. It remains to establish µ1 > µ2. Since E1 is the destabilising vector
subspace of E and E2 contains strictly E1, one has

µ1 = µ̂(E1) > µ̂(E2). (4.56)

Moreover,
0 // E1 // E2 // E2/E1 // 0

forms an exact sequence of adelic vector bundles on S. Therefore one has

d̂eg(E2) = d̂eg(E1) + d̂eg(E2/E1) = µ1 dimK (E1) + µ2 dimK (E2/E1).

By (4.56) we obtain
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µ1 dimK (E1) + µ2 dimK (E2/E1) < µ1 dim(E2)

and hence µ1 > µ2. The proposition is thus proved. �

The Harder-Narasimhan flag and the slopes of the successive subquotients in the
previous proposition permit to construct an R-filtration Fhn on the vector space E ,
called the Harder-Narasimhan R-filtration as follows:

∀ t ∈ R, F t
hn(E) := Ei if µi+1 < t 6 µi, (4.57)

where by convention µ0 = +∞ and µn+1 = −∞. If E is the zero Hermitian adelic
vector bundle, by convention its Harder-Narasimhan R-filtration is defined as the
only R-filtration of the zero vector space: for any t ∈ R one has F t (E) = {0}.
Note that the Harder-Narasimhan R-filtration is locally constant on the left, namely
F t−ε

hn (E) = F t
hn(E) if ε > 0 is sufficiently small. Moreover, each subquotient

Sqthn(E) := F t
hn(E)/F t+

hn (E)

with F t+
hn (E) :=

⋃
ε>0 F

t+ε
hn (E), viewed as a Hermitian adelic vector bundle in

considering the subqutient norm family, namely the quotient of the restricted norm
family on F t

hn(E), is either zero or a semistable Hermitian adelic vector bundle of
slope t. The following proposition shows that the Harder-Narasimhan R-filtration is
actually characterised by these properties.

Proposition 4.3.38 Let E be a non-zero Hermitian adelic vector bundle on S and F

be a decreasingR-filtration of E which is separated, exhaustive1 and locally constant
on the left. Assume that each subquotient Sqt (E) := F t (E)/F t+(E) equipped with
the subquotient norm family, is either zero or a semistable Hermitian adelic vector
bundle of slope t. Then the R-filtration F coincides with the Harder-Narasimhan
R-filtration of E .

Proof We will prove an alternative statement as follows. Let

0 = F0 ( F1 ( . . . ( Fm ( E (4.58)

be a flag of vector subspaces of E . We will prove that, if each subquotient Fi/Fi−1
(i ∈ {1, . . . ,m}) is a semistable Hermitian adelic vector bundle and if the relations

µ̂(F1/F0) > . . . > µ̂(Fm/Fm−1)

hold, then (4.58) identifies with the Harder-Narasimhan flag of E . This alternative
statement is actually equivalent to the form announced in the proposition. In fact,
the data of an R-filtration of E is equivalent to that of a flag (of vector subspaces

1 Let E be a vector space over K and {Ft (E)}t∈R be a decreasing R-filtration of E . We say that
the filtration F is separated if Ft (E) = {0} for sufficiently positive t . We say that the filtration F

is exhaustive if Ft (E) = E for sufficiently negative t .
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figuring in the R-filtration) and a decreasing sequenc of real numbers indicating the
indices where the R-filtration has jumps, see §1.1.8, notably Remark 1.1.40.

We will prove the statement by induction on the dimension of E over K . The case
where dimK (E) = 1 is trivial. In the following, we assume that dimK (E) > 2 and
that the alternative assertion has been proved for any Hermitian adelic vector bundle
of rank < dimK (E). Let

0 = E0 ( E1 ( . . . ( En = E

be the Harder-Narasimhan flag of E . We begin by showing that F1 = E1. Since E1
is the destabilising vector subspace of E , one has µ̂(F1) 6 µ̂(E1). Moreover one has

0 = F0 ∩ E1 ⊆ F1 ∩ E1 ⊆ F2 ∩ E1 ⊆ . . . Fm ∩ E1 = E1.

Note that each subquotient (Fi ∩ E1)/(Fi−1 ∩ E1) identifies with a vector subspace
of Fi/Fi−1. Since Fi/Fi−1 is semistable, one has

d̂eg
(
(Fi ∩ E1)/(Fi−1 ∩ E1)

)
6 µ̂(Fi/Fi−1) dimK

(
(Fi ∩ E1)/(Fi−1 ∩ E1)

)
6 µ̂(F1) dimK

(
(Fi ∩ E1)/(Fi−1 ∩ E1)

)
,

where the second inequality is strict if i > 1 and if (Fi ∩ E1)/(Fi−1 ∩ E1) is non-zero.
Therefore we obtain

d̂eg(E1) =

m∑
i=1

d̂eg
(
(Fi ∩ E1)/(Fi−1 ∩ E1)

)
6 µ̂(F1) dimK (E1). (4.59)

Combining with the inequality µ̂(F1) 6 µ̂(E1) = µ̂max(E), we deduce that the in-
equality (4.59) is actually an equality, which also implies that (Fi ∩ E1)/(Fi−1 ∩ E1) =
{0} once i > 1. Therefore one has F1 = E1, which also leads to the alternative as-
sertion in the particular case where E is semistable.

In the case where E is not semistable, namely n > 2, note that

0 = E1/E1 ( E2/E1 ( . . . ( En/E1 = E/E1 (4.60)

is the Harder-Narasimhan flag of E/E1 = E/F1. By the induction hypothesis applied
to E/F1, we obtain that the flag

0 = F1/F1 ( F2/F1 ( . . . ( Fm/F1 = E/F1

coincides with (4.60). The proposition is thus proved. �

Definition 4.3.39 Let E be a non-zero Hermitian adelic vector bundle on S, and

0 = E0 ( E1 ( . . . ( En = E

be its Harder-Narasimhan flag. For any i ∈ {1, . . . ,dimK (E)}, there exists a unique
j ∈ {1, . . . ,n} such that dimK (Ej−1) < i 6 dimK (Ej). We let µ̂i(E) be the slope
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µ̂(Ej/Ej−1), called the i-th slope of E . Clearly one has

µ̂1(E) > . . . > µ̂r (E),

where r is the dimension of E over K . Moreover, by definition µ̂1(E) coincides with
the maximal slope of E .

Remark 4.3.40 As in the classic case of vector bundles on projective curves or
Hermitian vector bundles over algebraic integer rings, one can naturally construct
Harder-Narasimhan polygones associated with Hermitian adelic vector bundles on
adelic curves. Let E be a non-zero Hermitian adelic vector bundle on the adelic
curve S. We consider the convex hull CE in R2 of the points (dimK (F), d̂eg(F)),
where F runs over the set of all vector subspaces of E . The upper boundary of this
convex set identifies with the graph of a concave function PE on [0,dimK (E)] which
is affine on each interval [i − 1, i] with i ∈ {1, . . . ,dimK (E)}. This function is called
the Harder-Narasimhan polygon of E . If

0 = E0 ( E1 ( . . . ( En = E

is the Harder-Narasimhan flag of E , then the abscissae on which the Harder-
Narasimhan polygon PE changes slopes are exactly dimK (Ei) for i ∈ {0, . . . ,n}.
Moreover, the value of PE on dimK (Ei) is d̂eg(E i).

Proposition 4.3.41 Let E be a non-zero Hermitian adelic vector bundle on S and r
be the dimension of E over K . One has

µ̂r (E) = −µ̂1(E∨). (4.61)

In particular, µ̂r (E) is equal to µ̂min(E).

Proof Let
0 = E0 ( E1 ( . . . ( En = E

be the Harder-Narasimhan flag of E . Note that

0 = (E/En)
∨ ( (E/En−1)

∨ ( . . . ( (E/E0)
∨ = E∨ (4.62)

is a flag of vector subspaces of E∨, and for i ∈ {1, . . . ,n} one has

(E/Ei−1)
∨/(E/Ei)

∨ � (Ei/Ei−1).

By Proposition 4.3.38 (notably the alternative form stated in the proof), we obtain
that (4.62) is actually the Harder-Narasimhan flag of E∨. Therefore

µ̂1(E∨) = µ̂((E/En−1)
∨) = −µ̂(E/En−1) = −µ̂r (E),

where the second equality comes from Proposition 4.3.10.
Note that E/En−1 is a non-zero quotient Hermitian adelic bundle of E which

is semistable (so that µ̂(E/En−1) = µ̂max(E/En−1)). Therefore one has µ̂min(E) 6



268 4 Vector bundles on adelic curves: global theory

µ̂r (E). Conversely, if F is a vector subspace of E such that F ( E and G is the
quotient space E/F. Then G∨ identifies with a non-zero vector subspace of E∨.
Moreover, by Proposition 1.1.20 the dual of the quotient norm family of G identifies
with the restriction of the dual norm family in the adelic vector bundle structure of
E∨. Hence one has

µ̂(G∨) 6 µ̂1(E∨) = −µ̂r (E).

Still by Proposition 4.3.10, one obtains

µ̂max(G) > µ̂(G) > µ̂r (E).

The equality µ̂min(E) = µ̂r (E) is thus proved. �

The following proposition, which results from the slope inequalities, proves the
functoriality of Harder-Narasimhan R-filtration (see [41] for the meaning of the
functoriality of Harder-Narasimhan R-filtration).

Proposition 4.3.42 Let E and F be two Hermitian adelic vector bundles on S, and
f : E → F be a non-zero K-linear map. For any t ∈ R one has

f (F t
hn(E)) ⊆ F

t−h( f )
hn (F).

Proof We will actually show by contradiction that the composition of maps

F t
hn(E)

f // F // F/F t−h( f )
hn (F)

is zero. If this map is not zero, then by Proposition 4.3.31 (3) one obtains

µ̂min(F
t

hn(E)) 6 µ̂max(F/F
t−h( f )

hn (F)) + h( f ).

By (4.57) we obtain

t 6 µ̂min(F
t

hn(E)) 6 µ̂max(F/F
t−h( f )

hn (F)) + h( f ) < t − h( f ) + h( f ) = t,

which leads to a contradiction. �

Corollary 4.3.43 Let E be a non-zero Hermitian adelic vector bundle on S. One has

F t
hn(E) =

∑
0,F ∈Θ(E)

µ̂min(F)>t

F,

where F runs over the set Θ(E) of all non-zero vector subspaces of E with minimal
slope > t. In other words, F t

hn(E) is the largest vector subspace of E whose minimal
slope is bounded from below by t.

Proof By the definition of the Harder-Narasimhan R-filtration (see (4.57)), for any
t ∈ R one has µ̂min(F

t
hn(E)) > t. Moreover, if F is a non-zero vector subspace of
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E , then one has F t
hn(F) = F provided that t 6 µ̂min(F). Therefore the proposition

4.3.42 applied to the inclusion map F → E leads to F ⊆ F t
hn(E). �

Proposition 4.3.44 Let E be a non-zero Hermitian adelic vector bundle on S and r
be the dimension of E over K . The following equalities hold:

d̂eg(E) =

r∑
i=1

µ̂i(E) = −

∫
R

t d
(
dimK (F

t
hn(E))

)
, (4.63)

d̂eg+(E) =

r∑
i=1

max{ µ̂i(E),0} =
∫ +∞

0
dimK (F

t
hn(E)) dt . (4.64)

Proof By definition the sum of Dirac measures

r∑
i=1

δµ̂i (E)

identifies with the derivative −d
(
dimK (F

t
hn(E))

)
in the sense of distribution. There-

fore, the second equality in (4.63) is true, and the second equality in (4.64) follows
from the relation

r∑
i=1

max{ µ̂i(E),0} = −

∫ +∞

0
t d

(
dimK (F

t
hn(E))

)
and the formula of integration by part.

Let
0 = E0 ( E1 ( . . . ( En = E

be the Harder-Narasimhan flag of E . By Proposition 4.3.13 one has

d̂eg(E) =

n∑
j=1

d̂eg(Ej/Ej−1) =

n∑
j=1

µ̂(Ej/Ej−1) dimK (Ej/Ej−1) =

r∑
i=1

µ̂i(E),

which proves (4.63).
Let ` be the largest element of {1, . . . ,n} such that µ̂(E`/E`−1) > 0. If

µ̂(Ej/Ej−1) < 0 for any j ∈ {1, . . . ,n}, by convention we let ` = 0. Then by
(4.63) one has

d̂eg(E`) =

r∑
i=1

max{ µ̂i(E),0}.

Hence we obtain
r∑
i=1

max{ µ̂i(E),0} 6 d̂eg+(E).

Conversely, if F is a non-zero vector subspace of E and m is its dimension over K ,
by Proposition 4.3.42 one has µ̂i(F) 6 µ̂i(E) for any i ∈ {1, . . . ,m}. Therefore by
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(4.63) one obtains

d̂eg(F) =
m∑
i=1

µ̂i(F) 6
m∑
i=1

µ̂i(E) 6
r∑
i=1

max{ µ̂i(E),0}.

4.3.11 Harder-Narasimhan filtration: general case

Inspired by Corollary 4.3.43, we extend the definition of Harder-Narasimhan R-
filtration to the setting of general adelic vector bundles.

Definition 4.3.45 Let E be a non-zero adelic vector bundle on S. For any t ∈ R, let

F t
hn(E) :=

⋂
ε>0

∑
{0},F ∈Θ(E)

µ̂min(F)>t−ε

F, (4.65)

where Θ(E) denotes the set of vector subspaces of E . By the finiteness of maximal
and minimal slopes proved in Proposition 4.3.30, we obtain thatF t

hn(E) = E when t is
sufficiently negative, and F t

hn(E) = {0} when t is sufficiently positive. By convention
we let F +∞hn (E) = {0} and F −∞

hn = E .

Proposition 4.3.46 Let E be a non-zero adelic vector bundle on S. For any t ∈ R,
the vector space F t

hn(E) equipped with the induced norm family has a minimal slope
> t. In particular, one has

∀ t ∈ R, F t
hn(E) =

∑
{0},F ∈Θ(E)

µ̂min(F)>t

F

and
µ̂min(E) = max{t ∈ R : F t

hn(E) = E}.

Proof Let t ∈ R. For sufficiently small ε > 0, one has

F t
hn(E) =

∑
{0},F ∈Θ(E)

µ̂min(F)>t−ε

F

Let M be a non-zero quotient vector space of F t
hn(E). By definition, for any ε > 0

there exists a vector subspace Fε of E such that µ̂min(Fε ) > t−ε and that the composed
map Fε → F t

hn(E) → M is non-zero. By the slope inequality (see Proposition 4.3.31)
we have t − ε 6 µ̂min(Fε ) 6 µ̂max(M), which leads to µ̂max(M) > t since ε > 0 is
arbitrary. As M is arbitrary, we obtain the first statement.
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By the first statement of the proposition, for any t ∈ R such that F t
hn(E) = E ,

one has µ̂min(E) > t. Conversely, by definition, if t is a real number such that
µ̂min(E) > t, then E ⊆ F t

hn(E) and hence E = F t
hn(E). Therefore, the equality

µ̂min(E) = max{t ∈ R : F t
hn(E) = E} holds. �

Definition 4.3.47 Let E be a non-zero adelic vector bundle on S. For any i ∈

{1, . . . ,dimK (E)}, we let

µ̂i(E) := sup{t ∈ R : dimK (F
t

hn(E)) > i}.

The number µ̂i(E) is called the i-th slope of E . Proposition 4.3.46 shows that the
last slope of E identifies with the minimal slope µ̂min(E) of E .

Remark 4.3.48 Let E be a non-zero adelic vector bundle. In general the first slope
µ̂1(E) does not coincide with µ̂max(E) and we only have an inequality µ̂1(E) 6
µ̂max(E). Moreover, if the norm family of E is ultrametric on Ω \ Ω∞, then one has
µ̂max(E) 6 µ̂1(E) + 1

2 ln(rkK (E))ν(Ω∞). This follows from (4.69) and (4.25).

With the extended definition, the statement of Proposition 4.3.42 still holds for
general adelic vector bundles.

Proposition 4.3.49 Let E and F be adelic vector bundles on S, and f : E → F be
a non-zero K-linear map. For any t ∈ R one has

f (F t
hn(E)) ⊆ F

t−h( f )
hn (F).

Proof Let M be a non-zero vector subspace of E such that µ̂min(M) > t. By
Proposition 4.3.31 (2), one has

µ̂min(M) 6 µ̂min( f (M)) + h( f |M ) 6 µ̂min( f (M)) + h( f ).

Therefore f (M) ⊆ F
t−h( f )

hn (F). �

Proposition 4.3.50 Let E be a non-zero adelic vector bundle on S. Let r be the
dimension of E over K . Then the following inequalities hold:

d̂eg(E) >
r∑
i=1

µ̂i(E) = −

∫
R

t d
(
dimK (F

t
hn(E))

)
, (4.66)

d̂eg+(E) >
r∑
i=1

max{ µ̂i(E),0} =
∫ +∞

0
dimK (F

t
hn(E)) dt . (4.67)

Proof For i ∈ {1, . . . ,r}, let Ei be F
µ̂i (E)

hn (E). Let E0 = {0}. Then for each i ∈

{1, . . . ,r}, such that Ei ) Ei−1 one has

µ̂(Ei/Ei−1) > µ̂min(E i) = µ̂i(E),
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where the last equality comes from Proposition 4.3.46 and the fact that the restriction
of the R-filtration Fhn to Ei coincides with the Harder-Narasimhan R-filtration of
E i . Therefore, by Proposition 4.3.13 one has

d̂eg(E) >
∑

i∈{1,...,r }
Ei)Ei−1

d̂eg(Ei/Ei−1) >
∑

i∈{1,...,r }
Ei)Ei−1

dimK (Ei/Ei−1)µ̂i(E) =

r∑
i=1

µ̂i(E),

which proves (4.66). Finally, if we let j be the largest index in {1, . . . ,r} such that
µ̂j(E) > 0. Then by what we have proved

d̂eg(E j) >

j∑
i=1

µ̂i(E) =

r∑
i=1

max(µ̂i(E),0).

Therefore, the inequality (4.67) holds. �

Proposition 4.3.51 Let E = (E, ξ) be a non-zero adelic vector bundle on S. Let r be
the dimension of E over K . Then the following inequalities hold:

d̂eg(E) 6
r∑
i=1

µ̂i(E) + ∆(E). (4.68)

If in addition ξ is ultrametric on Ω \Ω∞, then one has

d̂eg(E) 6
r∑
i=1

µ̂i(E) + δ(E). (4.69)

Proof We reason by induction on the dimension of E over K . The case where
dimK (E) = 1 is trivial since in this case E is Hermitian. In the following, we assume
that dimK (E) > 1 and that the proposition has been proved for adelic vector bundles
of rank < dimK (E).

The Harder-Narasimhan R-filtration corresponds to an increasing flag

0 = E1 ( E2 ( . . . ( En = E

and a decreasing sequence of numbers µ1 > . . . > µn representing the points of
jump of the R-filtration. By Proposition 4.3.46, the minimal slope of E is equal to
µn.

Let ε be a positive number such that ε < µn−1 − µn and E ′ be a vector subspace
of E such that E ′ ( E and µ̂max(E/E ′) 6 µ̂min(E) + ε = µn + ε . By Proposition
4.3.26, one has

µ̂(E/E ′) > µ̂min(E) = µn.

Therefore, one has

µn 6 µ̂(E/E ′) 6 µ̂max(E/E ′) 6 µn + ε .
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Moreover, by Proposition 4.3.46, one has

µ̂min(En−1) > µn−1 > µn + ε .

By Proposition 4.3.31, we obtain that the composed map En−1 → E → E/E ′ is
zero, or equivalently, En−1 is contained in E ′. Note that for any vector subspace F
of E ′ such that F ) En−1 one has µ̂min(F) 6 µn, otherwise the Harder-Narasimhan
R-filtration of E could not correspond to the flag 0 = E1 ( E2 ( . . . ( En = E
and the decreasing sequence µ1 > . . . > µn. Therefore, the Harder-Narasimhan
R-filtration of E ′ corresponds to a flag of the form (` ∈ N)

0 = E1 ( . . . ( En−1 ( E ′
n ( . . . ( E ′

n−1+` = E ′

together with a decreasing sequence µ1 > . . . > µn−1 > µ′n > . . . > µ′
n−1+` , where

µ′n 6 µn whenever ` > 1. We apply the induction hypothesis to E ′ and obtain

d̂eg(E ′) 6
n−1∑
i=1

µi dimK (Ei/Ei−1) +

n−1+`∑
i=n

µ′i dimK (E ′
i /Ei−1′) + ∆(E ′),

with the convention En−1 = E ′
n−1. By the condition that µ′n 6 µn whenever ` > 1

we obtain

d̂eg(E ′) 6
n−1∑
i=1

µi dimK (Ei/Ei−1) + µn dimK (E ′/En−1) + ∆(E ′).

Finally, by Proposition 4.3.13 (notably the inequality (4.27)) one obtains

d̂eg(E) 6 d̂eg(E ′) + d̂eg(E/E ′) + ∆(E) − ∆(E ′) − ∆(E/E ′)

6
n−1∑
i=1

µi dimK (Ei/Ei−1) + µn dimK (E ′/En−1)

+ (µn + ε) dimK (E/E ′) + ∆(E)

=

r∑
j=1

µ̂j(E) + ε dimK (E/E ′) + ∆(E) 6
r∑
j=1

µ̂j(E) + ε dimK (E) + ∆(E).

Since ε is arbitrary, we obtain the inequality (4.68). In the case where ξ is ultrametric
on Ω \Ω∞, as above we deduce (4.69) from (4.28). The proposition is thus proved.�

Corollary 4.3.52 Let E = (E, ξ) be a non-zero adelic vector bundle on S and r be
the dimension of E over K . One has

d̂eg+(E) 6
r∑
i=1

max{ µ̂i(E),0} + ∆(E). (4.70)

If in addition ξ is ultrametric on Ω \Ω∞, then one has
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d̂eg+(E) 6
r∑
i=1

max{ µ̂i(E),0} + δ(E). (4.71)

Proof Let F be a non-zero vector subspace of E and m be the dimension of F over
K . By (4.68) one has

d̂eg(F) 6
m∑
j=1

µ̂j(F) + ∆(F) 6
m∑
j=1

max{ µ̂j(F),0} + ∆(F).

Note that
m∑
j=1

max{ µ̂j(F),0} = −

∫
R

max{t,0} d(dimK (F
t

hn(F))) =
∫ +∞

0
dimK (F

t
hn(F)) dt .

Moreover, by Proposition 4.3.49, for any t ∈ R, one has

dimK (F
t

hn(F)) 6 dimK (F
t

hn(E)).

Therefore,

d̂eg(F) 6
∫ +∞

0
dimK (F

t
hn(E)) dt + ∆(F) =

r∑
i=1

max{ µ̂i(E),0} + ∆(F).

Note that ∆(F) 6 ∆(E) (see Corollary 1.2.44). By taking the supremum with respect
to F, we obtain the inequality (4.70).

The proof of the inequality (4.71) is quite similar, where we combine the above
argument with the inequality (4.69). �

Remark 4.3.53 Let (E, ξ) be an adelic vector bundle on S. Then one has the following
inequality: if d̂eg+(E, ξ) > 0, then

d̂eg+(E, ξ) 6 dimK (E) µ̂max(E, ξ). (4.72)

As a consequence, we obtain

d̂eg+(E, ξ) 6 dimK (E)max{ µ̂max(E, ξ),0} (4.73)

in general. The inequality (4.73) is weaker than (4.70) and (4.71), but it holds
without an error term. Moreover, the inequality (4.72) can be proved as follows: for
any ε ∈ ]0, d̂eg+(E, ξ)[, one can find a non-zero vector subspace F of E such that
0 6 d̂eg+(E, ξ) − ε 6 d̂eg(F, ξF ), so that

0 <
d̂eg+(E, ξ) − ε

dimK (E)
6

d̂eg(F, ξF )
dimK (E)

6 µ̂(F, ξF ) 6 µ̂max(E, ξ),

which implies (4.72).
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Definition 4.3.54 Let E be an adelic vector bundle on S and r be the dimension of
E over K . We denote by d̃eg(E) the sum µ̂1(E)+ · · · + µ̂r (E). If E is the zero adelic
vector bundle on S, then by convention d̃eg(E) is defined to be 0. If E is non-zero,
we define µ̃(E) to be the quotient d̃eg(E)/rkK (E).

Proposition 4.3.55 Let E and F be non-zero adelic vector bundles on S and f :
E → F be a K-linear map.

(1) Suppose that f is a bijection. Then one has

d̃eg(E) 6 d̃eg(F) + dimK (F) · h( f ). (4.74)

(2) Suppose that f is injective. Then µ̂1(E) 6 µ̂1(F) + h( f ).

Proof (1) By Proposition 4.3.49, for any t ∈ R one has

f (F t
hn(E)) ⊆ F

t−h( f )
hn (F).

Therefore the inequality (4.74) follows from Proposition 1.1.39.
(2) Let λ = µ̂1(E). Then F λ

hn(E) , {0}. Since f is injective, by Proposition 4.3.49,
this implies that F λ−h( f )

hn (E) , {0} and hence λ − h( f ) 6 µ̂1(F). �

Proposition 4.3.56 Let E = (E, ξ) be an adelic vector bundle on S and

0 = E0 ⊆ E1 ⊆ . . . ⊆ En

be a flag of vector subspaces of E . One has

d̂eg(E) − ∆(E) 6
n∑
i=1

d̃eg(Ei/Ei−1) 6 d̂eg(E) (4.75)

If in addition ξ is ultrametric on Ω \Ω∞, one has

d̂eg(E) − δ(E) 6
n∑
i=1

d̃eg(Ei/Ei−1) 6 d̂eg(E) (4.76)

Proof By Propositions 4.3.50 and 4.3.51 (notably the inequality (4.68)), for any
i ∈ {1, . . . ,n}, one has

d̂eg(Ei/Ei−1) − ∆(Ei/Ei−1) 6 d̃eg(Ei/Ei−1) 6 d̂eg(Ei/Ei−1).

Taking the sum with respect to i, by Proposition 4.3.13, we obtain

d̂eg(E) − ∆(E) 6
n∑
i=1

d̃eg(Ei/Ei−1) 6 d̂eg(E).

In the case where ξ is ultrametric on Ω \ Ω∞, the above argument combined with
(4.69) leads to (4.76). �
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Definition 4.3.57 Let E be a non-zero adelic vector bundle on S. We say that E is
semistable if its Harder-NarasimhanR-filtration only has one jump point, namely one
has µ̂1(E) = · · · = µ̂r (E) with r = dimK (E). By definition, the following conditions
are equivalent:

(1) E is semistable;
(2) for any non-zero vector subspace F of E , one has µ̂min(F) 6 µ̂min(E);
(3) µ̃(E) = µ̂min(E).

Theorem 4.3.58 Let E be a non-zero adelic vector bundle on S. We assume that the
Harder-Narasimhan R-filtration corresponds to the flag

0 = E0 ( E1 ( . . . ( En = E (4.77)

and the decreasing sequence µ1 > . . . > µn of real numbers. Then each subquotient
Ei/Ei−1 is semistable and µ̃(Ei/Ei−1) = µi , i ∈ {1, . . . ,n}. Moreover, (4.77) is the
only flag of vector subspaces of E such that each subquotient Ei/Ei−1 is semistable
and

µ̃(E1/E0) > . . . > µ̃(En/En−1).

Proof We begin with showing that each subquotient Ei/Ei−1 is semistable and that
µ̂(Ei/Ei−1) = µi . The case where i = 1 results from the definition of Harder-
Narasimhan R-filtration. In what follows, we suppose that i > 2.

By Proposition 4.3.46, for any j ∈ {1, . . . ,n} one has µ̂min(E j) > µj . Moreover,
by definition of the Harder-Narasimhan R-filtration, one has µ̂min(E j) 6 µj . Hence
we obtain the equality µ̂min(E j) = µj .

We claim that any vector subspace G′ of Ei/Ei−1 has a minimal slope 6 µi . Let
π : Ei → Ei/Ei−1 be the canonical quotient map and E ′

i be the preimage of G′ by
the quotient map π. Since E ′

i contains strictly Ei−1, one has µ̂min(E ′
i ) 6 µi . For any

ε > 0 there exists a quotient vector space H ′ of E ′
i such that µ̂max(H ′) 6 µi + ε .

If ε < µi−1 − µi , then µ̂min(E i−1) = µi−1 > µi + ε . By Proposition 4.3.31 (3), we
obtain that the composed map Ei−1 → E ′

i → H ′ is zero, or equivalently, H ′ is
actually a quotient vector space of E ′

i /Ei−1 = G′. Hence we obtain µ̂min(G′) 6 µi .
Therefore one has µ̂1(Ei/Ei−1) 6 µi 6 µmin(Ei/Ei−1), which implies that Ei/Ei−1
is semistable and µ̃(Ei/Ei−1) = µi .

We now proceed with the proof of the uniqueness by induction on the dimension
of E over K . The case where dimK (E) = 1 is trivial. In the following, we assume that
the assertion has been proved for non-zero adelic vector bundles of rank < dimK (E).
We still denote by

0 = E0 ( E1 ( . . . ( En = E

the Harder-Narasimhan flag of E . Let

0 = F0 ( F1 ( . . . ( Fm = E

be a flag of vector subspaces of E such that each subquotient Fj/Fj−1 is semistable
and that
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µ̃(F1/F0) > . . . > µ̃(Fm/Fm−1).

Since the subquotients Fj/Fj−1 are semistable, we can rewrite these inequalities as

µ̂min(F1/F0) > . . . > µ̂min(Fm/Fm−1). (4.78)

We claim that E1 is actually contained in F1. Assume that i is the smallest index in
{1, . . . ,m} such that E1 ⊂ Fi . We identifie E1/(E1 ∩ Fi−1) with a vector subspace of
Fi/Fi−1. Since Fi/Fi−1 is semistable, one has

µ̂min(E1/(E1 ∩ Fi−1)) 6 µ̂min(Fi/Fi−1).

If i > 1, then by (4.78) one has µ̂min(Fi/Fi−1) < µ̂min(F1) 6 µ̂min(E1), which
leads to a contradiction since µ̂min(E1/(E1 ∩ Fi−1)) > µ̂min(E1). Therefore one has
E1 ⊆ F1. If the inclusion is strict, then by the definition of Harder-Narasimhan
filtration one has µ̂min(F1) < µ̂min(E1). This contradicts the semi-stability of F1.
Therefore we have E1 = F1. Moreover, for any vector subspace M of E which
contains strictly E1, one has µ̂min(M) < µ̂min(E1). Hence, by Proposition 4.3.32 one
has µ̂min(M) = µ̂min(M/E1). Therefore, if E/E1 is non-zero, then

0 = E1/E1 ( . . . ( En/E1 = E/E1

is the Harder-Narasimhan flag of E/E1. By the induction hypothesis one has n = m
and Ei = Fi for any i ∈ {2, . . . ,n}. The uniqueness is thus proved. �

Proposition 4.3.59 Let E be a non-zero adelic vector bundle on S. The following
assertions are equivalent:

(1) E is semistable,
(2) for any non-zero vector subspace F of E , one has µ̃(F) 6 µ̃(E)

(3) for any non-zero quotient vector space G of E , one has µ̃(G) > µ̃(E).

Proof Let r be the dimension of E over K . Assume that E is semistable. Then one
has µ̂1(E) = · · · = µ̂r (E) = µ̃(E). If F is a non-zero vector subspace of E , then by
Proposition 4.3.49 we obtain that, for any t ∈ R, one has F t

hn(F) ⊆ F t
hn(E). Therefore,

for any i ∈ {1, . . . ,dimK (F)} one has µ̂i(F) 6 µ̃(E), which implies µ̃(F) 6 µ̃(E).
Similarly, if G is a non-zero quotient vector space of E and π : E → G is the
quotient map, then, by Proposition 4.3.49, one has π(F t

hn(E)) ⊆ F t
hn(G) for any

t ∈ R. Therefor for any i ∈ {1, . . . ,dimK (G)} one has µ̂i(G) > µ̃(E), which implies
that µ̃(G) > µ̃(E). Hence we have proved the implications (1)⇒(2) and (1)⇒(3).

We will prove the converse implications by contraposition. Suppose that E is not
semistable and its Harder-Narasimhan R-filtration corresponds to the flag

0 = E0 ( E1 ( . . . ( En = E,

and the successive jump points µ1 < . . . < µn, where n ∈ N, n > 1. Then one has
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µ̃(E) =
1

dimK (E)

n∑
i=1

µi dimK (Ei/Ei−1).

By Theorem 4.3.58 we obtain that µ̃(E1) = µ1 > µ̃(E) and µ̃(En/En−1) = µn <
µ̃(E). The proposition is thus proved. �

Remark 4.3.60 Consider the particular case where the adelic curve consists of ex-
actly one copy of the trivial absolute value on K (of measure 1 with respect to ν).
In this case an adelic vector bundle on S is just a finite-dimensional vector space
E over K equipped with a norm ‖·‖ (which is not necessary ultrametric), where
we consider the trivial absolute value on K . We have shown in §1.1.8 that ultra-
metric norms on a finite-dimensional vector space over K correspond bijectively to
R-filtrations on the same vector space. In particular, if (E, ‖·‖) is a Hermitian adelic
vector bundle on S, then the R-filtration on E corresponding to ‖·‖ identifies with
the Harder-Narasimhan R-filtration of (E, ‖·‖).

Proposition 4.3.61 We equip K with the trivial absolute value. Let (E, ‖·‖) be a
finite-dimensional normed vector space over K , which is also considered as an adelic
vector bundle as in Remark 4.3.60. The adelic vector bundle (E, ‖·‖) is semistable if
and only if the double dual norm ‖·‖∗∗ is constant on E \ {0}. Moreover, in this case
one has

− ln‖x‖∗∗ = µ̂(E, ‖·‖) = µ̂min(E, ‖·‖)

for any x ∈ E \ {0}.

Proof First we assume that (E, ‖·‖) is semistable. Let {ei}ri=1 be an α-orthogonal
basis of (E, ‖·‖), where α ∈ ]0,1[. Without loss of generality, we assume that
‖e1‖ 6 . . . 6 ‖er ‖. Moreover, by Proposition 1.2.23 one has

d̂eg(E, ‖·‖) 6 −r ln(α) −
r∑
i=1

ln‖ei ‖.

In particular, if ‖er ‖/‖e1‖ > α−r , that is,

−
1
r

ln ‖e1‖ > −
1
r

ln ‖er ‖ − ln(α),

then

− ln‖e1‖ = −
r − 1

r
ln‖e1‖ −

1
r

ln‖e1‖ > −
1
r

r−1∑
i=1

ln‖ei ‖ −
1
r

ln ‖er ‖ − ln(α)

> µ̂(E, ‖·‖) > µ̂min(E, ‖·‖),

which shows that (E, ‖·‖) is not semistable, so that ‖er ‖/‖e1‖ 6 α
−r . This observa-

tion shows that, for any α-orthogonal basis {ei}ri=1 of E , one has

max
(i, j)∈{1,...,r }2

��� ln‖ei ‖ − ln‖ej ‖
��� 6 −r ln(α). (4.79)
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Note that {ei}ri=1 is also an α-orthogonal basis of (E, ‖·‖∗∗) (see Proposition 1.2.11).
Moreover, we deduce from (4.79) and (1.25) that

max
(i, j)∈{1,...,r }2

��� ln‖ei ‖∗∗ − ln‖ej ‖∗∗
��� 6 −(r + 1) ln(α). (4.80)

Note that one has d̂eg(E, ‖·‖) = d̂eg(E, ‖·‖∗∗) (see Proposition 1.2.15). Moreover, by
Propositions 1.1.66 and 1.2.23 one has

−

r∑
i=1

ln‖ei ‖∗∗ 6 d̂eg(E, ‖·‖) 6 −r ln(α) −
r∑
i=1

ln‖ei ‖∗∗.

Combining this estimate with (4.80) we obtain

max
i∈{1,...,r }

��� ln‖ei ‖∗∗ − µ̂(E, ‖·‖)
��� 6 −(r + 2) ln(α).

In particular, for any (λ1, . . . , λr ) ∈ Kr \ {(0, . . . ,0)}, one has��� ln‖λ1e1 + · · · + λrer ‖∗∗ − µ̂(E, ‖·‖)
��� 6 −(r + 3) ln(α)

Since (E, ‖·‖) admits an α-orthogonal basis for any α ∈ ]0,1[ (see Corollary 1.2.9),
we obtain that the restriction of ln‖·‖∗∗ to E \ {0} is constant (which is equal to
− µ̂(E, ‖·‖)).

Assume now that the double dual norm ‖·‖∗∗ is constant on E \ {0}. Since
‖·‖∗∗ and ‖·‖ induce the same dual norm on E∨, we obtain that the restriction of
ln‖·‖∗ to E∨ \ {0} is constant and takes − µ̂(E∨, ‖·‖∗) as its value. Note that one
has − µ̂(E∨, ‖·‖∗) = µ̂(E, ‖·‖) by Proposition 4.3.10. We will show that (E, ‖·‖) is
semistable. First we show that µ̂min(E, ‖·‖) = µ̂(E, ‖·‖). Let G be a non-zero quotient
vector space of E and ‖·‖G be the quotient norm of ‖·‖ on G. By Proposition 1.1.20,
‖·‖G,∗ coincides with the restriction of ‖·‖∗ to G∨. Since the function ln‖·‖∗ takes
constant value µ̂(E, ‖·‖) on E∨ \ {0} we obtain that

µ̂(G, ‖·‖G) = − µ̂(G∨, ‖·‖G,∗) = µ̂(E, ‖·‖).

Therefore µ̂min(E, ‖·‖) = µ̂(E, ‖·‖). Now for any non-zero vector subspace F of E
one has

µ̂min(F, ‖·‖F ) 6 µ̂(F, ‖·‖F ) 6 µ̂(E, ‖·‖E ),

where ‖·‖F denotes the restriction of ‖·‖ to F. In fact, ln‖·‖F is bounded from below
by the restriction of ln‖·‖∗∗ to F, which is constant on F \ {0} of value − µ̂(E, ‖·‖).
Therefore (E, ‖·‖) is semistable. �

Remark 4.3.62 We keep the notation of the previous proposition. Note that the
norms ‖·‖ and ‖·‖∗∗ induce the same dual norm on E∨ (see Proposition 1.2.14 (1)),
so that we obtain that the adelic vector bundle (E, ‖·‖) is semistable if and only if the
restriction of the function ‖·‖∗ on E∨ \ {0} is constant. Moreover, in this case one
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has (see Proposition 1.2.47)

∀ ϕ ∈ E∨ \ {0}, − ln‖ϕ‖∗ = − d̂eg(E, ‖·‖).

Remark 4.3.63 In the case where ‖·‖ is ultrmetric, the normed vector space (E, ‖·‖)
corresponds to a sequence

0 = E0 ( E1 ( . . . ( En = E

of vector subspaces of E and a decreasing sequence µ1 > . . . > µn of real numbers
(see Remark 1.1.40). Note that, for any i ∈ {1, . . . ,n} the restriction of the subquotient
norm ‖·‖Ei/Ei−1 to (Ei/Ei−1) \ {0} is constant and takes e−µi as its value. Therefore
Proposition 4.3.61 implies that (Ei/Ei−1, ‖·‖Ei/Ei−1 ) is semistable and admits µi as
its minimal slope. Therefore Theorem 4.3.58 shows that

0 = E0 ( E1 ( . . . ( En = E

is the Harder-Narasimhan flag of the adelic vector bundle (E, ‖·‖).

Proposition 4.3.64 We equip K with the trivial absolute value. Consider a finite-
dimensional non-zero normed vector space (E, ‖·‖) over K . The Harder-Narasimhan
flags of (E, ‖·‖) and (E, ‖·‖∗∗) are the same. Moreover, for any i ∈ {1, . . . ,dimK (E)}

one has µ̂i(E, ‖·‖) = µ̂i(E, ‖·‖∗∗).

Proof Let n be the dimension of E over K . We reason by induction on n. First
of all, if (E, ‖·‖) is semistable, then by Proposition 4.3.61 (see also its proof), the
function − ln‖·‖∗∗ is constant on E \ {0} and takes µ̂(E, ‖·‖) = µ̂min(‖·‖) as its
value. Therefore the assertion of the proposition holds in this case, and in particular
the assertion is true when n = 1. In the following we suppose that (E, ‖·‖) is not
semistable (hence n > 2) and that the proposition has been proved for normed vector
spaces of dimension 6 n − 1.

For any i ∈ {1, . . . ,n}, let µi = µ̂i(E, ‖·‖∗∗) and Ei be the ball of radius e−µi in
(E, ‖·‖∗∗) centered at the origin. Let

β = min{µi − µi−1 : i ∈ {2, . . . ,n}, µi > µi−1}

and α be an element of ]0,1[ such that α > e−β/n. Let {ei}ni=1 be an α-orthogonal
bases of (E, ‖·‖). By Proposition 1.2.11, it is also an α-orthgonal basis of (E, ‖·‖∗∗).
By Proposition 1.2.26, {ei}ni=1 is an orthogonal basis of (E, ‖·‖∗∗). Without loss of
generality, we may assume that

{ei}ni=1 ∩ E1 = {e1, . . . , em},

where m is the dimension of E1 over K (see Proposition 1.2.26 (1)). Let {e∨i }
n
i=1 be

the dual basis of {ei}ni=1 and ‖·‖1 be the restriction of the norm ‖·‖ to E1. For any
i ∈ {1, . . . ,m}, let ϕi be the restriction of e∨i to E1. Then {ϕi}

m
i=1 forms a basis of

E∨
1 , which is the dual basis of {ei}mi=1. By lemma 1.2.10, {ϕi}mi=1 is an α-orthogonal

basis of E∨
1 , and one has
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∀ i ∈ {1, . . . ,m}, ‖ei ‖−1 6 ‖ϕi ‖1,∗ 6 α
−1‖ei ‖−1.

By Proposition 1.2.11, one has

∀ i ∈ {1, . . . ,m}, α‖ei ‖ 6 ‖ei ‖∗∗ = e−µ1 6 ‖ei ‖.

Therefore one obtains

∀ i ∈ {1, . . . ,m}, αeµ1 6 ‖ϕi ‖1,∗ 6 α
−1eµ1 .

As a consequence, for a general non-zero element ϕ of E∨
1 , which is written in the

form λ1ϕ1 + · · · + λmϕm, one has

‖ϕ‖1,∗ 6 max
i∈{1,...,m}

λi,0

‖ϕi ‖1,∗ 6 α
−1eµ1

and
‖ϕ‖1,∗ > α max

i∈{1,...,m}
λi,0

‖ϕi ‖1,∗ > α
2eµ1 .

Since (E, ‖·‖) admits an α-orthogonal basis for any α ∈ ]0,1[, we obtain that the
restriction of ‖·‖1,∗ to E1 \ {0} is constant and takes eµ1 as its value. Therefore,
Proposition 4.3.61 (see also Remark 4.3.62), we obtain that (E1, ‖·‖) is semistable
and admits µ1 as its minimal slope.

By Proposition 1.1.20, one has (see Definition 1.1.2 and Subsection 1.1.3 for
notation)

‖·‖∗,(E/E1)∨↪→E∨ = ‖·‖E�E/E1 ,∗.

Moreover, since ‖·‖∗ is ultrametric, by Proposition 1.2.35 one has

‖·‖∗∗,E�E/E1 = ‖·‖∗,(E/E1)∨↪→E∨ ,∗ = ‖·‖E�E/E1 ,∗∗.

Applying the induction hypothesis to (E/E1, ‖·‖E�E/E1 ) we obtain that the Harder-
Narasimhan flags and the successive slopes of

(E/E1, ‖·‖E�E/E1 ) and (E/E1, ‖·‖∗∗,E�E/E1 )

are the same. Therefore, by Theorem 4.3.58 we obtain that the Harder-Narasimhan
flag and the successive slopes of (E, ‖·‖) coincides with those of (E, ‖·‖∗∗). The
proposition is thus proved. �

Remark 4.3.65 In the framework of linear code, Randriambololona [125] has pro-
posed a Harder-Narasimhan theory based on semimodular degree functions on the
modular lattice of vector subspaces. Note that our approach, which relies on the
Arakelov degree function of quotient vector spaces, has a very different nature from
the classic method (due to the fact that the equality (4.29) and the inequality (4.50)
fail in general for non-Hermitian adelic vector bundles). It is an intriguing question
to compare the Harder-Narasimhan filtrations constructed in our setting and in [125].



282 4 Vector bundles on adelic curves: global theory

4.3.12 Absolute positive degree and absolute maximal slope

We have seen in Proposition 4.3.14 that the Arakelov degree is preserved by extension
of scalars. In this subsection, we discuss the behaviour of the maximal slope and the
positive degree under extension of scalars to the algebraic closure of K . We denote
by Kac the algebraic closure of the field K .

Definition 4.3.66 Let (E, ξ) be an adelic vector bundle on S. We denote by d̂eg a
+(E, ξ)

the positive degree of (EKac, ξKac ), called the absolute positive degree of (E, ξ). If E
is non-zero, we denote by µ̂a

max(E, ξ) the maximal slope of (EKac, ξKac ), called the
absolute maximal slope of (E, ξ).

Proposition 4.3.67 Let (E, ξ) be an adelic vector bundle on S. One has

d̂eg+(E, ξ) 6 d̂eg a
+(E, ξ) and µ̂max(E, ξ) 6 µ̂a

max(E, ξ).

Moreover, for any algebraic extension L of K , one has

d̂eg a
+(E, ξ) = d̂eg a

+(EL, ξL) and µ̂a
max(E, ξ) = µ̂a

max(EL, ξL).

Proof Let F be a vector subspace of E and ξF be the restriction of ξ to F. Let ξFKac

be the restriction of ξKac to FKac . By Proposition 1.3.17 (1), (2), the identity map
(FKac, ξF ,Kac ) → (FKac, ξFKac ) has norm 6 1 on any ω ∈ Ω. By Proposition 4.3.18,
one has

d̂eg(F, ξF ) = d̂eg(FKac, ξF ,Kac ) 6 d̂eg(FKac, ξFKac )

6 d̂eg+(EKac, ξKac ) = d̂eg a
+(E, ξ),

where the first equality comes from Proposition 4.3.14. Similarly, if F is non-zero,
one has

µ̂(F, ξF ) 6 µ̂(FKac, ξF ,Kac ) 6 µ̂(FKac, ξFKac )

6 µ̂max(FKac, ξFKac ) = µ̂
a
max(F, ξF ).

Since F is arbitrary, we obtain

d̂eg+(E, ξ) 6 d̂eg a
+(E, ξ) and µ̂max(E, ξ) 6 µ̂a

max(E, ξ).

By Corollary 1.3.15, if L is an algebraic extension of K , then one has (ξL)Kac =

ξKac . Therefore d̂eg a
+(E, ξ) = d̂eg a

+(EL, ξL), and µ̂a
max(E, ξ) = µ̂a

max(EL, ξL). �

Proposition 4.3.68 Assume that the field K is perfect. Let (E, ξ) be a Hermitian
adelic vector bundle on S. Then one has

d̂eg+(E, ξ) = d̂eg a
+(E, ξ) and µ̂max(E, ξ) = µ̂a

max(E, ξ).
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Proof Without loss of generality, we may assume that the vector space E is non-zero.
Let

{0} = Ẽ0 ( Ẽ1 ( . . . ( Ẽn = EKa

be the Harder-Narasimhan flag of (EKac, ξKac ). By the uniqueness of Harder-
Narasimhan filtration (see Proposition 4.3.38), for any K-automorphism τ of Kac

and any i ∈ {1, . . . ,n}, the vector space Ẽi is stable by τ. Since the filed K is perfect,
by Galois descent (see [29], Chapter V, §10, no.4, Corollary of Proposition 6), there
exists a flag

{0} = E0 ( E1 ( . . . ( En = E (4.81)

such that Ẽi = Ei,Kac for any i ∈ {1, . . . ,n}. Moreover, by Propositions 1.3.17 (1),
(2) (here we use the hypothesis that ξ is Hermitian), if we denote by ξi the restriction
of ξ to Ei , then ξi,Kac coincides with the restriction ξ̃i of ξKac to Ẽi . Therefore by
Proposition 4.3.14 one has d̂eg(Ei, ξi) = d̂eg(Ẽi, ξ̃i). We then deduce that the slopes
of Ei/Ei−1 and Ẽi/Ẽi−1 (equipped with subquotient norm families) are the same.
Hence by Proposition 4.3.38 we obtain that (4.81) is the Harder-Narasimhan flag of
(E, ξ). Therefore,

µ̂max(E, ξ) = µ̂(E1, ξ1) = µ̂(Ẽ1, ξ̃1) = µ̂
a
max(E, ξ)

and

d̂eg+(E, ξ) = max
i∈{0,...,n}

d̂eg(Ei, ξi) = max
i∈{0,...,n}

d̂eg(Ẽi, ξ̃i) = d̂eg a
+(E, ξ).

4.3.13 Successive minima

The successive minima are classic invariants of Hermitian vector bundles on an
arithmetic curve. In this subsection, we extend their construction (more precisely,
the construction of successive minima of Roy-Thunder [128]) to the setting of adelic
vector bundles on an adelic curve.

Definition 4.3.69 Let (E, ξ) be an adelic vector bundle on S and r be the dimension
of E over K . For any i ∈ {1, . . . ,r}, let

νi(E, ξ) := sup{t ∈ R : dimK (VectK ({s ∈ EK : d̂egξ (s) > t})) > i},

called the ith (logarithmic) minimum of (E, ξ). In other words, νi(E, ξ) is the supre-
mum of the set of real numbers t such that there exist at least i linearly independent
vectors of Arakelov degree > t. Clearly one has

ν1(E, ξ) > . . . > νr (E, ξ).
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The first minimum ν1(E, ξ) is also denoted by νmax(E, ξ), and the last minimum
νr (E, ξ) is also denoted by νmin(E, ξ). For any t ∈ R, let

F t
m(E, ξ) :=

⋂
ε>0

VectK ({s ∈ E \ {0} : d̂egξ (s) > t − ε}).

By definition
νi(E, ξ) = sup{t ∈ R : dimK (F

t
m(E)) > i}.

If E is the zero vector space, then by convention we define

νmax(E, ξ) := −∞ and νmin(E, ξ) := +∞.

We also define the absolute version of the successive minima as follows. For any
i ∈ {1, . . . ,r}, let νa

i (E, ξ) := νi(EKac, ξKac ), where Kac denotes the algebraic closure
of (E, ξ). Similarly, we let

νa
max(E, ξ) := νmax(EKac, ξKac ) and νa

min(E, ξ) := νmin(EKac, ξKac ).

Proposition 4.3.70 Let E = (E, ξ) be a non-zero adelic vector bundle on S. For any
t ∈ R one has

F t
m(E) =

⋂
ε>0

∑
0,F⊆E

νmin(F)>t−ε

F, (4.82)

where F runs over the set of all non-zero vector subspaces of E , and in the structure
of adelic vector bundle of F we consider the restricted norm family.

Proof Let ε > 0 and F be a non-zero vector subspace of E such that νmin(F) > t−ε.
There exists a basis {si}ni=1 of F over K such that

min
i∈{1,...,n}

d̂egξ (si) > t − 2ε.

Therefore one has∑
0,F⊆E

µ̂min(F)>t−ε

F ⊆ VectK ({s ∈ E \ {0} : d̂egξ (s) > t − 2ε}).

Conversely, for any t ∈ R such that F t
m(E) , {0} and any ε > 0, there exist

elements u1, . . . ,ur in E which generate F t
m(E) as vector space over K and such that

∀ j ∈ {1, . . . ,r}, d̂egξ (u j) > t − ε.

Therefore νmin(F
t

m(E)) > t. �

Proposition 4.3.71 Let (E, ξ) be an adelic vector bundle on S and r be the dimension
of E over K . For any i ∈ {1, . . . ,r}, one has νi(E, ξ) 6 νa

i (E, ξ). Moreover, for any
algebraic extension L of K and any i ∈ {1, . . . ,r} one has νa

i (E, ξ) = ν
a
i (EL, ξL).
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Proof Let {sj}ij=1 be a linearly independent family in E . Then it is also a linearly
independent family in EKac . Moreover, by the same argument as in the proof of
Proposition 4.3.67, for any j ∈ {1, . . . , i} one has d̂egξ (sj) 6 d̂egξKac (sj). Therefore
νi(E, ξ) 6 νi(EKac, ξKac ) = νa

i (E, ξ). The equality νa
i (EL, ξL) = ν

a
i (E, ξ) comes from

the relation (ξL)Kac = ξKac , which is a consequence of Corollary 1.3.15. �

The following proposition is straightforward from the definition of the (absolute)
first minimum and the (absolute) maximal slope.

Proposition 4.3.72 If (E, ξ) is an adelic vector bundle on S, then one has

ν1(E, ξ) 6 µ̂max(E, ξ) and νa
1(E, ξ) 6 µ̂

a
max(E, ξ). (4.83)

4.3.14 Minkowski property

Definition 4.3.73 Let S = (K, (Ω,A, ν), φ) be a proper adelic curve. Let C be a non-
negative real number. We say that the adelic curve S satisfies the Minkowski property
of level > C if, for any adelic vector bundle (E, ξ) on S such that ξ is ultrametric on
Ω \Ω∞, one has

ν1(E, ξ) > µ̂max(E, ξ) − C ln(dimK (E)).

We say that S satisfies the absolute Minkowski property of level > C if, for any adelic
vector bundle (E, ξ) on S, one has

νa
1(E, ξ) > µ̂

a
max(E, ξ) − C ln(dimK (E)).

Remark 4.3.74 Let V be an Euclidean lattice. The first theorem of Minkowski can
be stated as (see [24, §3.2] for more details)

ν1(V) > µ̂max(V) −
1
2

ln(dimK (V)).

Hence the Minkowski property should be considered as an analogue in the general
setting of adelic curve of the statement of the first theorem of Minkowski. For general
number fields, it has been shown in [66, §5] that, for any adelic vector bundle E of
rank n over a number field K , one has

ν1(E) > µ̂max(E) −
1
2

ln(n) −
1
2

ln |DK/Q |

and

νa
1(E) > µ̂max(E) −

1
2

n∑̀
=2

1
`
= µ̂a

max(E) −
1
2

n∑̀
=2

1
`

whereDK/Q is the discriminant of K overQ. Therefore the adelic curve corresponding
to a number field satisfies the Minkowski property of level > 1

2 +
1
2 ln |DK/Q | and

the absolute Minkowski property of level > 1
2 .
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In the function field case, given a regular projective curve (over a base field), by
Riemann-Roch formula there exists a constant A > 0 which only depends on the
curve, such that

ν1(E) > µmax(E) − A

for any vector bundle E on the curve (see [42, Remark 8.3]). Therefore the Minkowski
property of level > A/ln(2) is satisfied in this case. Moreover, if the base field is
of characteristic zero, then it has been shown in [22] that the absolute Minkowski
property of level > 0 is satisfied.

The Minkowski property may fail for general adelic curves. Consider the adelic
curve S = (Q, (Q,A, ν), φ) consisting of the field of rational numbers, the measure
space of Q equipped with the discrete σ-algebra and the atomic measure such that
ν({ω}) = 1 for any ω ∈ Q, together with the map φ sending any ω ∈ Q to the trivial
absolute value on Q. We write the rational numbers into a sequence {qn}n∈N. For
any n ∈ N>2, consider the following adelic vector bundle En on S. Let En = K2. For
m ∈ N such that m < n let ‖·‖qm be the norm on En defined as

‖(x, y)‖qm =


e−1, if there exists a ∈ K× such that (x, y) = a(1,qm),
0, if (x, y) = (0,0),
1, else.

For m ∈ N such that m > n, let ‖·‖qm be the norm on K2 such that ‖(x, y)‖ = 1 for any
(x, y) ∈ K2\{(0,0)}. Then by definition one has d̂eg(En) = n and hence µ̂(En) = n/2.
Moreover, for any vector subspace F of E , either there exists m ∈ {0, . . . ,n−1} such
that F = K(1,qm) and thus µ̂(F) = 1, or one has µ̂(F) = 0. Since n > 2, we obtain
that the adelic vector bundle En is semistable and of slope n/2. Moreover the first
minimum of En is 1. Therefore it is not possible to find a constant C only depending
on S such that µ̂max(En) is bounded from above by ν1(En) + C ln(2).

In the literature, the absolute Minkowski property is closely related to the semista-
bility of tensor vector bundles and the estimation of the maximal slope of them. We
refer the readers to [3, 22, 64] for more detailed discussions. In the following, we
prove several slope estimates in assuming the Minkowski property.

Proposition 4.3.75 Let E = (E, ξE ) and F = (F, ξF ) be adelic vector bundles on S.
We assume that ξE and ξF are ultrametric on Ω \Ω∞. One has

ν1(E ⊗ε F) 6 µ̂max(E) + µ̂max(F). (4.84)

Proof Let f be a non-zero element of E ⊗K F, viewed as a K-linear map from E∨

to F. By Proposition 4.3.31 (3), one has

µ̂min(E∨) 6 µ̂max(F) + h( f ) = µ̂max(F) − d̂egξE ⊗ε ξF
( f ).

By Proposition 4.3.25, we obtain

0 6 µ̂max(E) + µ̂max(F) − d̂egξE ⊗ε ξF
( f ).
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Since f is arbitrary, we obtain the inequality 4.84. �

Corollary 4.3.76 Let C be a non-negative real number. We assume that the adelic
curve S satisfies the Minkowski property of level > C. Let E = (E, ξE ) and F =
(F, ξF ) be adelic vector bundles on S.

(1) Assume that ξE and ξF are ultrametric on Ω \Ω∞. Then

µ̂max(E ⊗ε F) 6 µ̂max(E) + µ̂max(F) + C ln(dimK (E) · dimK (F)), (4.85)

(2) One has

µ̂min(E ⊗ε,π F) > µ̂min(E) + µ̂min(F) − (C + 1
2 ν(Ω∞)) ln(dimK (E) · dimK (F)).

(4.86)

Proof By the assumption of Minkowski property, we have

ν1(E ⊗ε F) > µ̂max(E ⊗ε F) − C ln(dimK (E) · dimK (F)).

Hence (4.85) follows from (4.84).
If we apply the inequality (4.85) to E∨ and F∨ (note that ξ∨E and ξ∨F are always

ultrametric on Ω \Ω∞), we obtain

µ̂max(E∨ ⊗ε F∨) 6 µ̂max(E∨) + µ̂max(F∨) + C ln(dimK (E) · dimK (F)).

By Proposition 4.3.25 we deduce that

µ̂min(E ⊗ε,π F) > −µ̂max(E∨) − µ̂max(F∨) − C ln(dimK (E) · dimK (F)).

Finally, by Corollary 4.3.27 we obtain (4.86). �

Proposition 4.3.77 Let E be a non-zero adelic vector bundle on S. One has

νmin(E) 6 µ̂min(E).

Proof Let r be the dimension of E over K . Assume that E is of the form E = (E, ξ),
with ξ = {‖·‖ω}ω∈Ω. Let t be a real number and {si}ri=1 be a basis of E over K such
that d̂egξ (si) > t for any i ∈ {1, . . . ,r}.

Let G be a quotient vector space of E and ξG = {‖·‖G,ω}ω∈Ω be the quotient
norm family of ξ on G. For any i ∈ {1, . . . ,r}, let αi be the canonical image of si in
G. Without loss of generality, we may assume that {α1, . . . , αn} forms a basis of G
over K . For any ω ∈ Ω, one has

‖α1 ∧ · · · ∧ αn‖G,ω,det 6
n∏
i=1

‖αi ‖G,ω 6
n∏
i=1

‖si ‖ω,

where the first inequality comes from Proposition 1.1.63. Therefore one has
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d̂eg(G) >
n∑
i=1

d̂egξ (si) > nt,

which implies µ̂(G) > t. Therefore we obtain νmin(E) 6 µ̂min(E). �

Corollary 4.3.78 Let E = (E, ξ) be a non-zero adelic vector bundle on S. For any
i ∈ {1, . . . ,dimK (E)} one has νi(E) 6 µ̂i(E).

Proof By the relations (4.82) and (4.65), Proposition 4.3.77 leads toF t
m(E) ⊆ F t

hn(E)

for any t ∈ R. Therefore, by Proposition 1.1.39 we obtain that νi(E) 6 µ̂i(E) for any
i ∈ {1, . . . ,dimK (E)}. �

Definition 4.3.79 Let S = (K, (Ω,A, ν), φ) be an adelic curve. Let C be a non-
negative real number. We say that S satisfies the strong Minkowski property of level
> C if for any adelic vector bundle (E, ξ) on S such that ξ is ultrametric on Ω \ Ω∞

one has
νmin(E, ξ) > µ̂min(E, ξ) − C ln(dimK (E)). (4.87)

Proposition 4.3.80 Assume that the adelic curve S satisfies the strong Minkowski
property of level > C. For any non-zero adelic vector bundle E = (E, ξ) on S one
has

µ̂i(E) 6 νi(E) + C ln(dimK (E)). (4.88)

Proof Since the adelic curve S satisfies the strong Minkowski property of level > C,
by the relation (4.87) we obtain that

∀ t ∈ R, F t
hn(E) ⊆ F

t−C ln(dimK (E))
m (E).

Therefore, by Proposition 1.1.39 we obtain the inequality (4.88). �

Remark 4.3.81 Proposition 4.3.80 shows that, if the adelic curve S satisfies the
strong Minkowski property of level > C, then it also satisfies Minkowski property of
level > C. Moreover, the transference theorem of Gaudron [63, Theorem 36] shows
that, for any Hermitian adelic vector bundle E of rank n over a number field K , one
has

νmin(E) − µ̂min(E) = νmin(E) + µ̂max(E∨) > νmin(E) + ν̂max(E∨)

> ln(n) + ln |DK/Q |,

where DK/Q is the discriminant of K over Q. We then deduce that, if E is a general
adelic vector bundle of dimension n over K , which is not necessarily Hermitian, one
has (by Theorem 4.1.26)

νmin(E) > µ̂min(E) −

(
1 +

1
2
[K : Q]

)
ln(n) + ln |DK/Q |.

Therefore the adelic curve corresponding to a number field K satisfies the strong
Minkowski property of level 1 + 1

2 [K : Q] ln |DK/Q |.
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4.4 Adelic vector bundles over number fields

Throughout this section, we fix a number field K and the standard adelic curve
S = (K, (Ω,A, ν), φ) of K as in Subsection 3.2.2. Note that S is proper. Denote by
Ωfin the set Ω \ Ω∞ of finite places of K , and by oK the ring of algebraic integers in
K . Note that the absolute value |·|ω at ω is given by

∀ x ∈ Kω, |x |ω =


the standard absolute value of x in either R or C if ω ∈ Ω∞,

exp
(
− ln(pω) ordω(x)

ordω(pω)

)
if ω ∈ Ωfin,

where pω is the characteristic of the residue field of the valuation ring of Kω . Further,
for ω ∈ Ωfin, let oK ,ω be the localisation of oK at ω and oω be the valuation ring of
the completion Kω of K with respect to ω, that is,

oK ,ω = {a ∈ K : |a|ω 6 1} and oω = {a ∈ Kω : |a|ω 6 1}.

Moreover, ν({ω}) = [Kω : Qω] for ω ∈ Ω and
∑
ω∈Ω∞

ν({ω}) = [K : Q].

Let E be a finite-dimensional vector space over K and ξ = {‖·‖ω}ω∈Ω be a norm
family of E over S. In this section, we always assume that ‖·‖ω is ultrametric for
every ω ∈ Ωfin. For ω ∈ Ωfin, we set

Eω := E ⊗K Kω and Eω := {x ∈ Eω | ‖x‖ω 6 1}.

By Propositions 1.1.25 and 1.1.30, Eω is a free oω-module of rank dimK E and
Eω ⊗oω Kω = Eω .

Remark 4.4.1 As in the next subsection, let (E, ξ)ω61 := {x ∈ E : ‖x‖ω 6 1}. Then
one can see the following:

(1) (E, ξ)ω61 is a free oK ,ω-module.
(2) (E, ξ)ω61 ⊗oK ,ω oω = Eω .

(1) Fix a basis of {xi}ri=1 of E . We consider a norm ‖·‖ ′ω on Eω given by

∀ (λ1, . . . , λr ) ∈ Kr
ω, ‖λ1x1 + · · · + λr xr ‖ ′ω = max{|λ1 |ω, . . . , |λr |ω}.

By Proposition 1.1.11, there is a positive integer n such that |$ω |
n‖·‖ ′ω 6 ‖·‖ω ,

where $ω is a uniformizing parameter of oK ,ω . Therefore,

(E, ξ)ω61 ⊆ oK ,ωe1$
−n
ω + · · · + oK ,ωer$−n

ω ,

as required.
(2) Obviously (E, ξ)ω61 ⊗oK ,ω oω ⊆ Eω . Let {ei}ri=1 be a free basis of (E, ξ)ω61 over

oK ,ω . For x ∈ Eω , we choose (a1, . . . ,ar ) ∈ Kr
ω such that x = a1e1 + · · ·+ arer . One

can find (a′
1, . . . ,a

′
r ) ∈ Kr such that
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|ai − a′
i |ω 6

1
2
|ai |ω for any i ∈ {1, . . . ,r} and ‖x − (a′

1e1 + · · ·+ a′
rer )‖ω 6

1
2
‖x‖ω .

If we set x ′ = a′
1e1 + · · · + a′

rer , then ‖x‖ω = ‖x ′‖ω and |ai |ω = |a′
i |ω for all i. In

particular x ′ ∈ (E, ξ)ω61, so that a′
i ∈ oK ,ω , and hence |ai |ω = |a′

i |ω 6 1. Therefore,
x ∈ (E, ξ)ω61 ⊗oK ,ω oω .

4.4.1 Coherency for a norm family

Let E be a finite-dimensional vector space over K . Let ξ = {‖·‖ω}ω∈Ω be a norm
family of E over S. We define (E, ξ)fin

61 and (E, ξ)ω61 (ω ∈ Ωfin) to be{
(E, ξ)fin

61 := {x ∈ E : ‖x‖ω 6 1 for all ω ∈ Ωfin},

(E, ξ)ω61 := {x ∈ E : ‖x‖ω 6 1}.

Note that (E, ξ)fin
61 and (E, ξ)ω61 are an oK -module and an oK ,ω-module, respectively.

Furthermore, by Remark 4.4.1, (E, ξ)ω61 is a freeoK ,ω-module and (E, ξ)ω61⊗oK ,ωoω =
Eω . Let us begin with the following proposition.

Proposition 4.4.2 The following are equivalent:

(1) For any v ∈ E , ‖v‖ω 6 1 except finitely many ω ∈ Ωfin.
(2) (E, ξ)fin

61 ⊗oK oK ,ω = (E, ξ)ω61 for all ω ∈ Ωfin.
(3) (E, ξ)fin

61 ⊗oK oK ,ω = (E, ξ)ω61 for some ω ∈ Ωfin.
(4) (E, ξ)fin

61 ⊗oK K = E .

Moreover, under the above equivalent conditions, (E, ξ)fin
61 ⊗Z Q = E .

Proof First of all, let us see the following claim:

Claim 4.4.3 (a) Let S be a finite subset of Ωfin. Then there is f ∈ oK \ {0} such that

ordω( f )

{
> 0 if ω ∈ S,
= 0 if ω < S.

(b) (E, ξ)ω61 ⊗oK ,ω K = E for all ω ∈ Ωfin. �

Proof (a) Let us consider the ideal given by I =
∏
p∈S p. As the class group of K is

finite, there are a positive integer a and f ∈ oK such that f oK = Ia, as required.

(b) Obviously (E, ξ)ω61 ⊗oK ,ω K ⊆ E . For v ∈ E , there is a ∈ oK ,ω \ {0} such that
av ∈ (E, ξ)ω61, which shows the converse inclusion. �

(1) =⇒ (2): Clearly (E, ξ)fin
61 ⊗oK oK ,ω ⊆ (E, ξ)ω61. Conversely, for v ∈ (E, ξ)ω61,

as S = {ω′ ∈ Ωfin : ‖v‖ω′ > 1} is finite, there is f ∈ oK \ {0} such that | f |ω′ < 1
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for ω′ ∈ S and | f |ω′ = 1 for ω′ ∈ Ωfin \ S by the above claim (a). Thus, there is a
positive integer n such that f nv ∈ (E, ξ)fin

61. Note that f ∈ o×K ,ω . Thus the converse
inclusion holds.

“(2) =⇒ (3)” is obvious and “(3) =⇒ (4)” follows from (b) in the claim. Let us
see that “(4) =⇒ (1)”. For v ∈ E , there is a ∈ oK \ {0} such that av ∈ (E, ξ)fin

61, that
is, |a|ω ‖v‖ω ≤ 1 for all ω ∈ Ωfin. Note that |a|ω = 1 except finitely many ω, so that
one has (1).

Note that (E, ξ)fin
61 ⊗oK K and (E, ξ)fin

61 ⊗ZQ are the localisations of (E, ‖·‖)fin
61 with

respect to oK \ {0} and Z \ {0}, respectively. Therefore, for the last assertion, it is
sufficient to show that, for α ∈ oK \{0}, there is α′ ∈ oK \{0} such that αα′ ∈ Z\{0}.
Indeed, one can find (a1, . . . ,an) ∈ Zn such that αn + a1α

n−1 + · · ·+ an−1α+ an = 0.
We may assume that an , 0. Thus α(αn−1 + a1α

n−2 + · · ·+ an−1) = −an ∈ Z \ {0}.�

Definition 4.4.4 We say that (E, ξ) is coherent if the equivalent conditions of Propo-
sition 4.4.2 are satisfied.

Proposition 4.4.5 If there are a non-empty open set U of Spec(oK ) and a locally free
oU -module E such that E ⊗oU K = E and ‖·‖ω = ‖·‖E ⊗oU oω

for all ω ∈ U ∩ Ωfin,
then (E, ξ) is coherent and dominated, where oU is the ring of regular functions on
the open set U.

Proof For s ∈ E \ {0}, we can find a non-empty open set U ′ ⊆ U such that
s ∈ E ⊗oU oω and E ⊗oU oω/oωs is torsion free for all ω ∈ U ′ ∩Ωfin, so that

‖s‖ω = ‖s‖E ⊗oU oω
= 1.

In particular, (E, ξ) is upper dominated and coherent. Let E ∨ be the dual of E over
U. Note that E ∨ ⊗oU oω = (E ⊗oU oω)

∨, so that by Propsotion 1.1.34, ‖·‖ω,∗ =
‖·‖E ∨⊗oU oω

for all ω ∈ U ∩ Ωfin. Therefore, in the same way as above, one can see
that (E∨, ξ∨) is upper dominated, and hence (E, ξ) is dominated. �

4.4.2 Finite generation of a dominated vector bundle over S

Let E be a finite-dimensional vector space over K and ξ = {‖·‖ω}ω∈Ω be a norm
family of E over S. The purpose of this subsection is to prove the following propo-
sition.

Proposition 4.4.6 If ξ is dominated, then

(E, ξ)fin
61 := {x ∈ E : ‖x‖ω 6 1 for all ω ∈ Ωfin}

is a finitely generated oK -module.
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Proof First we assume that dimK (E) = 1. Fix x ∈ E \ {0}. For each ω ∈ Ωfin,
let aω be the smallest integer a with a > − ln ‖x‖ω/ln |$ω |ω , where $ω is a local
parameter of oK ,ω .

As ξ is lower dominated, there is an integrable function A(ω) on Ω such that

∀ω ∈ Ω, − ln ‖x‖ω 6 A(ω).

Here we assume that there are infinitely many ω ∈ Ωfin with aω 6 −1. As aω 6 −1
implies − ln |$ω |ω 6 − ln ‖x‖ω , one has

A(ω)ν({ω}) > − ln ‖x‖ων({ω})

> − ln |$ω |ων({ω}) = ln card(oK/pω) > ln pω,

where pω is the maximal ideal of oK and pω is the characteristic of the residue
field oK/pω , which gives a contradiction to the integrability of the function A(·).
Therefore, aω > 0 except finitely many ω ∈ Ωfin.

Note that

‖ax‖ω = |a|ω ‖x‖ω 6 1 ⇐⇒ |$ω |
ordω (a)+ln ‖x ‖ω/ln |$ω |ω
ω 6 1

⇐⇒ ordω(a) > − ln ‖x‖ω/ln |$ω |ω

⇐⇒ ordω(a) > aω .

Therefore

{a ∈ K : ‖ax‖ω 6 1 for all ω ∈ Ωfin}

= {a ∈ K : ordω(a) − aω > 0 for all ω ∈ Ωfin}

is finitely generated over oK by Lemma 4.4.7. Thus one has the assertion in the case
where dimK (E) = 1.

In general, we prove the theorem by induction on dimK (E). By the previous
observation, we may assume dimK (E) > 2. Fix x ∈ E \ {0}. We set E ′ = K x and
E ′′ = E/E ′. Let ξ ′ be the norm family on E ′ given by the restriction of ξ, and ξ ′′ be
the norm family on E ′′ given by the quotient of ξ. Then ξ ′ and ξ ′′ are dominated by
Proposition 4.1.19, so that, by the hypothesis of induction, (E ′, ξ ′)fin

61 and (E ′′, ξ ′′)fin
61

are finitely generated over oK . Note that β((E, ξ)fin
61) ⊆ (E ′′, ξ ′′)fin

61, where β is the
canonical homomorphism E → E ′′. In particular, β((E, ξ)fin

61) is finitely generated
over oK because oK is Noetherian. Therefore, one has the exact sequence

0 −→ (E ′, ξ ′)fin
61 −→ (E, ξ)fin

61 −→ β((E, ξ)fin
61) −→ 0,

and hence the assertion follows. �

Lemma 4.4.7 Let {bω}ω∈Ωfin be a family of integers indexed by Ωfin. Then

oK ({bω}ω∈Ωfin ) := {a ∈ K : ordω(a) + bω > 0 for all ω ∈ Ωfin}
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is finitely generated over oK if and only if either bω 6 0 except finitely many ω, or
bω < 0 for infinitely many ω.

Proof We set S = {ω ∈ Ωfin : bω > 1} and T = {ω ∈ Ωfin : bω 6 −1}.
First we assume that bω 6 0 except finitely many ω, that is, card(S) < ∞. Then

one can choose f ∈ oK \ {0} such that ordω( f ) > bω for all ω ∈ Ωfin. Note that
{a ∈ K : ordω(a) > 0 for all ω ∈ Ωfin} = oK , so that oK ({bω}ω∈Ωfin ) f ⊆ oK . Thus
oK ({bω}ω∈Ωfin ) f is finitely generated over oK because oK is Noetherian. Therefore
oK ({bω}ω∈Ωfin ) is also finitely generated over oK .

Next we assume that bω < 0 for infinitely many ω, that is, card(T) = ∞. In this
case, oK ({bω}ω∈Ωfin ) = {0}. Indeed, if x ∈ oK ({bω}ω∈Ωfin ) \ {0}, then ordω(x) ≥ 1
for all ω ∈ T , which is a contradiction.

Finally we assume that card(S) = ∞ and card(T) < ∞. In this case, we
need to show that oK ({bω}ω∈Ωfin ) is not finitely generated over oK . We set
S = {ω1,ω2, . . . ,ωn, . . .}. For each positive integer N , let us consider a family
{bN ,ω}ω∈Ωfin of integers given by

bN ,ω =

{
0 if ω ∈ {ωn : n > N + 1},
bω otherwise.

Then one has a strictly increasing sequence of finitely generated oK -modules:

oK ({b1,ω}ω∈Ωfin ) ( oK ({b2,ω}ω∈Ωfin ) ( · · · ( oK ({bN ,ω}ω∈Ωfin ) ( · · ·

such that
⋃∞

N=1 oK ({bN ,ω}ω∈Ωfin ) = oK ({bω}ω∈Ωfin ). Therefore oK ({bω}ω∈Ωfin ) is
not finitely generated over oK . �

Example 4.4.8 Let {bω}ω∈Ωfin be a family of integers indexed by Ωfin. To each
ω ∈ Ωfin, we assign a norm ‖·‖ω of Kω given by

‖x‖ω = exp
(
−bω ln(pω)
ordω(pω)

)
|x |ω

for x ∈ Kω . Moreover, for ω ∈ Ω∞ let ‖·‖ω be the standard absolute value of either
R or C. Then ξ := {‖·‖ω}ω∈Ω yields a norm family on K . Note that, for ω ∈ Ωfin,
‖x‖ω 6 1 if and only if ordω(x) + bω > 0 for x ∈ K , that is,

(K, ξ)fin
61 = oK ({bω}ω∈Ωfin ).

For example, if we set bω = 1 for all ω ∈ Ωfin, then (K, ξ)fin
61 is not finitely generated

over oK by Lemma 4.4.7.
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4.4.3 Invariants � and �

Let (E, ξ = {‖·‖ω}ω∈Ω) be an adelic vector bundle on S. Let E := (E, ξ)fin
61 =

{x ∈ E : ‖x‖ω 6 1 for all ω ∈ Ωfin}. If ξ is coherent and dominated, then, by
Proposition 4.4.2, 4.4.6 and Remark 4.4.1, E is a finitely generated oK -module,
E ⊗oK K = E and E ⊗oK oω = Eω for all ω ∈ Ωfin.

We define ‖·‖∞ to be

∀ x ∈ E, ‖x‖∞ := max
ω∈Ω∞

{‖ιω(x)‖σ},

where ιω is the canonical homomorphism E → Eω . Under the assumption that ξ is
coherent and dominated, the invariant �(E, ξ) is defined to be

�(E, ξ) :=


∞ if E = {0},

sup
λ ∈ R :

There is a basis e1, . . . , er of E
over K such that e1, . . . , er ∈ E

and max{ ‖e1 ‖∞, . . . , ‖er ‖∞ } 6 e−λ

 otherwise.

By Proposition 1.1.30,

0 6 sup
x∈Eω\{0}

ln
(
‖x‖Eω
‖x‖ω

)
6 − ln |$ω |ω (4.89)

for any ω ∈ Ωfin, where ‖·‖Eω is the norm arising from Eω (cf. Subsection 1.1.7).
The impurity �(E, ξ) of (E, ξ) is defined to be

�(E, ξ) :=
∑
ω∈Ωfin

sup
x∈Eω\{0}

ln
(
‖x‖Eω
‖x‖ω

)
ν({ω}) ∈ [0,∞].

Note that �(E, ξ) = 0 if and only if ‖·‖ω = ‖·‖Eω for all ω ∈ Ωfin. Moreover,
if ξ is coherent and dominated, then, by Proposition 4.4.5, ξ ′ = {‖·‖Eω }ω∈Ωfin ∪

{‖·‖ω}ω∈Ω∞
is also coherent and dominated, so that �(E, ξ) < ∞ by Corollary 4.1.10.

Proposition 4.4.9 We assume that ξ is coherent. Then the following are equivalent:

(1) ξ is dominated.
(2) E is finitely generated over oK and �(E, ξ) < ∞.

Proof It is sufficient to see that (2) =⇒ (1). If we set

ξ ′ = {‖·‖Eω }ω∈Ωfin ∪ {‖·‖ω}ω∈Ω∞
,

then ξ ′ is dominated by Proposition 4.4.5 together with Proposition 4.4.2 and Re-
mark 4.4.1. Therefore the assertion follows from the assumption �(E, ξ) < ∞. �

Proposition 4.4.10 We assume that ξ is coherent and dominated. There is a constant
cK depending only on K such that
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[K : Q]�(E, ξ) 6 νmin(E, ξ) 6 [K : Q]�(E, ξ) + �(E, ξ) + cK .

Proof First we consider the inequality [K : Q]�(E, ξ) 6 νmin(E, ξ). We set λ =
�(E, ξ). For ε > 0, there is a basis {e1, . . . , er } of E over K such that ei ∈ E and
‖ei ‖∞ 6 e−λ+ε for all i. On the other hand,

d̂egξ (ei) =
∑
ω∈Ω

− ln ‖ei ‖ων({ω}) >
∑
ω∈Ω∞

− ln ‖ei ‖ων({ω})

>
∑
ω∈Ω∞

(λ − ε)ν({ω}) = [K : Q](λ − ε),

so that the assertion follows.

Next let us see the second inequality

νmin(E, ξ) 6 [K : Q]�(E, ξ) + �(E, ξ) + cK .

For ε > 0, there is a basis {e′1, . . . , e
′
r } of E over K such that d̂eg(e′i) ≥ νmin(E, ξ) − ε

for all i. We set Ei = Ke′i and Ei = E ∩ Ei . By Lemma 4.4.11 below, there is an
e′′i ∈ Ei such that

card(Ei/oKe′′i ) 6 C ′
K ,

where C ′
K is a constant depending only on the number field K . Therefore νmin(E, ξ)−ε

is bounded from above by

d̂egξ (e
′
i) = d̂egξ (e

′′
i ) =

∑
ω∈Ωfin

− ln ‖e′′i ‖ων({ω}) +
∑
ω∈Ω∞

− ln ‖e′′i ‖ων({ω})

=
∑
ω∈Ωfin

− ln ‖e′′i ‖Eω ν({ω}) +
∑
ω∈Ωfin

ln
(
‖e′′i ‖Eω
‖e′′i ‖ω

)
ν({ω})

+
∑
ω∈Ω∞

− ln ‖e′′i ‖ων({ω})

6 ln card(Ei/oKe′′i ) +
∑
ω∈Ωfin

ln(‖IdEω ‖
op
ω )ν({ω}) +

∑
ω∈Ω∞

− ln ‖e′′i ‖ων({ω})

6 ln C ′
K + �(E, ξ) +

∑
ω∈Ω∞

− ln ‖e′′i ‖ων({ω}).

If we set
A =

1
[K : Q]

∑
ω∈Ω∞

ln ‖e′′i ‖ων({ω}),

then
∑
ω∈Ω∞

(ln ‖e′′i ‖ω− A)ν({ω}) = 0. Let {u1, . . . ,us} be a free basis of o×K modulo
the torsion subgroup. Then, by Dirichlet’s unit theorem, there are a′

i1, . . . ,a
′
is ∈ R

such that

ln ‖e′′i ‖ω − A =
s∑
j=1

a′
i j ln |u j |ω
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for all ω ∈ Ω∞. Let ai j be the round-up of a′
i j . Then

s∑
j=1

(a′
i j − ai j) ln |u j |ω 6

s∑
j=1

|a′
i j − ai j | ·

�� ln |u j |ω
�� 6 s∑

j=1

�� ln |u j |ω
�� 6 C ′′

K ,

where C ′′
K =

∑
ω∈Ω∞

∑s
j=1 | ln |u j |ω |. Therefore,

−A =
s∑
j=1

a′
i j ln |u j |ω − ln ‖e′′i ‖ω 6 C ′′

K +

s∑
j=1

ai j ln |u j |ω − ln ‖e′′i ‖ω

= C ′′
K − ln ‖vie′′i ‖ω,

where vi =
∏s

j=1 u−ai j

j , and hence, if we set ei = vie′′i , then ei ∈ E and

νmin(E, ξ) − ε 6 ln C ′
K + �(E, ξ) + [K : Q]C ′′

K − [K : Q] ln ‖ei ‖ω,

that is, there is a constant cK depending only on K such that

νmin(E, ξ) − ε 6 cK + �(E, ξ) − [K : Q] ln ‖ei ‖ω

for all i and ω ∈ Ω∞. We choose i and ω such that max{‖e1‖ω, . . . , ‖er ‖ω} = ‖ei ‖ω .
Then, as e−�(E ,ξ) 6 ‖ei ‖ω , that is, − ln ‖ei ‖ω 6 �(E, ξ),

νmin(E, ξ) − ε 6 cK + �(E, ξ) + [K : Q]�(E, ξ),

and hence the assertion follows. �

Lemma 4.4.11 There is a constant eK depending only on K such that, for any
invertible oK -module L , we can find l ∈ L \ {0} such that card(L /oK l) 6 eK .

Proof Since the class group is finite, there are finitely many invertible oK -modules
L1, . . . ,Lh such that, for any invertibleoK -module L , there is Li such that Li ' L .
For each i ∈ {1, . . . , h}, fix li ∈ Li \ {0}. Let L be an invertible oK -module.
Then there are Li and an isomorphism ϕ : Li → L . If we set l = ϕ(li), then
Li/oK li ' L /oK l, as required. �



Chapter 5
Slopes of tensor product

The purpose of this chapter is to study the minimal slope of the tensor product of a
finite family of adelic vector bundles on an adelic curve. More precisely, give a family
E1, . . . ,Ed of adelic vector bundles over a proper adelic curve S, we give a lower
bound of µ̂min(E1 ⊗ε,π · · · ⊗ε,π Ed) in terms of the sum of the minimal slopes of E i

minus a term which is the product of three half of the measure of the infinite places
and the sum of ln(dimK (Ei)), see Corollary 5.6.2 for details. This result, whose form
is similar to the main results of [64, 22, 38], does not rely on the comparison of
successive minima and the height proved in [155], which des not hold for general
adelic curves. Our method inspires the work of Totaro [143] on p-adic Hodge
theory and relies on the geometric invariant theory on Grassmannian. The chapter is
organised as follows. In the first section, we regroup several fundamental properties
of R-filtrations. We then recall in the second section some basic notions and results
of the geometric invariant theory, in particular the Hilbert-Mumford criterion of
the semistability. In the third section we give an estimate for the slope of a quotient
adelic vector bundle of the tensor product adelic vector bundle, under the assumption
that the underlying quotient space, viewed as a rational point of the Grassmannian
(with the Plücker coordinates), is semistable in the sense of geometric invariant
theory. In the fifth section, we prove a non-stability criterion which generalises [143,
Proposition 1]. Finally, we prove in the sixth section the lower bound of the minimal
slope of the tensor product adelic vector bundle in the general case.

5.1 Reminder on R-filtrations

Let K be a field. We equip K with the trivial absolute value |·| such that |a| = 1
for any a ∈ K \ {0}. Note that K equipped with the trivial absolute value forms a
proper adelic curve whose underlying measure space is a one point set equipped with
the counting measure (which is a probability measure), see §3.2.3. Moreover, any
finite-dimensional normed vector space over (K, |·|) can be considered as an adelic
vector bundle on S. In fact, if V is a finite-dimensional vector space over K , any

297
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norm on V can be considered as a norm family indexed by the one point set. This
norm family is clearly measurable. It is also dominated since all norms on V are
equivalent (see Corollaries 1.1.13 and 4.1.10).

Let V be a finite-dimensional vector space over K . Recall that the set of ultrametric
norms on V are canonically in bijection with the set of R-filtrations on V (see
Remark 1.1.40). If ‖·‖ is an ultrametric norm onV , then the balls centered at the origin
are vector subspaces of V , and {(V, ‖·‖)6e−t }t∈R is the corresponding R-filtration.
Conversely, given an R-filtration F on V , we define a function λF : V → R∪ {+∞}

as follows
∀ x ∈ V, λF(x) := sup{t ∈ R : x ∈ F t (V)}.

Then the ultrametric norm ‖·‖F corresponding to the R-filtration F is given by

∀ x ∈ V, ‖x‖F = e−λF (x).

Definition 5.1.1 Let V be a finite-dimensional vector space over K and F be an
R-filtration on V . For any t ∈ R, we denote by sqt

F
(V) the quotient vector space

F t (V)

/ ⋃
ε>0

F t+ε(V).

Clearly, if F corresponds to the flag

0 = V0 ( V1 ( . . . ( Vn = V

of vector subspaces of V together with the sequence

µ1 > . . . > µn

in R, then
∀ i ∈ {1, . . . ,n}, sqµi

F
(V) = Vi/Vi−1,

and sqt
F
(V) = {0} if t < {µ1, . . . , µn}.

Proposition 5.1.2 Let (V, ‖·‖) be a finite-dimensional ultrametrically normed vector
space over K . The following assertions hold.

(1) The normed vector space (V, ‖·‖) admits an orthogonal basis.
(2) If e = {ei}ri=1 is an orthogonal basis of (V, ‖·‖), then the Arakelov degree of

(V, ‖·‖) is equal to λF(e1) + · · · + λF(er ).
(3) A basis e = {ei}ri=1 of V is orthogonal if and only if it is compatible with the
R-filtration F , namely card(F t (V) ∩ e) = dimK (F

t (V)) for any t ∈ R.
(4) Assume that the vector space V is non-zero. The adelic vector bundle (V, ‖·‖) is

semistable if and only if the function ‖·‖ is constant on V \ {0}.
(5) The Harder-Narasimhan R-filtration of (V, ‖·‖) identifies with F .
(6) Let e = {ei}ri=1 be an orthogonal basis of (V, ‖·‖). Then the sequence of succes-

sive slopes of (V, ‖·‖) identifies with the sorted sequence of {λF(ei)}ri=1.
(7) Let
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0 = V0 ( V1 ( . . . ( Vr = V

be a complete flag of vector subspaces of V . For any i ∈ {1, . . . ,r}, let ‖·‖i be
the subquotient norm of ‖·‖ on the vector space Vi/Vi−1. Then the sequence of
successive slopes of (V, ‖·‖) identifies with the sorted sequence of{

d̂eg(Vi/Vi−1, ‖·‖i)
}r
i=1

.

Proof (1) Note that the valued field (K, |·|) is locally compact. By Proposition 1.2.30,
there exists an orthogonal basis of (V, ‖·‖).

(2) Let e = {ei}ri=1 be an orthogonal basis of (V, ‖·‖). By Proposition 1.2.23, it is
a Hadamard basis, namely

‖e1 ∧ · · · ∧ er ‖ =
r∏
i=1

‖ei ‖.

Therefore one has

d̂eg(V, ‖·‖) = − ln ‖e1 ∧ · · · ∧ er ‖ = −

r∑
i=1

ln ‖ei ‖ =
r∑
i=1

λF(ei)

(3) Assume that the R-filtration F corresponds to the flag

0 = V0 ( V1 ( . . . ( Vn = V

together with the sequence
µ1 > . . . > µn

(cf. Remark 1.1.40). Let e = {ei}ri=1 be a basis of V . Then e is compatible with the
R-filtration F if and only if card(e ∩ Vj) = dimK (Vj) for any j ∈ {1, . . . ,n}. By
Proposition 1.2.26 (1), this condition is also equivalent to the orthogonality of the
basis e.

(4) follows directly from Proposition 4.3.61 since ‖·‖ = ‖·‖∗∗ (see Corollary
1.2.12).

(5) The R-filtration corresponds to an increasing flag

0 = V0 ( V1 ( . . . ( Vn = V

of vector subspaces of V , together with a decreasing sequence of real numbers

µ1 > . . . > µn.

Note that for any i ∈ {1, . . . ,n} and any x ∈ Vi \ Vi−1 one has λF(x) = µi . In
particular, the subquotient norm ‖·‖i on Vi/Vi−1 induced by ‖·‖ takes constant value
e−µi on (Vi/Vi−1) \ {0}. Therefore, by (4) the adelic vector bundle (Vi/Vi−1, ‖·‖i)
is semistable of slope µi . By Proposition 4.3.38, we obtain that F is the Harder-
Narasimhan R-filtration of (V, ‖·‖).
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(6) Assume that the R-filtration F corresponds to the flag

0 = V0 ( V1 ( . . . ( Vn = V

and the sequence
µ1 > . . . > µn.

By definition, the value µi appears exactly dimK (Vi/Vi−1) times in the successive
slopes of (V, ‖·‖). Moreover, a basis e is orthogonal if and only if it is compatible
with the flag

0 = V0 ( V1 ( . . . ( Vn = V,

or equivalently, for any i ∈ {1, . . . ,n}, the set e ∩ (Vi \ Vi−1) contains exactly
dimK (Vi/Vi−1) elements. Since the function λF(·) takes the constant value µi on
Vi \ Vi−1, we obtain the assertion.

(7) By Proposition 1.2.30, there exists an orthogonal basis e = {ei}ri=1 which is
compatible with the flag

0 = V0 ( V1 ( . . . ( Vr = V .

Without loss of generality, we may assume that ei ∈ Vi \ Vi−1 for any i ∈ {1, . . . ,r}
Since the basis e = {ei}ri=1 is orthogonal, the image of ei in Vi/Vi−1 has norm ‖ei ‖.
In fact, any element x in ei + Vi−1 can be written in the form

ei +
i−1∑
j=1

ajej

and hence ‖x‖i > ‖ei ‖. Therefore one has

d̂eg(Vi/Vi−1, ‖·‖i) = − ln ‖ei ‖ = λF(ei).

Proposition 5.1.3 Let V be a finite-dimensional vector space over K and ‖·‖ and ‖·‖ ′

be two ultrametric norms on V . Then there exists a basis e of V which is orthogonal
with respect to ‖·‖ and ‖·‖ ′ simultaneously.

Proof Let F be the R-filtration on V associated with the norm ‖·‖, which corre-
sponds to a flag

0 = V0 ( V1 ( . . . ( Vn = V

together with a sequence µ1 > . . . > µn. By Proposition 1.2.30, there exists an
orthogonal basis e of (V, ‖·‖ ′) which is compatible with the the flag

0 = V0 ( V1 ( . . . ( Vn = V .

By Proposition 5.1.2 (3), we obtain that e is also orthogonal with respect to ‖·‖. �

Corollary 5.1.4 Let V be a finite-dimensional vector space over K , and
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0 = V0 ( V1 ( . . . ( Vn = V and 0 = W0 ( W1 ( . . . ( Wm = V

be two flags of vector subspaces of V . There exists a basis e of V which is compatible
with the two flags simultaneously.

Proof By choosing two decreasing sequences of real numbers µ1 > . . . > µn and
λ1 > . . . > λm we obtain twoR-filtrations on V , which correspond to two ultrametric
norms on V . By Proposition 5.1.3, there exists a basis of V which is orthogonal with
respect to the two norms simultaneously. By Proposition 5.1.2 (3), this basis is
compatible with the two flags simultaneously. �

Definition 5.1.5 Let d ∈ N>2 and {Ej}
d
j=1 be a family of finite-dimensional vector

spaces over K . For any j ∈ {1, . . . , d}, let Fj be an R-filtration on Ej , which
corresponds to an ultrametric norm ‖·‖j on Ej . Let ‖·‖ε be the ε-tensor product of
the norms ‖·‖1, . . . , ‖·‖d . The R-filtration on the tensor product space

E1 ⊗K · · · ⊗K Ed

corresponding to ‖·‖ε is called the tensor product of the R-filtrations F1, . . . ,Fd ,
which is denoted by F1 ⊗ · · · ⊗ Fd .

Remark 5.1.6 We keep the notation of Definition 5.1.5. For any j ∈ {1, . . . , d}, let
e(j) = {e(j)i }

n j

i=1 be an orthogonal base of (Ej, ‖·‖j). By Proposition 1.2.19 together
with Remark 1.1.56, one has the following:

(i)
{
e(1)i1

⊗ · · · ⊗ e(d)id

}
(i1 ,...,id )∈

∏d
j=1 {1,...,n j }

forms an orthogonal basis of the vector
space E1 ⊗K · · · ⊗K Ed with respect to ‖·‖ε .

(ii)
e(1)i1

⊗ · · · ⊗ e(d)id


ε
=

∏d
j=1

e(j)i j


j

for any (i1, . . . , id) ∈
∏d

j=1{1, . . . ,nj}.

Therefore, if we denote by F the tensor product R-filtration F1 ⊗ · · · ⊗ Fd , then the
vector space F t (E1 ⊗K · · · ⊗K Ed) is generated by the vectors e(1)i1

⊗ · · · ⊗ e(d)id
such

that
λF1 (e

(1)
i1
) + · · · + λFd

(e(d)id
) > t.

Therefore, one has

F t (E1 ⊗K · · · ⊗K Ed) =
∑

t1+· · ·+td>t

F
t1

1 (E1) ⊗K · · · ⊗K F
td
d
(Ed)

=
∑

t1+· · ·+td=t

F
t1

1 (E1) ⊗K · · · ⊗K F
td
d
(Ed).

Furthermore, by (i), (ii) and Proposition 5.1.2 (6), if (Ej, ‖·‖j) are all semistable,
where j ∈ {1, . . . , d}, then (E1 ⊗K · · · ⊗K Ed, ‖·‖ε) is also semistable.
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5.2 Reminder on geometric invariant theory

Let K be a field. By group scheme over Spec K or by K-group scheme, we mean
a K-scheme π : G → Spec K equipped with a K-morphism mG : G ×K G → G
(called the group scheme structure of G) such that, for any K-scheme f : S →

Spec K , the set G(S) of K-morphisms from S to G equipped with the composition
law mG(S) : G(S) × G(S) → G(S) forms a group. Note that the maps of inverse
ιG(S) : G(S) → G(S) and the maps of unity

eG(S) : (Spec K)(S) = {S
f
→ Spec K} −→ G(S)

actually define K-morphisms ιG : G → G and eG : Spec K → G, which make the
following diagrams commutative:

G ×K G ×K G
mG×IdG //

IdG ×mG

��

G ×K G

mG

��
G ×K G

mG

// G

G

IdG
((PP

PPP
PPP

PPP
PPP

P
(eGπ,IdG ) // G ×K G

mG

��

G

IdG
vvnnn

nnn
nnn

nnn
nnn

(IdG ,eGπ)oo

G

G
(IdG ,ιG ) //

(ιG ,IdG )

��
eGπ
LLL

L

%%LL
LL

G ×K G

mG

��
G ×K G

mG

// G

Let G and H be group schemes over Spec K . We call morphism of K-group
schemes from G to H any K-morphism f : G → H such that, for any K-scheme S,
le morphism f induces a morphism of groups f (S) : G(S) → H(S).

Example 5.2.1 Let V be a finite-dimensional vector space over K . We denote by
GL(V) the open subscheme of the affine K-scheme A(End(V)∨) defined by the
non-vanishing of the determinant. For any K-scheme π : S → Spec K , one has

GL(V)(S) = AutOS
(π∗(V)).

The set GL(V)(S) is canonically equipped with a structure of group. The group
structures ofGL(V)(S)where S runs over the set of K-schemes define a K-morphism
GL(V)×KGL(V) → GL(V), which makesGL(V) a group scheme over K . The group
scheme GL(V) is called the general linear group scheme associated with V .
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Definition 5.2.2 Let G be a group scheme over Spec K and X be a scheme over
Spec K . As action of G on X , we refer to a K-morphism f : G×K X → X such that,
for any K-scheme S, the map

f (S) : G(S) × X(S) −→ X(S)

defines an action of the group G(S) on X(S).

Example 5.2.3 Let V be a finite-dimensional vector space over K and X be the
projective space P(V). Recall that, for any K-scheme p : S → Spec K , P(V)(S)
identifies with the set of all invertible quotient modules of p∗(V). Note that any
automorphism of p∗(V) acts naturally on the set P(V)(S) of invertible quotient
modules of p∗(V). Hence we obtain an action of the general linear group scheme
GL(V) on the projective space P(V).

More generally, let G be a group scheme over Spec K . By (finite-dimensional)
linear representation of G we refer to a morphism of K-group schemes from G to
certain GL(V), where V is a finite-dimensional vector space over K . Note that such
a morphism induces an action of G on the projective space P(V). This action is said
to be linear.

Let G be a group scheme over Spec K which acts on a K-scheme X . We denote by
f : G ×K X → X the action of G on X and by pr2 : G ×K X → X the projection to
the second coordinate. Let L be an invertible OX -module. We call G-linear structure
on L any isomorphism η of OG×KX -modules from f ∗(L) to pr∗2(L) such that the
following diagram commutes

(pr2 ◦(IdG × f ))∗(L) ( f ◦ pr23)
∗(L)

pr∗23(η)

��
( f ◦ (IdG × f ))∗(L)

(IdG × f )∗(η)

OO

(pr2 ◦ pr23)
∗(L)

( f ◦ (mG × IdX ))∗(L)
(mG×IdX )∗(η)

// (pr2 ◦(m × IdX ))∗(L)

(5.1)

where pr23 : G ×K G ×K X → G ×K X is the projection to the second and the third
coordinates, and mG : G ×K G → G is the group scheme structure of G. The couple
(L, η) is called a G-linearised invertible OX -module.

Note that, if η : f ∗(L) → pr∗2(L) is a G-linear structure on L, then η∨ : f ∗(L∨) →

pr∗2(L
∨) is a G-linear structure on L∨. Moreover, if (L1, η1) and (L2, η2) are G-

linearised invertible OX -modules, then

η1 ⊗ η2 : f ∗(L1) ⊗ f ∗(L2) � f ∗(L1 ⊗ L2) −→ pr∗2(L1 ⊗ L2) � pr∗2(L1) ⊗ pr∗2(L2)

is a G-linear structure on L1 ⊗ L2.

Example 5.2.4 Let G be a group scheme over K and V be a finite-dimensional
vector space over K . A linear action of G on P(V) defines canonically a G-linear
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structure on the universal invertible sheaf OV (1). Let f : G ×K P(V) → P(V) be a
linear action of G on P(V). Let π : P(V) → Spec K be the structural morphism and
β : π∗(V) → OV (1) be the tautological invertible quotient sheaf of π∗(V). Note that
the morphism

G ×K P(V)
(pr1 , f ) // G ×K P(V)

is an isomorphism of K-schemes, the inverse of which is given by the composed
K-morphism

G ×K P(V)
(pr1 ,ιG pr1 ,pr2) // G ×K G ×K P(V)

(pr1 , f pr23) // G ×K P(V) .

Moreover, one has pr2 ◦(pr1, f ) = f . Therefore ((pr1, f )∗)−1 defines an isomor-
phism from f ∗(OV (1)) to pr∗2(OV (1)) as invertible quotient modules of f ∗(π∗(V)) �
pr∗2(π

∗(V)). The fact that the action of G on P(V) is linear shows that this isomorphism
actually defines a G-linear structure on OV (1).

Definition 5.2.5 We denote by Gm,K = Spec K[T,T−1] the multiplicative group
scheme over Spec K (recall that for any K-scheme S one has Gm,K (S) = OS(S)×). If
G is a group scheme over Spec K , by one-parameter subgroup of G any morphism
of K-group schemes from Gm,K to G.

Let G be a group scheme over K , which acts on a K-scheme X . Denote by
f : G ×K X → X the action. If ϕ : Gm,K → G is a one-parameter subgroup of G,
then f and ϕ induce an action of Gm,K on X , denoted by fϕ . Note that fϕ is the
composed morphism

Gm,K ×K X
ϕ×IdX // G ×K X

f // X .

Let g : Gm,K ×K X → X be an action of the multiplicative group Gm,K on a
proper K-scheme. Suppose that x : Spec K → X is a rational point of X . The orbit
of x by the action of Gm,K is by definition the following composed morphism orbx

Gm,K � Gm,K ×K Spec K
IdGm,K ×x

// Gm,K ×K X
g // X .

Since X is proper over Spec K , by the valuative criterion of properness, the mor-
phism orbx : Gm,K → X extends in a unique way to a K-morphism õrbx : A1

K =

Spec K[T] → X . The image by õrbx of the rational point of A1
K corresponding to

the prime ideal (T) is denoted by x̃g. Note that x̃g is a rational point of X which is
invariant by the action of Gm,K .

Assume that L is a Gm,K -linearised invertible OX -module. Since x̃g is a fixed
rational point of the action g, the Gm,K -linear structure corresponds to an action
of Gm,K on x̃∗g(L), which is induced by an endomorphism of the K-group scheme
Gm,K . Note that any endomorphism of the K-group scheme Gm,K is of the form
t 7→ tn, where the exponent n is an integer. We denote by µ(x, L) the opposite of the
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exponent corresponding to the action of Gm,K on x̃∗g(L). Note that our choice of the
constant µ(x, L) conforms with that of the book [115].

More generally, if G is a K-group scheme, f : G ×K X → X is an action of G on
a proper K-scheme X and if ϕ : Gm,K → G is a one-parameter subgroup of G, for
any x ∈ X(K) we denote by µ(x, ϕ, L) the exponent corresponding to the action of
Gm,K on x̃∗fϕ (L).

Example 5.2.6 Consider the one-parameter subgroups of the general linear group.
Let E be a finite-dimensional vector space over K and ϕ : Gm,K → GL(E) be
a one-parameter subgroup. By [53, II.§2, n◦2, 2.5], we can decompose the vector
space E as a direct sum of K-vector subspaces E1, . . . ,En which are invariant by the
action of Gm,K , and integers (a1, . . . ,an) such that the action of Gm,K on Ei is given
by t 7→ tai IdEi . Therefore the one-parameter subgroup ϕ determines an R-filtration
Fϕ on E such that

F t
ϕ (E) =

⊕
i∈{1,...,n}

−ai>t

Ei .

We now consider the canonical action of GL(E) on the projective space P(E) (see
Example 5.2.3). Let x be a rational point of P(E) and πx : E → K be the one
dimensional quotient vector space of E corresponding to x. Then the morphism
orbx : Gm,K = Spec K[T,T−1] → P(E) is represented by the surjective K[T,T−1]-
linear map px : E ⊗K K[T,T−1] −→ K[T,T−1] sending vi ⊗ 1 to πx(vi)Tai for any
vi ∈ Ei . The extended morphism õrdx : A1

K → P(E) corresponds to the surjective
K[T]-linear map

p̃x : E ⊗K K[T] −→ K[T] · T−µ(x,ϕ,OE (1))

given by the restriction of px to E ⊗K K[T], where OE (1) denotes the universal
invertible sheaf. In particular, one has

µ(x, ϕ,OE (1)) = −min{ai : i ∈ {1, . . . ,n}, πx(Ei) , {0}}.

Therefore, we can interpret the constant µ(x, ϕ,OE (1)) via the R-filtration Fϕ . In
fact, the R-filtration Fϕ induces by the surjective map πx : E → K an R-filtration
on K (viewed as a one-dimensional vector space over K), which corresponds to the
quotient norm of ‖·‖Fϕ . Then the number µ(x, ϕ,OE (1)) is equal to the jump point
of this quotient R-filtration.

The following theorem of Hilbert-Mumford relates the positivity of the function
µ(x, ·, L) to the non-vanishing of a global section invariant by the action of the
K-group scheme.

Theorem 5.2.7 We assume that the field K is perfect. Let G be a reductive K-group
scheme acting on a projective K-scheme X , L be a G-linearised ample invertible
OX -module. For any rational point x ∈ X(K), the following two conditions are
equivalent:
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(1) for any one-parameter subgroup λ : Gm,K → G of G, µ(x, λ, L) > 0;
(2) there exists an integer n ∈ N>1 and a section s ∈ H0(X, L⊗n) which is invariant

under the action of G(K) such that x lies outside of the vanishing locus of s.

We just explain why the condition (2) implies the positivity of µ(x, λ, L) for any
one-parameter group. Let

õrbx : A1
K = Spec K[T] −→ X

be the extended orbit of the rational point x by the action of Gm,K via λ. Then
the pull-back of L by õrbx corresponds to a free K[T]-module of rank 1, which
is equipped with a linear action of Gm,K . This action corresponds to an invertible
element of the tensorial algebra

K[t, t−1] ⊗K K[T] � K[t, t−1,T],

where t and T are variables. Moreover, the compatibility condition (5.1) shows that
η(t,T) satisfies the following relation

η(t,T)η(u,T) = η(tu,T) in K[t, t−1,u,u−1,T],

where t, u, and T are variables. Therefore η(t,T) is of the form t−µ(x,λ,L). We fix a
section m of õrb*

x(L) which trivialises this invertible sheaf. Note that the pull-back
of the section s is an element of this free K[T]-module which is invariant by the
action of Gm,K (K) = K×. We write s in the form P(T)m, where P ∈ k[T]. Then
the action of an element a ∈ K× on s gives the section P(aT)a−µ(x,λ,L)m. Hence P
is a homogeneous polynomial and µ(x, λ, L) is equal to the degree of P, which is
a non-negative integer. We refer the readers to [115, §2.1] for a proof of the above
theorem. See also [96] and [127].

Definition 5.2.8 Under the assumption and with the notation of Theorem 5.2.7, if
x ∈ X(K) satisfies the equivalent conditions of the theorem, we say that the point x
is semistable with respect to the G-linearised invertible OX -module L.

Remark 5.2.9 Let d ∈ N>2 and {Ej}
d
j=1 be a family of finite-dimensional non-zero

vector spaces over K . Any one-parameter subgroup

λ : Gm,K −→ GL(E1) ×K · · · ×K GL(Ed)

can be written in the form (λ1, · · · , λd), where λj : Gm,K → GL(Ej) is a one-
parameter subgroup of GL(Ej), j ∈ {1, . . . , d}. We can then decompose the vector
space Ej into the direct sum of eigenspaces of the action λj as follows:

Ej = Ej ,1 ⊕ · · · ⊕ Ej ,n j ,

where each Ej ,i is stable by the action of λj , and on Ej ,i the action of Gm,K is given
by t 7→ ta j ,i IdEj ,i , i ∈ {1, . . . ,nj}. Note that the one-parameter subgroup λ induces
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an action of Gm,K on the tensor product space E1 ⊗K · · · ⊗K Ed via the canonical
morphisme of K-group schemes

GL(E1) ×K · · · ×K GL(Ed) −→ GL(E1 ⊗K · · · ⊗K Ed).

For any (i1, . . . , id) ∈
∏d

j=1{1, . . . ,nj}, the vector subspace E1,i1 ⊗K · · · ⊗K Ed,id of
E1 ⊗K · · · ⊗K Ed is invariant by the action of Gm,K , and on E1,i1 ⊗K · · · ⊗K Ed,id

the action of Gm,K is given by

t 7−→ ta1,i1+· · ·+ad ,id IdE1,i1 ⊗K · · ·⊗KEd ,id
.

We construct an R-filtration Fλ on E1 ⊗K · · · ⊗K Ed as follows

F t
λ (E1 ⊗K · · · ⊗K Ed) :=

∑
(i1 ,...,id )∈

∏d
j=1 {1,...,n j }

−a1,i1−···−ad ,id
>t

E1,i1 ⊗K · · · ⊗K Ed,id . (5.2)

Moreover, if we denote by Fλ j the R-filtrations on Ej defined as

F t
λ j
(Ej) =

∑
i∈{1,...,n j }

−ai>t

Ej ,i,

then the R-filtration Fλ defined in (5.2) identifies with the tensor product of
Fλ1, . . . ,Fλd (see Definition 5.1.5, see also Remark 5.1.6). Conversely, for any
R-filtration Fj with integral jump points on the vector spaces Ej , there exists a
one-parameter subgroup λj : Gm,K → GL(Ej) such that Fλ j = Fj . This comes from
Proposition 1.2.30 which allows us to construct the actions ofGm,K on Ej diagonally
with respect to an orthogonal basis.

More generally, for any integer r > 1, any one-parameter subgroup

λ = (λ1, . . . , λd) : Gm,K −→ GL(E1) ×K · · · ×K GL(Ed)

induces an action of Gm,K on the K-vector space

(E1 ⊗K · · · ⊗K Ed)
⊗r .

Again the R-filtration on (E1 ⊗K · · · ⊗K Ed)
⊗r corresponding to the eigenspace

decomposition of the action of Gm,K identifies with

(Fλ1 ⊗ · · · ⊗ Fλd )
⊗r .

For any j ∈ {1, . . . , d}, let aj be the dimension of Ej over K . Consider a non-zero
quotient vector space V of E1 ⊗K · · · ⊗K Ed . Let r be the dimension of V over K .
The canonical surjective map E1 ⊗K · · · ⊗K Ed → V determines a rational point x
of

π : P = P((E1 ⊗K · · · ⊗ Ed)
⊗r ) −→ Spec K,



308 5 Slopes of tensor product

which corresponds the composed map

(E1 ⊗K · · · ⊗K Ed)
⊗r −→ V ⊗r −→ det(V).

We consider the semistability of the point x with respect to the GL(E1) ×K · · · ×K

GL(Ed)-invertible sheaf

L := OP(a1 · · · ad) ⊗ π∗(det(E∨
1 )

⊗rb1 ⊗ · · · ⊗ det(E∨
d )

⊗rbd ),

where for any j ∈ {1, . . . , d},

bj :=
a1 · · · ad

aj
.

Let
λ = (λ1, . . . , λd) : Gm,K −→ GL(E1) ×K · · · ×K GL(Ed)

be a one-parameter subgroup, which determines, for each j ∈ {1, . . . , d}, an R-
filtration Fλ j on Ej . We let ‖·‖j be the ultrametric norm on Ej corresponding to
Fλ j , where we consider the trivial absolute value on K . We equip E1 ⊗K · · · ⊗K Ed

with the ε-tensor product of the norms ‖·‖j and equip V with the quotient norm. By
Example 5.2.6 and Proposition 1.2.15, we obtain that

µ(x, λ,OP(1)) = d̂eg(V).

Moreover, by definition, for any j ∈ {1, . . . , d} one has

µ(x, λj, π∗(det(E∨
j ))) = − d̂eg(Ej, ‖·‖j),

which leads to

µ(x, λ, L) = a1 · · · ad d̂eg(V) − r
d∑
j=1

bj d̂eg(E j). (5.3)

Therefore we deduce from the Hilbert-Mumford criterion the following result.

Corollary 5.2.10 We assume that K is perfect and equip K with the trivial absolute
value. Let {Ej}

d
j=1 be a finite family of finite-dimensional non-zero vector spaces

over K , and V be a non-zero quotient vector space of E1 ⊗K · · · ⊗K Ed . Let r be the
dimension of V over K , and, for any j ∈ {1, . . . , d}, let aj the dimension of Ej over
K . Let

P = P((E1 ⊗K · · · ⊗K Ed)
⊗r ),

π : P → Spec K be the canonical morphism and

L = OP(a1 · · · ad) ⊗ π∗(det(E∨
1 )

⊗rb1 ⊗ · · · ⊗ det(E∨
d )

⊗rbd ),

where



5.3 Estimate for the minimal slope under semi-stability assumption 309

∀ j ∈ {1, . . . , d}, bj =
a1 · · · ad

aj
.

Then the composed surjective map

(E1 ⊗K · · · ⊗K Ed)
⊗r −→ V ⊗r −→ det(V), (5.4)

viewed as a rational point x of P, is semistable with respect to theGL(E1)×K · · · ×K

GL(Ed)-linearised invertible sheaf L if and only if, for all ultrametric norms ‖·‖j on
Ej , j ∈ {1, . . . , d}, if we equip V with the quotient norm of the ε-tensor product of
‖·‖1, . . . , ‖·‖d , then one has

µ̂(V) >
d∑
j=1

µ̂(E j). (5.5)

Proof Assume that the inequality (5.5) holds for any choice of norms ‖·‖j . By (5.3),
for any one-parameter subgroup λ : Gm,K → GL(E1) ×K · · · ×K GL(Ed), one has

µ(x, λ, L) = a1 · · · adr
(
µ̂(V) −

d∑
j=1

µ̂(E j)

)
> 0.

Hence the rational point x of P defined by (5.4) is semistable with respect to L.
Conversely, by Remark 5.2.9 the semi-stability of the rational points x implies

that the inequality (5.5) holds for any choice of ultrametric norms ‖·‖j such that
ln‖Ej \ {0}‖j ⊆ Z. As a consequence the inequality (5.5) holds for any choice
of ultrametric norms ‖·‖j such that ln‖Ej \ {0}‖j ⊆ Q. In fact, in this case there
exists n ∈ N>0 such that the (finite) set ln‖Ej \ {0}‖j is contained in 1

nZ for any
j ∈ {1, . . . , d}. Note that the nth power of the function ‖·‖j forms a norm on Ej . If
we denote by ‖·‖V the quotient norm of the ε-tensor product of ‖·‖1, . . . , ‖·‖d , then
the quotient norm of the ε-tensor product of ‖·‖n1 , . . . , ‖·‖

n
d

is ‖·‖nV . Note that

∀ j ∈ {1, . . . , d}, ln‖Ej \ {0}‖nj = n ln‖Ej \ {0}‖j ⊆ Z

and hence

nµ̂(V, ‖·‖V ) = µ̂(V, ‖·‖nV ) >
d∑
j=1

µ̂(Ej, ‖·‖
n
j ) = n

d∑
j=1

µ̂(Ej, ‖·‖j).

Finally the general case follows from a limite procedure by using Proposition 4.3.18.�

5.3 Estimate for the minimal slope under semi-stability
assumption

In this section, we fix a proper adelic curve S = (K, (Ω,A, ν), φ) such that, either the
σ-algebra A is discrete, or K admits a countable subfield which is dense in each
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Kω , where ω ∈ Ω. We assume in addition that the field K is of characteristic 0. We
fix an integer d > 2 and we let {E j = (Ej, ξj)}

d
j=1 be a family of non-zero adelic

vector bundles on S. Let V be a quotient vector space of E1 ⊗K · · · ⊗K Ed and r be
the dimension of V over K . For any j ∈ {1, . . . , d}, let aj be the dimension of Ej

over K . We equip V with the quotient norm family of ξ1 ⊗ε,π · · · ⊗ε,π ξd . Note that
the quotient map E1 ⊗K · · · ⊗K Ed → V induces a surjective map

Λ
r (E1 ⊗K · · · ⊗K Ed) −→ Λ

rV = det(V).

Consider the composed map

(E1 ⊗K · · · ⊗K Ed)
⊗r −→ Λr (E1 ⊗K · · · ⊗K Ed) −→ det(V),

which permits to consider det(V) as a rational point of P = P((E1 ⊗K · · · ⊗K Ed)
⊗r ).

Denote by π : P → Spec K the structural morphism and by L the invertible sheaf

OP(a1 · · · ad) ⊗ π∗(det(E∨
1 )

⊗rb1 ⊗ · · · ⊗ det(E∨
d )

r⊗bd ), (5.6)

where
∀ j ∈ {1, . . . , d}, bj =

a1 · · · ad

aj
.

We equip L with its natural GL(E1) ×K · · · ×K GL(Ed)-linear structure. Note that
L and OP(a1 · · · ad) are isomorphic as invertible OP-modules, however the natural
GL(E1) ×K · · · ×K GL(Ed)-linear structures on these two invertible sheaves are
different.

Our purpose is to estimate µ̂(V) under the additional assumption that, as a rational
point of P = P((E1 ⊗K · · · ⊗K Ed)

⊗r ), the determinant line det(V) is semistable with
respect to the GL(E1) ×K · · · ×K GL(Ed)-linearised invertible sheaf L.

Proposition 5.3.1 We equip V with the quotient norm family ξV of ξ1⊗ε,π · · ·⊗ε,π ξd .
Assume that, as a rational point of the K-scheme P, det(V) is semistable with respect
to the GL(E1) ×K · · · ×K GL(Ed)-linearised invertible sheaf L defined in (5.6). Then
the following inequality holds:

µ̂(V, ξV ) >
d∑
j=1

(
µ̂(Ej, ξj) − ν(Ω∞) ln(dimK (Ej))

)
. (5.7)

Proof For any integer m ∈ N>1, let Sm be the symmetric group of {1, . . . ,m}. Let
A = a1 · · · ad . By the first principal theorem of the classic invariant theory (see [148,
Chapter III] and [6, Appendix 1], see also [38, Theorem 3.3]), there exist an integer
n > 1 and an element (σ1, . . . , σd) ∈ S

d
nr A

such that the composed map
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det(V)∨⊗nA // E∨⊗nr A
1 ⊗ · · · ⊗ E∨⊗nr A

d

σ1⊗···⊗σd

��
det(E∨

1 )
⊗nrb1 ⊗ · · · ⊗ det(E∨

d
)⊗nrbd E∨⊗nr A

1 ⊗ · · · ⊗ E∨⊗nr A
d$

oo

(5.8)

is non-zero. Since ξV is the quotient norm family of ξ1 ⊗ε,π · · · ⊗ε,π ξd , the deter-
minant norm family det(ξV ) is the quotient norm family of the ε, π-tensor product
norm family ξ⊗ε,πr1 ⊗ε,π · · · ⊗ε,π ξ

⊗ε,πr

d
by the following composed map (this is a

consequence of Propositions 1.1.14 (1), 1.1.58 and 1.2.39)

E ⊗r
1 ⊗K · · · ⊗K E ⊗r

d −→ Λr (E1 ⊗K · · · ⊗K Ed) −→ Λ
r (V) = det(V).

By passing to the dual vector space, we obtain that the dual of the determinant norm
family det(ξV )∨ identifies with the restrict norm family of ξ∨⊗εr1 ⊗ε · · · ⊗ε ξ

∨⊗εr
d

.
This is a consequence of Proposition 1.1.57, Corollary 1.2.20 and Proposition 1.1.20.

By Proposition 1.2.18, the height of the K-linear map $ in (5.8) is bounded from
above by

d∑
j=1

nrbj ln(aj!),

where we consider the norm family ξ∨⊗εnr A1 ⊗ε · · · ⊗ε ξ
∨⊗εnr A
d

on E∨⊗nr A
1 ⊗K · · · ⊗K

E∨⊗nr A
d

, and the norm family det(ξ1)
∨⊗nrb1⊗· · ·⊗det(ξd)∨⊗nrbd on det(E∨

1 )
⊗nrb1⊗K

· · · ⊗K det(E∨
d
)⊗nrbd .

Therefore by the slope inequality we obtain

−nA d̂eg(V, ξV ) 6 −

d∑
j=1

(
nrbj d̂eg(Ej, ξj) − ν(Ω∞)nrbj ln(aj!)

)
,

which leads to

µ̂(V, ξV ) >
d∑
j=1

(
µ̂(Ej, ξj) −

1
aj

ln(aj!)ν(Ω∞)

)
>

d∑
j=1

(
µ̂(Ej, ξj) − ln(aj)ν(Ω∞)

)
.

Remark 5.3.2 Assume that the norm families ξ1, . . . , ξd are Hermitian. If we equip
V with the quotient norm family ξHV of the orthogonal tensor product ξ1 ⊗ · · · ⊗ ξd ,
then a similar argument as above leads to the following inequality (where we use
Proposition 1.2.62 to compute the height of $)

µ̂(V, ξHV ) >
d∑
j=1

(
µ̂(Ej, ξj) −

1
2
ν(Ω∞) ln(dimK (Ej))

)
. (5.9)
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5.4 An interpretation of the geometric semistability

Let K be a perfect field, E be a finite-dimensional non-zero vector space over K and
r be the dimension of E over K . We denote by Fil(E) the set of R-filtrations E on
E . Let Fil0(E) be the subset of Fil(E) of R-filtrations E such that d̂eg(E, ‖·‖E) = 0,
where ‖·‖E is the norm on E associated with the R-filtration E (here we consider the
trivial absolute value on K). In other words,

∀ x ∈ E, ‖x‖E = exp(− sup{t ∈ R : x ∈ Et (E)}).

Let E1 and E2 be two elements of Fil(E). By Proposition 5.1.3, there exists a
basis e = {ei}ri=1 of E which is orthogonal with respect to the norms ‖·‖E1 and ‖·‖E2

simultaneously. We denote by 〈E1,E2〉 the number

1
r

r∑
i=1

(− ln ‖ei ‖E1 )(− ln ‖ei ‖E2 ). (5.10)

As shown by the following proposition, this number actually does not depend on the
choice of the basis e.

Proposition 5.4.1 Let E be a finite-dimensional non-zero vector space over K , and
E1 and E2 be R-filtrations on E . If e = {ei}ri=1 is a basis of E which is compatible
with the R-filtrations E1 and E2 simultaneously, then the following equality holds

r∑
i=1

λE1 (ei)λE2 (ei) =
∑
t∈R

t d̂eg(sqt
E1
(E), ‖·‖E2 ,sqtE1

(E)), (5.11)

where ‖·‖E2 ,sqtE1
(E) denotes the subquotient norm induced by ‖·‖E2 on the vector

space sqt
E1
(E).

Proof We assume that the R-filtration E1 corresponds to the flag

0 = V0 ( V1 ( . . . ( Vn = V

together with the sequence
µ1 > . . . > µn.

Then the right hand side of the formula can be written as

n∑
j=1

µj d̂eg(Vj/Vj−1, ‖·‖E2 , j),

where ‖·‖E2 , j is the subquotient norm on Vj/Vj−1 induced by ‖·‖E2 . By Proposition
5.1.2 (3) the basis e is compatible with respect to the flag

0 = V0 ( V1 ( . . . ( Vn = V .
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By Proposition 1.2.6, the canonical image of e ∩ (Vj \ Vj−1) in Vj/Vj−1 forms an
orthogonal basis of (Vj/Vj−1, ‖·‖E2 , j). Moreover, for any x ∈ e ∩ (Vj \ Vj−1) one has

‖x‖E2 = ‖[x]‖E2 , j

and ‖x‖E1 = e−µ j Therefore,

r∑
i=1

λE1 (ei)λE2 (ei) =
n∑
j=1

∑
x∈e∩(Vj \Vj−1)

λE1 (x)λE2 (x)

=

n∑
j=1

µj
∑

x∈e∩(Vj \Vj−1)

(− ln ‖[x]‖E2 , j) =

n∑
j=1

µj d̂eg(Vj/Vj−1, ‖·‖E2 , j),

where the last equality comes from Proposition 5.1.2 (2). The equality (5.11) is thus
proved. �

We say that an R-filtration E ∈ Fil(E) is trivial if the function ZE (see Definition
1.1.38) is constantly zero, or equivalently, 〈E,E〉 = 0.

Lemma 5.4.2 Let V be a finite-dimensional non-zero vector space over R, equipped
with an inner product 〈 ,〉. Let {`i}ni=1 be a finite family of linear forms on V , where
n ∈ N, n > 1. Let θ : V \ {0} → R be the function defined by

θ(x) = max
i∈{1,...,n}

`i(x)
‖x‖

,

where ‖·‖ is the norm induced by the inner product 〈 ,〉. Then the function θ attains
its minimal value on V \ {0}. Moreover, if c is the minimal value of θ and if x0 is a
point of V \ {0} minimising the function θ, then for any x ∈ Rn one has

θ(x) > c
〈x, x0〉

‖x‖ · ‖x0‖
. (5.12)

Proof Note that the function θ is invariant by positive dilatations, namely for any
x ∈ V \ {0} and any λ > 0 one has θ(λx) = θ(x). Moreover, the function θ is clearly
continuous. Hence it attains its minimal value, which is equal to minx∈V , ‖x ‖=1 θ(x).

To show the inequality (5.12), we may assume without loss of generality that
‖x‖ = ‖x0‖ = 1. Note that for any t ∈ [0,1] one has

c‖t x + (1 − t)x0‖ 6 ‖t x + (1 − t)x0‖θ(t x + (1 − t)x0)

= max
i∈{1,...,n}

`i(t x + (1 − t)x0) 6 tθ(x) + (1 − t)c.

Note that when t = 0 one has

c‖t x + (1 − t)x0‖ = c = tθ(x) + (1 − t)c.

Therefore the right derivative at t = 0 of the convex function
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t ∈ [0,1] 7−→ c‖t x + (1 − t)x0‖

is bounded from above by θ(x) − c, which leads to

c
t‖x‖2 − (1 − t)‖x‖2 + (1 − 2t)〈x, x0〉

‖t x + (1 − t)x0‖

���
t=0
= c(〈x, x0〉 − 1) 6 θ(x) − c,

namely θ(x) > c〈x, x0〉. �

Theorem 5.4.3 Let d ∈ N>2, {Ej}
d
j=1 be a family of finite-dimensional non-zero

vector spaces over K , and V be a quotient vector space of E1 ⊗K · · · ⊗K Ed . Let r
be the dimension of V over K . For any j ∈ {1, . . . , d}, let aj be the dimension of Ej

over K . Then the following conditions are equivalent.

(1) The rational point x of

π : P = P((E1 ⊗K · · · ⊗K Ed)
⊗r ) −→ Spec K

corresponding to det(V) is not semistable with respect to the GL(E1) × · · · ×

GL(Ed)-linearised invertible sheaf

L := OP(a1 · · · ad) ⊗ π∗(det(E∨
1 )

⊗rb1 ⊗ · · · det(E∨
d )

⊗rbd ),

where bj = a1 · · · ad/aj for any j ∈ {1, . . . , d}.
(2) Let S be the subset of Fil0(E1) × · · · × Fil0(Ed) consisting of the filtrations

(F1, . . . ,Fd) which are not simultaneously trivial. For each

F = (F1, . . . ,Fd) ∈ Fil(E1) × · · · × Fil(Ed),

let ‖·‖F,V be the quotient norm on V of the ε-tensor product of ‖·‖F1, . . . , ‖·‖Fd
.

Then the function Θ : S → R defined as

∀F = (F1, . . . ,Fd) ∈ S, Θ(F ) =
µ̂(V, ‖·‖F,V )

(〈F1,F1〉 + · · · + 〈Fd,Fd〉)
1/2

attains its minimal value, which is negative.

Moreover, if the above conditions are satisfied and if E = (E1, . . . ,Ed) is a minimal
point of the function Θ, then for any F = (F1, . . . ,Fd) ∈ Fil(E1) × · · · × Fil(Ed) one
has

µ̂(V, ‖·‖F,V ) >
d∑
j=1

µ̂(Ej, ‖·‖Fj
) + c

〈E1,F1〉 + · · · + 〈Ed,Fd〉

(〈E1,E1〉 + · · · + 〈Ed,Ed〉)
1/2 , (5.13)

where c is the minimal value of Θ.

Proof Assume that the condition (2) holds, then there exists F = (F1, . . . ,Fd) ∈ S
such that

µ̂(V, ‖·‖F,V ) < 0 = µ̂(E1, ‖·‖F1 ) + · · · + µ̂(Ed, ‖·‖Fd
).
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By Corollary 5.2.10, the point x is not semistable with respect to L. Conversely, if
the condition (1) holds, then there exists

F ′ = (F ′
1 , . . . ,F

′
d ) ∈ Fil(E1) × · · · × Fil(Ed)

such that

µ̂(V, ‖·‖F′,V ) <

d∑
j=1

µ̂(E, ‖·‖F′
j
).

For j ∈ {1, . . . , d}, let Fj be R-filtrations on Ej such that

‖·‖Fj
= exp(µ̂(E, ‖·‖F′

j
))‖·‖F′

j
.

Then one has Fj ∈ Fil0(Ej) for any j ∈ {1, . . . , d}. Moreover, if we denote by F the
vector (F1, . . . ,Fd), then one has

µ̂(V, ‖·‖F,V ) = µ̂(V, ‖·‖F′,V ) −

d∑
j=1

µ̂(E, ‖·‖F′
j
) < 0.

In particular, the R-filtrations Fj are not simultaneously trivial since otherwise we
should have µ̂(V, ‖·‖F,V ) = 0. Therefore one has F ∈ S, which implies that the
function Θ takes at least a negative value.

In the following, we show that the function Θ attains its minimal value. For any
j ∈ {1, . . . , d}, let Bj be the set of bases of Ej . For n ∈ N, let ∆n be the vector
subspace of Rn of vectors (z1, . . . , zn) such that z1 + · · · + zn = 0. For any

e = (e(1), . . . , e(d)) ∈ B1 × · · · × Bd,

let
Ψe : ∆a1 × · · · × ∆ad

→ Fil0(E1) × · · · × Fil0(Ed)

be the map sending (y(1), . . . , y(d)) to the vector of R-filtrations (F1, . . . ,Fd) such
that, for any j ∈ {1, . . . , d}, e(j) = {e(j)i }

a j

i=1 forms an orthogonal basis of ‖·‖Fj
with

y(j) = (λFj
(e(j)1 ), . . . , λFj

(e(j)a j
)).

For j ∈ {1, . . . , d}, let y(j) = (y
(j)
1 , . . . , y

(j)
a j
) be an element of ∆a j . If

F = (F1, . . . ,Fd) = Ψe(y
(1), . . . , y(d)),

then µ̂(V, ‖·‖F,V ) is equal to the maximal value of

d∑
j=1

y
(j)

i
( j)
1
+ · · · + y

(j)

i
( j)
r
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for those (i(j)1 , . . . , i(j)r ) ∈ {1, . . . ,aj}
r such that the image of

(e(1)
i
(1)
1

⊗ · · · ⊗ e(1)
i
(1)
r

) ⊗ · · · ⊗ (e(d)
i
(d)
1

⊗ · · · ⊗ e(d)
i
(d)
r

)

by the canonical composed surjective map

E ⊗r
1 ⊗K · · · ⊗K E ⊗r

d � (E1 ⊗K · · · ⊗K Ed)
⊗r −→ V ⊗r −→ det(V)

is non-zero. Moreover, for any j ∈ {1, . . . , d} one has

〈Fj,Fj〉 =

a j∑
i=1

(y
(j)
i )2.

Therefore, the composition of Θ with the restriction of Ψe on

(∆a1 × . . . × ∆ad
) \ {(0, . . . ,0)}

defines a continuous function on (∆a1 × . . .×∆ad
)\ {(0, . . . ,0)} which is invariant by

dilatation by elements in R>0. It hence attains its minimal value. Moreover, although
B1 × · · · × Bd may contain infinitely many elements, from the expression of the
value µ̂(V, ‖·‖E⊗ε F,V ) as above we obtain that there are only finitely many (at most
2(a1 · · ·ad )

r ) choices for the composed function

Θ ◦ (Ψe |∆a1×···×∆ad
\{(0,...,0)}).

Therefore, the function Θ attains its minimal value, which is negative since Θ takes
at least one negative value.

In the following, we prove the inequality (5.13). Let E = (E1, . . . ,Ed) be an
element of Fil0(E1) × · · · × Fil0(Ed) which minimise the function Θ. Let F =

(F1, . . . ,Fd) be an element of Fil(E1) × · · · × Fil(Ed). Note that, if F ′
j is the R-

filtration of Ej such that

‖·‖F′
j
= exp(d̂eg(Ej, ‖·‖Fj

))‖·‖Fj
,

then one has F ′
j ∈ Fil0(Ej) and 〈E j,F

′
j 〉 = 〈E j,Fj〉. Moreover, if we denote by F ′

the vector (F ′
1 , . . . ,F

′
d
), then

µ̂(V, ‖·‖F′,V ) = µ̂(V, ‖·‖F,V ) −
d∑
j=1

d̂eg(Ej,Fj).

Therefore, to show the inequality (5.13), it suffices to treat the case where F ∈

Fil0(E1) × · · · × Fil0(Ed).
By Proposition 5.1.3, for any j ∈ {1, . . . , d}, there exists a basis e(j) of E which

is orthogonal with respect to the norms ‖·‖E j and ‖·‖Fj
simultaneously. Therefore

the inequality (5.13) follows from Lemma 5.4.2. �
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5.5 Lifting and refinement of filtrations

Let K be a field. Let V be a finite-dimensional vector space over K and

0 = V0 ( V1 ( . . . ( Vn = V (5.14)

be a flag of vector subspaces of V . Suppose given, for any i ∈ {1, . . . ,n}, an R-
filtration Fi of the sub-quotient vector space Vi/Vi−1. We will construct anR-filtration
on V from the data of {Fi}

n
i=1 as follows. For any i ∈ {1, . . . ,n}, let ẽ(i) be a basis

of Vi/Vi−1 which is orthogonal with respect to the norm ‖·‖Fi
, where we consider

the trivial valuation on K . The basis ẽ(i) gives rise to a linearly independent family
e(i) in Vi . Let e =

⋃n
i=1 e

(i) be the (disjoint) union of e(i), i ∈ {1, . . . ,n}. Note that
e forms actually a basis of V over K . We define an ultrametric norm ‖·‖ on V such
that e is an orthogonal basis under this norm and that, for any i ∈ {1, . . . ,n} and any
x ∈ e(i), the norm of x is ‖ x̃‖Fi

, where x̃ denotes the class of x in Vi/Vi−1.

Remark 5.5.1 (1) For any i ∈ {1, . . . ,n}, the subquotient norm on Vi/Vi−1 induced
by ‖·‖ coincides with ‖·‖Fi

. In particular, one has

d̂eg(V, ‖·‖) =
n∑
i=1

d̂eg(Vi/Vi−1, ‖·‖Fi
).

(2) Let F be the R-filtration corresponding to the ultrametric norm ‖·‖. Assume
that (5.14) is the flag of vector subspaces of V defined by an R-filtration G on
V and that µ1 > . . . > µn are jump points of the R-filtration G. Then we can
compute 〈F ,G〉 as follows:

〈F ,G〉 =
1

dimK (V)

n∑
i=1

µi d̂eg(Vi/Vi−1, ‖·‖Fi
).

Definition 5.5.2 The R-filtration on V corresponding to the norm ‖·‖ constructed
above is called a lifting of the family {Fi}

n
i=1 (relatively to the basis e). We emphasis

that the lifting depends on the choice of the basis e.

Definition 5.5.3 Let V be a finite-dimensional vector space over k and F be an
R-filtration on V . We call refinement of F any flag

0 = V0 ( V1 ( . . . ( Vn = V

of vector subspaces of V together with a non-increasing sequence

t1 > . . . > tn

such that, for any i ∈ {1, . . . ,n} and any x ∈ Vi \ Vi−1, one has ‖x‖F = e−ti .

Remark 5.5.4 Let V be a finite-dimensional vector space over K and F be an R-
filtration on V . Recall that the R-filtration F corresponds to a flag
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0 = W0 ( W1 ( . . . ( Wm = V

together with a decreasing sequence

λ1 > . . . > λm.

To choose a refinement of F is equivalent to specify, for any j ∈ {1, . . . ,m}, a flag

0 = V (0)
j /Wj−1 ( V (1)

j /Wj−1 ( . . . ( V (n j )

j /Wj−1 = Wj/Wj−1

of Wj/Wj−1. The corresponding refinement is given by the flag

0 = V0 ( V (1)
1 ( . . . ( V (n1)

1 ( . . . ( V (1)
m ( . . . ( V (nm)

m = V

and the non-increasing sequence

λ1 = · · · = λ1︸          ︷︷          ︸
n1 copies

> λ2 = · · · = λ2︸          ︷︷          ︸
n2 copies

> . . . > λm = · · · = λm︸            ︷︷            ︸
nm copies

.

Proposition 5.5.5 Let d ∈ N>2, {Ej}
d
j=1 be a family of finite-dimensional vector

spaces over K , and (F1, . . . ,Fd) ∈ Fil(E1) × · · ·Fil(Ed). Let G = E1 ⊗K · · · ⊗K

Ed be the tensor product space and let G be the tensor product R-filtration of
F1, . . . ,Fd (namely the R-filtration on G corresponding to the ε-tensor product of
‖·‖F1, . . . , ‖·‖Fd

). Then there exists a refinement

0 = G0 ( G1 ( . . . ( Gn = G, t1 > . . . > tn

of the R-filtration G, such that, for any i ∈ {1, . . . ,n}, the subquotient Gi/Gi−1 is
canonically isomorphic to a tensor product of subquotients of the form

sqλi ,1
F1

(E1) ⊗K · · · ⊗K sqλi ,d
Fd

(Ed)

with λi,1 + · · · + λi,d = ti .

Proof Since G is the tensor product R-filtration of F1, . . . ,Fd , one has

Gt (G) =
∑

µ1+· · ·+µd>t

F
µ1

1 (E1) ⊗K · · · ⊗K F
µd
d

(Ed).

Therefore,
sqt

G
(G) =

⊕
µ1+· · ·+µd=t

sqµ1
F1
(E1) ⊗K · · · ⊗K sqµd

Fd
(Ed).

For any t ∈ R there exists clearly a flag of sqt
G
(G) whose successive subquotients

are of the form sqµ1
F1
(E1) ⊗K · · · ⊗K sqµd

Fd
(Ed) with µ1 + · · · + µd = t. Hence we

can construct a refinement of the R-filtration G by using the construction in Remark
5.5.4. �
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Remark 5.5.6 Consider a proper adelic curve S = (K, (Ω,A, ν), φ)whose underlying
vector space is K . We keep the notation of Proposition 5.5.5 and suppose that each Ej

is equipped with a norm family ξj such that (Ej, ξj) forms an adelic vector bundle on S,
and we equip G with the ε, π-tensor product norm family ξG = ξ1⊗ε,π · · ·⊗ε,π ξd . For
any t ∈ R and any j ∈ {1, . . . , d}, let ξ tj be the induced norm families of ξj on F t

j (Ej)

and ξ tj ,sq be the quotient norm family of ξ tj on sqt
Fj
(Ej). By Propositions 1.1.58 and

1.2.36, for any (µ1, . . . , µd) ∈ R
d , the quotient norm family of ξµ1

1 ⊗ε,π · · · ⊗ε,π ξ
µd
d

on sqµ1
F1
(E1) ⊗K · · · ⊗K sqµd

Fd
(Ed) identifies with ξµ1

1,sq ⊗ε,π · · · ⊗ε,π ξ
µd
d,sq.

We consider a refinement

0 = G0 ( G1 ( . . . ( Gn = G, t1 > . . . > tn

of theR-filtration G such that each subquotient Gi/Gi−1 is canonically isomorphic to
a tensor product of the form sqλi ,1

F1
(E1)⊗K · · · ⊗K sqλi ,d

Fd
(Ei) with λi,1+ · · ·+λi,d = ti .

Note that the canonicity of the isomorphism means that the vector space Gi contains
F λi ,1 (E1) ⊗K · · · ⊗K F λi ,d (Ed) and the composition

F λi ,1 (E1) ⊗K · · · ⊗K F λi ,d (Ed) −→ Gi −→ Gi/Gi−1

of the inclusion map F λi ,1 (E1) ⊗K · · · ⊗K F λi ,d (Ed) → Gi with the quotient map
Gi → Gi/Gi−1 induces an isomorphism

ϕi : sqλi ,1
F1

(E1) ⊗K · · · ⊗K sqλi ,d
Fd

(Ed) −→ Gi/Gi−1.

We are interested in the comparison between ξλi ,11,sq ⊗ε,π · · · ⊗ε,π ξ
λi ,d
d,sq and the subquo-

tient norm family of ξG on Gi/Gi−1. By Propositions 1.1.60, the restriction of ξG on
F
λi ,1

1 (E1) ⊗K · · · ⊗K F
λi ,d
d

(Ed) is bounded from above by ξλi ,11 ⊗ε,π · · · ⊗ε,π ξ
λi ,d
d

.
Therefore, for any ω ∈ Ω, the isomorphism ϕi,ω has an operator norm 6 1.

Assume that the norm families ξ1, . . . , ξd are Hermitian. Let ξ̃G be the orthogonal
tensor product of ξ1, . . . , ξd . If we equip sqλi ,1

F1
(E1) ⊗K · · · ⊗K sqλi ,d

Fd
(Ed) with the

orthogonal product norm family ξλi ,11,sq ⊗ · · · ⊗ ξ
λi ,d
d,sq and Gi/Gi−1 with the subquotient

norm family of ξ̃G on Gi/Gi−1, then, for any ω ∈ Ω, the operator norm of ϕi,ω is
bounded from above by 1. This follows from the fact that the restriction of ξG on
F
λi ,1

1 (E1) ⊗K · · · ⊗K F
λi ,d
d

(Ed) identifies with ξλi ,11 ⊗ · · · ⊗ ξ
λi ,d
d

(see Proposition
1.2.58).

5.6 Estimation in general case

Let S = (K, (Ω,A, ν), φ) be a proper adelic curve such that, either the σ-algebra A is
discrete, or K admits a countable subfield which is dense in each Kω , where ω ∈ Ω.
We assume in addition that K is of characteristic 0. In this section, we establish the
following result.
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Theorem 5.6.1 Let d ∈ N>2, {(Ej, ξj)}
d
j=1 be a family of non-zero Hermitian adelic

vector bundles on S, and V be a non-zero quotient vector space of E1 ⊗K · · · ⊗K Ed .
For any j ∈ {1, . . . , d} let Hj be the Harder-Narasimhan R-filtrations of (Ej, ξj),
and ‖·‖V be the quotient norm of the ε-tensor product of ‖·‖H1, . . . , ‖·‖Hd

, ξV be
the quotient norm family of the ε, π-tensor product ξ1 ⊗ε,π · · · ⊗ε,π ξd , and ξ̃V be
the quotient norm family of the orthogonal tensor product ξ1 ⊗ · · · ⊗ ξd . Then the
following inequalities hold

µ̂(V, ξV ) > µ̂(V, ‖·‖V ) − ν(Ω∞)

d∑
j=1

ln(dimK (Ej)), (5.15)

µ̂(V, ξ̃V ) > µ̂(V, ‖·‖V ) −
1
2
ν(Ω∞)

d∑
j=1

ln(dimK (Ej)). (5.16)

In particular, if all adelic vector bundles (Ej, ξj) are semistable, then one has

µ̂(V, ξ̃V ) >
d∑
j=1

(
µ̂(Ej, ξj) − ν(Ω∞) ln(dimK (Ej))

)
, (5.17)

µ̂(V, ξV ) >
d∑
j=1

(
µ̂(Ej, ξj) −

1
2
ν(Ω∞) ln(dimK (Ej))

)
. (5.18)

Proof For any j ∈ {1, . . . , d}, let aj be the dimension of Ej over K . We reason by
induction on A = a1 + · · · + ad . The theorem is clearly true when A = d (namely
rk(Ej) = 1 for any j). In the following, we assume that the theorem has been proved
for any family of adelic vector bundles whose dimensions have a sum < A.

Step 1: In this step, we assume that the adelic vector bundles (Ej, ξj) are not
simultaneously semistable, or equivalently, at least one of the R-filtrations Hj has
more than one jump point. Let G be the tensor product space E1 ⊗K · · · ⊗K Ed and
G ∈ Fil(G) be the tensor product of the R-filtrations H1, . . . ,Hd , which corresponds
to the ε-tensor product of the norms ‖·‖F1, . . . ‖·‖Fd

. We choose a refinement

0 = G0 ( G1 ( . . . ( Gn = G, t1 > . . . > tn

of the R-filtration G such that, for any i ∈ {1, . . . ,n}, the subquotient Gi/Gi−1 is
canonically isomorphic to a tensor product of the form

sqλi ,1
H1

(E1) ⊗K ⊗ · · · ⊗K sqλi ,d
Hd

(Ed)

with λi,1 + · · · + λi,d = ti (see Proposition 5.5.5). The assumption that at least one
of the R-filtrations Fj has more than one jump point implies that

dimK (sq
λi ,1
H1

(E1)) + · · · + dimK (sq
λi ,d
Hd

(Ed)) < a1 + · · · + ad .
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For any i ∈ {1, . . . ,n} and any j ∈ {1, . . . , d}, denoted by ξλi , jj ,sq the subquotient
norm families of ξj on sqλi , j

H j
(Ej). For any i ∈ {1, . . . ,n}, let ξGi/Gi−1 be the subquo-

tient norm family of ξG on Gi/Gi−1, ξ ′
Vi/Vi−1

be the quotient norm family of ξGi/Gi−1

on Vi/Vi−1, ξVi/Vi−1 be the subquotient norm family of ξV on Vi/Vi−1, and ξ ′′
Vi/Vi−1

be
the quotient norm family of ξλi ,11,sq ⊗ε,π · · · ⊗ε,π ξ

λi ,d
d,sq on Vi/Vi−1, where we identify

Gi/Gi−1 with
sqλi ,1

H1
(E1) ⊗K · · · ⊗K sqλi ,d

Hd
(Ed).

By Proposition 1.1.14 (2), one has

d̂eg(Vi/Vi−1, ξVi/Vi−1 ) > d̂eg(Vi/Vi−1, ξ
′
Vi/Vi−1

). (5.19)

By Remark 5.5.6, one has

d̂eg(Vi/Vi−1, ξ
′
Vi/Vi−1

) > d̂eg(Vi/Vi−1, ξ
′′
Vi/Vi−1

). (5.20)

Moreover, for any (i, j) ∈ {1, . . . ,n} × {1, . . . , d}, the Hermitian adelic vector bundle
(sqλi , j

H j
(Ej), ξ

λi , j
j ,sq ) is semistable of slope λi, j . Therefore, by the induction hypothesis

one has

d̂eg(Vi/Vi−1, ξVi/Vi−1 ) > d̂eg(Vi/Vi−1, ξ
′′
Vi/Vi−1

)

> dimK (Vi/Vi−1)

d∑
j=1

(
λi, j − ν(Ω∞) ln(aj)

)
.

Taking the sum with respect to i ∈ {1, . . . ,n}, we obtain

d̂eg(V, ξV ) =
n∑
i=1

d̂eg(Vi/Vi−1, ξVi/Vi−1 )

>
n∑
i=1

dimK (Vi/Vi−1)

d∑
j=1

(
λi, j − ν(Ω∞) ln(aj)

)
=

n∑
i=1

dimK (Vi/Vi−1)ti − dimK (V)ν(Ω∞)

d∑
j=1

ln(aj)

= d̂eg(V, ‖·‖V ) − dimK (V)ν(Ω∞)

d∑
j=1

ln(aj),

which leads to

µ̂(V, ξV ) > µ̂(V, ‖·‖V ) − ν(Ω∞)

d∑
j=1

ln(aj).
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Similarly, if we denote by ξ̃Vi/Vi−1 the subquotient norm family of ξ̃V , then the
induction hypothesis gives

d̂eg(Vi/Vi−1, ξ̃Vi/Vi−1 ) > dimK (Vi/Vi−1)

d∑
j=1

(
λi, j −

1
2
ν(Ω∞) ln(aj)

)
,

which leads to

µ̂(V, ξV ) > µ̂(V, ‖·‖V ) −
1
2
ν(Ω∞)

d∑
j=1

ln(aj).

Step 2: In this step, we assume that all adelic vector bundles (Ej, ξj) are semistable.
Note that the Harder-NarasimhanR-filtration of (Ej, ξj) has then only one jump point.
Therefore, it suffices to prove (5.17) and (5.18). Note that the case where det(V) is
semistable as a rational point of

P := P((E1 ⊗K · · · ⊗K Ed)
⊗ dimK (V ))

has been proved in Proposition 5.3.1. In the following, we assume that det(V) is not
semistable (in the sense of geometric invariant theory) as a rational point of P.

For each
F = (F1, . . . ,Fd) ∈ Fil(E1) × · · · × Fil(Ed),

let ‖·‖F,V be the quotient norm on V of the ε-tensor product of ‖·‖F1, . . . , ‖·‖Fd
. Let

S be the subset of Fil0(E1) × · · · × Fil0(Ed) consisting of vectors (F1, . . . ,Fd) such
that the filtrations F1, . . . ,Fd are not simultaneously trivial. Then, by Theorem 5.4.3,
the function Θ : S → R

∀F = (F1, . . . ,Fd) ∈ S, Θ(F ) :=
µ̂(V, ‖·‖F,V )

(〈F1,F1〉 + · · · + 〈Fd,Fd〉)
1/2

attains its minimal value c, which is negative. In the following, we denote by E =

(E1, . . . ,Ed) a minimal point of the function Θ. Then, for any F = (F1, . . . ,Fd) ∈

Fil(E1) × · · · × Fil(Ed), one has

µ̂(V, ‖·‖F,V ) >
d∑
j=1

µ̂(Ej, ‖·‖Fj
) + c

〈E1,F1〉 + · · · + 〈Ed,Fd〉

(〈E1,E1〉 + · · · + 〈Ed,Ed〉)
1/2 .

In the following, for each j ∈ {1, . . . , d}, we denote by Fj the R-filtration on E
which induces on each subquotient sqt

E j
(Ej) the Harder-Narasimhan filtration of this

vector space equipped with the subquotient norm family ξ t
j ,sq,E j

of ξj . By (4.63), for
any t ∈ R, if we denote by ‖·‖Fj ,sq,t the subquotient norm of ‖·‖Fj

on sqt
E j
(Ej), then

one has
d̂eg(sqt

E j
(Ej), ‖·‖Fj ,sq,t ) = d̂eg(sqt

E j
(Ej), ξ

t
j ,sq,E j

).

Taking the sum with respect to t, by Proposition 4.3.13 and the assumption that ξj
is Hermitian we obtain that
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d̂eg(Ej, ‖·‖E j ) = d̂eg(Ej, ξj).

Moreover, by (4.63) one has

〈E j,Fj〉 =
1
aj

∑
t∈R

t
rj (t)∑
i=1

µ̂i(sqtE j
(Ej), ξ

t
j ,sq,E j

) =
1
aj

∑
t∈R

t d̂eg(sqt
E j
(Ej), ξ

t
j ,sq,E j

),

where rj(t) = dimK (sqtE j
(Ej)), and the second equality comes from (4.63). For any

j ∈ {1, . . . , d} and any u ∈ R, let

Ψj(u) =
∑
t<u

d̂eg(sqt
E j
(Ej), ξ

t
j ,sq,E j

) = d̂eg(E/Eu
j (Ej)),

where we consider the quotient norm family on E/Eu
j (Ej). Since (Ej, ξj) is

semistable, one has

µ̂(E/Eu
j (Ej)) > µ̂min(Ej, ξj) = µ̂(Ej, ξj)

and hence
Ψj(u) > µ̂(Ej, ξj) rk(E/Eu

j (Ej)).

By Abel’s summation formula we obtain

〈E j,Fj〉 =
1
aj

∫
R

t dΨj(t) = Mj

Ψj(Mj)

aj
−

1
aj

∫ Mj

−∞

Ψj(t) dt,

where Mj is a sufficiently positive number such that EMj

j (Ej) = {0}. Therefore one
has

〈E j,Fj〉 6 Mj

d̂eg(Ej, ξj)

aj
−

1
aj
µ̂(Ej, ξj)

∫ Mj

−∞

dimK (Ej/E
t
j(Ej)) dt

=
µ̂(Ej, ξj)

aj

∫ Mj

−∞

t d
(
dimK (Ej/E

t
j(Ej))

)
=
µ̂(Ej, ξj)

aj
d̂eg(Ej, ‖·‖E j ) = 0.

Therefore we obtain

µ̂(V, ‖·‖F,V ) >
d∑
j=1

µ̂(Ej, ξj).

It remains to compare µ̂(V, ‖·‖F,V ) with the slopes of (V, ξV ) and (V, ξ̃V ). We
choose a refinement

0 = G0 ( G1 ( . . . ( Gn = E1 ⊗K · · · ⊗K Ed, t1 > . . . > tn

of the R-filtration E1 ⊗ · · · ⊗ Ed such that, for any i ∈ {1, . . . ,n}, the subquotient
Gi/Gi−1 is canonically isomorphic to a tensor product of the form
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sqλi ,1
E1

(E1) ⊗K · · · ⊗K sqλi ,d
Ed

(Ed)

with λi,1 + · · · + λi,d = ti . For any i ∈ {1, . . . ,n}, let ‖·‖F,Gi/Gi−1 be the subquotient
norm on Gi/Gi−1 of the ε-tensor product of ‖·‖F1, . . . , ‖·‖Fd

. By the construction of
F1, . . . ,Fd , the subquotient norm ‖·‖F,Gi/Gi−1 on Gi/Gi−1 corresponds to the tensor
product of the Harder-Narasimhan R-filtrations of

(sqλi ,1
E1

(E1), ξ
t
1,sq,E1

), . . . , (sqλi ,d
Ed

(Ed), ξ
t
d,sq,Ed

).

By the induction hypothesis, and the same argument showing (5.19) and (5.20), we
obtain

d̂eg(Vi/Vi−1, ξVi/Vi−1 ) > d̂eg(Vi/Vi−1, ‖·‖F,Vi/Vi−1 ) − dimK (Vi/Vi−1)ν(Ω∞)

d∑
j=1

ln(aj),

where ξVi/Vi−1 is the subquotient norm family of ξV on Vi/Vi−1, ‖·‖F,Vi/Vi−1 is the
quotient norm of ‖·‖F,Gi/Gi−1 , which identifies with the subquotient norm of ‖·‖F ,V
since the flag 0 = G0 ( G1 ( . . . ( Gn is compatible with the R-filtration
F1 ⊗ · · · ⊗ Fd . Taking the sum of the above formula with respect to i ∈ {1, . . . ,n},
we obtain

d̂eg(V, ξV ) > d̂eg(V, ‖·‖F,V ) − dimK (V)ν(Ω∞)

d∑
j=1

ln(aj),

which leads to

µ̂(V, ξV ) > µ̂(V, ‖·‖F,V ) − ν(Ω∞)

d∑
j=1

ln(aj).

Similarly, one has

µ̂(V, ξ̃V ) > µ̂(V, ‖·‖F,V ) −
1
2
ν(Ω∞)

d∑
j=1

ln(aj).

The theorem is thus proved. �

Corollary 5.6.2 Let d ∈ N>2, {(E, ξj)}dj=1 be a family of adelic vector bundles on S
and V be a non-zero quotient vector space of E1 ⊗K · · · ⊗K Ed . Let ξV be the quotient
norm families of ξ1 ⊗ε,π · · · ⊗ε,π ξd . Then one has

µ̂min(V, ξV ) >
d∑
j=1

(
µ̂min(Ej, ξj) −

3
2
ν(Ω∞) ln(dimK (Ej))

)
. (5.21)

If all norm families ξ1, . . . , ξd are Hermitian, then one has
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µ̂min(V, ξV ) >
d∑
j=1

(
µ̂min(Ej, ξj) − ν(Ω∞) ln(dimK (Ej))

)
, (5.22)

µ̂min(V, ξ̃V ) >
d∑
j=1

(
µ̂min(Ej, ξj) −

1
2
ν(Ω∞) ln(dimK (Ej))

)
, (5.23)

where ξ̃V is the quotient norm family of the orthogonal tensor product ξ1 ⊗ · · · ⊗ ξd .

Proof We begin with the proof of the Hermitian case. To establish (5.22) it suffices
to prove weaker inequalities

µ̂(V, ξV ) >
d∑
j=1

(
µ̂min(Ej, ξj) − ν(Ω∞) ln(dimK (Ej))

)
, (5.24)

µ̂(V, ξ̃V ) >
d∑
j=1

(
µ̂min(Ej, ξj) −

1
2
ν(Ω∞) ln(dimK (Ej))

)
(5.25)

for all non-zero quotient vector space V of E1 ⊗K · · · ⊗K Ed . For any j ∈ {1, . . . , d},
let Hj be the Harder-Narasimhan R-filtration of (Ej, ξj). Let ‖·‖V be the quotient
norm of the ε-tensor product of ‖·‖H1, . . . , ‖·‖Hd

. By Theorem 5.6.1, one has

µ̂(V, ξV ) > µ̂(V, ‖·‖V ) − ν(Ω∞)

d∑
j=1

ln(dimK (Ej)), (5.26)

µ̂(V, ξ̃V ) > µ̂(V, ‖·‖V ) −
1
2
ν(Ω∞)

d∑
j=1

ln(dimK (Ej)). (5.27)

Moreover, since ‖·‖V is the quotient norm of the ε-tensor product of ‖·‖H1, . . . , ‖·‖Hd
,

one has (see Remark 5.1.6)

µ̂(V, ‖·‖V ) >
d∑
j=1

µ̂min(Ej, ξj).

Therefore (5.24) follows from (5.26) and (5.25) follows from (5.27).
In the following, we proceed with the proof of (5.21) in the general (non-

necessarily Hermitian) case. Note that one has

ξ∨∨1 ⊗ε,π · · · ⊗ε,π ξ
∨∨
d = ξ1 ⊗ε,π · · · ⊗ε,π ξd .

Moreover, since ξ∨∨j 6 ξj , one has

µ̂min(Ej, ξ
∨∨
j ) > µ̂min(Ej, ξj)



326 5 Slopes of tensor product

for any j ∈ {1, . . . , d}. Therefore, by replacing ξj by ξ∨∨j we may suppose without
loss of generality that all ξj are non-Archimedean on Ω \Ω∞.

Assume that ξj is of the form {‖·‖j ,ω}ω∈Ω. By Theorem 4.1.26, for any ε > 0
and any j ∈ {1, . . . , d} there exist measurable Hermitian norm families ξHj =

{‖·‖Hj ,ω}ω∈Ω of Ej such that ‖·‖Hj ,ω = ‖·‖j ,ω for any ω ∈ Ω \Ω∞ and

‖·‖j ,ω 6 ‖·‖Hj ,ω 6 (dimK (Ej) + ε)
1/2‖·‖j ,ω

for any ω ∈ Ω∞. By the slope inequality (see Proposition 4.3.31) one has

µ̂min(Ej, ξ
H
j ) > µ̂(Ej, ξj) −

1
2
ν(Ω∞) ln(dimK (Ej) + ε). (5.28)

Moreover, if we denote by ξ ′V the quotient norm family of ξH1 ⊗ε,π · · · ⊗ε,π ξ
H
d

on
V , one has

µ̂min(V, ξ ′V ) 6 µ̂min(V, ξV ) (5.29)

by the slope inequality. Applying the Hermitian case of the corollary to (Ej, ξ
H
j )

( j ∈ {1, . . . , d}) and (V, ξ ′V ), we obtain

µ̂min(V, ξ ′V ) >
d∑
j=1

(
µ̂min(Ej, ξ

H
j ) − ν(Ω∞) ln(dimK (Ej))

)
.

Combining this inequality with (5.28) and (5.29), by passing to limite when ε tend
to 0+ we obtain (5.21). The corollary is thus proved. �

Remark 5.6.3 In the case where the adelic curve S comes from an arithmetic curve.
The inequality (5.23) recovers essentially the second inequality of [64, Corollary
5.4], which strengthens [38, Theorem 1]. From the methodological point of view,
the arguments in this chapter rely on the geometric invariant theory without using
the theorem of successive minima of Zhang, which was a key argument in [64, 22]
(see [155, Theorem 5.2], see also [64, §3]).



Chapter 6
Adelic line bundles on arithmetic varieties

In this chapter, we fix a proper adelic curve S = (K, (Ω,A, ν), φ).

6.1 Metrised line bundles on an arithmetic variety

Let X be a projective scheme over Spec K and L be an invertible OX -module. For
any ω ∈ Ω, we let Xω be the fibre product X ×SpecK Spec Kω (recall that Kω
is the completion of K with respect to |·|ω) and Lω be the pull-back of L by the
canonical projection morphism Xω → X . By metric family on L, we refer to a family
of continuous metrics ϕ = {ϕω}ω∈Ω, where ϕω is a continuous metric on Lω . If
ϕ = {ϕω}ω∈Ω and ϕ′ = {ϕ′ω}ω∈Ω are two metric families on L, the local distance
of ϕ and ϕ′ at ω ∈ Ω is defined as (see Definition 2.2.7)

dω(ϕ, ϕ′) := d(ϕω, ϕ′ω).

The global distance between ϕ and ϕ′ is defined as the upper integral

dist(ϕ, ϕ′) :=
∫
Ω

dω(ϕ, ϕ′) ν(dω). (6.1)

If ϕ = {ϕω}ω∈Ω is a metric family on L, then the dual metrics {−ϕω}ω∈Ω form
a metric family on L∨, denoted by −ϕ. If L and L ′ are invertible OX -modules, and
ϕ = {ϕω}ω∈Ω and ϕ′ = {ϕ′ω}ω∈Ω are metric families on L and L ′ respectively, then
{ϕω + ϕ

′
ω}ω∈Ω is a metric family on L ⊗ L ′, denoted by ϕ + ϕ′. The metric family

ϕ + (−ϕ′) on L ⊗ L ′∨ is also denoted by ϕ − ϕ′. Similarly, for any integer n > 0,
{nϕω}ω∈Ω is a metric family on L⊗n, denoted by nϕ.

Definition 6.1.1 Let Y and X be projective schemes over Spec K and f : Y → X
be a projective K-morphism. Let L be an invertible OX -module equipped with a
metric family ϕ = {ϕω}ω∈Ω. We denote by f ∗(ϕ) the metric family { f ∗ω(ϕω)}ω∈Ω

on f ∗(L), where for any ω ∈ Ω, fω : Yω → Xω is the Kω-morphisme induced by

327
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f , and f ∗ω(ϕω) is defined in Definition 2.2.9. The norm family f ∗(ϕ) is called the
pull-back of ϕ by f . In the particular case where Y is a closed subscheme of X and f
is the canonical immersion, the norm family f ∗(ϕ) is also denoted by ϕ|Y and called
the restriction of ϕ to Y .

The following properties are straightforward from the definition.

Proposition 6.1.2 Let X be a projective scheme over Spec K and f : Y → X be a
projective morphism of K-schemes.

(1) If L1 and L2 are two invertible OX -modules, and ϕ1 and ϕ2 are metric families
on L1 and L2 respectively, then one has f ∗(ϕ1 + ϕ2) = f ∗(ϕ1) + f ∗(ϕ2) on
f ∗(L1 ⊗ L2) � f ∗(L1) ⊗ f ∗(L2).

(2) For any invertible OX -module L and any metric family ϕ on L, one has f ∗(−ϕ) =
− f ∗(ϕ) on f ∗(L∨) � f ∗(L)∨.

Remark 6.1.3 Let us consider the particular case where X is the spectrum of a finite
extension K ′ of the field K . For any ω ∈ Ω, the Berkovich space of Xω identifies
with the discrete set of absolute values on K ′ extending |·|ω on K . Moreover, any
invertible OX -module L could be considered as a vector space of dimension 1 over
K ′, and any metric family on L is just a norm family with respect to the adelic curve
S ⊗K K ′ (cf. Definition 3.4.1) if we consider L as a vector space over K ′.

6.1.1 Quotient metric families

Let E be a finite-dimensional vector space over K and ξ = {‖·‖ω}ω∈Ω be a norm
family on E . Let f : X → Spec K be a projective K-scheme and L be an invertible
OX -module. Suppose given a surjective homomorphism β : f ∗(E) → L. For any
ω ∈ Ω, the morphism f : X → Spec K induces by base change a morphism fω
from Xω := X ×SpecK Spec Kω to Spec Kω . We denote by Lω the pull-back of L on
Xω . The homomorphism β induces a surjective homomorphism βω : f ∗ω(E) → Lω .
Therefore, the norm ‖·‖ω induces a quotient metric ϕω on Lω (see Definition 2.2.15).
The family ϕ = {ϕω}ω∈Ω is called the quotient metric family induced by (E, ξ) and
β.

Let eee = {ei}ri=1 be a basis of E . For each ω ∈ Ω, let ‖·‖eee,ω be the norm on
Eω := E ⊗K Kω given by

‖a1e1 + · · · + arer ‖eee,ω :=

{
max{|a1 |ω, . . . , |ar |ω} if ω ∈ Ω \Ω∞,

|a1 |ω + · · · + |ar |ω if ω ∈ Ω∞,

for all a1, . . . ,ar ∈ Kω , and let ϕeee,ω be the metric of Lω induced by ‖·‖eee,ω and
the surjective homomorphism Eω ⊗Kω OXω → Lω . Let ξeee := {‖·‖eee,ω}ω∈Ω and let
ϕeee := {ϕeee,ω}ω∈Ω. The metric family ϕeee is called the quotient metric family of L
induced by β and eee.
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Remark 6.1.4 We keep the above notation. Given a fixed surjective homomorphism
β : f ∗(E) → L, by Proposition 1.2.14 (see also Remark 1.3.2), the norm family ξ
and the double dual norm family ξ∨∨ induce the same quotient metric family on L.

Proposition 6.1.5 Let (E, ξ) and (E ′, ξ ′) be finite-dimensional vector spaces equipped
with dominated norm families. Let f : X → Spec K be a projective scheme over
Spec K , β : f ∗(E) → L and β′ : f ′∗(E ′) → L be two surjective homomorphisms
inducing closed immersions i : X → P(E) and i′ : X → P(E ′), and ϕ and ϕ′ be
quotient metric families induced by (E, ξ) and β, and by (E ′, ξ ′) and β′, respectively.
Then the local distance function (ω ∈ Ω) 7→ dω(ϕ, ϕ′) is ν-dominated.

Proof We begin with the particular case where E = E ′ and β = β′. By Proposition
2.2.20, for any ω ∈ Ω one has

dω(ϕ, ϕ′) 6 dω(ξ∨∨, ξ ′∨∨).

Note that the norm families ξ∨∨ and ξ ′∨∨ are strongly dominated (see Remark 4.1.12).
By Corollary 4.1.10 and the triangle inequality of the local distance function, we
obtain that the function (ω ∈ Ω) 7→ dω(ξ∨∨, ξ ′∨∨) is ν-dominated and then deduce
that the function (ω ∈ Ω) 7→ dω(ϕ, ϕ′) is ν-dominated.

In the general case, since i and i′ are closed immersions, by Serre’s vanishing
therorem (cf. [85, Theorem 5.2, Chapter III]), there exists an integer n > 1 such that

Γ(P(E),OP(E)(n)) −→ Γ(X, L⊗n) and Γ(P(E ′),OP(E′)(n)) −→ Γ(X, L⊗n)

are surjective, so that the natural homomorphisms

E ⊗n −→ Symn(E) = Γ(P(E),OP(E)(n)) −→ Γ(X, L⊗n)

and
E ′⊗n −→ Symn(E ′) = Γ(P(E ′),OP(E′)(n)) −→ Γ(X, L⊗n)

are both surjective. Therefore the above surjective homomorphisms factorise through
f ∗Γ(X, L⊗n). Moreover, by Remark 2.2.19, if we equip E ⊗n and E ′⊗n with the
ε, π-tensor power norm families (see §4.1.1) of ξ and ξ ′ respectively, then the
corresponding quotient metric families are nϕ and nϕ′ respectively. Note that the
ε, π-tensor powers of ξ and ξ ′ are dominated (see Proposition 4.1.19 (5)). Therefore,
by the special case proved above, we obtain that the function

(ω ∈ Ω) 7−→ dω(nϕ,nϕ′) = ndω(ϕ, ϕ′)

is ν-dominated. The proposition is thus proved. �

6.1.2 Dominated metric families

Throughout this subsection, let f : X → Spec K be a projective K-scheme.
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Definition 6.1.6 Let L be a very ample invertible OX -module. We say that a metric
family ϕ on L is dominated if there exist a finite-dimensional vector space E over K ,
a dominated norm family ξ on E , and a surjective homomorphism β : f ∗(E) → L
inducing a closed immersion X → P(E), such that the quotient metric family ϕ′

induced by (E, ξ) and β satisfies the following condition:

the local distance function (ω ∈ Ω) 7→ dω(ϕ, ϕ′) is ν-dominated.

Remark 6.1.7 With the above definition, Proposition 6.1.5 implies the following
assertions. Let E be a finite-dimensional vector space over K equipped with a
dominated norm family ξ. Let L be an invertible OX -module and β : f ∗(E) → L
be a surjective homomorphism inducing a closed immersion X → P(E). Then the
quotient metric family induced by (E, ξ) and β is dominated. Moreover, if ϕ1 and ϕ2
are two metric families on L which are dominated, then the local distance function
(ω ∈ Ω) 7→ dω(ϕ1, ϕ2) is ν-dominated.

Proposition 6.1.8 Let L1 and L2 be very ample invertible OX -modules. Assume that
ϕ1 and ϕ2 are dominated metric families on L1 and L2 respectively. Then ϕ1 + ϕ2 is
a dominated metric family on L1 ⊗ L2.

Proof Since the metric families ϕ1 and ϕ2 are dominated, there exist finite-
dimensional vector spaces E1 and E2 over K , dominated norm families ξ1 and
ξ2 on E1 and E2 respectively, and surjective homomorphisms β1 : f ∗(E1) → L1 and
β2 : f ∗(E2) → L2 inducing closed immersions X → P(E1) and X → P(E2) respec-
tively, such that, if we denote by ϕ̃1 and ϕ̃2 the quotient metric families induced by
(E1, ξ1) and β1 and by (E2, ξ2) and β2 respectively, then the local distance functions

(ω ∈ Ω) 7−→ dω(ϕ1, ϕ̃1) and (ω ∈ Ω) 7−→ dω(ϕ2, ϕ̃2)

are ν-dominated. Consider now the composed morphism

ι : X
(ι1 ,ι2) // P(E1) ×K P(E2)

ς // P(E1 ⊗K E2) ,

where ι1 and ι2 are closed immersions corresponding to β1 and β2, and ς is the
Segre embedding. Note that ι is the closed immersion corresponding to the surjective
homomorphism

β1 ⊗ β2 : f ∗(E1 ⊗K E2) � f ∗(E1) ⊗OX
f ∗(E2) −→ L1 ⊗OX

L2.

Moreover, if we equip E1 ⊗K E2 with the ε, π-tensor product norm family of ξ1 and
ξ2, then the quotient metric family on L1 ⊗ L2 induced by (E1 ⊗K E2, ξ1 ⊗ε,π ξ2) and
β1 ⊗ β2 identifies with ϕ̃1 + ϕ̃2. This is a consequence of Proposition 1.2.36 (for the
non-Archimedean case) and Proposition 1.1.58 (for the Archimedean case). Since

∀ω ∈ Ω, dω(ϕ1 + ϕ2, ϕ̃1 + ϕ̃2) 6 dω(ϕ1, ϕ̃1) + dω(ϕ2, ϕ̃2),
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we obtain that the function (ω ∈ Ω) 7→ dω(ϕ1+ϕ2, ϕ̃1+ϕ̃2) is ν-dominated. Therefore
the metric family ϕ1 + ϕ2 is dominated. �

Definition 6.1.9 Let L be an invertible OX -module and ϕ be a metric family on L.
We say that ϕ is dominated if there exist two very ample invertible OX -modules L1
and L2 together with dominated metric families ϕ1 and ϕ2 on L1 and L2 respectively,
such that L = L2 ⊗ L∨

1 and ϕ = ϕ2 − ϕ1.

Remark 6.1.10 In the case where the invertible OX -module L is very ample, the
condition of dominancy in Definition 6.1.9 is actually equivalent to that in Definition
6.1.6. In order to explain this fact (in avoiding confusions), in this remark we
temporary say that a metric family ϕ on a very ample invertible OX -module L is
strictly dominated if it satisfies the condition in Definition 6.1.6. Clearly, if ϕ is
strictly dominated, then it is dominated (namely satisfies the condition in Definition
6.1.9) since we can write L as L⊗2 ⊗ L∨ and ϕ as 2ϕ − ϕ. Conversely, if ϕ is
dominated, then there exist very ample invertible OX -modules L1 and L2 such that
L � L2 ⊗ L∨

1 , and strictly dominated metric families ϕ1 and ϕ2 on L1 and L2 such
that ϕ = ϕ2 − ϕ1. We pick an arbitrary strictly dominated metric family ϕ′ on L. By
Proposition 6.1.8, we obtain that ϕ′ + ϕ1 is a strictly dominated metric family on L2.
Hence the local distance function

(ω ∈ Ω) 7−→ dω(ϕ2, ϕ
′ + ϕ1) = dω(ϕ + ϕ1, ϕ

′ + ϕ1) = dω(ϕ, ϕ′)

is ν-dominated. Therefore the metric family ϕ is strictly dominated.

Proposition 6.1.11 Let E be a finite-dimensional vector space over K equipped with
a norm family ξ, β : f ∗(E) → L be a surjective homomorphism (we do not assume
that β induces a closed immersion), and ϕ be the quotient metric family induced by
(E, ξ) and β. Suppose that ξ is a dominated norm family. Then ϕ is a dominated
metric family.

Proof Since X is a projective K-scheme, there exists a very ample invertible OX -
module L ′. Let E ′ be a finite-dimensional vector space over K and β′ : f ∗(E ′) → L ′

be a surjective homomorphism, which induces a closed embedding of X in P(E ′),
which we denote by λ′. Let λ : X → P(E) be the K-morphism induced by β. Then
the tensor product homomorphism

β ⊗ β′ : f ∗(E) ⊗OX
f ∗(E ′) � f ∗(E ⊗K E ′) −→ L ⊗OX

L ′

corresponds to the composed K-morphism

X
(λ,λ′) // P(E) ×K P(E ′)

ς // P(E ⊗K E ′) ,

where ς is the Segre embedding. Since X is separated over Spec K and λ′ is a closed
immersion, the morphism (λ,λ′) is a closed immersion. Therefore, the morphism
from X to P(E ⊗K E ′) induced by β ⊗ β′ is a closed embedding.

Let ξ ′ be a dominated norm family on E ′ and ϕ′ be the metric family on L ′ induced
by (E ′, ξ ′) and β′. By definition the metric family ϕ′ is dominated (see Proposition
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4.1.19 (5)). Moreover, the metric family ϕ+ ϕ′ is induced by (E ⊗ E ′, ξ ⊗ε,π ξ
′) and

β⊗ β′ (see the proof of Proposition 6.1.8). As ξ and ξ ′ are dominated, we obtain that
ξ ⊗ε,π ξ

′ is dominated. Therefore the metric families ϕ + ϕ′ is dominated. Hence
the metric family ϕ is also dominated. �

Proposition 6.1.12 Let L and L ′ be invertible OX -modules, and ϕ and ϕ′ be metric
families on L and L ′, respectively.

(1) If ϕ is dominated, then the dual metric family −ϕ on L∨ is dominated.
(2) If ϕ and ϕ′ are dominated, then the tensor product metric family ϕ+ϕ′ on L ⊗ L ′

is dominated.
(3) If L = L ′ and ϕ and ϕ′ are dominated, then the local distance function (ω ∈

Ω) 7→ dω(ϕ, ϕ′) is ν-dominated.
(4) If L = L ′, ϕ′ is dominated and the local distance function (ω ∈ Ω) 7→ dω(ϕ, ϕ′)

is ν-dominated, then ϕ is dominated.
(5) If rϕ is dominated for some non-zero integer r , then ϕ is dominated.
(6) Let g : Y → X be a projective morphism of K-schemes. If ϕ is dominated, then

g∗(ϕ) is also dominated.

Proof (1) Let L1 and L2 be very ample invertible OX -modules and ϕ1 and ϕ2 be
dominated metric families on L1 and L2 respectively, such that L � L2 ⊗ L∨

1 and
that ϕ = ϕ2 − ϕ1. Then one has L∨ � L1 ⊗ L∨

2 and −ϕ = ϕ1 − ϕ2. Hence the metric
family −ϕ is dominated.

(2) Let L1, L2, L ′
1 and L ′

2 be very ample invertible OX -modules, ϕ1, ϕ2, ϕ′1 and ϕ′2
be dominated metric families on L1, L2, L ′

1 and L ′
2 respectively, such that L � L2⊗L∨

1 ,
L ′ � L ′

2⊗L ′
1
∨, ϕ = ϕ2−ϕ1 and ϕ′ = ϕ′2−ϕ

′
1. Note that L⊗L ′ � (L2⊗L ′

2)⊗(L1⊗L ′
1)

∨,
and ϕ+ ϕ′ = (ϕ2 + ϕ

′
2) − (ϕ1 + ϕ

′
1). By Proposition 6.1.8, the metric families ϕ2 + ϕ

′
2

and ϕ1 + ϕ
′
1 are dominated. Hence ϕ + ϕ′ is dominated.

(3) Let L1 be a very ample invertible OX -module and ϕ1 be a dominated metric
family on L1. Let ϕ2 = ϕ + ϕ1 and ϕ′2 = ϕ

′ + ϕ1. By (2), the metric families ϕ2 and
ϕ′2 are dominated. Since the invertible OX -module L2 is very ample, by Proposition
6.1.5 we obtain that the local distance function (ω ∈ Ω) 7→ dω(ϕ2, ϕ

′
2) = dω(ϕ, ϕ′)

is ν-dominated.
(4) First we assume that L is very ample. As ϕ′ is dominated, there exist a finite-

dimensional vector space E over K , a dominated norm family ξ on E , and a surjective
homomorphism β : f ∗(E) → L inducing a closed immersion X → P(E) such that,
if ψ is the quotient metric family induced by (E, ξ) and β, then the local distance
function (ω ∈ Ω) 7→ dω(ϕ′,ψ) is ν-dominated. Note that

∀ω ∈ Ω, dω(ϕ,ψ) 6 dω(ϕ, ϕ′) + dω(ϕ′,ψ).

Thus (ω ∈ Ω) 7→ dω(ϕ,ψ) is ν-dominated, as required.
In general, there are very ample invertible OX -modules L1 and L2, and dominated

metric families ϕ′1 and ϕ′2 on L1 and L2, respectively, such that L = L1 ⊗ L∨
2 and

ϕ′ = ϕ′1 − ϕ′2. We set ϕ1 = ϕ + ϕ
′
2 and ϕ2 = ϕ

′
2. Then ϕ = ϕ1 − ϕ2, and ϕ1 and ϕ2

are metric families of L1 and L2, respectively. As
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dω(ϕ1, ϕ
′
1) = dω(ϕ1 − ϕ2, ϕ

′
1 − ϕ

′
2) = dω(ϕ, ϕ′),

(ω ∈ Ω) 7→ dω(ϕ1, ϕ
′
1) is ν-dominated, so that ϕ1 is dominated by the previous

observation. Therefore, ϕ is also dominated.
(5) As−rϕ is dominated by (1), we may assume that r > 0. We choose a dominated

metric family ψ on L. By (2), rψ is dominated, so that, by (3),

(ω ∈ Ω) 7→ dω(rϕ,rψ) = rdω(ϕ,ψ)

is ν-dominated. Therefore (ω ∈ Ω) 7→ dω(ϕ,ψ) is also ν-dominated, and hence the
assertion follows from (4).

(6) First we assume that L is very ample. Then there exist a finite-dimensional
vector space E over K , a dominated norm family ξ on E , a surjective homomorphism
β : f ∗(E) → L inducing a closed immersion X → P(E) such that, if ψ denotes
the quotient metric family induced by (E, ξ) and β, then the local distance function
(ω ∈ Ω) 7→ dω(ϕ,ψ) is ν-dominated. Note that β : E ⊗K OX → L yields the
surjective homomorphism g∗(β) : E ⊗K OY → g∗(L). Moreover, g∗(ψ) coincides
with quotient metric family induced by (E, ξ) and g∗(β). By Proposition 6.1.11,
g∗(ψ) is a dominated metric family. Moreover, for any ω ∈ Ω one has

dω(g∗(ϕ),g∗(ψ)) 6 dω(ψ, ϕ).

By (4) we obtain that g∗(ϕ) is a dominated metric family.
In general, there are very ample invertible OX -modules L1 and L2 such that

L = L1 ⊗ L∨
2 . Let ϕ1 be a dominated metric family on L1. If we set ϕ2 = ϕ1 − ϕ,

then ϕ2 is dominated by (1) and (2). By the previous case, g∗(ϕ1) and g∗(ϕ2) are
dominated, so that, by (1) and (2) again, g∗(ϕ) = g∗(ϕ1)−g∗(ϕ2) is also dominated.�

Theorem 6.1.13 Let f : X → Spec K be a geometrically reduced projective K-
scheme and L be an invertible OX -module, equipped with a dominated metric family
ϕ = {ϕω}ω∈Ω. For any ω ∈ Ω, let ‖·‖ϕω be the sup norm on H0(X, L) ⊗K Kω
corresponding to the metric ϕω . Then the norm family ξ = {‖·‖ϕω }ω∈Ω on H0(X, L)
is strongly dominated.

Proof Let us begin with the following claim:

Claim 6.1.14 If the assertion of the theorem holds under the assumption that X is
geometrically integral, then it holds in general. �

Proof One can find a finite extension K ′ of K and the irreducible decomposition
X1 ∪ · · · ∪ Xn of XK′ such that X1, . . . ,Xn are geometrically integral. We use the
same notation as in Corollary 4.1.18, which says that it is sufficient to see that ξK′ is
dominated.

Let ψ = {ψω}ω∈Ω be another metric family of L. Then dω′(ϕK′,ψK′) = dω(ϕ,ψ)
for all ω ∈ Ω and ω′ ∈ ΩK′ with πK′/K (ω

′) = ω. Therefore, one can see that
ϕK′ = {ϕK′,ω′}ω′∈ΩK′ is dominated.
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Let ϕK′,i be the restriction of ϕK′ to Xi . Then, by Proposition 6.1.12, (6), ϕK′,i is
also dominated for all i. On the other hand, one has the natural injective homomor-
phism

H0(XK′,ω′, LK′,ω′) −→ H0(X1,ω′, LK′,ω′) ⊕ · · · ⊕ H0(Xn,ω′, LK′,ω′).

Here we give a norm ‖·‖ω′ on H0(X1,ω′, LK′,ω′) ⊕ · · · ⊕ H0(Xn,ω′, LK′,ω′) given by

‖(x1, . . . , xn)‖ω′ = max
i∈{1,...,n}

{
‖xi ‖ϕK′ ,i ,ω′

}
.

By our assumption, ξK′,i is dominated for all i, so that {‖·‖ω′}ω∈ΩK′ is also dominated
by Proposition 4.1.19, (4). Note that ‖·‖ϕK′ ,ω′ is the restriction of ‖·‖ω′ , and hence
ξK′ = {‖·‖ϕK′ ,ω′ }ω′∈ΩK′ is dominated by Proposition 4.1.19, (1), as desired. �

From now on, we assume that X is geometrically integral.

Claim 6.1.15 If L is very ample, the assertion of the theorem holds. �

Proof Let E = H0(X, L), r = dimK (E) and β : f ∗(E) → L be the canonical
surjective homomorphism which induces a closed immersion of X in P(E). Note
that any non-zero element of E can not identically vanish on X . Hence there exist
a finite extension K ′ of K together with closed points P1, . . . ,Pr of X such that the
residue filed κ(Pi) at Pi is contained in K ′, and that we have a strictly decreasing
sequence of K ′-vector spaces

E0 ) E1 ) E2 ) · · · ) Er−1 ) Er = {0},

where E0 = E ⊗K K ′ and

Ei = {s ∈ E ⊗K K ′ : s(P1) = · · · = s(Pi) = 0}

for i ∈ {1, . . . ,r}. In order to prove Claim 6.1.15, by virtue of Corollary 4.1.18, we
may assume that K ′ = K .

Let ω1, . . . ,ωr be local bases of L around P1, . . . ,Pr , respectively. For each
i ∈ {1, . . . ,r}, we define θi ∈ E∨ to be

∀ s ∈ E, θi(s) = fs(Pi) (s = fsωi around Pi).

Note that θ1, . . . , θr are linearly independent over K . Let e = {ei}ri=1 be the dual
basis of {θi}ri=1 over K , that is, (e1, . . . , er ) ∈ Er and θi(ej) = δi j . Here we define a
norm ‖·‖ ′ω as follows: for any element s ∈ Eω written as s = λ1e1 + · · · + λrer with
(λ1, . . . , λr ) ∈ Kr

ω ,
‖s‖ ′ω = max

i∈{1,...,r }
|λi |ω .

Let ξ ′ be the norm family of E given by {‖·‖ ′ω}ω∈Ω. Since the measure of Ω∞ is
finite, ξ ′ is dominated by Corollary 4.1.10.

Let ϕ′ be the metric family of L induced by (E, ξ ′) and β. Note that ϕ′ is dominated.
Let us see that ‖·‖ ′ω = ‖·‖ϕ′

ω
for any ω ∈ Ω. First of all, by Proposition 2.2.23,
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‖·‖ϕ′
ω
6 ‖·‖ ′ω . For any (i, j) ∈ {1, . . . ,r}2, one has

|ej |ϕ′
ω
(Pi) =

{
1, if i = j,
0, if i , j .

Therefore, for any (λ1, . . . , λr ) ∈ Kr
ω ,

‖λ1e1 + · · · + λrer ‖ϕ′
ω
> max

i∈{1,...,r }
|λ1e1 + · · · + λrer |ϕ′

ω
(Pi) = max

i∈{1,...,r }
|λi |ω,

as required.
By the inequality (2.5) in Subsection 2.2.2, one has

dω(‖·‖ϕω , ‖·‖
′
ω) = dω(‖·‖ϕω , ‖·‖ϕ′

ω
) 6 dω(ϕω, ϕ′ω).

Therefore, ω 7→ dω(‖·‖ϕω , ‖·‖
′
ω) is ν-dominaited, and hence ξ is dominaited by

Proposition 4.1.6. �

Finally let us consider the following claim:

Claim 6.1.16 For any non-zero element s ∈ H0(X, L), the function (ω ∈ Ω) 7−→

ln ‖s‖ϕω is ν-dominated. �

Proof Fix a non-zero element s ∈ H0(X, L).

Let us construct a dominated metric family ϕ′ of L such that the function (ω ∈

Ω) 7−→ ln ‖s‖ϕ′
ω

is ν-dominated. Let L1 be a very ample invertible OX -module such
that L2 := L ⊗ L1 is also very ample. The multiplication by the non-zero section
s defines an injective K-linear map from H0(X, L1) to H0(X, L2). We choose a
dominated norm family ξ ′2 = {‖·‖ ′2,ω}ω,∈Ω on H0(X, L2) and let ξ ′1 be the restriction
of ξ ′2 on H0(X, L1) via this injective map. By Proposition 4.1.19 (1), the norm family
ξ ′1 is also dominated. Let ϕ′1 and ϕ′2 be the quotient metric families induced by
ξ ′1 and ξ ′2 respectively, where we consider the canonical surjective homomorphisms
f ∗(H0(X, L1)) → L1 and f ∗(H0(X, L2)) → L2. We set ϕ′ = ϕ′2−ϕ

′
1. By Propositions

1.3.26 and 1.3.25, for all ω ∈ Ω and x ∈ Xan
ω such that s(x) , 0 and ` ∈ L1,ω ⊗

κ̂(x) \ {0}, one has

|` |ϕ′
1,ω

(x) = inf
u∈H0(X ,L1), λ∈κ̂(x)

×

u(x)=λ`

|λ |−1
x · ‖su‖ ′2,ω

> inf
v∈H0(X ,L2), λ∈κ̂(x)

×

v(x)=λs(x)`

|λ |−1
x · ‖v‖ ′2,ω

= |s(x)` |ϕ′
2,ω

(x) = |s(x)|ϕ′
ω
(x) · |` |ϕ′

1,ω
(x),

which leads to the inequality ‖s‖ϕ′
ω
6 1. Moreover, by Proposition 2.2.5, for any

non-zero section u ∈ H0(X, L1), one has

‖su‖ϕ′
2,ω
6 ‖s‖ϕ′

ω
· ‖u‖ϕ′

1,ω
.
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Therefore, the function (ω ∈ Ω) 7→ ln ‖s‖ϕ′
ω

is non-positive and bounded from
below by a ν-dominated function.

By the inequality (2.5) in Subsection 2.2.2, one has

dω(‖·‖ϕω , ‖·‖ϕ′
ω
) 6 dω(ϕω, ϕ′ω).

On the other hand, by Proposition 6.1.12 (3), the function (ω ∈ Ω) 7−→ dω(ϕω, ϕ′ω)
is ν-dominated, so that the assertion follows. �

We now proceed with the proof of the theorem. Let L1 be a very ample invertible
OX -module such that L2 := L ⊗ L1 is also very ample. We fix a non-zero global
section t of L1, which defines an injective K-linear map from H0(X, L) to H0(X, L2).
We choose a dominated metric family ϕ1 = {ϕ1,ω}ω∈Ω on L1 such that ‖t‖ϕ1,ω 6 1
for any ω ∈ Ω, which is possible if we take a strongly dominated norm family
ξ1 = {‖·‖1,ω}ω∈Ω on H0(X, L1) such that ‖t‖1,ω 6 1 for any ω ∈ Ω, and choose ϕ1
as the quotient metric family induced by (H0(X, L1), ξ1) and the canonical surjective
homomorphism f ∗(H0(X, L1)) → L1. Let ϕ2 = {ϕ2,ω}ω∈Ω be the metric family
ϕ + ϕ1 on L2. By Proposition 6.1.12 (2), the metric family ϕ2 is dominated. Let ξ2
be the norm family {‖·‖ϕ2,ω }ω∈Ω on H0(X, L2). By Claim 6.1.15, the norm family
ξ2 is strongly dominated.

Let {s1, . . . , sm} be a basis of H0(X, L). For any i ∈ {1, . . . ,m}, let ti = tsi ∈

H0(X, L2). We choose sections tm+1, . . . , tn in H0(X, L2) such that {t1, . . . , tn} forms
a basis of H0(X, L2). Let ξ◦2 = {‖·‖◦2,ω}ω∈Ω be the norm family on H0(X, L2) such
that, for any ω ∈ Ω and any (λ1, . . . , λn) ∈ Kn

ω ,

‖λ1t1 + · · · + λntn‖◦2,ω =

{
maxi∈{1,...,n} |λi |ω, if ω ∈ Ω \Ω∞,
|λ1 |ω + · · · + |λn |ω, if ω ∈ Ω∞.

For any ω ∈ Ω and any (λ1, . . . , λω) ∈ Km
ω , one has

‖λ1s1 + · · · + λmsm‖ϕω > ‖λ1t1 + · · · + λmtm‖ϕ2,ω

since ‖t‖ϕ1,ω 6 1. As the norm family ξ2 is strongly dominated, the local distance
function (ω ∈ Ω) 7→ dω(ξ2, ξ

◦
2 ) is ν-dominated (see Corollary 4.1.10). In particular,

there exists a ν-dominated function A on Ω such that, for any ω ∈ Ω and any
(λ1, . . . , λm) ∈ Km

ω , one has

ln ‖λ1s1 + · · · + λmsm‖ϕω > ln ‖λ1t1 + · · · + λmtm‖◦2,ω − A(ω). (6.2)

Moreover,

‖λ1s1 + · · · + λmsm‖ϕω 6 ‖λ1t1 + · · · + λmtm‖◦2,ω · max
i∈{1,...,m}

‖si ‖ϕω

By Claim 6.1.16, for any i ∈ {1, . . . ,m}, the function (ω ∈ Ω) 7→ ln ‖si ‖ϕω is
ν-dominated. Therefore, there exists a ν-dominated function B on Ω such that, for
any ω ∈ Ω and any (λ1, . . . , λm) ∈ Km

ω , one has
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ln ‖λ1s1 + · · · + λmsm‖ϕω 6 ln ‖λ1t1 + · · · + λmtm‖◦2,ω + B(ω). (6.3)

The inequalities (6.2) and (6.3) imply that the local distance function (ω ∈ Ω) 7→

dω(ξ, ξ◦) is ν-dominated, where ξ◦ is the restricted norm family of ξ◦2 on H0(X, L).
The strong dominancy of ξ then follows from Corollary 4.1.10. The theorem is thus
proved. �

Remark 6.1.17 We keep the notation of Theorem 6.1.13. In the case where X is
not geometrically integral, it is possible that ‖·‖ϕω is only a seminorm instead of a
norm. However, the argument of Claim 6.1.16 shows that, for any s ∈ H0(X, L), the
function

(ω ∈ Ω) −→ ln‖s‖ω

is upper dominated.

Proposition 6.1.18 Let K ′ be a finite extension of K and X = Spec K ′. Let L be
an invertible OX -module. Then a metric family ϕ on L is dominated if and only if
the corresponding norm family ξL on L relatively to the adelic curve S ⊗K K ′ (cf.
Remark 6.1.3) is dominated.

Proof First we assume that there exists a finite-dimensional vector space E over K ,
a surjective K ′-linear map β : E ⊗K K ′ → L, and a dominated norm family ξE on
E such that the local distance function (ω ∈ Ω) 7→ dω(ϕ, ϕ′) is ν-dominated, where
ϕ′ denotes the metric family on L induced by (E, ξE ) and β. Denote by ξ ′L the norm
families on L relatively to the adelic curve S ⊗K K ′, which correspond to the metric
families ϕ′. By definition ξ ′L identifies with the quotient norm family of ξK′ induced
by β. Since ξ is dominated, also is ξK′ (cf. Corollary 4.1.13). Hence the norm family
ξ ′L is also dominated (cf. Proposition 4.1.19 (2)). By Proposition 4.1.6, we obtain
that the norm family ξL is dominated.

Conversely, we assume that the norm family ξL is dominated. Let e be a generator
of L as vector space over K ′ and let ξe = {‖·‖e,ω}ω∈Ω be the norm family on
Ke such that ‖λe‖e,ω = |λ |ω for any ω ∈ Ω. Note that the norm family ξe,K′ on
(Ke) ⊗K K ′ � L is dominated. By Corollary 4.1.10, the local distance function
(x ∈ ΩK′) 7→ dx(ξe,K′, ξL) is νK′-dominated. Let ϕ′ be the metric family induced
by (Ke, ξe) and the canonical isomorphism (Ke) ⊗K K ′ � L. For any x ∈ ΩK′

one has dx(ξe,K′, ξL) = dx(ϕ
′, ϕ). By Proposition 6.1.12 (4), the metric family ϕ is

dominated. �

6.1.3 Universally dense point families

In this subsection, we consider universally dense point families (cf. Lemma 6.1.19)
and their consequences.

Lemma 6.1.19 Let K be a field, X be a scheme locally of finite type over Spec K
and K ′/K be a field extension. Let XK′ be the fibre product X ×SpecK Spec K ′ and
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π : XK′ → X be the morphism of projection. For any closed point P of X , the
set π−1({P}) is finite and consists of closed points of XK′ . Moreover, if F is a set
consisting of closed points of X , which is Zariski dense in X , then the subset π−1(F)
of XK′ is Zariski dense.

Proof Let P′ be a point of XK′ such that P = π(P′) is a closed point. Since X is
locally of finite type over Spec K , the residue field of P is a finite extension of K
(this is a consequence of Zariski’s lemma, see [154]). As the residue field of P′ is a
quotient ring of κ(P) ⊗K K ′, we obtain that it is a finite extension of K ′. Moreover,
since κ(P) ⊗K K ′ is an Artinian K ′-algebra, the set π−1({P}) is finite.

In the following, we fix an algebraic closure K ′ac of the field K ′ and we denote
by Kac the algebraic closure of K in K ′ac. For any closed point P of X , we choose
an arbitrary embedding of κ(P) in Kac so that we can consider the residue field κ(P)
as a subfield of Kac. Similarly, for any P′ ∈ π−1({P}), we choose an embedding of
the residue field κ(P′) in K ′ac which extends the embedding κ(P) → Kac.

To prove the lemma it suffices to verify that, for any affine open subset U of
X , π−1(U ∩ F) is Zariski dense in UK′ . Therefore we may assume without loss of
generality that X is an affine scheme of finite type over K . We let A be the coordinate
ring of X . Thus the coordinate ring of XK′ is A ⊗K K ′. Let f be an element of
A ⊗K K ′ and f̃ be the canonical image of f in A ⊗K K ′ac. We write f̃ as a linear
combination

f̃ = a1g1 + · · · + angn,

where g1, . . . ,gn are elements of A ⊗K Kac, and a1, . . . ,an are elements of K ′ac

which are linearly independent over Kac. Let P be a closed point of X and mP be
the maximal ideal of A corresponding to P. Assume that for any P′ ∈ π−1({P})
one has f (P′) = 0, where f (P′) denotes the image of f by the projection map
A ⊗K K ′ → (A ⊗K K ′)/mP′ , with mP′ being the (maximal) ideal of A ⊗K K ′

corresponding to P′. Then the canonical image of f in (A/mP) ⊗K K ′ is nilpotent,
which implies that the canonical image of f̃ in (A/mP) ⊗K K ′ac is nilpotent. In
particular, the canonical image of f̃ by the composed map

A ⊗K K ′ac −→ (A/mP) ⊗K K ′ac = κ(P) ⊗K K ′ac −→ K ′ac

is zero, where the last map in the above diagram is given by λ ⊗ µ 7→ λµ for any
λ ∈ κ(P) ⊆ Kac and µ ∈ K ′ac. In other words, one has

a1g1(P) + · · · + angn(P) = 0,

where for each i ∈ {1, . . . ,n}, gn(P) denotes the image of gn by the composed map

A ⊗K Kac −→ (A/mP) ⊗K Kac = κ(P) ⊗K Kac −→ Kac.

Since a1, . . . ,an are linearly independent over Kac, we obtain that g1(P) = · · · =

gn(P) = 0. Since this holds for any P ∈ F and since F is Zariski dense in X , we
obtain that g1, . . . ,gn are nilpotent elements of A ⊗K Kac. Therefore f̃ is a nilpotent
element of A ⊗K K ′ac. Since the extension K ′ac/Kac equips K ′ac with a structure
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of Kac-algebra which is faithfully flat, the canonical map A ⊗K Kac → A ⊗K K ′ac

is injective (see [53], Chapitre I, §1, n◦2, Lemme 2.7). Therefore, f is a nilpotent
element in A ⊗K K ′. This shows that π−1(F) is Zariski dense in XK′ . �

Proposition 6.1.20 Let S = (K, (Ω,A, ν), φ) be an adelic curve. Let X be a projective
K-scheme, L be an invertible OX -module, equipped with a metric family ϕ. We
assume that, for any closed point P in X , the norm family P∗(ϕ) (cf. Remark 6.1.3)
on P∗(L) is measurable. Then, for any s ∈ H0(X, L), the function

(ω ∈ Ω \Ω0) 7−→ ‖s‖ϕω

is measurable, whereΩ0 denotes the set ofω ∈ Ω such that |·|ω is the trivial absolute
value, and we consider the restriction of the σ-algebra A on Ω \Ω0.

Proof As X is projective over K , considering the coefficients of defining homoge-
neous polynomials of X , we can find a subfield K0 of K which is finitely generated
over the prime field of K (and hence K0 is countable) and a projective scheme X0
over Spec K0 such that X � X0 ×SpecK0 Spec K . Let P be the set of closed points
P in X whose canonical image in X0 is a closed point. By Lemma 6.1.19, P is a
Zariski dense and countable subset of X .

By the assumption of the proposition, for any closed point P of X , the function

(x ∈ Ωκ(P)) 7−→ |s |ϕω (Px), (ω = πκ(P)/K (x))

is Aκ(P)-measurable. By Proposition 3.6.2, we obtain that the function

(ω ∈ Ω) 7−→ max
x∈π−1

κ(P)/K
({ω })

|s |ϕω (Px)

is A-measurable. Therefore, the function

(ω ∈ Ω) 7−→ sup
P∈P

max
x∈π−1

κ(P)/K
({ω })

|s |ϕω (x) (6.4)

is A-measurable since P is countable.
To obtain the conclusion of the proposition, it remains to show that the function

coincides with ω 7→ ‖s‖ϕω on Ω \ Ω0. For this purpose it suffices to verify that, for
any ω ∈ Ω \Ω0, the set

Fω =
{
Px : P ∈ P and x ∈ π−1

κ(P)/K ({ω})
}

is dense in Xan
ω , where Xω := X ×SpecK Spec Kω . Let jω : Xan

ω → Xω be the
specification map. By Lemma 6.1.19, jω(Fω) is Zariski dense in Xω and hence Fω
is dense in Xan

ω with respect to the Berkovich topology (see [9, Corollary 3.4.5]).
The proposition is thus proved. �

We assume that K is equipped with the trivial absolute value |·|0. Let F be a
finitely generated field over K such that the transcendence degree of F over K is
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one. Let CF be a regular projective curve over K such that the function field of CF

is F, that is, CF is the unique regular model of F over K . It is well-known that, for
any absolute value |·| of F over K (i.e. the restriction of |·| to K is trivial), there are
a closed point ξ of CF and q ∈ R>0 such that |ϕ| = exp(−q ordξ (ϕ)) for all ϕ ∈ F×

(see [85, §I.6] and [117, Proposition II.(3.3)]). Note that in the case where q = 0, the
absolute value is trivial. We say that q is the exponent of |·|. The absolute value given
by exp(−q ordξ (·)) is denoted by |·|(ξ,q). Let X be a projective scheme over Spec K .
The Berkovich space associated with X is denote by Xan (see Definition 2.1.2). Let
j : Xan → X be the specification map. Let us consider the following subsets Xan

0 ,
Xan

1,Q and Xan
61,Q in Xan:



Xan
0 := {x ∈ Xan : j(x) is closed},

Xan
1,Q :=

x ∈ Xan

�������
the Zariski closure of { j(x)} has dimension one
and the exponent of the corresponding absolute value
is rational

 ,
Xan
61,Q := Xan

0 ∪ Xan
1,Q.

Lemma 6.1.21 Xan
61,Q is dense in Xan with respect to the Berkovich topology.

Proof To prove the lemma, we need to show that, for any regular function f over
an affine open subset U = Spec A of X and for any point x ∈ Uan, the value | f |(x)
belongs to the closure T of the set {| f |(z) : z ∈ Xan

61,Q ∩ Uan} in R. First let us see
the following claim:

Claim 6.1.22 (a) If f is not a nilpotent element, then 1 ∈ T .
(b) If f has a zero point in U, then 0 ∈ T . �

Proof (a) As f is not a nilpotent element, there is a closed point z of U such that
f (z) , 0, so that 1 = | f |(z) ∈ T .

(b) In this case one can find a closed point z′ with f (z′) = 0. Therefore, 0 =
| f |(z′) ∈ T . �

Let us go back to the proof of the lemma. Let X ′ = Spec A′ be the Zariki closure of
{ j(x)} in U, where A′ is the quotient domain of A by the prime ideal corresponding
to j(x). Let |·|x be the absolute value on the field of fractions of A′ corresponding
to x. If dim X ′ = 0, then j(x) is closed, so that the assertion is obvious. Moreover,
if | f ′ |x is either 0 or 1, then the assertion is also obvious by the above claim. In
particular, if f ′ = f |X′ is algebraic over K , then | f |(x) = | f ′ |x is either 0 or 1,
and hence the assertion is true. Therefore we may assume that dim(X ′) > 1, f ′ is
transcendental over K and | f ′ |x ∈ R>0 \ {0,1}.

Consider the ring A′ ⊗K[ f ′] K( f ′), where K( f ′) is the fraction field of K[ f ′].
This is a localisation of the ring A′ with respect to the multiplicatively closed subset
K[ f ′] \ {0}. We pick a closed point ζ ′ ∈ Spec(A′ ⊗K[ f ′] K( f ′)) and let ζ be the
canonical image of ζ ′ in U. Then the point ζ ∈ U has dimension 1 and the canonical
image f ′′ of f ′ in the residue field κ(ζ) is transcendental over K because f ′ is
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an element of the constant field K( f ′) of the variety Spec(A′ ⊗K[ f ′] K( f ′)). In
particular, the natural homomorphism K[ f ′] → K[ f ′′] is an isomorphism, which
yields an isomorphism K( f ′)

∼
−→ K( f ′′). Let |·|′x be the restriction of |·|x to K( f ′),

and |·|′′x be the absolute value of K( f ′′) such that the above isomorphism gives rise
to an isometry

(K( f ′), |·|′x)
∼

−→ (K( f ′′), |·|′′x ).

Then | f ′′ |′′x = | f ′ |′x = | f |(x). Let |·|ζ be an extension of |·|′′x to the residue field κ(ζ)
and Cζ be a regular and projective model of κ(ζ) over K . Then there are a closed
point ξ of Cζ and q ∈ R>0 such that |·|ζ = |·|(ξ,q). Thus the assertion follows if we
consider a sequence {qn}∞n=1 of rational numbers such that limn→∞ qn = q. �

Remark 6.1.23 In the case where the absolute value of K is non-trivial, Xan
0 is dense

in Xan (cf. Lemma 6.1.19 and [9, Corollary 3.4.5]). However we need one more
layer Xan

1,Q if the absolute value of K is trivial. Moreover, if the dimension of every
irreducible component of X is greater than or equal to one, then Xan

1,Q is dense in
Xan with respect to the Berkovich topology. Indeed, it is sufficient to show that Xan

0
is contained in the closure of Xan

1,Q. Let x ∈ Xan
0 and choose a subvariety C ′ of X

such that dim C ′ = 1 and j(x) ∈ C ′. Let µ : C → C ′ be the normalisation of C ′ and
ξ ∈ C with µ(ξ) = j(x). Note that lim q→∞

q∈Q>0
|·|(ξ,q) gives rise to the trivial valuation

of the residue field κ(ξ), which means that x belongs to the closure of Xan
1,Q.

Remark 6.1.24 If K is countable, then Xan
61,Q is also countable. In fact, the set of all

closed points of a projective scheme over K is countable. Therefore, Xan
0 is countable.

Moreover, if we fix an increasing sequence

K1 ⊆ K2 ⊆ . . . ⊆ Kn ⊆ Kn+1 ⊆ . . .

of finite extensions of the field K(T) of rational functions such that
⋃

n∈N, n>1 Kn is
the algebraic closure of K(T), then any point z ∈ Xan

1 is represented by a point of X
valued in certain Kn equipped with an absolute value over K of rational exponent.
Suppose that Kn identifies with the rational function field of the projective curve Cn

over K , there are only countably many such absolute values since K is assumed to
be countable. Hence Xan

1,Q is also countable.

Remark 6.1.25 We assume that K is uncountable and the absolute value of K is
trivial. In this case, we can not expect a dense countable subset of Xan. Indeed, let S
be a countable subset of P1,an

K . Let r : P1,an
K → P1

K be the specification map. As r(S)
is countable and K is uncountable, there is a closed point ξ ∈ P1

K such that ξ < r(S).
We set

I := {exp(−q ordξ (·)) : q ∈ ]0,∞[}.

Then I is an open subset of P1,an
K and r(I) = {ξ}, so that I ∩ S = ∅, which shows that

S is not dense in P1,an
K .

Let S = (K, (Ω,A, ν), φ) be an adelic curve. Denote by Ω0 the set of ω ∈ Ω

such that the absolute value |·|ω on K is trivial. Let A0 be the restriction of the
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σ-algebra to Ω0. Let X be a projective scheme over Spec K . We equip K with the
trivial absolute value and denote by Xan be the Berkovich space associated with X
(see Definition 2.1.2). Suppose given an invertible OX -module L equipped with a
metric family ϕ = {ϕω}ω∈Ω. For any point x ∈ Xan, the metric ϕ induces, for any
ω ∈ Ω, a norm |·|ϕω (x) on the one-dimensional vector space L ⊗OX

κ̂(x).

Proposition 6.1.26 Let S = (K, (Ω,A, ν), φ) be an adelic curve. We assume that,
either the restriction of A to Ω0 is discrete, or the field K is countable. Let X
be a projective scheme over Spec K , L be an invertible OX -module and ϕ be a
metric family on L. Suppose that, for any x ∈ Xan

61,Q and any non-zero element `
in L ⊗OX

κ̂(x), the function (ω ∈ Ω0) 7→ |` |ϕω (x) is A0-measurable. Then for any
s ∈ H0(X, L), the function

(ω ∈ Ω0) 7−→ ‖s‖ϕω

is measurable on (Ω0,A0).

Proof It suffices to treat the case where K is countable. By Lemma 6.1.21, we can
write ‖s‖ϕω as

‖s‖ϕω = sup
z∈Xan

61,Q

|s |ϕω (z).

By the assumption of the proposition, each function (ω ∈ Ω0) 7→ |s |ϕω (z) is A0-
measurable. Since Xan

61,Q is a countable set (see Remark 6.1.24), we deduce that
the function (ω ∈ Ω0) 7→ ‖s‖ϕω is also A0-measurable. The proposition is thus
proved. �

6.1.4 Measurable metric families

Definition 6.1.27 Let S = (K, (Ω,A, ν), φ) be an adelic curve, X be a projective
scheme over Spec K and L be an invertible OX -module. We say that a metric family
ϕ = {ϕω}ω∈Ω on L is measurable if the following conditions are satisfied:

(a) for any closed point P in X , the norm family P∗(ϕ) on P∗(L) is measurable,
(b) for any point x ∈ Xan

61,Q (where we consider the trivial absolute value on K in the
construction of the Berkovich space Xan) and any element ` in L ⊗OX

κ̂(x), the
function (ω ∈ Ω0) 7→ |` |ϕω (x) is A0-measurable, where Ω0 denotes the set of
ω ∈ Ω such that the absolute value |·|ω on K is trivial, and A0 is the restriction
of the σ-algebra to Ω0.

Proposition 6.1.28 Let S = (K, (Ω,A, ν), φ) be an adelic curve and X be a projective
scheme over Spec K .

(1) Let L be an invertible OX -module equipped with a measurable metric family ϕ,
then the dual metric family −ϕ on L∨ is measurable.

(2) Let L1 and L2 be two invertible OX -modules. If ϕ1 and ϕ2 are measurable metric
families on L1 and L2 respectively, then the metric family ϕ1 + ϕ2 on L1 ⊗ L2 is
measurable.
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(3) Let L be an invertible OX -module equipped with a metric family ϕ. Suppose that
there exists an integer n > 1 such that nϕ is measurable, then the metric family
ϕ is also measurable.

(4) Let L be an invertible OX -module equipped with a measurable metric family
ϕ, and f : Y → X be a projective morphism of K-schemes. Then f ∗(ϕ) is
measurable.

Proof (1) Let P be a closed point of X . One has P∗(−ϕ) = P∗(ϕ)∨. Since ϕ is
measurable, the norm family P∗(ϕ) is measurable. By Proposition 4.1.22 (2), we
obtain that P∗(−ϕ) is also measurable.

Let x be a point of Xan
61,Q, ` be a non-zero element of L ⊗OX

κ̂(x) and `∨ be the
dual element of ` in L∨ ⊗OX

κ̂(x). Then for any ω ∈ Ω0 one has

|` |ϕω (x) · |`
∨ |−ϕω (x) = 1.

Since the function (ω ∈ Ω0) 7→ |` |ϕω (x) is A0-measurable, also is the function
(ω ∈ Ω0) 7→ |`∨ |−ϕω (x). Therefore the metric family −ϕ is measurable.

(2) Let P be a closed point of X . One has P∗(ϕ1+ϕ2) = P∗(ϕ1)⊗P∗(ϕ2). Since ϕ1
and ϕ2 are both measurable, the norm families P∗(ϕ1) and P∗(ϕ2) are measurable. By
Proposition 4.1.22 (3), the tensor norm family P∗(ϕ1) ⊗ P∗(ϕ2) is also measurable.

Let x be a point of Xan
61,Q, `1 and `2 be non-zero elements of L1 ⊗OX

κ̂(x) and
L2 ⊗OX

κ̂(x), respectively. For any ω ∈ Ω0 one has

|`1 |ϕ1,ω (x) · |`2 |ϕ2,ω (x) = |`1 ⊗ `2 |(ϕ1+ϕ2)ω (x).

Since the metric families ϕ1 and ϕ2 are measurable, the functions (ω ∈ Ω0) 7→

|`1 |ϕ1,ω and (ω ∈ Ω0) 7→ |`2 |ϕ2,ω are both A0-measurable. Hence the function
(ω ∈ Ω0) 7→ |`1 ⊗ `2 |(ϕ1+ϕ2)ω (x) is A0-measurable.

(3) Let P be a closed point of X . One has P∗(nϕ) = P∗(ϕ)⊗n. Since nϕ is
measurable, the norm family P∗(nϕ) is measurable. By Proposition 4.1.22 (4), we
obtain that the norm family P∗(ϕ) is also measurable.

Let x be a point of Xan
61,Q and ` be a non-zero element of L ⊗OX

κ̂(x). For any ω ∈

Ω0 one has |`⊗n |nϕω (x) = |` |ϕω (x)
n and hence |` |ϕω (x) = |` |nϕω (x)

1/n. Since the
metric family nϕ is measurable, we obtain that the function (ω ∈ Ω0) 7→ |`⊗n |nϕω (x)
is A0-measurable. Hence the function (ω ∈ Ω0) 7→ |` |ϕω (x) is also A0-measurable.
Therefore the metric family ϕ is measurable.

(4) This is obvious by the definition of the measurability of ϕ. �

The following proposition shows that the measurability of metric family is a
property stable by pointwise limit.

Proposition 6.1.29 Let S = (K, (Ω,A, ν), φ) be an adelic curve, X be a projective
scheme over Spec K and L be an invertible OX -module. Let ϕ and {ϕn}n∈N be metric
families on L such that, for any ω ∈ Ω and any x ∈ Xan

ω (where Xan
ω is the Berkovich

space associated with Xω := X ×SpecK Spec Kω), one has

lim
n→+∞

d(|·|ϕn ,ω (x), |·|ϕω (x)) = 0.
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Assume that the metric families ϕn, n ∈ N, are measurable. Then the limite metric
family ϕ is also measurable.

Proof Let P be a closed point of X and s be a non-zero element in P∗(L). By the
assumption of the proposition, for any ω′ ∈ ΩK(P) over ω ∈ Ω, the norm ‖·‖ω′

indexed by ω′ in the norm family P∗(ϕ) is given by |·|ϕω (Pω′), where Pω′ ∈ Xan
ω

consists of the algebraic point of Xω determined by P and |·|ω′ . As well, for any
n ∈ N, the norm ‖·‖n,ω′ indexed by ω′ in P∗(ϕn) is given by |·|ϕn ,ω (Pω′). Therefore,
by the limit assumption of the proposition, the sequence of functions

(ω′ ∈ ΩK(P)) 7−→ ‖s‖n,ω′, n ∈ N

converges pointwisely to (ω′ ∈ ΩK(P)) 7→ ‖s‖ω′ , which implies that the latter
function is AK(P)-measurable by the measurability assumption of the proposition.

Similarly, for any point x ∈ Xan
61,Q (where we consider the trivial absolute value

on K in the construction of Xan), and any element ` ∈ L ⊗OX
κ̂(x), the sequence of

functions
(ω ∈ Ω0) 7−→ |` |ϕn ,ω (x), n ∈ N

converges pointwisely to (ω ∈ Ω0) 7→ |` |ϕω (x). Since each function in the sequence
is A0-measurable, also is the limit function. The proposition is thus proved. �

Proposition 6.1.30 Let S = (K, (Ω,A, ν), φ) be an adelic curve, f : X → Spec K be
a projective K-scheme and L be an invertible OX -module. We assume that, either the
σ-algebra A is discrete, or K admits a countable subfield which is dense in every
Kω , ω ∈ Ω. Let E be a finite-dimensional vector space over K , equipped with a
measurable norm family ξ = {‖·‖ω}ω∈Ω. Suppose given a surjective homomorphism
β : f ∗(E) → L and let ϕ be the quotient metric family on L induced by (E, ξ) and
β. Then the metric family ϕ is measurable.

Proof It suffices to treat the case where K admits a countable subfield which is dense
in all Kω .

By Proposition 4.1.24 (1.b), the double dual norm family ξ∨∨ is measurable. By
Remark 6.1.4, we can replace ξ by ξ∨∨ without changing the corresponding quotient
metric family. Hence we may assume without loss of generality that the norm ‖·‖ω
is ultrametric for any ω ∈ Ω \Ω∞.

Let P be a closed point of X . Then the norm family P∗(ϕ) identifies with the
quotient norm family of ξ ⊗ K(P) induced by the surjective homomorphism

P∗(β) : P∗( f ∗(E)) � E ⊗K K(P) −→ P∗(L).

By Proposition 4.1.24 (2.a) and (1.a), the norm family P∗(ϕ) is measurable.
Assume that Ω0 is not empty. In this case the field K itself is countable. Let x be

a point of Xan
61,Q and ` be a non-zero element of L ⊗OX

κ̂(x). By Proposition 1.3.26,
for any ω ∈ Ω0 one has

|` |ϕω (x) = inf
s∈E , λ∈κ̂(x)×

s(x)=λ`

|λ |−1
x · ‖s‖ω,
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where s(x) denotes the image of s by the quotient map

βx : E ⊗K κ̂(x) −→ L ⊗OX
κ̂(x).

Since the norm family ξ is measurable, the function (ω ∈ Ω0) 7→ ‖s‖ω is A0-
measurable. Moreover, since K is a countable field, the vector space E is a countable
set. Hence we obtain that the function (ω ∈ Ω0) 7→ |` |ϕω (x) is A0-measurable.
Therefore, the metric family ϕ is measurable. �

Definition 6.1.31 Let S = (K, (Ω,A, ν), φ) be an adelic curve, π : X → Spec K be a
projective K-scheme, L be an invertible OX -module and ϕ be a metric family on L.
We denote by π∗(ϕ) the norm family {‖·‖ϕω }ω∈Ω on π∗(L).

The propositions 6.1.20 and 6.1.26 can be resumed as follows.

Theorem 6.1.32 Let S = (K, (Ω,A, ν), φ) be an adelic curve, X be a projective K-
scheme and L be an invertible OX -module. We assume that, either Ω0 ∈ A and the
restriction of A to Ω0 is discrete, or the field K is countable. For any measurable
metric family ϕ on L, the norm family π∗(ϕ) is measurable.

6.2 Adelic line bundle and Adelic divisors

In this section, we fix a proper adelic curve S = (K, (Ω,A, ν), φ).

Definition 6.2.1 Let X be a projective scheme over Spec K . We call adelic line
bundle on X any invertible OX -module L equipped with a metric family ϕ which is
dominated and measurable.

6.2.1 Height function

Let (L, ϕ) be an adelic line bundle on X . For any closed point P of X , the norm
family P∗(ϕ) on P∗(L) is measurable and dominated (see Propositions 6.1.12 (6) and
6.1.18 for the dominancy of P∗(ϕ)). Therefore (P∗(L),P∗(ϕ)) is an adelic line bundle
on S (cf. Proposition 4.1.29). We denote by h(L,ϕ)(P) the Arakelov degree of this
adelic line bundle, called the height of P with respect to the adelic line bundle (L, ϕ).
By abuse of notation, we also denote by h(L,ϕ)(·) the function on the set X(Kac) of
algebraic points of X sending any K-morphism Spec Kac → X to the height of the
image of the K-morphism.

Proposition 6.2.2 Let X be a projective K-scheme, (L1, ϕ1) and (L2, ϕ2) be adelic
line bundles on X .

(1) For any closed point P of X , one has

h(L1⊗L2 ,ϕ1+ϕ2)(P) = h(L1 ,ϕ1)(P) + h(L2 ,ϕ2)(P).
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(2) Assume that L1 and L2 are the same invertible OX -module L. Then, for any
closed point P of X , one has

|h(L,ϕ1)(P) − h(L,ϕ2)(P)| 6 dist(ϕ1, ϕ2). (6.5)

Proof (1) This follows directly from Proposition 6.1.2 and 4.3.6.
(2) Let P be a closed point of X . By definition, for anyω ∈ Ω and any x ∈ MK(P),ω

(see §3.3 for the notation of MK(P),ω) one has dx(P∗(ϕ1),P∗(ϕ2)) 6 dω(ϕ1, ϕ2).
Therefore, by taking the integral with respect to x, we obtain the inequality (6.5). �

The following proposition shows that, if the adelic curve S has the Northcott
property, then the height function associated with an adelic line bundle with ample
underlying invertible sheaf has a finiteness property of Northcott type.

Proposition 6.2.3 Assume that the adelic curve S has the Northcott property (cf.
Definition 3.5.2). Let X be a projective K-scheme and (L, ϕ) be an adelic line bundle
on X such that L is ample. For all positive real numbers δ and C, the set

{P ∈ X(Kac) : h(L,ϕ)(P) 6 C, [K(P) : K] 6 δ} (6.6)

is finite.

Proof By Proposition 6.2.2, for any integer n > 1, one has h(nL,nϕ) = nh(L,ϕ) as
functions on X(Kac). Therefore, without loss of generality we may assume that L is
very ample. Moreover, by Proposition 6.2.2 (2), to prove the proposition it suffices to
check the finiteness of (6.6) for a particular choice of metric family ϕ. Thus we may
assume without loss of generality that there exist a finite dimensional vector space
E over K and a surjective homomorphism β : E ⊗K OK → L inducing a closed
immersion X → P(E), together with a basis e = {ei}ri=0 of E over K , such that ϕ
identifies with the quotient metric family induced by (E, ξe) and β (see Example 4.1.5
for the definition of e). Let P be a closed point of X . Then (P∗(L)⊗K(P)Kac,P∗(ϕ)Kac )

is a quotient adelic line bundle of (EKac, ξe,Kac ) and hence (L∨
Kac,P∗(ϕ)∨Kac ) identifies

with an adelic line subbundle of (E∨
Kac, ξ∨e,Kac ). Suppose that, as a vector subspace of

rank 1 of E∨
Kac , L∨

Kac is generated by the vector a0e∨0 + · · · + are∨r , where

[a0 : · · · : ar ] ∈ Pr (Kac),

then one has

d̂eg(P∗(L),P∗(ϕ)) = d̂eg(LKac,P∗(ϕ)Kac ) = −d̂eg(L∨
Kac,P∗(ϕ)∨Kac )

=

∫
ΩKac

ln
(
max{|a0 |χ, . . . , |ar |χ}

)
νKac (dχ).

Therefore the finiteness of (6.6) follows from Theorem 3.5.3. �
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6.2.2 Essential minimum

In this subsection, we fix an integral projective scheme X over Spec K . For any adelic
line bundle (L, ϕ) on X , we define the essential minimum of (L, ϕ) as

µ̂ess(L, ϕ) := sup
Z(X

inf
P∈(X\Z)(Kac)

h(L,ϕ)(P),

where Z runs over the set of all strict Zariski closed subsets of X , and P runs over
the set of closed points of the open subscheme X \ Z of X . By Proposition 6.2.2 (1),
for any integer n > 1, one has µ̂ess(L⊗n,nϕ) = n µ̂ess(L, ϕ).

Proposition 6.2.4 Let (L1, ϕ1) and (L2, ϕ2) be adelic line bundles on X . Then

µ̂ess(L1 ⊗ L2, ϕ1 + ϕ2) > µ̂ess(L1, ϕ1) + µ̂ess(L2, ϕ2).

Proof Let Z1 and Z2 be strict Zariski closed subsets of X . Then Z = Z1 ∪ Z2 is also
a strict Zariski closed subset of X . If P is an element of (X \ Z)(Kac), one has

h(L1⊗L2 ,ϕ1+ϕ2)(P) = h(L1 ,ϕ1)(P) + h(L2 ,ϕ2)(P)

> inf
Q1∈(X\Z1)(Kac)

h(L1 ,ϕ1)(Q1) + inf
Q2∈(X\Z2)(Kac)

h(L2 ,ϕ2)(Q2).

Taking the infimum with respect to P ∈ (X \ Z)(Kac) and then the supremum with
respect to (Z1, Z2), we obtain that

µ̂ess(L1 ⊗ L2, ϕ1 + ϕ2) > µ̂ess(L1, ϕ1) + µ̂ess(L2, ϕ2).

Proposition 6.2.5 Let (L, ϕ) be an adelic line bundle on X .

(1) The essential minimum of (L, ϕ) identifies with the infimum of the set of real
numbers C such that {P ∈ X(Kac) : h(L,ϕ)(P) 6 C} is Zariski dense in X .

(2) If X ′ is an integral projective K-scheme and f : X ′ → X is a birational
projective morphism, then one has µ̂ess(L, ϕ) = µ̂ess( f ∗(L), f ∗(ϕ)).

Proof (1) Let C be a real number such that the set

MC := {P ∈ X(Kac) : h(L,ϕ)(P) 6 C}

is Zariski dense. Then, for any Zariski closed subset Z of X such that Z ( X , the set
MC is not contained in Z , namely (X \ Z)(Kac) contains at least one element of MC .
Therefore one has

inf
P∈(X\Z)(Kac)

h(L,ϕ)(P) 6 C.

We then obtain that µ̂ess(L, ϕ) is bounded from above by the infimum of the set of
real numbers C such that MC is Zariski dense in X .

Conversely, if C is a real number such that MC is not Zariski dense in X , then
one has
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µ̂ess(L, ϕ) > inf
P∈(X\M

Zar
C )(Kac)

h(L,ϕ)(P) > C.

Since C is arbitrary, we obtain that µ̂ess(L, ϕ) is bounded from below by the infimum
of the set of real numbers C such that MC is Zariski dense in X .

(2) Denote by (L ′, ϕ′) the adelic line bundle ( f ∗(L), f ∗(ϕ)), and by Y the excep-
tional locus of f . Note that the restriction of f to X ′ \ f −1(Y ) is an isomorphism
between X ′ \ f −1(Y ) and X \ Y . Let Z be a Zariski closed subset of X such that
Z ( X . Let Z ′ = f −1(Z). It is a Zariski closed subset of X ′ such that Z ′ ( X ′.
Therefore,

µ̂ess(L ′, ϕ′) > inf
P∈(X′\(Z′∪ f −1(Y)))(Kac)

h(L′,ϕ′)(P) > inf
Q∈(X\Y)

h(L,ϕ)(Q).

Since Y is arbitrary, we obtain that µ̂ess(L ′, ϕ′) > µ̂ess(L, ϕ).
Let C be a real number such that the set MC of points Q ∈ X(Kac)with h(L,ϕ)(Q) 6

C is Zariski dense. Then the set MC ∩ (X \ Y )(Kac) is also Zariski dense in X . This
implies that f −1(MC ∩ (X \ Y )(Kac)) is Zariski dense in X ′. Note that for any
P ∈ f −1(MC ∩ (X \Y )(Kac)) one has h(L′,ϕ′)(P) = h(L,ϕ)( f (P)). Therefore the set of
P ∈ X ′(Kac) with h(L′,ϕ′)(P) 6 C is Zariski dense, which implies that µ̂ess(L ′, ϕ′) 6
C. Since C > µ̂ess(L, ϕ) is arbitrary, we obtain that µ̂ess(L ′, ϕ′) > µ̂ess(L, ϕ). �

Proposition 6.2.6 We assume that, either Ω0 ∈ A and the restriction of A to Ω0
is discrete, or the field K is countable. Let f : X → Spec K be an integral and
geometrically reduced projective K-scheme and (L, ϕ) be an adelic line bundle on
X . If s is a non-zero global section of L, then

µ̂ess(L, ϕ) > d̂eg f∗(ϕ)
(s).

In particular, µ̂ess(L, ϕ) > −∞ once L admits a non-zero global section.

Proof By Theorems 6.1.13 and 6.1.32, the norm family f∗(ϕ) is measurable and
dominated, so that d̂eg f∗(ϕ)

(s) is well defined (see Definition 4.3.1). For any closed
point P outside of the zero locus of s, one has

h(L,ϕ)(P) = −

∫
χ∈ΩKac

ln |s |ϕπKac/K (χ)(σχ(P)) νKac (dχ)

> −

∫
χ∈ΩKac

ln‖s‖ϕπKac/K (χ) νKac (dχ)

= −

∫
ω∈Ω

ln‖s‖ϕω ν(dω) = d̂eg f∗(ϕ)
(s),

where σχ(P) denotes the point of Xan
Kac ,χ corresponding to P and the absolute value

|·|χ. This leads to the inequality µ̂ess(L, ϕ) > d̂eg f∗(ϕ)
(s). �

Proposition 6.2.7 Let (L, ϕ) be an adelic line bundle on X . One has µ̂ess(L, ϕ) < +∞.
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Proof If ϕ and ϕ′ are metric families on L such that (L, ϕ) and (L, ϕ′) are adelic line
bundles on X , then for any P ∈ X(Kac) one has

|h(L,ϕ)(P) − h(L,ϕ′)(P)| 6 dist(ϕ, ϕ′)

(see (6.1) for the definition of dist(ϕ, ϕ′)). Therefore, to show the proposition, it
suffices to prove the assertion for a particular choice of the metric family ϕ. This
observation allows us to change the metric family whenever necessary in the proof.

Let M be a very ample invertible OX -module such that M ⊗ L is also very ample.
Let ϕM be a metric family on M such that (M, ϕM ) forms an adelic line bundle on X .
By Proposition 6.2.6, one has µ̂ess(M, ϕM ) > −∞. Moreover, by Proposition 6.2.4
one has µ̂ess(L ⊗ M, ϕ + ϕM ) > µ̂ess(L, ϕ) + µ̂ess(M, ϕM ). Therefore, by replacing L
by L ⊗ M we may assume without loss of generality that L is a very ample invertible
OX -module.

By Noetherian normalisation we obtain that there exist a positive integer n, an
integral projective K-scheme X ′, a birational projective K-morphism f : X ′ → X ,
together with a generically finite projective K-morphism g : X ′ → PrK (where r
is the Krull dimension of X) such that g∗(O(1)) � f ∗(L⊗n), where O(1) denotes
the universal invertible sheaf on PrK . We can for example construct first a rational
morphism from X to PrK corresponding to an injective finite homogeneous homo-
morphism from the polynomial algebra to the Cox ring of some power of L. This step
is guaranteed by the fact that the Cox ring

⊕
m∈N H0(X, L⊗m) is finitely generated,

by using Noether normalisation, see [56, §13.1]. Then we can take X ′ as the blowing-
up of X along the locus where the rational morphism is not defined. By Proposition
6.2.5 (2), one has nµ̂ess(L, ϕ) = nµ̂ess( f ∗(L), f ∗(ϕ)) = µ̂ess( f ∗(L⊗n),n f ∗(ϕ)). There-
fore we can reduce the problem to the case where there exists a generically finite
projective K-morphism g : X → PrK such that L � g∗(O(1)).

We identify PrK with P(Kr+1) and equip Kr+1 with the norm family ξ associated
with the canonical basis (see Example 4.1.5). Let ϕ0 be the quotient metric family
on O(1) induced by (Kr+1, ξ) and the canonical surjective homomorphism Kr+1 ⊗K

OPrK → O(1). As explained above, we may assume without loss of generality
that ϕ = g∗(ϕ0). In particular, for any closed point P of X , one has h(L,ϕ)(P) =
h(O(1),ϕ0)(g(P)). Moreover, similarly as in the proof of Proposition 6.2.3, for any
element [a0 : . . . : ar ] ∈ PrK (K

ac), one has

h(O(1),ϕ0)([a0 : . . . : ar ]) =
∫
ΩKac

ln
(
max{|a0 |χ, . . . , |ar |χ}

)
νKac (dχ).

In particular, if a0, . . . ,ar are all roots of the unity, then one has

h(O(1),ϕ0)([a0 : . . . : ar ]) = 0.

This implies that the set of closed points in X having non-positive height (with
respect to (L, ϕ)) is Zariski dense. Therefore µ̂ess(L, ϕ) 6 0. The proposition is thus
proved. �
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6.2.3 Adelic divisors

In this subsection, we fix a geometrically integral projective scheme over Spec K .
If D is a Cartier divisor on X , for any ω ∈ Ω, D induces by base change a Cartier
divisor on Xω , which we denote by Dω .

Let D be a Cartier divisor on X . We call Green function family of D any family
g = {gω}ω∈Ω parametrised by Ω such that each gω is a Green function of Dω (cf.
Subsection 2.5.1). Note that each Green function gω determines a continuous metric
on the invertible sheaf OXω (Dω) � OX (D)⊗OX

OXω , which we denote by ϕgω . Thus
the collection {ϕgω }ω∈Ω forms a metric family on OX (D) which we denote by ϕg
and call the metric family associated with g. We say that the Green function family
g is dominated (resp. measurable) if the associated metric family ϕg is dominated
(resp. measurable). In the case where g is dominated and measurable, we say that the
couple (D,g) is an adelic Cartier divisor on X . Note that this condition is equivalent
to the assertion that (OX (D), ϕg) is an adelic line bundle on X . In this case we denote
by h(D,g) the height function h(OX (g),ϕg ) on X(Kac).

Let D and D′ be Cartier divisors on X , g = {gω}ω∈Ω and g′ = {g′ω}ω∈Ω be Green
function families of D and D′, respectively. We denote by g + g′ the Green function
family {gω + g′ω}ω∈Ω of D + D′. Moreover, we denote by −g the Green function
family {−gω}ω∈Ω of −D. Note that, if (D,g) and (D′,g′) are adelic Cartier divisors
then (D+D′,g+ g′) and (−D,−g) are also adelic Cartier divisors. This follows from
Propositions 6.1.12 and 6.1.28. Therefore, the set of adelic Cartier divisors forms an
abelian group, which we denote by D̂iv(X).
Remark 6.2.8 In the case where the Cartier divisor D is trivial, a Green function
family on D can be considered as a family {gω}ω∈Ω of continuous real-valued
functions, where gω is a continuous function on Xan

ω . It is dominated if and only if
the function (ω ∈ Ω) 7→ supx∈Xan

ω
|gω |(x) is ν-dominated. It is measurable if the

following two conditions are satisfied (cf. Definition 6.1.27):
(a) for any closed point P of X , the function (ω ∈ Ω) 7→ gω(P) is A-measurable,
(b) for any point x ∈ Xan

61,Q (where we consider the trivial absolute value on K in
the construction of Xan), the function (ω ∈ Ω0) 7→ gω(x) is A0-measurable,
where Ω0 is the set of ω ∈ Ω such that |·|ω is trivial.

The set of all dominated and measurable Green function families on the trivial
Cartier divisor forms actually a vector space over R, which we denote by Ĉ0(X).
Definition 6.2.9 Let K be either Q or R. We denote by D̂ivK(X) the K-vector space
D̂iv(X) ⊗Z K modulo the vector subspace generated by elements of the form

(0,g1) ⊗ λ1 + · · · + (0,gn) ⊗ λn − (0, λ1g1 + · · · + λngn),

where {gi}
n
i=1 is a finite family of elements of Ĉ0(X), and (λ1, . . . , λn) ∈ K

n. In the
other words, D̂ivK(X) consists of pairs (see §2.5.1 for the notation of C0

gen(X
an
ω ))

(D, {gω}ω∈Ω) ∈ DivK(X) ×
∏
ω∈Ω

C0
gen(X

an
ω )
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such that D = a1D1 + · · · + anDn and gω = a1g1,ω + · · · + angn,ω for some
(D1,g1), . . . , (Dn,gn) ∈ D̂iv(X) and a1, . . . ,an ∈ K. For

λ1, λ2 ∈ K and (D1,g1), (D2,g2) ∈ D̂ivK(X),

λ1(D1,g1)+λ2(D2,g2) is defined as (λ1D1+λ2D2, λ1g1+λ2g2). Note that λ1(D1,g1)+
λ2(D2,g2) ∈ D̂ivK(X). In this sense, D̂ivK(X) forms a vector space over K.

The elements of D̂ivK(X) are called adelic K-Cartier divisors on X . For any
element D written in the form λ1D1 + · · · + λnDn with (D1, . . . ,Dn) ∈ D̂iv(X)

and (λ1, . . . , λn) ∈ K
n, we define a function hD : X(Kac) → R such that, for any

P ∈ X(Kac),

hD(P) :=
n∑
i=1

λihDi
(P).

Note the Proposition 6.2.2 (1) shows that this map is actually well defined.

Remark 6.2.10 Let D be an element of D̂ivK(X), which is written in the form
λ1(D1,g1) + · · · + λn(Dn,gn), where (λ1, . . . , λn) ∈ K

n, and for any i ∈ {1, . . . ,n},
(Di,gi) is an element of D̂iv(X). Then, for any ω ∈ Ω, the element λ1D1,ω + · · · +

λnDn,ω of DivK(X) is equal to Dω , where D = λ1D1 + · · · + λnDn ∈ DivK(X).
Moreover, assume that gi is written in the form {gi,ω}ω∈Ω, where gi,ω is a Green
function of Di,ω . Then, for any ω ∈ Ω, the element λ1g1,ω + · · ·+ λngn,ω is a Green
function of the K-Cartier divisor Dω , which does not depend on the choice of the
decomposition D = λ1(D1,g1) + · · · + λn(Dn,gn). Thus we can write D in the form
(D,g), where D is aK-Cartier divisor of X and g is a family of Green functions of the
form {gω}ω∈Ω, with gω being a Green function of Dω . Note that the measurability
of the Green function families g1, . . . ,gn implies the following statements:

(a) for any closed point P of X outside of the support of D, the function (ω ∈ Ω) 7→

gω(P) is well defined and is A-measurable,
(b) for any point x ∈ Xan

61,Q outside of the analytification of the support of D, the
function (ω ∈ Ω0) 7→ gω(x) is well defined and is A0-measurable.

Moreover, if D belongs to Div(X), then g is a dominated Green function family of
D. This statement results directly from the following proposition.

Example 6.2.11 Let s be a non-zero rational function on X . For any ω ∈ Ω, we
consider s as a non-zero rational function on Xω . Note that − ln |s |ω is a Green
function of the principal Cartier divisor div(s). Note that the Green function family
{− ln |s |ω}ω∈Ω is measurable and dominated since the corresponding metric family
on OX ((s)) � OX is trivial. Thus

(s ∈ K(X)×) 7−→ (̂s) := ((s), {− ln |s |ω}ω∈Ω)

defines a morphism of groups from (K(X)×,×) to D̂iv(X). The adelic Cartier divisors
belonging to the image of this morphism are called principal adelic Cartier divisors.
Moreover, for K ∈ {Q,R} this morphism induces a K-linear map d̂ivK : K(X)× ⊗Z
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K → D̂ivK(X) sending to sλ1
1 · · · sλnn to λ1(̂s1) + · · · + λn (̂sn). The adelic K-Cartier

divisors belonging to the image of this K-linear map are said to be principal.

Let (D,g) be an adelic K-Cartier divisor on S. For s ∈ H0
K(X,D), |s |ω exp(−gω)

extends to a continuous function on Xan
ω by Proposition 2.5.8. We denote by

‖s‖gω := sup
x∈Xan

ω

{(|s |ω exp(−gω)) (x)} .

Proposition 6.2.12 We assume that, either Ω0 ∈ A and the restriction of A to Ω0
is discrete, or the field K is countable. Let (D,g) be an adelic K-Cartier divisor on
X and s ∈ H0

K(X,D) \ {0}. The function on Ω given by

(ω ∈ Ω) 7→ ln ‖s‖gω = sup
x∈Xan

ω

{(−gω + log |s |ω)(x)}

is ν-integrable.

Proof Note that D′ := D + (s) >K 0, g′ω := gω − log |s |ω is a Green function of D′
ω

and |s |gω = |1|g′ω on Xan
ω , so that we may assume that D is K-effective and s = 1.

Let X ′ be the normalisation of X . Since X and X ′ have the same function field, X ′

is also geometrically integral over K . Moreover, let D′ (resp. g′ω) be the pull-back of
D by X ′ → X (resp. X ′

ω → Xω). Then g′ = {g′ω}ω∈Ω is a family of Green functions
of D′ over S. Note that ‖1‖gω = ‖1‖g′ω , so that we may further assume that X is
normal.

First we consider the case K = Q. Then there is a positive integer N such that
ND is a Cartier divisor. Then sN ∈ H0(X,ND) and ω 7→ ln ‖sN ‖Ngω is integrable
on Ω by Theorem 6.1.13 and Theorem 6.1.32. Note that ln ‖sN ‖Ngω = N ln ‖s‖gω ,
so that ω 7→ ln ‖s‖gω is also integrable on Ω.

Next we consider the case K = R. By Proposition 2.4.16, there are effective
Cartier divisors D1, . . . ,Dr and a1, . . . ,ar ∈ R>0 such that D = a1D1 + · · · + arDr .
We choose a family of Green functions gi = {gi,ω}ω∈Ω of Di over S such that (Di,gi)
is an adelic Cartier divisor over S for each i and

(D,g) = (a1D1 + · · · + arDr ,a1g1 + · · · + argr ).

If we set ψi(ω) = ln ‖1‖gi ,ω and g′i,ω := gi,ω + ψi(ω) for i = 1, . . . ,r , then ψi is
integrable on Ω and

‖1‖g′i ,ω = ‖1‖gi ,ω exp(−ψi(ω)) = 1,

so that g′i,ω > 0 for all i and ω. Note that if we set g′ = a1g
′
1 + · · · + ang′n, then

ln ‖1‖g′,ω = ln ‖1‖g,ω − (a1ψ1(ω) + · · · + anψn(ω)).

Therefore, we may assume that gi,ω > 0 for all i and ω.
For each i, we choose a sequence {ai,n}∞n=1 of non-negative rational numbers such

that
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0 6 ai,n − ai 6
ai
n

and ai,n+1 6 ai,n

for all n. We set

(Dn, hn) := (a1,nD1 + · · · + ar ,nDr ,a1,ng1 + · · · + ar ,ngr ).

Then Dn is effective and

−hn,ω 6 −g 6
n

n + 1
(−hn,ω) 6 0 and − hn,ω 6 −hn+1,ω

for all n and ω. If we set

A(ω) = sup
x∈Xan

ω

{−gω(x)} and An(ω) = sup
x∈Xan

ω

{−hn,ω(x)},

then
An(ω) 6 A(ω) 6

n
n + 1

An(ω) 6 0 and An(ω) 6 An+1(ω)

for all n and ω. Thus limn→∞ An(ω) = A(ω) and An(ω) 6 A(ω) 6 0. Note that
ω 7→ An(ω) is integrable for all n. Therefore, by monotone convergence theorem,
A(ω) is integrable. �

Corollary 6.2.13 We keep the hypothesis of Proposition 6.2.12. Let (D,g) be an
adelic K-Cartier divisor on X . Let s ∈ K(X)× ⊗Z K such that D + (s) >K 0. Then
the function

(ω ∈ Ω) 7−→ ln ‖s‖gω = sup
x∈Xan

ω

{(−gω + log |s |ω)(x)}

is ν-integrable.

Proof If we set D′ = (D)+ (s) and g′ω = gω − ln |s |ω , then (D′,g′ = {g′ω}ω∈Ω) is an
adelic K-Cartier divisor on X . Thus the assertion follows from Proposition 6.2.12.�

Corollary 6.2.14 We keep the hypothesis of Proposition 6.2.12. Let (0,g) be an
adelicK-Cartier divisor on X whose underlyingK-Cartier divisor is trivial. Assume
that g is written in the form {gω}ω∈Ω, where gω is considered as a continuous
function on Xan

ω . Then the function

(ω ∈ Ω) 7−→ sup
x∈Xan

ω

|gω(x)|

is ν-integrable.

For any D ∈ D̂ivK(X), we define the essential minimum of D as

µ̂ess(D) := sup
Z(X

inf
P∈(X\Z)(Kac)

hD(P),

where Z runs over the set of all strict Zariski closed subsets of X , and P runs over
the set of closed points of the open subscheme X \ Z of X . It turns out that the



354 6 Adelic line bundles on arithmetic varieties

analogue of Proposition 6.2.4 and Proposition 6.2.5 (1) holds for adelic K-Cartier
divisors (with essentially the same proof). We resume these statements as follows.

Proposition 6.2.15 Let D be an adelic K-Cartier divisor on X . Then µ̂(D) identifies
with the infimum of the set of real numbers C such that {P ∈ X(Kac) : hD(P) 6 C}

is Zariski dense in X . Moreover, if D1 and D2 are adelic K-Cartier divisors on X ,
then µ̂ess(D1 + D2) > µ̂ess(D1) + µ̂ess(D2).

Similarly as in the case of adelic line bundles, the essential minimum of adelic
K-Cartier divisors never takes +∞ as its value.

Proposition 6.2.16 Let D be an adelic K-Cartier divisor on X . One has µ̂ess(D) <
+∞.

Proof Assume that D is written in the form D = λ1D1+· · ·+λnDn, where D1, . . . ,Dn

are very ample Cartier divisors on X and (λ1, . . . , λn) ∈ K
n. By Proposition 6.2.6,

for any i ∈ {1, . . . ,n} one has µ̂ess(Di) > −∞. We choose (λ′1, . . . , λ
′
n) ∈ (K ∩R>0)

n

such that λi + λ′i ∈ Z for any i ∈ {1, . . . ,n}. Let

E :=
n∑
i=1

(λi + λ
′
i )Di .

By Proposition 6.2.7, one has µ̂ess(E) < +∞. Moreover, by Proposition 6.2.15, one
has

µ̂ess(E) > µ̂ess(D) +

n∑
i=1

λ′i µ̂ess(Di).

Since µ̂ess(Di) > −∞ and λ′i > 0 for any i ∈ {1, . . . ,n}, we deduce that µ̂ess(D) <
+∞. �

Definition 6.2.17 Let D = (D,g) be an adelic K-Cartier divisor, where the Green
function family g is written in the form {gω}ω∈Ω. In the case where K = Q or R,
we assume that X is normal so that H0

K(X,D) is a K-vector subspace of K(X). For
ω ∈ Ω, let X ′

ω be the normalization of Xω and D′
ω (resp. g′ω) be the pull-back of

D by X ′
ω → Xω (resp. the pull-back of gω by X ′

ω
an → Xan

ω ). By using the natural
injective homomorphism H0

K(X,D) ⊗K Kω → H0
K(X

′
ω,D

′
ω) and g′ω , one has a norm

‖·‖gω on H0
K(X,D) ⊗K Kω (cf. Definition 2.5.9). The norm family {‖·‖gω }ω∈Ω is

denoted by ξg.

Theorem 6.2.18 We assume that, either the σ-algebra A is discrete, or the field K
admits a countable subfield which is dense in every Kω , ω ∈ Ω. Suppose that X is
normal. Then the couple (H0

K(D), ξg) is a strongly adelic vector bundle on S.

Proof The measurability of ξg is a consequence of Proposition 6.2.12, which implies
the measurability of ξ∨g under the hypothesis of the theorem (see Proposition 4.1.24).
Let us consider the dominancy of ξg. By using [109, Lemma 5.2.3], D is written in
the form
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λ1(D1,g1) + · · · + λn(Dn,gn),

where (Di,gi)’s are elements of D̂iv(X) such that D1, . . . ,Dn are effective, and
(λ1, . . . , λn) ∈ K

n. Let (λ′1, . . . , λ
′
n) be an element of (K∩R>0)

n such that λi+λ′i ∈ Z>0
for any i ∈ {1, . . . ,n}. Let

(D′,g′) := (λ1 + λ
′
1)(D1,g1) + · · · + (λn + λ

′
n)(Dn,gn),

which is viewed as an adelic Cartier divisor on X . Since Di is effective, we obtain
that 1 belongs to H0(Di). Moreover, by Proposition 6.2.12, the function (ω ∈ Ω) 7→

ln‖1‖gi ,ω is ν-integrable.
Let e = {ei}mi=1 be a basis of H0

K(D). We complete it into a basis e′ = {ei}ri=1
of H0

K(D
′). By Theorem 6.1.13, the norm family ξg′ := {‖·‖g′ω }ω∈Ω is strongly

dominated, so that, by Corollary 4.1.10, the local distance function (ω ∈ Ω) 7→

dω(ξg′, ξe′) is ν-dominated. Further, by Proposition 6.2.12, the function (ω ∈ Ω) 7→

ln‖ei ‖gω is ν-integrable for each i.
For ω ∈ Ω and (a1, . . . ,am) ∈ Km

ω , one has

ln‖a1e1 + · · · + amem‖gω 6 max
i∈{1,...,m}

{ln |ai | + ln‖ei ‖gω } + 1lΩ∞
(ω) ln(m)

6 ln ‖a1e1 + · · · + amem‖ξe + max
i∈{1,...,m}

{ln‖ei ‖gω } + 1lΩ∞
(ω) ln(m).

Moreover,

ln‖a1e1 + · · · + amem‖gω > ln‖a1e1 + · · · + amem‖g′ω −

n∑
i=1

λ′i ln‖1‖gi ,ω

> ln‖a1e1 + · · · + amem‖ξe − dω(ξg′, ξe′) −
n∑
i=1

λ′i ln‖1‖gi ,ω ,

and hence one obtains

dω(ξg, ξe) 6 max

{
max

i∈{1,...,m}

{�� ln‖ei ‖gω
��} + 1lΩ∞

(ω) ln(m),

dω(ξg′, ξe′) +
n∑
i=1

λ′i
�� ln‖1‖gi ,ω ��}

Therefore the local distance function (ω ∈ Ω) 7→ dω(ξg, ξe) is ν-dominated, which
implies that the norm family ξg is strongly dominated (cf. Corollary 4.1.10). �
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6.2.4 The canonical compatifications of Cartier divisors with respect to
endomorphisms

In this subsection, we assume that, either the σ-algebra A is discrete, or there exists
a countable subfield K0 of K which is dense in the completion Kω of K with respect
to any ω ∈ Ω.

Let X be a projective and geometrically integral scheme over Spec K and f :
X → X be a surjective endomorphism of X over K . Let D be a Cartier divisor
on X . We assume that there are an integer d and s ∈ K(X)× such that d > 1 and
f ∗(D) = dD + (s). For each ω ∈ Ω, by Proposition 2.5.11, there is a unique Green
function gω of Dω with ( f an

ω )∗(gω) = dgω − log |s |ω on Xω .

Proposition 6.2.19 If we set g = {gω}ω∈Ω, then the pair (D,g) is an adelic Cartier
divisor on X .

Proof Fix a family g0 = {g0,ω}ω∈Ω of Green functions on X such that (D,g0) is an
adelic Cartier divisor on X . For each ω ∈ Ω, there is a unique continuous function
λω on Xω such that

( f an
ω )∗(g0,ω) = dg0,ω − log |s |ω + λω .

If we set 
hn,ω =

n−1∑
i=0

1
di+1 (( f an

ω )i)∗(λω), hn = {hn,ω}ω∈Ω,

hω =
∞∑
i=0

1
di+1 (( f an

ω )i)∗(λω), h = {hω}ω∈Ω,

then g = g0+h (cf. Proposition 2.5.11), so that it is sufficient to show that ϕh is domi-
nated and measurable. By Proposition 6.1.12 and Proposition 6.2.12, one can see that
the function ω 7→ ‖λω ‖sup is ν-integrable on Ω. Moreover, by Proposition 2.5.11,
‖hω ‖sup 6 ‖λω ‖sup/(d − 1), so that ϕh is dominated by Proposition 6.1.12. On the
other hand, by Proposition 6.1.28, ϕhn is measurable, so that ϕh is also measurable
by Proposition 6.1.29. �

Definition 6.2.20 (1) An adelic arithmetic R-Cartier divisor D = (D,g) is called
the canonical compactification of D with respect to f if f ∗(D) = dD + (̂s).
Note that D is uniquely determined by the equation f ∗(D) = dD + (̂s) (cf.
Proposition 2.5.11).

(2) Let D be the canonical compactification of D with respect to f . Then the
associated height function hD is called the canonical height function with respect
to f and it is often denoted by ĥD .

Proposition 6.2.21 ĥD( f (P)) = dĥD(P) for all closed points P of X .

Proof Indeed, by Proposition 6.2.2,
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hD( f (P)) = h f ∗(D)
(P) = h

dD+d̂iv(s)(P) = hdD(P) = dhD(P),

as required. �

Theorem 6.2.22 If D is effective and f ∗(D) = dD, then the canonical compactifica-
tion D of D is also effective.

Proof By Proposition 6.2.12, we can choose a Green function family g0 =
{g0,ω}ω∈Ω of D such that (D,g0) is effective. Let λ = {λω}ω∈Ω be the collection of
continuous functions such that

f ∗(D,g0) = d(D,g0) + (0, λ).

As before, we set 
hn :=

n−1∑
i=0

1
di+1 ( f i)∗(λ) (n > 1)

gn = g0 + hn (n > 1).

By Proposition 2.5.11, for each ω ∈ Ω, {hn,ω}∞n=1 converges uniformly to a contin-
uous function hω , and D = (D,g0 + h), where h = {hω}ω∈Ω. By Proposition 2.5.11
again, one has

f ∗(D,gn−1) = d(D,gn)

for all n ∈ N>1, so that (D,gn) > 0 for all n ∈ N because (D,g0) > 0. Therefore,
D > 0. �

Example 6.2.23 We assume that X is the n-dimensional projective space over K ,
that is, X = PnK = Proj(K[T0,T1, . . . ,Tn]), and that f is a polynomial map, that is,

f
(
PnK \ {T0 = 0}

)
⊆ PnK \ {T0 = 0}.

If we set D = {T0 = 0}, then the canonical compactification D with respect to f is
effective because f ∗(D) = dD.

Definition 6.2.24 We say that an adelic R-Cartier divisor D satisfies the Dirichlet
property if D+ (̂s) is effective for some s ∈ K(X)×⊗ZR. The reason of the name “the
Dirichlet property” comes from the Dirichlet unit theorem (for details, see [110, 46]).

Example 6.2.25 The Dirichlet property is very sensitive on the choice of the dynamic
system. For example, we set K := Q(

√
−1), X := P1

K = Proj(K[T0,T1]) and z :=
T1/T0. Let us consider two endomorphisms f1 and f2 on X given by

f1(T0 : T1) = (2T0T1 : T2
1 − T2

0 ) and f2(T0 : T1) = (2
√
−1T0T1 : T2

1 − T2
0 ),

that is, f1(z) = (1/2)(z − 1/z) and f2(z) = (1/2
√
−1)(z − 1/z). If we set D :=

{T1 −
√
−1T0 = 0}, then f ∗1 (D) = 2D because

(T2
1 − T2

0 ) −
√
−1(2T0T1) = (T1 −

√
−1T0)

2.
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Let g be the canonical Green function of D with respect to f1. Then, by Theo-
rem 6.2.22, D = (D,g) has the Dirichlet property. On the other hand, for an infinite
place σ of K , it is well-known that the Julia set of f2 on Xσ is equal to Xσ itself
(cf. [114, Theorem 4.2.18]). Therefore, by [46, Theorem 4.5], for any ample Cartier
divisor A, the canonical compactification A with respect to f2 does not satisfy the
Dirichlet property.

6.3 Newton-Okounkov bodies and concave transform

6.3.1 Reminder on some facts about convex sets

In this subsection, we recall some basic facts about convex sets in finite-dimensional
vector spaces, which will be used in the subsequening subsections.

Proposition 6.3.1 Let V be a finite-dimensional vector space over R. Suppose that
C1 and C2 are two convex subsets of V which have the same closure in V , then the
interiors C◦

1 and C◦
2 are also the same.

Proof It suffices to prove that, if C is a convex subset of V , then the interior of the
closure C coincides with the interior C◦ of C. Let x be an interior point of C. If
x does not belong to C, by Hahn-Banach theorem (see [130, Theorem 3.4]), there
exists an affine function q : V → R such that q(x) 6 0 and that the restriction of
q to C is non-negative. As the set {y ∈ V : q(y) > 0} is closed, it contains C.
Hence the interior of C is contained in that of {y ∈ V : q(y) > 0}, which is equal
to {y ∈ V : q(y) > 0}. This leads to a contradiction since q(x) 6 0. Therefore we
obtain C

◦
⊆ C and hence C

◦
= C◦. �

Proposition 6.3.2 Let V be a finite-dimensional vector space over R and {Ci}i∈I be
a family of convex subsets of W . Suppose that the family {Ci}i∈I is filtered, namely,
for any couple (i1, i2) of indices in I, there exists j ∈ I such that Ci1 ∪ Ci2 ⊆ Cj . Let
C be the union of Ci , i ∈ I. Then the interior of C identifies with the union of C◦

i ,
i ∈ I.

Proof Since the family {Ci}i∈I is filtered, for any couple of points (x, y) in C, there
exists an index i ∈ I such that {x, y} ⊆ Ci . Therefore C is a convex subset of V .
As a consequence, for any point x of the interior C◦, there exist points x1, . . . , xn in
C such that the point x is contained in the interior of the convex hull of x1, . . . , xn.
Still by the assumption that the family (Ci)i∈I is filtered, there exists j ∈ I such that
{x1, . . . , xn} ⊆ Cj . Hence one has x ∈ C◦

j .
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6.3.2 Graded semigroups

Let V be a finite-dimensional vector space over R. As graded semigroup in V we
refer to a non-empty subset Γ of N>1 ×V which is stable by addition. If Γ is a graded
semigroup in V , for any n ∈ N>1 we denote by Γn the projection of Γ ∩ ({n} ×V) in
V . Let N(Γ) be the set of all n ∈ N>1 such that Γn is non-empty. This is a non-empty
sub-semigroup of N>1. We denote by Z(Γ) the subgroup of Z generated by N(Γ).

Proposition 6.3.3 Let Γ be a graded semigroup in V . Then there exist at most finitely
many positive elements of Z(Γ) \ N(Γ).

Proof The group Z(Γ) is non-zero since Γ is not empty. Hence there exists a positive
integer m such that Z(Γ) = mZ. Assume that m is written in the form

m = a1n1 + · · · + a`n`,

where n1, . . . ,n` are elements ofN(Γ) and a1, . . . ,a` are integers. SinceN(Γ) ⊆ Z(Γ),
there exists a positive integer N such that n1 + · · · + n` = mN . Let

b = N · max
i∈{1,...,` }

|ai |.

We claim that mn ∈ N(Γ) for any n > Nb. In fact, we can write such n in the form
n = cN + r where c ∈ N>b and r ∈ {0, . . . ,N − 1}. Thus

mn = cmN + mr = c(n1 + · · · + n`) + r(a1n1 + · · · + a`n`)

= (c + ra1)n1 + · · · + (c + ra`)n` .

Since c > b and r < N , we obtain that c + rai > 0 for any i ∈ {1, . . . , `}. Hence
mn ∈ N(Γ). �

Definition 6.3.4 Let Γ be a graded semigroup in V . We denote by ∆(Γ) the closure
of the set ⋃

n∈N, n>1
{n−1α : α ∈ Γn} ⊂ V .

Proposition 6.3.5 Let Γ be a graded semigroup in V . The set ∆(Γ) is a closed convex
subset of V .

Proof It suffices to prove the convexity of the set ∆(Γ). Observe that, if n and m are
two positive integers, α and β are elements of Γn and Γm, respectively. We show
that, for any ε ∈ [0,1] ∩ Q, one has εn−1α + (1 − ε)m−1β ∈ ∆(Γ). Let ε = p/q be a
rational number in [0,1], where q ∈ N>1. One has

εn−1α + (1 − ε)m−1β =
p

qn
α +

q − p
qm

β = (qmn)−1(pmα + (q − p)nβ).

Since α ∈ Γn and β ∈ Γm, one has pmα + (q − p)nβ ∈ Γqmn. Therefore
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εn−1α + (1 − ε)m−1β ∈ ∆(Γ).

Let H be the set ⋃
n∈N, n>1

{n−1α : α ∈ Γn}.

Let x and y be two points in ∆(Γ), and ε ∈ [0,1]. By definition, there exist two
sequences {xn}n∈N and {yn}n∈N in H such that

lim
n→+∞

xn = x, lim
n→+∞

yn = y.

Let {εn}n∈N be a sequence in [0,1] ∩ Q which converges to ε . By what we have
shown above, for any n ∈ N one has εnxn + (1 − εn)yn ∈ H. Moreover, one has

lim
n→+∞

εnxn + (1 − εn)yn = ε x + (1 − ε)y.

Therefore ε x + (1 − ε)y ∈ ∆(Γ). �

Let Γ be a graded semigroup in V . We denote by ΓR the R-vector subspace of
R × V generated by Γ. For n ∈ Z, let A(Γ)n be the projection of ΓR ∩ ({n} × V) in
V . Especially, A(Γ)1 is denoted by A(Γ). Note that A(Γ)0 is a vector subspace of V ,
which is a translation of the affine subspace A(Γ). Since A(Γ)n is the image of an
affine subspace of R ×V by a linear map, it is an affine subspace in V . Note that any
element in A(Γ) = A(Γ)1 can be written in the form

λ1γ1 + · · · + λ`γ`,

where for i ∈ {1, . . . , `}, γi ∈ Γni , ni ∈ N, ni > 1, and (λ1, . . . , λ`) is an element of
R` such that λ1n1+ · · ·+λ`n` = 1. We denote by ΓZ the subgroup of R×V generated
by Γ. For any n ∈ Z, n > 1, let ΓZ,n be the image of ΓZ ∩ ({n} × V) in V by the
canonical projection. Note that ΓZ,n is non-empty if and only if n ∈ Z(Γ).

Proposition 6.3.6 Let Γ be a graded semigroup in V . We assume that ΓZ is a discrete
subset of R × V .

(1) The set ΓZ,0 is a lattice in A(Γ)0.
(2) For any n,n′ ∈ Z(Γ) and any γ0 ∈ ΓZ,n, the map from ΓZ,n′ to ΓZ,n+n′ , sending

γ ∈ ΓZ,n′ to γ + γ0, is a bijection.
(3) For any convex and compact subset K of A(Γ) which is contained in the relative

interior of ∆(Γ), one has

K ∩ {n−1γ : γ ∈ Γn} = K ∩ {n−1γ : γ ∈ ΓZ,n} (6.7)

for sufficiently positive n ∈ N(Γ).

Proof (1) Let n be an element in Z(Γ) and γ0 ∈ ΓZ,n. By definition, an element
x ∈ V lies in A(Γ)0 if and only if x+n−1γ0 ∈ A(Γ). In other words, A(Γ)0 is precisely
the vector subspace of V of all vectors γ which can be written in the form
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γ = λ1γ1 + · · · + λ`γ`, (6.8)

where for any i ∈ {1, . . . , `}, γi ∈ Γni with ni ∈ N(Γ), and (λ1, . . . , λ`) is an element
in R` such that λ1n1 + · · · + λ`n` = 0. Note that the set ΓZ,0 is characterized by the
same condition, except that (λ1, . . . , λ`) is required to be in Z` . Therefore ΓZ,0 is a
subset (and hence a subgroup) of A(Γ)0. Moreover, we can also rewrite (6.8) as

γ =
λ1
n
(nγ1 − n1γ0) + · · · +

λ`
n
(nγ` − n`γ0).

Since nγi − niγ0 belongs to ΓZ,0 for i ∈ {1, . . . , `}, we obtain that A(Γ)0 is generated
by ΓZ,0 as a vector space over R. Moreover, since ΓZ is a discrete subspace of R×V ,
the set ΓZ,0 ⊆ V is also discrete. Hence it forms a lattice in A(Γ)0.

(2) This comes from the definition of ΓZ. In particular, the inverse map is given
by (γ′ ∈ ΓZ,n+n′) 7→ γ′ − γ0.

(3) LetΘ be the family of all sub-semigroups of Γwhich are finitely generated. The
family of convex sets {∆(Γ′)}Γ′∈Θ is filtered. Let C be the union of all ∆(Γ′), Γ′ ∈ Θ.
By definition, the closure of C coincides with∆(Γ). Therefore (by Proposition 6.3.1),
the interior of ∆(Γ) relatively to A(Γ) identifies with that of C, which is equal to⋃
Γ′∈Θ ∆(Γ

′)◦, where ∆(Γ′)◦ denotes the relative interior of ∆(Γ′) in A(Γ). Since K is
a compact subset of ∆(Γ)◦ and since the family {∆(Γ′)◦}Γ′∈Θ is filtered, there exists
Γ′ ∈ Θ such that K ⊆ ∆(Γ′)◦. Moreover, since ΓZ is a discrete subgroup of R × V ,
it is actually finitely generated. Hence by possibly enlarging Γ′ we may assume that
Γ′Z = ΓZ. Therefore, without loss of generality, we may assume that the semigroup
Γ is finitely generated.

Let {xi}`i=1 be a system of generators of Γ, where xi = (ni, γi). Then ∆(Γ) is just
the convex hull of n−1

i γi (i ∈ {1, . . . , `}). The set

F = {λ1x1 + · · · + λ` x` | (λ1, . . . , λ`) ∈ [0,1]`}

is a compact subset of R × V . Therefore the intersection of F with ΓZ is finite since
ΓZ is supposed to be discrete. In particular, there exists x0 = (n0, γ0) ∈ Γ such
that x0 + y ∈ Γ for any y ∈ F ∩ ΓZ. Let n be an element of Z(Γ), n > 1, and let
γ ∈ ΓZ,n. If n−1γ belongs to ∆(Γ), then there exists (a1, . . . ,a`) ∈ R`+ such that
a1n1 + · · · + a`n` = n and that γ = a1γ1 + · · · + a`γ` . Let bi = baic and λi = ai − bi
for any i ∈ {1, . . . , `}. We write x = (n, γ) in the form x = x ′ + y with

x ′ = b1x1 + · · · + b` x` ∈ Γ, y = λ1x1 + · · · + λ` x` ∈ F .

Since x ∈ ΓZ, also is y. Hence y ∈ F ∩ ΓZ. Thus x + x0 = x ′ + (y + x0) ∈ Γ. In
particular, one has

γ + γ0 ∈ Γn+n0 .

Now we introduce an arbitrary norm ‖·‖ on V . Since K is a compact subset of the
relative interior of ∆(Γ), there exists ε > 0 such that, for any u ∈ K , the ball

B(u, ε) = {u′ ∈ W : ‖u − u′‖ 6 ε}
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is contained in ∆(Γ). Moreover, the set K is bounded. Therefore, for sufficiently
positive integer n ∈ N(Γ), if β is an element in ΓZ,n ∩ nK , then one has

(n − n0)
−1(β − γ0) ∈ ∆(Γ),

which implies that β ∈ Γn by the above argument. The equality (6.7) is thus proved.�

Definition 6.3.7 Let Γ be a graded semigroup in V such that ΓZ is discrete. Let
A(Γ)0 be the vector subspace of V which is the translation of the affine subspace
A(Γ). We equip A(Γ)0 with the normalised Lebesgue measure such that the mass
of a fundamental domain of the lattice ΓZ,0 in A(Γ)0 is 1. This measure induces by
translation a Borel measure on A(Γ). We denote by ηΓ the restriction of this Borel
measure to the closed convex set∆(Γ), that is, for any function f ∈ Cc(A(Γ)) (namely
f is continuous on A(Γ) and of compact support), one has∫

A(Γ)

f (x) ηΓ(dx) =
∫
∆(Γ)

f (γ) dγ,

where dγ denotes the normalised Lebesgue measure.

The following theorem is the key point of the Newton-Okounkov body approach
to the study of graded linear series [118, 94, 101]. Here we adopte the form presented
in the Bourbaki seminar lecture of Boucksom [25].

Theorem 6.3.8 Let Γ be a graded semigroup in V such that ΓZ is discrete. For any
integer n ∈ N(Γ), we denote by ηΓ,n the Radon measure on A(Γ) such that, for any
function f ∈ Cc(A(Γ)) one has∫

A(Γ)

f (x) ηΓ,n(dx) =
1
nκ

∑
γ∈Γn

f (n−1γ),

where κ is the dimension of the affine space A(Γ). Then the sequence of measures
{ηΓ,n}n∈N(Γ) converges vaguely (see §A.3) to the Radon measure ηΓ.

Proof Recall that the vague convergence in the statement of the theorem signifies
that the sequence {ηΓ,n}n∈N(Γ), viewed as a sequence of positive linear functionals on
Cc(A(Γ)), converges pointwisely to ηΓ. In other words, for any continuous function
f on A(Γ) of compact support, one has

lim
n∈N(Γ), n→+∞

1
nκ

∑
γ∈Γn

f (n−1γ) =

∫
∆(Γ)

f (γ) dγ. (6.9)

Note that the direct image preserves the vague convergence. Therefore, it suffices to
prove that, for any non-negative continuous function f on ∆(Γ) which is of compact
support, the equality (6.9) holds.

For any n ∈ N(Γ) one has

1
nκ

∑
γ∈Γn

f (n−1γ) 6
1
nκ

∑
γ∈ΓZ,n∩n∆(Γ)

f (n−1γ).
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Note that the right hand side of the inequality is the nth Riemann sum of the function
f on the convex set ∆(Γ). Therefore one has

lim
n∈N(Γ), n→+∞

1
nκ

∑
γ∈ΓZ,n∩n∆(Γ)

f (n−1γ) =

∫
∆(Γ)

f (γ) dγ,

which implies

lim sup
n∈N(Γ), n→+∞

1
nκ

∑
γ∈Γn

f (n−1γ) 6

∫
∆(Γ)

f (γ) dγ.

Moreover, if g is a continuous function on ∆(Γ) whose support is contained in ∆(Γ)◦
(the relative interior of ∆(Γ) in A(Γ)) and which is bounded from above by f , by
Proposition 6.3.6 (3), for sufficiently positive n one has∑

γ∈ΓZ,n∩n∆(Γ)

g(n−1γ) =
∑
γ∈Γn

g(n−1γ).

Hence one has

lim inf
n∈N(Γ), n→+∞

1
nκ

∑
γ∈Γn

f (n−1γ) > lim
n∈N(Γ), n→+∞

1
nκ

∑
γ∈Γn

g(n−1γ) =

∫
∆(Γ)◦

g(γ) dγ.

Since the restriction of the function f to ∆(Γ)◦ can be written as the limite of an
increasing sequence of continuous functions with support contained in ∆(Γ)◦, by the
monotone convergence theorem, one has

lim inf
n∈N(Γ), n→+∞

1
nκ

∑
γ∈Γn

f (n−1γ) >

∫
∆(Γ)◦

f (γ) dγ.

Finally, since the border of ∆(Γ) has Lebesgue measure 0, we obtain the desired
result. �

Definition 6.3.9 Let Γ be a graded semigroup in V . The dimension of the affine
space A(Γ) is called the Kodaira dimension of Γ.

Corollary 6.3.10 We keep the notation and the hypotheses of Theorem 6.3.8. For
any convex subset C of ∆(Γ) one has

lim
n∈N(Γ), n→+∞

card(Γn ∩ nC)

nκ
= ηΓ(C), (6.10)

where κ is the Kodaira dimension of Γ.

Proof Let C◦ be the relative interior of C in A(Γ). If C◦ is empty, then one has
ηΓ(C) = 0. Moreover, for n ∈ N>1, one has card(Γn,Z ∩ nC) = o(nκ) since Γn,Z is a
translation of a lattice (see Proposition 6.3.6). Therefore, one has
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lim
n∈N(Γ), n→+∞

card(Γn ∩ nC)

nκ
= 0.

In the following, we assume that C◦ is not empty. Let K be a compact convex
subset of C◦. We can find a function f ∈ Cc(A(Γ)) with 0 6 f 6 1lC , f |K ≡ 1. Then
one has

∀ n ∈ N(Γ),
card(Γn ∩ nC)

nκ
>

∫
A(Γ)

f (x) ηΓ,n(dx),

which leads to (by Theorem 6.3.8)

lim inf
n∈N(Γ), n→+∞

card(Γn ∩ nC)

nκ
>

∫
A(Γ)

f (x) ηΓ(dx) > ηΓ(K).

Since K is arbitrary, we obtain

lim inf
n∈N(Γ), n→+∞

card(Γn ∩ nC)

nκ
> ηΓ(C◦) = ηΓ(C).

In particular, if C is not bounded, then

lim
n∈N(Γ), n→+∞

card(Γn ∩ nC)

nκ
= ηΓ(C) = +∞.

In the following, we assume in addition that the convex set C is bounded. Denote
by C the closure of the convex set C. It is a conex and compact subset of A(Γ). Let
K be a compact subset of A(Γ) such that the relative interior of K contains C. For
any non-negative function g ∈ Cc(A(Γ)) with support contained K and such that
0 6 g 6 1, g |C ≡ 1, one has

∀ n ∈ N(C),
card(Γn ∩ nC)

nκ
6

∫
A(Γ)

g(x) ηΓ,n(dx).

By Theorem 6.3.8, we obtain

lim sup
n∈N(Γ), n→+∞

card(Γn ∩ nC)

nκ
6

∫
A(Γ)

g(x) ηΓ(dx) 6 ηΓ(dx) 6 ηΓ(K).

Since K is arbitrary, we obtain

lim sup
n→+∞

card(Γn ∩ nC)

nκ
6

∫
A(Γ)

g(x) ηΓ(dx) 6 ηΓ(C).
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6.3.3 Concave transform

Let V be a finite-dimensional vector space over R and Γ be a graded semigroup in
V such that ΓZ is discrete. We suppose given a map δ : N>1 → R such that δ(n)/n
tends to 0 when n → +∞.

Definition 6.3.11 Let g : Γ→ R be a function. We say that the function g is strongly
δ-superadditive if for any ` ∈ N>2 and for all elements (n1, γ1), . . . , (n`, γ`) in Γ, one
has

g(n1 + · · · + n`, γ1 + · · · + γ`) >
∑̀
i=1

(g(ni, γi) − δ(ni)). (6.11)

The purpose of this subsection is to prove the following result.

Theorem 6.3.12 Let Γ be a graded semigroup in V . We assume that ΓZ is discrete
and that ∆(Γ) is compact. Suppose given a function g on Γ which is strongly δ-
superadditive for certain function δ : N>1 → R such that

lim
n→+∞

δ(n)
n
= 0.

For any n ∈ N(Γ), let νn be the Borel probability measure on R given by

∀ f ∈ Cc(R),

∫
R

f (t) νn(dt) =
1

card(Γn)

∑
γ∈Γn

f
(

1
ng(n, γ)

)
.

The the sequence of measures {νn}n∈N(Γ) converges vaguely to a Borel measure νΓ
on R. Moreover, νΓ is either the zero measure or a probability measure, and in the
latter case the sequence {νn}n∈N(Γ) actually converges weakly to νΓ (see Theorem
A.3.2) and there exists a concave function GΓ : ∆(Γ)◦ → R such that νΓ identifies
with the direct image of

1
ηΓ(∆(Γ))

ηΓ

by the map GΓ.

Proof We introduce an auxiliary function g̃ on Γ taking values in R ∪ {+∞} as
follows:

∀u ∈ Γ, g̃(u) = lim sup
n→+∞

g(nu)
n

. (6.12)

Note that the sequence defining g̃(u) is bounded from below and hence the sup
limit does not take the value −∞. The proof of the theorem is decomposed into the
following steps.

Step 1: The sup limit in the formula (6.12) is actually a limit. This follows from
the following generalisation of Fekete’s lemma (the case where δ(n) = 0 for all n):
let {an}n>1 be a sequence in R such that, for any ` ∈ N>2 and for all n1, . . . ,n` in
N>1 one has
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an1+· · ·+n` >
∑̀
i=1

(ani − δ(ni)),

then the sequence {an/n}n>1 converges in R∪{+∞}. In fact, if p is an integer, p > 1
and if m ∈ N, r ∈ {1, . . . , p} one has

amp+r > map + ar − mδ(p) − δ(r),

and hence
amp+r

mp + r
>

m
mp + r

ap +
ar

mp + r
−

mδ(p) + δ(r)
mp + r

.

Therefore
lim inf
n→+∞

an
n
>

ap

p
−
δ(p)

p
.

In particular, lim infn→+∞ an/n > a1 − δ(1) > −∞. Moreover, this inequality also
implies that

lim inf
n→+∞

an
n
> lim sup

p→+∞

( ap

p
−
δ(p)

p

)
= lim sup

p→+∞

ap

p
,

which leads to the convergence of the sequence {an/n}n>1.
Step 2: Some properties of the function g̃. Let u1 = (n1, γ1) and u2 = (n2, γ2) be

two elements of Γ. For any n ∈ N>1 one has

g(n(u1 + u2)) > g(nu1) + g(nu2) − δ(nn1) − δ(nn2)

and hence

g(n(u1 + u2))

n
>

g(nu1)

n
+
g(nu2)

n
−
δ(nn1) + δ(nn2)

n
.

By taking the limit when n → +∞, we obtain g̃(u1 + u2) > g̃(u1) + g̃(u2). In other
words, the function g̃ is superadditive.

Let (n, γ) be an element of Γ. Note that for any N ∈ N>1 one has

g(Nn,Nγ)
N

> g(n, γ) − δ(n).

By taking the limit when N → +∞, we obtain

g̃(n, γ) > g(n, γ) − δ(n). (6.13)

Step 3: Construction of the function GΓ. For any t ∈ R, let Γt be the set of all
(n, γ) ∈ Γ such that g̃(n, γ) > nt. It is actually a sub-semigroup of Γ since g̃ is
super-additive. Note that {Γt }t∈R is a decreasing family of sub-semigroups of Γ and
hence {∆(Γt )}t∈R is a decreasing family of closed convex subsets of ∆(Γ). We define
the function GΓ : ∆(Γ) → R ∪ {+∞} as follows:

∀ x ∈ ∆(Γ), GΓ(x) = sup{t ∈ R : x ∈ ∆(Γt )}.
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By definition, if t is a real number, then GΓ(x) > t if and only if x ∈
⋂

s<t ∆(Γ
s). We

claim that the function GΓ is concave. In fact, since the function g̃ is super-additive,
we obtain that, if s and t are two real numbers and if ε ∈ [0,1] ∩ Q, for u ∈ Γs and
v ∈ Γt one has

N(εu + (1 − ε)v) ∈ Γεs+(1−ε )t,

where N is an element in N>1 such that Nε ∈ N. Therefore one has

ε∆(Γs) + (1 − ε)∆(Γt ) ⊆ ∆(Γεs+(1−ε )t ).

In general, if we choose a sequence {εn} of rational numbers such that limn→∞ εn = ε
and εns + (1 − εn)t > εs + (1 − ε)t for all n, then

εn∆(Γ
s) + (1 − εn)∆(Γ

t ) ⊆ ∆(Γεns+(1−εn)t ) ⊆ ∆(Γεs+(1−ε )t ),

and hence ε∆(Γs) + (1 − ε)∆(Γt ) ⊆ ∆(Γεs+(1−ε )t ). Combining with the definition of
the function GΓ, we obtain the concavity of GΓ. In particular, the restriction of the
function GΓ to ∆(Γ)◦ is either finite or identically +∞, and it is a continuous function
on ∆(Γ)◦ when it is finite.

Step 4. Abundance of ΓtZ. Let t be an element of R such that t < supx∈∆(Γ) GΓ(x).
We will prove that ΓtZ = ΓZ (and hence A(Γt ) = A(Γ)). Note that ΓZ is finitely
generated because ΓZ is discrete. Let ui = (ni, γi), i ∈ {1, . . . , `} be a family of
elements in Γ which forms a system of generators in ΓZ. Since t < supx∈∆(Γ) GΓ(x),
there exists ε > 0 such that Γt+ε is not empty. Let u0 = (n0, γ0) be an element in
Γt+ε . By definition, one has g̃(u0) > n0(t + ε). Therefore, for sufficiently positive
integer p, one has

∀ i ∈ {1, . . . , `}, g̃(pu0 + ui) > pg̃(u0) + g̃(ui) > (pn0 + ni)t,

namely pu0 + ui ∈ Γt for any i ∈ {1, . . . , `}, which leads to ΓtZ = ΓZ.
Step 5: Lower bound of the function g. We fix a (closed) fundamental domain

F of the lattice ΓZ,0 (see Proposition 6.3.6 (1)). For n ∈ N(Γ), we call an n-cell in
A(Γ)n any closed convex subset of A(Γ)n of the form γ0 + F, where γ0 is an element
in ΓZ,n. We say that a compact subset K of A(Γ) is n-tileable if it can be written as
a union of n-cells in A(Γ)n. Note that, if K is n-tileable, then, for any integer p > 1,
the set pK is pn-tileable since pF can be written as the union of pκ 0-celles.

Let t be a real number such that t < supx∈∆(Γ) GΓ(x), and ε be a positive real
number. Let m > 1 be the generator of the group Z(Γ). Suppose given a compact
subset K of ∆(Γt )◦. We assume that there exists an integer n ∈ N(Γ) such that nK is
n-tileable.

By Proposition 6.3.6 (3), there exists an integer n0 ∈ N>1 which verifies the
following conditions (in the condition (2) we also use the result of Step 4 to identify
Γmn0 ,Z with Γt

mn0 ,Z
):

(1) mn0K is mn0-tileable;
(2) mnK ∩ Γmn,Z ⊆ Γ

t
mn for any n ∈ N, n > n0;

(3) for any integer q > mn0, δ(q)/q < ε/3.
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For simplifying the notation, in the following we denote byΘ the set mn0K ∩Γmn0 ,Z.
Note that the condition (2) implies that g̃(mn0, γ) > t for any γ ∈ Θ. Therefore by
the definition of the function g̃ and the finiteness of the set Θ, we obtain that there
exists an integer N0 divisible by n0 such that

1
mN0

g(mN0, (N0/n0)γ) > t −
ε

3
(6.14)

for any γ ∈ Θ.
Let N be an integer, N > n0. Letα be an element in mNK∩ΓmN and x = (n0/N)α.

Since mn0K is mn0-tileable, there exists an mn0-cell C such that x belongs to C. We
write C as γ0 + F with γ0 ∈ Γmn0 . Let {e1, . . . , eκ} be the basis of ΓZ defining the
fundamental domain F. Then the point x can be written in a unique way as

x = γ0 +

κ∑
i=1

λiei,

where
∀ i ∈ {1, . . . , κ}, λi ∈ [0,1].

Moreover, since N(x − γ0) = n0α − Nγ0 ∈ Γ0,Z, we obtain that Nλi ∈ Z for any
i ∈ {1, . . . , κ}. Without loss of generality, we may assume that λ1 > . . . > λκ . Then
we can rewrite x as

x =
κ∑
i=0

(λi − λi+1)γi,

where by convention λ0 = 1, λκ+1 = 0, and for i ∈ {1, . . . , κ}, γi = γ0 + e1 + · · ·+ ei .
Note that γ0, . . . γκ are vertices of the mn0-cell C, hence belong to Θ. For any
i ∈ {0, . . . , κ}, let bi be the integral part of

N
n0

(λi − λi+1).

One has

N − (κ + 1)n0 + 1 6 n0

κ∑
i=0

bi 6 N .

Therefore, we can write α as

α =

κ∑
i=0

biγi + β′,

where β ∈ Γmr′,Z ∩ mr ′K , with

r ′ = N − n0

κ∑
i=0

bi ∈ {0, . . . , (κ + 1)n0 − 1}.
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Note that we have assumed that N > n0. Therefore, if r ′ 6 n0 − 1, then there exists
at least an indice bi which is > 0. In this case, we replace β′ by β′ + γi and bi by
bi − 1. Thus we obtain the existence of a decomposition of α into the form

α =

κ∑
i=0

aiγi + β

with ai ∈ N for i ∈ {0, . . . , κ}, and β ∈ Γmr ,Z ∩ mrK with

r ∈ {n0, . . . , (κ + 1)n0 − 1}.

The advantage of the new decomposition is that β actually belongs to Γmr (see the
condition (2) above). Finally, we write each ai in the form ai = piN0/n0 + ri with
pi ∈ N and ri ∈ {0, . . . ,N0/n0 − 1}. Then we can decompose α as

α =

κ∑
i=0

pi(N0/n0)γi + ω,

where

ω = β +

κ∑
i=0

riγi .

The element ω belongs to certain Γms ∩ msK with

s ∈ {n0, . . . , (κ + 1)N0 − 1}.

Hence by (6.11) and (6.14) one obtains

g(mN, α)
mN

>
1

mN

( κ∑
i=0

pig(mN0, (N0/n0)γi) + g(ms,ω) − δ(mN0)

κ∑
i=0

pi − δ(ms)
)

>
N0P
N

(t − ε/3) +
g(ms,ω)

mN
−

P
mN

δ(mN0) −
δ(ms)

N
,

(6.15)

where
P = p0 + · · · + pκ =

N − s
N0

.

Therefore we obtain

lim inf
N→+∞

inf
α∈mNK∩ΓmN

g(mN, α)
mN

> t −
2ε
3
,

where we have used the condition (3) above to obtain

Pδ(mN0)

mN
=

N − s
N

·
δ(mN0)

mN0
6

N − s
N

·
ε

3
.
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Therefore, there exists an integer N ′ depending on t, ε and K such that g(mN, α) >
mN(t − ε) for any N > N ′ and any α ∈ ΓmN ∩ mNK .

Step 6: Convergence of measures. We now proceed with the proof of the con-
vergence of the measures. We first consider the case where GΓ is identically +∞
on the interior of ∆(Γ). Let f be a non-negative continuous function with compact
support on R and t0 ∈ R be a real number which is larger than the supremum of the
support of the function f . Let K be a compact subset of ∆(Γ)◦. By the results in Step
5, we obtain that, there exists n0 ∈ N such that, for any n ∈ N(Γ), n > n0 and any
α ∈ Γn ∩ nK , one has g(N, α) > nt0. Hence∫

R
f (t) νn(dt) 6

( card(Γn \ nK)

card(Γn)

)
M =

(
1 −

card(Γn ∩ nK)

card(Γn)

)
M,

where M = supt∈R f (t). By Corollary 6.3.10, one has

lim
n∈N(Γ), n→+∞

card(Γn ∩ nK)

card(Γn)
=

ηΓ(K)

ηΓ(∆(Γ))
.

Since K is arbitrary, we obtain

lim
n∈N(Γ), n→+∞

∫
R

f (t) νn(dt) = 0.

In the following, we assume that the function GΓ is finite. In this case, the direct
image νΓ of ηΓ(∆(Γ))−1ηΓ by GΓ is a Borel probability measure on R. We denote by
F its probability distribution function, namely

∀ t ∈ R, F(t) = νΓ(]−∞, t]) = 1 −
ηΓ(∆(Γ

t ))

ηΓ(∆(Γ))
.

By Corollary 6.3.10, one has

F(t) = 1 − lim
n∈N(Γ), n→+∞

card(Γn ∩ n∆(Γt ))
card(Γn)

. (6.16)

The function F is continuous on R, except possibly at the point supx∈∆(Γ) GΓ(x) (the
discontinuity of the function F happens precisely when the function GΓ is constant
on ∆(Γ)◦). For any n ∈ N(Γ), let Fn be the probability distribution function of νn.

If (n, γ) is an element of Γ, then one has

G(n−1γ) >
g̃(n, γ)

n
>

g(n, γ)
n

−
δ(n)

n
,

where the second inequality comes from (6.13). Therefore we obtain

∀ t ∈ R, {(n, γ) ∈ Γ : G(n−1γ) > t − δ(n)/n} ⊇ {(n, γ) ∈ Γ : g(n, γ)/n > t},

which implies (by (6.16))
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∀ ε > 0, 1 − lim inf
n∈N(Γ), n→+∞

Fn(t) 6 1 − F(t − ε). (6.17)

Conversely, for any t ∈ R, any ε > 0 and any compact subset K of ∆(Γt+ε )◦ (the
relative interior of ∆(Γt+ε ) with respect to A(Γ)), by the result obtained in Step 5,
we obtain that, there exists N0 ∈ N such that, for any n ∈ N(Γ), n > N0, one has

∀ γ ∈ Γn ∩ nK, g(n, γ) > nt.

Therefore, we get

∀ ε > 0, 1 − lim sup
n∈N(Γ), n→+∞

Fn(t) > 1 − F(t + ε). (6.18)

The estimates (6.17) and (6.18) lead to the convergence of {Fn(t)}n∈N to F(t) if t ∈ R
is a point of continuity of the function F, which implies the weak convergence of the
sequence {νn}n∈N(Γ) to νΓ (see [121, §I.4] for more details about weak convergence
of Borel probability measures on R). �

Definition 6.3.13 Let Γ be a graded semigroup in V such that ΓZ is discrete, and
g : Γ → R and δ : N>1 → R be functions. We say that the function g is δ-
superadditive if for all elements (n1, γ1) and (n2, γ2) in Γ, one has

g(n1 + n2, γ1 + γ2) > g(n1, γ1) + g(n2, γ2) − δ(n1) − δ(n2). (6.19)

Lemma 6.3.14 Let δ : N>1 → R>0 be an increasing function such that∑
a∈N

δ(2a)
2a

< +∞.

Then one has
lim

n→+∞

δ(n)
n
= 0 (6.20)

and

lim
a→+∞

1
2a

a∑
i=0

δ(2i) = 0. (6.21)

Proof For n ∈ N>1, let a(n) = blog2 nc. One has 2a(n) 6 n < 2a(n)+1. Hence

δ(n)
n
6
δ(2a(n)+1)

2a(n)
.

By the hypothesis of the lemma, one has

lim
n→+∞

δ(2a(n)+1)

2a(n)+1 = 0,

which implies (6.20).
For any a ∈ N, let
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Sa :=
∑

i∈N, i>a

δ(2i)
2i

.

By Abel’s summation formula, one has

a∑
i=0

δ(2i) =
a∑
i=0

(Si − Si+1)2i = S0 − Sa+12a +
a∑
i=1

Si2i−1.

As the sequence {Sa}a∈N converges to 0, one has

lim
a→+∞

1
2a

a∑
i=1

Si2i−1 = 0,

which implies the relation (6.21). �

Proposition 6.3.15 Let δ : N>1 → R>0 be an increasing function such that∑
a∈N>1

δ(2a)
2a

< +∞. (6.22)

Let {bn}n∈N be a sequence of real numbers. We assume that there exists an integer
n0 > 0 such that, for any couple (n,m) of integers which are > n0, one has

bn+m > bn + bm − δ(n) − δ(m). (6.23)

Then the sequence {bn/n}n∈N>1 converges in R ∪ {+∞}.

Proof We first treat the case where n0 = 1. For any n ∈ N>1 one has

b2n > 2bn − 2δ(n),

and hence by induction we obtain that

b2an > 2a
(
bn −

a−1∑
i=0

δ(2in)
2i

)
. (6.24)

In particular, one has
b2a

2a
> b1 −

a−1∑
i=0

δ(2i)
2i

,

which implies that

lim sup
n→+∞

bn
n
> −∞.

For any a ∈ N, let

Sa =
∑

i∈N, i>a

δ(2i)
2i

.



6.3 Newton-Okounkov bodies and concave transform 373

By the hypothesis (6.22), we have

lim
a→+∞

Sa = 0. (6.25)

Let n ∈ N>1 and let a(n) be the unique natural number such that 2a(n) 6 n < 2a(n)+1,
namely a(n) = blog2 nc. Let p be an element in N>1, which is written in 2-adic basis
as

p =
κ∑
i=0

εi2i

with εi ∈ {0,1} for i ∈ {0, . . . , κ} and εκ = 1. For any r ∈ {0, . . . ,n − 1}, by (6.23)
one has

bnp+r > bnp + br − δ(np) − δ(r) > bnp + br − 2δ(np). (6.26)

Moreover, by induction on κ one has

bnp >
κ∑
i=0

εib2in − 2
κ∑
i=1

εiδ(2in)

>
κ∑
i=0

εi2ibn −
κ∑
i=1

εi

(
2i

i−1∑
j=0

δ(2jn)
2j

+ 2δ(2in)
)

> pbn − 2p
κ∑
j=0

δ(2jn)
2j

.

Since n > 2a(n) we deduce that

bnp > pbn − p2β+1Sa(n) > pbn − pnSa(n) (6.27)

Combining (6.26) and (6.27), we obtain

bnp+r
np + r

>
pbn + br
np + r

−
np

np + r
Sa(n) − 2

δ(np)
np + r

.

Taking the infimum limit when p → +∞, by (6.20) we obtain

lim inf
m→+∞

bm
m
>

bn
n

− Sa(n),

which implies, by (6.25), that

lim inf
m→+∞

bm
m
> lim sup

n→+∞

bn
n
.

Therefore the sequence {bn/n}n∈N>1 converges in R ∪ {+∞}.
For the general case, we apply the obtained result to the sequence {bn0k}k∈N>1 and

obtain the convergence of the sequence {bn0k/k}k∈N>1 . Moreover, if ` is an element
in {n0, . . . ,2n0 − 1}, then for any k ∈ N>1 one has
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bn0(k+2) − b2n0−` + δ(n0k + `) + δ(2n0 − `) > bn0k+` > bn0k + b` − δ(n0k) − δ(`).

Dividing this formula by n0k + ` and taking the limit when k → +∞, we obtain

lim
k→+∞

bn0k+`

n0k + `
= lim

k→+∞

bn0k

n0k
.

Since ` is arbitrary, we obtain the statement announced in the proposition. �

Theorem 6.3.16 Let Γ be a graded semigroup in V . We assume that ΓZ is discrete
and that ∆(Γ) is compact. Suppose given a function g on Γ which is δ-superadditive
for certain increasing function δ : N>1 → R such that∑

a∈N

δ(2a)
2a

< +∞. (6.28)

For any n ∈ N(Γ), let νn be the Borel probability measure on R such that∫
R

f (t) νn(dt) =
1

#Γn

∑
γ∈Γn

f (n−1g(n, γ)).

The the sequence of measures {νn}n∈N(Γ) converges vaguely to a Borel measure νΓ
on R. Moreover, νΓ is either the zero measure or a probability measure, and in the
latter case the sequence {νn}n∈N(Γ) actually converges weakly to νΓ and there exists
a concave function GΓ : ∆(Γ)◦ → R, called concave transform of g, such that νΓ
identifies with the direct image of

1
ηΓ(∆(Γ))

ηΓ

by the map GΓ.

Proof The proof is very similar to that of Theorem 6.3.12. We will sketch it in
emphasising the difference. Let u = (`, γ) be an element in Γ, where ` > 1. Since
the function g is δ-superadditive, for any pair (n,m) ∈ N>1 one has

g((n + m)u) > g(nu) + g(mu) − δ(n`) − δ(m`).

Moreover, if we let b be an integer such that ` 6 2b , then, by the increasing property
of the function δ, one has∑

a∈N

δ(2a`)
2a

6 2b
∑
a∈N

δ(2a+b)
2a+b

< +∞.

By Proposition 6.3.15, for any u ∈ Γ, the sequence {g(nu)/n}n∈N>1 converges in
R∪ {+∞}. We denote by g̃(u) the limite of the sequence. Moreover, the convergence
of the series

∑
a∈N δ(2a)/2a implies that
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lim
a→+∞

δ(2a)
2a
= 0.

Still by the hypothesis that the function δ(·) is increasing, we deduce that

lim
n→+∞

δ(n)
n
= 0.

Therefore, by the same argument as in the Step 2 of the proof of Theorem 6.3.12, we
obtain that the function g̃ is superadditive, namely, for any pair u1,u2 of elements in
Γ, one has

g̃(u1 + u2) > g̃(u1) + g̃(u2).

Moreover, for any (n, γ) ∈ Γ and any a ∈ N>1 one has

g(2an,2aγ) > 2ag(n, γ) −
a−1∑
i=0

2a−iδ(2in). (6.29)

Let b(n) = blog2 nc + 1. One has 2b(n)−1 6 n < 2b(n). Let

R(n) = 2b(n)
+∞∑

i=b(n)

δ(2i)
2i

.

Note that one has
lim

n→+∞

R(n)
n
= 0

by the hypothesis (6.28). By the increasing property of the function δ one has

a−1∑
i=0

2a−iδ(2in) 6 2a+b(n)
a−1∑
i=0

δ(2i+b(n))
2i+b(n)

6 2aR(n).

Therefore the inequality (6.29) leads to

g̃(n, γ) > g(n, γ) − R(n).

We then proceed as in the Steps 3-6 of the proof of Theorem 6.3.12, except that
in the counterpart of the minoration (6.15) we need more elaborated estimate as in
(6.27). �

Remark 6.3.17 We keep the notation of the proof of Theorems 6.3.12 and 6.3.16.
By virtue of [26, Lemma 1.6] (see also [43]), we obtain that, for any real number t
such that

t < lim
n∈N(Γ), n→+∞

max
γ∈Γn

g̃(n, γ)
n
= lim

n∈N(Γ), n→+∞
max
γ∈Γn

g(n, γ)
n

,

the set {x ∈ ∆(Γ)◦ : G(x) > t} has a positive measure with respect to ηΓ (and hence
is not empty). In particular, we obtain
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sup
x∈∆(Γ)◦

G(x) = lim
n∈N(Γ), n→+∞

max
γ∈Γn

g(n, γ)
n

(6.30)

6.3.4 Applications to the study of graded algebras

Let d > 1 be an integer. We call monomial order on Zd any total order 6 on Zd such
that 0 6 α for any α ∈ Nd and that α 6 α′ implies α + β 6 α′ + β for all α, α′ and
β in Zd . For example, the lexicographic order on Zd is a monomial order.

Given a monomial order 6 on Zd , we construct a Zd-valuation

v : k[[T1, . . . ,Td]] −→ Z
d ∪ {∞}

as follows. For anyα = (a1, . . . ,ad) ∈ N
d we denote byTα the monomialTa1

1 · · ·Tad

d
.

For any formal series F written as

F(T1, . . . ,Td) = λαTα +
∑
α<β

λβTβ, λα , 0,

we let v(F) := α. If F = 0 is the zero formal series, let v(0) = ∞. It is easy to
check that the map v satisfies the following axioms of valuation : for any (F,G) ∈

k[[T1, . . . ,Td]]
2, one has v(FG) = v(F) + v(G) and v(F +G) > min(v(F), v(G)), and

the equality v(F + G) = min(v(F), v(G)) holds when v(F) , v(G). In particular, if
we denote by R the fraction field of k[[T1, . . . ,Td]], then the map v : k[[T1, . . . ,Td]] →

Zd ∪ {∞} extends to a map v : R → Zd ∪ {∞} such that, for any (F,G) ∈

k[[T1, . . . ,Td]] with G , 0, one has v(F/G) = v(F) − v(G). The valuation map
v : R → Zd ∪ {∞} allows to define a Zd-filtration G of R as follows

∀α ∈ Zd, G>α(R) := { f ∈ R : v( f ) > α}.

Note that for ( f ,g) ∈ R2 one has v( f g) = v( f )+v(g) and v( f +g) > min(v( f ), v(g)).
Therefore, for (α, β) ∈ Zd × Zd one has

G>α(R) · G>β(R) ⊆ G>α+β(R). (6.31)

For any α ∈ Zd , we let

G>α(R) := { f ∈ R : v( f ) > α} and grα(R) := G>α(R)/G>α(R).

The relation (6.31) shows that the k-algebra structure on R induces by passing to
graduation a k-algebra structure on

gr(R) :=
⊕
α∈Z

grα(R)

so that gr(R) is isomorphic to the group algebra k[Zd].
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Let V• =
⊕

n∈N Vn be a graded sub-k-algebra of the polynomial ring R[T] (viewed
as a graded k-algebra with the grading by the degree on T). The filtration G on R
induces an Zd-filtration on each homogeneous component Vn. The direct sum of
subquotients of Vn form an N × Zd-graded sub-k-algebra

gr(V•) =
⊕

(n,α)∈N×Zd

gr(n,α)(V•)

of gr(R)[T] � k[N × Zd]. In particular, gr(V•) is an integral ring, and each homo-
geneous component gr(n,α)(V•) is either zero or a k-vector space of dimension 1. In
particular, the set

Γ(V•) := {(n, α) ∈ N>1 × Z
d : gr(n,α)(V•) , {0}}

is a sub-semigroup of N × Zd , called the Newton-Okounkov semigroup of V . The
algebra gr(V•) is canonically isomorphic to the semigroup k-algebra associated with
Γ(V•). Denote by ∆(V•) the closure of the subset

{n−1α : (n, α) ∈ Γ(V•)}

of Rd , called the Newton-Okounkov body of V•. Let A(V•) be the affine subspace of
Rd the canonical projection of Γ(V•) ∩ ({1} ×Rd) in Rd . By Proposition 6.3.5, ∆(V•)

is a closed convex subset of A(V•). Moreover, the relative interior of ∆(V•) in A(V•) is
not empty. The dimension of the affine space A(V•) is called the Kodaira dimension
of the graded linear series V•.

Proposition 6.3.18 Let V• =
⊕

n∈N Vn be a graded sub-k-algebra of the polynomial
ring R[T]. One has

lim
n∈N(V•), n→+∞

dimk(Vn)

nκ
= vol(∆(V•)),

where N(V•) is the set of n ∈ N such that Vn , {0}, κ is the Kodaira dimension
of V•, and vol(·) is the Lebesgue measure which is normalised with respect to the
semi-group Γ(V•) as in Definition 6.3.7.

Proof It is a direct consequence of Corollary 6.3.10. �

Definition 6.3.19 Let V• be a graded sub-k-algebra of R[T] such that Vn is of finite
dimension over k for any n ∈ N.

(a) We say that V• is of subfinite type if it is contained in a graded sub-k-algebra of
R[T] which is of finite type (over k).

(b) We call R-filtration on V• any collection F• = {Fn}n∈N, where Fn is an R-
filtration on Vn.

(c) Let δ : N>1 → R>0 be a function. We say that an R-filtration F• on V• is
strongly δ-superadditive if for any ` ∈ N>1 and all (n1, . . . ,n`) ∈ N`>1 and
(t1, . . . , t`) ∈ R` , one has
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F t1
n1 (Vn1 ) · · · F

t`
n`
(Vn` ) ⊆ F

t1+· · ·+t`−δ(n1)−···−δ(n` )
n1+· · ·+n` Vn1+· · ·+n` .

We say that theR-filtration F• is δ-superadditive if the above relation holds in the
particular case where ` = 2, namely, for any (n1,n2) ∈ N

2
>1 and any (t1, t2) ∈ R2

F t1
n1 (Vn1 )F

t2
n2 (Vn2 ) ⊆ F

t1+t2−δ(n1)−δ(n2)
n1+n2 Vn1+n2 .

In the following theorem, we fix a graded sub-k-algebra V• of subfinite type
of R[T], which is equipped with an R-filtration F•. We suppose in addition that
N(V•) := {n ∈ N : n > 1, Vn , {0}} is not empty. For each n ∈ N(V•), let Pn be
the Borel probability measure on R such that, for any positive Borel function f on
R, one has ∫

R
f (t)Pn(dt) =

1
dimk(Vn)

dimk (Vn)∑
i=1

f
(

1
n µ̂i(Vn, ‖·‖Fn

)

)
,

where ‖·‖Fn
is the norm on Vn associated with the R-filtration Fn (see Remark

1.1.40).

Theorem 6.3.20 Let δ : N>1 → R>0 be an increasing function. We suppose that, ei-
ther F• is strongly δ-superadditive and limn→+∞ δ(n)/n = 0, or F• is δ-superadditive
and

∑
a∈N δ(2a)/2a < +∞. Then the sequence of measures {Pn}n∈N(V•) converges

vaguely to a limite Borel measure PF• on R, which is the direct image of the uniform
probability measure on ∆(V•)

◦ by a concave function GF• : ∆(V•)
◦ → R ∪ {+∞},

called the concave transform of F•. Moreover, PF• is either the zero measure or a
probability measure, and, in the case where it is a probability measure, {Pn}n∈N(V•)

also converges weakly to PF• .

Proof Let Γ(V•) be the Newton-Okounkov semigroup of V•. Since V• is contained
in an N-graded sub-algebra of finite type of R[T], the group Γ(V•)Z is discrete and
the Newton-Okounkov body ∆(V•) is compact. For any γ = (n, α) ∈ Γ(V•), let ‖·‖γ
be the subquotient norm on grγ(V•) induced by ‖·‖Fn

and let gF• (γ) be the Arakelov
degree of (grγ(V•), ‖·‖γ). Since the R-filtration F• is strongly δ-superadditive (resp.
δ-superadditive), the function gF• on Γ(V•) is strongly δ-superadditive (resp. δ-
superadditive). Moreover, by Proposition 5.1.2 (7), the sequence of successive slopes
of (Vn, ‖·‖Fn

) identifies with the sorted sequence of {gF• (n, α)}α∈Γ(V•)n . Therefore
the Borel probability measure Pn verifies∫

R
f (t)Pn(dt) =

1
dimk(Vn)

∑
α∈Γ(V•)n

f
(

1
ngF• (n, α)

)
.

Therefore the assertion follows from Theorem 6.3.12 (resp. Theorem 6.3.16). �

Remark 6.3.21 We keep the notation and the hypothesis of Theorem 6.3.20.

(1) By (6.30) we obtain that
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sup
x∈∆(V•)

◦

GF• (x) = lim
n∈N(V•), n→+∞

1
n
µ̂1(Vn, ‖·‖Fn

). (6.32)

(2) Let m be an integer, we denote by V (m)
• the graded sub-k-algebra of R[T] such

that V (m)
n = Vnm for any n ∈ N. Then one has

Γ(V (m)
•

) = {(n, α) ∈ N>1 × Z
d : gr(nm,α)(V•) , {0}}.

Therefore one has ∆(V (m)
• ) = m∆(V•). Denote by F

(m)
• the family of filtrations

{Fmn}n∈N on V (m)
• , then one has

∀ x ∈ ∆(V•)
◦, G

F
(m)
•

(mx) = mGF• (x).

In particular, P
F
(m)
•

identifies with the direct image of PF• by the dilatation map
(t ∈ R) 7→ mt.

Remark 6.3.22 Let U•, V• and W• be graded sub-k-algebras of subfinite type of R[T].
Suppose that, for any n ∈ N, one has

Un + Vn := {x + y : x ∈ Un, y ∈ Vn} ⊆ Wn.

Then, for all n ∈ N and (α, β) ∈ Nd such that (n, α) ∈ Γ(U•) and (n, β) ∈ Γ(V•), one
has (n, α + β) ∈ Γ(W•). Therefore, ∆(U•) + ∆(V•) ⊆ ∆(W•).

Assume that the graded sub-k-algebras U•, V• and W• are equipped with R-
filtrations FU

•
, FV

•
and FW

•
respectively. Let δ : N>1 → R>0 be a map. We suppose

that, either FU
•

, FV
•

and FW
•

are strongly δ-superadditive and limn→+∞ δ(n)/n = 0,
or FU

•
, FV

•
and FW

•
are δ-superadditive and

∑
a∈N δ(2a)/2a < +∞. Let ε : N>1 →

R>0 be a map such that limn→+∞ ε(n)/n = 0. Suppose that, for any n ∈ N>1 and any
(t1, t2) ∈ R2, one has

FU ,t1
n (Un) · F

V ,t2
n (Vn) ⊆ F

W ,t1+t2−ε (n)
n (Wn).

Then, for all (n,m) ∈ N2
>1 and (α, β) ∈ Nd such that (n, α) ∈ Γ(U•) and (n, β) ∈ Γ(V•),

one has

gFU
•
(mn,mα) + gFV

•
(mn,mβ) 6 gFW

•
(mn,mα + mβ) + ε(mn).

Dividing the two sides of the inequality by m, by passing to limit when m → +∞,
we obtain that

g̃FU
•
(n, α) + g̃FV

•
(n, β) 6 g̃FW

•
(n, α + β).

Therefore, for (x, y) ∈ ∆(U•) × ∆(V•), one has

GFU
•
(x) + GFV

•
(y) 6 GFW

•
(x + y).
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6.3.5 Applications to the study of the volume function

Let S = (K, (Ω,A, ν), φ) be a proper adelic curve such that, either the σ-algebra A

is discrete, or there exists a countable subfield of K which is dense in all Kω , ω ∈ Ω.

Definition 6.3.23 Let C0 be a non-negative real number. We say that the adelic curve
S satisfies the tensorial minimal slope property of level > C0 if, for any couple (E,F)
of adelic vector bundles on S, the following inequality holds

µ̂min(E ⊗ε,π F) > µ̂min(E) + µ̂min(F) − C0 ln(dimK (E) · dimK (F)). (6.33)

Recall that we have proved in Corollary 5.6.2 that, if the field K is of characteristic
0, then the adelic curve S satisfies the tensorial minimal slope property of level
> 3

2 ν(Ω∞).

We let R = Frac(K[[T1, . . . ,Td]]) be the fraction field of the K-algebra of formal
series of d variables T1, . . . ,Td and we equip Zd with a monomial order 6 and R
with the corresponding Zd-filtration as explained in Subsection 6.3.4.

Definition 6.3.24 We call graded K-algebra of adelic vector bundles with respect
to R any family E • = {(En, ξn)}n∈N of adelic vector bundles on S such that the
following conditions are satisfied:

(a) E• =
⊕

n∈N EnTn forms a graded sub-K-algebra of subfinite type of the poly-
nomial ring R[T];

(b) for any n ∈ N, the norm family ξn is ultrametric on Ω \Ω∞;
(c) assume that ξn is of the form {‖·‖n,ω}ω∈Ω, then, for all ω ∈ Ω, (n1,n2) ∈ N

2
>1,

and (s1, s2) ∈ En1 ,Kω × En2 ,Kω , one has ‖s1 · s2‖n1+n2 ,ω 6 ‖s1‖n1 ,ω · ‖s2‖n2 ,ω .

Proposition 6.3.25 Assume that the adelic curve S satisfies the tensorial min-
imal slope property of level > C, where C is a non-negative constant. Let
E • = {(En, ξn)}n∈N be a graded K-algebra of adelic vector bundles with respect
to R. For any n ∈ N, we equip En with the Harder-Narasimhan R-filtration Fn. Then
the collection F• = {Fn}n∈N forms an R-filtration on E• which is δ-superadditive,
where δ denotes the function N>1 → R>0 sending n ∈ N>1 to C ln(dimK (En)).

Proof Let n1 and n2 be elements of N>1. By the condition (c) in Definition 6.3.24,
for any ω ∈ Ω and s(1)1 ⊗ s(1)2 + · · · + s(N )

1 ⊗ s(N )

2 ∈ En1 ,Kω ⊗Kω En2 ,Kω , one has

‖s(1)1 s(1)2 + · · · + s(N )

1 s(N )

2 ‖n1+n2 ,ω

6

{
maxi∈{1,...,N }‖s(i)1 ‖n1 ,ω · ‖s(i)2 ‖n2 ,ω, ω ∈ Ω \Ω∞,∑N

i=1‖s(i)1 ‖n1 ,ω · ‖s(i)2 ‖n2 ,ω, ω ∈ Ω∞.

Therefore, the canonical Kω-linear map En1 ,Kω ⊗Kω En2 ,Kω → En1+n2 ,Kω is of
operator norm 6 1. Let F1 and F2 be non-zero vector subspace of En1 and En2 ,
respectively, and let G be the image of F1 ⊗K F2 by the canonical K-linear map
En1 ⊗K En2 → En1+n2 . By Proposition 4.3.31 (2), one has
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µ̂min(G) > µ̂min(F1 ⊗ε,π F2)

> µ̂min(F1) + µ̂min(F2) − C(ln(dimK (F1))) − C(ln(dimK (F2)))

> µ̂min(F1) + µ̂min(F2) − C(ln(dimK (En1 ))) − C(ln(dimK (En2 ))),

where the second inequality comes from (7.1). By Proposition 4.3.46, we obtain
that, for any (t1, t2) ∈ R2, one has

F t1
n1 (En1 ) · F

t2
n2 (En2 ) ⊆ F

t1+t2−δ(n1)−δ(n2)
n1+n2 (En1+n2 ).

The proposition is thus proved. �

Corollary 6.3.26 Let E • = {(En, ξn)}n∈N be a graded K-algebra of adelic vector
bundles with respect to R. We assume that N(E•) does not reduce to {0} and we
denote by q ∈ N a generator of the group Z(E•). Suppose in addition that∑

a∈N, 2aq∈N(E•)

ln(dimK (E2aq))

2a
< +∞. (6.34)

For each n ∈ N(V•), let Pn be the Borel probability measure on R such that, for any
positive Borel function f on R, one has∫

R
f (t)Pn(dt) =

1
dimK (En)

dimK (En)∑
i=1

f ( 1
n µ̂i(En)).

Then the sequence of measures {Pn}n∈N(E•) converges vaguely to a limite Borel
measure PE•

, which is the direct image of the uniform distribution on ∆(E•) by a
concave function GE•

: ∆(E •) → R ∪ {+∞}. Moreover, the limite measure is either
zero or a Borel probability measure, and in the latter case the sequence {Pn}n∈N(E•)

also converges weakly to PE•
.

Proof This is a direct consequence of Proposition 6.3.25 and Theorem 6.3.20. �

Remark 6.3.27 We keep the notation and the conditions of Corollary 6.3.26. We
suppose that { 1

n µ̂1(En)}n∈N(V•), n>1 is bounded from above. Then the limit measure
PE•

is a probability measure. The weak convergence of {Pn}n∈N(E•) to PE•
implies

that∫
R

max{t,0} PE•
(dt) = lim

n∈N(E•), n→+∞

1
n dimK (En)

dimK (En)∑
i=1

max{ µ̂i(En),0}

= lim
n∈N(E•), n→+∞

d̂eg+(En)

n dimK (En)
.

(6.35)

If in addition the sequence { 1
n µ̂min(En)}n∈N(V•), n>1 is bounded from below, then one

has
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R

t PE•
(dt) = lim

n∈N(E•), n→+∞

1
n dimK (En)

dimK (En)∑
i=1

µ̂i(En)

= lim
n∈N(E•), n→+∞

µ̂(En)

n
.

(6.36)

Proposition 6.3.28 Let
U• = {(Un, {‖·‖Un ,ω}ω∈Ω)}n∈N,

V • = {(Vn, {‖·‖Vn ,ω}ω∈Ω)}n∈N,

W • = {(Wn, {‖·‖Wn ,ω}ω∈Ω)}n∈N

be graded K-algebras of adelic vector bundles with respect to R. We assume that∑
a∈N, 2aq∈N(W•)

ln(dimK (W2aq))

2a
< +∞, (6.37)

where q ∈ N is a generator of the group Z(W•). Suppose that, for any n ∈ N one has
Un · Vn ⊆ Wn, and

∀ω ∈ Ω, ∀ (s, s′) ∈ Un,Kω × Vn,Kω , ‖ss′‖Wn ,ω 6 ‖s‖Un ,ω · ‖s′‖Vn ,ω . (6.38)

Then, for any (x, y) ∈ ∆(U•) × ∆(V•), one has

GW •
(x + y) > GU•

(x) + GV •
(y). (6.39)

Proof Denote by δ : N>1 → R>0 the function sending n ∈ N>1 to

C ln(dimK (Un)) + C ln(dimK (Vn))

Let n ∈ N, n > 1. Suppose that E is a non-zero vector subspace of Un and F is
a non-zero vector subspace of Vn. Since the adelic curve S satisfies the tensorial
minimal slope superadditivity of level > C, one has

µ̂min(E ⊗ε,π F) > µ̂min(E) + µ̂min(F) − δ(n).

Moreover, by (6.38) the canonical K-linear map E ⊗ F → Wn has height 6 0 if we
consider the adelic vector bundles E ⊗ε,π F and (Wn, {‖·‖Wn ,ω}ω∈Ω. Therefore, if
we denote by FU

n , FV
n and FW

n the Harder-Narasimhan R-filtrations of Un, Vn and
Wn respectively, then, for any (t, t ′) ∈ R2,

FU ,t
n (Un) · F

V ,t′

n (Vn) ⊆ F
W ,t+t′−δ(n)
n .

By Remark 6.3.22, we obtain the inequality (6.39). �

Remark 6.3.29 Let V• be a graded k-algebra. We say that V• is of subfinite type if
it is contained in a graded k-algebra of finite type. It is not true that any integral
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graded k-algebra of subfinite type can be identifies as a graded sub-k-algebra of the
ring of polynomials (of one variable) with coefficients in the fraction field of the
formal series ring (with finitely many variables) over k since the latter condition
implies that V• admits a valuation of one-dimensional leaves and in particular V• is
geometrically integral. We refer to [45, Remark 5.3] for more details. Moreover, the
combination of the methods in [43, §4] and [45, §5] allows to obtain a generalisation
of Corollary 6.3.26 and Proposition 6.3.28 to the case of graded algebras of adelic
vector bundles whose underlying graded k-algebras are integral domains of subfinite
type over k. Note that the R-filtration by slopes of a graded algebra of adelic vector
bundles is not necessarily superadditive and we need an argument similar to the Step
2 in the proof of Theorem 6.3.12 in order to replace the R-filtration by slopes by a
superadditive R-filtration while keeping the asymptotic behaviour of the distribution
of average on the jump points of the R-filtrations. The approach can serve to remove
the hypothesis that the scheme X admits a regular rational points in Theorem 6.4.6
and Theorem 6.4.7.

Definition 6.3.30 Let C1 be a non-negative real number. We say that the adelic curve
S satisfies the strong tensorial minimal slope property of level > C1 if, for any integer
n ∈ N>2 and any family {E i}

n
i=1 of non-zero adelic vector bundles on S, the following

inequality holds

µ̂(E1 ⊗ε,π · · · ⊗ε,π En) >
n∑
i=1

(
µ̂min(E i) − C1 ln(dimK (Ei))

)
.

Note that Corollary 5.6.2 shows that the adelic curve S satisfies the strong ten-
sorial minimal slope property of level > 3

2 ν(Ω∞), provided that the field K is of
characteristic 0.

Remark 6.3.31 Let C be a non-negative real number. We suppose that the adelic
curve S satisfies the strong minimal slope property of level > C. Let E • =

{(En, ξn)}n∈N be a graded K-algebra of adelic vector bundles with respect to R. For
any n ∈ N, we equip En with the Harder-Narasimhan R-filtration Fn. Then the col-
lection F• = {Fn}n∈N forms an R-filtration on E• which is strongly δ-superadditive,
where δ denotes the function N>1 → R>0 sending n ∈ N>1 to C ln(dimK (En)).
Therefore, by Theorem 6.3.20, if the condition

lim
n→+∞

ln(dimK (En))

n
= 0

is satisfied, then the sequence of Borel probability measures {Pn}n∈N(E•), defined by∫
R

f (t)Pn(dt) =
1

dimK (En)

dimK (En)∑
i=1

δ 1
n µ̂i (En)

,

converges vaguely to a Borel measure PE•
, which is either the zero measure or a Borel

probability measure. In the latter case, the sequence {Pn}n∈N(E•) converges weakly
to PE•

. Similarly, the assertion of Proposition 6.3.28 holds under the condition
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lim
n→+∞

ln(dimK (Wn))

n
= 0.

Remark 6.3.32 In the number field setting, Yuan [152, 153] has proposed another
method to associate to each adelic line bundle a convex body which computes
the arithmetic volume of the adelic line bundle. His method relies on multiplicity
estimates of arithmetic global sections with respect to a flag of subvarieties of the
fibre of the arithmetic variety over a finite place, which is similar to [101]. Note
that in the general setting of adelic curves the set of “arithmetic global sections” is
not necessarily finite and the classic formula relating the volume function and the
asymptotic behaviour of “arithmetic global sections” does not hold in general.

6.4 Asymptotic invariants of graded linear series

In this section, we fix an integral projective K-scheme X and denote by π : X →

Spec K the structural morphism. Let d be the Krull dimension of the scheme X .

6.4.1 Asymptotic maximal slope

Let (L, ϕ) be an adelic line bundle on an integral projective K-scheme π : X →

Spec K . For any n ∈ N>1, the metric family nϕ on L⊗n induces a norm family
{‖·‖nϕω }ω∈Ω on the linear series π∗(L⊗n) = H0(X, L⊗n)which we denote by π∗(nϕ).
By Theorems 6.1.13 and 6.1.32, the pair (π∗(L⊗n), π∗(nϕ)) forms an adelic vector
bundle on S, which we denote by π∗(L⊗n,nϕ). Note that π∗(nϕ) is ultrametric
on Ω \ Ω∞. We can then compute diverse arithmetic invariants of these adelic
vector bundles. The asymptotic behaviour of these arithmetic invariants describes
the positivity of the adelic line bundle (L, ϕ).

Let (L, ϕ) be an adelic line bundle on X . We define

ν
asy
1 (L, ϕ) := lim sup

n→+∞

ν1(π∗(L⊗n,nϕ))
n

,

called the asymptotic first minimum of (L, ϕ). Similarly, we define

µ̂
asy
max(L, ϕ) := lim sup

n→+∞

µ̂max(π∗(L⊗n,nϕ))
n

, (6.40)

called the asymptotic maximal slope of (L, ϕ). Note that all adelic vector bundles
π∗(L⊗n,nϕ) are ultrametric on Ω \ Ω∞. Therefore, by Remark 4.3.48 and the fact
that

lim
n→+∞

ln(dimK (H0(X, L⊗n)))

n
= 0,
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we obtain that
µ̂

asy
max(L, ϕ) = lim sup

n→+∞

µ̂1(π∗(L⊗n,nϕ))
n

. (6.41)

Let K be either Z or Q or R. From now on we assume that K = Z or X is normal.
Let (D,g) be an adelic K-Cartier divisor on X . Note that if X is not normal and
K is either Q or R, then H0

K(X,D) is not necessarily a vector space over K (cf.
Example 2.4.15). Similarly we can define νasy

1 (D,g) and µ̂asy
max(D,g) as follows:


ν

asy
1 (D,g) := lim sup

n→+∞

ν1(H0
K(X,nD), ξng)

n
,

µ̂
asy
max(D,g) := lim sup

n→+∞

µ̂max(H0
K(X,nD), ξng)

n
.

In the case where K = Z,

ν
asy
1 (D,g) = νasy

1 (OX (D), ϕg) and µ̂
asy
max(D,g) = µ̂

asy
max(OX (D), ϕg),

where ϕg is the metric family of L defined by g.

Proposition 6.4.1 Let (D,g) be an adelic K-Cartier divisor on S. Then one has
ν

asy
1 (D,g) 6 µ̂asy

max(D,g). The equality holds when S satisfies the Minkowski property
of certain level (see Definition 4.3.73).

Proof By (4.83), for any n ∈ Nn>1 one has

ν1(H0
K(X,nD), ξng) 6 µ̂max(H0

K(X,nD), ξng).

Therefore νasy
1 (D,g) 6 µ̂asy

max(D,g).
If the adelic curve S satisfies the Minkowski property of level > C, where C > 0,

then

ν1(H0
K(X,nD), ξng) > µ̂max(H0

K(X,nD), ξng) − C ln(dimK (H0
K(X,nD))).

Since X is a projective scheme, one has

dimK (H0
K(X,nD)) = O(ndim(X)).

Hence

lim
n→+∞

ln(dimK (H0
K(X,nD)))

n
= 0.

Therefore νasy
1 (D,g) > µ̂asy

max(D,g). �

Let (D,g) be an adelic R-Cartier divisor on X . Let K be either Q or R. We set
Γ×K(D) = {s ∈ K(X)× ⊗Z K : D + (s) >K 0},

ν
asy
1,K(D,g) =

{
sup

{
d̂egξg (s) : s ∈ Γ×K(D)

}
if Γ×K(D) , ∅,

−∞ if Γ×K(D) = ∅,
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where (cf. Corollary 6.2.13)

d̂egξg (s) = −

∫
Ω

ln ‖s‖gω ν(dω).

Note that νasy
1 (D,g) = νasy

1,Q(D,g) 6 ν
asy
1,R(D,g).

Proposition 6.4.2 We assume that X is normal. Let (D,g) and (D′,g′) be adelic
R-Cartier divisors on X . Then one has the following:

(1) νasy
1,K((D,g) + (D

′,g′)) > ν
asy
1,K(D,g) + ν

asy
1,K(D

′,g′).
(2) νasy

1,K(a(D,g)) = aνasy
1,K(D,g) for all a ∈ K>0.

Proof (1) Clearly we may assume that Γ×K(D) , ∅ and Γ×K(D
′) , ∅. If s ∈ Γ×K(D)

and s′ ∈ Γ×K(D
′), then ‖ss′‖g+g′ 6 ‖s‖g‖s′‖g′ , so that

− log ‖s‖g − log ‖s′‖g′ 6 − log ‖ss′‖g+g′ 6 ν
asy
1,K(D + D′,g + g′).

Therefore one has (1).
(2) Clearly we may assume that a > 0 and Γ×K(D) , ∅. Then one has a bijective

correspondence (s ∈ Γ×K(D)) 7→ (sa ∈ Γ×K(aD)). Moreover, d̂egξag
(sa) = ad̂egξg (s)

for s ∈ Γ×K(D). Thus the assertion follows. �

Theorem 6.4.3 We assume that X is normal. Let (D,g) be an adelic R-Cartier
divisor on X . If Γ×

Q
(D) , ∅, then νasy

1,Q(D,g) = ν
asy
1,R(D,g). In particular, if D is big,

then νasy
1 (a(D,g)) = aνasy

1 (D,g) for all a ∈ R>0.

Proof By our assumption, we can find ψ ∈ Γ×
Q
(D). Then the map

αψ : Γ×K(D) → Γ×K(D + (ψ))

given by s 7→ sψ−1 is bijective and, for s ∈ Γ×K(D), ‖s‖g = ‖αψ(s)‖g−log |ψ | , so that

ν
asy
1,K(D,g) = ν

asy
1,K(D + (ψ),g − log |ψ |).

Therefore we may assume that D is effective. Moreover, for an integrable function
ϕ on Ω,

ν
asy
1,K(D,g + ϕ) = ν

asy
1,K(D,g) +

∫
Ω

ϕ ν(dω),

so that we may further assume that∫
Ω

− log ‖1‖gω ν(dω) > 0.

For s′ ∈ Γ×R(D), we choose s1, . . . , sr ∈ K(X)× ⊗Z Q and a1, . . . ,ar ∈ R such
that s′ = sa1

1 · · · sarr and a1, . . . ,ar are linearly independent over Q. We set ‖x‖0 =
|x1 | + · · · + |xr | and sx = sx1

1 · · · sxrr for x = (x1, . . . , xr ) ∈ Rr , so that if we
denote (a1, . . . ,ar ) by α, then s′ = sα. By Proposition 2.4.18, for any a positive



6.4 Asymptotic invariants of graded linear series 387

rational number ε, there is a positive number δ such that if ‖α′ − α‖0 6 δ for
α′ ∈ Rr , then (1 + ε)D + (sα

′

) is effective. We choose a basis {ω1, . . . ,ωr } of Qr

such that ‖ωj − a‖0 6 δ for all j ∈ {1, . . . ,r}, so that (1 + ε)D + (sω j ) > 0 for
all j. Here we set α = λ1ω1 + · · · + λrωr . Further, if we define a norm ‖·‖ω by
‖x1ω1 + · · · + xrωr ‖ω = |x1 | + · · · + |xr | for x1, . . . , xr ∈ R, then there is a positive
constant C such that C‖·‖0 6 ‖·‖ω . Note that for any t > 0, there is α′ ∈ Qr such
that if we set α′ = λ′1ω1 + · · · + λ′rωr , then λ′j > λj (∀ j) and ‖α′ − α‖ω 6 t.
Indeed, for each j, one can find λ′j ∈ Q such that 0 6 λ′j − λj 6 t/r , and hence
‖α′ − α‖ω 6 t. Therefore, we can also choose a sequence {αn}

∞
n=1 of Qr with the

following properties:

(i) αn ∈ α + R>0ω1 + · · · + R>0ωr for all n > 1.
(ii) ‖αn − α‖ω 6 min{ε/((1 + ε)n),Cδ} for all n > 1.

Since ‖αn − α‖0 6 δ by (ii), (1 + ε)D + (sαn ) > 0 for all n > 1. Moreover, if we set
αn − α =

∑r
j=1 λ

(n)
j ωj , then λ(n)j > 0 (∀ j) and

∑r
j=1 λ

(n)
j 6 ε/((1 + ε)n). Therefore,

if we denote ε − (1 + ε)
∑r

j=1 λ
(n)
j by κn, then κn > 0 and, for each ω ∈ Ω,

|sαn |(1+ε)gω = |sα |gω |s
ω1λ

(n)
1 · · · sωrλ

(n)
r |εgω

= |s′ |gω |s
ω1 |

λ
(n)
1

(1+ε)gω
· · · |sωr |

λ
(n)
r

(1+ε)gω
|1|κngω ,

so that ‖sαn ‖(1+ε)gω 6 ‖s′‖gω ‖sω1 ‖
λ
(n)
1

(1+ε)gω
· · · ‖sωr ‖

λ
(n)
r

(1+ε)gω
‖1‖κngω . Therefore, since∫

Ω

− log ‖sαn ‖(1+ε)gω ν(dω) 6 ν
asy
1,Q((1 + ε)(D,g))

and κn
∫
Ω

− log ‖1‖gω ν(dω) > 0, one has

∫
Ω

− log ‖s′‖gω ν(dω) +
r∑
j=1

λ
(n)
j

∫
Ω

− log ‖sω j ‖(1+ε)gω ν(dω)

6 ν
asy
1,Q((1 + ε)(D,g)),

so that taking n → ∞, we obtain∫
Ω

− log ‖s′‖gω ν(dω) 6 ν
asy
1,Q((1 + ε)(D,g)),

and hence, as ε is a rational number, by Proposition 6.4.2, (2), one can see

ν
asy
1,R(D,g) 6 ν

asy
1,Q((1 + ε)(D,g)) = (1 + ε)νasy

1,Q(D,g),

which implies νasy
1,R(D,g) 6 ν

asy
1,Q(D,g), as required. �
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Proposition 6.4.4 Let (D,g) be an adelic K-Cartier divisor on X . We assume that
either K = Z or X is normal. Then one has

µ̂ess(D,g) > µ̂max(H0
K(X,D), ξg).

In particular,
µ̂ess(D,g) > µ̂

asy
max(D,g). (6.42)

Proof The second inequality is a consequence of the first inequality because
µ̂ess(nD,ng) = nµ̂ess(D,g).

Let U be a non-empty Zariski open set of X given by

{x ∈ X : X → Spec K is smooth at x and x < SuppK(D)}.

Note that exp(−gω) is a positive continuous function on Uan
ω for each ω ∈ Ω and

that, for s ∈ H0
K(X,D) and x ∈ U, one has s ∈ OX ,x . Let t be a real number such that

µ̂ess(D,g) < t. Then there is an infinite subset Λ of U(Kac) such that Λ is Zariski
dense in U and h(D,g)(P) 6 t for all P ∈ Λ.

Let F be a non-zero vector subspace of H0
K(X,D). Then there exist P1, . . . ,PdimF ∈

Λ such that the evaluation map

f : F ⊗K Kac −→

dimF⊕
i=1

κ(Pi)

is a bijection. For χ ∈ ΩKan , let Pi,χ be the unique extension of Pi ∈ XKan to (XKan )an
χ .

Let ‖·‖Pi , χ be a norm of κ(Pi)χ given by ‖1‖Pi , χ = exp(−gπ(χ)(µ(Pi,χ))), where π
is the canonical map ΩKan → Ω and µ : (XKan )an

χ → Xan
π(χ)

is also the canonical
morphism as analytic spaces. We set ξi := {‖·‖Pi , χ }χ∈ΩKan . We equip

⊕dimF
i=1 κ(Pi)

with the ψ0-direct sum ξ = {‖·‖χ}χ∈ΩKan of ξ1, . . . , ξdimF , where ψ0 denotes the
function from [0,1] to [0,1] sending x ∈ [0,1] to max(x,1 − x) (see Subsections
1.1.10 and 4.1.1). Note that, if we denote by {ei}dimF

i=1 a basis of
⊕dimF

i=1 κ(Pi) such
that ei ∈ κ(Pi), then this basis is orthogonal with respect to ‖·‖χ for any χ ∈ ΩKan .
By Proposition 1.2.23, this basis is also a Hadamard basis with respect to ‖·‖χ for
any χ ∈ ΩKan . In particular, one has

d̂eg
( dimK (F)⊕

i=1
(κ(Pi), ξi)

)
=

dimK (F)∑
i=1

h(D,g)(Pi) 6 dimK (F)t.

Moreover, for any χ ∈ ΩKac the operator norm of fχ is 6 1. Therefore, by Proposition
4.3.18, one has

µ̂(F) = µ̂(F ⊗ Kan) 6
1

dimK (F)
d̂eg

( dimK (F)⊕
i=1

(κ(Pi), ξi)
)
6 t .
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Since F is arbitrary, we obtain µ̂max(H0
K(X,D), ξg) 6 t. Therefore (6.42) follows

because t is an arbitrary real number with t > µ̂ess(L, ϕ). �

6.4.2 Arithmetic volume function

We assume that there exists C > 0 such that the adelic curve S verifies the tensorial
minimal slope property.

Definition 6.4.5 Let (L, ϕ) be an adelic line bundle on X . We define the arithmetic
volume of (L, ϕ) as

v̂ol(L, ϕ) := lim sup
n→+∞

d̂eg+(π∗(L⊗n,nϕ))
nd+1/(d + 1)!

.

We say that (L, ϕ) is big if v̂ol(L, ϕ) > 0.

Assume that the K-scheme X admits a regular rational point of X . Then the local
ring OX ,P is a regular local ring. By Cohen’s structure theorem of complete regular
local rings [56, Proposition 10.16], the formal completion of OX ,P is isomorphic to
the algebra of formal series K[[T1, . . . ,Td]], where d is the Krull dimension of X . If L
is an invertible OX -module, by choosing a local generator of the OX ,P-module LP ,
we can identify the graded linear series

⊕
n∈N H0(X, L⊗n) as a graded sub-K-algebra

(of subfinite type) of K[[T1, . . . ,Td]][T]. We denote by ∆(L) the Newton-Okounknov
body of this graded algebra (see §6.3.4 for the construction of ∆(L)). For any n ∈ N,
let rn := dimK (H0(X, L⊗n)) > 0. By Proposition 6.3.18 one has∫

∆(L)

1 dx = lim
rn>0, n→+∞

rn
nκ
,

where κ is the Kodaira-Iitaka dimension of the graded linear series
⊕

n∈N H0(X, L⊗n)

(which is also called the Kodaira-Iitaka dimension of L). In particular, if L is a big
line bundle, namely

vol(L) := lim sup
n→+∞

rn
nd/d!

> 0,

or equivalently, κ = d, one has

vol(L) = d!
∫
∆(L)

1 dx.

If (L, ϕ) is an adelic line bundle of X , then the family {(π∗(L⊗n,nϕ))}n∈N forms
a graded K-algebra of adelic vector bundles with respect to Frac(K[[T1, . . . ,Td]])

(see Definition 6.3.24). For any n ∈ N>1 such that rn := dimK (H0(X, L⊗n)) > 0,
let P(L,ϕ),n be the Borel probability measure on R such that, for any positive Borel
function f on R, one has
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R

f (t)P(L,ϕ),n(dt) =
1
rn

rn∑
i=1

f ( 1
n µ̂i(π∗(L

⊗n,nϕ))).

Theorem 6.4.6 Assume that the scheme X admits a regular rational point. Let
(L, ϕ) be an adelic line bundle on X . For any n ∈ N, let rn = dimK (H0(X, L⊗n)).
Assume that there exists n ∈ N>1 such that rn > 0. Then the sequence of measures
{P(L,ϕ),n}n∈N, rn>0 converges weakly to a Borel probability measure P(L,ϕ), which is
the direct image of a concave real-valued function G(L,ϕ) on ∆(L)◦. In particular, if
(L, ϕ) is big, then the invertible OX -module is big. Moreover, in the case where L is
big, the sequence

d̂eg+(π∗(L⊗n,nϕ))
nd+1/(d + 1)!

, n ∈ N, rn > 0 (6.43)

converges to v̂ol(L, ϕ), which is also equal to

(d + 1)vol(L)
∫
[0,+∞[

t P(L,ϕ)(dt) = (d + 1)
∫
∆(L)◦

max(G(L,ϕ)(x),0) dx. (6.44)

Proof We deduce from Corollary 6.3.26 that the sequence {P(L,ϕ),n}n∈N, rn>0 con-
verges vaguely to a Borel measure P(L,ϕ) on R, which is the direct image of the
uniform probability measure on ∆(L)◦ by a concave function G(L,ϕ) : ∆(L)◦ →

R ∪ {+∞}. Moreover, by Proposition 6.4.4 and 6.2.7, we obtain that the supports
of the Borel probability measures P(L,ϕ),n are uniformly bounded from above. The
function G(L,ϕ) is then bounded from above and hence limit measure P(L,ϕ) is a Borel
probability measure and the sequence {Pn}n∈N, rn>0 converges weakly to P(L,ϕ). In
particular, the sequence { 1

nrn
d̂eg+(L⊗n,nϕ)}n∈N, rn>0 converges to∫

[0,+∞[

t P(L,ϕ)(dt) =
1

vol(∆(L))

∫
∆(L)◦

max(G(L,ϕ)(x),0) dx

since∫
[0,+∞[

t Pn(dt) =
∫
[0,µ̂asy

max(L,ϕ)[
t Pn(dt) =

1
nrn

rn∑
i=1

max{ µ̂i(π∗(L⊗n,nϕ)),0},

and by (4.71) and (4.67),����d̂eg+(π∗(L
⊗n,nϕ)) −

rn∑
i=1

max{ µ̂i(π∗(L⊗n,nϕ)),0}
���� 6 1

2
ln(rn)ν(Ω∞).

In particular, in the case where v̂ol(L, ϕ) > 0, one has

lim sup
n→+∞

rn
nd

> 0,
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namely the invertible OX -module L is big. Moreover, in the case where L is big, one
has

lim
n→+∞

rn
nd/d!

= vol(L) > 0.

Therefore the sequence (6.43) converges (to v̂ol(L, ϕ) by definition), which is equal
to (6.44). �

Theorem 6.4.7 Assume that the scheme X admits a regular rational point. Let
(L1, ϕ1) and (L2, ϕ2) be big adelic line bundles on X . Then the following inequality
of Brunn-Minkowski type holds

v̂ol(L1 ⊗ L2, ϕ1 + ϕ2)
1/(d+1) > v̂ol(L1, ϕ1)

1/(d+1) + v̂ol(L2, ϕ2)
1/(d+1). (6.45)

Proof For any adelic line bundle (L, ϕ) on X such that L is big, we denote by ∆̂(L, ϕ)
the closure of the convex set {(x, t) ∈ ∆(L)◦ × R : 0 6 t 6 G(L,ϕ)(x)}. Then
Theorem 6.4.6 implies that

v̂ol(L, ϕ) = (d + 1)
∫
∆̂(L,ϕ)

1 d(x, t)

By Proposition 6.3.28, one has

∆̂(L1, ϕ1) + ∆̂(L2, ϕ2) 6 ∆̂(L1 ⊗ L2, ϕ1 + ϕ2).

Therefore the relation (6.45) follows from the classic Brunn-Minkowski inequality.�

6.4.3 Volume of adelic R-Cartier divisors

We assume that X is normal and geometrically integral and admits a regular rational
point P. We identify the formal completion of OX ,P with K[[T1, . . . ,Td]], which
allow us to embed the rational function field K(X) into the fraction field R =
Frac(K[[T1, . . . ,Td]]). We also suppose that there exists C > 0 such that the adelic
curve S verifies the tensorial minimal slope property of level > C. In the following,
the symbol K denotes Z, Q or R.

Let D be a K-Cartier divisor. We identify
⊕

n∈N H0(nD) with a graded sub-K-
algebra of subfinite type of R[T]. We denote by ∆(D) the Newton-Okounkov body
of this graded algebra (see §6.3.4 for its construction).

Definition 6.4.8 Let (D,g) be an adelic K-Cartier divisor. We define the arithmetic
volume of (D,g) as

v̂ol(D,g) := lim sup
n→+∞

d̂eg+(H0
K(nD), ξng)

nd+1/(d + 1)!
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(for the definition of the norm family ξng, see Definition 6.2.17). We say that (D,g)
is big if v̂ol(D,g) > 0. Note that for any s ∈ K(X)× one has (see Remark 2.5.10)

v̂ol((D,g) + (̂s)) = v̂ol(D,g). (6.46)

Moreover, (D,g) is said to be arithmetically K-effective, which is denoted by
(D,g) >K (0,0), if D is K-effective and gω > 0 for all ω ∈ Ω. For adelic K-Cartier
divisors (D1,g1) and (D2,g2) on X ,

(D1,g1) >K (D2,g2)
def
⇐⇒ (D1,g1) − (D2,g1) >K (0,0).

Note that if (D1,g1) >K (D2,g2), then d̂eg+(H0
K(D1), ξg1 ) > d̂eg+(H0

K(D2), ξg2 ). In
particular, v̂ol(D1,g1) > v̂ol(D2,g2). By using Prposition 6.2.12, if D >K 0, then
there is a family of D-Green functions g over S such that (D,g) >K (0,0).

Let (D,g) be an adelic K-Cartier divisor. The family {(H0
K(nD), ξng)}n∈N forms

a graded K-algebra of adelic vector bundles with respect to

R = Frac(K[[T1, . . . ,Td]]).

For any n ∈ N>1 such that rn := dimK (H0(nD)) > 0, we let P(D,g),n be the Borel
probability measure on R such that, for any positive Borel function on R, one has∫

R
f (t)P(D,g),n(dt) =

1
rn

rn∑
i=1

f ( 1
n µ̂i(H

0
K(nD), ξng)).

Theorem 6.4.9 Let (D,g) be an adelic K-Cartier divisor. For any n ∈ N, let rn =
dimK (H0

K(nD)). Assume that there exists n ∈ Nn>1 such that rn > 0. Then the
sequence of measures {P(D,g),n}n∈N,rn>0 converges weakly to a Borel probability
measure P(D,g), which is the direct image of a concave real-valued function G(D,g) on
∆(D)◦. In particular, if (D,g) is big, then the K-Cartier divisor D is big. Moreover,
in the case where D is big, the sequence

d̂eg+(H0
K(nD), ξng)

nd+1/(d + 1)!
, n ∈ N, rn > 0

converges to v̂ol(D,g), which is also equal to

(d + 1)vol(L)
∫
[0,+∞[

t P(D,g)(dt) = (d + 1)
∫
∆(D)◦

max(G(D,g)(x),0) dx. (6.47)

Proof We omit the proof since it is quite similar to that of Theorem 6.4.6. �

Corollary 6.4.10 Let (D,g) and (A, h) be adelicR-Cartier divisors on X . We assume
that D is big. Then
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lim
t→∞

d̂eg+(H0
R(X, tD + A), ξtg+h)

td+1/(d + 1)!
= v̂ol(D,g),

where t is a positive real number.

Proof Let us begin with the following claim:

Claim 6.4.11 v̂ol(aD,ag) = ad+1v̂ol(D,g) for any positive integer a. �

Proof By Theorem 6.4.9,

v̂ol(aD,ag) = lim
n→∞

d̂eg+(H0
K(naD), ξnag)

nd+1/(d + 1)!

= ad+1 lim
n→∞

d̂eg+(H0
K(naD), ξnag)

(na)d+1/(d + 1)!
= ad+1v̂ol(D,g),

as required. �

Claim 6.4.12 If D is R-effective, then the assertion of the corollary holds. �

Proof Choose positive integers n0 and n1 such that H0
R(X,n0D + A) , {0} and

H0
R(X,n1D − A) , {0}, so that one can take s ∈ H0

R(X,n0D + A) \ {0} and s′ ∈
H0
R(X,n1D − A) \ {0}. Let us consider the following injective homomorphisms

αt : H0
R((btc − n0)D) → H0

R(tD + A) and βt : H0
R(tD + A) → H0

R((dte + n1)D)

given by f 7→ f s and f 7→ f s′, respectively. Note that

‖αt ( f )‖tgω+hω 6 ‖ f ‖( bt c−n0)gω ‖s‖(t−bt c+n0)gω+hω

6 ‖ f ‖( bt c−n0)gω ‖s‖n0gω+hω ‖1‖
t−bt c
gω ,

so that, by Proposition 4.3.21, (1) and (2),

d̂eg+(H
0
R((btc − n0)D), ξ([t]−n0)g) 6 d̂eg+(H

0
R(tD + A), ξtg+h)

+ (dimK H0
R((btc − n0)D))

∫
Ω

(�� ln ‖s‖n0gω+hω

�� + �� ln ‖1‖gω
��) ν(dω). (6.48)

In the same way, one has

d̂eg+(H
0
R(tD + A), ξtg+h) 6 d̂eg+(H

0
R((dte + n1)D), ξ( dt e+n1)g)

+ (dimK H0
R(tD + A))

∫
Ω

(�� ln ‖s′‖n1gω−hω

�� + �� ln ‖1‖gω
��) ν(dω). (6.49)

Note that

lim
t→∞

d̂eg+(H0
R((btc − n0)D), ξ( bt c−n0)g)

td+1/(d + 1)!
= v̂ol(D,g)
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and

lim
t→∞

dimK H0
R((btc − n0)D)

td+1/(d + 1)!
= 0,

so that, by (6.48), one has

v̂ol(D,g) 6 lim inf
n→∞

d̂eg+(H0
R(tD + A), ξtg+h)

td/(d + 1)!
.

Similarly, by using (6.49),

lim sup
n→∞

d̂eg+(H0
R(tD + A), ξtg+h)

td/(d + 1)!
6 v̂ol(D,g).

Thus the assertion of the claim follows. �

Claim 6.4.13 If there is s ∈ K(X)× such that D′ := D + (s) is R-effective, then the
assertion of the corollary holds. �

Proof We set (D′,g′) = (D,g)+ (̂s). We choose an arithmetically R-effective adelic
Cartier divisor (B, k) on X such that (B, k) ± (̂s) are arithmetically R-effective. Then,
as (B, k) ± (t − btc)(̂s) are arithmetically R-effective, one has

t(D′,g′) + (A, h) − (B, k) − btc(̂s) 6 t(D,g) + (A, h)

6 t(D′,g′) + (A, h) + (B, k) + btc(̂s).

Thus

d̂eg+(H
0
R(tD

′ + A − B), ξtg′+h−k) 6 d̂eg+(H
0
R(tD + A), ξtg+h)

6 d̂eg+(H
0
R(tD

′ + A + B), ξtg′+h+k),

so that, by using Claim 6.4.12,

v̂ol(D′,g′) = lim
t→∞

d̂eg+(H0
R(tD

′ + A − B), ξtg′+h−k)

td+1/(d + 1)!

6 lim inf
t→∞

d̂eg+(H0
R(tD + A), ξtg+h)

td+1/(d + 1)!
6 lim sup

t→∞

d̂eg+(H0
R(tD + A), ξtg+h)

td+1/(d + 1)!

6 lim
t→∞

d̂eg+(H0
R(tD

′ + A + B), ξtg′+h+k)

td+1/(d + 1)!
= v̂ol(D′,g′).

Therefore one has the claim because v̂ol(D,g) = v̂ol(D′,g′) �

In general, there are a positive integer a and f ∈ K(X)× such that aD + ( f ) is
R-effective, so that, by using Claim 6.4.11 and Claim 6.4.13, one has
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v̂ol(D,g) =
1

ad+1 v̂ol(aD,ag) =
1

ad+1 lim
t→∞

d̂eg+(H0
R(taD + A), ξtag+h)

td+1/(d + 1)!

= lim
t→∞

d̂eg+(H0
R(taD + A), ξtag+h)

(ta)d+1/(d + 1)!

= lim
t→∞

d̂eg+(H0
R(tD + A), ξtg+h)

td+1/(d + 1)!
,

as required. �

Corollary 6.4.14 Let (D,g) be an adelic R-Cartier divisor on X . Then, for any
a ∈ R>0, v̂ol(aD,ag) = ad+1v̂ol(D,g).

Proof Clearly we may assume that a > 0. If D is not big, then aD is also not big, so
that v̂ol(D,g) = 0 and v̂ol(aD,ag) = 0. Thus the assertion follows in this case. If D
is big, then by Corollary 6.4.10,

v̂ol(aD,ag) = lim
t→∞

d̂eg+(H0
K(taD), ξtag)

td+1/(d + 1)!

= ad+1 lim
t→∞

d̂eg+(H0
K(taD), ξtag)

(ta)d+1/(d + 1)!
= ad+1v̂ol(D,g),

as required. �

Remark 6.4.15 Let (D1,g1) and (D2,g2) be adelic K-Cartier divisors. Proposition
6.3.28 shows that, if (x, y) ∈ ∆(D1)

◦ × ∆(D2)
◦, one has

G(D1+D2 ,g1+g2)(x + y) > G(D1 ,g1)(x) + G(D2 ,g2)(y).

Similarly to Theorem 6.4.7, an analogue of Brunn-Minkowski inequality holds
for adelic K-Cartier divisors.

Theorem 6.4.16 Let (D1,g1) and (D2,g2) be big adelic K-Cartier divisors on X .
Then the following inequality holds

v̂ol(D1 + D2,g1 + g2)
1/(d+1) > v̂ol(D1,g1)

1/(d+1) + v̂ol(D2,g2)
1/(d+1). (6.50)

Proof The proof of (6.50) is similar to that of (6.45), which relies on the inequality

∀ (x, y) ∈ ∆(D1) × ∆(D2), G(D1+D2 ,g1+g2)(x + y) > G(D1 ,g1)(x) + G(D2 ,g2)(y).

Let us consider a criterion for the bigness of adelic K-Cartier divisors.

Lemma 6.4.17 Let (D,g) be an adelic K-Cartier divisor on X such that D is big.
Then supx∈∆(D)◦ G(D,g)(x) is equal to µ̂asy

max(D,g).

Proof By (6.32), we obtain that the maximal value of G(D,g) is equal to
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lim
n→+∞

1
n
µ̂1(H0

K(nD), ξng).

Note that all norm families ξng are ultrametric on Ω \Ω∞.
By Remark 4.3.48 and the relation

lim
n→+∞

1
n

ln rkK (H0
K(nD)) = 0,

we obtain the equality sup
x∈∆(D)◦

G(D,g)(x) = µ̂
asy
max(D,g). �

Proposition 6.4.18 Let (D,g) be an adelic K-Cartier divisor on X . Then the follow-
ing are equivalent:

(1) (D,g) is big.
(2) D is big and µ̂asy

max(D,g) > 0.

Proof First of all, note that sup
x∈∆(D)◦

G(D,g)(x) = µ̂
asy
max(D,g) by Lemma 6.4.17. More-

over, by Theorem 6.4.9,

v̂ol(D,g) = (d + 1)
∫
∆(D)◦

max(G(D,g)(x),0) dx, (6.51)

(1) =⇒ (2): By the above facts, one has

v̂ol(D,g) 6 (d + 1)vol(D)max(µ̂asy
max(D,g),0). (6.52)

Therefore, the assertion follows.

(2) =⇒ (1): First of all, as D is big, ∆(D)◦ , ∅. Moreover, since µ̂asy
max(D,g) > 0

and G(D,g) is continuous on ∆(D)◦, one can find a non-empty open set U of ∆(D)◦

such that G(D,g) > 0 on U, so that the assertion follows from (6.51). �

Definition 6.4.19 An adelic K-Cartier divisor (D,g) is strongly big if D is big and
ν

asy
1 (D,g) > 0, that is, D is big and there are a positive integer a and s ∈ H0

K(aD)\{0}
such that d̂egξag

(s) > 0. Note that strong bigness implies bigness by Proposition 6.4.1
and Proposition 6.4.18. Moreover if S satisfies the Minkowski property of certain
level, then strong bigness is equivalent to bigness by Proposition 6.4.1 and Proposi-
tion 6.4.18.

Proposition 6.4.20 Let (D,g) be an adelic K-Cartier divisor on X such that D is
big. Then there is an integrable function ϕ on Ω such that (D,g + ϕ) is strongly big.

Proof Since D is big, there are a positive integer a and f ∈ K(X)× such that aD+( f )
is effective. By Proposition 6.2.12, a function given byω 7→ ln ‖ f ‖agω is integrable.
Thus if we set
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ϕ(ω) :=


1
a
(ln ‖ f ‖agω + ln 2) if ω ∈ Ω∞,

1
a

ln ‖ f ‖agω if ω ∈ Ω \Ω∞,

then (ω ∈ Ω) 7→ ϕ(ω) is integrable. Let Fn be a vector subspace of H0
K(naD)

generated by f n. Then

d̂egξna(g+ϕ)
(Fn) = −

∫
Ω

ln ‖ f n‖na(gω+ϕ(ω)) ν(dω)

= −n
∫
Ω

(
ln ‖ f ‖agω − aϕ(ω)

)
ν(dω) = n

∫
Ω∞

(ln 2) ν(dω),

so that

ν1(H0(naD), ξna(g+ϕ)) > d̂egξna(g+ϕ)
(Fn) = n

∫
Ω∞

(ln 2) ν(dω),

which shows that νasy
1 (D,g + ϕ) > 0, so that (D,g + ϕ) is strongly big. �

Definition 6.4.21 Let (D,g) and (D′,g′) be adelicK-Cartier divisors on X . We define
(D′,g′) - (D,g) to be

(D′,g′) - (D,g)
def
⇐⇒ either (D′,g′) = (D,g) or (D,g) − (D′,g′) is big.

Proposition 6.4.22 (1) The relation - forms a partial order on the group of adelic
K-Cartier divisors on X .

(2) For adelicK-Cartier divisors (D,g), (D′,g′), (E, h) and (E ′, h′) on X , if (D′,g′) -
(D,g) and (E ′, h′) - (E, h), then (D′,g′) + (E ′, h′) - (D,g) + (E, h) and
a(D′,g′) - a(D,g) for a ∈ K>0.

(3) For adelic K-Cartier divisors (D,g) and (D′,g′) on X , if (D′,g′) - (D,g), then
v̂ol(D′,g′) 6 v̂ol(D,g).

Proof (1) We assume that (D′,g′) - (D,g) and (D,g) - (D′,g′). If (D′,g′) , (D,g),
then (D,g) − (D′,g′) and (D′,g′) − (D,g) are big, so that

(0,0) = ((D,g) − (D′,g′)) + ((D′,g′) − (D,g))

is also big by Theorem 6.4.16, which is a contradiction. Next let us see that if
(D1,g1) - (D2,g2) and (D2,g2) - (D3,g3), then (D1,g1) - (D3,g3). Indeed, this is a
consequence of Theorem 6.4.16 because

(D3,g3) − (D1,g1) = ((D3,g3) − (D2,g2)) + ((D2,g2) − (D1,g1)) .

(2) follows from Theorem 6.4.16 and Corollary 6.4.14 because{
((D,g) + (E, h)) − ((D′,g′) + (E ′, h′)) = ((D,g) − (D′,g′)) + ((E, h) − (E ′, h′)) ,

a(D,g) − a(D′,g′) = a ((D,g) − (D′,g′)) .
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(3) We may assume that (D,g) − (D′,g′) is big. If (D′,g′) is big, then the as-
sertion follows from Theorem 6.4.16 because (D,g) = ((D,g) − (D′,g′)) + (D′,g′).
Otherwise, the assertion is obvious because v̂ol(D′,g′) = 0. �

Proposition 6.4.23 Let (D,g) be a big adelic K-Cartier divisor on X and (A, h)
be an adelic R-Cartier divisor on X . Then there is a positive integer n0 such that
n(D,g) + (A, h) is big for all n ∈ Z>n0 .

Proof It is sufficient to find a positive integer n0 such that n0(D,g) + (A, h) is big
because n(D,g) + (A, h) = n0(D,g) + (A, h) + (n − n0)(D,g).

As D is big, one can find a positive integer m such that mD + A is big, so that, by
Prioposition 6.4.20, (mD + A,mg + h + φ) is big for some non-negative integrable
function φ on Ω. Let a be a positive integer such that

v̂ol(D,g) >
(d + 1)vol(D)

a

∫
Ω

φ ν(dω).

Since
v̂ol(D,g − φ/a) > v̂ol(D,g) −

(d + 1)vol(D)

a

∫
Ω

φ ν(dω) > 0

by using Proposition 4.3.21, (2), one obtains that (D,g − φ/a) is big. Thus the
assertion follows because

(m + a)(D,g) + (A, h) = (mD + A,mg + h + φ) + a(D,g − φ/a).

Theorem 6.4.24 Let (D,g), (D1,g1), . . . , (Dn,gn) be adelic R-Cartier divisors on X .
Then

lim
ε1→0,...,εn→0

v̂ol((D,g) + ε1(D1,g1) + · · · + εn(Dn,gn)) = v̂ol(D,g).

Proof Let us begin with the following Claim 6.4.25, Claim 6.4.26, Claim 6.4.27 and
Claim 6.4.28:

Claim 6.4.25 Let (E, h) be an adelic R-Cartier divisor on X . Let (0, f ) be an adelic
Cartier divisor on X . Then limε→0 v̂ol(E, h + ε f ) = v̂ol(E, h). �

Proof We set ϕ1(ω) = supx∈Xω
{ fω(x)} and ϕ2(ω) = supx∈Xω

{− fω(x)}. Then,
by Proposition 6.2.12, ϕ1(ω) and ϕ2(ω) are integrable on Ω, so that ϕ(ω) =
max{|ϕ1(ω)|, |ϕ2(ω)|} is also integrable on Ω and | fω(x)| 6 ϕ(ω) for all x ∈ Xω
and ω ∈ Ω. Therefore,

hω − |ε |ϕ(ω) 6 hω + ε fω 6 hω + |ε |ϕ(ω),

so that, by Proposition 4.3.21, (1),

d̂eg+(H
0
K(nE),en |ε |ϕξnh) 6 d̂eg+(H

0
K(nE), ξn(h+ε f ))

6 d̂eg+(H
0
K(nE),e−n |ε |ϕξnh).
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Moreover, by Proposition 4.3.21, (2),

d̂eg+(H
0
K(nE), ξnh) 6 d̂eg+(H

0
K(nE),e−n |ε |ϕξnh)

6 d̂eg+(H
0
K(nE), ξnh) + n|ε | dimK (H0

K(nE))

∫
Ω

ϕ ν(dω),

and

d̂eg+(H
0
K(nE),en |ε |ϕξnh) 6 d̂eg+(H

0
K(nE), ξnh)

6 d̂eg+(H
0
K(nE),en |ε |ϕξnh) + n|ε | dimK (H0

K(nE))

∫
Ω

ϕ ν(dω).

Therefore the assertion of the claim follows. �

Claim 6.4.26 Let (B, f ) be an adelicR-Cartier divisor on X such that (B, f )±(Di,gi)
is big for every i = 1, . . . ,n. Then

v̂ol((D,g) − (|ε1 | + · · · + |εn |)(B, f ))

6 v̂ol((D,g) + ε1(D1,g1) + · · · + εn(Dn,gn))

6 v̂ol((D,g) + (|ε1 | + · · · + |εn |)(B, f )).

�

Proof Since {
|εi |(B, f ) − εi(Di,gi) = |εi |((B, f ) ± (Di,gi)),

εi(Di,gi) + |εi |(B, f ) = |εi |((B, f ) ± (Di,gi)),

one has −|εi |(B, f ) - εi(Di,gi) - |εi |(B, f ) by Proposition 6.4.22, (2), so that, by
using Proposition 6.4.22, (2) again,

(D,g) − (|ε1 | + · · · + |εn |)(B, f )

- (D,g) + ε1(D1,g1) + · · · + εn(Dn,gn)

- (D,g) + (|ε1 | + · · · + |εn |)(B, f ).

Therefore, by Proposition 6.4.22, (3), one obtains the claim. �

Claim 6.4.27 Let (H,gH ) be an adelic R-Cartier divisor on X . Then there is an
integrable function ψ on S such that (H,gH − ψ) is not big. �

Proof Proposition 6.2.16 and Proposition 6.4.4, one obtains µ̂asy
max(H,gH ) < ∞, so

that one can find an integrable function ψ on S such that

µ̂
asy
max(H,gH ) <

∫
Ω

ψ ν(dω).
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We choose a positive integer n0 such that

µ̂max(H0
R(X,nH), ξngH ) 6

∫
Ω

nψ ν(dω)

for all n > n0. Thus, as ξn(gH−ψ) = exp(nψ) ξngH , by Lemma 4.3.36, (1),

µ̂max(H0
R(X,nH), ξn(gH−ψ)) = µ̂max(H0

R(X,nH), ξngH ) −

∫
Ω

nψ ν(dω) 6 0,

so that the assertion follows from Lemma 4.3.36, (2).

Claim 6.4.28 Let (H,gH ) be an adelicR-Cartier divisor on X and ϕ be an integrable
function on Ω. Then

v̂ol(H,gH + ϕ) 6 v̂ol(H,gH ) + (d + 1)vol(H)

∫
Ω

|ϕ(ω)| ν(dω).

�

Proof As ξn(gH+ϕ) = exp(−nϕ)ξngH , by using Proposition 4.3.21, (2),

d̂eg+(H
0
R(X,nH), ξn(gH+ϕ)) 6 d̂eg+(H

0
R(X,nH), ξngH )

+ n(dimK H0
R(nH))

∫
Ω

|ϕ(ω)| ν(dω),

so that the assertion follows. �

First we assume that D is big. By Proposition 6.4.20, we can choose a D-Green
functions family g′ such that (D,g′) is a big adelic K-Cartier divisor. Then, by
Proposition 6.4.23, one can choose a positive integer a such that a(D,g′) ± (Di,gi)
is big for every i = 1, . . . ,n. Then, by Claim 6.4.26,

v̂ol((D,g) − a(|ε1 | + · · · + |εn |)(D,g′))

6 v̂ol((D,g) + ε1(D1,g1) + · · · + εn(Dn,gn))

6 v̂ol((D,g) + a(|ε1 | + · · · + |εn |)(D,g′))

If we set f = g′ − g and ε = |ε1 | + · · · + |εn |, then{
(D,g) − a(|ε1 | + · · · + |εn |)(D,g′) = (1 − aε)

(
(D,g) +

(
0, aε

1−aε f
) )
,

(D,g) + a(|ε1 | + · · · + |εn |)(D,g′) = (1 + aε)
(
(D,g) +

(
0, aε

1+aε f
) )
.

Therefore, by Claim 6.4.25,
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lim
ε1→0,...,εn→0

v̂ol((D,g) − a(|ε1 | + · · · + |εn |)(D,g′))

= lim
ε→0

(1 − aε)d+1v̂ol
(
(D,g) +

(
0,

aε
1 − aε

f
) )
= v̂ol(D,g).

In the same way,

lim
ε1→0,...,εn→0

v̂ol((D,g) + a(|ε1 | + · · · + |εn |)(D,g′)) = v̂ol(D,g).

One has the theorem in the case where D is big.

Next we assume that D is not big. Let (A, h) be a big adelic Cartier divisor on X
such that D + A is big and (A, h) ± (Di,gi) are big for every i = 1, . . . ,n. Then, by
Claim 6.4.26, if we set ε = |ε1 | + · · · + |εn |, then

0 6 v̂ol((D,g) + ε1(D1,g1) + · · · + εn(Dn,gn)) 6 v̂ol((D,g) + ε(A, h)),

and hence one need show that limε↓0 v̂ol((D,g)+ ε(A, h)) = 0. By Claim 6.4.27, one
can choose a non-negative integrable function ϕ onΩ such that (D,g)+ (A, h)−(0, ϕ)
is not big. Then, as (D,g) − (0, ϕ) + ε(A, h) - (D,g) + (A, h) − (0, ϕ) + ε(A, h), one
has

v̂ol((D,g) − (0, ϕ) + ε(A, h)) 6 v̂ol((D,g) + (A, h) − (0, ϕ) + ε(A, h)).

Since D + A is big, by the previous case,

lim
ε↓0

v̂ol((D,g) + (A, h) − (0, ϕ) + ε(A, h)) = v̂ol((D,g) + (A, h) − (0, ϕ)) = 0,

and hence
lim
ε↓0

v̂ol((D,g) − (0, ϕ) + ε(A, h)) = 0. (6.53)

On the other hand, by Claim 6.4.28,

v̂ol((D,g) + ε(A, h)) 6 v̂ol((D,g) − (0, ϕ) + ε(A, h))

+ (d + 1)vol(D + εA)
∫
Ω

ϕ(ω)ν(dω).

As D is not big, one obtains

lim
ε↓0

vol(D + εA) = vol(D) = 0,

and hence, by (6.53), one has limε↓0 v̂ol((D,g) + ε(A, h)) = 0, as required.

Corollary 6.4.29 Let H be a finite-dimensional vector subspace of D̂ivR(X). Then
the set {(D,g) ∈ H | (D,g) is big} is an open cone in H.
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Proof The openness of it is a consequence of Theorem 6.4.24. One can check that
it is a cone by Theorem 6.4.16 and Corollary 6.4.14. �

Corollary 6.4.30 The volume function v̂ol : D̂ivR(X) → R factors through D̂ivR(X)

modulo the vector subspace over R generated by principal Cartier divisors, that is,

v̂ol((D,g) + a1(̂ f1) + · · · + ar (̂ fr )) = v̂ol(D,g)

for any r ∈ Z>1, (D,g) ∈ D̂ivR(X), f1, . . . , fr ∈ K(X)× and a1, . . . ,ar ∈ R.

Proof If a1, . . . ,ar ∈ Z, then the assertion is obvious. Next we assume that
a1, . . . ,ar ∈ Q. We choose a positive integer N such that Na1, . . . ,Nar ∈ Z. Then

Nd+1v̂ol(D,g) = v̂ol(ND,Ng)

= v̂ol((ND,Ng) + (Na1)(̂ f1) + · · · + (Nar )(̂ fr ))

= Nd+1v̂ol((D,g) + a1(̂ f1) + · · · + ar (̂ fr )),

as required. In general, take sequences {a1,n}
∞
n=1, . . . , {ar ,n}∞n=1 of rational numbers

such that a1 = limn→∞ a1,n, . . . ,ar = limn→∞ ar ,n. Then, by Theorem 6.4.24,

v̂ol((D,g) + a1(̂ f1) + · · · + ar (̂ fr ))

= lim
n→∞

v̂ol((D,g) + a1,n (̂ f1) + · · · + ar ,n (̂ fr )) = v̂ol(D,g),

so that the assertion follows. �



Chapter 7
Nakai-Moishezon’s criterion

In this chapter, we fix a proper adelic curve S = (K, (Ω,A, ν), φ). We assume that,
either the σ-algebra A is discrete, or the field K admits a countable subfield which
is dense in each Kω , where ω ∈ Ω. We let Ω0 be the set of all ω ∈ Ω such that |·|ω
is the trivial absolute value. Note that, if Ω0 is not empty, then the above hypothesis
implies that, either the σ-algebra A is discrete, or the field K is countable.

7.1 Graded algebra of adelic vector bundles

Let C be a non-negative real number. In this section, we assume that the adelic curve
S satisfies the tensorial minimal slope property of level > C0. Namely, for any pair
(E,F) of non-zero adelic vector bundles on S, one has

µ̂min(E ⊗ε,π F) > µ̂min(E) + µ̂min(F) − C(ln(dimK (E) · dimK (F))). (7.1)

Note that we have shown in Chapter 5 that, if the field K is of characteristic 0, then
the adelic curve S satisfies the tensorial minimal slope property of level > 3

2 ν(Ω∞).

Definition 7.1.1 Let R• =
⊕

n∈N Rn be a graded K-algebra. We assume that, for any
n ∈ N, Rn is of finite dimension over K . For any n ∈ N, let ξn = {‖·‖n,ω}ω∈Ω be a
norm family on Rn. We say that R• = {(Rn, ξn)}n∈N is a normed graded algebra on
S if, for any ω ∈ Ω, R•,ω = {(Rn,ω, ‖·‖n,ω)}n∈N forms a normed graded algebra over
Kω , where Rn,ω := Rn ⊗K Kω (cf. Subsection 1.1.14). Moreover, if (Rn, ξn) forms an
adelic vector bundle on S for all n ∈ N, then R• is called a graded algebra of adelic
vector bundles on S. Furthermore, we say that R• is of finite type if the underlying
graded K-algebra R• is of finite type over K .

Proposition 7.1.2 Let R• = {(Rn, ξn)} be a graded algebra of adelic vector bundles
on S such that R0 is the trivial adelic line bundle, namely R0 = K and for anyω ∈ Ω,
one has ‖1‖ω = 1. Suppose in addition that R• is generated as R0-algebra by R1.
Then the sequence { µ̂min(Rn)/n}n∈N converges to an element of R ∪ {+∞}.

403
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Proof Let (n,m) be a couple of positive integers. Since R• is generated as K-algebra
by R1, the canonical K-linear map fn,m : Rn⊗K Rm → Rn+m is surjective. Moreover,
if we equip Rn ⊗K Rm with the ε, π-tensor product norm family ξn ⊗ε,π ξm, then,
by the submultiplicativity condition, the homomorphism fn,m has height 6 1. By
Proposition 4.3.31, one has

µ̂min(Rn ⊗ε,π Rm) 6 µ̂min(Rn+m).

Moreover, by the assumption of tensorial minimal slope property,

µ̂min(Rn ⊗ε,π Rm) > µ̂min(Rn) + µ̂min(Rm) − C0(ln(dimK (Rn)) + ln(dimK (Rm))).

Note that R• is a quotient K-algebra of K[R1]. Hence dimK (Rn) = O(ndimK (R1)−1).
By [40, Proposition 1.3.5]1, the sequence { µ̂min(Rn)/n}n∈N converges to an element
in R ∪ {+∞}. �

Definition 7.1.3 Let R• be a normed graded algebra on S. Let M• =
⊕

n∈Z Mn be a
Z-graded K-linear space and h be a positive integer. We say that M• is an h-graded
R•-module if M• is equipped with a structure of R•-module such that

∀ (n,m) ∈ N × Z, ∀(a, x) ∈ Rn × Mm, ax ∈ Mnh+m.

Let M• be an h-graded R•-module. Assume that each homogeneous component Mn

is of finite dimension over K and is equipped with a norm family ξ ′n = {‖·‖ ′n,ω}ω∈Ω.
We say that M• = {Mn}n∈Z is a normed h-graded R•-module if, for any ω ∈ Ω,
M•,ω = {(Mn,ω, ‖·‖

′
n,ω)}n∈Z forms a normed h-graded R•,ω-module, where Mn,ω :=

Mn ⊗K Kω (cf. Subsetion 1.1.14). We say that an h-graded R•-module M• is of finite
type if the underlying h-graded R•-module M• is of finite type. Moreover, if (Mn, ξ

′
n)

forms an adelic vector bundle on S for all n ∈ Z, then M• is called a h-graded
R•-module of adelic vector bundles on S.

Proposition 7.1.4 Let C0 be a non-negative constant. We assume that the adelic
curve S satisfies the tensorial minimal slope property of level > C0. Let R• be a
graded algebra of adelic vector bundles which is of finite type, and M• be an h-
graded R•-module of adelic vector bundles on S such that M• is of finite type, where
h is a positive integer. Then one has

lim inf
n→+∞

µ̂min(Mn)

n
>

1
h

lim inf
n→+∞

µ̂min(Rn)

n
> −∞. (7.2)

1 In the statement of [40, Proposition 1.3.5], we suppose given a positive sequence {bn }n∈N, n>1
satisfying the weak subadditivity condition bn+m 6 bn +bm + f (n)+ f (m), where f : N>1 → R+
is a non-decreasing function such that

∑
α>0 f (2α)/2α < +∞. Then the sequence {bn/n}n∈N, n>1

converges in R+. However the same proof applies to a general (not necessarily positive) sequence
satisfying the same weak subadditivity condition and leads to the convergence of the sequence
{bn/n}n∈N, n>1 in R ∪ {−∞}.
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Proof If we replace R0 by the trivial adelic line bundle, we obtain a new graded
algebra of adelic vector bundles (denoted by R

′

•
) and M• is naturally equipped with

a structure of h-graded module over this graded algebra of adelic vector bundles.
Moreover, R• is a finite R′

•
-algebra since R0 is supposed to be of finite dimension over

K . In particular, M• is a module of finite type over R′
•
. If {ai}i∈I is a basis of R0 over

K which contains 1 ∈ R0 and if {bj}j∈J is a finite family of homogeneous elements
of positive degree in R•, which generates R• as R0-algebra, then R′

•
is generated

as K-algebra by {aibj}(i, j)∈I×J . This shows that R′
•

is a K-algebra of finite type.
Therefore (by replacing R• by R

′

•
) we may assume without loss of generality that R0

is the trivial adelic line bundle.
We first prove the proposition in the particular case where R• is generated as K-

algebra by R1. Let A be the infimum limit of the sequence { µ̂min(Rn)/n}n∈N, n>1. By
[74, Lemma 2.1.6], there exist integers b1 and m > 0 such that, for any integer b with
b > b1 and any integer ` > 1 the canonical K-linear map R`m ⊗K Mb → Mb+`mh is
surjective. Hence by Proposition 4.3.31, one has

µ̂min(Mb+`mh) > µ̂min(R`m ⊗ε,π Mb),

which leads to

µ̂min(Mb+`mh) > µ̂min(R`m) + µ̂min(Mb) − C0 ln(dimK (R`m) · dimK (Mb)).

Dividing the two sides of the inequality by `mh and then letting ` tend to the infinity,
we obtain

lim inf
`→+∞

µ̂min(Mb+`mh)

`mh
>

1
h

A,

where we have used the fact that

lim
`→+∞

ln(dimK (R`m))
`

= 0.

Since b > b1 is arbitrary, we obtain

lim inf
n→+∞

µ̂min(Mn)

n
>

1
h

A.

We now consider the general case. By [74, Lemma 2.1.6], there exists a positive
integer u such that R(u)

• :=
⊕

n∈N Run is generated as K-algebra by R(u)
1 = Ru .

Moreover, R• is a u-graded R(u)-module of finite type and hence a finite R(u)
• -

algebra. Therefore M• is an hu-graded R(u)
• -algebra of finite type. Let B be the

infimum limit of the sequence { µ̂min(Rnu)/n}n∈N, n>1. By applying the particular
case of the proposition established above, we obtain

lim inf
n→+∞

µ̂min(Rn)

n
>

B
u

and lim inf
n→+∞

µ̂min(Mn)

n
>

B
hu
.
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Note that the first inequality actually implies that

lim inf
n→+∞

µ̂min(Rn)

n
=

B
u

since { µ̂min(Rnu)/n}n∈N, n>1 converges to B. The inequality (7.2) is thus proved.
Finally, if the adelic curve S satisfies the tensorial minimal slope property, by

Proposition 7.1.2 the sequence { µ̂min(Rnu)/n}n∈N, n>1 converges to an element of
R ∪ {+∞}. Hence the last statement of the proposition is true. �

Remark 7.1.5 Let R• be a graded algebra of adelic vector bundles, I• be a homo-
geneous ideal of R• and R′

•
be the quotient algebra R•/I•. If we equip R′

n with the
quotient norm family of that of Rn, then R

′

•
is a graded algebra of adelic vector

bundles, denoted by R•/I• (cf. Proposition 1.1.71 (1)).
More generally, let M• be an h-graded R•-module and Q• is a graded quotient

R•-module of M•. If we equip each Qn with the quotient norm family of that of Mn,
then Q• becomes an h-graded R•-module (cf. Proposition 1.1.71 (2)).

Let R• be a graded algebra of adelic vector bundles, M• be an h-graded module,
where h ∈ N, h > 1. Let I• be a homogeneous ideal of R•. Assume that M• is
annihilated by I•, then M• is naturally equipped with a structure of h-graded R•/I•-
module (cf. Proposition 1.1.71 (2)).

Proposition 7.1.6 We suppose that the adelic curve S satisfies the tensorial minimal
slope property. Let R• be a graded algebra of adelic vector bundles, I•, J• and M•

be homogeneous ideals of R• such that J• ⊆ M• and I• · M• ⊆ J•. Let R′
•
= R•/I• and

Q• = M•/J•. For each n ∈ N, we equip R′
n and Qn with the quotient norm families

of that of Rn and Mn respectively. Then one has

lim inf
n→+∞

µ̂min(Qn)

n
> lim inf

n→+∞

µ̂min(R
′

n)

n
.

Proof By the above remark, Q• is equipped with a structure of graded R
′

•
-module.

Hence the statement follows from Proposition 7.1.4. �

7.2 Fundamental estimations

In this section, we prove some lower bounds of asymptotic minimal slope. Let
R• = {(Rn, ξn)}n∈N be a graded algebra of adelic vector bundles which is of finite
type. We assume that R• is an integral ring. Let X = Proj(R•) be the projective
spectrum of R•. If Y is an integral closed subscheme of X and P• ⊆ R• is the defining
homogeneous prime ideal of Y , we denote by RY ,• the quotient graded ring R•/P•.
Note that each RY ,n is naturally equipped with the quotient norm family ξY ,n of ξn so
that RY ,• becomes a graded algebra of adelic vector bundles (cf. Proposition 1.1.71,
Proposition 4.1.19 and Proposition 4.1.24).
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Theorem 7.2.1 We assume that the adelic curve S satisfies the tensorial minimal
slope property of level > C0, where C0 > 0. LetSX be the set of all integral closed
subschemes of X . To each Y ∈ SX we assigne a real number υY , a positive integer
nY and a non-zero element sY in RY ,nY such that d̂egξY ,nY (sY ) > nYυY . Then there
exists a finite subsetS ofSX such that

lim inf
n→+∞

µ̂min(Rn)

n
> min{υ(Y ) : Y ∈ S}. (7.3)

In particular, one has

lim inf
n→+∞

µ̂min(Rn, ξn)

n
> inf

Y ∈SX

lim sup
n→+∞

ν1(RY ,n, ξY ,n)

n
(7.4)

Proof Step 1: For any positive integer h, we set

R(h)
n := Rhn and R(h) =

⊕
n∈N

R(h)
n .

If we assign υhY , hnY and shY to each Y ∈ SX , then shY ∈ RY ,hnY \ {0} and

d̂egξY ,hnY
(shY ) > h · d̂egξY ,nY (sY ) > hυY ,

so that the above assignment satisfies the condition of the theorem for R(h). Moreover,
R is a finitely generated h-graded R(h)-module (cf. [111, Lemma 5.44]). By using
Proposition 7.1.6, we can see that if the theorem holds for R(h), then it holds for
R. Therefore, by [31, Chapitre III, §1, Proposition 3], we may assume that R is
generated by R1 over R0 and nX = 1. Let OX (1) be the tautological invertible sheaf
of X arising from R1.

We prove the theorem by induction on d = dim X .

Step 2: In the case where d = 0, X = Spec(F) for some finite extension field F
over K , so that Rn ⊆ H0(X,OX (n)) � F. Therefore, dimK (Rn) 6 [F : K] for all
n ∈ N. Let us consider the following sequence of homomorphisms:

R0
sX ·
−→ R1

sX ·
−→ R2

sX ·
−→ R3

sX ·
−→ · · ·

sX ·
−→ Rn−1

sX ·
−→ Rn

sX ·
−→ · · · ,

Note that each homomorphism is injective and dimK (Rn) is bounded, so that we can
find a positive integer N such that Rn

sX ·
−→ Rn+1 is an isomorphism for all n ∈ N>N .

Therefore, by Proposition 4.3.31,

µ̂min(Rn) > µ̂min(RN ) + (n − N) d̂egξ1
(sX ) > µ̂min(RN ) + (n − N)υX,

which leads to

lim inf
n→+∞

µ̂min(Rn)

n
> υX .
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Step 3: We assume d > 0. Let I• be the homogeneous ideal generated by sX , that
is, I• = R•sX . By using the same ideas as in [85, Chapter I, Proposition 7.4], we can
find a sequence

I• = I0,• ( I1,• ( · · · ( Ir ,• = R•

of homogeneous ideals of R• and non-zero homogeneous prime ideals P1,•, . . . ,Pr ,•

of R• such that Pi,• · Ii,• ⊆ Ii−1,• for i ∈ {1, . . . ,r}.

Step 4: Consider the following sequence:

R0
·sX
−→ I0,1 ↪→ · · · ↪→ Ii,1 ↪→ · · · ↪→ Ir ,1 = R1
...

...
...

...
...

...
·sX
−→ I0, j ↪→ · · · ↪→ Ii, j ↪→ · · · ↪→ Ir , j = Rj
·sX
−→ I0, j+1 ↪→ · · · ↪→ Ii, j+1 ↪→ · · · ↪→ Ir , j+1 = Rj+1
...

...
...

...
...

...
·sX
−→ I0,n ↪→ · · · ↪→ Ii,n ↪→ · · · ↪→ Ir ,n = Rn

By using Proposition 4.3.33, one has

µ̂min(Rn) > min
{

min
i∈{1,...,r }
j∈{1,...,n}

µ̂min(Ii, j/Ii−1, j) + (n − j)υX, µ̂min(R0) + nυX
}
. (7.5)

For any i ∈ {1, . . . ,r}, let Yi be the integral closed subscheme defined by Pi . By
Proposition 7.1.6, one has

lim inf
m→+∞

µ̂min(Ii,m/Ii−1,m)

m
> lim inf

m→+∞

µ̂min(RYi ,m)

m

Moreover, by the induction hypothesis, there is a finite subsetSi ofSYi such that

lim inf
m→+∞

µ̂min(RYi ,m)

m
> min{υZ : Z ∈ Si}.

Therefore the estimate (7.5) leads to

lim inf
n→+∞

µ̂min(Rn)

n
> min

{
υZ : Z ∈ {X} ∪

r⋃
i=1
Si

}
.

The inequality (7.3) is thus proved.

Step 5: We show how to deduce (7.4) from (7.3). Let δ be an arbitrary positive
number. For any Y ∈ SX , there exist a positive integer nY and a non-zero element sY
in RY ,nY such that

d̂egξY ,nY (sY )
nY

> lim sup
n→+∞

ν1(RY ,n, ξY ,n)

n
− δ.
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Hence the inequality (7.3) leads to

lim inf
n→+∞

µ̂min(Rn, ξn)

n
> inf

Y ∈SX

lim sup
n→+∞

ν1(RY ,n, ξY ,n)

n
− δ.

Since δ > 0 is arbitrary, the inequality (7.4) holds. �

Remark 7.2.2 Consider the following variante of the above theorem. Assume that
R• is generated as R0-algebra by R1. By using Proposition 4.3.13, we obtain that, for
integers n and m such that 1 6 m 6 n, one has

d̂eg(Rn) >
n∑
j=1

r∑
i=1

d̂eg(Ii, j/Ii−1, j) + d̂eg(R0) + υX

n−1∑
k=0

dimK (Rk)

>
m∑
j=1

r∑
i=1

d̂eg(Ii, j/Ii−1, j)

+ min
i∈{1,...,r }

inf
`∈N>m

µ̂min(Ii,`/Ii−1,`)

`

n∑
j=m+1

j dimK (Rj/Rj−1)

+ d̂eg(R0) + υX

n−1∑
k=0

dimK (Rk).

Dividing the two sides by n dimK (Rn) and letting n tend to the infinity, we obtain

lim inf
n→+∞

µ̂(Rn)

n
>

d
d + 1

min
i∈{1,...,r }

inf
`∈N>m

µ̂min(Ii,`/Ii−1,`)

`
+

1
d + 1

υX,

where we have used the geometric Hilbert-Samuel theorem asserting that rk(Rn) =

deg(X)nd+O(nd−1), with d being the Krull dimension of the scheme X , which leads
to

lim
n→+∞

1
n dimK (Rn)

n−1∑
j=0

dimK (Rj) =
1

d + 1
.

Since m is arbitrary, we obtain

lim inf
n→+∞

µ̂(Rn)

n
>

d
d + 1

min
i∈{1,...,r }

min
Z∈Si

υZ +
1

d + 1
υX . (7.6)

Note that in the general case where R• is not necessarily generated by R1, the same
argument leads to

lim sup
n→+∞

µ̂(Rn)

n
>

d
d + 1

min
i∈{1,...,r }

min
Z∈Si

υZ +
1

d + 1
υX . (7.7)

In the case where the adelic curve S satisfies the Minkowski property and the norm
families ξn are ultrametric onΩ\Ω∞, by the same argument as in Step 5 of the proof
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of Theorem 7.2.1, one obtains

lim sup
n→+∞

µ̂(Rn)

n
>

1
d + 1

lim sup
n→+∞

µ̂max(Rn)

n
+

d
d + 1

inf
Y ∈SX
Y(X

lim sup
n→+∞

µ̂max(RY ,n)

n
, (7.8)

and, when R• is generated as an R0-algebra by R1, one obtains

lim inf
n→+∞

µ̂(Rn)

n
>

1
d + 1

lim sup
n→+∞

µ̂max(Rn)

n
+

d
d + 1

inf
Y ∈SX
Y(X

lim sup
n→+∞

µ̂max(RY ,n)

n
. (7.9)

Corollary 7.2.3 We keep the notation and hypothesis of Theorem 7.2.1, and assume
in addition that the adelic curve S satisfies the Minkowski property and all norm
families ξn are ultrametric on Ω \ Ω∞. LetSX ,0 be the set of all closed points of X .
One has

lim inf
n→+∞

µ̂min(Rn, ξn)

n
> inf

z∈SX ,0
lim sup
n→+∞

µ̂max(Rz,n, ξz,n)

n
. (7.10)

Proof We denote by λ the term on the right hand side of the inequality (7.10) and
we will prove the inequality by induction on the Krull dimension d of X . By the
Minkowski property and Remark 7.2.2, we obtain that, for any z ∈ SX ,0, one has

lim sup
n→+∞

ν1(Rz,n, ξz,n)

n
> λ.

Therefore, by Theorem 7.2.1 we obtain that the inequality (7.10) holds when d = 0.
In the following, we assume that d > 0 and that the statement is true for integral
schemes of dimension < d. In particular, the induction hypothesis leads to

lim sup
n→+∞

µ̂max(RY ,n, ξY ,n)

n
> λ

for any integral closed subscheme Y ( X . Therefore, by Theorem 7.2.1 we obtain
that the inequality (7.10) holds once

lim inf
n→+∞

µ̂min(Rn, ξn)

n
< lim sup

n→+∞

µ̂max(Rn, ξn)

n
.

It remains the case where the equality

lim inf
n→+∞

µ̂min(Rn, ξn)

n
= lim sup

n→+∞

µ̂max(Rn, ξn)

n
= lim sup

n→+∞

ν̂1(Rn, ξn)

n
.

In this case, these infimum and supremum limits are actually limits, and are both
equal to

lim
n→+∞

µ̂(Rn, ξn)

n
.

Since d > 0, by (7.8) we still get the inequality (7.10). �
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Under the strong tensorial minimal slope property (see Definition 6.3.30), Theo-
rem 7.2.1 admits the following analogue.

Theorem 7.2.4 We assume that the adelic curve S satisfies the strong tensorial
minimal slope property of level > C1, where C1 ∈ R>0. Let SX be the set of all
integral closed subschemes of X . Then one has

lim inf
n→+∞

µ̂min(Rn)

n
> inf

Y ∈SX

lim sup
m→+∞

µ̂1(RY ,m)

m
.

Proof We reason by induction on the dimension d of the scheme X .
First we treat the case where d = 0. Let m be an integer, m > 1. Let E be a vector

subspace of Rm such that µ̂min(E) = µ̂1(Rm). There exists an integer N ∈ N>1 such
that, for any p ∈ N>1, the canonical K-linear map

RmN ⊗ E ⊗p −→ Rm(N+p)

is surjective. Therefore, by Proposition 4.3.31 and the strong tensorial minimal slope
property (by an argument similar to the Step 2 of the proof of Theorem 7.2.1), one
has

µ̂min(Rm(N+p)) > µ̂min(RmN )−C1 ln(dimK (RmN ))+p
(
µ̂1(Rm)−C1 ln(dimK (E))

)
> µ̂min(RmN )−C1 ln(dimK (RmN ))+p

(
µ̂1(Rm)−C1 ln(dimK (Rm))

)
.

Dividing the two sides by m(N + p) and letting p tend to +∞, by Proposition 7.1.6
we obtain

lim inf
n→+∞

µ̂min(Rn)

n
>
µ̂1(Rm)

m
− C1

ln(dimK (Rm))

m
.

Note that
lim

m→+∞

ln(dimK (Rm))

m
= 0.

Therefore, by taking the limsup when m → +∞, we obtain

lim inf
n→+∞

µ̂min(Rn)

n
> lim sup

m→+∞

µ̂1(Rm)

m
.

We now assume that d > 1. Let m be an integer such that m > 1. Let E be a
vector subspace of Rm such that µ̂min(E) = µ̂1(Rm). Let I• be the homogeneous ideal
of R(m)

• =
⊕

n∈N Rmn generated by E . That is, for any n ∈ N, In is the image of the
canonical homomorphism

R(n−1)m ⊗ E −→ Rnm.

As in the the proof of Theorem 7.2.1, we let

I• = I0,• ( I1,• ( . . . ( Ir ,• = R(m)
•
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be a sequence of homogeneous ideals of R(m)
• and P1,•, . . . ,Pr ,• be non-zero homo-

geneous prime ideals of R(m) such that Pi,• · Ii,• ⊂ Ii−1,• for i ∈ {1, . . . ,r}. Let p be
an integer in N>1. We denote by Fp the image of the canonical K-linear map

R0 ⊗ E ⊗p −→ Rmp .

Consider the following sequence:

Fp = I0,1Ep−1 ↪→ · · · ↪→ Ii,1Ep−1 ↪→ · · · ↪→ Ir ,1Ep−1

...
...

...
...

...
...

= I0, jEp−j ↪→ · · · ↪→ Ii, jEp−j ↪→ · · · ↪→ Ir , jEp−j

= I0, j+1Ep−j−1 ↪→ · · · ↪→ Ii, j+1Ep−j−1 ↪→ · · · ↪→ Ir , j+1Ep−j−1

...
...

...
...

...
...

= I0,p ↪→ · · · ↪→ Ii,p ↪→ · · · ↪→ Ir ,p = Rmp

By Proposition 4.3.33 we obtain that

µ̂min(Rmp) > min
{
µ̂min(Fp), min

i∈{1,...,r }
j∈{1,...,p}

µ̂min(Ii, jEp−j/Ii−1, jEp−j)

}
. (7.11)

By Proposition 4.3.31 and the strong tensorial minimal slope property, one has

µ̂min(Fp) > µ̂min(R0) − C1 ln(dimK (R0)) + p
(
µ̂min(E) − C1 ln(dimK (E))

)
> µ̂min(R0) − C1 ln(dimK (R0)) + p

(
µ̂1(Rm) − C1 ln(dimK (Rm))

)
.

Similarly, for any (i, j) ∈ {1, . . . ,r} × {1, . . . ,n}, one has

µ̂min(Ii, jEp−j/Ii−1, jEp−j) > µ̂min(Ii, j/Ii−1, j) − C1 ln(dimK (Ii, j/Ii−1, j))

+ (p − j)
(
µ̂min(E) − C1 ln(dimK (E))

)
.

For any i ∈ {1, . . . ,r}, let Yi be the integral closed subscheme defined by Pi . By
Proposition 7.1.6, one has

lim inf
j→+∞

µ̂min(Ii, j/Ii−1, j)

j
> lim inf

j→+∞

µ̂min(RYi , j)

j
> min

Z∈SYi

lim sup
k→+∞

µ̂1(RZ ,k)

k
,

where the second inequality comes from the induction hypothesis. Therefore, if we
denote by υ the value

inf
Z∈SX

lim sup
k→+∞

µ̂1(RZ ,k)

k
,

then the inequality (7.11) leads to

lim inf
n→+∞

µ̂min(Rn)

n
= lim inf

p→+∞

µ̂min(Rmp)

mp
> min

{ µ̂1(Rm)

m
− C1

ln(dimK (Rm))

m
, υ

}
,
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where the equality comes from Proposition 7.1.6. By taking the limsup when m →

+∞, we obtain

lim inf
n→+∞

µ̂min(Rn)

n
> υ,

as desired. �

7.3 A consequence of the extension property of semipositive
metrics

The purpose of this section is to prove the following theorem as a consequence of the
extension property of semipositive metrics (cf. Theorem 2.3.32 and Theorem 2.3.36).

Theorem 7.3.1 Let X be a geometrically reduced projective K-scheme, L be a
semiample invertible OX -module, and ϕ = {ϕω}ω∈Ω be a metric family of L. Let Y
be a closed subscheme of X , and ϕ|Y = {ϕ|Y ,ω}ω∈Ω be the restriction of ϕ to Y . For
each n ∈ N, let ξn := {‖·‖nϕω }ω∈Ω, ξn |Y := {‖·‖nϕ |Y ,ω }ω∈Ω, RY ,n be the image of
H0(X, L⊗n) → H0(Y, L | ⊗nY ) and ξY ,n = {‖·‖Y ,n,ω}ω∈Ω be the quotient norm family
on RY ,n induced by H0(X, L⊗n) → RY ,n and ξn. If ϕ is dominated and measurable
and ϕω is semipositive for all ω ∈ Ω, then we have the following:

(1) The norm families ξn and ξY ,n are dominated and measurable for all n > 0.
(2) For any n ∈ N and s ∈ RY ,n, the function (ω ∈ Ω) 7→ ln‖s‖ω is measurable and

upper dominated.
(3) For s ∈ RY ,1 \ {0}, one has (see Remark 4.3.3 for notation)

lim
n→∞

d̂egξY ,n (s
⊗n)

n
= d̂eg ξ1 |Y

(s). (7.12)

Proof (1) First, by Theorem 6.1.13 and Theorem 6.1.32, ξn is dominated and mea-
surable for n > 0. Moreover, by Theorem 6.1.13 and Theorem 6.1.32 together
with Proposition 6.1.12 and Proposition 6.1.28, ξn |Y is dominated and measurable
for n > 0. Finally, by virtue of Proposition 4.1.19 and Proposition 4.1.24, ξY ,n is
dominated and measurable for n > 0.

(2) follows from Remark 6.1.17 (for the upper dominancy), propositions 6.1.20
and 6.1.26 (for the measurability).

Before starting the proof of (3), we need to prepare several facts. We set ξY ,n =
{‖·‖Y ,n,ω}ω∈Ω. We claim the following:

Claim 7.3.2 (a) For all ω ∈ Ω, n > 0 and s ∈ RY ,n,ω ,

‖s‖nϕ |Y ,ω 6 ‖s‖Y ,n,ω .

(b) For all ω ∈ Ω, n > 1 and s ∈ RY ,1,ω \ {0},
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ln ‖s‖ϕ |Y ,ω 6
ln ‖s⊗n‖Y ,n,ω

n
6 ln ‖s‖Y ,1,ω .

(c) For all ω ∈ Ω and s ∈ RY ,1,ω \ {0},

lim
n→∞

ln ‖s⊗n‖Y ,n,ω
n

= ln ‖s‖ϕ |Y ,ω .

�

Proof (a) Note that, for all l ∈ H0(X, L⊗n)with l |Y = s, one has ‖s‖nϕ |Y ,ω 6 ‖l‖nϕω ,
so that the assertion follows.

(b) By Proposition 1.1.71, ‖s⊗n‖Y ,n,ω 6
(
‖s‖Y ,1,ω

) n. Moreover, by (a),(
‖s‖ϕ |Y ,ω

) n
= ‖s⊗n‖nϕ |Y ,ω 6 ‖s⊗n‖Y ,n,ω,

so that one has (b).
(c) For a positive number ε , by Theorem 2.3.32 and Theorem 2.3.36, there is a

positive integer n0 such that, for all n > n0, we can find l ∈ H0(Xω, L⊗n
ω ) such that

l |Yω = s⊗n and ‖l‖nϕω 6 enε
(
‖s‖ϕ |Y ,ω

) n, and hence

ln ‖s⊗n‖Y ,n,ω 6 ln ‖l‖nϕω 6 nε + n ln ‖s‖ϕ |Y ,ω .

Therefore, by (b),

0 6
ln ‖s⊗n‖Y ,n,ω

n
− ln ‖s‖ϕ |Y ,ω 6 ε

for all n > n0, as required. �

(3) By (1) and (2), the function (ω ∈ Ω) 7→ ln ‖s‖ϕ |Y ,ω is measurable and upper
dominated. By the reverse Fatou lemma, (c) leads to

lim sup
n→+∞

1
n

∫
Ω

ln‖s⊗n‖Y ,n,ω ν(dω) 6
∫
Ω

ln ‖s‖ϕ |Y ,ω ν(dω),

which is equivalent to

lim inf
n→∞

d̂egξY ,n (s
⊗n)

n
> d̂eg ξ1 |Y

(s).

In particular, the equality (7.12) holds when d̂eg ξ1 |Y
(s) = +∞. In the case where

d̂eg ξ1 |Y
(s) is finite, the function

(ω ∈ Ω) 7→

��� ln ‖s‖ϕ |Y ,ω
���

is integrable. By (1), the function

(ω ∈ Ω) 7→

��� ln ‖s‖Y ,1,ω
���
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is also integrable. Moreover, by (b), one has���� ln ‖s⊗n‖Y ,n,ω
n

���� 6 max
{��� ln ‖s‖ϕ |Y ,ω

���, ��� ln ‖s‖Y ,1,ω
���} ,

and hence, by Lebesgue’s dominated convergence theorem together with (c),

lim
n→∞

1
n

∫
Ω

ln ‖s⊗n‖Y ,n,ω ν(dω) =
∫
Ω

ln ‖s‖ϕ |Y ,ω ν(dω),

which shows (7.12). �

Remark 7.3.3 We keep the notation and hypotheses of Theorem 7.3.1. Let z be a
closed point of X . For any n ∈ N, let Rz,n be the image of the restriction map
H0(X, L⊗n) → z∗(L⊗n) and ξz,n be the quotient norm family of ξn on Rz,n. Let κ(z)
be the residue field of z. For any ω ∈ Ω and any x ∈ Mκ(z),ω (namely |·|x is an
absolute value of κ(z) extending |·|ω , see §3.3), if s is a non-zero element of RY ,1,
one has

ln |s |ϕω (zx) 6
ln ‖s⊗n‖z,n,ω

n
,

where zx denotes the point of Xan
ω given by the couple (z, |·|x). Moreover, the semi-

positivity of the metric ϕω leads to

lim
n→+∞

ln |s |ϕω (zx) = lim
n→+∞

ln‖s⊗n‖z,n,ω
n

.

In particular, one has

h(L,ϕ)(z) = −

∫
Ω

∫
Mκ(x),ω

ln |s |ϕω (zx)Pκ(x),ω(dx)ν(dω)

= − lim
n→+∞

1
n

∫
Ω

ln‖s⊗n‖z,n,ω = lim
n→+∞

1
n

d̂egξz ,n (s
⊗n)

6 lim sup
n→+∞

ν1(Rz,n, ξz,n)

n
.

7.4 Nakai-Moishezon’s criterion in a general settings

In this section, let us consider the following Nakai-Moishezon’s criterion in a general
settings:

Theorem 7.4.1 Let X be an integral and geometrically reduced projective K-scheme,
L be an invertible OX -module and ϕ = {ϕω}ω∈Ω be a metric family of L. For any
n ∈ N, let ξn := {‖·‖nϕω }ω∈Ω and let ξn |Y := {‖·‖nϕ |Y ,ω }ω∈Ω for any integral closed
subscheme Y of X . We assume the following:
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(1) (Dominancy and measurability) The metric family ϕ is dominated and measur-
able.

(2) (Semipositivity) L is semiample and ϕω is semipositive for all ω ∈ Ω.
(3) (Bigness) For every integral closed subscheme Y of X , L |Y is big, and there are

a positive number nY and sY ∈ H0(Y, L⊗nY
��
Y
) \ {0} such that d̂eg ξnY

��
Y
(sY ) > 0.

Then one has

lim inf
n→∞

µ̂min
(
H0(X, L⊗n), ξn

)
n

> 0. (7.13)

Moreover, if the adelic curve S satisfies the strong Minkowski property, then

lim inf
n→∞

νmin
(
H0(X, L⊗n), ξn

)
n

> 0, (7.14)

so that, there are a positive integer n and a basis {ei}Ni=1 of H0(X, L⊗n) such that
d̂egξn (ei) > 0 for i = 1, . . . ,N .

Proof First of all, for each integral closed subscheme Y of X , as L |Y is nef and big,
one has (L |dimY

Y ) > 0, so that by the classic Nakai-Moishezon criterion, L is ample.
For any subvariety Y of X , we set

RY ,n := the image of the natural homomorphism H0(X, L⊗n) → H0(Y, L | ⊗nY ),

RY ,n,ω := RY ,n ⊗K Kω (ω ∈ Ω),

‖·‖Y ,n,ω := the quotient norm of ‖·‖nϕω on RY ,n,ω (ω ∈ Ω),

ξY ,n := {‖·‖Y ,n,ω}ω∈Ω.

Claim 7.4.2 There are a positive number n′
Y and s′Y ∈ RY ,n′Y

\ {0} such that
d̂egξY ,n′

Y

(s′Y ) > 0. �

Proof Fix a positive integer n0 such that the natural homomorphism

H0(X, L⊗n) → H0(Y, L | ⊗nY )

is surjective for all n > n0, that is, RY ,n = H0(Y, L | ⊗nY ) for all n > n0, so that
s⊗n0
Y ∈ RY ,n0nY \ {0}. By Theorem 7.3.1 (3), one has

lim
n→∞

d̂egξY ,nn0nY
(s⊗nn0
Y )

n
= d̂eg ξn0nY

��
Y
(s⊗n0
Y ) = n0d̂eg ξnY

��
Y
(sY ) > 0,

so that there is a positive integer n1 such that d̂egξY ,n1n0nY
(s⊗n1n0
Y ) > 0. Therefore, if

we set n′
Y := n1n0nY and s′Y := s⊗n1n0

Y , one has the claim. �

The assertion (7.13) follows from the above claim together with Theorem 7.2.1.
Further, if S satisfies the strong Minkowski property, then there is a constant C
depending only on S such that
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νmin(H0(X, L⊗n), ξn) + C ln(dimK H0(X, L⊗n)) > µ̂min(H0(X, L⊗n), ξn),

and hence the assertion (7.14) follows. �

Remark 7.4.3 In the case where Ω = Ω0 and #(Ω0) = 1, S satisfies the strong
Minkowski property of level > 0, that is, if E is a finite-dimensional vector space over
K and ‖·‖ is an ultrametric norm of E over (K, |·|), then νmin(E, ‖·‖) = µ̂min(E, ‖·‖),
which can be checked as follows:

In general, one has νmin(E, ‖·‖) 6 µ̂min(E, ‖·‖) by Proposition 4.3.77, so that it
is sufficient to show that νmin(E, ‖·‖) > µ̂min(E, ‖·‖). Let {ei}ri=1 be an orthogonal
basis of E with respect to ‖·‖ (cf. Proposition 1.2.30). Clearly we may assume
that ‖er ‖ = max{‖e1‖, . . . , ‖er ‖}. Let Q := E/(Ke1 + · · · + Ker−1) and ‖·‖Q be the
quotient norm of ‖·‖ on Q. Then ‖π(er )‖Q = ‖er ‖, where π : E → Q is the canonical
homomorphism. Thus − log ‖er ‖ > µ̂min(E, ‖·‖), and hence d̂eg(ei) > µ̂min(E, ‖·‖)
for all i. Therefore, one has νmin(E, ‖·‖) > µ̂min(E, ‖·‖).

Lemma 7.4.4 We assume that the adelic curve S satisfies the Minkowski property
and the tensorial minimal slope property. Let X be an integral and geometrically
reduced projective K-scheme, L be an ample invertible OX -module, ϕ = {ϕω}ω∈Ω

be a dominated and measurable metric family on L such that ϕω is semipositive for
any ω ∈ Ω. Then one has

lim inf
n→+∞

µ̂min(H0(X, L⊗n), ξn)

n
> inf

z∈X(Kac)
h(L,ϕ)(z), (7.15)

where for any n ∈ N, ξn = {‖·‖nϕω }ω∈Ω.

Proof Denote by R• the graded sectional algebra
⊕

n∈N H0(X, L⊗n). For any closed
point z of X and any n ∈ N, let Rz,n be the image of the restriction map H0(X, L⊗n) →

z∗(L⊗n) and ξz,n be the quotient norm family of ξn on Rz,n. By Corollary 7.2.3, one
has

lim inf
n→+∞

µ̂min(Rn, ξn)

n
> inf

z∈SX ,0
lim sup
n→+∞

µ̂max(Rz,n, ξz,n)

n
,

where SX ,0 denotes the set of all closed points of X . Moreover, by Remark 7.3.3,
one has

lim sup
n→+∞

µ̂max(Rz,n, ξz,n)

n
> lim sup

n→+∞

ν1(Rz,n, ξz,n)

n
> h(L,ϕ)(z)

for any z ∈ SX ,0. Therefore the inequality (7.15) holds. �

Definition 7.4.5 Let X be a geometrically integral scheme over Spec K , L be an
ample invertible OX -module, ϕ = {ϕω}ω∈Ω be a dominated and measurable metric
family on L. We denote by νabs(L, ϕ) the infimum of the height function h(L,ϕ), called
the absolute minimum of (L, ϕ).

Theorem 7.4.6 We assume that the adelic curve S satisfies the strong Minkowski
property and the tensorial minimal slope property. Let X be an integral and ge-
ometrically reduce projective K-scheme, L be an ample invertible OX -module,
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ϕ = {ϕω}ω∈Ω be a dominated and measurable metric family on L such that ϕω
is semipositive for any ω ∈ Ω. Then the following inequality holds.

µ̂
asy
min(L, ϕ) := lim inf

n→+∞

µ̂min(H0(X, L⊗n), ξn)

n
= νabs(L, ϕ), (7.16)

where for any n ∈ N, ξn = {‖·‖nϕω }ω∈Ω, and d is the Krull dimension of X .

Proof For any n ∈ N, let En := H0(X, L⊗n). Since the adelic curve S satisfies the
strong Minkowski property, one has

µ̂
asy
min(L, ϕ) = lim inf

n→+∞

νmin(En, ξn)

n

6 lim inf
n→+∞

νa
min(En, ξn)

n
6 lim inf

n→+∞

µ̂min(En,Kac, ξn,Kac )

n
,

where the second inequality comes from Proposition 4.3.71 and the last inequality
comes from Corollary 4.3.78. Let P be an algebraic point of X . For sufficiently
positive integer n, the invertible OX -module L⊗n is very ample hence defines a closed
embedding X → P(En). Let OEn (1) be the universal invertible sheaf on P(En). Then,
viewed as a quotient vector space of dimension 1 of En,Kac , the Arakelov degree
of P∗(OEn (1)) (equipped with the quotient norm family) is bounded from above
by nh(L,ϕ)(P) and bounded from below by µ̂min(En,Kac, ξn,Kac ). Therefore we obtain
µ̂

asy
min(L, ϕ) 6 h(L,ϕ)(P). Since P ∈ X(Kac) is arbitrary, this leads to the inequality

µ̂
asy
min(L, ϕ) 6 νabs(L, ϕ).

Moreover, by Lemma 7.4.4 the converse inequality also holds. Therefore the equality
(7.16) is proved.

7.5 Nakai-Moishezon’s criterion over a number field

Throughout this section, we fix a number field K and the standard adelic curve
S = (K, (Ω,A, ν), φ) of K as in Subsection 3.2.2. Denote by Ωfin the set Ω \ Ω∞ of
finite places of K , and by oK the ring of algebraic integers in K . Note that S satisfies
the strong Minkowski property (see [44, Theorem 1.1]). Moreover, for ω ∈ Ωfin, the
valuation ring of the completion Kω of K with respect to ω is denoted by oω .
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7.5.1 Invariants � and � for a graded algebra of adelic vector bundles

Let R• = {(Rn, ξn)}n∈Z>0 be a graded algebra of adelic vector bundles on S such that
(Rn, ξn) is dominated and coherent for all n > 0. For the definition of the invariants
� and �, see Subsection 4.4.3.

Definition 7.5.1 We say that R• is asymptotically pure if

lim sup
n→∞

�(Rn, ξn)

n
= 0.

As a consequence of Proposition 4.4.10, we have the following:

Proposition 7.5.2 One has the following inequalities:

[K : Q] lim inf
n→+∞

�(Rn, ξn)

n
6 lim inf

n→+∞

νmin(Rn, ξn)

n

6 [K : Q] lim inf
n→+∞

�(Rn, ξn)

n
+ lim sup

n→+∞

�(Rn, ξn)

n
.

In particular, if R• is asymptotically pure, then

[K : Q] lim inf
n→+∞

�(Rn, ξn)

n
= lim inf

n→+∞

νmin(Rn, ξn)

n
.

Let M• = {(Mn, ξMn )}n∈Z be an h-graded R•-module such that (Mn, ξn) is domi-
nated and coherent for all n ∈ Z.

Proposition 7.5.3 (1) If R• is generated by R1 over K , then lim
n→∞

�(Rn, ξn)

n
exists in

R ∪ {∞}.
(2) If R• =

⊕∞

n=0 Rn is of finite type over K and M• =
⊕

n∈Z Mn is finitely generated
over R•, then

1
h

lim inf
n→∞

�(Rn, ξn)

n
6 lim inf

n→∞

�(Mn, ξMn )

n
.

Proof We set Rn := (Rn, ξn)
fin
61 for n > 0, and Mn := (Mn, ξMn )

fin
61 for n ∈ Z.

(1) For ε > 0, we choose bases e1, . . . , er and e′1, . . . , e
′
r′ of Rn and Rm over K ,

respectively, such that{
e1, . . . , er ∈ Rn, max{‖ei ‖∞,n} 6 e−�(Rn ,ξn)+ε ,

e′1, . . . , e
′
r′ ∈ Rm, max{‖e′j ‖∞,n} 6 e−�(Rm ,ξm)+ε .

Then eie′j ∈ Rn+m and max{‖eie′j ‖∞,n+m} 6 e−�(Rn ,ξn)−�(Rn ,ξn)+2ε . Note that {eie′j}
forms generators of Rn+m over K because Rn ⊗ Rm → Rn+m is surjective, so that
e−�(Rn+m ,ξn+m) 6 e−�(Rn ,ξn)−�(Rn ,ξn)+2ε . Therefore, one has
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�(Rn+m, ξn+m) > �(Rn, ξn) + �(Rn, ξn)

for all n,m. Thus the assertion follows from Fekete’s lemma.

(2) It can be proved in the similar way as in Proposition 7.1.4. First we assume
that R• is generated by R1 over K . Then there exist integers b1 and m > 0 such that,
for any integer b with b > b1 and any integer ` > 1 the canonical K-linear map
R`m ⊗K Mb → Mb+`mh is surjective. For ε > 0, we choose a basis e1, . . . , er of
R`m and a basis m1, . . . ,mr′ of Mb such that e1, . . . , er ∈ R`m, m1, . . . ,mr′ ∈ Mb ,
max{‖ei ‖∞,`m} 6 e−�(R`m ,ξ`m)+ε and max{‖mj ‖∞,Mb

} 6 e−�(Mb ,ξMb
)+ε . Note that

eimj ∈ Mb+`mh and

‖eimj ‖∞,Mb+`mh
6 e−�(R`m ,ξ`m)−�(Mb ,ξMb

)+2ε .

Moreover we can find a basis of Mb+`mh among {eimj}16i6r ,16 j6r′ , so that

e−�(Mb+`mh ,ξMb+`mh
) 6 e−�(R`m ,ξ`m)−�(Mb ,ξMb

)+2ε ,

and hence one has

�(Mb+`mh, ξMb+`mh
) > �(R`m, ξ`m) + �(Mb, ξMb

).

Therefore,

lim inf
l→∞

�(Mb+`mh, ξMb+`mh
)

`mh
>

1
h

lim inf
l→∞

�(R`m, ξ`m)
`m

>
1
h

lim inf
n→∞

�(Rn, ξn)

n
,

which implies

lim inf
n→∞

�(Mn, ξMn )

n
>

1
h

lim inf
n→∞

�(Rn, ξn)

n
because b > b1 is arbitrary.

In general, we can find a positive integer u such that R(u)
• :=

⊕∞

n=0 Run is
generated by R(u)

1 = Ru over K . Note that R• is a finitely generated R(u)
• -module.

Therefore, by the previous observation, one has
lim inf
n→∞

�(Rn, ξn)

n
>

1
u

lim inf
n→∞

�(Run, ξun)

n
,

lim inf
n→∞

�(Mn, ξMn )

n
>

1
hu

lim inf
n→∞

�(Run, ξun)

n
.

Moreover, as
lim inf
n→∞

�(Run, ξun)

un
> lim inf

m→∞

�(Rm, ξm)

m
,

one obtains
lim inf
n→∞

�(Rn, ξn)

n
=

1
u

lim inf
n→∞

�(Run, ξun)

n
.

Thus the assertion follows. �
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7.5.2 Dominancy and coherency of generically pure metric

Let X be a geometrically integral projective variety over K and L be an invertible
sheaf on X . For ω ∈ Ω, let Xω := X ×SpecK Kω and Lω := L ⊗OX

OXω . Let ϕω be
a continuous metric of Lω on Xan

ω for each ω ∈ Ω, and ϕ := {ϕω}ω∈Ω.
Let us begin with the definition of the generic purity of the metric family ϕ.

Definition 7.5.4 We say that ϕ is generically pure if there are a non-empty Zariski
open set U of Spec(oK ), a projective integral scheme X over U and an invertible
OX -module L such that X ×U Spec(K) = X , L |X = L and, for eachω ∈ U∩Ωfin,
ϕω coincides with the metric arising from Xω and Lω , where Xω =X ×USpec(oω)
and Lω is the pull-back of L to Xω .

Proposition 7.5.5 (1) If L is generated by global sections and ϕ is generically pure,
there exist a non-empty Zariski open set U of Spec(oK ) and a basis eee = {ei}ri=1
of H0(X, L) such that ϕω = ϕeee,ω for all ω ∈ U ∩Ωfin.

(2) If L is semiample and ϕ is generically pure, then ϕ is dominated and(
H0(X, L⊗n), {‖·‖nϕω }ω∈Ω

)
is coherent for all n > 0.

Proof (1): We use the notation in Definition 7.5.4. Shrinking U if necessarily, we
may assume that H0(X ,L ) is a free oU -module and H0(X ,L ) ⊗oU OX → L is
surjective. Let eee = {ei}ri=1 be a free basis of H0(X ,L ) over oU . Then {ei}ri=1 yields a
free basis of H0(Xω,Lω) overoω for anyω ∈ U∩Ωfin. Let ‖·‖H0(Xω ,Lω )

be the norm
of H0(Xω, L⊗r

ω ) arising from the lattice H0(Xω,Lω). Then, by Proposition 1.2.21,
‖·‖H0(Xω ,Lω )

= ‖·‖eee,ω for any ω ∈ U ∩Ωfin. Moreover, H0(Xω,Lω) ⊗oω OXω →

Lω is surjective, so that, by Proposition 2.3.12, one has ϕω = ϕeee,ω , as required.

(2) We choose a positive integer m such that L⊗m is generated by global sections
and αn : H0(X, L⊗m)⊗n → H0(X, L⊗nm) is surjective for all n > 1. Then, by (1),
there are a non-empty Zariski open set U of Spec(oK ) and a basis eee = {ei}ri=1
of H0(X, L⊗m) such that mϕω = ϕeee,ω for all ω ∈ U ∩ Ωfin. In particular, mϕ is
dominated, so that ϕ is also dominated by Proposition 6.1.12.

Forω ∈ U∩Ωfin, let ‖·‖⊗neee,ω be the ε-tensor products of ‖·‖eee,ω on H0(Xω, L⊗m
ω )⊗n.

Note that, by Proposition 1.2.19 together with (1.17) in Remark 1.1.56, ∑
(i1 ,...,ir )∈Z

r
>0 ,

i1+· · ·+ir=n

ai1 ,...,ir e⊗i1
1 ⊗ · · · ⊗ e⊗ir

r

⊗n
eee,ω

= max{|ai1 ,...,ir |ω}

for all ai1 ,...,iN ∈ Kω . Moreover, by Remark 2.2.19, nϕeee,ω coincides with the quotient
metric induced by the surjective homomorphism H0(Xω, L⊗m

ω )⊗n⊗KωOXω → L⊗nm
ω

and ‖·‖⊗neee,ω .
Fix s ∈ H0(X, L⊗n) (n > 1). Then s⊗m ∈ H0(X, L⊗mn). As αn is surjective, one

can choose
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f =
∑

(i1 ,...,ir )∈Z
r
>0 ,

i1+· · ·+ir=n

fi1 ,...,ir e⊗i1
1 ⊗ · · · ⊗ e⊗ir

r ∈ H0(X, L⊗m)⊗n ( fi1 ,...,ir ∈ K)

such that αn( f ) = s⊗m. Then, by Proposition 2.2.23,(
‖s‖nϕω

)m
= ‖s⊗m‖nmϕω = ‖s⊗m‖nϕeee ,ω 6 ‖ f ‖⊗neee,ω = max{| fi1 ,...,ir |ω},

for all ω ∈ U ∩ Ωfin, so that so that ‖s‖nϕω 6 1 for all ω ∈ Ω except finitely many
ω because Ω \ (U ∩ Ωfin) is finite and | fi1 ,...,ir |ω = 1 for all i1, . . . , ir and ω ∈ Ωfin
except finitely many ω. �

7.5.3 Fine metric family

Let X be a geometrically integral projective variety over K and L be an invertible
sheaf on X . For ω ∈ Ω, let Xω := X ×SpecK Kω and Lω := L ⊗OX

OXω . Let ϕω be
a continuous metric of Lω on Xan

ω for each ω ∈ Ω, and ϕ := {ϕω}ω∈Ω.

Definition 7.5.6 We say that ϕ is very fine if ϕ is dominated and there are a generically
pure continuous metric family ϕ′ = {ϕ′ω}ω∈Ω of L and a non-empty Zariski open
set U of Spec(oK ) such that |·|ϕω 6 |·|ϕ′

ω
for all ω ∈ U ∩ Ωfin. Further, ϕ is said to

be fine if rϕ is very fine for some positive integer r .

Proposition 7.5.7 Let L and M be invertible OX -module, and ϕ andψ be continuous
metric families of L and M , respectively.

(1) If ϕ and ψ are very fine, then ϕ + ψ is very fine.
(2) If ϕ and ψ are fine, then ϕ + ψ is fine.
(3) If aϕ is fine for some positive integer a, then ϕ is fine.
(4) If ϕ is fine, then

(
H0(X, L), {‖·‖ϕω }ω∈Ω

)
is coherent.

Proof (1) is obvious.
(2) We choose positive integers r and r ′ such that rϕ and r ′ψ are very fine. Then,

by (1), rr ′ϕ and rr ′ψ are very fine, so that rr ′(ϕ + ψ) is very fine, as required.
(3) Since aϕ is fine, there is a positive integer r such that raϕ is very fine, so that

ϕ is fine.
(4) Let r be a positive integer such that rϕ is very fine. Then there are a generically

pure continuous metric family ϕ′ = {ϕ′ω}ω∈Ω of L⊗r and a non-empty Zariski
open set U of Spec(oK ) such that |·|rϕω 6 |·|ϕ′

ω
for all ω ∈ U ∩ Ωfin, so that, for

s ∈ H0(X, L) \ {0} and ω ∈ U ∩ Ωfin, ‖s⊗r ‖rϕω 6 ‖s⊗r ‖ϕ′
ω

. By Proposition 7.5.5,
‖s⊗r ‖ϕ′

ω
6 1 except finitely many ω ∈ Ω. Therefore, the same assertion holds for

‖s⊗r ‖rϕω . Note that ‖s⊗r ‖rϕω = ‖s‖rϕω , and hence ‖s‖ϕω 6 1 except finitely many
ω ∈ Ω. �

For n > 0, we set Rn := H0(X, L⊗n) and ξn := {‖·‖nϕω }ω∈Ω. Note that
R• = {(Rn, ξn)}

∞
n=0 forms a graded algebra of adelic vector bundles over S (cf.
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Definition 7.1.1). For n > 0 and ω ∈ Ω, we denote Rn ⊗K Kω = H0(Xω, L⊗n
ω ) by

Rn,ω . Moreover, for n > 0 and ω ∈ Ωfin, we set Rn,ω := {x ∈ Rn,ω : ‖x‖n,ω 6 1}.
Note that Rn,ω is a locally free oω-module and Rn,ω ⊗oω Kω = Rn,ω (cf. Proposi-
tion 1.1.25 and Proposition 1.1.30). Further we set

Rn := {x ∈ Rn : ‖x‖n,ω 6 1 for all ω ∈ Ωfin}.

If (Rn, ξn) is dominated and coherent, then, by Proposition 4.4.2 and Proposi-
tion 4.4.6, Rn is finitely generated over oK , Rn ⊗oK K = Rn, Rn ⊗oK Kω = Rn,ω

and Rn ⊗oK oω = Rn,ω for all ω ∈ Ωfin.

Proposition 7.5.8 We assume that L is ample and ϕ is dominated. Then the following
are equivalent:

(1) The metric family ϕ is fine.
(2) (Rn, ξn) is coherent for all n > 0.

Proof (1) =⇒ (2): This is a consequence of Proposition 7.5.7.

(2) =⇒ (1): First note that (Rn, ξn) is dominated for n > 0 by Proposition 6.1.12
and Theorem 6.1.13. Moreover, by our assumption, (Rn, ξn) is coherent for every
n > 0.

Let r be a positive integer such that L⊗r is very ample. Let X be the Zariski
closure of X in P(Rr ) and L = OP(Rr )(1)

��
X

. Then L |X = L⊗r . Moreover, since
Rr ⊗oK OP(Rr ) → OP(Rr )(1) is surjective, Rr ⊗oK OX → L is also surjective.
For each ω ∈ Ωfin, let ψω be the metric of L⊗r

ω arising from Xω and Lω , where
Xω =X ×Spec(oK )Spec(oω) and Lω is the pull-back of L to Xω . Let ϕ′ = {ϕ′ω}ω∈Ω

be the metric family of L⊗r given by

ϕ′ω :=

{
ψω if ω ∈ Ωfin,

rϕω otherwise.

Here let us see
∀ω ∈ Ω, ∀ x ∈ Xan

ω , |·|rϕω (x) 6 |·|ϕ′
ω
(x). (7.17)

Clearly we may assume that ω ∈ Ωfin. Note that

Rr ,ω = {s ∈ H0(Xω,Lω) : ‖s‖rϕω 6 1}

and Rr ,ω ⊗ OXω → Lω is surjective, so that, by Proposition 2.3.12, (7.17) follows.
Therefore, rϕ is very fine, and hence ϕ is fine. �

Finally we consider the following theorem:

Theorem 7.5.9 If ϕ is very fine, then R• is asymptotically pure.

Proof By our assumption, ϕ is dominated and there are a generically pure continuous
metric family ϕ′ = {ϕ′ω}ω∈Ω of L and a non-empty Zariski open set U of Spec(oK )
such that |·|ϕω 6 |·|ϕ′

ω
for all ω ∈ U ∩Ωfin.
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First note that (Rn, ξn) is dominated for n > 0 by Proposition 6.1.12 and Theo-
rem 6.1.13. Moreover, by Proposition 7.5.7 or Proposition 7.5.8, (Rn, ξn) is coherent
for every n > 0.

By the generic purity of ϕ′, there are a non-empty Zariski open set U ′ of Spec(oK ),
a projective integral scheme X over U ′ and an invertible OX -module L such that
X ×U′ Spec(K) = X , L |X = L and, for each ω ∈ U ′ ∩ Ωfin, ϕ′ω coincides with
the metric arising from Xω and Lω , where Xω = X ×U Spec(oω) and Lω is the
pull-back of L to Xω . Replacing U and U ′ by U ∩U ′, we may assume that U = U ′.
Moreover, as X is geometrically integral over K , by virtue of [76, Théorème 9.7.7],
shrinking U if necessarily, we may also assume that, for any ω ∈ U ∩Ωfin, the fiber
of X → U over ω is geometrically integral over the residue field at ω. Then, by
Proposition 2.3.16,{

{x ∈ Rn : ‖x‖nϕ′
ω
6 1} = H0(Xω,L ⊗n

ω ) = H0(X ,L ⊗n) ⊗oU oω,

‖·‖nϕ′
ω
= ‖·‖H0(Xω ,L

⊗n
ω )

(7.18)

for all n > 1 and ω ∈ U ∩Ωfin.

Claim 7.5.10 (a) |·|nϕω (x) 6 |·|nϕ′
ω
(x) for all ω ∈ U ∩Ωfin, x ∈ Xan

ω and n > 1.
(b) ‖·‖nϕω 6 ‖·‖Rn ,ω 6 min

{
|$ω |

−1
ω ‖·‖nϕω , ‖·‖nϕ′

ω

}
for all ω ∈ U ∩ Ωfin and

n > 1, where $ω is a uniformizing parameter of oω . �

Proof (a) is obvious.
(b) First of all, by Proposition 1.1.30,

‖·‖nϕω 6 ‖·‖Rn ,ω 6 |$ω |
−1
ω ‖·‖nϕω .

By (a), one has ‖·‖nϕω 6 ‖·‖nϕ′
ω

, so that, by (7.18), one obtains

Rn,ω ⊇ H0(Xω,L
⊗n
ω ).

Therefore, by (7.18) again, (b) follows. �

Claim 7.5.11 If we set Aω = dω(ϕω, ϕ′ω) for ω ∈ Ω, then one has the following:

(a) sup
x∈Rn\{0}

ln
‖s‖Rn ,ω

‖s‖nϕω
6 Aωn for all ω ∈ U ∩Ωfin and n > 1.

(b)
∫
Ω

Aων(dω) =
∑
ω∈Ω

Aων({ω}) < ∞. �

Proof (a) By using the inequality (2.5) in Subsection 2.2.2 together with Claim 7.5.10,

sup
x∈Rn\{0}

ln
‖s‖Rn ,ω

‖s‖nϕω
6 sup

x∈Rn\{0}
ln

‖s‖nϕ′
ω

‖s‖nϕω
= dω

(
‖·‖nϕ′

ω
, ‖·‖nϕ′

ω

)
6 dω(nϕω,nϕ′ω) = nAω .
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(b) Note that ϕ′ is dominated by Proposition 7.5.5. Moreover, ϕ is dominated by
our assumption, so that, by Proposition 6.1.12, the function ω 7→ dω(ϕω, ϕ′ω) = Aω
is ν-dominated. Thus one obtains (b). �

Fix a positive number ε . Then, by Claim 7.5.11, there is a non-empty Zariski
open set Uε of U such that ∑

ω∈Uε∩Ωfin

Aων({ω}) 6 ε .

Thus, if we set B =
∑
ω∈Ωfin\Uε

(− ln |$ω |ω)ν({ω}), then, by Claim 7.5.10,

�(Rn, ξn) =
∑
ω∈Ωfin

sup
x∈Rn ,ω\{0}

ln
(
‖x‖Rn ,ω

‖x‖nϕω

)
ν({ω})

6
∑

ω∈Uε∩Ωfin

sup
x∈Rn ,ω\{0}

ln
(
‖x‖Rn ,ω

‖x‖nϕω

)
ν({ω}) + B

6 n
∑

ω∈Uε∩Ωfin

Aων({ω}) + B 6 nε + B

for n > 1, and hence one has

lim sup
n→∞

�(Rn, ξn)

n
6 ε,

so that the assertion of the theorem follows. �

7.5.4 A generalization of Nakai-Moishezon’s criterion

Let X be a geometrically integral projective variety over K and L be an invertible
sheaf on X . For ω ∈ Ω, let Xω := X ×SpecK Kω and Lω := L ⊗OX

OXω . Let ϕω be a
continuous metric of Lω on Xan

ω for each ω ∈ Ω, and ϕ := {ϕω}ω∈Ω. For n > 0 and
any subvariety Y of X , let ξn := {‖·‖nϕω }ω∈Ω and ξn |Y := {‖·‖nϕω |Yω

}ω∈Ω. In this
subsection, let us consider the following Nakai-Moishezon’s criterion over a number
field, which gives a generalisation of Nakai-Moishezon’s criterion due to Shouwu
Zhang.

Theorem 7.5.12 We assume the following:

(1) (Fineness) The metric family ϕ is fine.
(2) (Semipositivity) L is semiample and ϕω is semipositive for every ω ∈ Ω.
(3) (Bigness) For every subvariety Y of X , L |Y is big, and there are a positive

number nY and sY ∈ H0(Y, L⊗nY
��
Y
) \ {0} such that d̂eg ξnY

��
Y
(sY ) > 0.

Then one has
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lim inf
n→∞

�
(
H0(X, L⊗n), ξn

)
n

> 0.

Proof We set Rn := H0(X, L⊗n) for n > 0. By Proposition 7.5.3, for a positive
number h,

1
h

lim inf
n→∞

� (Rn, ξn)

n
6 lim inf

n→∞

� (Rn, ξn)

n
,

so that, replacing L, ϕ, nY and sY by L⊗h , hϕ, hnY and s⊗hY for a sufficiently large
integer h, we may assume that ϕ is very fine. Moreover, by Remark 4.1.25, we can
see that ϕ is measurable. Therefore, by Theorem 7.4.1, one has

lim inf
n→∞

νmin (Rn, ξn)

n
> 0.

By Proposition 6.1.12, Theorem 6.1.13 and Proposition 7.5.7, (Rn, ξn) is dominated
and coherent for all n > 0. Therefore, by Proposition 7.5.2 and Theorem 7.5.9, one
can see the assertion of the theorem. �

Remark 7.5.13 In [48], Nakai-Moishezon’s criterion was proved under the following
condition (7.19) instead of (Fineness) in Theroem 7.5.12:{

The adelic vector bundle
(
H0(X, L⊗n), ξn

)
over S

is dominaited and coherent for every n > 0.
(7.19)



Appendix A
Reminders on measure theory

A.1 Monotone class theorems

We recall here a monotone class theorem in the functional form and several related
results, and we refer to [52, §I.2] and [151, §2.2] for reference. For convenience of
readers, we include the proof here. We fix in this section a non-empty set Ω. If H
is a family of real-valued functions on Ω, we denote by σ(H) the σ-algebra on Ω
generated by H . It is the smallest σ-algebra onΩwith respect to which all functions
in H are measurable.

Definition A.1.1 Let H be a family of non-negative and bounded functions on Ω.
We say that H is a λ-family if it verifies the following conditions:

(i) the constant function 1 belongs to H ;
(ii) if f and g are two functions in H , a and b are non-negative numbers, then

a f + bg ∈ H ;
(iii) if f and g are two functions in H such that f 6 g, then g − f ∈ H ;
(iv) if { fn}n∈N is an increasing and uniformly bounded sequence of functions in H ,

then the limit of the sequence { fn}n∈N belongs to H .

Lemma A.1.2 Let H be a λ-family of non-negative and bounded functions on Ω.
If for any couple ( f ,g) of functions in H , one has min( f ,g) ∈ H , then any non-
negative, bounded and σ(H)-measurable function onΩ belongs to H . In particular,
the σ-algebra σ(H) is equal to the set of all A ⊆ Ω such that 1lA ∈ H .

Proof Let F be the set of all A ⊆ Ω such that 1lA ∈ H . Since H is a λ-family, we
obtain that F is a λ-system1 and at the same time a π-system (namely for all A ∈ F

and B ∈ F one has A ∩ B ∈ F ) since the family H is supposed to be stable by the
operator ( f ,g) 7→ min( f ,g). Therefore F is actually a σ-algebra.

If ( f ,g) is a couple of functions in H , one has

1 Namely F satisfies the following conditions: (i) Ω ∈ F, (ii) if A ∈ F, B ∈ F and A ⊆ B, then
B \ A ∈ F, (iii) if {An }n∈N is an increasing sequence of elements of F, then the union

⋃
n∈N An

belongs to F.

427
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max( f ,g) = f + g − min( f ,g) ∈ H .

In particular, if f ∈ H and a ∈ R+, then

max( f − a,0) = max( f ,a) − a ∈ H .

This property actually implies that, for any f ∈ H and any integer n > 1, one has
f n ∈ H . In fact, the function x 7→ xn is convex on R+, which can be written as the
supremum of a countable family of functions of the form

x 7−→ max(nan−1x − (n − 1)an,0)

with a ∈ Q+ := Q ∩ R+. Therefore by the condition (iv) in Definition A.1.1 one
obtains

f n = sup
a∈Q+

max(nan−1 f − (n − 1)an,0) ∈ H .

If f is an element of H and t is a real number, t > 0, one has min(t−1 f ,1) ∈ H .
Moreover, the sequence {1 − min(t−1 f ,1)n}n∈N, n>1 is increasing and converges to
1l{ f<t }, which implies that 1l{ f<t } ∈ H and hence { f < t} ∈ F . Therefore every
function in H is F -measurable, and thus σ(H) ⊆ F .

It remains to prove that any non-negative boundedF -measurable function belongs
to H . Let f be such a function. For any integer n > 1, let

fn =
n2n−1∑
k=0

k
2n

1l{k/2n6 f<(k+1)/2n } + n1l{ f >n} .

This is a function in H . Moreover, the sequence { fn}n∈N, n>1 is increasing and
converges to f . Therefore f ∈ H . �

Theorem A.1.3 Let H be a λ-family of non-negative and bounded functions on
Ω and C be a subset of H . Assume that for any couple ( f ,g) of functions in C,
the product function f g belongs to C. Then any non-negative and bounded σ(C)-
measurable function belongs to H .

Proof By replacing H by the intersection of all λ-families containing C we may
assume that H is the smallest λ-family which contains C.

We first prove that H is stable by multiplication. Let H1 be the set of all non-
negative and bounded functions f on Ω such that f g ∈ H for any g ∈ C. This is a
λ-family containing C. Hence one hasH1 ⊇ H . LetH2 be the set of all non-negative
and bounded functions f on Ω such that f g ∈ H for any g ∈ H . This is also a
λ-family. Moreover, since H1 ⊇ H one obtains H2 ⊇ C and hence H2 ⊇ H , which
implies that H is stable by multiplication.

Let f and g be two functions in H . We will prove that | f − g | ∈ H . By dilating
the function | f − g | by a positive constant, we may assume that | f − g | is bounded
from above by 1. One has

( f − g)2 = f 2 + g2 − 2 f g ∈ H .
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Let { fn}n∈N be the sequence of functions on Ω defined by the following recursive
formula

f0 = 0, fn+1 = fn +
1
2
(( f − g)2 − f 2

n ).

By induction on n, we can show that fn ∈ H and fn 6 | f − g |. In fact, these
properties are trivially satisfied by f0. If fn ∈ H and fn 6 | f − g |, then one has
fn+1 ∈ H . Moreover, by the relation | f − g | 6 1 one obtains fn+1 6 | f − g | since the
function t 7→ t − 1

2 t2 is increasing on the interval [0,1]. The properties fn ∈ H and
fn 6 | f − g | show that the sequence { fn}n∈N is increasing and converges to | f − g |.
Hence | f − g | ∈ H , which implies that

min( f ,g) =
1
2
( f + g − | f − g |) ∈ H .

By Lemma A.1.2, any non-negative, bounded and σ(H)-measurable function be-
longs to H . The theorem is thus proved. �

A.2 Measurable selection theorem

In this section, we recall a measurable selection theorem due to Kuratowski and
Ryll-Nardzewski [100]. See [119, Chapter 5] for more details.

Theorem A.2.1 Let Y be a complete separable metric space and P(Y ) be the set of
subsets of Y . Let (Ω,A) be a measurable space and F : Ω → P(Y ) be a map. We
assume that

(1) for any ω ∈ Ω, the set F(ω) is a non-empty closed subset of Y ,
(2) for any open subset U of Y , the set {ω ∈ Ω : F(ω) ∩ U , �} belongs to A.

Then there exists a measurable map f : Ω → Y such that f (ω) ∈ F(ω) for any
ω ∈ Ω.

A.3 Vague convergence and weak convergence of measures

Let X be a locally compact Hausdorff space. Recall that a Radon measure is by
definition a Borel measure ν on X which satisfies the following conditions:

(1) ν is tight, that is, for any Borel subset B of X , ν(B) is equal to the supremum of
ν(K), where K runs over the set of compact subsets of B;

(2) ν is outer regular, that is, for any Borel subset B of X , ν(B) is equal to the
infimum of ν(U), where U runs over the set of open subsets of X containing B;

(3) ν is locally finite, that is, for any x ∈ X there exists a neighbourhood U of x such
that ν(U) < +∞.
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We denote by M (X) be the set of Radon measures on X . Let Cc(X) be the vector
space of continuous real-valued functions of compact support on X . We say that
an R-linear map ϕ : Cc(X) → R is a positive linear functional if ϕ( f ) > 0 for
any non-negative function f in Cc(X). Recall the Riesz’s representation theorem as
follows. See [83, §56] for a proof.

Theorem A.3.1 Let X be a locally compact Hausdorff space. The map sending
ν ∈ M (X) to the positive linear functional

f ∈ Cc(X) −→

∫
X

f dν

defines a bijection between the set M (X) and the set of all positive linear functionals
on Cc(X).

The vague topology on M (X) is an example of weak-* topology if we identify
M (X) with a subset of the dual space of Cc(X). More precisely, we say that a
sequence {νn}n∈N of Radon measures converges vaguely if for any function f ∈

Cc(X), the sequence of integrals {
∫
X

f dνn}n∈N converges in R. Note that the limit
of the above sequence defines a positive linear functional on Cc(X) when f varies,
which corresponds to a Radon measure, called the vague limit of {νn}n∈N.

If {νn}n∈N is a sequence of Radon probability measure which converges vaguely,
the limite measure may have a total mass< 1. In probability theory, the notion of weak
convergence is also largely used. Let M1(X) be the subset of M (X) of probability
measures. Let Cb(X) be the vector space of bounded continuous functions. We
say that a sequence {νn}n∈N of measures in M1(X) (they are therefore probability
measures) converges weakly if for any bounded continuous function f on X , the
sequence of integrals {

∫
X

f dνn}n∈N converges inR. Clearly, if the sequence {νn}n∈N
converges weakly, then it also converges vaguely, and its vague limit is also called
its weak limit. Note that, in the weak convergence case, the limit measure should
be a probability measure. The following criterion provides a criterion of weak
convergence for vaguely convergence sequence of Radon probability measures. We
refer the readers to [98, Theorem 13.16] for the proof and for more details2.

Theorem A.3.2 Let X be a locally compact metrisable space and {νn}n∈N be a
sequence of Radon probability measures on X , which converges vaguely to a limite
measure ν. Assume the limite measure ν is a probability measure. Then the sequence
{νn}n∈N converge weakly to ν.

2 In [98, Theorem 13.16], it is assumed that the topological space is a locally compact Polish space.
This condition is satisfied notably when X is a locally compact Hausdorff space with countable
base, see [145]. However, it actually suffices that the topological space is locally compact and
metrisable (see Lemma 13.10 of [98] which is used in the proof of Theorem 13.16 of loc. cit.).
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A.4 Upper and lower integral

Let (Ω,A, ν) be a measure space. We denote by L 1(Ω,A, ν) the vector space of
all real-valued ν-integrable functions on (Ω,A). We say that a subset A of Ω is ν-
negligible if there exists a set B ∈ A such that ν(B) = 0 and that A ⊆ B. We say that
two functions h1 and h2 on Ω are ν-indistinguishable if {h1 , h2} is a ν-negligible
set. Any function on Ω which is ν-indistinguishable with the zero function is said
to be ν-negligible. In other words, a function f on Ω is ν-negligible if and only if
{ f , 0} is a ν-negligible set. If a formula depending on a variable ω ∈ Ω is satisfied
outside of a ν-negligible set, we say that it holds ν-almost everywhere (written in
abbriviation as ν-a.e.).

Definition A.4.1 We construct two non-necessarily linear functional Iv(·) and Iν(·)
as follows. For any function h : Ω→ R, let∫

Ω

h(ω)ν(dω) := inf
f ∈L 1(Ω,A,ν)

f >hν-a.e.

∫
Ω

f (ω)ν(dω),

∫
Ω

h(ω)ν(dω) := sup
g∈L 1(Ω,A,ν)

g6hν-a.e.

∫
Ω

g(ω)ν(dω).

If h is not ν-almost everywhere bounded from above by any integrable function,
then

∫
Ω

h(ω)ν(dω) is defined as +∞ by convention. Similarly, if h is not ν-almost
everywhere bounded from below by any integrable function, then

∫
Ω

h(ω)ν(dω)

is defined as −∞ by convention. The values
∫
Ω

h(ω)ν(dω) and
∫
Ω

h(ω)ν(dω) are
called upper integral and lower integral of the function h, respectively. From now
on, for simplicity,∫

Ω

h(ω)ν(dω),
∫
Ω

h(ω)ν(dω) and
∫
Ω

f (ω)ν(dω)

are denoted by Iν(h), Iν(h) and Iν( f ), respectively, for any function h on Ω and any
integrable function f on Ω.

The following properties are straightforward from the definition of upper and
lower integrals.

Proposition A.4.2 (1) For any function h : Ω→ R

Iν(h) 6 Iν(h). (A.1)

(2) If h1 and h2 are two real-valued functions on Ω such that h1 6 h2, then

Iν(h1) 6 Iν(h2), Iν(h1) 6 Iν(h2). (A.2)
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Proposition A.4.3 Let h be a real-valued function onΩ. Then h is ν-indistinguishable
with a ν-integrable function if and only if Iν(h) = Iν(h) ∈ R.

Proof If h is indistinguishable with a ν-integrable function h̃, then Iν(h) and Iν(h)
are both equal to the integral of h̃ with respect to the measure ν, which is a real
number.

Conversely, assume that Iν(h) = Iν(h), then we can find two sequences { fn}n∈N
and {gn}n∈N of functions in L 1(Ω,A, ν) such that gn 6 h 6 fn ν-almost every-
where. and that

lim
n→+∞

Iν( fn) = Iν(h) = Iν(h) = lim
n→+∞

Iν(gn).

Without loss of generality, we may assume that the sequence { fn}n∈N is decreasing
and {gn}n∈N is increasing (otherwise we replace fn by f̃n = min{ f1, . . . , fn} and gn
by g̃n = max{g1, . . . ,gn}). Let f = infn∈N fn and g = supn∈N gn. By Lebesgue’s
dominated convergence theorem, we obtain that f and g are both ν-integrable, and

Iν( f ) = Iν(h) = Iν(h) = Iν(g).

Moreover, one has g 6 h 6 f ν-almost everywhere, which implies that f = g = h
ν-almost everywhere. �

In general the operators Iν(·) and Iν(·) are not linear operators. However, they
satisfies some convexity property.

Proposition A.4.4 Let h1 and h2 be two real-valued functions on Ω.

(1) Assume that {Iν(h1), Iν(h2)} , {+∞,−∞}. Then one has

Iν(h1 + h2) 6 Iν(h1) + Iν(h2) (A.3)

(2) Assume that {Iν(h1), Iν(h2)} , {+∞,−∞}. Then one has

Iν(h1 + h2) > Iν(h1) + Iν(h2). (A.4)

Proof (1) We first treat the case where neither of Iν(h1) and Iν(h2) is +∞. If f1
and f2 are two ν-integrable functions on Ω such that f1 > h1 and f2 > h2 ν-almost
everywhere, then the sum f1 + f2 is ν-integrable, and f1 + f2 > h1 + h2. Therefore
Iν( f1) + Iν( f2) = Iν( f1 + f2) > Iν(h1 + h2). Since f1 and f2 are arbitrary, we obtain
Iν(h1) + Iν(h2) > Iν(h1 + h2).

If at least one of the upper integrals Iν(h1) and Iν(h2) is+∞, then by the hypothesis
{Iν(h1), Iν(h2)} , {+∞,−∞} one has Iν(h1) + Iν(h2) = +∞. Hence the inequality
(A.3) is trivial.

The proof of the statement (2) is very similar to that of (1). We omit the details.�

Proposition A.4.5 Let h be a real-valued function on Ω and ϕ be a ν-integrable
function. Then one has

Iν(h + ϕ) = Iν(h) + Iν(ϕ), Iν(h + ϕ) = Iν(h) + Iν(ϕ).
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Proof Since ϕ is ν-integrable, one has

Iν(ϕ) = Iν(ϕ) = Iν(ϕ) ∈ R.

By Proposition A.4.4, one has

Iν(h + ϕ) 6 Iν(h) + Iν(ϕ).

Moreover, if we apply this inequality to h + ϕ and −ϕ, we obtain

Iν(h) 6 Iν(h + ϕ) − Iν(ϕ).

Therefore the first equality is true. The proof of the second equality is quite similar,
we omit the details. �

Proposition A.4.6 Let h be a real-valued function on Ω. If a is a non-negative
number, then one has

Iν(ah) = aIν(h), Iν(ah) = aIν(h).

Proof The assertions are trivial when a = 0. In the following, we assume that
a > 0. If f is a ν-integrable function such that h 6 f ν-almost everywhere, then
a f is a ν-integrable function such that ah 6 a f ν-almost everywhere. Therefore,
we obtain that Iν(ah) 6 aI(h). If we apply this inequality to a−1 and ah we get
Iν(h) 6 a−1Iν(ah). Hence the first equality is true. The proof of the second equality
is very similar, we omit the details. �

Proposition A.4.7 Let h be a real-valued function on Ω. One has

Iν(−h) = −Iν(h), Iν(−h) = −Iν(h).

Proof If f is a ν-integrable function such that−h 6 f ν-almost everywhere, then one
has − f 6 h ν-almost everywhere. Since f is arbitrary, we obtain −Iν(−h) 6 Iν(h).
Similarly, if g is a ν-integrable function such that g 6 −h ν-almost everywhere, then
one has h 6 −g ν-almost everywhere. Since g is arbitrary, we obtain −Iν(−h) >
Iν(h). Finally, if we apply the obtained inequality to −h, we obtain −Iν(h) 6 Iν(−h)
and −Iν(h) > Iν(−h). Therefore the equalities hold. �

Proposition A.4.8 Let h1 and h2 be two real-valued functions on Ω, and let h =
h1 + h2. Assume that {Iν(h1), Iν(h2)} , {+∞,−∞}. Then one has

Iν(h) 6 Iν(h1) + Iν(h2) 6 Iν(h).

Proof By the equality h = h1+ h2 we obtain h1 = (−h2)+ h. Thus Proposition A.4.4
leads to

Iν(h1) 6 Iν(−h2) + Iν(h) = −Iν(h2) + Iν(h),

where the equality comes from Proposition A.4.7. Hence we obtain the inequality
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Iν(h) > Iν(h1) + Iν(h2).

We then apply this inequality to −h, −h2 and −h1 to get the other equality. �

Definition A.4.9 Let h : Ω → R be a real valued function on Ω. We say that h is
ν-dominated if there exists a ν-integrable function f such that {ω ∈ Ω : |h(ω)| 6
f (ω)} is a ν-negligible set (in other words, |h| 6 f ν-almost everywhere). Note that
this condition is equivalent to

Iν(h) < +∞ and Iν(h) > −∞.

We denote by D1(Ω,A, ν) the vector space of ν-dominated functions on Ω. Clearly
one has D1(Ω,A, ν) ⊇ L 1(Ω,A, ν), and D1(Ω,A, ν) is invariant by the operator
f 7→ | f | of taking the absolute value. Moreover, if f and g are real-valued functions
on Ω such that | f | 6 |g | ν-almost everywhere and that g is ν-dominated, then the
function f is also ν-dominated.

Proposition A.4.10 Let ‖·‖D1
ν

be the function on D1(Ω,A, ν) sending any ν-
dominated function f to Iν(| f |). Then ‖·‖D1

ν
is a seminorm. Moreover, a function

f ∈ D1(Ω,A, ν) satisfies ‖ f ‖D1
ν
= 0 if and only if it is ν-negligible.

Proof Let f be a ν-dominated function and a be a real number. One has |a f | =
|a| · | f |. By Proposition A.4.6 we obtain that

‖a f ‖D1
ν
= Iν(|a f |) = Iν(|a| · | f |) = |a| · Iν(| f |) = |a| · ‖ f ‖D1

ν
.

Moreover, if f and g are two ν-dominated functions, then by Proposition A.4.4, one
has

‖ f + g‖D1
ν
= Iν(| f + g |) 6 Iν(| f | + |g |) 6 Iν(| f |) + Iν(|g |) = ‖ f ‖D1

ν
+ ‖g‖D1

ν
,

where the first inequality comes from (A.2), and the second inequality comes from
(A.4.4). Therefore ‖·‖Dν is a seminorm on D1

ν (Ω,A, ν).
Let f be a ν-negligible function. Then one has | f | = 0 ν-almost everywhere.

Hence one has ‖ f ‖D1
ν
= Iν(| f |) = 0. Conversely, if f is a ν-dominated function such

that Iν(| f |) = 0, then one has Iν(| f |) = Iν(| f |) = 0. By Proposition A.4.3, | f | is
ν-indistinguishable with a ν-integrable function g of integral 0. Moreover, since | f |
is non-negative, we obtain that the set {g < 0} is ν-negligible. Therefore g vanishes
ν-almost everywhere. Thus f is ν-negligible. �

Proposition A.4.11 Let { fn}n∈N be an increasing sequence of non-negative func-
tions on Ω and f be the limit of { fn}n∈N. Then one has

lim
n→+∞

Iν( fn) = Iν( f ).

Proof Clearly one has Iν( fn) 6 Iν( f ) for any n ∈ N. Hence
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lim
n→+∞

Iν( fn) 6 Iν( f ).

If one of the functions fn is not dominated, then neither is f . Hence one has

lim
n→+∞

Iν( fn) = +∞ = Iν( f ).

In the following, we assume that all the functions fn are dominated. Let ε > 0.
For any n ∈ N, let gn be an integrable function on Ω such that fn 6 gn and that
Iν( fn) > Iν(gn) − ε . Note that g̃n := infm>n gm is also an integrable function on Ω
such that fn 6 g̃n and Iν( fn) > Iν(g̃n) − ε. Therefore, by replacing gn by g̃n, we
may assume without loss of generality that the sequence {gn}n∈N is increasing. Let
g = supn∈N gn. By the monotone convergence theorem one has

Iν(g) = lim
n→+∞

Iν(gn) 6 lim
n→+∞

Iν( fn) + ε .

Moreover, since g > f , one has Iν( f ) 6 Iν(g). Therefore the proposition is proved.�

Corollary A.4.12 Let { fn}n∈N be a sequence of non-negative functions on Ω, and f
be the sum of the series

∑
n∈N fn. Then one has

Iν( f ) 6
∑
n∈N

Iν( fn).

Proof For any n ∈ N, let gn =
∑n

k=0 fk . The sequence {gn}n∈N is increasing, and
converges to f . Therefore, by Proposition A.4.11, one has

Iν( f ) = lim
n→+∞

Iν(gn).

Moreover, by Proposition A.4.4, for any n ∈ N one has

Iν(gn) 6
n∑

k=0
Iν( fk).

Hence we obtain
Iν( f ) 6

∑
n∈N

Iν( fn).

Proposition A.4.13 Let { fn}n∈N be a sequence of non-negative functions on Ω and
f = lim infn→+∞ fn. Then one has

Iν( f ) 6 lim inf
n→+∞

Iν( fn). (A.5)

Proof For any n ∈ N, let gn = infm>n fm. Then the sequence {gn}n∈N is increasing
and converges to f . By Proposition A.4.11, one has

Iν( f ) = lim
n→+∞

Iν(gn) 6 lim inf
n→+∞

Iν( fn),
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where the inequality comes from the fact that gn 6 fn for any n ∈ N. The proposition
is thus proved. �

Proposition A.4.14 Let D1(Ω,A, ν) be the quotient space of D1(Ω,A, ν) by the
vector subspace of ν-negligible functions. Then the seminorm ‖·‖D1

ν
on D1(Ω,A, ν)

induces a norm ‖·‖D1
ν

on D1(Ω,A, ν), and the vector space D1(Ω,A, ν) is complete
with respect to this norm.

Proof The first assertion is a direct consequence of Proposition A.4.10. In the
following, we prove the second assertion.

Let { fn}n∈N be a Cauchy sequence in D1(Ω,A, ν). For any ε > 0 and any
m,n ∈ N, one has | fn − fm | > ε1l{ | fn− fm |>ε }, which implies that

‖ fn − fm‖D1
ν
= Iν(| fn − fm |) > ε Iν(1l{ | fn− fm |>ε }).

Since { fn}n∈N is a Cauchy sequence, one has

lim
N→+∞

sup
(n,m)∈N2

n>N ,m>N

‖ fn − fm‖ = 0.

Therefore we can construct a subsequence { fnk }k>1 of { fn}n∈N such that

∀ k ∈ N>1, Iν(1l{ | fnk − fnk+1 |>2−k }) < 2−k .

For any m ∈ N>1, let Am =
⋃

k>m{| fnk − fnk+1 | > 2−k}. Then the set

B := {ω ∈ Ω : { fnk (ω)}k>1 does not converge}

is contained in
⋂

m>1 Am. Moreover, for any m ∈ N>1, by Corollary A.4.12 one has

Iν(1lAm ) 6
∑
k>m

Iν(1l{ | fnk − fnk+1 |>2−k }) 6 2−m+1.

Therefore we obtain Iν(1lB) = 0, which implies that B is a ν-negligible set. Thus we
obtain that the sequence { fnk }k>1 converges ν-almost everywhere to some function
f on Ω. Note that by Proposition A.4.13 one has

Iν(| f |) 6 lim inf
k→+∞

Iν(| fnk |).

Therefore f is a dominated function. Finally, still by Proposition A.4.13, for any
n ∈ N one has

Iν(| fn − f |) 6 lim inf
k→+∞

Iν(| fn − fnk |).

Hence one has
lim

n→+∞
Iν(| fn − f |) = 0.

The proposition is thus proved. �



A.5 L1 space 437

A.5 L1 space

Let L 1(Ω,A, ν) be the vector space of all real-valued ν-integrable functions on the
measurable space (Ω,A). This vector space is equipped with the seminorm ‖·‖L 1

ν

which sends a function f ∈ L 1(Ω,A, ν) to

‖ f ‖L 1
ν

:=
∫
Ω

| f (ω)| ν(dω).

Note that the set of all functions f ∈ L 1(Ω,A, ν) such that ‖ f ‖L 1
ν
= 0 forms a vector

subspace of L 1(Ω,A, ν). Such functions are said to be ν-negligible. The quotient
space of L 1(Ω,A, ν) by the vector subspace of ν-negligible functions is denoted by
L1(Ω,A, ν). The seminorm ‖·‖L 1

ν
induces by quotient a norm on L1(Ω,A, ν), which

we denote by ‖·‖L1
ν
. Note that the vector space L1(Ω,A, ν) is complete with respect

to this norm, and the integration with respect to ν induces a continuous linear form
on L1(Ω,A, ν), which we denote by

(ζ ∈ L1(Ω,A, ν)) 7−→

∫
Ω

ζ(ω) ν(dω)

by abuse of notation.
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adelic K-Cartier divisor, 351
adelic Cartier divisor, 350

principal —, 351
adelic curve, 168
adelic divisor, 241, 243

effective —, 242
principal —, 242

adelic line bundle, 237, 345
adelic structure on K , 168
adelic vector bundle, 237

Arakelov degree, 244
Hermitian —, 237
positive degree, 250
semistable, 276
semistable —, 259
strongly —, 237

algebraic extension, 196
α-orthogonal basis, 45
amalgamation of adelic curves, 177
ample Cartier divisor, 153
ample K-Cartier divisor, 159
Arakelov degree, 241, 243, 244
arithmetic volume, 389, 391
arithmetically effective, 392
asymptotic first minimum, 384
asymptotic maximal slope, 384
asymptotically pure, 419

Berkovich space associated with a scheme, 107
map associated with scheme morphism, 108

Berkovich topology, 107

big, 389, 392
bounded linear map, 5

C0
gen, 161

canonical compactification, 356
canonical Green function, 165
canonical height function, 356
canonical linear map, 12
Cartier divisor, 153

ample —, 153
effective —, 153
K-Cartier divisor, 156
linearly equivalent, 154
principal —, 154
very ample —, 153

coherent, 291
coherent extension, 132
coherent model, 132
compatible with the flag, 60
complete linear system, 155
concave transform, 374, 378
converges vaguely, 430
converges weakly, 430

default of positivity, 127
destabilising vector subspace, 259
determinant, 37, 208
determinant seminorm, 37
direct sum, 206
Dirichlet property, 357
distance, 22
distance between metrics, 119
domain of definition, 161
dominated, 209, 329–331, 350
double dual norm, 12
dual, 207
dual metric, 116
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dual norm, 12

effective, 163, 242
effective divisor, 153
ε-tensor product, 207
ε-determinant seminorm, 52
ε-extension of scalars, 81
ε-exterior power seminorm, 36
ε-tensor product, 31
essential minimum, 353
Euclidean, 43
exact sequence, 246
exhaustive, 265
exponent, 340
extends to a continuous function, 161
extension obstruction index, 139
extension of scalars, 83
extension property, 139

fine, 422
finite extension, 189
finitely generated lattice, 15
flat model, 132
Fubini-Study metric, 122, 125
Fubini-Study norm, 121

G-linear structure on L, 303
G-linearised invertible OX -module, 303
general linear group scheme associated withV ,

302
generically pure, 421
globally valued field, 168
graded algebra of adelic vector bundles, 380
graded algebra of adelic vector bundles on S,

403
graded semigroup, 359
Green function, 161, 163
Green function family, 350

dominated, 350
group scheme over SpecK , 302
group scheme structure of G, 302

h-graded R•-module, 40, 404
h-graded R•-module of adelic vector bundles

on S, 404
Hadamard basis, 38
Harder-Narasimhan

flag, 264
polygon, 267
R-filtration, 265

height, 200, 248, 345
Hermitian, 43, 205
Hermitian adelic vector bundle, 237
Hilbert-Schmidt seminorm, 77

impurity, 294
indistinguishable, 431
induced seminorm, 2
inner product, 42
invariant under the complex conjugation, 100
i-th logarithmic minimum, 283
i-th slope, 267, 271

John inner product, 74
John norm, 74

K-group scheme, 302
Kodaira dimension, 363, 377
Kodaira-Iitaka dimension, 389

λ-family, 427
lattice, 15

finitely generated —, 15
lifting, 317
linear action, 303
linear representation, 303
linearly equivalent, 154
local distance, 209, 327
local equation, 153, 156
local height function, 248
locally finite, 429
lower dominated, 209
lower integral, 431
Löwner norm, 76

measurable, 342
measurable norm family, 223
meromorphic functions, 152
metric, 111

continuous —, 111
distance between —, 119
dual —, 116
Fubini-Study —, 125
Fubini-Study metric, 122
induced by ε-extension of scalars, 115
induced by ε-extension of scalars, 115
induced by a model, 132
induced by orthogonal extension of scalars,

115
larger than another metric, 119
pull-back, 120
pure —, 137
quotient —, 123
restriction, 138
semipositive —, 127, 128
stably pure, 137
tensor product —, 117

metric family, 327
dominated, 329, 331
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dominated —, 330
local distance, 327
measurable, 342
pull-back, 328
quotient —, 328
restriction, 328
strictly dominated, 331

minimal slope, 255
Minkowski property, 285
model, 131

coherent —, 132
flat —, 132

monomial order, 376
morphism from S′ to S, 203
morphism of K-group schemes, 302

n-cell, 367
negligible, 431, 437
Newton-Okounkov body, 377
Newton-Okounkov semigroup, 377
norm, 2

— associated with a seminorm, 2
— induced by a lattice, 17
absolute normalised —, 24
distance between two norms, 22
double dual —, 12
dual —, 12
operator —, 6
quotient —, 7
reflexive —, 13

norm family, 205
determinant, 208
direct sum, 206
dominated, 209
ε-tensor product, 207
Hermitian —, 205
local distance, 209
lower dominated, 209
measurable, 223
orthogonal direct sum, 206
orthogonal tensor product, 207
π-tensor product, 207
quotient —, 206
restriction, 206
smaller than another norm family, 208
strongly dominated, 214
subquotient, 265
ultrametric —, 205
upper dominated, 209

normal family
dual —, 207

normed graded algebra on S, 403
normed h-graded R•-module, 404
normed vector space, 2

ν-dominated, 434
null space, 2

of finite type, 40, 403, 404
one-parameter subgroup, 304
operator norm, 6
operator seminorm, 5
opposite, 304
orbit, 304
orthogonal basis, 44, 45
orthogonal direct sum, 44, 206
orthogonal extension of scalars, 81
orthogonal tensor product, 77, 207, 249
orthonormal basis, 44, 45
outer regular, 429

parameter map, 168
parameter space of MK , 168
π-tensor product, 207
π-extension of scalars, 81
π-exterior power seminorm, 36
π-tensor product, 31
positive degree, 250
positive linear functional, 430
principal adelic Cartier divisor, 351
principal adelic divisor, 242
principal divisor, 154
product formula, 167, 168
proper, 168
pseudodistance, 4
ψ-direct sum, 27
pull-back, 328
pull-back of a metric, 120
pure, 17, 137

quotient, 206
quotient metric, 123
quotient metric family, 328
quotient norm, 7
quotient seminorm, 6

R-filtration, 20
R-linearly equivalent, 242
Radon measure, 429
rational section, 153
reduced cohomology group, 151
reduction map, 109
reduction point, 132
refinement, 317
reflexive, 13
restriction, 206, 328
restriction of a metric, 138
restriction of a seminorm, 2
restriction of S to Ω0, 177
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restriction of the adelic structure, 177

self-adjoint, 73
semidefinite inner product, 42
seminorm, 1

— induced by a map, 2
— invariant under the complex conjugation,

100
determinant —, 37
ε-determinant, 52
ε-extension of scalars, 81
ε-exterior power, 36
Euclidean —, 43
extension of scalars, 83
Hermitian —, 43
Hilbert-Schmidt —, 77
induced —, 2
operator —, 5
orthogonal direct sum, 44
orthogonal extension of scalars, 81
orthogonal tensor product, 77
π-extension of scalars, 81
π-exterior power, 36
pure —, 17
quotient —, 6
restriction, 2
tensor product, 77
topology induced by —, 4
ultrametric —, 1

seminormed graded algebra, 39
— of finite type, 40

seminormed h-graded R•-module, 40
— of finite type, 40

seminormed vector space, 1
semipositive, 127, 128
semistable, 259, 276, 306
separated, 265
slope, 255

minimal —, 255
specification map, 107
spherically complete, 59

stably pure, 137
strictly dominated, 331
strong Minkowski property, 288
strong triangle inequality, 1
strongly adelic vector bundle, 237
strongly big, 396
strongly dominated, 214
strongly superadditive, 365, 377
subfinite type, 377, 382
subquotient, 265
superadditive, 371, 378

tensor product, 32
tensor product R-filtration, 301
tensor product metric, 117
tensor product seminorm, 77
tensorial minimal slope property, 403
tensorial minimal slope property of level > C0,

380
tight, 429
tileable, 367
topology induced by a seminorm, 4
triangle inequality, 1
trivial, 313

ultrametric, 1, 205
uniformizing parameter, 15
universal invertible sheaf, 121
upper dominated, 209
upper integral, 431

vague limit, 430
vague topology, 430
very ample Cartier divisor, 153
very fine, 422

weak limit, 430
weak subadditivity, 404

Zariski closure, 133
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