
COMPUTING THE VOLUME FUNCTION ON A
PROJECTIVE BUNDLE OVER A CURVE

Huayi Chen

Abstract. – We establish an explicit link between the volume function on a
projective variety over a projective curve and the canonical filtrations of the direct
image bundles. As an application, we compute the volume function on a projective
bundle over a curve.
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1. Introduction

Let $k$ be a field and $X$ be a projective variety of dimension $d$ over $Speck$ . For any
line bundle $L$ on $X$ , the volume of $L$ is defined as

(1) $vol(L);=\lim_{narrow}\sup_{\infty}\frac{rkH^{0}(X,L^{\otimes n})}{n^{d}/d!}$ ,

where the symbol $\lim\sup$ can be replaced by $\lim$ , thanks to Fujita’s approximation
theorem [9] (see also [14] for the positive characteristic case). One says that $L$ is big
if $vol(L)>0$ . The volume function is invariant under the numerical equivalence (see
[10] Proposition 2.2.41), and hence induces a mapping from the N\’eron-Severi group
$N^{1}(X)$ to $\mathbb{R}+$ which we shall still denote by vol.

If $L$ is nef, then it follows from the asymptotic Riemann-Roch formula that $vol(L)=$
$c_{1}(L)^{d}$ . In particular, the volume function is polynomial on the nef cone. However,
on the larger cone of big divisors, the behaviour of the volume function is much more
complicated, and the volume function is difficult to calculate. It is known that, when
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$X$ is a surface or a toric variety, the volume function is piecewise polynomial on the
pseudo-effective cone, and can be computed by the Zariski decomposition (see [8] and
[12] $)$ . For general case, some authors have proposed the positive intersection product
for big classes which generalizes the classical intersection product and identifies $vol(L)$

with the positive self-intersection product of the class of $L$ (see [1] for the complex
analytic case and [2] for the algebraic case). But the positive intersection product
is only super-additive in each variable, which suggests that the volume function is
not a polynomial everywhere on the big cone. Although the differentiability of the
volume function has been proved in [2] and [11], there does exist a counter-example
where the volume function is not two-times differentiable (see [10], Example 2.2.46
with $n=2$ ). Furthermore, the function $vol$ may take irrational values (see [6]), which
is not the case for the self-intersection function.

In [5, 4], the author has obtained an explicit link between the arithmetic vol-
ume function in sense of Moriwaki and the maximal value of the limit of Harder-
Narasimhan polygons. This allows to prove a conjecture of Moriwaki on the arith-
metic analogue of Fujita’s approximation theorem. Although the articles were written
in the arithmetic framework, a similar idea also works in function field case. Let $C$ be
a smooth projective curve defined over $k$ . Denote by $K$ $:=k(C)$ the field of meromor-
phic functions on $C$ . If $E$ is a non-zero vector bundle on $C$ , the Harder-Narasimhan
filtration of $E$ is the unique flag

(2) $E=E_{0}\supsetarrow E_{1}\supsetneq\cdots\supsetneq E_{d}=0$

of $E$ such that each sub-quotient $E_{i}/E_{i+1}$ is semistable and that the successive slopes
verify the following inequalities

(3) $\mu 0<\mu_{1}<\cdots<\mu_{d-1}$ ,

where $\mu_{i}=\mu(E_{i}/E_{i+1})$ . For any non-zero vector bundle $E$ on $C$ whose Harder-
Narasimhan filtration is as (2), we define a probability measure $\nu_{E}$ on $\mathbb{R}$ as follows

(4) $\nu_{E}:=\sum_{i=0}^{d-1}\frac{rk(E_{i+1})-rk(E_{i})}{rk(E)}\delta_{\mu_{i}}$ ,

where $\delta_{x}$ is the Dirac measure concentrated on $\{x\}$ . For any real number $\epsilon>0$ , we
define an operator $T_{\epsilon}$ on the set of all Borel probability measure on $\mathbb{R}$ : if $\nu$ is such a
measure and if $f$ is a continuous function of compact support on $\mathbb{R}$ , then

$\int f(x)T_{\epsilon}\nu(dx)=\int f(\epsilon x)\nu(dx)$ .

The following is the main theorem of this article:

Theorem 1.1. –Let $\pi$ : $Xarrow C$ be a projective and flat morphism, and $L$ be an
arbitrary line bundle on $X$ such that $L_{K}$ is big. Then

1$)$ the sequence of Borel probability measures $(T_{\frac{1}{n}}\nu_{\pi_{*}(L^{\otimes n})})_{n\geq 1}$ converges vaguely to
a Borel probability measure $\nu_{L}^{\pi}$ .
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2$)$ the following equality holds

$vol(L)=\dim(X)vol(L_{K})\int x_{+}\nu_{L}^{\pi}(dx)$ ,

where $x+= \max\{x, 0\}$ .
Recall that a sequence of Borel probability measures $(\nu_{n})_{n\geq 1}$ is said to converge

vaguely to a Borel measure $\nu$ if, for any continuous function of compact support $f$ ,
one has

$\int f(x)\nu(dx)=\lim_{narrow\infty}\int f(x)\nu_{n}(dx)$ .

Remind that $\nu$ need not be a probability measure. However, it is the case when the
supports of $\nu_{n}$ are uniformly bounded.

The main ideal of the proof is to compare the rank of $\pi_{*}(L^{\otimes n})$ to the maximal
value of its Harder-Narasimhan polygon, which coincides with the integral of $x_{+}$ with
respect to the corresponding probability measure, multiplied by its rank.

Shortly after the first version of this article had been written, R. Lazarsfeld kindly
communicated to the author Wolfe’s Ph. $D$ thesis. We observe that the idea of
comparison mentioned above is quite similar to a result of Wolfe. In fact, for any
non-zero vector bundle $E$ on $C$ , Wolfe has compared the rank of $H^{0}(C, E)$ to partial
sums of rk $H^{0}(C, sq_{i}E)$ , where $sq_{i}E$ is the $i^{th}$ subquotient of the Harder-Narasimhan
filtration of $E$ . In view of some basic facts about vector bundles on $C$ resumed in
Lemma 2.1, Wolfe’s result is more or less equivalent to Proposition 2.2 infm.

The more delicate part of the theorem is the convergence of dilated probability
measures associated to direct images, which follows from a general convergence result
on filtered graded algebra, established in a previous work [5] of the author (see also
[3] $)$ .

Wolfe has studied in his thesis [15] (see also [7] page 9), by using his comparison
result, the volume function on projective bundles over a curve. Let $E$ be a non-
zero vector bundle on $C$ . One uses the symbol $\mathbb{P}(E)$ to denote the C-scheme which
represents the functor

Scheme/C $arrow$ Set
(5)

$(p:Xarrow C)$ $\mapsto$ $\{\begin{array}{lll}locally free quotientof rank1 ofp^{*}E\end{array}\}$

Let $\pi$ : $\mathbb{P}(E)arrow C$ be the canonical morphism. Denote by $\mathcal{O}_{E}(1)$ the line bundle on
$\mathbb{P}(E)$ the universal quotient of $\pi^{*}E$ corresponding to the representable functor (5).
The Picard group of $\mathbb{P}(E)$ is then generated by $\mathcal{O}_{E}(1)$ and $\pi^{*}$ Pic$(C)$ . He proved that
the N\’eron-Severi group $N^{1}(\mathbb{P}(E))$ can be separated into several sectors determined by
the Harder-Narasimhan filtration of $E$ such that the volume function is polynomial
on each piece.

In this article, we shall apply Theorem 1.1 to determine the volume function on
$\mathbb{P}(E)$ . Here we should assume that the characteristic of $k$ is zero. It suffices to
compute explicitly the limit measure $\nu_{O_{E}(1)}$ , which relies on the computation of the
Harder-Narasimhan filtration of $S^{n}E$ . We calculate firstly that of $E^{\otimes n}$ , which is
invariant by the action of the symmetric group $\mathfrak{S}_{n}$ , thanks to the uniqueness of
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Harder-Narasimhan filtration. We then pass to the quotient by the action of $\mathfrak{S}_{n}$

to obtain the Harder-Narasimhan filtration of $S^{n}E$ . We shall actually establish the
following result:

Theorem 1.2. –Let $r$ be the $mnk$ of E. Assume that the chamcteristic of $k$ is
zero, that the Harder-Namsimhan filtration of $E$ is as in (2) and that the successive
slopes of $E$ are as in (3). Let $\underline{s}=(s_{1}, \cdots, s_{r})$ be a vector in $\mathbb{R}^{r}$ such that the value
$\mu_{i}$ appears exactly rk$(E_{i}/E_{i+1})$ times in its coordinates. Let $\triangle\subset \mathbb{R}^{r}$ be the simplex
defined as

$\{(x_{1}, \cdots, x_{r})|0\leq x_{j}\leq 1, x_{1}+\cdots+x_{r}=1\}$

and $\eta$ be the Lebesgue measure on $\Delta$ normalized such that $\eta(\Delta)=1$ . Then one has
$\nu_{\mathcal{O}_{E}(1)}^{\pi}=\varphi_{\underline{s}*}\eta$ , where $\varphi_{\underline{s}}:\Deltaarrow \mathbb{R}$ sends $(x_{1}, \cdots, x_{r})$ to $s_{1}x_{1}+\cdots+s_{r}x_{r}$ .

As a corollary of Theorems 1.1 and 1.2, we compute the volume of an arbitrary big
line bundle on $\mathbb{P}(E)$ :

Corollary 1. 3. –Keep the notation of Theorem 1.2. Let $m\geq 1$ be an integer and
$M$ be a line bundle of degree $c$ on $C$ , then

(6) $vol(\mathcal{O}_{E}(m)\otimes\pi^{*}M)=rm^{r}\int(x+c/m)_{+}\varphi_{\underline{s}*}\eta(dx)$ .

where $y+;= \max\{y, 0\}$ for any $y\in \mathbb{R}$ .

Wolfe has computed in his thesis the Harder-Narasimhan filtration of the symmetric
powers of $E$ by using a more direct argument. This enabled him to prove that the
volume function is piecewise polynomial. Here we propose a reformulation (20) of
$\nu_{S^{n}E}$ , which leads to a simple form of the volume function (6). This permits us to
recover Wolfe’s result, and furthermore, to prove that on each sector, the volume
function is a homogeneous polynomial of total degree rk$(E)$ on $m$ and $c$ . Moreover,
our method permits in principle to calculate explicitly the volume function.

The article is organized as follows: in the second section, we introduce the notion
of positive degree for vector bundles on $C$ , and then prove that the volume function
equals to the limit of normalized positive degree, which permits to establish Theorem
1.1. In the third section, we compute the Harder-Narasimhan filtrations of tensor
powers and symmetric powers of a non-zero vector bundle on $C$ , and then prove
Theorem 1.2 and Corollary 1.3. Finally in the fourth section, we show that Corollary
1.3 permits to recover Wolfe’s result on the polynomial representation of the volume
function.

Acknowledgement:– The author is grateful to R. Lazarsfeld for having communi-
cated him Wolfe’s thesis. During the writing of this article, the author has benefited
$hom$ discussions with R. Berman and S. Boucksom to whom the author would like
express his gratitude.

2. Volume function as a limit of positive degrees

We remind that all results in this section are valid in any characteristic.
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2.1. Some reminders on vector bundles. – If $E$ is a vector bundle on $C$ , we
denote respectively by $h^{0}(E)$ and $h^{1}(E)$ the rank of $H^{0}(C, E)$ and $H^{1}(C, E)$ over $k$ .
By Serre duality, one has $h^{1}(E)=h^{0}(E^{\vee}\otimes\omega_{C})$ , where $\omega_{C}$ is the dualizing sheaf on
$C$ . Recall that the Riemann-Roch theorem predicts

(7) $h^{0}(E)-h^{1}(E)=\deg(E)+$ rk$(E)(1-g)$ .

This implies in particular that the degree of $\omega_{C}$ is $2(g-1)$ . Suppose that $E$ is non-
zero. The slope of $E$ is defined as the quotient deg(E)/rk(E), denoted by $\mu(E)$ ,
and the maximal slope $\mu_{\max}(E)$ is the maximal value of the slopes of all non-zero
subbundles of $E$ . By definition one has the inequality $\mu(E)\leq\mu_{\max}(E)$ . We say
that $E$ is semistable if the equality $\mu(E)=\mu_{\max}(E)$ holds. This condition is also
equivalent to the equality $\mu(E)=\mu_{\min}(E)$ , where $\mu_{\min}(E)$ is the minimal value of
slopes of all non-zero locally free quotient of $E$ , called the minimal slope of $E$ . As
$\mu(E^{\vee})=-\mu(E)$ and $\mu_{\max}(E^{\vee})=-\mu_{\min}(E)$ , we obtain that the semistability of $E$ is
equivalent to that of $E^{\vee}$ .

Denote by $b(C)$ the positive integer

(8) { $\deg(L)|L\in$ Pic $(C),$ $L$ is ample}.

By definition, the degree of a line bundle on $C$ is always a multiple of $b(C)$ .
We recall in the following some basic facts about vector bundles on $C$ .

Lemma 2.1. –Let $E$ be a non-zero vector bundle on $C$ .

1$)$ If $\mu_{\max}(E)<0$ , then $h^{0}(E)=0$ .

2$)$ If $\mu_{\min}(E)>2g-2$ , then $h^{0}(E)=\deg(E)+$ rk$(E)(1-g)$ .
3$)$ If $\mu_{\min}(E)\geq 0$ , then $|h^{0}(E)-\deg(E)|\leq$ rk$(E)(g+b(C))$ .

Pmof. –1) If $h^{0}(E)\neq 0$ , then there is an injective homomorphism from $\mathcal{O}_{C}$ to $E$ ,
therefore $0=\mu(\mathcal{O}_{C})\leq\mu_{\max}(E)$ .

2 $)$ Since $\mu_{\min}(E)>2g-2$ , one has $\mu_{\max}(E^{\vee}\otimes\omega_{C})=\deg(\omega_{C})-\mu_{\min}(E)<0$ .
By 1), one has $h^{1}(E)=h^{0}(E^{\vee}\otimes\omega_{C})=0$ . So the Riemann-Roch formula implies
$h^{0}(E)=\deg(E)+$ rk$(E)(1-g)$ .

3 $)$ If $g=0$ , then, by 2), $h^{0}(E)=\deg(E)+$ rk$(E)$ , so

$|h^{0}(E)-\deg(E)|=$ rk$(E)\leq b(C)$ rk $E$ .

Assume in the following that $g\geq 1$ . Let $L$ be an ample invertible $\mathcal{O}_{C}$-module of degree
$b(C)$ and let $a= \lfloor\frac{2g-2}{b(C)}\rfloor+1$ . Then the inequalities $2g-2<\deg(L^{\otimes a})\leq 2g-2+b(C)$

hold. As $\mu_{\min}(E\otimes L^{\otimes a})=\mu_{\min}(E)+\deg(L^{\otimes a})>2g-2$ , we obtain

$h^{0}(E)\leq h^{0}(E\otimes L^{\otimes a})=\deg(E\otimes L^{\otimes a})+$rk$(E)(1-g)\leq\deg(E)+$ rk$(E)(g-1+b(C))$ .

On the other hand, $h^{0}(E)=h^{1}(E)+\deg(E)+$ rk$(E)(1-g)\geq\deg(E)+$ rk$(E)(1-g)$ .
Therefore, $|h^{0}(E)-\deg(E)|\leq$ rk$(E)(g-1+b(C))$ . $\square$

173



HUAYI CHEN

2.2. Positive degree and rank of global section space. – Let $E$ be a non-zero
vector bundle on $C$ and $r$ be its rank. We introduce the notion of positive degree
of $E$ , which is the maximal value of the Harder-Narasimhan polygon of $E$ . We then
show that this value approximates $h^{0}(E)$ .

Recall that the Harder-Narasimhan polygon $\tilde{P}_{E}$ is by definition the concave
function defined on $[0, r]$ whose graph is the convex hull of points of the form
$(rk F, \deg(F))$ , where $F$ runs over all subbundles of $E$ . Denote by $\deg_{+}(E)$ the integer
$\max\tilde{P}_{E}(x)$ , called the positive degree of $E$ .

$x\in[0,r]$

The Harder-Narasimhan polygon can be determined from the Harder-Narasimhan
flag of $E$ , which is the only flag

(9) $E=E_{0}\supsetneq E_{1}\supsetneq\cdots\supsetneq E_{i}\supsetarrow E_{i+1}\supsetneq\cdots\supsetneq E_{d}=0$

such that the sub-quotients $E_{i}/E_{i+1}$ are semistable and satisfies
$\mu(E_{0}/E_{1})<\mu(E_{1}/E_{2})<\cdots<\mu(E_{d-1}/E_{d})$ .

In fact, the vertices of the polygon $\tilde{P}_{E}$ are just $(rk(E_{i}), \deg(E_{i}))$ .
The proposition below compares $h^{0}(E)$ and $\deg_{+}(E)$ .

Proposition 2.2. –The following inequality holds:

(10) $|h^{0}(E)-\deg_{+}(E)|\leq$ rk$(E)(g+b(C))$ ,

where the constant $b(C)$ is defined in (8).

Pmof. –Let the Harder-Narasimhan flag of $E$ be as in (9). For any integer $i$ ,
$0\leq i\leq d-1$ , let $\mu_{i}=\mu(E_{i}/E_{i+1})$ . Let $j$ b9 the first index in $\{0, \cdots, d-1\}$ such
that $\mu_{j}\geq 0$ (if such index does not exist, let $j=d$). By definition, the positive degree
$\deg_{+}(E)$ coincides with $\deg(E_{j})$ .

If $j>0$ , then $\mu_{\max}(E/E_{j})=\alpha_{j-1}<0$ , so Lemma 2.11) predicts that $h^{0}(E/E_{j})=$

$0$ ; otherwise $E=E_{j}$ and we still have $h^{0}(E/E_{j})=0$ . Hence $h^{0}(E)=h^{0}(E_{j})$ . If
$j=n$ , then $h^{0}(E_{j})=0=\deg_{+}(E)$ ; otherwise $\mu_{\min}(E_{j})=\alpha_{j}\geq 0$ , and by Lemma 2.1
3 $)$ ,

$|h^{0}(E)-\deg_{+}(E)|=|h^{0}(E_{j})-\deg(E_{j})|\leq$ rk$(E_{j})(g+b(C))\leq$ rk$(E)(g+b(C))$ .
$\square$

We define the positive slope of $E$ to be the quotient $\mu+(E)$ $:=\deg_{+}(E)/$ rk$(E)$ . By
definition, one has $\max(\mu_{\max}(E), 0)\geq\mu+(E)\geq 0$ .

2.3. Volume function and positive degree of direct image. – Let $X$ be an
integral projective scheme of dimension $r$ over $Speck$ and $L$ is a line bundle on $X$ .
Assume that $\pi$ : $Xarrow C$ is a flat k-morphism. Denote by $K$ the field of all rational
functions on $C$ . Then $X_{K}$ is an integral projective scheme of dimension $r-1$ over
$SpecK$ .

Proposition 2.3. – The equality

(11) $vol(L)=\lim_{narrow+}\sup_{\infty}\frac{\deg_{+}(\pi_{*}(L^{\otimes n}))}{n^{r}/r!}$
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holds. Furthermore, if $L$ is big, then also is $L_{K}$ .

Pmof. –By Proposition 2.2, one has
$|\deg_{+}(\pi_{*}(L^{\otimes n}))-rk_{k}H^{0}(X, L^{\otimes n})|\leq rk_{K}H^{0}(X_{K}, L_{K}^{\otimes n})(g+b(C))$ .

Since $rk_{K}H^{0}(X_{K}, L_{K}^{\otimes n})\ll n^{r-1}$ , we obtain

(12) $\lim_{narrow\infty}|\frac{\deg_{+}(\pi_{*}(L^{\otimes n}))}{n^{r}/r!}-\frac{rk_{k}H^{0}(X,L^{\otimes n})}{n^{r}/r!}|=0$ ,

which implies (11). If $L$ is big, then $\lim_{narrow}\sup_{\infty}\frac{\deg_{+}(\pi_{*}(L^{\otimes n}))}{n^{r}/r!}>0$. On the other hand,

$\lim_{narrow}\sup_{\infty}\frac{\deg_{+}(\pi_{*}(L^{\otimes n}))}{nrk(\pi_{*}(L^{\otimes n}))}\leq\lim_{narrow}\sup_{\infty}\frac{\mu_{\max}(\pi_{*}(L^{\otimes n}))}{n}<+\infty$.

This implies $\lim_{narrow}\sup_{\infty}\frac{rk(\pi_{*}(L^{\otimes n}))}{n^{r-1}/r!}>0$. Therefore $L_{K}$ is big. $\square$

The Fujita’s approximation theorem implies that the volume function is in fact a
limit. More precisely, one has

(13) $vol(L)=\lim_{narrow\infty}\frac{rk_{k}H^{0}(X,L^{\otimes n})}{n^{r}/r!}$ .

Furthermore, the formula (13) applied on $L_{K}$ implies

$vol(L_{K})=\lim_{narrow\infty}\frac{rk_{K}H^{0}(X_{K},L_{K})}{n^{r-1}/(r-1)!}=\lim_{narrow\infty}\frac{rk(\pi_{*}(L^{\otimes n}))}{n^{r-1}/(r-1)!}$ .

Therefore we obtain the following equalities:

Corollary 2.4. –The following equalities hold:

$vol(L)=\lim_{narrow\infty}\frac{rk_{k}H^{0}(X,L^{\otimes n})}{n^{r}/r!}=\lim_{narrow\infty}\frac{\deg_{+}(\pi_{*}(L^{\otimes n}))}{n^{r}/r!}=rvol(L_{K})\lim_{narrow\infty}\frac{\mu+(\pi_{*}(L^{\otimes n}))}{n}$ .

2.4. Proof of Theorem 1.1. – The assertion 1) is a direct consequence of [5]
Theorem 4.2. In the following, we shall prove the second assertion.

From Corollary 2.4, we obtain

$vol(L)=\dim(X)vol(L_{K})\lim_{narrow\infty}\frac{\mu+(\pi_{*}(L^{\otimes n}))}{n}$ ,

where we remind that $\mu+(\pi_{*}(L^{\otimes n}))$ is the maximal value of the (normalized) Harder-
Narasimhan polygon of $\pi_{*}(L^{\otimes n})$ . The assertion 2) then follows from the following
lemma.

Lemma 2.5. –Let $E$ be a non-zem vector bundle of rank $r$ on C. The following
equality holds:

(14) $\mu+(E)=\int x_{+}\nu_{E}(dx)$ ,

where the probability measure $\nu_{E}$ was defined in (4).
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Pmof –Let $r$ be the rank of $E$ ,

$E=E_{0}\supsetneq E_{1}\supsetneq\cdots\supsetneq E_{d}=0$

be the Harder-Narasimhan flag of $E$ and $\mu 0<\cdots<\mu_{d-1}$ be its successive slopes. For
any $i\in\{0, \cdots, d-1\}$ , let $r_{i}$ be the rank of $E_{i}/E_{i+1}$ . Assume that $j$ is the first index
in $\{0, \cdots, d-1\}$ such that $\mu_{j}\geq 0$ (if such index does not exist, let $j=d$). Then

$\deg_{+}(E)=\deg(E_{j})=\sum_{i=0}^{j}r_{i}\mu_{i}$ .

Therefore, $\mu+(E)=\sum_{i=0}^{j}\frac{r_{i}}{r}\mu_{i}$ . Since $\mu_{E}=\sum_{i=0}^{d-1}\frac{r_{i}}{r}\delta_{\mu_{t}}$ , the equality (14) holds. $\square$

By the above lemma, one has

$vol(L)=\dim(X)vol(L_{K})\lim_{narrow\infty}\frac{1}{n}\int x_{+}\nu_{\pi.(L^{\otimes n})}(dx)$

$= \dim(X)vol(L_{K})\lim_{narrow\infty}\int x_{+}T_{\frac{1}{n}}\nu_{\pi.(L\otimes n})(dx)$ .

Rom the first part of the theorem, the sequence of measures $(T_{\frac{1}{n}}\nu_{\pi.(L^{\otimes n})})_{n\geq 1}$ con-
verges vaguely to $\nu_{L}^{\pi}$ . FUrthermore, [5] Proposition 4.11) shows that the supports of
measures $(T_{\frac{1}{\mathfrak{n}}}\nu_{\pi.(L^{\otimes n})})_{n\geq 1}$ are uniformly bounded from above. Therefore we obtain

$vol(L)=\dim(X)vol(L_{K})\int x_{+}\nu_{L}^{\pi}(dx)$ ,

which proves the theorem.

Remark 2.6. –1) By definition, for any integer $n\geq 1$ , one has $\nu_{L\otimes n}^{\pi}=T_{n}\nu_{L}^{\pi}$ .
Hence we recover the equality $vol(L)=n^{\dim X}vol(L)$ .

2 $)$ Let $M$ be a line bundle of degree $a$ on $C$ , and $E$ is a non-zero vector bundle on
$C$ whose Harder-Narasimhan filtration is as in (2) and whose successive slopes are
as in (3). Assume that $M$ is a line bundle of degree $a$ on $E$ . Then the Harder-
Narasimhan flag of $E\otimes M$ is just $E\otimes M=E_{0}\otimes M\supsetneq E_{1}\otimes M\supsetneq\cdots\supsetneq E_{d}\otimes M=0$ ,
and its successive slopes are $\mu_{i}+a,$ $i\in\{0, \cdots, d-1\}$ . Therefore, one has
$\nu_{E\otimes M}=\tau_{a}\nu_{E}$ , where for any Borel probability measure $\nu$ on $\mathbb{R},$

$\tau_{a}\nu$ is defined
as

$\int f(x)\tau_{a}\nu(dx)=\int f(x+a)\nu(dx)$ .

One verifies that $T_{\epsilon}\tau_{a}\nu=\tau_{a\epsilon}T_{\epsilon}\nu$ . Thus we obtain that, for any integer $n\geq 1$ ,
$\pi_{*}((L\otimes\pi^{*}M)^{\otimes n})=\pi_{*}(L^{\otimes n})\otimes M^{\otimes n}$. Therefore, one has $\nu_{\pi.((L\otimes\pi M)^{\otimes n})}=$

$\tau_{na}\nu_{\pi_{*}(L^{\otimes n})}$ , which implies that $\nu_{L\otimes\pi M}^{\pi}=\tau_{a}\nu_{L}^{\pi}$ . In particular,

$vol(L\otimes\pi^{*}M)=\dim(X)vol(L_{K})\int(x+a)_{+}\nu_{L}^{\pi}(dx)$ .
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3. Harder-Narasimhan filtrations of tensor powers

Let $E$ be a non-zero vector bundle on $C$ whose Harder-Narasimhan filtration is

(15) $E=E_{0}\supsetneq E_{1}\supsetneq\cdots\supset\wedge E_{d}=0$

and whose successive slopes are $\mu_{i}=\mu(E_{i}/E_{i+1})$ . For any $i\in\{0, \cdots, d\}$ , let $sq_{i}(E)$

be the sub-quotient $E_{i}/E_{i+1}$ . In this section, we shall determine, for any integer
$n\geq 1$ , the Harder-Narasimhan filtration of $E^{\otimes n}$ and that of $S^{n}E$ . Here we should
suppose that the characteristic of the ground field $k$ is zero, so that the following
results of Ramanan and Ramanathan [13] hold:
1 $)$ The tensor product of two semistable vector bundles on $C$ is still semistable.
2 $)$ Any symmetric power of a semistable vector bundle $E$ on $C$ is semistable. Fur-

thermore, one has $\mu(S^{n}E)=n\mu(E)$ .
3 $)$ If $E_{1}$ and $E_{2}$ are two non-zero vector bundles on $C$ , then

$\mu_{\max}(E_{1}\otimes E_{2})=\mu_{\max}(E_{1})+\mu_{\max}(E_{2})$ , $\mu_{\min}(E_{1}\otimes E_{2})=\mu_{\min}(E_{1})+\mu_{\min}(E_{2})$ .

3.1. The case of $E^{\otimes n}$ . –Denote by $\Theta$ the indices set $\{0, \cdots, d-1\}^{n}$ . We introduce
a partial order $”\leq$

” on $\Theta$ such that
$(j_{1}, \cdots,j_{n})\leq(l_{1}, \cdots, l_{n})$ if and only if $j_{1}\leq l_{1},$

$\cdots,$
$j_{n}\leq l_{n}$ .

We say that a subset $A$ of $\Theta$ is satumted if
$\alpha\in A,$ $\beta\in\Theta$ and $\beta\geq\alpha\Rightarrow\beta\in A$ .

Assume that $A$ is an arbitrary subset of $\Theta$ . Then $\{\beta|$ ョ $\alpha\in A, \beta\geq\alpha\}$ is the smallest
saturated subset of $\Theta$ containing $A$ . We denote it by $\overline{A}$ .

For any $\alpha=$ $(a_{1}, \cdots , a_{n})\in\Theta$ , denote by $E_{\alpha}$ the tensor product $E_{a_{1}}\otimes\cdots\otimes E_{a_{n}}$

and by $sq_{\alpha}(E)$ the tensor product of sub-quotients $sq_{a_{1}}(E)\otimes\cdots\otimes sq_{a_{n}}(E)$ . Since
each sub-quotient $sq_{i}(E)$ is semistable, also is the tensor product $sq_{\alpha}(E)$ . For any
non-empty subset $A$ of $\Theta$ , let $E_{A}$

$:= \sum_{\alpha\in A}E_{\alpha}$
. Write by convention $E_{\emptyset}=0$ . In the

following are some basic properties of vector bundles $E_{A}$ :

1 $)$ $E_{A}=E_{\overline{A}}$ .
2 $)$ If $A_{1}\subset A_{2}\subset\Theta$ , then $E_{A_{1}}\subset E_{A_{2}}$ .

Proposition 3.1. –Assume that $A\subset\Theta$ is non-empty and satumted, and that $A”$

is a subset of A consisting of maximal elements. Then $A’$ $:=A\backslash A’’$ is also satumted.
Furthermore, one has an isomorphism

(16)
$E_{A}/E_{A’} \cong\bigoplus_{\alpha\in A’’}sq_{\alpha}(E)$

.

Pmof. –Locally for the Zariski topology, the flag (15) is split. Therefore a classical
argument in linear algebra leads locally to a natural isomorphism of the form (16).
These natural isomorphisms do not depend on the choice of the splitting and therefore
glue together into a global isomorphism. $\square$
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For any $\alpha=$ $(a_{1}, --, a_{n})\in\Theta$ , let $\mu_{\alpha}$ be the sum $\mu_{a_{1}}+\cdots+\mu_{a_{n}}$ . With this notation,
the slope of $sq_{\alpha}(E)$ is just $\mu_{\alpha}$ . Denote by $\Sigma_{n}$ the set of real numbers of the form $\mu_{\alpha}$

where $\alpha$ takes through vectors in $\Theta$ . From the inequalities $\mu_{0}<\mu_{1}<\cdots<\mu_{d-1}$ we
obtain that $\alpha\leq\beta$ implies $\mu_{\alpha}\leq\mu_{\beta}$ , and $\alpha\neq<\beta$ implies $\mu_{\alpha}<\mu\beta$ .

Proposition 3.2. –The set $\Sigma_{n}$ identifies with that of successive slopes of $E^{\otimes n}$ .
Furthemore, suppose that the elements in $\Sigma_{n}$ are ordered as

$v_{0}<v_{1}<.$ . . $<v_{m-1}$ ,

then $E_{A_{0}}\supsetneq E_{A_{1}}\supsetneq\cdots\supsetneq E_{A_{m}}=0$ is the Harder-Narasimhan filtmtion of $E^{\otimes n}$ , where
$A_{j}=\{\alpha|\mu_{\alpha}\geq v_{j}\}$ for $j\in\{0, \cdots, m-1\}$ , and $A_{m}=\emptyset$ .

Proof. –By the definition of Harder-Narasimhan filtration, it suffices to prove that,
for each $j\in\{0, \cdots, m-1\}$ , the sub-quotient $E_{A_{j}}/E_{A_{j+1}}$ is semistable of slope $v_{j}$ . We
have $A_{j}\backslash A_{j+1}=\{\alpha I \mu_{\alpha}=v_{j}\}$ . Moreover, if $\mu_{\alpha}=v_{j}$ , then $\alpha$ is a maximal element
of $A_{j}$ . Therefore, Proposition 3.1 implies that

$E_{A_{j}}/E_{A_{j+1}} \cong\bigoplus_{\alpha\in A_{j}\backslash A_{j+1}}sq_{\alpha}(E)$

is semi-stable of slope $v_{j}$ . $\square$

Remark 3.3. –In [3], the author has introduced another interpretation of Harder-
Narasimhan filtration: one defines, for any $t\in \mathbb{R}$ ,

(17) $\mathcal{F}_{t}^{HN}:=$

$\sum_{0\neq F\subset E,\mu\min(F)\geq t}F$

.

This is a decreasing $\mathbb{R}-filtration$ of $E$ . The subbundles of $E$ appearing in the $\mathbb{R}-$

filtration (17) are just $E_{i},$ $i\in\{0, \cdots, d\}$ . Furthermore, the measure $\nu_{E}$ defined in (4)
coincides with the first order derivative (in the sense of distribution) of the function
$t\mapsto-$ rk $\mathcal{F}_{t}^{HN}E/$ rk $E$ . Proposition 3.2 shows that the $\mathbb{R}-filtration$ of $E^{\otimes n}$ is just the
$n^{th}$ tensor power of the $\mathbb{R}-filtration$ of $E$ . More precisely, one has

(18)
$\mathcal{F}_{t}^{HN}E^{\otimes n}=\sum_{t_{1}+\cdots+t_{n}=t}F_{t_{1}}^{HN}E\otimes\cdots\otimes \mathcal{F}_{t_{n}}^{HN}E$

,

and therefore $\nu_{E\otimes n}=\nu_{E}^{*n}$ , where $*$ denotes the convolution of Borel probability
measures on $\mathbb{R}$ .

3.2. The case of $S^{n}E$ . – The symmetric group $\mathfrak{S}_{n}$ acts on $E^{\otimes n}$ by permuting
factors. The $n^{th}$ symmetric power of $E$ is defined as the quotient of $E^{\otimes n}$ by the
action of $\mathfrak{S}_{n}$ . Let us keep the notation of \S 3.1. The group $\mathfrak{S}_{n}$ acts naturally on
$\Theta=\{0, \cdots, d-1\}^{n}$ . Denote by 6 the quotient space $\Theta/\mathfrak{S}_{n}$ . Each class $[\alpha]$ in
$\tilde{\Theta}$ corresponds bijectively to a partition of $n$ into sum of $d$ non-negative integers
$(a_{i})_{i=0}^{d-1}$ . For such a class $[\alpha]$ , we use the symbol sq$[\alpha 1^{(E)}$ to denote the tensor product
$\otimes_{i=0}^{d-1}S^{a_{i}}sq_{i}(E)$ . One observes that the group $\mathfrak{S}_{n}$ acts naturally on $\oplus_{\beta\in[\alpha]}sq_{\beta}(E)$

and its quotient space by the action of $\mathfrak{S}_{n}$ is just $\tilde{sq}_{[\alpha]}(E)$ . Moreover, $\tilde{sq}_{[\alpha]}(E)$ is also
semi-stable of slope $\mu_{\alpha}$ .
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For any $A\subset\Theta$ which is invariant by the action of $\mathfrak{S}_{n}$ , denote by $S_{A}E$ the image of
$E_{A}$ in $S^{n}E$ . It is the quotient of $E_{A}$ by the action of $C5_{n}$ . Let $A_{j}\subset\Theta,$ $j\in\{0, \cdots, m\}$

be as in Proposition 3.2. By the uniqueness of Harder-Narasimhan filtration, each $A_{j}$

is invariant by the action of $\mathfrak{S}_{n}$ .

Proposition 3.4. –The set of successive slopes of $S^{n}E$ is also $\Sigma_{n}$ . Furthermore,
$S_{A_{0}}E\supsetneq S_{A_{1}}E\supsetneq\cdots\supsetneq S_{A_{m}}E=0$ is the Harder-Narasimhan filtration of $S^{n}E$ .

Proof. –As pointed out above, each vector bundle $E_{A_{j}}$ is invariant by the action of
$\mathfrak{S}_{n}$ , and $S_{A_{j}}E$ is the quotient. Therefore, we obtain

$S_{A_{j}}E/S_{A_{j+1}}E \cong\bigoplus_{[\alpha]\in(A_{j}\backslash A_{j+1})/\mathfrak{S}_{n}}\tilde{sq}_{[\alpha]}(E)$
.

Since $\tilde{sq}_{[\alpha]}(E)$ is semi-stable of slope $\mu_{\alpha},$ $S_{A_{j}}E/S_{A_{j+1}}E$ is semi-stable of slope $v_{j}$ .
The proposition is then proved. $\square$

In the following, we compute the measure $\nu_{S^{n}E}$ . Take an arbitrary class $[\alpha]$ in $\tilde{\Theta}$

which corresponds to the partition $\underline{a}=(a_{i})_{i=0}^{d-1}$ of $n$ . The value $\mu_{\alpha}$ (which does not
depend on the representing element $\alpha$ ) equals $\sum_{i=0}^{d-1}a_{i}\mu_{i}$ . For each $i\in\{0, \cdots, d-1\}$ ,
let $r_{i}$ be the rank of $sq_{i}(E)$ . The rank of $\tilde{sq}_{[\alpha]}(E)$ is just

$r_{\underline{a}}:= \prod_{i=0}^{d-1}(\begin{array}{l}a_{i}+r_{i}-1r_{i}-1\end{array})$ .

We then obtain that

$R_{j}:=$ rk
$(S_{A_{j}}E/S_{A_{j+1}}E)= \sum_{=,.(.a_{i})_{i=0}^{d-1}\in N^{d}}r_{\underline{a}}a_{O}\mu 0^{\cdot}+a_{d-1}\mu_{d-1}=v_{j}a^{\frac{a}{+0}}+.\cdot\cdot+a_{d-1}=n$

.

By definition, one has

(19) $\nu_{S^{n}E}=\frac{1}{rkS^{n}E}\sum_{j=0}^{m-1}R_{j}\delta_{v_{j}}$ ,

where $\delta_{v_{j}}$ is the Dirac measure concentrated at $v_{j}$ .
The formula (19) gives an explicit description of the probability measure $\nu_{S^{n}E}$ .

However, it seems that in the case where the $r_{i}(i\in\{0, \cdots, d-1\})$ are different, the
values of $R_{j},$ $j\in\{0, \cdots, m-1\}$ are rather tedious to calculate. In the following we
propose another explicit form of $\nu_{S^{n}E}$ which is adapted to the proof of Theorem 1.2.

Proposition 3.5. –Let $r=r_{0}+\cdots+r_{d-1}$ and $\underline{s}=(s_{1}, \cdots, s_{r})$ be a vector in $\mathbb{R}^{n}$

such that the value $\mu_{i}$ appears exactly $r_{i}$ times in the coordinates on $\underline{s}$ . Then

(20)
$\nu_{S^{n}E}=\frac{1}{rkS^{n}E}\sum_{\frac{b}{b}(b_{l}.)_{l=}^{r}\in N^{r}}\delta_{b_{1}s_{1}+\cdots+b_{r}s_{r}}=..\cdot$
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Proof. –The only thing to verify is that, for any $v\in \mathbb{R}$ ,

$a0 \mu^{\frac{a}{a_{0}}}0+\cdot+a_{d-1}\mu_{d-1}=v=(.a_{i\frac{b}{bs}})_{i=0}^{d-1}\in N^{d}=(b..\downarrow..)_{l=}^{\tau}\in N^{r}\sum_{+,..\cdot\cdot+a_{d-1}=n}r_{\underline{a}}=\sum_{+\cdot.+b_{r}^{1}=nb_{11}^{1}++b_{r}s_{r}=v}1$

.

This relies on the fact that $(\begin{array}{l}a_{i}+r_{i}-1r_{i}-l\end{array})$ equals the number of partitions of $a_{i}$ into sum
of $r_{i}$ positive integers. $\square$

3.3. Proofs of Theorem 1.2 and Corollary 1.3. – By definition, $\nu_{\mathcal{O}_{E}(1)}^{\pi}$ co-
incides with the vague limit of measures $T_{\frac{1}{n}}\nu_{S^{n}E}$ when $narrow\infty$ . By Proposition
3.5,

$T_{\frac{1}{n}} \nu_{S^{n}E}=\frac{1}{rkS^{n}E}$

$\sum_{=,b_{1}+\cdot\cdot+b_{r}1}\delta_{b_{1}d_{1}+\cdots+b_{r}d_{r}}\underline{b}=(b\iota)_{l.1}^{r}\in\frac{1}{=n}N^{r}$

$= \varphi_{\underline{s}*}[\frac{1}{rkS^{n}E}\sum_{\underline{b}\in\frac{1}{n}N^{r}\cap\Delta}\tilde{\delta}_{\underline{b}}]$
,

where in the last bracket is the measure of the $n^{th}$ Riemann sum on $\Delta$ . Therefore,
$(T_{\frac{1}{n}}\nu_{S^{n}E})_{n\geq 1}$ converges vaguely to $\varphi_{\underline{s}*}\eta$ . Theorem 1.2 is thus proved.

Finally, by remark 2.6, one has

$vol(\mathcal{O}_{E}(m)\otimes\pi^{*}M)=rvol(\mathcal{O}_{E}(m)_{K})\int(x+c)_{+}\nu_{\mathcal{O}_{E}(m)^{\pi}}(dx)$

$=rm^{r-1} \int(mx+c)_{+}\nu_{O_{E}(1)}^{\pi}(dx)$

$=rm^{r} \int(x+c/m)_{+}\varphi_{\underline{s}*}\eta(dx)$ ,

which proves Corollary 1.3.

4. Polynomial representation of the volume function

In this section, we show that Corollary 1.3 permits to get the subdivision of the
N\’eron-Severi group $N^{1}(\mathbb{P}(E))$ into sectors such that the volume function is polynomial
on each sector. We shall keep the notation introduced in Theorem 1.2 and Corollary
1.3. Note that the value in (6) depends only on $m$ and $c$ , we denote it by $\Phi(m, c)$ .

Firstly, let us discuss some degenerate cases. Assume that $E$ is semistable, i.e.,
$d=1$ . Then the limit measure $\nu_{\mathcal{O}(E)}^{\pi}$ is the Dirac measure concentrated at $\mu(E)$ .
Therefore, Corollary 1.3 implies

$\Phi(m, c)=rm^{r}(\mu(E)+c/m)_{+}=\{\begin{array}{ll}\deg(E)m^{r}+crm^{r-1}, if c\geq-\mu(E)m,0, else.\end{array}$
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If $r=d=2$ , then the measure $\varphi_{\underline{s}*}\eta$ is the uniform distribution on the interval
$[\mu_{0}, \mu_{1}]$ . In this case

$\Phi(m, c)=\frac{2m^{2}}{\mu_{1}-\mu_{0}}\int_{\mu 0}^{\mu_{1}}(x+c/m)_{+}dx=\{\begin{array}{ll}m^{2}(\mu_{1}+\mu_{0})+2 cm, c>-m\mu_{0},(m\mu_{1}+c)^{2}/(\mu_{1}-\mu_{0}), -m\mu_{1}\leq c\leq m\mu_{0},0, c<-m\mu_{1}.\end{array}$

In the following, we always suppose $r\geq 3$ and $d\geq 2$ . Without loss of generality,
we assume that the coordinates of $\underline{s}$ are ordered such that $s_{1}\leq\cdots\leq s_{r}$ . For any
$i\in\{0, \cdots, d-1\}$ , let $j_{i}=$ rk$(E/E_{i+1})$ . Let $j_{-1}=0$ . Note that $s_{l}=\mu_{i}$ if and only if
$l\in]j_{i-1},j_{i}]$ . For any real number $t\in[d_{1}, d_{r}]$ , let $\triangle_{t}$ be the intersection of $\triangle$ and the
hyperplane $\{(x_{1}, \cdots, x_{r})|s_{1}x_{1}+\cdots+s_{r}x_{r}=t\}$ . Denote by $v_{t}$ the density of $\varphi_{\underline{s}*}\eta$

with respect to the Lebesgue measure. Since for any $i\in\{1, \cdots, d-1\}$ , the polytopes
$\triangle_{t}(t\in[\mu_{i-1}, \mu_{i}])$ are similar, the function $v_{t}$ is a polynomial of degree $r-2$ on
$[\mu_{i-1}, \mu_{i}]$ . Hence there exists a polynomial $P_{i}$ of degree $r-2$ such that $v_{t}=P_{i}(t)$ on
$[\mu_{i-1}, \mu_{i}]$ . Thus we obtain

$\Phi(m, c)=rm^{r}\sum_{i=1}^{d-1}\int_{\mu_{i-1}}^{\mu_{i}}(t+c/m)_{+}P_{i}(t)dt$ .

Therefore, $\Phi(m, c)=0$ if $c\leq-\mu_{d-1}m$ . If $c\in[-\mu_{j}m, -\mu_{j-1}m](j\in\{1, \cdots, d-1\})$ ,
one has

$\Phi(m, c)=r\sum_{i=j+1}^{d-1}[(\int_{\mu_{i-1}}^{\mu_{i}}tP_{i}(t)dt)m^{r}+(\int_{\mu_{i-1}}^{\mu_{i}}P_{i}(t)dt)cm^{r-1}]$

$+r[( \int_{-c/m}^{\mu_{j}}tP_{i}(t)dt)m^{r}+(\int_{-c/m}^{\mu_{i}}P_{i}(t)dt)cm^{r-1}]$ ,

which is a homogeneous polynomial of degree $r$ in $m$ and $c$ . Finally, when $c>-\mu_{0}m$ ,
then

$\Phi(m, c)=r\sum_{i=1}^{d-1}[(\int_{\mu_{i-1}}^{\mu_{i}}tP_{i}(t)dt)m^{r}+(\int_{\mu_{i-1}}^{\mu_{i}}P_{i}(t)dt)cm^{r-1}]$

has degree 1 in $c$ .
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