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Differentiability of the arithmetic volume function

Huayi Chen

Abstract

We introduce the positive intersection product in Arakelov geometry and prove that the
arithmetic volume function is differentiable.

1. Introduction

Let k be a field. If Y is a projective variety of dimension d over Spec k and if L is a line bundle
on Y , then the volume of L is defined as

vol(L) := lim sup
n→∞

rkk H0(Y,L⊗n)
nd/d!

.

The line bundle L is said to be big if its volume is positive. In [7], Boucksom, Favre and Jonsson
have proved that the function vol(L) is continuously differentiable on the big cone. The same
result has also been independently obtained by Lazarsfeld and Musţatǎ [16] by using Okounkov
bodies. The differential of vol contains the positive intersection product, initially defined in [6]
in the analytic-geometrical framework, and redefined algebraically in [7].

In Arakelov geometry, the analogue of the volume function is defined for Hermitian line
bundles. Let K be a number field, OK be its integer ring and π : X → SpecOK be a projective
arithmetic variety (that is, π is a projective and flat morphism) of relative dimension d. The
arithmetic volume of a Hermitian line bundle L̄ (with continuous metrics) on X is by definition

v̂ol(L̄) := lim sup
n→∞

ĥ0(X, L̄⊗n)
nd+1/(d + 1)!

, (1.1)

where

ĥ0(X, L̄⊗n) = log #
{

s ∈ π∗(L⊗n)
∣∣∣∣ sup

σ:K→C
∥s∥σ,sup ! 1

}
.

In this article, we introduce an analogue in Arakelov geometry of the positive intersection
product in [7], and prove that the arithmetic volume function v̂ol is continuously differentiable
on P̂ic(X). We shall establish the following result.

Theorem A. Let L̄ and M̄ be two continuous Hermitian line bundles on X. Assume that
L̄ is big. Then

DM̄ v̂ol(L̄) := lim
n→+∞

v̂ol(L̄⊗n ⊗ M̄) − v̂ol(L̄⊗n)
nd

exists in R, and the function M̄ &→ DM̄ v̂ol(L̄) is additive on P̂ic(X). Furthermore, one has

DM̄ v̂ol(L̄) = (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄).
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Here the positive intersection product ⟨ĉ1(L̄)d⟩ is defined as the least upper bound of self-
intersections of ample Hermitian line bundles dominated by L̄ (see § 3.3). In particular, one
has ⟨ĉ1(L̄)d⟩ · ĉ1(L̄) = ⟨ĉ1(L̄)d+1⟩ = v̂ol(L̄).

The existence of Dv̂ol(L̄) comes from the log-concavity of the arithmetic volume function
(see [27, Theorem B]), which asserts that the function v̂ol1/(d+1) is super-additive. The
additivity of M̄ &→ DM̄ v̂ol(L̄) on P̂ic(X) relies on the observation that if a super-additive
(homogeneous) function on P̂ic(X) is bounded from below by an additive function, then they
are equal (see Proposition 4.1). This convexity argument permits us to reduce the proof of the
theorem to establishing the inequality Dv̂ol(L̄) " (d + 1)⟨ĉ1(L̄)d⟩, which is a consequence of
Siu’s inequality in Arakelov geometry (see [26, § 1.3]) and the arithmetic Fujita approximation
theorem (cf. [11, Theorem 4.3; 27, Theorem C]).

Compared with the proof of the differentiability of the geometric volume function in [7],
our proof relies on similar properties of the volume function (Fujita approximation and Siu’s
inequality). However, the convexity argument as above permits us to clarify the role that these
properties played in the differentiability of the volume function and to make the proof more
clear. The differentiability criterion in Proposition 4.1 combined with [7, Corollary 3.4] also
gives a shorter proof of the differentiability of the geometric volume function.

As an application of the differentiability of the arithmetic volume function, we calculate the
distribution function of the asymptotic measure (see [10, 11]) of a generically big Hermitian
line bundle in terms of positive intersection numbers. Let L̄ be a Hermitian line bundle on X
such that LK is big. The asymptotic measure νL̄ is the vague limit (when n goes to infinity)
of Borel probability measures whose distribution functions are determined by the filtration
of H0(XK , L⊗n

K ) by successive minima (see (5.1) infra). Several asymptotic invariants can be
obtained by integration with respect to νL̄. We shall calculate the distribution function of νL̄

in Proposition 5.2.
Another application consists of interpreting the variational principle in the Arakelov

geometry approach of the equidistribution problem by the differentiability of certain arithmetic
invariants. Here we use a variant of the additivity criterion mentioned above, which asserts that
if a super-additive homogeneous function is bounded from below by a differentiable function
and if the two functions share the same value on some point, then the former function is also
differentiable at this point (see Proposition 5.4).

The article is organized as follows. In § 2, we recall some positivity conditions for Hermitian
line bundles and discuss their properties. In § 3, we define the positive intersection product in
Arakelov geometry. It is in § 4 that we establish the differentiability of the arithmetic volume
function. Finally, in § 5, we compare our result to some known results on the differentiability
of arithmetic invariants and discuss some applications.

2. Preliminaries

In this article, we fix a number field K and denote by OK its integer ring. Let K̄ be an
algebraic closure of K. Let π : X → SpecOK be a projective and flat morphism and d be the
relative dimension of π. Denote by P̂ic(X) the group of isomorphism classes of (continuous)
Hermitian line bundles on X. If L̄ is a Hermitian line bundle on X, then we denote by π∗(L̄)
the OK-module π∗(L) equipped with sup norms.

In the following, we recall several notions about Hermitian line bundles. The references are
[5, 15, 18, 28].

(1) Assume that x ∈ X(K̄) is an algebraic point of X. Denote by Kx the field of definition
of x and by Ox its integer ring. The morphism x : Spec K̄ → X gives rise to a point Px of X
valued in Ox. The pull-back of L̄ by Px is a Hermitian line bundle on SpecOx. We denote by
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hL̄(x) its normalized Arakelov degree, called the height of x. Note that the height function is
additive with respect to L̄.

(2) Let L̄ be a Hermitian line bundle on X. We say that a section s ∈ π∗(L) is effective or
strictly effective if, for any σ : K → C, one has ∥s∥σ,sup ! 1 or ∥s∥σ,sup < 1, respectively. We
say that the Hermitian line bundle L̄ is effective if it admits a non-zero effective section.

(3) Let L̄1 and L̄2 be two Hermitian line bundles on X. We say that L̄1 is smaller than L̄2

and we define L̄1 ! L̄2 if the Hermitian line bundle L̄∨
1 ⊗ L̄2 is effective.

(4) We say that a Hermitian line bundle Ā is ample if A is ample, c1(Ā) is semipositive in
the sense of current on X(C) and ĉ1(Ā|Y )dim Y > 0 for any integral sub-scheme Y of X which
is flat over SpecOK . Here the intersection number ĉ1(Ā|Y )dim Y is defined in the sense of [28]
(see [28, Lemma 6.5; see also 29]). Note that there always exists an ample Hermitian line bundle
on X. In fact, since X is projective, it can be embedded in a projective space PN . Then the
restriction of OPN (1) with Fubini–Study metrics on X is ample. Note that the Hermitian line
bundle Ā thus constructed has positive smooth metrics. Thus, if M̄ is an arbitrary Hermitian
line bundle with smooth metrics on X, then, for sufficiently large n, M̄ ⊗ Ā⊗n is still ample.

(5) We say that a Hermitian line bundle N̄ is vertically nef if the restriction of N on each
fibre of π is nef and c1(N̄) is semipositive in the sense of current on X(C). We say that N̄ is
nef if it is vertically nef and ĉ1(N̄ |Y )dim Y " 0 for any integral sub-scheme Y of X which is flat
over SpecOK . By definition, an ample Hermitian line bundle is always nef. Furthermore, if Ā
is an ample Hermitian line bundle and if N̄ is a Hermitian line bundle such that N̄⊗n ⊗ Ā is
ample for any integer n " 1, then N̄ is nef. We denote by N̂ef(X) the sub-semigroup of P̂ic(X)
consisting of nef Hermitian line bundles.

(6) If f : X(C) → R is a continuous function which is invariant by the complex conjugation,
then we denote by Ō(f) the Hermitian line bundle on X whose underlying line bundle is
trivial, and such that the norm of the unit section 1 at x ∈ X(C) is e−f(x). Note that if f is
non-negative, then Ō(f) is effective. Moreover, for any a ∈ R, Ō(a) is nef if and only if a " 0.
If L̄ is a Hermitian line bundle on X, then we shall use the notation L̄(f) to denote L̄ ⊗ Ō(f).

(7) We say that a Hermitian line bundle L̄ is big if its arithmetic volume v̂ol(L̄) is positive.
By [26, Corollary 2.4], L̄ is big if and only if a positive tensor power of L̄ can be written as
the tensor product of an ample Hermitian line bundle with an effective one. Furthermore, the
analogue of Fujita’s approximation theorem holds for big Hermitian line bundles; cf. [11, 27].

(8) The arithmetic volume function v̂ol is actually a limit (cf. [11, Remark 3.9]): one has

v̂ol(L̄) = lim
n→∞

ĥ0(X, L̄⊗n)
nd+1/(d + 1)!

.

It is (positively) homogeneous of degree d + 1; namely, for any integer n " 1, one has

v̂ol(L̄⊗n) = nd+1v̂ol(L̄).

Moreover, it is a birational invariant which is continuous on P̂ic(X)Q, and can be continuously
extended to P̂ic(X)R; cf. [19, 20]. The analogue of Siu’s inequality and the log-concavity hold
for v̂ol (cf. [26, 27]); namely,

(a) if L̄ and M̄ are two Hermitian line bundles on X which are nef, then

v̂ol(L̄ ⊗ M̄∨) " ĉ1(L̄)d+1 − (d + 1)ĉ1(L̄)d · ĉ1(M̄);

(b) if L̄ and M̄ are two Hermitian line bundles on X, then

v̂ol(L̄ ⊗ M̄)1/(d+1) " v̂ol(L̄)1/(d+1) + v̂ol(M̄)1/(d+1).

Remark 1. (1) In [18, 28], the notions of ample and nef line bundles were reserved for
line bundles with smooth metrics, which is not the case here.
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(2) Note that there exists another (non-equivalent) definition of arithmetic volume function
in the literature. See [2, § 10.1; 9, § 5] where the ‘arithmetic volume’ of a Hermitian line bundle
L̄ was defined as the following number:

S(L̄) := lim sup
n→+∞

χ(π∗(L̄⊗n))
nd+1/(d + 1)!

∈ [−∞,+∞[, (2.1)

which is also called (logarithmic) sectional capacity following the terminology of [23]. However,
in the analogy between Arakelov geometry and relative algebraic geometry over a regular curve,
it is (1.1) that corresponds to the geometric volume function. Note that one always has (see [26,
§ 2.2, Remark 2]) v̂ol(L̄) " S(L̄), and the equality holds when L̄ is nef. In fact, under the
assumption of nefness, both quantities are equal to the intersection number ĉ1(L̄)d+1; see [22,
Théorème A and Corollaire 3.11; 19, Corollary 5.5].

In the following, we present some properties of nef line bundles. Note that Propositions 2.1
and 2.2 have been proved in [18, § 2] for Hermitian line bundles with smooth metrics. Here
we adapt these results to the continuous metric case by using the continuity of intersection
numbers.

Proposition 2.1. Let N̄ be a Hermitian line bundle on X which is vertically nef. Assume
that, for any x ∈ X(K̄), one has hN̄ (x) " 0; then the Hermitian line bundle N̄ is nef.

Proof. Choose an ample Hermitian line bundle Ā on X such that hĀ : X(K̄) → R+

has a positive lower bound ε. For any integer n " 1, let L̄n := (Ln, (∥ · ∥σ)σ:K→C) be the
tensor product N̄⊗n ⊗ Ā. Since hL̄n

= nhL̄ + hĀ " hĀ, the height function hL̄n
is bounded

from below by the same positive number ε. Note that the metrics of L̄n are semipositive.
By [17, Theorem 4.6.1] (see also [22, § 3.9]), there exists a sequence of smooth positive metric
families (αm)m!1 with αm = (∥ · ∥σ,m)σ:K→C, such that ∥ · ∥σ,m converges uniformly to ∥ · ∥σ

when m tends to infinity. Define L̄n,m = (Ln,αm). For sufficiently large m, hL̄n,m
is bounded

from below by εn/2. Thus, [28, Corollary 5.7] implies that, for any integral sub-scheme Y of
X which is flat over SpecOK , one has n− dim Y ĉ1(L̄n,m|Y )dim Y " 0. By taking the limit when
m and n tend to infinity successively, one obtains ĉ1(N̄ |Y )dim Y " 0. Therefore, N̄ is nef.

We say that a Hermitian line bundle L̄ on X is integrable if there exist two ample Hermitian
line bundles Ā1 and Ā2 such that L̄ = Ā1 ⊗ Ā∨

2 . Denote by Înt(X) the subgroup of P̂ic(X)
formed by all integrable Hermitian line bundles. If (L̄i)d

i=0 is a family of integrable Hermitian
line bundles on X, then the intersection number

ĉ1(L̄0) · . . . · ĉ1(L̄d)

is defined (see [17, § 5, 28, Lemma 6.5 and 29, § 1]). Furthermore, it is a symmetric multilinear
form which is continuous in each L̄i; namely, for any family (M̄i)d

i=0 of integrable Hermitian
line bundles, one has

lim
n→+∞

n−d−1ĉ1(L̄⊗n
0 ⊗ M̄0) · . . . · ĉ1(L̄⊗n

d ⊗ M̄d) = ĉ1(L̄0) · . . . · ĉ1(L̄d).

Proposition 2.2. Let (L̄i)d−1
i=0 be a family of nef Hermitian line bundles on X, and let M̄

be an integrable Hermitian line bundle on X which is effective. Then

ĉ1(L̄0) · . . . · ĉ1(L̄d−1) · ĉ1(M̄) " 0. (2.2)
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Proof. Choose an ample Hermitian line bundle Ā on X such that hĀ is bounded from below
by a positive number. By virtue of the proof of Proposition 2.1, for any i ∈ {0, . . . , d − 1} and
any integer n " 1, there exists a sequence of nef Hermitian line bundles with smooth metrics
(L̄(m)

i,n )m!1 whose underlying line bundle is L⊗n
i ⊗ A and whose metrics converge uniformly to

that of L̄⊗n
i ⊗ Ā. By [18, Proposition 2.3], one has

ĉ1(L̄⊗n
0 ⊗ Ā) · . . . · ĉ1(L̄⊗n

d−1 ⊗ Ā) · ĉ1(M̄) " 0.

By taking the limit when n tends to infinity, one obtains (2.2).

Remark 2. Using the same method, we can prove that if (L̄i)d
i=0 is a family of nef

Hermitian line bundles on X, then

ĉ1(L̄0) · . . . · ĉ1(L̄d) " 0. (2.3)

Proposition 2.3. Let L̄ be a Hermitian line bundle on X such that c1(L̄) is semipositive
in the sense of current on X(C). Assume that there exists an integer n > 0 such that L⊗n is
generated by its effective sections. Then the Hermitian line bundle L̄ is nef.

Proof. Since L⊗n is generated by its sections, the line bundle L is nef relatively to π. By
Proposition 2.1, it suffices to verify that, for any x ∈ X(K̄), one has hL̄(x) " 0. For any integer
m " 1 let Bm = π∗(L⊗m) and let B[0]

m be the sub-OK-module of Bm generated by effective
sections. Since L⊗n is generated by its effective sections, so is L⊗np for any integer p " 1.
In particular, one has surjective homomorphisms x∗π∗B[0]

pn,Kx
→ x∗L⊗np

Kx
. By slope inequality

(see [4, Appendix A]), one has nphL̄(x) " µ̂min(B̄[0]
np). By passing to the limit, one obtains

hL̄(x) " 0.

Definition 1. We say that a Hermitian line bundle L̄ on X is free if c1(L̄) is semipositive
in the sense of current on X(C) and if some positive tensor power of L is generated by effective
global sections. We denote by F̂r(X) the sub-semigroup of P̂ic(X) consisting of free Hermitian
line bundles.

Remark 3. (1) By Proposition 2.3, one has F̂r(X) ⊂ N̂ef(X).
(2) Unlike the ampleness, the properties of being big, nef or free are all invariant by

birational modifications; that is, if ν : X ′ → X is a birational projective morphism, and if
L̄ is a Hermitian line bundle on X which is big, nef or free, then so is ν∗(L̄).

3. Positive intersection product

In this section, we shall define the positive intersection product for big (not-necessarily inte-
grable) Hermitian line bundles. When all Hermitian line bundles involved are nef, the positive
intersection product coincides with the usual intersection product. Furthermore, the highest
positive auto-intersection number is just the arithmetic volume of the Hermitian line bundle.
We shall use the positive intersection product to interpret the differential of the arithmetic
volume function.
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3.1. Admissible decompositions

Definition 2. Let L̄ be a big Hermitian line bundle on X. We define an admissible
decomposition of L̄ as any triple (ν, N̄ , p), where

(1) ν : X ′ → X is a birational projective morphism;
(2) N̄ is a free Hermitian line bundle on X ′;
(3) p " 1 is an integer such that ν∗(L̄⊗p) ⊗ N̄∨ is effective.

Denote by Θ(L̄) the set of all admissible decompositions of L̄.

We introduce an order relation on the set Θ(L̄). Let Di = (νi : Xi → X, N̄i, pi) (i = 1, 2) be
two admissible decompositions of L̄. We say that D1 is superior to D2, denoted by D1 ≻ D2,
if p2 divides p1 and if there exists a projective birational morphism η : X1 → X2 such that
ν2η = ν1 and N̄1 ⊗ (η∗N̄2)∨⊗(p1/p2) is effective.

Remark 4. (1) Assume that D = (ν : X ′ → X, N̄, p) is an admissible decomposition of L̄.
Then, for any birational projective morphism η : X ′′ → X ′, the triplet η∗D := (νη, η∗N̄ , p) is
also an admissible decomposition of L̄, and one has η∗D ≻ D.

(2) Assume that D1 = (ν, N̄1, p) and D2 = (ν, N̄2, q) are two admissible decompositions of
L̄ whose underlying birational projective morphisms are the same. Then D1 ⊗ D2 := (ν, N̄1 ⊗
N̄2, p + q) is an admissible decomposition of L̄.

(3) Assume that D = (ν, N̄ , p) is an admissible decomposition of L̄. Then, for any integer
n " 1, one has D⊗n ≻ D.

(4) Assume that M̄ is an effective Hermitian line bundle on X. By definition, any admissible
decomposition of L̄ is also an admissible decomposition of L̄ ⊗ M̄ .

In the following proposition, we show that the set Θ(L̄) is filtered with respect to the order ≻.

Proposition 3.1. If D1 and D2 are two admissible decompositions of L̄, then there exists
an admissible decomposition D of L̄ such that D ≻ D1 and D ≻ D2.

Proof. By Remark 4, we may assume that the first and the third components of D1 and
D2 are the same. Assume that D1 = (ν, N̄1, p) and D2 = (ν, N̄2, p), where ν : X ′ → X is a
birational projective morphism. The main idea consists in constructing a suitable birational
modification of X ′ such that the pull-back of the morphisms N̄i → ν∗L̄⊗p factors through a
common free Hermitian line bundle N̄ . Let M̄i = ν∗L̄⊗p ⊗ N̄∨

i (i = 1, 2). Since M̄1 and M̄2

are effective, there exist homomorphisms ui : M∨
i → OX′ corresponding to effective sections

si : OX′ → Mi (i = 1, 2). Let η : X ′′ → X ′ be the blow-up of the ideal sheaf Im(u1 ⊕ u2). Let M
be the exceptional line bundle and s : OX′′ → M be the section that trivializes M outside the
exceptional divisor. The canonical surjective homomorphism η∗(M∨

1 ⊕ M∨
2 ) → M∨ induces by

duality an injective homomorphism ϕ : M → η∗(M1 ⊕ M2). We equip M1 ⊕ M2 with metrics
(∥ · ∥σ)σ:K→C such that, for any x ∈ X ′′

σ (C) and any section (u, v) of M1,σ ⊕ M2,σ over a
neighbourhood of x, one has ∥(u, v)∥σ(x) = max{∥u∥σ,1(x), ∥v∥σ,2(x)}. As ϕs = (η∗s1, η∗s2),
and the sections s1 and s2 are effective, one obtains that the section s is also effective. Let
N̄ = (νη)∗L̄⊗p ⊗ M̄∨. One has a natural surjective homomorphism

ψ : η∗N1 ⊕ η∗N2 −→ N.

Furthermore, if we equip η∗N1 ⊕ η∗N2 with metrics (∥ · ∥σ)σ:K→C such that, for any x ∈ X ′′
σ (x),

∥(u, v)∥σ(x) = ∥u∥σ(x) + ∥v∥σ(x), then the metrics on N are just the quotient metrics by the
surjective homomorphism ψ, which are semipositive since the metrics of η∗N̄1 and of η∗N̄2 are.
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As both Hermitian line bundles N1 and N2 are generated by effective global sections, so also
is N̄ . Therefore, (νη, N̄ , p) is an admissible decomposition of L̄, which is superior to both D1

and D2.

3.2. Intersection of admissible decompositions

Let (L̄i)d
i=0 be a family of Hermitian line bundles on X. Let m ∈ {0, . . . , d}. Assume that

L̄i is big for i ∈ {0, . . . , m} and is integrable for i ∈ {m + 1, . . . , d}. For any i ∈ {0, . . . , m}, let
Di = (νi : Xi → X, N̄i, pi) be an admissible decomposition of L̄i. Choose a birational projective
morphism ν : X ′ → X which factorizes through νi for any i ∈ {0, . . . , m}. Denote by ηi : Xi →
X the projective birational morphism such that ν = νiηi (0 ! i ! m). Define (D0 · . . . · Dm) ·
ĉ1(L̄m+1) · . . . · ĉ1(L̄d) as the normalized intersection product

ĉ1(η∗0N̄0) · . . . · ĉ1(η∗mN̄m) · ĉ1(ν∗L̄m+1) · . . . · ĉ1(ν∗L̄d)
m∏

i=0

p−1
i .

This definition does not depend on the choice of ν.

Proposition 3.2. Let (L̄i)0"i"d be a family of Hermitian line bundles on X.
Let m ∈ {0, . . . , d}. Assume that L̄i is big for i ∈ {0, . . . , m}, and is nef for i ∈ {m + 1, . . . , d}.
For any i ∈ {0, . . . , m} let Di and D′

i be two admissible decompositions of L̄i such that Di ≻ D′
i.

Then

(D0 · . . . · Dm) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d) " (D′
0 · . . . · D′

m) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d). (3.1)

Proof. By substituting progressively Di with D′
i, it suffices to prove the following particular

case:

(D0 · D1 · . . . · Dm) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d) " (D′
0 · D1 · . . . · Dm) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d),

which is a consequence of Proposition 2.2.

Corollary 3.3. With the notation and the assumptions of Proposition 3.2, the supremum

sup{(D0 · . . . · Dm) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d) | 0 ! i ! m,Di ∈ Θ(L̄i)} (3.2)

exists in R!0.

Proof. For any i ∈ {0, . . . , m} let Āi be an arithmetically ample Hermitian line bundle on
X such that Āi ⊗ L̄∨

i is effective. Then all numbers in the set (3.2) are bounded from above
by ĉ1(Ā0) · . . . · ĉ1(Ām) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d).

3.3. Positive intersection product

Let (L̄i)m
i=0 be a family of big Hermitian line bundles on X, where 0 ! m ! d. Denote by

⟨ĉ1(L̄0) · . . . · ĉ1(L̄m)⟩ the function on N̂ef(X)d−m which sends a family of nef Hermitian line
bundles (L̄j)d

j=m+1 to the supremum

sup{(D0 · . . . · Dm) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d) | 0 ! i ! m, Di ∈ Θ(L̄i)}.

Since all admissible decomposition sets Θ(L̄i) are filtered, this function is additive in each L̄j

(m + 1 ! j ! d). Thus, it extends naturally to a multilinear function on Înt(X)d−m which we
still denote by ⟨ĉ1(L̄0) · . . . · ĉ1(L̄m)⟩, called the positive intersection product of (L̄i)m

i=0.
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Remark 5. (1) Note that the tensor product of a nef Hermitian line bundle with an ample
one is always ample, and a tensor power of an ample Hermitian line bundle with sufficiently
large exponent is free (see [28, Theorem 4.2]). Therefore, by the continuity of the intersection
product, if all Hermitian line bundles (L̄i)m

i=0 are nef, then the positive intersection product of
them coincides with the usual intersection product. A similar argument shows that if in the
definition of admissible decompositions we replace ‘free’ by ‘nef ’,† the corresponding positive
intersection product is the same as the function defined above.

(2) The positive intersection product is homogeneous in each variable L̄i (0 ! i ! m).
However, in general it is not additive in each variable. If we consider it as a function on
N̂ef(X)d−m, then it is super-additive in each variable.

(3) Assume that all Hermitian line bundles (L̄i)m
i=0 are the same, that is,

L̄0 = . . . = L̄m = L̄.

We use the expression ⟨ĉ1(L̄)m+1⟩ to denote the positive intersection product
〈

ĉ1(L̄) · . . . · ĉ1(L̄)︸ ︷︷ ︸
m+1 copies

〉
.

With this notation, for any (L̄j)d
j=m+1 ∈ N̂ef(X)d−m, one has

⟨ĉ1(L̄)m⟩ · ĉ1(L̄m+1) · . . . · ĉ1(L̄d) = sup
D∈Θ(L̄)

(D · . . . · D) · ĉ1(L̄m+1) · . . . · ĉ1(L̄d).

This equality comes from the fact that the ordered set Θ(L̄) is filtered (Proposition 3.1) and
from the comparison (3.1).

The following result shows that the positive auto-intersection product of a big Hermitian
line bundle coincides with the arithmetic volume function.

Theorem 3.4. Let L̄ be a big Hermitian line bundle on X. One has

⟨ĉ1(L̄)d+1⟩ = v̂ol(L̄).

Proof. By definition, one has

⟨ĉ1(L̄)d+1⟩ = sup
D∈Θ(L̄)

⎛

⎝D · . . . · D︸ ︷︷ ︸
d+1 copies

⎞

⎠ .

For any admissible decomposition D = (ν, N̄ , p) of L̄, one has
⎛

⎝D · . . . · D︸ ︷︷ ︸
d+1 copies

⎞

⎠ = p−d−1ĉ1(ν∗N̄)d+1 = p−d−1v̂ol(N̄).

By Fujita’s approximation theorem in Arakelov geometry (see [11, 27]), we obtain the
result.

Remark 6. The above result could be considered as a reformulation of the arithmetic Fujita
approximation theorem. We establish further in Corollary 4.4 that one has ⟨ĉ1(L̄)d⟩ · ĉ1(L̄) =

†Which is the usual choice in the geometric setting. Here in the arithmetic setting, our choice is for technical
considerations, notably for the simplification of several proofs.
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v̂ol(L̄). Although apparently similar to Theorem 3.4, this inequality should be interpreted as an
asymptotic orthogonality of Fujita approximation to Zariski decomposition in the arithmetic
setting. Its proof relies on the differentiability of the arithmetic volume function, discussed in
the next section.

Lemma 3.5. Let (L̄i)m
i=0 be a family of big Hermitian line bundles on X, where

m ∈ {0, . . . , d}. For any i ∈ {0, . . . , m}, let M̄i be an effective Hermitian line bundle on X
and let N̄i = L̄i ⊗ M̄i. Then one has

⟨ĉ1(L̄0) · . . . · ĉ1(L̄m)⟩ ! ⟨ĉ1(N̄0) · . . . · ĉ1(N̄m)⟩, (3.3)

where we have considered the positive intersection products as functions on N̂ef(X)d−m.

Proof. By Remark 4(4), if Di is an admissible decomposition of L̄i, then it is also an
admissible decomposition of N̄i. Hence, by the definition of positive intersection product, the
inequality (3.3) is true.

The following proposition shows that the positive intersection product is continuous in each
variable.

Proposition 3.6. Let (L̄i)0"i"m be a family of big Hermitian line bundles on X, where
m ∈ {0, . . . , d}. Let (M̄i)0"i"m be a family of Hermitian line bundles on X . Then one has

lim
n→∞

n−m⟨ĉ1(L̄⊗n
0 ⊗ M̄0) · . . . · ĉ1(L̄⊗n

m ⊗ M̄m)⟩ = ⟨ĉ1(L̄0) · . . . · ĉ1(L̄m)⟩ (3.4)

as functions on Înt(X)d−m.

Proof. We consider first both positive intersection products as functions on N̂ef(X). Let
αn = ⟨ĉ1(L̄⊗n

0 ⊗ M̄0) · . . . · ĉ1(L̄⊗n
m ⊗ M̄m)⟩. Since L̄i is big, there exists an integer q " 1 such

that the Hermitian line bundles L̄⊗q
i ⊗ M̄i and L̄⊗q

i ⊗ M̄∨
i are both effective. Thus, Lemma 3.5

implies that

αn " ⟨ĉ1(L̄
⊗(n−q)
0 ) · . . . · ĉ1(L̄⊗(n−q)

m )⟩ = (n − q)m⟨ĉ1(L̄0) · . . . · ĉ1(L̄m)⟩,
αn ! ⟨ĉ1(L̄

⊗(n+q)
0 ) · . . . · ĉ1(L̄⊗(n+q)

m )⟩ = (n + q)m⟨ĉ1(L̄0) · . . . · ĉ1(L̄m)⟩.

By passing to the limit, we obtain (3.4) as an equality of functions on N̂ef(X)d−m. The general
case follows from the multilinearity.

Remark 7. Proposition 3.6 implies in particular that if (f (i)
n )n!1 (i = 0, 1, . . . ,m) are

families of continuous functions on X(C) which converge uniformly to zero, then one has

lim
n→+∞

⟨ĉ1(L̄0(f (0)
n )) · . . . · ĉm(L̄m(f (m)

n ))⟩ = ⟨ĉ1(L̄0) · . . . · ĉm(L̄m)⟩.

In particular, the mapping

t &−→ ⟨ĉ1(L̄0(t)) · . . . · ĉ1(L̄m(t))⟩

is continuous on the (open) interval on which it is well defined.
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Proposition 3.7. Let (L̄i)d−1
i=0 be a family of big Hermitian line bundles on X. If M̄ is an

effective integrable Hermitian line bundle on X, then

⟨ĉ1(L̄0) · . . . · ĉ1(L̄d−1)⟩ · ĉ1(M̄) " 0.

Proof. This is a direct consequence of Proposition 2.2.

Remark 8. Proposition 3.7 permits us to extend the function

⟨ĉ1(L̄0) · . . . · ĉ1(L̄d−1)⟩

on P̂ic(X). Let M̄ be an arbitrary Hermitian line bundle on X. By the Weierstrass–Stone
theorem, there exists a sequence (fn)n!1 of continuous functions on X(C) which converges
uniformly to 0, and such that M̄(fn) has smooth metrics for any n. Thus, M̄(fn) is integrable
and an = ⟨ĉ1(L̄0) · . . . · ĉ1(L̄d−1)⟩ · ĉ1(M̄(fn)) is well defined. Let εn,m = ∥fn − fm∥sup. Choose
an ample Hermitian line bundle Ā such that Ā ⊗ L̄∨

i is effective for any i ∈ {0, . . . , d − 1}.
Note that

an − am = ⟨ĉ1(L̄0) · . . . · ĉ1(L̄d−1)⟩ · ĉ1(Ō(fn − fm))
! ⟨ĉ1(L̄0) · . . . · ĉ1(L̄d−1)⟩ · ĉ1(Ō(εn,m))
! ⟨ĉ1(Ā)d⟩ · ĉ1(Ō(εn,m)) = εn,mc1(AK)d. (3.5)

By interchanging the roles of n and m in (3.5) and then combining the two inequalities, one
obtains |an − am| ! εn,mc1(AK)d. Therefore, (an)n!1 is a Cauchy sequence that converges to
a real number which we denote by ⟨ĉ1(L̄0) · . . . · ĉ1(L̄d−1)⟩ · ĉ1(M̄). By an argument similar to
the inequality (3.5), this definition does not depend on the choice of the sequence (fn)n!1. The
extended function is additive on P̂ic(X), non-negative on the subgroup of effective Hermitian
line bundles and satisfies the equality (3.4) (of functions on P̂ic(X)).

4. Differentiability of the arithmetic volume function

We establish the differentiability of the arithmetic volume function. In this section, X denotes
an arithmetic variety of relative dimension d over SpecOK .

4.1. Differentiability criterion

We begin with introducing the notion of differentiability of homogeneous functions defined on
the semigroup of big Hermitian line bundles. For the consideration of lucidity, we choose to
work in the setting of general semigroups.

Notation. Let G be a commutative group whose composition law is written additively.
Let C be a sub-semigroup of G and let H be a subgroup of G.

(1) We say that the sub-semigroup C is open with respect to H if, for any x ∈ C and any
v ∈ H, there exists an integer n0 > 0 such that n0x + v ∈ C (note that this implies in particular
that nx + v ∈ C for any integer n " n0).

(2) Let δ " 1 be an integer. We say that a function f : C → R is (positively) homogeneous
of degree δ if, for any x ∈ C and any integer n " 1, one has f(nx) = nδf(x). In particular, a
homogeneous function of degree 1 is simply said to be homogeneous.

(3) Assume that the sub-semigroup C is open with respect to H. Let x ∈ C and v ∈ H.
We say that a homogeneous function f : C → R of degree δ is differentiable at x along v if the
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sequence†

f(nx + v) − f(nx)
nδ−1

, n sufficiently large,

converges in R. In this case, we denote the limit by Df(x)(v) or Dvf(x). We say that the
function f is differentiable at x with respect to H if it is differentiable at x along any element
in H and if the function Df(x) : H → R is a morphism of groups.

Example 1. Note that the set P̂ic(X) together with the tensor product law forms a group.
The subset B̂ig(X) of big Hermitian line bundles is a sub-semigroup of P̂ic(X). Moreover, it
is open with respect to P̂ic(X). This is a consequence of [26, Corollary 2.4].

Remark 9. Let G be a commutative group, H be a subgroup of G and C be a sub-
semigroup of G, assumed to be open with respect to H.

(1) If f : C → R is a non-negative homogeneous function of degree δ, where δ is a positive
integer, then f1/δ is homogeneous of degree 1. In particular, the function v̂ol1/(d+1) is
homogeneous of degree 1 on B̂ig(X).

(2) Assume that f : C → R is a homogeneous (degree 1) function which is super-additive;
namely, for all x, y ∈ C, one has f(x + y) " f(x) + f(y). Then, for any x ∈ C and any v ∈ H,
the sequence n &→ f(nx + v) − f(nx) is increasing. Hence, it converges to an element in
R ∪ {+∞}, denoted by Dvf(x). In particular, by the log-concavity of the arithmetic volume
function (cf. [27, Theorem B]), the function v̂ol1/(d+1) is super-additive on B̂ig(X) and hence
DM̄ v̂ol1/(d+1)(L̄) is well defined in R ∪ {+∞} for any L̄ ∈ B̂ig(X) and any M̄ ∈ P̂ic(X).

(3) Assume that f : C → R is a homogeneous function (of degree 1) which is differentiable
at x ∈ C with respect to H. Let δ " 1 be an integer and g = fδ. Then the function g is also
differentiable at x with respect to H. In fact, for any v ∈ H, one has

lim
n→∞

f(nx + v)δ − f(nx)δ

nδ−1

= lim
n→∞

δ∑

i=1

f(nx + v)if(nx)δ−i − f(nx + v)i−1f(nx)δ−i+1

nδ−1

=
δ∑

i=1

(
lim

n→∞

f(nx + v)i−1f(nx)δ−i

nδ−1

)(
lim

n→∞
f(nx + v) − f(nx)

)

= δf(x)δ−1Dvf(x).

This formula also shows that Dg(x) = δf(x)δ−1Df(x).
(4) The same argument as in (3) shows that if f : C → R is a homogeneous function that is

non-negative and super-additive and if g = fδ (δ being a positive integer), then, for any x ∈ C
and any v ∈ H, the limit

Dvg(x) := lim
n→∞

g(nx + v) − g(nx)
nδ−1

exists in R ∪ {+∞}, and one has Dg(x) = δf(x)δ−1Df(x). Here we use the fact that

lim
n→∞

f(nx + v)
n

= f(x),

†This definition is ‘justified’ by the following formal equality (here we use the homogeneousness of f):

(f(nx + v) − f(nx))/nδ−1 = (f(x + n−1v) − f(x))/n−1.
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if Dvf(x) < +∞. In particular, the function Dv̂ol(L̄) : P̂ic(X) → R ∪ {+∞} is well defined
since v̂ol1/(d+1) is super-additive.

The following proposition is a differentiability criterion.

Proposition 4.1. Let G be a commutative group, H be a subgroup of G and C be a
sub-semigroup of G that is open with respect to H.

(1) If ϕ : H → R ∪ {+∞} is a super-additive function which is not identically +∞ and if
ψ : H → R is a morphism of groups such that ϕ " ψ, then one has ϕ = ψ.

(2) Let f : C → R be a positive, super-additive and homogeneous function, and g = fδ

where δ is a positive integer. Let x be an element of C ∩ H. Assume that the function Dg(x) :
H → R ∪ {+∞} is bounded from below by a group homomorphism from H to R; then the
function g is differentiable at x with respect to H.

Proof. (1) Let η = ϕ− ψ. The function η : H → R ∪ {+∞} is non-negative and super-
additive. Denote by θ the neutral element of H. Assume that x ∈ H is an element such
that η(x) > 0. Then η(θ) = η(x + (−x)) " η(x) + η(−x) > 0. Moreover, the function η is
not identically infinite. There exists y ∈ H such that η(y) < +∞. Since η(y) = η(y + θ) "
η(y) + η(θ), one obtains η(θ) ! 0, which leads to a contradiction.

(2) Since the function f is super-additive, so is Df(x). In fact, if v and w are two elements
in H, then, for sufficiently positive integer n, one has

f(2nx + v + w) − f(2nx) " f(nx + v) − f(nx) + f(nx + w) − f(nx).

By taking the limit when n tends to infinity, we obtain Dv+wf(x) " Dvf(x) + Dwf(x). By
definition, one has Dxf(x) = f(x) < +∞. By Remark 9(4), one has Dg(x) = δf(x)δ−1Df(x).
So Dg(x) is super-additive and Dxg(x) < +∞. Hence, by (1) one obtains that Dg(x) is a group
homomorphism.

4.2. Proof of the main theorem

We shall prove Theorem A by using the differentiability criterion above. The main idea is to
establish a suitable lower bound of Dv̂ol(L̄). We begin with the following lemma, which is
analogous to [7, Corollary 3.4].

Lemma 4.2. Let L̄ and N̄ be two nef Hermitian line bundles on X. Let M̄ be an integrable
Hermitian line bundle on X. Assume that M̄ ⊗ N̄ and M̄∨ ⊗ N̄ are nef and that L̄∨ ⊗ N̄ is
effective. Then there exists a constant C > 0 depending only on d such that

v̂ol(L̄⊗n ⊗ M̄) " nd+1v̂ol(L̄) + (d + 1)ndĉ1(L̄)d · ĉ1(M̄) − Cv̂ol(N̄)nd−1.

Proof. Recall that (see [26, Theorem 2.2; see also 19, Theorem 5.6]) if Ā and B̄ are two
nef Hermitian line bundles on X, then

v̂ol(B̄ ⊗ Ā∨) " ĉ1(B̄)d+1 − (d + 1)ĉ1(B̄)d · ĉ1(Ā). (4.1)

Let B̄ = L̄⊗n ⊗ M̄ ⊗ N̄ . It is a nef Hermitian line bundle on X. If one applies (4.1) to B̄ and
to Ā = N̄ , then one obtains

v̂ol(L̄⊗n ⊗ M̄) = v̂ol(B̄ ⊗ N̄∨) " ĉ1(B̄)d+1 − (d + 1)ĉ1(B̄)d · ĉ1(N̄)
= nd+1ĉ1(L̄)d+1 + (d + 1)ndĉ1(L̄)d · ĉ1(M̄) + O(nd−1),
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where the implied constant is a linear combination of intersection numbers of Hermitian line
bundles of the form L̄ or M̄ ⊗ N̄ , and hence can be bounded from above by a multiple of
ĉ1(N̄)d+1 = v̂ol(N̄), according to Proposition 2.2.

Theorem 4.3. The function v̂ol is differentiable at any point of B̂ig(X) with respect to
P̂ic(X). Moreover, for any L̄ ∈ B̂ig(X) and any M̄ ∈ P̂ic(X), one has

DM̄ v̂ol(L̄) = (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄). (4.2)

Proof. By Proposition 4.1(2) (applied to f = v̂ol1/(d+1) and g = v̂ol = fd+1), it suffices to
prove that the function Dv̂ol(L̄) is bounded from below by the group homomorphism

M̄ &−→ (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄).

Let L̄ be a big Hermitian line bundle and M̄ be an integrable Hermitian line bundle on X.
Choose a nef Hermitian line bundle N̄ on X such that M̄ ⊗ N̄ and M̄∨ ⊗ N̄ are nef and L̄∨ ⊗ N̄
is effective. Note that, for any admissible decomposition D = (ν, Ā, p) of L̄, the Hermitian
line bundles ν∗M̄⊗p ⊗ ν∗N̄⊗p and ν∗M̄∨⊗p ⊗ ν∗N̄⊗p are nef, and Ā∨ ⊗ ν∗N̄⊗p is effective.
Lemma 4.2 applied to Ā, N̄⊗p and M̄⊗p shows that

v̂ol(L̄⊗n ⊗ M̄) " p−(d+1)v̂ol(Ā⊗n ⊗ M̄⊗p)

" (n/p)d+1v̂ol(Ā) + (d + 1)(n/p)d(D · . . . · D) · ĉ1(M̄) − Cv̂ol(N̄)nd−1.

Since D is arbitrary, one obtains

v̂ol(L̄⊗n ⊗ M̄) " nd+1v̂ol(L̄) + (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄)nd − Cv̂ol(N̄)nd−1,

v̂ol(L̄⊗n ⊗ M̄) − v̂ol(L̄⊗n)
nd

" (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄) − Cv̂ol(N̄)n−1.

By taking the limit, we obtain the lower bound

DM̄ v̂ol(L̄) " (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄).

In the case where M̄ is a general Hermitian line bundle, we choose a sequence of continuous
non-negative functions (ϕm)m!1 on X(C) which converges uniformly to 0 and such that each
Hermitian line bundle M̄(−ϕm) is integrable.† Thus, by the lower bound established above,
we obtain

Dv̂ol(L̄)(M̄) " Dv̂ol(L̄)(M̄(−ϕm)) " (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄(−ϕm)).

By passing to the limit, we obtain the required lower bound.

A direct consequence of Theorem 4.3 is the asymptotic orthogonality of arithmetic Fujita
approximation.

Corollary 4.4. Assume that L̄ is a big Hermitian line bundle on X. One has

⟨ĉ1(L̄)d⟩ · ĉ1(L̄) = v̂ol(L̄). (4.3)

†We can arrange, for example, that each Hermitian line bundle M̄(−ϕm) has smooth metrics.
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Proof. By definition

DL̄v̂ol(L̄) = lim
n→+∞

v̂ol(L̄⊗(n+1)) − v̂ol(L̄⊗n)
nd

= v̂ol(L̄) lim
n→+∞

(n + 1)d+1 − nd+1

nd
= (d + 1)v̂ol(L̄).

So (4.3) follows from Theorem 4.3.

Remark 10. As mentioned in Section 1, the differentiability of the geometric volume
function can be obtained by using the method of Okounkov bodies developed in [21]. See [16]
for a proof of this result and other interesting results concerning geometric volume functions.
Recently, Boucksom and the current author have proposed an analogue of Lazarsfeld and
Musţatǎ’s construction for filtered linear series (compare with a previous construction of
Yuan [27]). Hopefully, this will lead to an alternative proof of the differentiability of the
arithmetic volume function.

4.3. Lower bound of the positive intersection product

Our differentiability result permits us to obtain a lower bound for positive intersection products
of the form ⟨ĉ1(L̄)d⟩ · ĉ1(M̄), where L̄ is a big Hermitian line bundle on X and M̄ is an effective
Hermitian line bundle on X, by using the log-concavity of the arithmetic volume function
proved in [27].

Proposition 4.5. Let L̄ and M̄ be two Hermitian line bundles on X. Assume that L̄ is
big and M̄ is effective. Then

⟨ĉ1(L̄)d⟩ · ĉ1(M̄) " vol(L̄)d/(d+1)vol(M̄)1/(d+1). (4.4)

Proof. Theorem 4.3 shows that

lim
n→+∞

vol(L̄⊗n ⊗ M̄) − vol(M̄)
nd

= (d + 1)⟨ĉ1(L̄)d⟩ · ĉ1(M̄).

By [27, Theorem B], one has

v̂ol(L̄⊗n ⊗ M̄) " (v̂ol(L̄⊗n)1/(d+1) + v̂ol(M̄)1/(d+1))d+1.

By taking the limit, we obtain the required inequality.

Remark 11. The inequality (4.4) could be considered as an analogue in Arakelov geometry
(suggested by Bertrand [3]) of the isoperimetric inequality proved by Federer [12, 3.2.43].
See [13, § 5.4] for an interpretation in terms of intersection theory, and [3, § 1.2] for an analogue
in the geometry of numbers.

4.4. Comparison to other differentiability results

The differentiability of the arithmetic volume function can be compared with several results in
the literature which can be interpreted as the differentiability of arithmetic invariants.

Intersection number. Recall that the self-intersection number ĉ1(L̄)d+1 is well defined for
integrable Hermitian line bundles L̄; see [14, 28, 29]. Furthermore, it is a polynomial function.
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Therefore, for any integrable Hermitian line bundles L̄ and M̄ , one has

lim
n→+∞

ĉ1(L̄⊗n ⊗ M̄)d+1 − ĉ1(L̄⊗n)
nd

= (d + 1)ĉ1(L̄)d · ĉ1(M̄).

This formula shows that the intersection number is differentiable at L̄ along all directions in
Înt(X).

Sectional capacity. By using the analogue of Siu’s inequality in Arakelov geometry,
Yuan [26] has actually proved that the sectional capacity S (see Remark 1) is differentiable
at any Hermitian line bundle L̄ such that L is ample and the metrics of L̄ are semipositive.
Furthermore, for such L̄, one has

DM̄S(L̄) := lim
n→+∞

S(L̄⊗n ⊗ M̄) − S(L̄⊗n)
nd

= (d + 1)ĉ1(L̄)d · ĉ1(M̄),

where M̄ is an arbitrary integrable Hermitian line bundle. This result has been established
by Autissier [1] in the case where d = 1. Recently, Berman and Boucksom [2] have proved a
general differentiability result for sectional capacity. They have proved that the function S
is differentiable along the directions defined by continuous functions on X(C) on the cone of
generically big Hermitian line bundles; namely, for any continuous function f on X(C) and
any Hermitian line bundle L̄ on X, such that LK is big and S(L̄) is finite, the limit

lim
n→+∞

S(L̄⊗n(f)) − S(L̄⊗n)
nd

exists. They have also computed explicitly the differential in terms of the Monge–Ampère
measure of L̄ (see [2, Theorem 5.7 and Remark 5.8]).

5. Applications

In this section, we discuss two applications of the differentiability of the arithmetic volume
function: the computation of the asymptotic measure and a conceptual interpretation of the
variational principle in equidistribution problems.

5.1. Asymptotic measure

Let L̄ be a Hermitian line bundle on X such that LK is big. The asymptotic measure of L̄ is
the vague limit in the space of Borel probability measures:

νL̄ := − lim
n→+∞

d

dt

rk(VectK({s ∈ π∗L⊗n | maxσ ∥s∥σ,sup ! e−nt}))
rk(π∗L⊗n)

, (5.1)

where the derivative is taken in the sense of distribution.
Note that the support of the probability measure νL̄ is contained in ] −∞, µ̂π

max(L̄)], where
µ̂π

max(L̄) is the limit of maximal slopes (see [10, Theorem 4.1.8]):

µ̂π
max(L̄) := lim

n→+∞

µ̂max(π∗L̄⊗n)
n

.

By definition, one has µ̂π
max(L̄(a)) = µ̂π

max(L̄) + a for any a ∈ R. Moreover, µ̂π
max(L̄) > 0 if and

only if L̄ is big (see [11, Proposition 3.11]). Therefore, µ̂π
max(L̄) is also the infimum of all real

numbers ε such that L̄(−ε) is big.
Several arithmetic invariants of L̄ can be represented as integrals with respect to νL̄. In the

following, we discuss some examples. The asymptotic positive slope of L̄ is defined as

µ̂π
+(L̄) :=

1
[K : Q]

v̂ol(L̄)
(d + 1)vol(LK)

.
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It has the following integral form (see [11, Theorem 3.8]):

µ̂π
+(L̄) =

∫

R
max(x, 0) νL̄(dx). (5.2)

More generally, for any a ∈ R, one has
∫

R
max(x − a, 0)νL̄(dx) = µ̂π

+(L̄(−a)). (5.3)

Another example is the asymptotic slope of L̄, which is

µ̂π(L̄) :=
1

[K : Q]
S(L̄)

(d + 1)vol(LK)
∈ [−∞,+∞[,

where S(L̄) is the sectional capacity of L̄ as in (2.1). One has

µ̂π(L̄) !
∫

R
x νL̄(dx).

The equality holds when LK is ample. Observe that

µ̂π
max(L̄) " µ̂π

+(L̄) " µ̂π(L̄). (5.4)

Using Theorem 4.3 and the differentiability of geometric volume function in [7], we prove
that the asymptotic positive slope µ̂π

+ is differentiable and calculate its differential.

Proposition 5.1. Assume that L̄ is a big Hermitian line bundle on X. For any Hermitian
line bundle M̄ the limit

DM̄ µ̂π
+(L̄) := lim

n→+∞
(µ̂π

+(L̄⊗n ⊗ M̄) − µ̂π
+(L̄⊗n))

exists in R. Furthermore, one has

DM̄ µ̂π
+(L̄) :=

⟨ĉ1(L̄)d⟩ · ĉ1(M̄)
[K : Q]vol(LK)

− d⟨c1(LK)d−1⟩ · c1(MK)
vol(LK)

µ̂π
+(L̄),

where ⟨c1(LK)d−1⟩ · c1(MK) is the geometric positive intersection product [7, § 2].

Proof. This is a direct consequence of Theorem 4.3 and [7, Theorem A], where the latter
asserts

lim
n→+∞

vol(L⊗n
K ⊗ MK) − vol(L⊗n

K )
nd−1

= d⟨c1(LK)d−1⟩ · c1(MK).

We then deduce from Proposition 5.1 the expression of the distribution function of the
measure νL̄.

Proposition 5.2. The distribution function FL̄ of νL̄ satisfies the equality

FL̄(a) := νL̄( ] −∞, a]) = 1 − ⟨ĉ1(L̄(−a))d⟩ · ĉ1(Ō(1))
[K : Q]vol(LK)

, a < µ̂π
max(L̄).

Proof. One has

FL̄(a) = 1 +
d

da

∫

R
max(x − a, 0) ν(dx) = 1 +

d

da
µ̂π

+(L̄(−a)).

By Proposition 5.1, one obtains
d

da
µ̂π

+(L̄(−a)) = −⟨ĉ1(L̄(−a))d⟩ · ĉ1(Ō(1))
[K : Q]vol(LK)

.
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Remark 12. (1) Since the support of νL̄ is bounded from above by µ̂max(L̄), one has
FL̄(a) = 1 for a " µ̂max(L̄).

(2) As a consequence of Proposition 5.2, one obtains that the function

⟨ĉ1(L̄(−a))d⟩ · ĉ1(Ō(1))
[K : Q]vol(LK)

is decreasing with respect to a on ] −∞, µ̂π
max(L̄)[, which is also implied by Lemma 3.5.

Furthermore, this function takes values in ]0, 1], and converges to 1 when a → −∞.
(3) Let a ∈ ] −∞, µ̂π

max(L̄)[. The restriction of

1
[K : Q]vol(LK)

⟨ĉ1(L̄(−a))d⟩

on C0(X(C)) (considered as a subgroup of P̂ic(X) via the mapping f &→ O(f)) is a positive
linear functional and thus corresponds to a Radon measure on X(C). Furthermore, by (1), its
total mass is bounded from above by 1, and converges to 1 when a → −∞.

(4) By Remark 7, we observe from Proposition 5.2 that the only possible discontinuous
point of the distribution function FL̄(a) is a = µ̂π

max(L̄).

5.2. Applications in equidistribution

In this section, we apply our differentiability result to an equidistribution problem in
Arakelov geometry. We do not claim to have obtained new results but aim to give a more
conceptual interpretation of the variational principle in the Arakelov geometry approach of the
equidistribution problem developed in works such as [1, 2, 8, 9, 24–26, 30]. Let π : X → Spec Z
be a projective arithmetic variety. If x ∈ X(Q̄) is an algebraic point of X, then it defines a
Borel probability measure

ηx :=
1

[Q(x) : Q]

∑

σ:Q(x)→C
δσ(x) (5.5)

on the analytic space X(C), where, for any y ∈ X(C), δy denotes the Dirac measure concen-
trated on y. We consider a sequence x̄ = (xn)n!1 of points in X(Q̄). In the equidistribution
problem, we look for conditions under which the measure sequence (ηxn)n!1 converges weakly,
or equivalently, the sequence of integrals (

∫
X(C) g dηxn)n!1 converges in R for any continuous

function g on X(C). Note that each continuous function g on X(C) defines a Hermitian line
bundle Ō(g) on X as explained in § 2. Note that g &→ O(g) identifies C0(X(C)) with a subgroup
of P̂ic(X). The integral with respect to the Galois orbit has the following interpretation:

∫

X(C)
g dηxn = hŌ(g)(xn).

For L̄ ∈ P̂ic(X), we define

ϕx̄(L̄) := lim inf
n→+∞

hL̄(xn) ∈ R ∪ {±∞}.

Since the Arakelov height hL̄ is additive with respect to L̄, we obtain that ϕx̄(·) is a super-
additive function on P̂ic(X). Note that the sequence of measures (ηxn)!1 converges weakly if
and only if the restriction of the function ϕx̄(·) on C0(X(C)) is additive. In fact, if (ηxn)!1

converges weakly, then the restriction of the function ϕx̄(·) on C0(X(C)) can be written as a
limit of linear forms on C0(X(C)), and hence is itself a linear form. Conversely, if the restriction
of ϕx̄(·) on C0(X(C)) is additive, then one has ϕx̄(Ō(−g)) = −ϕx̄(Ō(g)) for any g ∈ C0(X(C)),
which implies that ϕx̄(Ō(g)) is actually the limit of hŌ(g)(xn) =

∫
X(C) g dηxn .
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For L̄ ∈ P̂ic(X), we define

C(X, L̄) := {L̄⊗n ⊗ Ō(f) |n " 1, f ∈ C0(X(C))}.

It is a sub-semigroup of P̂ic(X) which is open with respect to C0(X(C)). Note that if ϕx̄(L̄) ∈ R,
then the function ϕx̄(·) is finite on C(X, L̄).

The following theorem shows that the problem of equidistribution can be interpreted as a
differentiability property.

Theorem 5.3. If (ηxn)n!1 converges weakly, then, for any L̄ ∈ P̂ic(X) such that ϕx̄(L̄) ∈
R, the restriction of the function ϕx̄(·) on C(X, L̄) is differentiable at L̄ along the directions
in C0(X(C)). Conversely, if there exists a Hermitian line bundle L̄ ∈ P̂ic(X) such that
(hL̄(xn))n!1 converge in R and the function ϕx̄(·) is differentiable at L̄ along the directions in
C0(X(C)), then the sequence of measures (ηxn)n!1 converges weakly.

Proof. ‘=⇒’ : For any integer m " 1 and any f ∈ C0(X(C)), one has

ϕx(L̄⊗m ⊗ Ō(f)) := lim inf
n→∞

(mhL̄(xn) + hŌ(f)(xn)) = mϕx̄(L̄) + ϕx̄(Ō(f)), (5.6)

where in the second equality we have used the assumption that hŌ(f)(xn) =
∫

f dηxn converges
in R when n tends to infinity. Hence, Dϕx(L̄) = ϕx is additive.

‘⇐=’ : The equality (5.6) still holds, but this time we use the convergence of (hL̄(xn))n!1 to
prove the second equality. Hence, Dϕx(L̄) equals the restriction of ϕx on C0(X(C)) and thus
ϕx̄ is additive on C0(X(C)). Therefore, the sequence (ηxn)n!1 converges weakly.

Remark 13. From the proof of Theorem 5.3, we observe that if the sequence of measures
(ηxn)n!1 converges weakly, then the limit measure is just the Radon measure on X(C)
corresponding to the positive linear functional

(f ∈ C0(X(C))) &−→ Dϕx̄(L̄)(Ō(f)).

The variational principle can be interpreted as the following observation.

Proposition 5.4. Let G be a commutative group, H be a subgroup of G, C be a sub-
semigroup of G that is open with respect to H and x ∈ C. If f and g are two positively
homogeneous functions on C such that:

(1) ∀a, b ∈ C, f(a + b) " f(a) + f(b);
(2) f " g, f(x) = g(x);
(3) g is differentiable at x along the directions in H;

then the function f is also differentiable at x along the directions in H. Moreover, one has
Df(x) = Dg(x).

Proof. For any w ∈ H, there exists n0(w) ∈ N∗ such that nx + w ∈ C for any n " n0(w).
Moreover, the sequence (f(nx + w) − f(nx))n!n0(w) is increasing. Therefore, the limit

Dwf(x) := lim
n→∞

f(nx + w) − f(nx)

is well defined in R ∪ {+∞}. The functions f and g are positively homogeneous and f(x) =
g(x), hence f(nx) = g(nx) for any n ∈ N∗. Therefore, one has Df(x) " Dg(x). If u and w are



DIFFERENTIABILITY OF THE ARITHMETIC VOLUME FUNCTION 383

two elements in H, then

Du+wf(x) = lim
n→∞

f(2nx + u + w) − 2nf(x)

" lim
n→∞

f(nx + u) + f(nx + w) − 2nf(x) = Duf(x) + Dwf(x).

Therefore, the function Df(x) is super-additive. Moreover, D0f(x) = 0. By Proposition 4.1,
we obtain that Df(x) = Dg(x) is additive.

Corollary 5.5. Assume that the sequence x̄ is generic (that is, any sub-sequence of x̄ is
dense in X). If there exists a big Hermitian line bundle L̄ on X such that hL̄(xn) converges to
µ̂π

+(L̄), then the sequence of measures (ηxn)n!1 converges weakly, and one has

lim
n→+∞

∫
f dηxn =

⟨ĉ1(L̄)d⟩ · ĉ1(Ō(f))
[K : Q]vol(LK)

.

Proof. In the case where the sequence x̄ is generic, the function ϕx̄(·) is bounded from
below by the essential minimum µ̂ess(·). Moreover, an application of the slope method shows
that µ̂ess(·) is bounded from below by µ̂π

max(·) on the big cone. Hence, the corollary results
from the inequality (5.4), Propositions 5.1, 5.4 and Theorem 5.3.

Remark 14. In Corollary 5.5, the hypothesis ϕx̄(L̄) = µ̂π
+(L̄) implies that µ̂π

max(L̄) =
µ̂π

+(L̄). In this case, the asymptotic measure νL̄ reduces to a Dirac measure. So one has

ϕx̄(L̄) =
∫

R
x νL̄(dx),

and hence

ϕx̄(L̄) = µ̂π(L̄) :=
1

[K : Q]
S(L̄)

(d + 1)vol(LK)
.

Therefore, Corollary 5.5 is not more general than [2, Theorem 11.1]. We hope that a study on
the differentiability domain of the function µ̂π

max will provide new equidistribution criteria in
Arakelov geometry.
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Käler manifold and varieties of negative Kodaira dimension’, Preprint, 2004, arXiv:math/0405285.



384 DIFFERENTIABILITY OF THE ARITHMETIC VOLUME FUNCTION

7. S. Boucksom, C. Favre and M. Jonsson, ‘Differentiability of volumes of divisors and a problem of
Teissier’, J. Algebraic Geom. 18 (2009) 279–308.
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12. H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften 153

(Springer, New York, 1969).
13. W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131 (Princeton University

Press, Princeton, NJ, 1993), The William H. Roever Lectures in Geometry.
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